Sample records for pc5 ulf wave

  1. Survey of Ionospheric Pc3-5 ULF Wave Signatures in SuperDARN High Time Resolution Data

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ruohoniemi, J. M.; Baker, J. B. H.; Lin, D.; Bland, E. C.; Hartinger, M. D.; Scales, W. A.

    2018-05-01

    Ionospheric signatures of ultralow frequency (ULF) wave in the Pc3-5 band (1.7-40.0 mHz) were surveyed using ˜6-s resolution data from Super Dual Auroral Radar Network (SuperDARN) radars in the Northern Hemisphere from 2010 to 2016. Numerical experiments were conducted to derive wave period-dependent thresholds for automated detection of ULF waves using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition, and geomagnetic activity level dependence have been studied. Pc5 wave events were found to dominate at high and polar latitudes with a most probable frequency of 2.08 ± 0.07 mHz, while Pc3-4 waves were relatively more common at midlatitudes on the nightside with a most probable frequency of 11.39 ± 0.14 mHz. At high latitudes, the occurrence rate of Pc4-5 waves maximizes in the dusk sector and during winter. These events tend to occur during low geomagnetic activity and northward interplanetary magnetic field. For the category of radially bounded but longitudinally extended Pc4 events in the duskside ionosphere, an internal driving source is suggested. At midlatitudes, the poloidal Pc3-4 occurrence rate maximizes premidnight and during equinox. This tendency becomes more prominent with increasing auroral electrojet (AE) index and during southward interplanetary magnetic field, which suggests that many of these events are Pi2 and Pc3-4 pulsations associated with magnetotail dynamics during active geomagnetic intervals. The overall occurrence rate of Pc3-5 wave events is lowest in summer, which suggests that the ionospheric conductivity plays a role in controlling ULF wave occurrence.

  2. Modulation of chorus intensity by ULF waves deep in the inner magnetosphere

    DOE PAGES

    Xia, Zhiyang; Chen, Lunjin; Dai, Lei; ...

    2016-09-05

    Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this paper, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <~ 0.3f ce), but cannot account for the observed higher-frequency chorus waves, includingmore » the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. Finally, in addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long.« less

  3. Statistical studies of Pc 3-5 pulsations and their relevance for possible source mechanisms of ULF waves

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.

    1993-01-01

    A number of statistical studies using spacecraft data have been made of ULF waves in the magnetosphere. These studies provide an overview of ULF pulsation activity for r = 5-15 R(E) and allow an assessment of likely source mechanisms. In this review pulsations are categorized into five general types: compressional Pc 5, poloidal Pc 4, toroidal harmonics, toroidal Pc 5 (fundamental mode), and incoherent noise. The occurrence distributions and/or distributions of wave power of the different types suggest that compressional Pc 5 and poloidal Pc 4 derive their energy locally, most likely from energetic protons. The toroidal pulsations, both harmonic and fundamental mode, appear to be driven by an energy source outside the magnetopause - directly upstream in the sheath and solar wind for harmonics and the flanks for fundamentals. Incoherent pulsations are a prominent pulsation type but from their occurrence distribution alone it is unclear what their dominant energy source may be.

  4. The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Zong, Qiugang; Rankin, Robert; Zhou, Xuzhi

    2017-12-01

    One of the most important issues in space physics is to identify the dominant processes that transfer energy from the solar wind to energetic particle populations in Earth's inner magnetosphere. Ultra-low-frequency (ULF) waves are an important consideration as they propagate electromagnetic energy over vast distances with little dissipation and interact with charged particles via drift resonance and drift-bounce resonance. ULF waves also take part in magnetosphere-ionosphere coupling and thus play an essential role in regulating energy flow throughout the entire system. This review summarizes recent advances in the characterization of ULF Pc3-5 waves in different regions of the magnetosphere, including ion and electron acceleration associated with these waves.

  5. Survey of Pc3-5 ULF velocity oscillations in SuperDARN THEMIS-mode data: Occurrence statistics and driving mechanisms

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ruohoniemi, J. M.; Baker, J. B.; Lin, D.; Bland, E. C.; Hartinger, M.; Scales, W.

    2017-12-01

    Ultra-low frequency (ULF: 1 mHz-10 Hz) waves are believed to play an important role in the energization and transport of plasma within the magnetosphere-ionosphere system, as well as the transfer of energy from the solar wind. Most previous statistical studies of ionospheric ULF waves using Super Dual Auroral Radar Network (SuperDARN) data have been constrained to the Pc5 band ( 1-7 mHz) and/or one or two radars covering a limited range of latitudes. This is partially due to lack of a database cataloging high time resolution data and an efficient way to identify wave events. In this study, we conducted a comprehensive survey of ULF wave signatures in the Pc3-5 band using 6 s resolution data from all SuperDARN radars in the northern hemisphere operating in THEMIS-mode from 2010 to 2016. Numerical experiments were conducted to derive dynamic thresholds for automated detection of ULF waves at different frequencies using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition and geomagnetic activity level dependence have been studied. We found Pc5 events dominate at high latitudes with a most probable frequency of 2 mHz while Pc3-4 are relatively more common at mid-latitudes on the nightside with a most probable frequency of 11 mHz. At high latitudes the occurrence rate of poloidal Pc3-5 peaks in the dusk sector and in winter while at mid-latitudes the poloidal Pc3-4 occurrence rate peaks at pre-midnight. This pre-midnight occurrence peak becomes more prominent with increasing AE index value, in equinox and during southward IMF, which suggests many of these events are most likely Pi2 pulsations associated with magnetotail dynamics during active geomagnetic intervals.

  6. Global distribution of ULF waves during magnetic storms on March 27, 2017 and April 4, 2017

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Seki, K.; Teramoto, M.; Matsuoka, A.; Higashio, N.; Fok, M. C. H.

    2017-12-01

    The relativistic electron population in the Earth's outer radiation belt is drastically variable, especially during the active condition of the magnetosphere such as magnetic storms. One of the candidate mechanisms to cause the increase or decrease of relativistic electrons is the radial diffusion of the electrons driven by ultra-low-frequency (ULF) waves in Pc5 frequency ranges. However, how much ULF Pc5 waves contribute to the evolution of the radiation belt is still an open issue. In particular, previous papers have investigated the radial distribution of ULF Pc5 waves in the inner magnetosphere, but the spatial distribution is not well understood because of the limited number of satellite. In December 2016, the Arase satellite was launched into the inner magnetosphere, and the campaign observations between Arase and ground-based observations are now operated. During the first campaign observation from the end of March to April 2017, two distinct magnetic storms were occurred. The first storm was occurred on March 27, 2017 (Storm 1), which lasted for about six days. On the other hand, the second storm on April 4, 2017 (Storm 2) lasted for about two days. The temporal variation of the dynamic pressure and density of solar wind during each storm is almost similar. However, the solar wind flow speed data shows that Storm 1 is caused by the CIR, while Storm 2 might be caused by the CME. Therefore, background field variations that excite ULF Pc5 waves in the inner magnetosphere can be different between Storm 1 and 2. In addition, the Extremely High-Energy Electron Experiment (XEP) data onboard Arase clearly show the increase of high-energy electrons (400 keV-20 MeV) during the recovery phase of Storm 1, while they did not recover to the pre-storm level during Storm 2. Remarkable difference between two storms is the substorm activities in the recovery phase. The AE index continuously increased in Storm 1, while in Storm 2, it stayed in low level. The global simulation by BATS-R-US with the CRCM show that ULF Pc5 wave power during Storm 1 is larger than that during Storm 2. In this study, based on the multiple satellite observations including Arase and the global simulation, we investigate the temporal and spatial distribution of ULF Pc5 waves and their relation to solar wind conditions and substorm injections.

  7. On the predictive potential of Pc5 ULF waves to forecast relativistic electrons based on their relationships over two solar cycles

    NASA Astrophysics Data System (ADS)

    Lam, Hing-Lan

    2017-01-01

    A statistical study of relativistic electron (>2 MeV) fluence derived from geosynchronous satellites and Pc5 ultralow frequency (ULF) wave power computed from a ground magnetic observatory data located in Canada's auroral zone has been carried out. The ground observations were made near the foot points of field lines passing through the GOESs from 1987 to 2009 (cycles 22 and 23). We determine statistical relationships between the two quantities for different phases of a solar cycle and validate these relationships in two different cycles. There is a positive linear relationship between log fluence and log Pc5 power for all solar phases; however, the power law indices vary for different phases of the cycle. High index values existed during the descending phase. The Pearson's cross correlation between electron fluence and Pc5 power indicates fluence enhancement 2-3 days after strong Pc5 wave activity for all solar phases. The lag between the two quantities is shorter for extremely high fluence (due to high Pc5 power), which tends to occur during the declining phases of both cycles. Most occurrences of extremely low fluence were observed during the extended solar minimum of cycle 23. The precursory attribute of Pc5 power with respect to fluence and the enhancement of fluence due to rising Pc5 power both support the notion of an electron acceleration mechanism by Pc5 ULF waves. This precursor behavior establishes the potential of using Pc5 power to predict relativistic electron fluence.

  8. Correlated Pc4-5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the Van Allen Probes and ground-based systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaynes, A. N.; Lessard, M. R.; Takahashi, K.

    Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch angle scattering of tens of keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and tens of keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4–5 compressional pulsations and modulation of whistler-mode chorus using Time History of Events and Macroscale Interactions during Substorms. In the current study, we present simultaneous in situ observations of structured chorusmore » waves and an apparent field line resonance (in the Pc4–5 range) as a result of a substorm injection, observed by Van Allen Probes, along with ground-based observations of pulsating aurora. We demonstrate the likely scenario being one of substorm-driven Pc4–5 ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth's atmosphere. Interestingly, the modulated chorus wave and ULF wave periods are well correlated, with chorus occurring at half the periodicity of the ULF waves. We also show, for the first time, a particular few-Hz modulation of individual chorus elements that coincides with the same modulation in a nearby pulsating aurora patch. As a result, such modulation has been noticed as a high-frequency component in ground-based camera data of pulsating aurora for decades and may be a result of nonlinear chorus wave interactions in the equatorial region.« less

  9. Correlated Pc4-5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the Van Allen Probes and ground-based systems

    DOE PAGES

    Jaynes, A. N.; Lessard, M. R.; Takahashi, K.; ...

    2015-10-28

    Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch angle scattering of tens of keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and tens of keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4–5 compressional pulsations and modulation of whistler-mode chorus using Time History of Events and Macroscale Interactions during Substorms. In the current study, we present simultaneous in situ observations of structured chorusmore » waves and an apparent field line resonance (in the Pc4–5 range) as a result of a substorm injection, observed by Van Allen Probes, along with ground-based observations of pulsating aurora. We demonstrate the likely scenario being one of substorm-driven Pc4–5 ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth's atmosphere. Interestingly, the modulated chorus wave and ULF wave periods are well correlated, with chorus occurring at half the periodicity of the ULF waves. We also show, for the first time, a particular few-Hz modulation of individual chorus elements that coincides with the same modulation in a nearby pulsating aurora patch. As a result, such modulation has been noticed as a high-frequency component in ground-based camera data of pulsating aurora for decades and may be a result of nonlinear chorus wave interactions in the equatorial region.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yukhimuk, V.; Roussel-Dupre, R.

    In this paper the evolution of nonlinear scattering of whistler mode waves by kinetic Alfven waves (KAW) in time and two spatial dimensions is studied analytically. The authors suggest this nonlinear process as a mechanism of kinetic Alfven wave generation in space plasmas. This mechanism can explain the dependence of Alfven wave generation on whistler waves observed in magnetospheric and ionospheric plasmas. The observational data show a dependence for the generation of long periodic pulsations Pc5 on whistler wave excitation in the auroral and subauroral zone of the magnetosphere. This dependence was first observed by Ondoh T.I. For 79 casesmore » of VLF wave excitation registered by Ondoh at College Observatory (L=64.6 N), 52 of them were followed by Pc5 geomagnetic pulsation generation. Similar results were obtained at the Loparskaia Observatory (L=64 N) for auroral and subauroral zone of the magnetosphere. Thus, in 95% of the cases when VLF wave excitation occurred the generation of long periodic geomagnetic pulsations Pc5 were observed. The observations also show that geomagnetic pulsations Pc5 are excited simultaneously or insignificantly later than VLF waves. In fact these two phenomena are associated genetically: the excitation of VLF waves leads to the generation of geomagnetic pulsations Pc5. The observations show intensive generation of geomagnetic pulsations during thunderstorms. Using an electromagnetic noise monitoring system covering the ULF range (0.01-10 Hz) A.S. Fraser-Smith observed intensive ULF electromagnetic wave during a large thunderstorm near the San-Francisco Bay area on September 23, 1990. According to this data the most significant amplification in ULF wave activity was observed for waves with a frequency of 0.01 Hz and it is entirely possible that stronger enhancements would have been measured at lower frequencies.« less

  11. Ion flux oscillations and ULF waves observed by ARASE satellite and their origin

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Masahito, N.; Kasahara, S.; Yokota, S.; Keika, K.; Matsuoka, A.; Teramoto, M.; Nomura, R.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Shinohara, I.; Yoshizumi, M.

    2017-12-01

    The ARASE satellite, which was launched on December 20, 2016, is now observing thenightside inner magnetosphere. The inclination of the orbit is larger than those of otherrecent spacecraft flying in the inner magnetosphere such as THMEIS and Van Allen Probes.This unique orbit provides us new information on ULF waves since ULF waves havelatitudinal structure and the antinode of magnetic fluctuations of fundamental mode is athigh magnetic latitudes.Although Pc pulsations are predominantly observed on the dayside, ARASE satellitesometimes observes Pc4-5 pulsations on the nightside. Some of these waves are accompaniedwith energetic particle flux modulations. We found 6 events of the particle flux modulationsaccompanying Pc pulsations on the dawnside and nightside. Theoretical studies suggest thatULF waves detected at afternoon are generated by plasma instabilities like drift-mirror instability [Hasegawa, 1969] and drift-bounce resonance [Southwood et al, 1969].These instabilities cause plasma pressure disturbances or flux modulation of ions. Nonresonant ion clouds injected on the duskside are also considered to be one of the candidates ofULF wave driver [Zolotukhina, 1974]. We therefore discuss whether the ULF waves observedby ARASE satellite are generated internally or externally, and the flux modulations arecreated by plasma instabilities or the other non-resonant effects.On March 31, 2017, Medium-Energy Particle Experiments - Ion Mass Analyzer (MEPi)onboard ARASE detected ion flux oscillations at 12-70 keV with a period of 120 seconds inthe normal (NML) mode observation. NML mode observation provides details of the directionof particle movements. The pitch angle distribution of proton flux showed isotropic fluxoscillations. At the same time, Pc4 pulsations with the same oscillation period were observed.These flux and field perturbations were seen on the dawnside (4.3-5.9 MLT).ARASE found oscillations of ion count with a period of 130 seconds in the time-of-flight(TOF) mode observation at midnight on May 29, 2017. Therefore, we used the list data, that is createdfor onboard calibrations, to make a pitch angle distribution of ion counts. The pitch angledistribution did not have clear fluctuations, so that the oscillations may beattributed to angyrotropic particle distributions.

  12. Observations of a Unique Type of ULF Wave by Low-Altitude Space Technology 5 Satellites

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Slavin, J. A.

    2011-01-01

    We report a unique type of ULF waves observed by low-altitude Space Technology 5 (ST-5) constellation mission. ST-5 is a three-microsatellite constellation deployed into a 300 x 4500 km dawn-dusk and Sun-synchronous polar orbit with 105.6deg inclination angle. Because of the Earth's rotation and the dipole tilt effect, the spacecraft's dawn-dusk orbit track can reach as low as subauroral latitudes during the course of a day. Whenever the spacecraft traverse the dayside closed field line region at subauroral latitudes, they frequently observe strong transverse oscillations at 30-200 mHz, or in the Pc2-3 frequency range. These Pc2-3 waves appear as wave packets with durations in the order of 5-10 min. As the maximum separations of the ST-5 spacecraft are in the order of 10 min, the three ST-5 satellites often observe very similar wave packets, implying these wave oscillations occur in a localized region. The coordinated ground-based magnetic observations at the spacecraft footprints, however, do not see waves in the Pc2-3 band; instead, the waves appear to be the common Pc4-5 waves associated with field line resonances. We suggest that these unique Pc2-3 waves seen by ST-5 are in fact the Doppler-shifted Pc4-5 waves as a result of rapid traverse of the spacecraft across the resonant field lines azimuthally at low altitudes. The observations with the unique spacecraft dawn-dusk orbits at proper altitudes and magnetic latitudes reveal the azimuthal characteristics of field line resonances.

  13. Effects of ULF waves on local and global energetic particles: Particle energy and species dependences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L. Y.; Yu, J.; Cao, J. B.

    After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less

  14. Effects of ULF waves on local and global energetic particles: Particle energy and species dependences

    DOE PAGES

    Li, L. Y.; Yu, J.; Cao, J. B.; ...

    2016-11-05

    After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less

  15. Observations of a Unique Type of ULF Waves by Low-Latitude Space Technology 5 Satellites

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Slavin, J. A.

    2011-01-01

    We report a unique type of ULF waves observed by low-altitude Space Technology 5 (ST-5) constellation mission. ST-5 is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, and sun synchronous polar orbit with 105.6deg inclination angle. Due to the Earth s rotation and the dipole tilt effect, the spacecraft s dawn-dusk orbit track can reach as low as subauroral latitudes during the course of a day. Whenever the spacecraft traverse across the dayside closed field line region at subauroral latitudes, they frequently observe strong transverse oscillations at 30-200 mHz, or in the Pc 2-3 frequency range. These Pc 2-3 waves appear as wave packets with durations in the order of 5-10 minutes. As the maximum separations of the ST-5 spacecraft are in the order of 10 minutes, the three ST-5 satellites often observe very similar wave packets, implying these wave oscillations occur in a localized region. The coordinated ground-based magnetic observations at the spacecraft footprints, however, do not see waves in the Pc 2-3 band; instead, the waves appear to be the common Pc 4-5 waves associated with field line resonances. We suggest that this unique Pc 2-3 waves seen by ST-5 are in fact the Doppler-shifted Pc 4-5 waves as a result of rapid traverse of the spacecraft across the resonant field lines azimuthally at low altitudes. The observations with the unique spacecraft dawn-disk orbits at proper altitudes and magnetic latitudes reveal the azimuthal characteristics of field-aligned resonances.

  16. Observations of a Unique Type of ULF Waves by Low-Latitude Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Le, Guan; Chi, P.; Strangeway, R. J.; Slavin, J. A.

    2011-01-01

    We report a unique type of ULF waves observed by low-altitude Space Technology 5 (ST-5) constellation mission. ST-5 is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, and sun synchronous polar orbit with 105.6 inclination angle. Due to the Earth's rotation and the dipole tilt effect, the spacecraft's dawn-dusk orbit track can reach as low as sub auroral latitudes during the course of a day. Whenever the spacecraft traverse across the dayside closed field line region at sub auroral latitudes, they frequently observe strong transverse oscillations at 30-200 mHz, or in the Pc 2-3 frequency range. These Pc 2-3 waves appear as wave packets with durations in the order of 5-10 minutes. As the maximum separations of the ST-5 spacecraft are in the order of 10 minutes, the three ST -5 satellites often observe very similar wave packets, implying these wave oscillations occur in a localized region. The coordinated ground-based magnetic observations at the spacecraft footprints, however, do not see waves in the Pc 2-3 band; instead, the waves appear to be the common Pc 4-5 waves associated with field line resonances. We suggest that these unique Pc 2-3 waves seen by ST-5 are in fact the Doppler-shifted Pc 4-5 waves as a result of rapid traverse of the spacecraft across the resonant field lines azimuthally at low altitudes. The observations with the unique spacecraft dawn-disk orbits at proper altitudes and magnetic latitudes reveal the azimuthal characteristics of field-aligned resonances.

  17. Observations of a Unique Type of ULF Waves by Low-Latitude Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P.; Strangeway, R. J.; Slavin, J. A.

    2010-01-01

    We report a unique type of ULF waves observed by low-altitude Space Technology 5 (ST-5) constellation mission. ST-5 is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, and sun synchronous polar orbit with 105.6 degree inclination angle. Due to the Earth's rotation and the dipole tilt effect, the spacecraft's dawn-dusk orbit track can reach as low as subauroral latitudes during the course of a day. Whenever the spacecraft traverse across the dayside closed field line region at sub auroral latitudes, they frequently observe strong transverse oscillations at 30-200 mHz, or in the Pc 2-3 frequency range. These Pc 2-3 waves appear as wave packets with durations in the order of 5-10 minutes. As the maximum separations of the ST-5 spacecraft are in the order of 10 minutes, the three ST-5 satellites often observe very similar wave packets, implying these wave oscillations occur in a localized region. The coordinated ground-based magnetic observations at the spacecraft footprints, however, do not see waves in the Pc 2-3 band; instead, the waves appear to be the common Pc 4-5 waves associated with field line resonances. We suggest that these unique Pc 2-3 waves seen by ST-5 are in fact the Doppler-shifted Pc 4-5 waves as a result of rapid traverse of the spacecraft across the resonant field lines azimuthally at low altitudes. The observations with the unique spacecraft dawn-disk orbits at proper altitudes and magnetic latitudes reveal the azimuthal characteristics of field-aligned resonances.

  18. Observations of a Unique Type of ULF Waves by Low-Latitude Space Technology Five Mission

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P.; Strangeway, R. J.; Slavin, J. A.

    2011-01-01

    We report a unique type of ULF waves observed by low-altitude Space Technology 5 (ST-5) constellation mission. ST-5 is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, and sun synchronous polar orbit with 105.6deg inclination angle. Due to the Earth s rotation and the dipole tilt effect, the spacecraft s dawn-dusk orbit track can reach as low as subauroral latitudes during the course of a day. Whenever the spacecraft traverse across the dayside closed field line region at subauroral latitudes, they frequently observe strong transverse oscillations at 30-200 mHz, or in the Pc 2-3 frequency range. These Pc 2-3 waves appear as wave packets with durations in the order of 5-10 minutes. As the maximum separations of the ST-5 spacecraft are in the order of 10 minutes, the three ST-5 satellites often observe very similar wave packets, implying these wave oscillations occur in a localized region. The coordinated ground-based magnetic observations at the spacecraft footprints, however, do not see waves in the Pc 2-3 band; instead, the waves appear to be the common Pc 4-5 waves associated with field line resonances. We suggest that these unique Pc 2-3 waves seen by ST-5 are in fact the Doppler-shifted Pc 4-5 waves as a result of rapid traverse of the spacecraft across the resonant field lines azimuthally at low altitudes. The observations with the unique spacecraft dawn-disk orbits at proper altitudes and magnetic latitudes reveal the azimuthal characteristics of field-aligned resonances.

  19. Statistical study of ULF wave occurrence in the dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Cao, M.; Mcpherron, R. L.; Russell, C. T.

    1994-01-01

    Ultralow-frequency (ULF) waves are observed almost everywhere in the dayside magnetosphere. The mechanism by which these waves are generated and transformed in the dayside magnetosphere is still not understood. Here we report a statistical study of these waves based on magnetic field data from the International Sun-Earth Explorer 1 (ISEE 1) spacecraft. Data from the first traversal of the spacecraft through the entire dayside magnetosphere have been examined to determine the spatial distribution of wave occurrence. Successive 20-min segments of data were transformed to a field-aligned coordinate system. The parallel component was detrended and all three components of the field spectrally analyzed. Wave occurrence was defined by the presence of significant peaks in the power spectra. Wave events were categorized by three wave frequency bands: Pc 3 with T approximately 10-45 s; Pc 4 with T approximately 45-150 s; the short-period part of the Pc 5 wave band with T approximately 150-324 s. Properties of the spectral peaks were then entered into a data base. The data base was next sorted to determine the spatial occurrence pattern for the waves. Our results show that Pc 3 waves most frequently occur just outside synchronous orbit and are approximately centered on local noon. Pc 4 waves have a similar distribution with its peak further out. Pc 5 waves have high occurrence rate at the two flanks of the magnetosphere. Peaks in spectra obtained near the magnetopause are less clearly defined than those deeper in the magnetosphere.

  20. Cusp-related Pc3-5 Wave Activity

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Engebretson, M. J.; Kozlovsky, A.; Belakhovsky, V.; Lessard, M.; Yeoman, T. K.

    2009-12-01

    Pc3-5 pulsations were found to be an ubiquitous element of dayside ULF wave activity at the cusp region. We examine observations of Pc3-5 wave activity by search coil and flux-gate magnetometers at three locations on Svalbard, covering geomagnetic latitudes 74o-76o. To identify the ionospheric projections of the cusp, we use the width of the return signal from the SuperDARN Finland radar covering the Svalbard archipelago. The ULF meridional spatial structure is examined using the amplitude-phase gradient technique. This analysis shows no specific mode conversion pattern near the cusp region. The amplitude gradient mainly has the same direction at all frequencies, and only during periods when the cusp is shifted to very high latitudes, the gradient may change sign. The phase delay is chaotic and does not show any consistent pattern. This behavior corresponds to the occurrence of a localized peak in the latitudinal distribution of Pc3-5 power, but not under the cusp proper as was previously thought, but about several degrees southward from the equatorward cusp boundary. We suppose that compressional Pc3 fluctuations leaking from the magnetosheath into the entry layer of the magnetosphere can modulate the precipitating electron fluxes, which produce the ground response.

  1. Use of the Wigner-Ville distribution in interpreting and identifying ULF waves in triaxial magnetic records

    NASA Astrophysics Data System (ADS)

    Chi, P. J.; Russell, C. T.

    2008-01-01

    Magnetospheric ultra-low-frequency (ULF) waves (f = 1 mHz to 1 Hz) exhibit highly time-dependent characteristics due to the dynamic properties of these waves and, for observations in space, the spacecraft motion. These time-dependent features may not be properly resolved by conventional Fourier techniques. In this study we examine how the Wigner-Ville distribution (WVD) can be used to analyze ULF waves. We find that this approach has unique advantages over the conventional Fourier spectrograms and wavelet scalograms. In particular, for Pc1 wave packets, field line/cavity mode resonances in the Pc 3-4 band, and Pi2 pulsations, the start and end times of each wave packet can be well identified and the frequency better defined. In addition, we demonstrate that the Wigner-Ville distribution can be used to calculate the polarization of wave signals in triaxial magnetic field data in a way analogous to Fourier analysis. Motivated by the large amount of ULF wave observations, we have also developed a WVD-based algorithm to identify ULF waves as a way to facilitate the rapid processing of the data collected by satellite missions and the vast network of ground magnetometers.

  2. ULF Generation by Modulated Ionospheric Heating

    NASA Astrophysics Data System (ADS)

    Chang, C.; Labenski, J.; Wallace, T.; Papadopoulos, K.

    2013-12-01

    Modulated ionospheric heating experiments designed to generate ULF waves using the HAARP heater have been conducted since 2007. Artificial ULF waves in the Pc1 frequency range were observed from space and by ground induction magnetometers located in the vicinity of the heater as well as at long distances. Two distinct generation mechanisms of artificial ULF waves were identified. The first was electroject modulation under geomagnetically disturbed conditions. The second was pressure modulation in the E and F regions of the ionosphere under quiet conditions. Ground detections of ULF waves near the heater included both Shear Alfven waves and Magnetosonic waves generated by electrojet and/or pressure modulations. Distant ULF detections involved Magnetosonic wave propagation in the Alfvenic duct with pressure modulation as the most likely source. Summary of our observations and theoretical interpretations will be presented at the meeting. We would like to acknowledge the support provided by the staff at the HAARP facility during our ULF experiments.

  3. Analysis of magnetometer data/wave signals in the Earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, Mark J.

    1993-01-01

    Work on the reduction and analysis of Dynamics Explorer (DE) satellite magnetometer data with special emphasis on the ULF fluctuations and waves evident in such data is described. Research focused on the following: (1) studies of Pc 1 wave packets near the plasmapause; (2) satellite-ground pulsation study; (3) support for studies of ion energization processes; (4) search for Pc 1 wave events in 1981 DE 1 data; (5) study of Pc 3-5 events observed simultaneously by DE 1 and by AMPTE CCE; (6) support for studies of electromagnetic transients on DE 1; and (7) analysis of wave events induced by sudden impulses.

  4. Energization of Radiation Belt Electrons by High and Low Azimuthal Mode Number Poloidal Mode ULF Waves

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Brito, T.; Elkington, S. R.; Kress, B. T.; Liang, Y.

    2011-12-01

    CME-shock and CIR-driven geomagnetic storms are characterized by enhanced ULF wave activity in the magnetosphere. This enhanced ULF wave power produces both coherent and diffusive transport and energization, as well as pitch angle modification of radiation belt electrons in drift resonance with azimuthally propagating ULF waves. Recent observations of two CME-driven storms1,2 have suggested that poloidal mode waves with both low and high azimuthal mode number may be efficient at accelerating radiation belt electrons. We extend up to m = 50 the analysis of Ozeke and Mann3 who examined drift resonance for poloidal modes up to m = 40. We calculate radial diffusion coefficients for source population electrons in the 50 -500 keV range, and continued resonance with lower m-numbers at higher energies for ULF waves in the Pc 5, 0.4 - 10 mHz range. We use an analytic model for ULF waves superimposed on a compressed dipole, developed for equatorial plane studies by Elkington et al.4 and extended to 3D by Perry et al.4 Assuming a power spectrum which varies as ω-2, consistent with earlier observations, we find greater efficiency for radial transport and acceleration at lower m number where there is greater power for drift resonance at a given frequency. This assumption is consistent with 3D global MHD simulations using the Lyon-Fedder-Mobarry code which we have carried out for realistic solar wind driving conditions during storms. Coherent interaction with ULF waves can also occur at a rate which exceeds nominal radial diffusion estimates but is slower than prompt injection on a drift time scale. Depending on initial electron drift phase, some electrons are accelerated due to the westward azimuthal electric field Eφ, while others are decelerated by eastward Eφ, decreasing their pitch angle. A subset of trapped electrons are seen to precipitate to the atmosphere in 3D LFM simulations, showing modulation at the coherent poloidal mode ULF wave frequency in both simulations and MINIS balloon observations for the January 21, 2005 CME-driven storm. Thus Pc 5 poloidal mode ULF waves cause competing increase and decrease in relativistic electron flux. The relative efficiencies of both coherent and diffusive processes will be examined. 1Zong et al., JGR, doi:10.1029/2009JA014393, 2009. 2Tan et al., JGR, doi:10.1029/2010JA016226, 2011. 3Ozeke and Mann, JGR, doi:10.1029/2007JA012468, 2008. 4Elkington et al., doi:10.1029/2001JA009202, 2003, 2003. 5Perry et al., doi:10.1029/2004JA010760, 2005.

  5. Storm-time fingerprints of Pc 4-5 waves on energetic electron flux at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Georgiou, Marina; Daglis, Ioannis A.; Zesta, Eftyhia; Balasis, George; Mann, Ian R.; Tsinganos, Kanaris

    2014-05-01

    Geospace magnetic storms, associated with either coronal mass ejections (CMEs) or high speed solar streams, involve global variations of the geomagnetic field as well as acceleration of charged particles in the magnetosphere. Ultra low frequency (ULF) waves with frequencies in the range of a few mHz (Pc 4-5 waves) can be generated externally by compressive variations in the solar wind or shear flow along the magnetopause unstable to the Kelvin-Helmholtz effect. Furthermore, low frequency instabilities of ring current ions are also considered as a possible internal driver of ULF wave growth. We examine power enhancements of ULF waves during four successive magnetic storms, which occurred in July 2004 and were characterized by a decreasing minimum of the Dst index, from -76 nT down to -197 nT. During the course of the magnetic storms, ULF wave power variations have been observed nearly simultaneously at different magnetic latitudes and longitudes by the ground-based CARISMA, IMAGE, 210 MM and SAMBA magnetometer networks. Nonetheless, stronger magnetic storms were accompanied by greater ULF wave power enhancements tending to be more pronounced at magnetic stations located at lower L shells. Furthermore, the generation and penetration of ULF wave power deep into the inner magnetosphere seems to be contributing to the energization and transport of relativistic electrons. Except for the magnetic storm on 25 July 2000, the three magnetic storms on 17, 23 and 27 July 2004 were characterized by a significant increase in the flux of electrons with energies higher than 1 MeV, as measured by GOES-10 and -12 during the recovery phase of each storm. On the other hand, when looking at the magnetic storm on 17 August 2001, the initial decrease was followed by an increase six days after the commencement of the storm. The electron flux decrease was more than two orders of magnitude and remained low after the recovery of the Dst index. These observations provided us the basis for studying the dependence of energetic electron flux in outer zone radiation belt on power enhancement in the ULF frequencies during active magnetospheric conditions. We present statistical maps of Pc 4-5 waves characteristics (in terms of frequency, mean wave power, azimuthal wave number), which have been compiled over moderate and intense magnetic storms that have occurred at different phases of the previous solar cycle 23. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.

  6. ULF Waves in the Earth's Inner Magnetosphere: Role in Radiation Belt and Ring Current Dynamics

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Murphy, K. R.; Rae, J.; Claudepierre, S. G.; Fennell, J. F.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Ozeke, L.; Milling, D. K.

    2013-05-01

    Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. Finally, the combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy; we present an initial example of ULF-wave particle interaction using early mission data. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  7. The South American Meridional B-field Array (SAMBA) and Pc4-5 Wave Studies

    NASA Astrophysics Data System (ADS)

    Sterner, Lt. Nathan; Zesta, Eftyhia; Boudouridis, Athanasios; Moldwin, Mark; Yizengaw, Endawoke; Chi, Peter

    The Antarctic continent, the only landmass in the southern polar region, offers the unique opportunity for observations that geomagnetically range from polar latitudes to well into the inner magnetosphere, thus enabling conjugate observations in a wide range of geomagnetic lat-itudes. The SAMBA (South American Meridional B-field Array) chain is a meridional chain of 12 magnetometers, 11 of them at L=1.1 to L=2.5 along the coast of Chile and in the Antarc-tica peninsula, and one auroral station along the same meridian. SAMBA is conjugate to the northern hemisphere MEASURE and McMAC chains, offering unique opportunities for inter-hemispheric studies. In particular, we study asymmetries in the power of ULF waves and the role of the ionosphere in such observed asymmetries. Utilizing conjugate magnetometer stations at L=1.7 and L=2.3, we previously demonstrated that the northern hemisphere consistently shows higher ULF wave power. One possible reason for the asymmetry is solar zenith angles differences with the northern hemisphere station being closer to the ecliptic plain and having a higher power ratio. These hemispheric differences were also observed with TEC measurements indicating that the north and south conjugate ionospheres are similarly asymmetric. The initial study was done with Pc3 waves, which include the resonance frequencies for the flux tubes of our conjugate stations. We now extend the study to Pc4 and Pc5 waves that reach the lower latitudes via different mechanisms and compare these waves to the resonant Pc3 waves.

  8. The South American Meridional B-field Array (SAMBA) and Pc4-5 Wave Studies

    NASA Astrophysics Data System (ADS)

    Sterner, N. L.; Zesta, E.; Boudouridis, A.; Moldwin, M.; Yizengaw, E.; Chi, P. J.

    2010-12-01

    The Antarctic continent, the only landmass in the southern polar region, offers the unique opportunity for observations that geomagnetically range from polar latitudes to well into the inner magnetosphere, thus enabling conjugate observations in a wide range of geomagnetic latitudes. The SAMBA (South American Meridional B-field Array) chain is a meridional chain of 12 magnetometers, 11 of them at L=1.1 to L=2.5 along the coast of Chile and in the Antarctica peninsula, and one auroral station along the same meridian. SAMBA is conjugate to the northern hemisphere MEASURE and McMAC chains, offering unique opportunities for inter-hemispheric studies. In particular, we study asymmetries in the power of ULF waves and the role of the ionosphere in such observed asymmetries. Utilizing conjugate magnetometer stations at L=1.7 and L=2.3, we previously demonstrated that the northern hemisphere consistently shows higher ULF wave power. One possible reason for the asymmetry is solar zenith angles differences with the northern hemisphere station being closer to the ecliptic plain and having a higher power ratio. These hemispheric differences were also observed with TEC measurements indicating that the north and south conjugate ionospheres are similarly asymmetric. The initial study was done with Pc3 waves, which include the resonance frequencies for the flux tubes of our conjugate stations. We now extend the study to Pc4 and Pc5 waves that reach the lower latitudes via different mechanisms and compare these waves to the resonant Pc3 waves.

  9. Acceleration of Magnetospheric Relativistic Electrons by Ultra-Low Frequency Waves: A Comparison between Two Cases Observed by Cluster and LANL Satellites

    NASA Technical Reports Server (NTRS)

    Shao, X.; Fung, S. F.; Tan, L. C.; Sharma, A. S.

    2010-01-01

    Understanding the origin and acceleration of magnetospheric relativistic electrons (MREs) in the Earth's radiation belt during geomagnetic storms is an important subject and yet one of outstanding questions in space physics. It has been statistically suggested that during geomagnetic storms, ultra-low-frequency (ULF) Pc-5 wave activities in the magnetosphere are correlated with order of magnitude increase of MRE fluxes in the outer radiation belt. Yet, physical and observational understandings of resonant interactions between ULF waves and MREs remain minimum. In this paper, we show two events during storms on September 25, 2001 and November 25, 2001, the solar wind speeds in both cases were > 500 km/s while Cluster observations indicate presence of strong ULF waves in the magnetosphere at noon and dusk, respectively, during a approx. 3-hour period. MRE observations by the Los Alamos (LANL) spacecraft show a quadrupling of 1.1-1.5 MeV electron fluxes in the September 25, 2001 event, but only a negligible increase in the November 2.5, 2001 event. We present a detailed comparison between these two events. Our results suggest that the effectiveness of MRE acceleration during the September 25, 2001 event can be attributed to the compressional wave mode with strong ULF wave activities and the physical origin of MRE acceleration depends more on the distribution of toroidal and poloidal ULF waves in the outer radiation belt.

  10. ULF waves and radiation belts: earthward penetration of Pc 4-5 waves and energetic electron flux enhancements during geospace magnetic storms

    NASA Astrophysics Data System (ADS)

    Georgiou, Marina; Daglis, Ioannis; Zesta, Eftyhia; Balasis, George; Tsinganos, Kanaris

    2013-04-01

    Energetic particle fluxes in the outer radiation belt can vary over orders of magnitude on time scales ranging from minutes, to days and years. Geospace magnetic storms when sufficiently strong to exceed key thresholds of the Dst index may either increase or decrease the fluxes of energetic electrons. We examine the responses of energetic electrons to nine moderate, intense and weak magnetic storms, which occurred at different phases of the solar cycle, and compare these with concurrent variations of ULF wave power. Pc 4-5 waves with frequencies in the range of a few mHz may be generated internally in the magnetosphere by low frequency instabilities of ring current ions and externally by shear instabilities at the magnetopause flanks, or compressive variations in the solar wind. Here, we present multipoint observations from ground-based magnetometer arrays collocated with electron drift orbits, which are complemented and measurements by conjugate multi-point satellites, such as CHAMP, Cluster, GOES and THEMIS. We discuss the excitation, growth and decay characteristics of Pc 4-5 waves during the different phases of the magnetic storms with particular emphasis on the distribution of Pc 4-5 wave power over a variety of L shells. We investigate whether Pc 4-5 wave power penetrates to lower L shell values during periods of relatively intense geomagnetic activity as compared to weak magnetic storms. Structural changes of the magnetosphere during intense geomagnetic storms can play an important role in the generation and penetration of Pc 4-5 waves deep into the inner magnetosphere, which in turn is of significance for the wave-particle interactions contributing to the acceleration, transport and loss of electrons in the outer radiation belt. We present preliminary statistics of Pc 4-5 waves observed during magnetic storms of varying intensity, which occurred over the course of the previous solar cycle. This work is supported by the European Community's Seventh Framework Programme under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  11. Penetration of Solar Wind Driven ULF Waves into the Earth's Inner Magnetosphere: Role in Radiation Belt and Ring Current Dynamics

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Murphy, Kyle; Rae, Jonathan; Ozeke, Louis; Milling, David

    2013-04-01

    Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. The combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes (VAP) mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy. Explaining the casual connections between plasmas in the plasmasphere (eV), ring current (keV), and radiation belt (MeV), via the intermediaries of plasma waves, is key to understanding inner magnetosphere dynamics. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  12. Role of ULF Waves in Radiation Belt and Ring Current Dynamics

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Murphy, K. R.; Rae, I. J.; Ozeke, L.; Milling, D. K.

    2013-12-01

    Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. The combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes (VAP) mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy. Explaining the casual connections between plasmas in the plasmasphere (eV), ring current (keV), and radiation belt (MeV), via the intermediaries of plasma waves, is key to understanding inner magnetosphere dynamics. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  13. Detection of Geomagnetic Pulsations of the Earth Using GPS-TEC Data

    NASA Astrophysics Data System (ADS)

    Koroglu, Ozan; Arikan, Feza; Köroǧlu, Meltem; Sabri Ozkazanc, Yakup

    2016-07-01

    The magnetosphere of the Earth is made up of both magnetic fields and plasma. In this layer, plasma waves propagate as Ultra Low Frequency (ULF) waves having mHz scale frequencies. ULF waves are produced due to complicated solar-geomagnetic interactions. In the literature, these ULF waves are defined as pulsations. The geomagnetic pulsations are classified into main two groups as continuous pulsations (Pc) and irregular pulsations (Pi). These pulsations can be determined by ionospheric parameters due to the complex lithosphere-ionosphere-magnetosphere coupling processes. Total Electron Content (TEC) is one of the most important parameters for investigating the variability of ionosphere. Global Positioning System (GPS) provides a cost-effective means for estimating TEC from GPS satellite orbital height of 20,000 km to the ground based receivers. Therefore, the time series of GPS-TEC inherently contains the above mentioned ULF waves. In this study, time series analysis of GPS-TEC is carried out by applying periodogram method to the mid-latitude annual TEC data. After the analysis of GPS-TEC data obtained for GPS stations located in Central Europe and Turkey for 2011, it is observed that some of the fundamental frequencies that are indicators of Pc waves, diurnal and semi-diurnal periodicity and earth-free oscillations can be identified. These results will be used in determination of low frequency trend structure of magnetosphere and ionosphere. Further investigation of remaining relatively low magnitude frequencies, all Pi and Pc can be identified by using time and frequency domain techniques such as wavelet analysis. This study is supported by the joint TUBITAK 115E915 and joint TUBITAK114E092 and AS CR 14/001 projects.

  14. Earthward penetration of Pc 4-5 waves and radiation belt electron enhancements during geospace magnetic storms

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Georgiou, M.; Zesta, E.; Balasis, G.; Tsinganos, K.

    2013-12-01

    This paper addresses the question whether radiation belt electron enhancements are associated with ultra-low frequency (ULF) wave power penetrating to lower L-shells during intense geospace magnetic storms. We have examined the variation of relativistic electron fluxes in the inner magnetosphere during small, moderate, and intense storms and have compared them with concurrent variations of the power of Pc 4-5 waves, using multi-point wave observations from the IMAGE and CARISMA ground-based magnetometer arrays. We discuss the excitation, growth and decay characteristics of Pc 4-5 waves during the different phases of the three classes of magnetic storms, with particular emphasis on the distribution of wave power over a range of L shells. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  15. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Zong, Q.; Zhou, X.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S.; Spence, H. E.; Blake, J. B.; Reeves, G. D.

    2017-12-01

    We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90º pitch angle electrons, the phase change of the flux modulations across energy exceeds 180º, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  16. New advanced tools for combined ULF wave analysis of multipoint space-borne and ground observations: application to single event and statistical studies

    NASA Astrophysics Data System (ADS)

    Balasis, G.; Papadimitriou, C.; Daglis, I. A.; Georgiou, M.; Giamini, S. A.

    2013-12-01

    In the past decade, a critical mass of high-quality scientific data on the electric and magnetic fields in the Earth's magnetosphere and topside ionosphere has been progressively collected. This data pool will be further enriched by the measurements of the upcoming ESA/Swarm mission, a constellation of three satellites in three different polar orbits between 400 and 550 km altitude, which is expected to be launched in November 2013. New analysis tools that can cope with measurements of various spacecraft at various regions of the magnetosphere and in the topside ionosphere as well as ground stations will effectively enhance the scientific exploitation of the accumulated data. Here, we report on a new suite of algorithms based on a combination of wavelet spectral methods and artificial neural network techniques and demonstrate the applicability of our recently developed analysis tools both for individual case studies and statistical studies of ultra-low frequency (ULF) waves. First, we provide evidence for a rare simultaneous observation of a ULF wave event in the Earth's magnetosphere, topside ionosphere and surface: we have found a specific time interval during the Halloween 2003 magnetic storm, when the Cluster and CHAMP spacecraft were in good local time (LT) conjunction, and have examined the ULF wave activity in the Pc3 (22-100 mHz) and Pc4-5 (1-22 mHz) bands using data from the Geotail, Cluster and CHAMP missions, as well as the CARISMA and GIMA magnetometer networks. Then, we perform a statistical study of Pc3 wave events observed by CHAMP for the full decade (2001-2010) of the satellite vector magnetic data: the creation of a database of such events enabled us to derive valuable statistics for many important physical properties relating to the spatio-temporal location of these waves, the wave power and frequency, as well as other parameters and their correlation with solar wind conditions, magnetospheric indices, electron density data, ring current decay and radiation belt enhancements. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  17. Changes in the transmissibility of the mid-latitude ionosphere related to the ULF (Pc1) signal

    NASA Astrophysics Data System (ADS)

    Prikner, Karel; Vagner, Vladimir

    The frequency dependences of the transmissibility of a stratified inhomogeneous anisotropic and dissipative model of the ionosphere in relation to the ordinary Alfven wave mode, which is incident under various angles in the meridional plane, are studied. A method for the numerical modeling of the ionospheric filtration of Fourier components of the micropulsation (ULF) signals in the Pc1 range was used. The specific features of filtration in the daytime and nighttime ionosphere under low and enhanced solar activity are pointed out.

  18. Using Radars in Place of Magnetometers: Detection and Properties of Pc3-5 Wave Fields in HF Radar Data

    NASA Astrophysics Data System (ADS)

    Ponomarenko, P.; Menk, F. W.; Waters, C. L.

    2004-12-01

    SuperDARN HF radars are usually used to examine HF echoes from field-aligned ionospheric irregularity structures. However, ground scatter is also often recorded. Because the ground scatter signal is reflected from the ionosphere its Doppler shift is a sensitive indicator of ionospheric motions. We have used the TIGER radar, which operates at relatively low latitudes, to examine ground scatter returns with high time resolution. Ground scatter returns are present virtually every day and wave-like Doppler shift features are evident almost each time. Comparison with ground magnetometer data shows that these are the ionospheric signature of downgoing ULF waves. Several different types of wave features have been observed, including very large scale Pc5, harmonics of field line resonances in the Pc3-4 range, and bandlimited Pc4 at night. This paper presents examples and discusses the wave generation and propagation mechanisms. Furthermore, estimates of the ionospheric transfer function over the 10-110 mHz range are compared with results of numerical and analytical modelling.

  19. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.

    Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact withmore » electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.« less

  20. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    NASA Astrophysics Data System (ADS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X. R.; Liu, Y.; Fu, S. Y.; Spence, H. E.; Blake, J. B.; Reeves, G. D.

    2017-08-01

    We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  1. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    DOE PAGES

    Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.; ...

    2017-07-10

    Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact withmore » electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.« less

  2. An initial ULF wave index derived from 2 years of Swarm observations

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Constantinos; Balasis, Georgios; Daglis, Ioannis A.; Giannakis, Omiros

    2018-03-01

    The ongoing Swarm satellite mission provides an opportunity for better knowledge of the near-Earth electromagnetic environment. Herein, we use a new methodological approach for the detection and classification of ultra low-frequency (ULF) wave events observed by Swarm based on an existing time-frequency analysis (TFA) tool and utilizing a state-of-the-art high-resolution magnetic field model and Swarm Level 2 products (i.e., field-aligned currents - FACs - and the Ionospheric Bubble Index - IBI). We present maps of the dependence of ULF wave power with magnetic latitude and magnetic local time (MLT) as well as geographic latitude and longitude from the three satellites at their different locations in low-Earth orbit (LEO) for a period spanning 2 years after the constellation's final configuration. We show that the inclusion of the Swarm single-spacecraft FAC product in our analysis eliminates all the wave activity at high altitudes, which is physically unrealistic. Moreover, we derive a Swarm orbit-by-orbit Pc3 wave (20-100 MHz) index for the topside ionosphere and compare its values with the corresponding variations of solar wind variables and geomagnetic activity indices. This is the first attempt, to our knowledge, to derive a ULF wave index from LEO satellite data. The technique can be potentially used to define a new Level 2 product from the mission, the Swarm ULF wave index, which would be suitable for space weather applications.

  3. A multispacecraft event study of Pc5 ultralow-frequency waves in the magnetosphere and their external drivers

    DOE PAGES

    Wang, Chih-Ping; Thorne, Richard; Liu, Terry Z.; ...

    2017-05-09

    We investigate a quiet time event of magnetospheric Pc5 ultralow-frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5–2 mHz and 3.5–4 mHz, were observed over a large radial distance range from r ~ 5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5–4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field linemore » resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the solar wind dynamic pressure perturbations. For the first interval, good correlations between the flow perturbations in the magnetosphere and magnetosheath and an indirect signature for Kelvin-Helmholtz (K-H) vortices suggest K-H surface waves as the driver. For the second interval, good correlations are found between the magnetosheath dynamic pressure perturbations, magnetopause deformation, and magnetospheric waves, all in good correspondence to interplanetary magnetic field (IMF) discontinuities. The characteristics of these perturbations can be explained by being driven by foreshock perturbations resulting from these IMF discontinuities. This event shows that even during quiet periods, K-H-unstable magnetopause and ion foreshock perturbations can combine to create a highly dynamic magnetospheric ULF wave environment« less

  4. A multispacecraft event study of Pc5 ultralow-frequency waves in the magnetosphere and their external drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chih-Ping; Thorne, Richard; Liu, Terry Z.

    We investigate a quiet time event of magnetospheric Pc5 ultralow-frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5–2 mHz and 3.5–4 mHz, were observed over a large radial distance range from r ~ 5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5–4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field linemore » resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the solar wind dynamic pressure perturbations. For the first interval, good correlations between the flow perturbations in the magnetosphere and magnetosheath and an indirect signature for Kelvin-Helmholtz (K-H) vortices suggest K-H surface waves as the driver. For the second interval, good correlations are found between the magnetosheath dynamic pressure perturbations, magnetopause deformation, and magnetospheric waves, all in good correspondence to interplanetary magnetic field (IMF) discontinuities. The characteristics of these perturbations can be explained by being driven by foreshock perturbations resulting from these IMF discontinuities. This event shows that even during quiet periods, K-H-unstable magnetopause and ion foreshock perturbations can combine to create a highly dynamic magnetospheric ULF wave environment« less

  5. Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Loto'Aniu, T. M.; Mann, I. R.; Ozeke, L. G.; Chan, A. A.; Dent, Z. C.; Milling, D. K.

    2006-04-01

    A study was undertaken to estimate the radial diffusion timescale, τLL, for relativistic electrons (2-6 MeV) to diffuse into the slot region due to drift-resonance with Pc5 ULF waves (2-10 mHz) on 29 October 2003. Large amplitude ULF waves were observed by ground-based magnetometer arrays to penetrate deep into the slot region (L ≃ 2-3) starting at 0600 UT and maximising (˜200 nT p-p) between 0930-1630 UT. Around the same time, the SAMPEX PET instrument measured an over two orders of magnitude increase in relativistic (2-6 MeV) electron flux levels in ˜24 hours within the slot region. The ground-based D-component magnetic power spectral densities (PSDδB) for 29 October were estimated for six latitudinally spaced ground stations covering L ˜ 2.3-4.3 for an observed ULF wave with central frequency ˜4 mHz. The PSDδB values were used to calculate the in situ equatorial poloidal wave electric field power spectral densities (PSDδEm) using a standing Alfvén wave model. The radial diffusion coefficients, DLL, were estimated using the PSDδEm values. The fastest τLL were 3-5 hours at L > 4, while τLL initially increased with decreasing L-value below L ≃ 4; peaking at L ≃ 3 with τLL ˜ 12-24 hours with PSDδEm estimated using a wave frequency bandwidth between Δf = 1 mHz and Δf = 2.5 mHz. The τLL over the L-range L ˜ 2.3-3.3 were consistent with the timescales observed by SAMPEX for the increase in relativistic fluxes in the slot region on 29 October. The authors believe that this is the first example of the ULF wave drift-resonance with relativistic electrons explaining a radiation belt slot region filling event.

  6. Compressional ULF waves in the outer magnetosphere. 2: A case study of Pc 5 type wave activity

    NASA Technical Reports Server (NTRS)

    Zhu, Xiaoming; Kivelson, Margaret G.

    1994-01-01

    In previously published work (Zhu and Kivelson, 1991) the spatial distribution of compressional magnetic pulsations of period 2 - 20 min in the outer magnetosphere was described. In this companion paper, we study some specific compressional events within our data set, seeking to determine the structure of the waves and identifying the wave generation mechanism. We use both the magnetic field and three-dimensional plasma data observed by the International Sun-Earth Explorer (ISEE) 1 and/or 2 spacecraft to characterize eight compressional ultra low frequency (ULF) wave events with frequencies below 8 mHz in the outer magnetosphere. High time resolution plasma data for the event of July 24, 1978, made possible a detailed analysis of the waves. Wave properties specific to the event of July 24, 1978, can be summarized as follows: (1) Partial plasma pressures in the different energy ranges responded to the magnetic field pressure differently. In the low-energy range they oscillated in phase with the magnetic pressure, while oscillations in higher-energy ranges were out-of-phase; (2) Perpendicular wavelengths for the event were determined to be 60,000 and 30,000 km in the radial and azimuthal directions, respectively. Wave properties common to all events can be summarized as follows: (1) Compressional Pc 5 wave activity is correlated with Beta, the ratio of the plasma pressure to the magnetic pressure; the absolute magnitude of the plasma pressure plays a minor role for the wave activity; (2) The magnetic equator is a node of the compressional perturbation of the magnetic field; (3) The criterion for the mirror mode instability is often satisfied near the equator in the outer magnetosphere when the compressional waves are present. We believe these waves are generated by internal magnetohydrodynamic (MHD) instabilities.

  7. ULF waves: the main periodicities and their relationships with solar wind structures and magnetospheric electron flux

    NASA Astrophysics Data System (ADS)

    Piersanti, M.; Alberti, T.; Lepreti, F.; Vecchio, A.; Villante, U.; Carbone, V.; Waters, C. L.

    2015-12-01

    We use high latitude ULF wave power in the range 2-7 mHz (Pc5 geomagnetic micropulsations), solar wind speed and dynamic pressure, and relativistic magnetospheric electron flux (E > 0.6 MeV), in the period January - September 2008, in order to detect typical periodicities and physical mechanisms involved into the solar wind-magnetosphere coupling during the declining phase of the 23th solar cycle. Using the Empirical Mode Decomposition (EMD) and applying a statistical test and cross-correlation analysis,we investigate the timescales and the physical mechanisms involved into the solar wind-magnetosphere coupling.Summarizing, we obtain the following results:1. We note the existence of two different timescales into the four datasets which are related to the short-term dynamics, with a characteristic timescale τ<3 days, and to the longer timescale dynamics, with a timescale between 7 and 80 days. The short-term variations could be related to the fluctuations around a characteristic mean value, while longer timescales dynamics can be associated with solar rotational periodicity and mechanisms regarding the occurrence of high-speed streams and corotating interaction regions but also with stream-stream interactions and synodic solar rotation.2. The cross-correlation analysis highlights the relevant role of the dynamical coupling between solar wind and magnetosphere via pressure balance and direct transfer of compressional waves into the magnetosphere. Moreover, it shows that the Kelvin-Helmholtz instability is not the primary source of geomagnetic ultra-low frequency wave activity. These results are in agreement with previous works [Engebretson et al, 1998].3. The cross-correlation coefficient between Pc5 wave power and relativistic electron flux longscale reconstructions shows that Pc5 wave activity leads enhancements in magnetospheric electron flux to relativistic energy with a characteristic time delay of about 54 hours, which is in agreement with the lag of about 2 days found by [Mann et al., 2004].

  8. Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Mcentire, R. W.; Lui, A. T. Y.; Potemra, T. A.

    1990-01-01

    The AMPTE CCE spacecraft observed a transverse Pc 5 magnetic pulsation (period of about 200 s) at 2155-2310 UT on November 20, 1985, at a radial distance of 5.7 - 7.0 earth radii, at a magnetic latitude of 1.2 - 19 deg, and near 1300 magnetic local time. The magnetic pulsation exhibits properties consistent with a standing Alfven wave with a second-harmonic standing structure along the ambient magnetic field. The amplitude and the phase of the flux pulsation are found to be a function of the particle detector look direction and the particle energy. The observed energy dependence of the shift is interpreted as the result of a drift-bounce resonance of the ions with the wave. From this interpretation it follows that the wave propagated westward with an azimuthal wave number of approximately 100. Thus the study demonstrates that particle data can be useful for determining the spatial structure of some types of ULF waves.

  9. Characteristics of pitch angle distributions of relativistic electrons under the interaction with Pc5 waves in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Kamiya, K.; Seki, K.; Saito, S.; Amano, T.; Yoshizumi, M.

    2017-12-01

    Radial transport of relativistic electrons in the inner magnetosphere has been considered as one of acceleration mechanisms of the outer radiation belt electrons and can be driven by the drift resonance with ULF waves in the Pc5 frequency range. The maximum changes of the electron in the radial distance (L) due to the drift resonance depend on the electron energy, pitch angle, and Pc5 wave structure. Those dependences are expected to form the characteristic pitch angle distributions (PADs) as a function of L and electron energy. In this study, we investigate PADs of relativistic electrons due to the drift resonance with a monochromatic Pc5 wave by using two simulation models of the inner magnetosphere: GEMSIS-Ring Current (RC) and GEMSIS-Radiation Belt (RB) models. The GEMSIS-RB simulations calculate guiding center trajectories of relativistic electrons in electric and magnetic fields obtained from the GEMSIS-RC model, which simulates a monochromatic Pc5 wave propagation in the inner magnetosphere. The results show the characteristic PADs depending on the energy and L, which is explicable with the pitch angle dependence of resonance conditions. At a fixed location, those PADs can change from pancake (90°peaked) to butterfly (two peaks in oblique PAs) distributions as the transport by the monochromatic Pc5 wave progresses. These butterfly distributions are seen in the L range where electrons with lower PAs satisfy the resonance condition. It is also found that the lower PA electron with a fixed magnetic moment can be transported deeper inside because of the PA changes to larger values through the adiabatic transport, which enables them to satisfy the efficient resonance condition in wider L range compared to the 90 degrees PA electrons.

  10. Fast flows, ULF waves, firehose instability and their association in the Earth's mid-tail current sheet

    NASA Astrophysics Data System (ADS)

    Wang, C. P.; Xing, X.

    2017-12-01

    Ultra-Low Frequency (ULF) plasma waves with frequency range between 1 mHz to 10 Hz are widely observed in the Earth's magnetosphere and on the ground. In particular, Pi2 and Pc4 waves have been found to be closely related to many important dynamic processes in the magnetotail, e.g., fast flows (V > 300 km/s). Observations have shown Pi2 waves in association with fast flows in the near-Earth plasma sheet (X>-30 RE). However, in the mid-tail region, where fast flows are more frequently observed than those in the near-Earth magnetotail, this association has not been evaluated. Our preliminary study using ARTEMIS probes in the mid-tail region (X -60 RE) shows close association between Pi2 and Pc4 waves with the presence of fast flows. Strong connection between mid-tail Pi2 pulsations and high-latitude ground Pi2 signatures are also observed. Among many proposed theories for Pi2 wave, ballooning and firehose instabilities are plausible mechanisms in leading to the generation of plasma waves around Pi2 frequency band. Ballooning instability is widely admitted for fast flow associated Pi2 pulsations in the near-Earth region. However, firehose instability is expected to occur more easily in mid-tail and beyond due to the specific pressure anisotropy in that region. We examined the pressure anisotropy conditions and evaluated firehose instability condition for both Pi2 and Pc4 events in mid-tail. It is found that the plasma is unstable against firehose instability in association with the initiation of Pi2 and Pc4 waves. These may suggest that firehose instability can be a wave generation mechanism in the mid-tail region.

  11. Ion Upwelling and Height-Resolved Electrodynamic Response of the Ionosphere to ULF Waves and Precipitation: Comparison Between Simulation and EISCAT Observations

    NASA Astrophysics Data System (ADS)

    Sydorenko, D.; Rankin, R.

    2013-12-01

    We have developed a comprehensive two-dimensional (meridional) model of coupling between the magnetosphere and ionosphere that covers an altitude range from ~100 km to few thousand km at high latitudes [Sydorenko and Rankin, 2013]. The model describes propagation of inertial scale Alfven waves, including ponderomotive forces, and has a parametric model of energetic electron precipitation; it includes vertical ion flows and chemical reactions between ions and neutrals. Model results are presented that reproduce EISCAT radar observations of electron and ion temperatures, height integrated conductivity, ion densities, and ion flows during a period of ULF activity described in [Lester, Davies, and Yeoman, 2000]. We performed simulations where the precipitation and the Alfven wave perturb the ionosphere simultaneously. By adjusting parameters of the wave and the precipitation we have achieved qualitative, and sometimes even reasonable quantitative agreement between the observations and the simulation. The model results are discussed in the context of new results anticipated from the Canadian small satellite mission ePOP "Enhanced Polar Outflow Probe", scheduled for launch on September 9, 2013. Sydorenko D. and R. Rankin, 'Simulation of O+ upflows created by electron precipitation and Alfvén waves in the ionosphere' submitted to Journal of Geophysical Research, 2013. Lester M., J. A. Davies, and T. K. Yeoman, 'The ionospheric response during an interval of PC5 ULF wave activity', Ann. Geophysicae, v.18, p.257-261 (2000).

  12. A Distributed Lag Autoregressive Model of Geostationary Relativistic Electron Fluxes: Comparing the Influences of Waves, Seed and Source Electrons, and Solar Wind Inputs

    NASA Astrophysics Data System (ADS)

    Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey

    2018-05-01

    Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.

  13. Substorm Related ULF waves Observed in the Magnetosphere by BD-IES and Van Allan Probes

    NASA Astrophysics Data System (ADS)

    Zong, Q.

    2017-12-01

    By using the data return from the BD-IES instrument onboard an inclined (55°) geosynchronous orbit (IGSO) satellite together with geo-transfer orbit (GTO) Van Allen Probe A&B satellite, we analysis a substorm related ULF waves occurred on Feb 5, 2016 in the dawnside of the magnetosphere. Immediately after the substorm injection followed by energetic electron drift echoes, the electron flux was clearly and strongly varying on the ULF wave time scale. It is found that both toroidal and poloidal mode ULF waves with a period of 320 s. During the substorm injection, the IES onboard IGSO is outbound while both Van Allen Probe A&B satellites are inbound. This configuration of multiple satellite trajectories provides an unique opportunity to investigate substorm related ULF waves. When substorm injections are observed simultaneously with multiple spacecraft, they help elucidate potential mechanisms for particle transport and energization, a topic of great importance for understanding and modeling the magnetosphere. Two possible scenaria on ULF wave triggering are discussed: fast-mode compressional waves -driven field line resonance and ULF wave growth through drift resonance.

  14. Relationship between Relativistic Electron Flux in the Inner Magnetosphere and ULF Pulsation on the Ground Associated with Long-term Variations of Solar Wind

    NASA Astrophysics Data System (ADS)

    Kitamura, K.; Nagatsuma, T.; Troshichev, O. A.; Obara, T.; Koshiishi, H.; Saita, S.; Yoshikawa, A.; Yumoto, K.

    2014-12-01

    In the present study the relativistic electron flux (0.59-1.18MeV) measured by Standard Dose Monitor (SDOM) onboard DRTS (KODAMA) satellite at the Geostationary Earth Orbit (GEO) is analyzed to investigate the long term (from 2002 to 2014) variations of the electron flux enhancement (REF) during the passage of Corotating Interaction Regions (CIRs) and/or Coronal Mass Ejection (CMEs). The long term variations of the REF clearly shows the 27-days period associated with the high speed solar wind velocity caused by the CIRs, whereas it is very few that the enhancement of REF lasts for several days after passage of CMEs. The 27-days period enhancement of REF represents the quite strong peak in 2003 when the high speed stream of the solar wind were quit active. We also conducted the same analysis for the Pc5 pulsations observed on the ground. The ground magnetic variations data globally observed by National Institute of Information and Communications Technology (NICT) and International Center for Space Weather Science and Education (ICSWSE) Kyushu University are used to investigate the long term variations of Pc5 power. The same signature in the REF variations is shown in the time variability of the Pc5 power on the ground. These results indicate that the solar wind condition strongly affects the acceleration process of the relativistic electron flux by the ULF wave. In particular the dependence of the REF and Pc5 variations on the sector structures and their seasonal variations strongly suggest that the relationship between Pc5 and REF variations could be controlled by the Russell-McPherron effect.

  15. Convective and diffusive ULF wave driven radiation belt electron transport

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Rankin, R.; Elkington, S. R.

    2011-12-01

    The process of magnetospheric radiation belt electron transport driven by ULF waves is studied using a 2-D ideal MHD model for ULF waves in the equatorial plane including day/night asymmetry and a magnetopause boundary, and a test kinetic model for equatorially mirroring electrons. We find that ULF wave disturbances originating along the magnetopause flanks in the afternoon sector can act to periodically inject phase space density from these regions into the magnetosphere. Closely spaced drift-resonant surfaces for electrons with a given magnetic moment in the presence of the ULF waves create a layer of stochastic dynamics for L-shells above 6.5-7 in the cases examined, extending to the magnetopause. The phase decorrelation time scale for the stochastic region is estimated by the relaxation time for the diffusion coefficient to reach a steady value. This is found to be of the order of 10-15 wave periods, which is commensurate with the typical duration of observed ULF wave packets in the magnetosphere. For L-shells earthward of the stochastic layer, transport is limited to isolated drift-resonant islands in the case of narrowband ULF waves. We examine the effect of increasing the bandwidth of the ULF wave driver by summing together wave components produced by a set of independent runs of the ULF wave model. The wave source spectrum is given a flat-top amplitude of variable width (adjusted for constant power) and random phase. We find that increasing bandwidth can significantly enhance convective transport earthward of the stochastic layer and extend the stochastic layer to lower L-shells.

  16. Distribution of ULF energy (f is less than 80 mHz) in the inner magnetosphere - A statistical analysis of AMPTE CCE magnetic field data

    NASA Technical Reports Server (NTRS)

    Takahashi, Kazue; Anderson, Brian J.

    1992-01-01

    Magnetic field measurements made with the AMPTE CCE spacecraft are used to investigate the distribution of ULF energy in the inner magnetosphere. The data base is employed to examine the spatial distribution of ULF energy. The spatial distribution of wave power and spectral structures are used to identify several pulsation types, including multiharmonic toroidal oscillations; equatorial compressional Pc 3 oscillations; second harmonic poloidal oscillations; and nightside compressional oscillations. The frequencies of the toroidal oscillations are applied to determine the statistical radial profile of the plasma mass density and Alfven velocity. A clear signature of the plasma pause in the profiles of these average parameters is found.

  17. A new ULF wave analysis for Seismo-Electromagnetics using CPMN/MAGDAS data

    NASA Astrophysics Data System (ADS)

    Yumoto, K.; Ikemoto, S.; Cardinal, M. G.; Hayakawa, M.; Hattori, K.; Liu, J. Y.; Saroso, S.; Ruhimat, M.; Husni, M.; Widarto, D.; Ramos, E.; McNamara, D.; Otadoy, R. E.; Yumul, G.; Ebora, R.; Servando, N.

    The Space Environment Research Center of Kyushu University has obtained geomagnetic data in the Circum-pan Pacific Magnetometer Network (CPMN) region for over 10 years, and has recently deployed a new real-time Magnetic Data Acquisition System (MAGDAS) in the CPMN region and an FM-CW radar network along the 210° magnetic meridian (MM) for space weather research and applications. This project intends to get the MAGDAS network fully operational and provide data for studies on space and lithosphere weather. In connection with this project, we propose a new ultra-low frequency (ULF) wave analysis method to study ULF anomalies associated with large earthquakes using magnetic data. From a case study of the 1999/05/12 Kushiro earthquake with magnitude M = 6.4, we found a peculiar increase of H-component power ratio AR/ AM of Pc 3 magnetic pulsations a few weeks before the earthquake, where AR is the power obtained at Rikubetsu station ( r = 61 km) near the epicenter and AM is the power obtained at a remote reference station, Moshiri ( r = 205 km). It is also found that the H-component power ratio AD/ AY of Pc 3 increased three times just a few weeks before the earthquake and after one week decreased to the normal level, where AD is one-day power at Rikubetsu station and AY is the one-year-average power.

  18. Energetic electron flux enhancements during geospace magnetic storms associated with earthward penetration of Pc 4-5 waves?

    NASA Astrophysics Data System (ADS)

    Georgiou, M.; Daglis, I.; Zesta, E.; Balasis, G., Tsinganos, K.

    2013-09-01

    ULF waves with frequencies of a few millihertz (mHz) have been associated with changes in the flux levels among relativistic electrons comprising the outer zone of the radiation belts. In particular, the fluxes of electrons with energies > 1 MeV in the outer radiation belt increase and decrease during geospace magnetic storms. For all storms studied by Reeves et al. [2003], only about half of them led to increased electron fluxes, one quarter led to decreased the fluxes, and one quarter produced little or no change in the fluxes. We focus on the increase of relativistic electrons observed during a number of magnetic storms by GOES satellites at geosynchronous orbit. To minimise the effects caused by the Earth's magnetic field asymmetries, we apply a statistical reconstruction of the fluxes to a common local time, which is chosen to be noon, a technique proposed by O’Brien et al. [2001]. Next, we look into multipoint observations from ground-based magnetometer arrays and the characteristics of Pc 4-5 waves during the different phases of the magnetic storms with particular emphasis on the distribution of Pc 4-5 wave power over the L shells that correspond to the radiation belts. With these observations as a starting point, we investigate whether Pc 4-5 wave power penetrates to lower L shells during periods of enhanced relativistic electron fluxes. We discuss, lastly, the implications to wave-particle interaction. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement n. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  19. First Satellite Measurement of the ULF Wave Growth Rate in the Ion Foreshock

    NASA Astrophysics Data System (ADS)

    Dorfman, Seth

    2017-10-01

    Waves generated by accelerated particles are important throughout our heliosphere. These particles often gain their energy at shocks via Fermi acceleration. At the Earth's bow shock, this mechanism accelerates ion beams back into the solar wind; the beams can then generate ultra low frequency (ULF) waves via an ion-ion right hand resonant instability. These waves influence the shock structure and particle acceleration, lead to coherent structures in the magnetosheath, and are ideal for non-linear interaction studies relevant to turbulence. We report the first satellite measurement of the ultralow frequency (ULF) wave growth rate in the upstream region of the Earth's bow shock. This is made possible by employing the two ARTEMIS spacecraft orbiting the moon at 60 Earth radii from Earth to characterize crescent-shaped reflected ion beams and relatively monochromatic ULF waves. The event to be presented features spacecraft separation of 2.5 Earth radii (0.9 +/- 0.1 wavelengths) in the solar wind flow direction along a nearly radial interplanetary magnetic field. By contrast, most prior ULF wave observations use spacecraft with insufficient separation to see wave growth and are so close to Earth (within 30 Earth radii) that waves convected from different events interfere. Using ARTEMIS data, the ULF wave growth rate is estimated and found to fall within dispersion solver predictions during the initial growth time. Observed frequencies and wave numbers are within the predicted range. Other ULF wave properties such as the phase speed, obliquity, and polarization are consistent with expectations from resonant beam instability theory and prior satellite measurements. These results not only advance our understanding of the foreshock, but will also inform future nonlinear studies related to turbulence and dissipation in the heliosphere. Supported by NASA, NASA Eddy Postdoctoral Fellowship.

  20. Occurrence and characteristics of nighttime ULF waves at low latitude: The results of a comprehensive analysis

    NASA Astrophysics Data System (ADS)

    Villante, Umberto; Tiberi, Pietro

    2016-05-01

    The occurrence and characteristics of ULF events (f ≈ 10-100 mHz) detected during the night at low latitude (L'Aquila, Italy, λ ≈ 36.3°), during quiet and moderately perturbed magnetospheric conditions, have been examined by means of a long-term analysis between 1996 and 2012. Clearly defined events (≈8000 on each component) are typically more energetic in H than in D and basically consist of penetrating upstream waves, resonances of local field lines, and Pi2 waves. The global event occurrence shows a strong asymmetry about midnight, with a much higher wave activity before dawn than after dusk: it mostly comes from the intense penetration of upstream waves through the dawn flank of the magnetopause. D events are more frequent in summer and H events more frequent in winter, suggesting a different influence of the ionospheric modification of the downgoing signals. Between f ≈ 30 and 45 mHz, the reversal of the dominant polarization across midnight reveals tailward propagation of penetrating waves. Below f ≈ 25 mHz, intermingled with continuous Pc3 and Pc4 waves, a large fraction of events exhibit Pi2 characteristics: the dominant left-handed polarization and the switch of the tilt angle of the major axis of the polarization ellipses are consistent with the pattern expected for waves related to the substorm current wedge. A relevant percentage of the power spectra shows a second enhancement above f ≈ 55 mHz, revealing resonance of local field lines also during the night.

  1. ULF waves associated with enhanced subauroral proton precipitation

    NASA Astrophysics Data System (ADS)

    Immel, Thomas J.; Mende, S. B.; Frey, H. U.; Patel, J.; Bonnell, J. W.; Engebretson, M. J.; Fuselier, S. A.

    Several types of sub-auroral proton precipitation events have been identified using the Spectrographic Imager (SI) onboard the NASA-IMAGE satellite, including dayside subauroral proton flashes and detached proton arcs in the dusk sector. These have been observed at various levels of geomagnetic activity and solar wind conditions and the mechanism driving the precipitation has often been assumed to be scattering of protons into the loss cone by enhancement of ion-cyclotron waves in the interaction of the thermal plasmaspheric populations and more energetic ring current particles. Indeed, recent investigation of the detached arcs using the MPA instruments aboard the LANL geosynchronous satellites has shown there are nearly always heightened densities of cold plasma on high-altitude field lines which map down directly to the sub-auroral precipitation. If the ion-cyclotron instability is a causative mechanism, the enhancement of wave activity at ion-cyclotron frequencies should be measurable. It is here reported that magnetic pulsations in the Pc1 range occur in the vicinity of each of 4 detached arcs observed in 2000-2002, though with widely varying signatures. Additionally, longer period pulsations in the Pc5 ranges are also observed in the vicinity of the arcs, leading to the conclusion that a bounce-resonance of ring-current protons with the azimuthal Pc5 wave structure may also contribute to the detached precipitation.

  2. The correspondence between dayside long-period geomagnetic pulsations and the open-closed field line boundary

    NASA Astrophysics Data System (ADS)

    Pilipenko, V. A.; Kozyreva, O. V.; Lorentzen, D. A.; Baddeley, L. J.

    2018-05-01

    Long-period pulsations in the nominal Pc5-6 band (periods about 3-15 min) have been known to be a persistent feature of dayside high latitudes. A mixture of broadband Irregular Pulsations at Cusp Latitudes (IPCL) and narrowband P≿5 waves is often observed. The mechanism and origin of IPCL have not been firmly established yet. Magnetopause surface eigenmodes were suggested as a potential source of high-latitude ULF waves with frequencies less than 2 mHz. A ground response to these modes is expected to be beneath the ionospheric projection of the open-closed field line boundary (OCB). To unambiguously resolve a possible association of IPCL with the magnetopause surface modes, multi-instrument observation data from Svalbard have been analyzed. We examine the latitudinal structure of high-latitude pulsations in the Pc5-6 band recorded by magnetometers covering near-cusp latitudes. This structure is compared with an instant location of the equatorward boundary of the cusp aurora, assumed to be a proxy of the OCB. The optical OCB latitude has been identified by an automatic algorithm, using data from the meridian scanning photometer at Longyearbyen, Svalbard. The comparison has shown that the latitudinal maximum of the broadband IPCL maximizes about 2°-3° deeper in the magnetosphere than the OCB optical proxy. Therefore, these pulsations cannot be associated with the ground image of the magnetopause surface modes. It is likely that an essentially non-dipole geometry of field lines and a high variability of the magnetopause region may suppress the excitation efficiency. The obtained result imposes important limitations on possible mechanisms of high-latitude dayside ULF variations.

  3. Modeling and observations of ULF waves trapped in a plasmaspheric density plume

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Zhang, S.; Foster, J. C.; Shi, Q.; Zong, Q. G.; Rankin, R.

    2017-12-01

    In order for ULF waves to effectively energise radiation belt electrons by drift-resonance, wave power must be significant in regions within the magnetosphere where the ULF wave phase propagation and electron drift directions are roughly aligned. For waves launched along the dayside magnetopause, such a region would be located in the afternoon - dusk sector of the inner magnetosphere. During periods of storm activity and enhanced convection, the plasma density in this region is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed, and alters the propagation of ULF waves launched from the magnetopause. It can therefore be expected that the accessibility of ULF wave power for radiation belt energisation is sensitively dependent on the recent history of magnetospheric convection, and the stage of development of the PDP. This is investigated using a 3D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (Volland - Stern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic-field day/night asymmetry, and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance (FLR) location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside. This may explain satellite observations of the appearance of ULF wave activity within localized density enhancements associated with a PDP. Such an example, made by THEMIS following a geomagnetic storm on October 9, 2013, is described, and compared against the ULF wave model results, for which inputs are constrained by available observations.

  4. A contribution to ULF activity in the Pc 3-4 range correlated with IMF radial orientation. [geomagnetic micropulsations

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Olson, J. V.

    1977-01-01

    The paper describes an experiment to determine whether the radial orientation of the interplanetary magnetic field (IMF) is associated with ULF activity in the Pc 3-4 range. Data are obtained from base levels, undisturbed intervals, IMF and disturbance selection, and trigonometric correlation. The results obtained are discussed, noting particularly that for low Kp, the probability of enhanced amplitude noise rises as IMF orientation with respect to the nominal solar wind flow decreases in both Pc 3 and Pc 4 channels.

  5. ULF Wave Activity in the Magnetosphere: Resolving Solar Wind Interdependencies to Identify Driving Mechanisms

    NASA Astrophysics Data System (ADS)

    Bentley, S. N.; Watt, C. E. J.; Owens, M. J.; Rae, I. J.

    2018-04-01

    Ultralow frequency (ULF) waves in the magnetosphere are involved in the energization and transport of radiation belt particles and are strongly driven by the external solar wind. However, the interdependency of solar wind parameters and the variety of solar wind-magnetosphere coupling processes make it difficult to distinguish the effect of individual processes and to predict magnetospheric wave power using solar wind properties. We examine 15 years of dayside ground-based measurements at a single representative frequency (2.5 mHz) and a single magnetic latitude (corresponding to L ˜ 6.6RE). We determine the relative contribution to ULF wave power from instantaneous nonderived solar wind parameters, accounting for their interdependencies. The most influential parameters for ground-based ULF wave power are solar wind speed vsw, southward interplanetary magnetic field component Bz<0, and summed power in number density perturbations δNp. Together, the subordinate parameters Bz and δNp still account for significant amounts of power. We suggest that these three parameters correspond to driving by the Kelvin-Helmholtz instability, formation, and/or propagation of flux transfer events and density perturbations from solar wind structures sweeping past the Earth. We anticipate that this new parameter reduction will aid comparisons of ULF generation mechanisms between magnetospheric sectors and will enable more sophisticated empirical models predicting magnetospheric ULF power using external solar wind driving parameters.

  6. Ground and Satellite Observations of ULF Waves Artificially Produced by HAARP

    NASA Astrophysics Data System (ADS)

    Chang, C.; Labenski, J.; Shroff, H.; Doxas, I.; Papadopoulos, D.; Milikh, G.; Parrot, M.

    2008-12-01

    Modulated ionospheric heating at ULF frequencies using the HAARP heater was performed from April 28 to May 3, 2008 (http://www.haarp.alaska.edu). Simultaneous ground-based ULF measurements were made locally at Gakona, AK and at Lake Ozette, WA that is 2000 km away. The ground-based results showed that ULF amplitudes measured at Gakona are mostly proportional to the electrojet strength above HAARP, indicating electrojet modulation to be the source of the local ULF waves. However, the timing of ULF events recorded at Lake Ozette did not correlated with the electrojet strength at Gakona, indicating that modulation of F region pressure is the more likely source for distant ULF waves. These observations are consistent with the theoretical understanding that ULF waves generated by current modulation are shear Alfven waves propagating along the magnetic field line, thus at high latitude their observations are limited to the vicinity of the heated spot. On the other hand, propagation of ULF waves at significant lateral distances requires generation of magnetosonic waves since they are the only mode that propagates isotropically and can thus couple efficiently in the Alfvenic duct. In addition to ground-based observations, the DEMETER satellite also provided space measurements of the heating effects during its passes over HAARP. The DEMETER results showed direct detection of HAARP ULF waves at 0.1 Hz. Moreover, density dips were observed every time HAARP was operated at CW mode, which provides clear evidence of duct formation by direct HF heating at F peak. Details of these results will be presented at the meeting. We would like to acknowledge the support provided by the HAARP facility during our ULF experiments.

  7. Foreshock ULF wave boundary at Venus

    NASA Astrophysics Data System (ADS)

    Shan, L.; Mazelle, C. X.; Meziane, K.; Romanelli, N. J.; Ge, Y.; Du, A.; Zhang, T.

    2017-12-01

    Foreshock ULF waves are a significant physical phenomenon on the plasma environment for terrestrial planets. The occurrence of ULF waves, associated with backstreaming ions and accelerated at shocks, implies the conditions and properties of the shock and its foreshock. The location of ultra-low frequency (ULF) quasi-monochromatic wave onset upstream of Venus bow shock is explored using Venus Express magnetic field data. We report the existence of a spatial foreshock boundary behind which ULF waves are present. We have found that the ULF wave boundary is sensitive to the interplanetary magnetic field (IMF) direction and appears well defined for a cone angle larger than 30o. In the Venusian foreshock, the slope of the wave boundary with respect to the Sun-Venus direction increase with IMF cone angle. We also found that for the IMF nominal direction at Venus' orbit, the boundary makes an inclination of 70o. Moreover, we have found that the inferred velocity of an ion traveling along the ULF boundary is in a qualitative agreement with a quasi-adiabatic reflection of a portion of the solar wind at the bow shock.

  8. Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jie; Zong, Q. G.; Miyoshi, Y.

    Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less

  9. Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

    DOE PAGES

    Ren, Jie; Zong, Q. G.; Miyoshi, Y.; ...

    2017-08-30

    Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less

  10. Direct Observations of ULF and Whistler-Mode Chorus Modulation of 500eV EDI Electrons by MMS

    NASA Astrophysics Data System (ADS)

    Paulson, K. W.; Argall, M. R.; Ahmadi, N.; Torbert, R. B.; Le Contel, O.; Ergun, R.; Khotyaintsev, Y. V.; Strangeway, R. J.; Magnes, W.; Russell, C. T.

    2016-12-01

    We present here direct observations of chorus-wave modulated field-aligned 500 eV electrons using the Electron Drift Instrument (EDI) on board the Magnetospheric Multiscale mission. These periods of wave activity were additionally observed to be modulated by Pc5-frequency magnetic perturbations, some of which have been identified as drifting mirror-mode structures. The spacecraft encountered these mirror-mode structures just inside of the duskside magnetopause. Using the high sampling rate provided by EDI in burst sampling mode, we are able to observe the individual count fluctuations of field-aligned electrons in this region up to 512 Hz. We use the multiple look directions of EDI to generate both pitch angle and gyrophase plots of the fluctuating counts. Our observations often show unidirectional flow of these modulated electrons along the background field, and in some cases demonstrate gyrophase bunching in the wave region.

  11. Control of ULF Wave Accessibility to the Inner Magnetosphere by the Convection of Plasma Density

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Rae, I. J.; Watt, C. E. J.; Shi, Q. Q.; Rankin, R.; Zong, Q.-G.

    2018-02-01

    During periods of storm activity and enhanced convection, the plasma density in the afternoon sector of the magnetosphere is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed and alters the propagation of ULF waves launched from the magnetopause. Therefore, it can be expected that the accessibility of ULF wave power for radiation belt energization is sensitively dependent on the recent history of magnetospheric convection and the stage of development of the PDP. This is investigated using a 3-D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (VollandStern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic field day/night asymmetry and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside, providing an avenue for electron energization.

  12. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.; Li, L. Y.; Cao, J. B.

    By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasingmore » (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.« less

  13. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement

    DOE PAGES

    Yu, J.; Li, L. Y.; Cao, J. B.; ...

    2015-11-10

    By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasingmore » (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.« less

  14. ULF geomagnetic activity effects on tropospheric temperature, specific humidity, and cloud cover in Antarctica, during 2003-2010

    NASA Astrophysics Data System (ADS)

    Regi, Mauro; Redaelli, Gianluca; Francia, Patrizia; De Lauretis, Marcello

    2017-06-01

    In the present study we investigated the possible relationship between the ULF geomagnetic activity and the variations of several atmospheric parameters. In particular, we compared the ULF activity in the Pc1-2 frequency band (100 mHz-5 Hz), computed from geomagnetic field measurements at Terra Nova Bay in Antarctica, with the tropospheric temperature T, specific humidity Q, and cloud cover (high cloud cover, medium cloud cover, and low cloud cover) obtained from reanalysis data set. The statistical analysis was conducted during the years 2003-2010, using correlation and Superposed Epoch Analysis approaches. The results show that the atmospheric parameters significantly change following the increase of geomagnetic activity within 2 days. These changes are evident in particular when the interplanetary magnetic field Bz component is oriented southward (Bz<0) and the By component duskward (By>0). We suggest that both the precipitation of electrons induced by Pc1-2 activity and the intensification of the polar cap potential difference, modulating the microphysical processes in the clouds, can affect the atmosphere conditions.

  15. Characteristics of absorption and frequency filtration of ULF electromagnetic waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    A statistical method for interpreting data from experimental investigations of vertically-propagating electromagnetic ULF waves in the inhomogeneous magnetoactive ionosphere is considered theoretically. Values are obtained for the transmission, reflection and absorption characteristics of ULF waves in a limited ionospheric layer, in order to describe the relation between the frequency of a wave generated at the earth surface and that of a total wave propagating above the ionospheric layer. This relation is used to express the frequency-selective amplitude filtration of ULF waves in the layer. The method is applied to a model of the night ionosphere of mid-geomagnetic latitudes in the form of a plate 1000 km thick. It is found that the relative characteristics of transmission and amplitude loss in the wave adequately describe the frequency selectiveness and wave filtration capacity of the ionosphere. The method is recommended for studies of the structural changes of wave parameters in ionospheric models.

  16. ULF waves in the foreshock

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Le, G.; Strangeway, R. J.

    1995-01-01

    We review our current knowledge of ULF waves in planetary foreshocks. Most of this knowledge comes from observations taken within a few Earth radii of the terrestrial bow shock. Terrestrial foreshock ULF waves can be divided into three types, large amplitude low frequency waves (approximately 30-s period), upstream propagating whistlers (1-Hz waves), and 3-s waves. The 30-s waves are apparently generated by back-streaming ion beams, while the 1-Hz waves are generated at the bow shock. The source of the 3-s waves has yet to be determined. In addition to issues concerning the source of ULF waves in the foreshock, the waves present a number of challenges, both in terms of data acquisition, and comparison with theory. The various waves have different coherence scales, from approximately 100 km to approximately 1 Earth radius. Thus multi-spacecraft separation strategies must be tailored to the phenomenon of interest. From a theoretical point of view, the ULF waves are observed in a plasma in which the thermal pressure is comparable to the magnetic pressure, and the rest-frame wave frequency can be moderate fraction of the proton gyro-frequency. This requires the use of kinetic plasma wave dispersion relations, rather than multi-fluid MHD. Lastly, and perhaps most significantly, ULF waves are used to probe the ambient plasma, with inferences being drawn concerning the types of energetic ion distributions within the foreshock. However, since most of the data were acquired close to the bow shock, the properties of the more distant foreshock have to be deduced mainly through extrapolation of the near-shock results. A general understanding of the wave and plasma populations within the foreshock, their interrelation, and evolution, requires additional data from the more distant foreshock.

  17. Spacecraft Observations of a ULF Wave Injected Onto Field Lines by SPEAR

    NASA Astrophysics Data System (ADS)

    Badman, S. V.; Wright, D. M.; Yeoman, T. K.; Clausen, L. B.; Fear, R. C.; Fazakerley, A. N.; Lucek, E. A.

    2008-12-01

    SPEAR (Space Exploration by Active Radar) is an ionospheric heating facility situated on Svalbard which is capable of exciting ULF waves on local magnetic field lines. Field-guided ULF waves can interact with the ionospheric Alfvén resonator (IAR) and produce parallel electric fields, which then accelerate electrons along the field line. Detection and study of these waves thus provides information on the properties of the IAR and auroral acceleration processes. We examine an interval from 1 February 2006 when SPEAR was transmitting with a 5 min on-off cycle. During this interval the Cluster spacecraft passed over the heater site. We discuss signatures of the SPEAR-generated wave identified in the Cluster field and electron measurements. One feature of interest is the periodic enhancement of electron fluxes in two broad energy bands (~10-100 eV and ~100-1000 eV) which occur out of phase with each other in the two different energy bands.

  18. Kinetic Alfvén waves and particle response associated with a shock-induced, global ULF perturbation of the terrestrial magnetosphere

    DOE PAGES

    Malaspina, David M.; Claudepierre, Seth G.; Takahashi, Kazue; ...

    2015-11-14

    On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. Furthermore, the Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event then suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portionsmore » of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere during the initial response of the magnetosphere to shock impacts.« less

  19. The Quasi-monochromatic ULF Wave Boundary in the Venusian Foreshock: Venus Express Observations

    NASA Astrophysics Data System (ADS)

    Shan, Lican; Mazelle, Christian; Meziane, Karim; Romanelli, Norberto; Ge, Yasong S.; Du, Aimin; Lu, Quanming; Zhang, Tielong

    2018-01-01

    The location of ultralow-frequency (ULF) quasi-monochromatic wave onset upstream of Venus bow shock is explored using Venus Express magnetic field data. We report the existence of a spatial foreshock boundary behind which ULF waves are present. We have found that the ULF wave boundary at Venus is sensitive to the interplanetary magnetic field (IMF) direction like the terrestrial one and appears well defined for a cone angle larger than 30°. In the Venusian foreshock, the inclination angle of the wave boundary with respect to the Sun-Venus direction increases with the IMF cone angle. We also found that for the IMF nominal direction (θBX = 36°) at Venus' orbit, the value of this inclination angle is 70°. Moreover, we have found that the inferred velocity of an ion traveling along the ULF boundary is in a qualitative agreement with a quasi-adiabatic reflection of a portion of the solar wind at the bow shock. For an IMF nominal direction at Venus, the inferred bulk speed of ions traveling along this boundary is 1.07 VSW, sufficiently enough to overcome the solar wind convection. This strongly suggests that the backstreaming ions upstream of the Venusian bow shock provide the main energy source for the ULF waves.

  20. ULF waves in the Martian foreshock: MAVEN observations

    NASA Astrophysics Data System (ADS)

    Shan, Lican; Mazelle, Christian; Meziane, Karim; Ruhunusiri, Suranga; Espley, Jared; Halekas, Jasper; Connerney, Jack; McFadden, Jim; Mitchell, Dave; Larson, Davin; Brain, Dave; Jakosky, Bruce; Ge, Yasong; Du, Aimin

    2016-04-01

    Foreshock ULF waves constitute a significant physical phenomenon of the plasma environment for terrestrial planets. The occurrence of these ULF waves, associated with backstreaming ions reflected and accelerated at the bow shock, implies specific conditions and properties of the shock and its foreshock. Using measurements from MAVEN, we report clear observations of this type of ULF waves in the Martian foreshock. We show from different case studies that the peak frequency of the wave case in spacecraft frame is too far from the local ion cyclotron frequency to be associated with local pickup ions taking into account the Doppler shifted frequency from a cyclotron resonance, the obliquity of the mode, resonance broadening and experimental uncertainties. On the opposite their properties fit very well with foreshock waves driven unstable by backtreaming field-aligned ion beams. The propagation angle is usually less than 30 degrees from ambient magnetic field. The waves also display elliptical and left-hand polarizations with respect to interplanetary magnetic field in the spacecraft frame. It is clear for these cases that foreshock ions are simultaneous present for the ULF wave interval. Such observation is important in order to discriminate with the already well-reported pickup ion (protons) waves associated with exospheric hydrogen in order to quantitatively use the later to study seasonal variations of the hydrogen corona.

  1. A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Kivelson, M. G.

    2001-11-01

    Using data from the Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD)-High Sensitivity Telescope (HIST) instrument on the Polar spacecraft and ground magnetometer data from the 210 meridian magnetometer chain, we test the ULF wave drift resonance theory proposed to explain relativistic electron phase space density enhancements. We begin by investigating changes in electron flux due to the ``Dst effect.'' The Dst effect refers to the adiabatic response of relativistic electrons to changes in the magnetic field characterized by the Dst index. The Dst effect, assuming no loss or addition of new electrons, produces reversible order of magnitude changes in relativistic electrons flux measured at fixed energy, but it cannot account for the flux enhancement that occurs in the recovery phase of most storms. Liouville's theorem states that phase space density expressed in terms of constant adiabatic invariants is unaffected by adiabatic field changes and thus is insensitive to the Dst effect. It is therefore useful to express flux measurements in terms of phase space densities at constant first, second and third adiabatic invariants. The phase space density is determined from the CEPPAD-HIST electron detector that measures differential directional flux of electrons from 0.7 to 9 MeV and the Tsyganenko 96 field model. The analysis is done for January to June 1997. The ULF wave drift resonance theory that we test proposes that relativistic electrons are accelerated by an m=2 toroidal or poloidal mode wave whose frequency equals the drift frequency of the electron. The theory is tested by comparing the relativistic electron phase space densities to wave power determined at three ground stations with L* values of 4.0, 5.7 and 6.2. Comparison of the wave data to the phase space densities shows that five out of nine storm events are consistent with the ULF wave drift resonance mechanism, three out of nine give ambiguous support to the model, and one event has high ULF wave power at the drift frequency of the electrons but no corresponding phase space density enhancement suggesting that ULF wave power alone is not sufficient to cause an electron response. Two explanations of the anomalous event are investigated including excessive loss of electrons to the magnetopause and wave duration.

  2. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  3. Non-stationary Alfvén resonator: new results on Pc1 pearls and IPDP events

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Prikner, K.; Feygin, F. Z.; Bräysy, T.; Kangas, J.; Kerttula, R.; Pollari, P.; Pikkarainen, T.; Pokhotelov, O. A.

    2000-03-01

    We analyse a Pc1 pearl event observed by the Finnish search-coil magnetometer network on 15 December 1984, which subsequently developed into a structured IPDP after a substorm onset. The EISCAT radar was simultaneously monitoring the mid- to high-latitude ionosphere. We have calculated the ionospheric resonator properties during the different phases of the event using EISCAT observations. Contrary to the earlier results, we find that the Pc1/IPDP (Interval of Pulsations of Diminishing Period) frequency observed on the ground corresponds to the maximum of the transmission coefficient rather than that of the reflection coefficient. This casts strong doubts on the bouncing wave packet model of Pc1 pearls. Instead, we present evidence for an alternative model of pearl formation in which long-period ULF waves modulate the Pc1 growth rate. Moreover, we propose a new model for IPDP formation, whereby the ionosphere acts as an active agent in forming the IPDP signal on the ground. The model calculations show that the ionospheric resonator properties can be modified during the event so that the resonator eigenfrequency increases according to the observed frequency increase during the IPDP phase. We suggest that the IPDP signal on the ground is a combined effect of the frequency increase in the magnetospheric wave source and the simultaneous increase of the resonator eigenfrequency. The need for such a complicated matching of the two factors explains the rarity of IPDPs on the ground despite the ubiquitous occurrence of EMIC waves in the magnetosphere and the continuous substorm cycle.

  4. Parameters of 1-4 mHz (Pc5/Pi3) ULF pulsations during the intervals preceding non-triggered substorms at high geomagnetic latitudes

    NASA Astrophysics Data System (ADS)

    Nosikova, Nataliya; Yagova, Nadezda; Baddeley, Lisa; Kozyreva, Olga; Lorentzen, Dag; Pilipenko, Vyacheslav

    2017-04-01

    One of the important questions for understanding substorm generation is the possible existence of specific pre-substorm variations of plasma, particles and electromagnetic field parameters. In this case analyzing of isolated non-triggered substorms (i.e. substorms that occur under quiet geomagnetic conditions without any visible triggers in IMF or SW) gives benefits for investigation of processes of substorm preparation. It was shown in previous studies that during a few hours preceding a non-triggered isolated substorm, coherent geomagnetic and aurroral luminosity pulsations are observed. Moreover, PSD, amplitudes of geomagnetic fluctuations in Pc5/Pi3 (1-4 mHz) frequency range and some spectral parameters differ from those registered on days without substorms. In present work this sort of pulsations has been studied in details. Features of longitudinal and latitudinal profiles are presented. Possible correlation with ULF disturbances in IMF and SW as well as in the magnetotail/magnetosheath are discussed.

  5. The magnetic field investigation on the ARASE (ERG) mission: Data characteristics and initial scientific results

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Teramoto, M.; Nomura, R.; Nose, M.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Nagatsuma, T.; Shiokawa, K.; Obana, Y.; Miyoshi, Y.; Takashima, T.; Shinohara, I.

    2017-12-01

    The ARASE (ERG) satellite was successfully launched on December 20 2016. A fluxgate magnetometer (MGF) was built for the ARASE satellite to measure DC and low-frequency magnetic field. The requirements to the magnetic field measurements by ARASE was defined as (1) accuracy of the absolute field intensity is within 5 nT (2) angular accuracy of the field direction is within 1 degree (3) measurement frequency range is from DC to 60Hz or wider. MGF measures the vector magnetic field with the original sampling frequency of 256 Hz. The dynamic range is switched between +/-8000nT and +/- 60000nT according to the background field intensity. The MGF initial checkout was carried on January 10th 2017, when the MGF normal performance and downlinked data were confirmed. The 5-m length MAST for the sensor was deployed on 17th January. The nominal operation of MGF started in March 2017. The MGF data are calibrated based on the results from the ground experiments and in-orbit data analysis. The MGF CDF files are distributed by the ARASE Science Center and available by Space Physics Environment Data Analysis Software (SPEDAS). The acceleration process of the charged particles in the inner magnetosphere is considered to be closely related to the deformation and perturbation of the magnetic field. Accurate measurement of the magnetic field is required to understand the acceleration mechanism of the charged particles, which is one of the major scientific objectives of the ARASE mission. We designed a fluxgate magnetometer which is optimized to investigate following topics; (1) accurate measurement of the background magnetic field - the deformation of the magnetic field and its relationship with the particle acceleration. (2) MHD waves - measurement of the ULF electromagnetic waves of frequencies about 1mHz (Pc4-5), and investigation of the radiation-belt electrons radially diffused by the resonance with the ULF waves. (3) EMIC waves - measurement of the electromagnetic ion-cyclotron waves of frequencies about 1Hz, and investigation of the ring-current ions and radiation-belt electrons dissipated by the interaction with the EMIC waves.These scientific subjects are now investigated by the ARASE working team colleagues.

  6. Effect of Upstream ULF Waves on the Energetic Ion Diffusion at the Earth's Foreshock. I. Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Otsuka, Fumiko; Matsukiyo, Shuichi; Kis, Arpad; Nakanishi, Kento; Hada, Tohru

    2018-02-01

    Field-aligned diffusion of energetic ions in the Earth’s foreshock is investigated by using the quasi-linear theory (QLT) and test particle simulation. Non-propagating MHD turbulence in the solar wind rest frame is assumed to be purely transverse with respect to the background field. We use a turbulence model based on a multi-power-law spectrum including an intense peak that corresponds to upstream ULF waves resonantly generated by the field-aligned beam (FAB). The presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The QLT including the effect of the ULF wave explains the simulation result well, when the energy density of the turbulent magnetic field is 1% of that of the background magnetic field and the power-law index of the wave spectrum is less than 2. The numerically obtained e-folding distances from 10 to 32 keV ions match with the observational values in the event discussed in the companion paper, which contains an intense ULF peak in the spectra generated by the FAB. Evolution of the power spectrum of the ULF waves when approaching the shock significantly affects the energy dependence of the e-folding distance.

  7. The Effects of High Frequency ULF Wave Activity on the Spectral Characteristics of Coherent HF Radar Returns

    NASA Astrophysics Data System (ADS)

    Wright, D. M.; Yeoman, T. K.; Woodfield, E. E.

    2003-12-01

    It is now a common practice to employ ground-based radars in order to distinguish between those regions of the Earth's upper atmosphere which are magnetically conjugate to open and closed field lines. Radar returns from ionospheric irregularities inside the polar cap and cusp regions generally exhibit large spectral widths in contrast to those which exist on closed field lines at lower latitudes. It has been suggested that the so-called Spectral Width Boundary (SWB) might act as a proxy for the open-closed field line boundary (OCFLB), which would then be an invaluable tool for investigating reconnection rates in the magnetosphere. The exact cause of the increased spectral widths observed at very high latitudes is still subject to considerable debate. Several mechanisms have been proposed. This paper compares a dusk-sector interval of coherent HF radar data with measurements made by an induction coil magnetometer located at Tromso, Norway (66° N geomagnetic). On this occasion, a series of transient regions of radar backscatter exhibiting large spectral widths are accompanied by increases in spectral power of ULF waves in the Pc1-2 frequency band. These observations would then, seem to support the possibility that high frequency magnetospheric wave activity at least contribute to the observed spectral characteristics and that such wave activity might play a significant role in the cusp and polar cap ionospheres.

  8. ULF Waves and Diffusive Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, Ashar Fawad

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes (RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component is dominant in driving radial diffusion of charged particles in the Earth's inner magnetosphere instead of the magnetic component. The electric component can be up to two orders of magnitude larger than the magnetic component. In addition, we see that ULF wave power in both the electric and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance decreases. For both fields, the noon sectors generally contain more ULF wave power than the dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference between ULF wave power in the dawn, dusk, and the midnight sectors.

  9. Possible link of sudden onset and short-time periodic pulsation of polar mesosphere summer echoes to ULF Pc5 geomagnetic pulsations and solar wind dynamic pressure enhancement

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kirkwood, S.; Kwak, Y. S.

    2016-12-01

    The EISCAT VHF incoherent scatter radar in Tromsö, Norway, makes occasional observations of electron densities and Polar Mesosphere Summer Echoes, in the summer polar D-region ionosphere. In one of those datasets, pulsating polar mesospheric summer echoes (PMSE) are observed, with periodicities in the ultra-low frequency (ULF) Pc5 band (1.6-6.7 mHz), following an abrupt increase of the radar reflectivity when a geomagnetic field excursion is started, in turn linked to dynamic pressure (Pdyn) enhancement in the solar wind. At the excursion of the magnetic field, at auroral altitudes of 90 km and above, electron density is abruptly enhanced, followed by a series of short-lived peaks, superimposed on an enhanced level. The short-lived peaks are likely a signature of transient Pc5 geomagnetic pulsations and associated energetic electron precipitation from pitch-angle scattering into the loss cone in the magnetosphere. At the same time, at altitudes around 80-90 km, a sharp increase of PMSE reflectivity occurs, 100 times greater than the increase of electron density, and is followed by pulsating PMSE reflectivity with periodicities in the Pc5 band, increasing and decreasing in magnitude during the course of the next hour. The increase of the pulsation magnitude may be attributed to an increase of high-energy electron precipitation flux ( >30 keV) penetrating to at least the height of maximum PMSE reflectivity. This study suggests that Pc5 pulsation bursts in both magnetic field and high energy electron precipitation could play a crucial role in producing PMSE fluctuations on minute-to-minute time scales.

  10. A study of the coherence length of ULF waves in the earth's foreshock

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.

    1990-01-01

    High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.

  11. Variability of ULF wave power at the magnetopause: a study at low latitude with Cluster data

    NASA Astrophysics Data System (ADS)

    Cornilleau-Wehrlin, N.; Grison, B.; Belmont, G.; Rezeau, L.; Chanteur, G.; Robert, P.; Canu, P.

    2012-04-01

    Strong ULF wave activity has been observed at magnetopause crossings since a long time. Those turbulent-like waves are possible contributors to particle penetration from the Solar Wind to the Magnetosphere through the magnetopause. Statistical studies have been performed to understand under which conditions the ULF wave power is the most intense and thus the waves can be the most efficient for particle transport from one region to the other. Clearly the solar wind pressure organizes the data, the stronger the pressure, the higher the ULF power (Attié et al 2008). Double STAR-Cluster comparison has shown that ULF wave power is stronger at low latitude than at high latitude (Cornilleau-Wehrlin et al, 2008). The different studies performed have not, up to now, shown a stronger power in the vicinity of local noon. Nevertheless under identical activity conditions, the variability of this power, even at a given location in latitude and local time is very high. The present work intends at understanding this variability by means of the multi spacecraft mission Cluster. The data used are from spring 2008, while Cluster was crossing the magnetopause at low latitude, in particularly quite Solar Wind conditions. The first region of interest of this study is the sub-solar point vicinity where the long wavelength surface wave effects are most unlikely.

  12. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    NASA Astrophysics Data System (ADS)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  13. Pulsating midmorning auroral arcs, filamentation of a mixing region in a flank boundary layer, and ULF waves observed during a Polar-Svalbard conjunction

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Sandholt, P. E.; Maynard, N. C.; Burke, W. J.; Scudder, J. D.; Ober, D. M.; Moen, J.; Russell, C. T.

    2000-12-01

    Magnetically conjugate observations by the HYDRA and the Magnetic Field Experiment instruments on Polar, meridian-scanning photometers and all-sky imagers at Ny-Ålesund, and International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometers on November 30, 1997, illustrate aspects of magnetosphere-ionosphere coupling at 0900-1000 magnetic local times (MLT) and 70°-80° magnetic latitudes and their dependence on interplanetary parameters. Initially, Polar crossed a boundary layer on closed field lines where magnetospheric and magnetosheath plasmas are mixed. This region contains filaments where magnetospheric electron and ion fluxes are enhanced. These filaments are associated with field-aligned current structures embedded within the large-scale region 1 (R1) current. Ground auroral imagery document the presence at this time of discrete, east-west aligned arcs, which are in one-to-one correspondence with the filaments. Temporal variations present in these auroral arcs correlate with Pc 5 pulsations and are probably related to modulations in the interplanetary electric field. The auroral observations indicate that the filamented mixing region persisted for many tens of minutes, suggesting a spatial structuring. The data suggest further that the filamented, mixing region is an important source of the R1 current and the associated midmorning arcs. When the interplanetary magnetic field (IMF) turned strongly north, Polar had entered the dayside extension of the central plasma sheet/region 2 current system where it and the underlying ground magnetometers recorded a clear field line resonance of frequency ~2.4 mHz (Pc 5 range). The source of these oscillations is most likely the Kelvin-Helmholtz instability. Subsequent to the IMF northward turning, the multiple arcs were replaced by a single auroral form to the north of Ny-Ålesund (at 1000 MLT) in the vicinity of the westward edge of the cusp. ULF pulsation activity changed to the Pc 3-4 range in the regime of the pulsating diffuse aurora when the IMF went to an approximately Parker spiral orientation and the ground stations had rotated into the MLT sector of cusp emissions.

  14. Determining magnetospheric ULF wave activity from external drivers using the most influential solar wind parameters

    NASA Astrophysics Data System (ADS)

    Bentley, S.; Watt, C.; Owens, M. J.

    2017-12-01

    Ultra-low frequency (ULF) waves in the magnetosphere are involved in the energisation and transport of radiation belt particles and are predominantly driven by the external solar wind. By systematically examining the instantaneous relative contribution of non-derived solar wind parameters and accounting for their interdependencies using fifteen years of ground-based measurements (CANOPUS) at a single frequency and magnetic latitude, we conclude that the dominant causal parameters for ground-based ULF wave power are solar wind speed v, interplanetary magnetic field component Bz and summed power in number density perturbations δNp. We suggest that these correspond to driving by the Kelvin-Helmholtz instability, flux transfer events and direct perturbations from solar wind structures sweeping past. We will also extend our analysis to a stochastic wave model at multiple magnetic latitudes that will be used in future to predict background ULF wave power across the radiation belts in different magnetic local time sectors, and to examine the relative contribution of the parameters v, Bz and var(Np) in these sectors.

  15. Azimuthal ULF Structure and Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, A.; Elkington, S. R.

    2015-12-01

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. There is still much to be understood about the interaction between charged particles and ULF waves in the inner magnetosphere and how they influence particle diffusion. We investigate how ULF wave power distribution in azimuth affects radial diffusion of charged particles. Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. The power profiles obtained from in situ measurements will be used to conduct particle simulations to see how well do the simulated diffusion coefficients agree with diffusion coefficients estimated directly from in situ measurements. We also look at the ULF wave power distribution across different modes. In order to use in situ point measurements from spacecraft, it is typically assumed that all of the wave power exists in m=1 mode. How valid is this assumption? Do higher modes contain a major fraction of the total power? If yes, then under what conditions? One strategy is to use the obtained realistic azimuthal power profiles from in situ measurements (such as from the Van Allen Probes) to drive simulations and see how the power distributions across modes larger than one depends on parameters such as the level of geomagnetic activity.

  16. Dynamic cross correlation studies of wave particle interactions in ULF phenomena

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1979-01-01

    Magnetic field observations made by satellites in the earth's magnetic field reveal a wide variety of ULF waves. These waves interact with the ambient particle populations in complex ways, causing modulation of the observed particle fluxes. This modulation is found to be a function of species, pitch angle, energy and time. The characteristics of this modulation provide information concerning the wave mode and interaction process. One important characteristic of wave-particle interactions is the phase of the particle flux modulation relative to the magnetic field variations. To display this phase as a function of time a dynamic cross spectrum program has been developed. The program produces contour maps in the frequency time plane of the cross correlation coefficient between any particle flux time series and the magnetic field vector. This program has been utilized in several studies of ULF wave-particle interactions at synchronous orbit.

  17. Seasonal variations of reflexibility and transmissibility of ULF waves propagating through the ionosphere of geomagnetic mid-latitudes

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility and absorption, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (a) continuous band f of less than 0.1 to 0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; and (b) a Hz band of greater than 0.2 Hz with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.

  18. Seasonal variations of reflexibility and transmissibility of ULF waves propagating through the ionosphere of geomagnetic mid-latitudes

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (1) continuous band f 0.1-0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; (2) the f 0.2 Hz band with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.

  19. Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Zhou, Chen; Shi, Run; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong

    2016-09-01

    Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W), Wuhan (30.52° N, 114.32° E) and Jicamarca (11.95° S, 76.87° W) at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with latitude in the daytime ionosphere, while it increases with latitude in the nighttime ionosphere; both the electron temperature oscillation amplitude and the ground ULF wave magnitude decreases as the modulation frequency increases; when the electron temperature oscillation is fixed as input, the radiation efficiency of the ring current source is higher in the nighttime ionosphere than in the daytime ionosphere.

  20. Pc 5 Spectral Density at ULTIMA stataions and its Radial Diffusion Coefficients for REE

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Tokunaga, T.; Abe, S.; Uozumi, T.; Yoshikawa, A.; Mann, I. R.; Chi, P. J.; Engebretson, M. J.; Yumoto, K.

    2009-12-01

    Pc 5 magnetic pulsations with frequencies between 1.67 and 6.67 mHz, are believed to contribute to the Relativistic Electron Enhancement (REE) in the outer radiation belt during magnetic storms. Ground-based observations suggested that high-speed solar wind and large-amplitude Pc 5 waves with a long duration during the storm recovery phase are closely associated with the production of relativistic electrons [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O’Brien et al., 2001, 2003]. On the other hand, many relativistic electron acceleration mechanisms have been proposed theoretically. They are separated roughly into two themes: in situ acceleration at L lower than 6.6 by wave particle interactions (as internal source acceleration mechanisms) [Liu et al., 1999; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion to transport and accelerate a source population of electrons from the outer to the inner magnetosphere (as external source acceleration mechanisms) [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible external source acceleration mechanism is the resonant interaction with ULF toroidal and poloidal waves. In order to verify which of the two mechanisms is more effective for the REE, we have to examine the time variation of electron phase space density. Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients using observational electric and magnetic data. The goal of this paper is to get more reliable radial diffusion coefficient from ground-based observational magnetic field and to show reasonability of it for radial diffusion model. We use the global magnetometer data obtained from ULTIMA (Ultra Large Terrestrial International Magnetic Array, see http://www.serc.kyushu-u.ac.jp/ultima/ultima.html) stations, to precisely define the radial diffusion timescales. The ULTIMA includes McMAC, CARISAM, 210MM and MAGDAS/CPMN magnetometer arrays. The radial diffusion coefficient can be given from the magnetic field power spectral density as a function of L, frequency (f) and m-number (m) in the Pc 5 frequency range during the REE related magnetic storms [see Brautigam et al., 2005]. We can fit Pc 5 power spectral density (L, f, m) using the ULTIMA data. The m-number of global Pc 5 pulsation on the ground is found to be almost less than 5. This is consistent with m-number required in the radial diffusion theory by Elkington et al. [1999, 2003]. We will compare the observationally estimated diffusion coefficient with theoretical diffusion coefficient [e.g. Elkington et al., 2006], and discuss adequacy of our diffusion coefficient.

  1. Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Paral, J.; Hudson, M. K.; Kress, B. T.; Wiltberger, M. J.; Wygant, J. R.; Singer, H. J.

    2015-08-01

    Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L = 4.5, well within the computed magnetopause location. We compare ULF wave power from the Electric Field and Waves (EFW) electric field instrument on the Van Allen Probes for the 8 October 2013 storm with ULF wave power simulated using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) magnetospheric simulation code coupled to the Rice Convection Model (RCM). Two other storms with strong magnetopause compression, 8-9 October 2012 and 17-18 March 2013, are also examined. We show that the global MHD model captures the azimuthal magnetosonic impulse propagation speed and amplitude observed by the Van Allen Probes which is responsible for prompt acceleration at MeV energies reported for the 8 October 2013 storm. The simulation also captures the ULF wave power in the azimuthal component of the electric field, responsible for acceleration and radial transport of electrons, at frequencies comparable to the electron drift period. This electric field impulse has been shown to explain observations in related studies (Foster et al., 2015) of electron acceleration and drift phase bunching by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on the Van Allen Probes.

  2. The role of localised Ultra-Low Frequency waves in energetic electron precipitation

    NASA Astrophysics Data System (ADS)

    Rae, J.; Murphy, K. R.; Watt, C.; Mann, I. R.; Ozeke, L.; Halford, A. J.; Sibeck, D. G.; Clilverd, M. A.; Rodger, C. J.; Degeling, A. W.; Singer, H. J.

    2016-12-01

    Electromagnetic waves play pivotal roles in radiation belt dynamics through a variety of different means. Typically, Ultra-Low Frequency (ULF) waves have historically been invoked for radial diffusive transport leading to both acceleration and loss of outer radiation belt electrons. Very-Low Frequency (VLF) and Extremely-Low Frequency (ELF) waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to direct modulation of the loss cone via localized compressional ULF waves. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity. We then perform statistical computations of the probability distribution to determine how likely a given magnetic perturbation would produce a given percentage change in the bounce loss-cone (BLC). We discuss the ramifications of the action of coherent, localized compressional ULF waves on drifting electron populations; their precipitation response can be a complex interplay between electron energy, the shape of the phase space density profile at pitch angles close to the loss cone, ionospheric decay timescales, and the time-dependence of the electron source. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. We determine that the two pivotal components not usually considered are localized ULF wave fields and ionospheric decay timescales. We conclude that ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm-times.

  3. Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites

    NASA Astrophysics Data System (ADS)

    Yuan, Zhigang; Deng, Xiaohua; Lin, Xi; Pang, Ye; Zhou, Meng; Décréau, P. M. E.; Trotignon, J. G.; Lucek, E.; Frey, H. U.; Wang, Jingfang

    2010-04-01

    In this paper, we report observations from a Cluster satellite showing that ULF wave occurred in the outer boundary of a plasmaspheric plume on September 4, 2005. The band of observed ULF waves is between the He+ ion gyrofrequency and O+ ion gyrofrequency at the equatorial plane, implying that those ULF waves can be identified as EMIC waves generated by ring current ions in the equatorial plane and strongly affected by rich cold He+ ions in plasmaspheric plumes. During the interval of observed EMIC waves, the footprint of Cluster SC3 lies in a subauroral proton arc observed by the IMAGE FUV instrument, demonstrating that the subauroral proton arc was caused by energetic ring current protons scattered into the loss cone under the Ring Current (RC)-EMIC interaction in the plasmaspheric plume. Therefore, the paper provides a direct proof that EMIC waves can be generated in the plasmaspheric plume and scatter RC ions to cause subauroral proton arcs.

  4. Rethinking the polar cap: Eccentric dipole structuring of ULF power at the highest corrected geomagnetic latitudes

    NASA Astrophysics Data System (ADS)

    Urban, Kevin D.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Weatherwax, Allan T.

    2016-09-01

    The day-to-day evolution and statistical features of Pc3-Pc7 band ultralow frequency (ULF) power throughout the southern polar cap suggest that the corrected geomagnetic (CGM) coordinates do not adequately organize the observed hydromagnetic spatial structure. It is shown that that the local-time distribution of ULF power at sites along CGM latitudinal parallels exhibit fundamental differences and that the CGM latitude of a site in general is not indicative of the site's projection into the magnetosphere. Thus, ULF characteristics observed at a single site in the polar cap cannot be freely generalized to other sites of similar CGM latitude but separated in magnetic local time, and the inadequacy of CGM coordinates in the polar cap has implications for conjugacy/mapping studies in general. In seeking alternative, observationally motivated systems of "polar cap latitudes," it is found that eccentric dipole (ED) coordinates have several strengths in organizing the hydromagnetic spatial structure in the polar cap region. ED latitudes appear to better classify the local-time ULF power in both magnitude and morphology and better differentiate the "deep polar cap" (where the ULF power is largely UT dependent and nearly free of local-time structure) from the "peripheral polar cap" (where near-magnetic noon pulsations dominate at lower and lower frequencies as one increases in ED latitude). Eccentric local time is shown to better align the local-time profiles in the magnetic east component over several PcX bands but worsen in the magnetic north component. It is suggested that a hybrid ED-CGM coordinate system might capture the strengths of both CGM and ED coordinates. It is shown that the local-time morphology of median ULF power at high-latitude sites is dominantly driven by where they project into the magnetosphere, which is best quantified by their proximity to the low-altitude cusp on the dayside (which is not necessarily quantified by a site's CGM latitude), and that variations in the local-time morphology at sites similar in ED latitude are due to both geographic local-time control (relative amplification or dampening by the diurnal variation in the local ionospheric conductivity) and geomagnetic coastal effects (enhanced power in a coastally mediated direction). Regardless of cause, it is emphasized that the application of CGM latitudes in the polar cap region is not entirely meaningful and likely should be dispensed with in favor of a scheme that is in better accord with the observed hydromagnetic spatial structure.

  5. Large-amplitude ULF waves at high latitudes

    NASA Astrophysics Data System (ADS)

    Guido, T.; Tulegenov, B.; Streltsov, A. V.

    2014-11-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quiet times. Our analysis demonstrates that the frequency of the waves carrying most of the power in almost all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system, and the amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  6. Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 2. Oblique propagation

    NASA Astrophysics Data System (ADS)

    Eastwood, J. P.; Balogh, A.; Lucek, E. A.; Mazelle, C.; Dandouras, I.

    2005-11-01

    This paper presents the results of a statistical investigation into the nature of oblique wave propagation in the foreshock. Observations have shown that foreshock ULF waves tend to propagate obliquely to the background magnetic field. This is in contrast to theoretical work, which predicts that the growth rate of the mechanism responsible for the waves is maximized for parallel propagation, at least in the linear regime in homogenous plasma. Here we use data from the Cluster mission to study in detail the oblique propagation of a particular class of foreshock ULF wave, the 30 s quasi-monochromatic wave. We find that these waves persistently propagate at oblique angles to the magnetic field. Over the whole data set, the average value of θkB was found to be 21 ± 14°. Oblique propagation is observed even when the interplanetary magnetic field (IMF) cone angle is small, such that the convective component of the solar wind velocity, vE×B, is comparable to the wave speed. In this subset of the data, the mean value of θkB was 12.9 ± 7.1°. In the subset of data for which the IMF cone angle exceeded 45°, the mean value of θkB was 19.5 ± 10.7°. When the angle between the IMF and the x geocentric solar ecliptic (GSE) direction (i.e., the solar wind vector) is large, the wave k vectors tend to be confined in the plane defined by the x GSE direction and the magnetic field and a systematic deflection is observed. The dependence of θkB on vE×B is also studied.

  7. Modeling of Outer Radiation Belt Electron Scattering due to Spatial and Spectral Properties of ULF Waves

    NASA Astrophysics Data System (ADS)

    Tornquist, Mattias

    The research presented in this thesis covers wave-particle interactions for relativistic (0.5-10 MeV) electrons in Earth's outer radiation belt (r = 3-7 RE, or L-shells: L = 3-7) interacting with magnetospheric Pc-5 (ULF) waves. This dissertation focuses on ideal models for short and long term electron energy and radial position scattering caused by interactions with ULF waves. We use test particle simulations to investigate these wave-particle interactions with ideal wave and magnetic dipole fields. We demonstrate that the wave-particle phase can cause various patterns in phase space trajectories, i.e. local acceleration, and that for a global electron population, for all initial conditions accounted for, has a negligible net energy scattering. Working with GSM polar coordinates, the relevant wave field components are EL, Ephi and Bz, where we find that the maximum energy scattering is 3-10 times more effective for Ephi compared to EL in a magnetic dipole field with a realistic dayside compression amplitude. We also evaluate electron interactions with two coexisting waves for a set of small frequency separations and phases, where it is confirmed that multi-resonant transport is possible for overlapping resonances in phase space when the Chirikov criterion is met (stochasticity parameter K = 1). The electron energy scattering enhances with decreasing frequency separation, i.e. increasing K, and is also dependent on the phases of the waves. The global acceleration is non-zero, can be onset in about 1 hour and last for > 4 hours. The adiabatic wave-particle interaction discussed up to this point can be regarded as short-term scattering ( tau ˜ hours ). When the physical problem extends to longer time scales (tau ˜ days ) the process ceases to be adiabatic due to the introduction of stochastic element in the system and becomes a diffusive process. We show that any mode in a broadband spectrum can contribute to the total diffusion rate for a particular drift frequency within the spectral band via dynamic phases. Each mode contributes maximally at a phase reset frequency fr = 2.63fk, where fk is the mode frequency. We experiment with electron diffusion due to interaction with wave broadband spectra in MLT sectors and find the phase reset effect being strongest when there is no azimuthal wave vector (msec = 0) within the sector. DLL rapidly coheres to the local PSD as the wave number increases and, for example, at msec = 1.00+/-0.25 the effect of phase resets is only 10-30% as strong as for msec = 0. Since phase resets depend on particle drift frequencies when MLT sectors are involved, a consequence is that DLL must adjust as a function of L-shell as well. For example, from the local PSD as the sole contributor to diffusion Schulz and Lanzerotte (1979) has shown that DLL ˜ L6 , but we prove that the function becomes DLL ˜ L5 with some variations due to fd and MLT sector width. The final part of this dissertation evaluates a pre storm commencement event on November 7, 2004, when Earth's magnetopause was struck by a high-speed solar wind with a mostly northward component of interplanetary magnetic field. We obtained a global MHD field simulated by the OpenGGC model for the interval 17:00-18:40 in universal time from NASA's Community Coordinated Modeling Center. Global distribution plots of the electric and magnetic field PSD reveal strong ULF waves spanning the whole dayside sector. There are distinct electric field modes at approximately 0.9, 2.3 and 3.7-6.3 mHz within the dayside sector, which we then used in test-particle simulations and the variance calculations in order to evaluate the diffusion coefficients. To ensure diffusion by sufficient stochasticity, we run the event by repeating the interval 10 times in series for a total duration of 12 hours. For the wave electric fields, the predicted diffusion coefficient due to local PSD matches the outcome from simulated electron scattering at 0.9 and 2.3 mHz. The diffusion due to the wider frequency band at 3.7-6.3 mHz does not fit the PSD profile alone, and requires phase resets in non-resonant modes within the spectrum to yield an agreement between the calculations and the simulations. Furthermore, only msec = 1 provides the correct solution. We have thus demonstrated the importance in including both the MLT sector width and wave number as additional significant factors apart from the local PSD in determining the diffusion coefficient for a realistic wave field. (Abstract shortened by UMI.).

  8. The Role of Localized Compressional Ultra-low Frequency Waves in Energetic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Rae, I. Jonathan; Murphy, Kyle R.; Watt, Clare E. J.; Halford, Alexa J.; Mann, Ian R.; Ozeke, Louis G.; Sibeck, David G.; Clilverd, Mark A.; Rodger, Craig J.; Degeling, Alex W.; Forsyth, Colin; Singer, Howard J.

    2018-03-01

    Typically, ultra-low frequency (ULF) waves have historically been invoked for radial diffusive transport leading to acceleration and loss of outer radiation belt electrons. At higher frequencies, very low frequency waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere of radiation belt electrons. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to a direct modulation of the loss cone via localized compressional ULF waves. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity, which greatly exceeds the change in pitch angle through conservation of the first and second adiabatic invariants. The precipitation response can be a complex interplay between electron energy, the localization of the waves, the shape of the phase space density profile at low pitch angles, ionospheric decay time scales, and the time dependence of the electron source; we show that two pivotal components not usually considered are localized ULF wave fields and ionospheric decay time scales. We conclude that enhanced precipitation driven by compressional ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm times.

  9. Role of the Ionosphere in the Generation of Large-Amplitude Ulf Waves at High Latitudes

    NASA Astrophysics Data System (ADS)

    Tulegenov, B.; Guido, T.; Streltsov, A. V.

    2014-12-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quite times. Our analysis demonstrates that the frequency of the waves carrying most of the power almost in all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system. The low frequency of the oscillations is explained by the effect of the ionosphere, where the current is carried by ions through highly collisional media. The amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  10. Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.

    PubMed

    Claudepierre, S G; Toffoletto, F R; Wiltberger, M

    2016-01-01

    We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.

  11. The Role of Solar Wind Structures in the Generation of ULF Waves in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Alves, L. R.; Souza, V. M.; Jauer, P. R.; da Silva, L. A.; Medeiros, C.; Braga, C. R.; Alves, M. V.; Koga, D.; Marchezi, J. P.; de Mendonça, R. R. S.; Dallaqua, R. S.; Barbosa, M. V. G.; Rockenbach, M.; Dal Lago, A.; Mendes, O.; Vieira, L. E. A.; Banik, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C. A.

    2017-07-01

    The plasma of the solar wind incident upon the Earth's magnetosphere can produce several types of geoeffective events. Among them, an important phenomenon consists of the interrelation of the magnetospheric-ionospheric current systems and the charged-particle population of the Earth's Van Allen radiation belts. Ultra-low-frequency (ULF) waves resonantly interacting with such particles have been claimed to play a major role in the energetic particle flux changes, particularly at the outer radiation belt, which is mainly composed of electrons at relativistic energies. In this article, we use global magnetohydrodynamic simulations along with in situ and ground-based observations to evaluate the ability of two different solar wind transient (SWT) events to generate ULF (few to tens of mHz) waves in the equatorial region of the inner magnetosphere. Magnetic field and plasma data from the Advanced Composition Explorer (ACE) satellite were used to characterize these two SWT events as being a sector boundary crossing (SBC) on 24 September 2013, and an interplanetary coronal mass ejection (ICME) in conjunction with a shock on 2 October 2013. Associated with these events, the twin Van Allen Probes measured a depletion of the outer belt relativistic electron flux concurrent with magnetic and electric field power spectra consistent with ULF waves. Two ground-based observatories apart in 90°C longitude also showed evidence of ULF-wave activity for the two SWT events. Magnetohydrodynamic (MHD) simulation results show that the ULF-like oscillations in the modeled electric and magnetic fields observed during both events are a result from the SWT coupling to the magnetosphere. The analysis of the MHD simulation results together with the observations leads to the conclusion that the two SWT structures analyzed in this article can be geoeffective on different levels, with each one leading to distinct ring current intensities, but both SWTs are related to the same disturbance in the outer radiation belt, i.e. a dropout in the relativistic electron fluxes. Therefore, minor disturbances in the solar wind parameters, such as those related to an SBC, may initiate physical processes that are able to be geoeffective for the outer radiation belt.

  12. Waves from the Sun: to the 100th anniversary of V.A. Troitskaya's birth

    NASA Astrophysics Data System (ADS)

    Guglielmi, Anatol; Potapov, Alexander

    2017-09-01

    It has been one hundred years since the birth of the outstanding scientist Professor V.A. Troitskaya. Her remarkable achievements in solar-terrestrial physics are widely known. For many years, Valeria A. Troitskaya was the President of the International Association of Geomagnetism and Aeronomy. This article deals with only one aspect of the multifaceted creative activity of V.A. Troitskaya. It relates to the problem of sources of ultra-low frequency (ULF) electromagnetic oscillations and waves outside Earth’s magnetosphere. We were fortunate to work under the leadership of V.A. Troitskaya on this problem. In this paper, we briefly describe the history from the emergence of the idea of the extramagnetospheric origin of dayside permanent ULF oscillations in the late 1960s to the modern quest made by ground and satellite means for ULF waves excited by solar surface oscillations propagating in the interplanetary medium and reaching Earth.

  13. Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Zong, Qiugang

    Strong interplanetary shocks interaction with the Earth's magnetosphere would have great impacts on the Earth's magnetosphere. Cluster and Double Star constellation provides an ex-cellent opportunity to study the inner magnetospheric response to a powerful interplanetary solar wind forcing. An interplanetary shock on Nov.7 2004 with the solar wind dynamic pres-sure ˜ 70 nPa (Maximum) induced a large bipolar electric field in the plasmasphere boundary layer as observed by Cluster fleet, the peak-to-peak ∆Ey is more than 60 mV/m. Energetic elec-trons in the outer radiation belt are accelerated almost simultaneously when the interplanetary shock impinges upon the Earth's magnetosphere. Energetic electron bursts are coincident with the induced large electric field, energetic electrons (30 to 500 keV) with 900 pitch angles are accelerated first whereas those electrons are decelerated when the shock-induced electric field turns to positive value. Both toroidal and poloidal mode waves are found to be important but interacting with energetic electron at a different L-shell and a different period. At the Cluster's position (L = 4.4,), poloidal is predominant wave mode whereas at the geosynchronous orbits (L = 6.6), the ULF waves observed by the GOES -10 and -12 satellites are mostly toroidal. For comparison, a rather weak interplanetary shock on Aug. 30, 2001 (dynamic pressure ˜ 2.7 nPa) is also investigated in this paper. It is found that interplanetary shocks or solar wind pressure pulses with even small dynamic pressure change would have non-ignorable role in the radiation belt dynamic. Further, in this paper, our results also reveal the excitation of ULF waves re-sponses on the passing interplanetary shock, especially the importance of difference ULF wave modes when interacting with the energetic electrons in the radiation belt. The damping of the shock induced ULF waves could be separated into two terms: one term corresponds to the generalized Landau damping, the damping rate is large and the damping is fast; the other term corresponds to the damping through ionosphere due to its finite electric conductivity, the damping rate of this item is small and the damping is slow. The fast damping rate at (˜ 10-3 ) is significant larger than the slow damping rate (˜ 10-4 ) suggesting a rapid ULF wave energy lost is via drift resonance with energetic electrons in the radiation belt.

  14. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  15. Contribution of the ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014

    NASA Astrophysics Data System (ADS)

    Dal Lago, A.; Da Silva, L. A.; Alves, L. R.; Dallaqua, R.; Marchezi, J.; Medeiros, C.; Souza, V. M. C. E. S.; Koga, D.; Jauer, P. R.; Vieira, L.; Rockenbach, M.; Mendes, O., Jr.; De Nardin, C. M.; Sibeck, D. G.

    2016-12-01

    The interaction of the solar wind with the Earth's magnetosphere can either increase or decrease the relativistic electron population in the outer radiation belt. In order to investigate the contribution of the ULF wave activity to the global recovery of the outer radiation belt relativistic electron population, we searched the Van Allen data for a period in which we can clearly distinguish the enhancement of the fluxes from the background. The complex solar wind structure observed from September 12-24, 2014, which resulted from the interaction of two coronal mass ejections (CMEs) and a high-speed stream, presented such a scenario. The CMEs are related to the dropout of the relativistic electron population followed by several days of low fluxes. The global recovery started during the passage of the high-speed stream that was associated with the occurrence of substorms that persisted for several days. Here we estimate the contribution of ULF wave-particle interactions to the enhancement of the relativistic electron fluxes. Our approach is based on estimates of the ULF wave radial diffusion coefficients employing two models: (a) an analytic expression presented by Ozeke et al. (2014); and (b) a simplified model based on the solar wind parameters. The preliminary results, uncertainties and future steps are discussed in details.

  16. Pitch Angle Dependence of Drift Resonant Ions Observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Wang, C.; Wang, Y.; Zong, Q. G.; Zhou, X.

    2017-12-01

    Acceleration and modulation of ring current ions by poloidal mode ULF waves is investigated. A simplified MHD model of ULF waves in a dipole magnetic field is presented that includes phase mixing to perpendicular scales determined by the ionospheric Pedersen conductivity. The wave model is combined with a full Lorentz force test particle code to study drift and drift bounce resonance wave-particle interactions. Ion trajectories are traced backward-in-time to an assumed form of the distribution function, and Liouville's method is used to reconstruct the phase space density response (PSD) poloidal mode waves observed by the Van Allen Probes. In spite of its apparent simplicity, simulations using the wave and test particle models are able to explain the acceleration of ions and energy dispersion observed by the Van Allen Probes. The paper focuses on the pitch angle evolution of the initial PSD as it responds to the action of ULF waves. An interesting aspect of the study is the formation of butterfly ion distributions as ions make periodic radial oscillations across L. Ions become trapped in an effective potential well across a limited range of L and follow trajectories that cause them to surf along constant phase fronts. The impications of this new trapping mechanism for both ions and electrons is discussed.

  17. Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change

    NASA Astrophysics Data System (ADS)

    Shi, Q.

    2017-12-01

    Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res., 122, doi:10.1002/2016JA023351.

  18. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    DOE PAGES

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; ...

    2016-06-20

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. In this paper, using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we showmore » for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. Finally, when rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.« less

  19. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. In this paper, using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we showmore » for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. Finally, when rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.« less

  20. System engineering study of electrodynamic tether as a spaceborne generator and radiator of electromagnetic waves in the ULF/ELF frequency band

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.

    1987-01-01

    An electrodynamic tether deployed from a satellite in low-Earth orbit can perform, if properly instrumented, as a partially self-powered generator of electromagnetic waves in the ULF/ELF band, potentially at power levels high enough to be of practical use. Two basic problems are examined. The first is that of the level of wave power that the system can be expected to generate in the ULF/ELF radiation band. The second major question is whether an electrodynamic tethered satellite system for transmitting waves can be made partially self-powering so that power requirements for drag compensation can be met within economical constraints of mass, cost, and complexity. The theoretical developments and the system applications study are presented. The basic design criteria, the drag-compensation method, the effects on the propagation paths from orbit to Earth surface of high-altitude nuclear debris patches, and the estimate of masses and sizes are covered. An outline of recommended analytical work, to be performed as a follow-on to the present study, is contained.

  1. Application of multivariate autoregressive spectrum estimation to ULF waves

    NASA Technical Reports Server (NTRS)

    Ioannidis, G. A.

    1975-01-01

    The estimation of the power spectrum of a time series by fitting a finite autoregressive model to the data has recently found widespread application in the physical sciences. The extension of this method to the analysis of vector time series is presented here through its application to ULF waves observed in the magnetosphere by the ATS 6 synchronous satellite. Autoregressive spectral estimates of the power and cross-power spectra of these waves are computed with computer programs developed by the author and are compared with the corresponding Blackman-Tukey spectral estimates. The resulting spectral density matrices are then analyzed to determine the direction of propagation and polarization of the observed waves.

  2. Statistical characteristics of Pc-5 waves at geostationary orbit

    NASA Astrophysics Data System (ADS)

    Kokubun, S.

    The present paper is concerned with an examination of magnetic field data provided by GEOS 2 and 3 satellites. The study has the objecitve to obtain more information regarding the statistical characteristics of Pc5 waves. The data utilized are contained in microfilm plots of the magnetic field observed by the two satellites during the period from 1978 to 1980. Attention is given to ground-satellite correlation of azimuthally-polarized Pc waves, differences in ground-satellite correlations between A-class waves and R-class compressional waves, aspects of delayed Pc5 occurrence, a long-duration Pc5 event lasting for more than three hours, questions of local time dependence of occurrence and frequency, and the relation between compressional Pc5 and magnetospheric substorms.

  3. Van Allen Probes, THEMIS, GOES, and cluster observations of EMIC waves, ULF pulsations, and an electron flux dropout

    DOE PAGES

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; ...

    2016-03-04

    We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervalsmore » of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He + electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13–14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst <–100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.« less

  4. Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC Waves, ULF Pulsations, and an Electron Flux Dropout

    NASA Technical Reports Server (NTRS)

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; Macdowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; hide

    2016-01-01

    We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst<100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.

  5. Van Allen Probes, THEMIS, GOES, and cluster observations of EMIC waves, ULF pulsations, and an electron flux dropout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.

    We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervalsmore » of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He + electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13–14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst <–100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.« less

  6. Effect of upstream ULF waves on the energetic ion diffusion at the earth's foreshock: Theory, Simulation, and Observations

    NASA Astrophysics Data System (ADS)

    Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.

    2017-12-01

    Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum near the shock.

  7. System engineering study of electrodynamic tether as a spaceborne generator and radiator of electromagnetic waves in the ULF/ELF frequency band

    NASA Technical Reports Server (NTRS)

    Estes, R. D.; Grossi, M. D.; Lorenzini, E. C.

    1986-01-01

    The transmission and generation by orbiting tethered satellite systems of information carrying electromagnetic waves in the ULF/ELF frequency band to the Earth at suitably high signal intensities was examined and the system maintaining these intensities in their orbits for long periods of time without excessive onboard power requirements was investigated. The injection quantity power into electromagnetic waves as a function of system parameters such as tether length and orbital height was estimated. The basic equations needed to evaluate alternataing current tethered systems for external energy requirements are presented. The energy equations to tethered systems with various lengths, tether resistances, and radiation resistances, operating at different current values are applied. Radiation resistance as a function of tether length and orbital height is discussed. It is found that ULF/ELF continuously radiating systems could be maintained in orbit with moderate power requirements. The effect of tether length on the power going into electromagnetic waves and whether a single or dual tether system is preferable for the self-driven mode is discussed. It is concluded that the single tether system is preferable over the dual system.

  8. Using ultra-low frequency waves and their characteristics to diagnose key physics of substorm onset

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Murphy, K. R.; Watt, Clare E. J.; Mann, Ian R.; Yao, Zhonghua; Kalmoni, Nadine M. E.; Forsyth, Colin; Milling, David K.

    2017-12-01

    Substorm onset is marked in the ionosphere by the sudden brightening of an existing auroral arc or the creation of a new auroral arc. Also present is the formation of auroral beads, proposed to play a key role in the detonation of the substorm, as well as the development of the large-scale substorm current wedge (SCW), invoked to carry the current diversion. Both these phenomena, auroral beads and the SCW, have been intimately related to ultra-low frequency (ULF) waves of specific frequencies as observed by ground-based magnetometers. We present a case study of the absolute and relative timing of Pi1 and Pi2 ULF wave bands with regard to a small substorm expansion phase onset. We find that there is both a location and frequency dependence for the onset of ULF waves. A clear epicentre is observed in specific wave frequencies concurrent with the brightening of the substorm onset arc and the presence of "auroral beads". At higher and lower wave frequencies, different epicentre patterns are revealed, which we conclude demonstrate different characteristics of the onset process; at higher frequencies, this epicentre may demonstrate phase mixing, and at intermediate and lower frequencies these epicentres are characteristic of auroral beads and cold plasma approximation of the "Tamao travel time" from near-earth neutral line reconnection and formation of the SCW.

  9. Multipoint Spacecraft Observations of Long-Lasting Poloidal Pc4 Pulsations in the Dayside Magnetosphere on 1-2 May 2014

    NASA Technical Reports Server (NTRS)

    Korotova, Galina; Sibeck, David; Engebretson, Mark; Wygant, John; Thaller, Scott; Spence, Harlan; Kletzing, Craig; Angelopoulos, Vassilis; Redmon, Robert

    2016-01-01

    We use magnetic field and plasma observations from the Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Geostationary Operational Environmental Satellite system (GOES) spacecraft to study the spatial and temporal characteristics of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere. The pulsations were observed after the main phase of a moderate storm during low geomagnetic activity. The pulsations occurred during various interplanetary conditions and the solar wind parameters do not seem to control the occurrence of the pulsations. The most striking feature of the Pc4 magnetic field pulsations was their occurrence at similar locations during three of four successive orbits. We used this information to study the latitudinal nodal structure of the pulsations and demonstrated that the latitudinal extent of the magnetic field pulsations did not exceed 2 Earth radii (R(sub E)). A phase shift between the azimuthal and radial components of the electric and magnetic fields was observed from Z(sub SM) = 0.30 R(sub E) to Z(sub SM) = -0.16 R(sub E). We used magnetic and electric field data from Van Allen Probes to determine the structure of ULF waves. We showed that the Pc4 magnetic field pulsations were radially polarized and are the second-mode harmonic waves. We suggest that the spacecraft were near a magnetic field null during the second orbit when they failed to observe the magnetic field pulsations at the local times where pulsations were observed on previous and successive orbits. We investigated the spectral structure of the Pc4 pulsations. Each spacecraft observed a decrease of the dominant period as it moved to a smaller L shell (stronger magnetic field strength). We demonstrated that higher frequencies occurred at times and locations where Alfven velocities were greater, i.e., on Orbit 1. There is some evidence that the periods of the pulsations increased during the plasmasphere refilling following the storm.

  10. MESSENGER Observations of ULF Waves in Mercury's Foreshock Region

    NASA Technical Reports Server (NTRS)

    Le, Guan; Chi, Peter J.; Bardsen, Scott; Blanco-Cano, Xochitl; Slavin, James A.; Korth, Haje

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth s is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury s bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury s foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury s foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the 1-Hz waves in the Earth s foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth s foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  11. A Review of the Low-Frequency Waves in the Giant Magnetospheres

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.

    2016-02-01

    The giant magnetospheres harbor a plethora of low-frequency waves with both internal (i.e., moons) and external (i.e., solar wind) source mechanisms. This chapter summarizes the observation of low-frequency waves at Jupiter and Saturn and postulates the underlying physics based on our understanding of magnetodisc generation mechanisms. The source mechanisms of ULF pulsations at the giant magnetospheres are numerous. The satellite-magnetosphere interactions and mass loading of corotational flows generate many low-frequency waves. Observations of low-frequency bursts of radio emissions serve as an excellent diagnostic for understanding satellite-magnetosphere interactions. The outward radial transport of plasma through the magnetodisc and related magnetic flux circulation is a significant source of ULF pulsations; however, it is uncertain how the radial transport mechanism compares with solar wind induced perturbations.

  12. ULF radio monitoring network in a seismic area

    NASA Astrophysics Data System (ADS)

    Toader, Victorin; Moldovan, Iren-Adelina; Ionescu, Constantin; Marmureanu, Alexandru

    2017-04-01

    ULF monitoring is a part of a multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains). Four radio receivers (100 kHz - microwave) placed on faults in a high seismic area characterized by deep earthquakes detect fairly weak radio waves. The radio power is recorded in correlation with many other parameters related to near surface low atmosphere phenomena (seismicity, solar radiation, air ionization, electromagnetic activity, radon, CO2 concentration, atmospheric pressure, telluric currents, infrasound, seismo-acoustic emission, meteorological information). We follow variations in the earth's surface propagate radio waves avoiding reflection on ionosphere. For this reason the distance between stations is less than 60 km and the main source of emission is near (Bod broadcasting transmitter for long- and medium-wave radio, next to Brasov city). In the same time tectonic stress affects the radio propagation in air and it could generates ULF waves in ground (LAI coupling). To reduce the uncertainty is necessary to monitor a location for extended periods of time to outline local and seasonal fluctuations. Solar flares do not affect seismic activity but they produce disturbances in telecommunications networks and power grids. Our ULF monitoring correlated with two local magnetometers does not indicate this so far with our receivers. Our analysis was made during magnetic storms with Kp 7 and 8 according to NOAA satellites. To correlate the results we implemented an application that monitors the satellite EUTELSAT latency compared to WiMAX land communication in the same place. ULF band radio monitoring showed that our receiver is dependent on temperature and that it is necessary to introduce a band pass filter in data analysis. ULF data acquisition is performed by Kinemetrics and National Instruments digitizers with a sampling rate of 100 Hz in Miniseed format and then converted into text files with 1 Hz rate for analysis in very low frequency. In both cases we use spectrum analysis in three bands of frequency with different filters. More results showed that tectonic stress generated by seismicity is more important than effects of solar flares. This work was partially supported by the Partnership in Priority Areas Program - PNII, under MEN-UEFISCDI, DARING Project no. 69/2014 and the Nucleu Program - PN 16-35, Project no. 03 01.

  13. ULF/ELF Waves in Near-Moon Space

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tomoko

    2016-02-01

    The reflection of the solar wind protons is equivalent to a beam injection against the solar wind flow. It is expected to produce a ring beam with a 3D distribution function in many cases. The reflected protons are responsible for the generation of ultra-low-frequency (ULF) waves at ˜0.01 Hz and narrowband waves at ˜1 Hz in the extremely low frequency (ELF) range through resonant interaction with magnetohydrodynamic waves and whistler mode waves in the solar wind, respectively. This chapter discusses these commonly observed waves in the near-Moon space. The sinusoidal waveforms and sharp spectra of the monochromatic ELF waves are impressive, but commonly observed are non-monochromatic waves in the ELF range ˜0.03-10 Hz. Some of the solar wind protons reflected by the dayside lunar surface or crustal magnetic field gyrate around the solar wind magnetic field and can access the center of the wake owing to the large Larmour radius.

  14. Radial Diffusion Coefficients Using E and B Field Data from the Van Allen Probes: Comparison with the CRRES Study

    NASA Astrophysics Data System (ADS)

    Ali, A.; Elkington, S. R.; Malaspina, D.

    2014-12-01

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. We are investigating the contributions from perturbations in both the magnetic and the electric fields in driving radial diffusion of charged particles and wish to probe two unanswered questions about ULF wave driven radial transport. First, how important are the fluctuations in the magnetic field compared with the fluctuations in the electric field in driving radial diffusion? Second, how does ULF wave power distribution in azimuth affect radial diffusion? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. We present results from a study using the electric and magnetic field measurements from the Van Allen Probes to estimate the radial diffusion coefficients as a function of L and Kp. During the lifetime of the RBSP mission to date, there has been a dearth of solar activity. This compels us to consider Kp as the only time and activity dependent parameter instead of solar wind velocity and pressure.

  15. Pc-5 wave power in the plasmasphere and trough: CRRES observations

    NASA Astrophysics Data System (ADS)

    Hartinger, M.; Moldwin, M.; Angelopoulos, V.; Takahashi, K.; Singer, H. J.; Anderson, R. R.

    2009-12-01

    The CRRES (Combined Release and Radiation Effects Satellite) mission provides an opportunity to study the distribution of MHD wave power in the inner magnetosphere both inside the high-density plasmasphere and in the low-density trough. We present a statistical survey of Pc-5 wave power using CRRES magnetometer and plasma wave data separated into plasmasphere and trough intervals. Using a database of plasmapause crossings, we examined differences in power spectral density between the plasmasphere and trough regions. We found significant differences between the plasmasphere and trough in the radial profiles of Pc-5 wave power. On average, wave power was higher in the trough, but the difference in power depended on magnetic local time. Our study shows that determining the plasmapause location is important for understanding and modeling the MHD wave environment in the Pc-5 frequency band.

  16. On the Role of Solar Wind Discontinuities in the ULF Power Spectral Density at the Earth's Outer Radiation Belt: a Case Study

    NASA Astrophysics Data System (ADS)

    Lago, A.; Alves, L. R.; Braga, C. R.; Mendonca, R. R. S.; Jauer, P. R.; Medeiros, C.; Souza, V. M. C. E. S.; Mendes, O., Jr.; Marchezi, J.; da Silva, L.; Vieira, L.; Rockenbach, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C.

    2016-12-01

    The solar wind incident upon the Earth's magnetosphere can produce either enhancement, depletion or no change in the flux of relativistic electrons at the outer radiation belt. During geomagnetic storms progress, solar wind parameters may change significantly, and occasionally relativistic electron fluxes at the outer radiation belt show dropouts in a range of energy and L-shells. Wave-particle interactions observed within the Van Allen belts have been claimed to play a significant role in energetic particle flux changes. The relation between changes on the solar wind parameters and the radiation belt is still a hot topic nowadays, particularly the role played by the solar wind on sudden electron flux decreases. The twin satellite Van Allen Probes measured a relativistic electron flux dropout concurrent to broad band Ultra-low frequency (ULF) waves, i.e. from 1 mHz to 10 Hz, on October 2, 2013. Magnetic field and plasma data from both ACE and WIND satellites allowed the characterization of this event as being an interplanetary coronal mass ejection in conjunction with shock. The interaction of this event with the Earth's magnetosphere was modeled using a global magnetohydrodynamic simulation and the magnetic field perturbation deep in magnetosphere could be analyzed from the model outputs. Results show the contribution of time-varying solar wind parameters to the generation of ULF waves. The power spectral densities, as a function of L-shell, were evaluated considering changes in the input parameters, e.g. magnitude and duration of dynamic pressure and magnetic field. The modeled power spectral densities are compared with Van Allen Probes data. The results provide us a clue on the solar wind characteristics that might be able to drive ULF waves in the inner magnetosphere, and also which wave modes are expected to be excited under a specific solar wind driving.

  17. Observations of ULF oscillations in the ion fluxes at small pitch angles with ATS 6. [low energy particle detection

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Mcpherron, R. L.; Konradi, A.; Fritz, T. A.

    1980-01-01

    The ultra-low-frequency modulation of ion flux densities at small pitch angles observed by ATS 6 is examined, with particular attention given to a detailed analysis of a representative event. ULF modulation events with maximum modulation at small pitch angles were identified 14 times during the first eight months of operation of the NOAA low-energy particle detector on ATS 6. For the event of October 23, 1974, maximum flux modulation, with a maximum/minimum intensity ratio of 3.7, was observed in the 100 to 150 keV detector at an angle of 32 deg to the ambient field. Spectral analysis of magnetic field data reveals a right elliptically polarized magnetic perturbation with a 96-sec period and a 5-gamma rms amplitude, propagating in the dipole meridian at an angle of about 15 deg to the ambient field and the dipole axis. Proton flux modulation is found to lag the field by up to 180 deg for the lowest-energy channel. Observations are compared with the drift wave, MHD slow wave, and bounce resonant interaction associated with transverse wave models, and it is found that none of the wave models can adequately account for all of the correlated particle and field oscillations.

  18. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  19. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  20. Waveform and polarization of compressional Pc 5 waves at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Higuchi, Tomoyuki; Kokubun, Susumu

    1988-12-01

    The factors controlling the occurrence and the properties of compressional Pc 5 waves were examined by studying the statistical characteristics of compressional Pc 5 waves, using magnetic-field data obtained by GOES 2 and GOES 3 satellites during the August 1978 - August 1980 period. The compressional Pc 5 waves could be classified into the harmonic, transitional, and normal types, on the basis of the second-harmonic component in the compressional component of the magnetic field oscillation. It was found that the harmonic and the transitional waves have significant azimuthal perturbations and show right-handed polarization with respect to the local magnetic field, while most of the normal-type waves have small amplitude in the azimuthal component. The polarization properties of transverse perturbation, which may reflect the spatial inhomogeneity of the medium, are investigated.

  1. Ubiquity of Kelvin–Helmholtz waves at Earth's magnetopause

    PubMed Central

    Kavosi, Shiva; Raeder, Joachim

    2015-01-01

    Magnetic reconnection is believed to be the dominant process by which solar wind plasma enters the magnetosphere. However, for periods of northward interplanetary magnetic field (IMF) reconnection is less likely at the dayside magnetopause, and Kelvin–Helmholtz waves (KHWs) may be important agents for plasma entry and for the excitation of ultra-low-frequency (ULF) waves. The relative importance of KHWs is controversial because no statistical data on their occurrence frequency exist. Here we survey 7 years of in situ data from the NASA THEMIS (Time History of Events and Macro scale Interactions during Substorms) mission and find that KHWs occur at the magnetopause ∼19% of the time. The rate increases with solar wind speed, Alfven Mach number and number density, but is mostly independent of IMF magnitude. KHWs may thus be more important for plasma transport across the magnetopause than previously thought, and frequently drive magnetospheric ULF waves. PMID:25960122

  2. Digital techniques for ULF wave polarization analysis

    NASA Technical Reports Server (NTRS)

    Arthur, C. W.

    1979-01-01

    Digital power spectral and wave polarization analysis are powerful techniques for studying ULF waves in the earth's magnetosphere. Four different techniques for using the spectral matrix to perform such an analysis have been presented in the literature. Three of these techniques are similar in that they require transformation of the spectral matrix to the principal axis system prior to performing the polarization analysis. The differences in the three techniques lie in the manner in which determine this transformation. A comparative study of these three techniques using both simulated and real data has shown them to be approximately equal in quality of performance. The fourth technique does not require transformation of the spectral matrix. Rather, it uses the measured spectral matrix and state vectors for a desired wave type to design a polarization detector function in the frequency domain. The design of various detector functions and their application to both simulated and real data will be presented.

  3. Response of radiation belt simulations to different radial diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.

    2013-12-01

    Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  4. Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis

    DOE PAGES

    Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav; ...

    2016-04-07

    The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the predictionmore » of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). Furthermore, a path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current ( Dst), AE, and wave activity.« less

  5. Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav

    The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the predictionmore » of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). Furthermore, a path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current ( Dst), AE, and wave activity.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahadi, S., E-mail: su4idi@yahoo.com; Puspito, N. T.; Ibrahim, G.

    Determination of onset time precursors of strong earthquakes (Mw > 5) and distance (d < 500 km) using geomagnetic data from Geomagnetic station KTB, Sumatra and two station references DAV, Philippine and DAW, Australia. separate techniques are required in its determination. Not the same as that recorded in the kinetic wave seismograms can be determined by direct time domain. Difficulties associated with electromagnetic waves seismogenic activities require analysis of the transformed signal in the frequency domain. Determination of the frequency spectrum will determine the frequency of emissions emitted from the earthquake source. The aim is to analyze the power amplitudemore » of the ULF emissions in the horizontal component (H) and vertical component (Z). Polarization power ratio Z/H is used for determining the sign of earthquake precursors controlled by the standard deviation. The pattern recognition polarization ratio should be obtained which can differentiate emissions from seismogenic effects of geomagnetic activity. ULF emission patterns generated that seismogenic effect has duration > 5 days and the dominance of emission intensity recorded at the Z component and for the dominance of the emission intensity of geomagnetic activity recorded in the component H. The result shows that the onset time is determined when the polarization power ratio Z/H standard deviation over the limit (p ± 2 σ) which has a duration of > 5 days.« less

  7. Quasi-Static Alfv{é}n Dynamics and Scale-Dependent Energy Deposition in Magnetosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Lotko, W.; Lysak, R. L.; Streltsov, A. V.

    2002-12-01

    Alfv{é}n wave dynamics become quasi-static in the ionosphere and low-altitude magnetosphere in the ULF regime below 10 mHz and at altitudes less than a few RE when the following two conditions are met: ω L RE << vA (l) and ω l << 1 / μ 0 Σ P. L is the dipole shell parameter, ω is the wave frequency in radians, l represents field-aligned distance above the ionosphere, vA (l) is the local Alfv{é}n speed, and Σ P is the ionospheric Pedersen conductance. In this limit, reactive power stored in Alfv{é}nic fluctuations at high altitude flows quasi-statically into ionospheric Joule heating and low-altitude collisionless dissipation. The combined dissipative effects are described by the electrostatic model of Chiu-Cornwall-Lyons [1980] which captures the transverse wavelength dependence of low-altitude Alfv{é}nic energy deposition. The analysis and results described here 1) correspond to the low-altitude, low-frequency limit of theories for the interaction of an Alfv{é}n wave with the ionosphere [Knudsen et al., 1992], including effects of a low-altitude collisionless dissipation layer [Vogt and Haerendel, 1998], and field line eigenmodes with allowance for finite ionospheric conductivity and realistic parallel inhomogeneity [Allan and Knox, 1979]; 2) reconcile the interpretation of inverted-V precipitation regions as electrostatic potential structures with electromagnetic energy deposition via Alfv{é}n waves at frequencies below 10 mHz; 3) provide criteria for the validity of the Knight current-voltage relation in the ULF regime and its use in global MHD simulations; 4) relate low-altitude satellite measurements of both ``static'' and ULF electric and magnetic fields directly to the ionospheric Pedersen conductivity; and 5) offer a resolution to debates about high-altitude closure of auroral potential structures as O-, U-, or S-potential forms.

  8. On the elimination of pulse wave velocity in stroke volume determination from the ultralow-frequency displacement ballistocardiogram.

    DOT National Transportation Integrated Search

    1964-03-01

    A hydrodynamic model of the systemic circulatory system was mounted on an ultralow-frequency ballistocardiograph (ULF-BCG). The relationship between stroke volume and ballistocardiographic amplitude was investigated for different pulse wave velocitie...

  9. Azimuthal propagation of storm time Pc 5 waves observed simultaneously by geostationary satellites GOES 2 and GOES 3

    NASA Astrophysics Data System (ADS)

    Lin, C. S.; Barfield, J. N.

    1985-11-01

    Storm-time Pc 5 wave events observed simultaneously by the GOES 2 and GOES 3 satellites in the afternoon sector during the 1-year interval of March 1979 to February 1980 are surveyed to learn the wave propagation. Essentially, all storm-time Pc 5 waves (approximately 93 percent) are found to propagate westward azimuthally with a velocity of 5 to 50 km/s and a wavelength of 1000 km to 9000 km (Only two of 30 events had eastward propagation, with a velocity of about 150 km/s). It is concluded that westward propagating waves are excited by ion drift instabilities associated with the ion ring current, and that the eastward propagating waves are excited by surface waves on the magnetopause through Kelvin-Helmholtz instability.

  10. Development of Search-Coil Magnetometer for Ultra Low Frequency (ULF) Wave Observations at Jang Bogo Station in Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, J. K.; Shin, J.; Kim, K. H.; Jin, H.; Kim, H.; Kwon, J.; Lee, S.; Jee, G.; Lessard, M.

    2016-12-01

    A ground-based bi-axial search-coil magnetometer (SCM) has been devloped for observation of time-varying magnetic fields (dB/dt) in the Ultra Low Frequency (ULF) range (a few mHz up to 5 Hz) to understand magnetosphere-ionosphere coupling processes. The SCM consists of magnetic sensors, analog electronics, cables and data acquisition system (DAQ). The bi-axial magnetic sensor has coils of wire wound around a mu-metal cores, each of which measures magnetic field pulsations in the horizontal components, geomagnetic north-south and east-west, respectively. The analog electronics is designed to control the cut-off frequency of the instrument and to amplify detected signals. The DAQ has a 16 bit analog to digital converter (ADC) at the user defined rate of 10 Hz. It is also equipped with the Global Positioning System (GPS) and Network Time Protocol (NTP) for time synchronization and accuracy. We have carried out in-lab performance tests (e.g., frequency response, noise level, etc) using a magnetically shielded case and a field-test in a magnetically quiet location in South Korea. During the field test, a ULF Pi 2 event has been observed clearly. We also confirmed that it was a substorm activity from a fluxgate magnetometer data at Mineyama (35°57.3'N, 135°05'E, geographic). The SCM will be installed and operated at Jang Bogo Antarctic Research Station (74°37.4'S, 164°13.7'E, geographic) on Dec. 2016. The geomagnetic latitude of the station is similar to that of the US McMurdo station (77°51'S, 166°40'E, geographic), both of which are typically near the cusp region. Thus, we expect that the SCM can provide useful information to understand ULF wave propagation characteristics.

  11. An eastward propagating compressional Pc 5 wave observed by AMPTE/CCE in the postmidnight sector. [Active Magnetospheric Particle Tracer Explorers

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Mcentire, R. W.; Zanetti, L. J.; Lopez, R. E.; Kistler, L. M.

    1987-01-01

    This paper presents a detailed analysis of a compressional Pc 5 wave observed in the postmidnight sector on July 21, 1986, using data from the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer aboard the AMPTE/Charge Composition Explorer (CCE) spacecraft. The Pc 5 wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons, and a large azimuthal wave number, i.e., properties that are similar to those of compressional Pc5 waves observed previously at geostationary orbit. The unique observations recorded by the AMPTE/CCE included the occurrence of the wave in the postmidnight sector, its sunward propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. In spite of the morphological uniqueness observed, the excitation of the July 21 event is considered to be due to the same type of instability as operates at geostationary orbit.

  12. An eastward propagating compressional Pc 5 wave observed by AMPTE/CCE in the postmidnight sector

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Lopez, R. E.; McEntire, R. W.; Zanetti, L. J.; Kistler, L. M.; Ipavich, F. M.

    1987-12-01

    This paper presents a detailed analysis of a compressional Pc 5 wave observed in the postmidnight sector on July 21, 1986, using data from the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer aboard the AMPTE/Charge Composition Explorer (CCE) spacecraft. The Pc 5 wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons, and a large azimuthal wave number, i.e., properties that are similar to those of compressional Pc5 waves observed previously at geostationary orbit. The unique observations recorded by the AMPTE/CCE included the occurrence of the wave in the postmidnight sector, its sunward propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. In spite of the morphological uniqueness observed, the excitation of the July 21 event is considered to be due to the same type of instability as operates at geostationary orbit.

  13. OGO 5 observations of Pc 5 waves - Particle flux modulations

    NASA Technical Reports Server (NTRS)

    Kokubun, S.; Kivelson, M. G.; Mcpherron, R. L.; Russell, C. T.; West, H. I., Jr.

    1977-01-01

    An investigation is conducted concerning the modulations of particle fluxes associated with Pc 5 waves in the region beyond the plasmapause. A study of thermal flux modulations indicates that some of the density enhancements observed are not spatial structures but are spurious features caused by temporal flux variations associated with hydromagnetic waves. A resonance model of the energetic particle flux modulations is discussed. Energetic particle modulations are also considered. The reported observations reveal that modulations are dominant at energies of about 100 keV for electrons and at 100 keV to 1 MeV for protons. This may indicate that the bounce resonance interaction is not important for Pc 5 waves.

  14. Determining the VLF/ULF source height using phase measurements

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Kotik, D. S.

    2012-12-01

    Generation of ULF/VLF waves in the ionosphere using powerful RF facilities has been studied for the last 40 years, both theoretically and experimentally. During this time, it was proposed several mechanisms for explaining the experimental results: modulation of ionospheric currents based on thermal nonlinearity, ponderomotive mechanisms for generation both VLF and ULF signals, cubic nonlinearity, etc. According mentioned above mechanisms the VLF/ULF signal source could be located in the lower or upper ionosphere. The group velocity of signal propagation in the ionosphere is significantly smaller than speed of light. As a result the appreciable time delay of the received signals will occur at the earth surface. This time delay could be determine by measuring the phase difference between received and reference signals, which are GPS synchronized. The experiment on determining the time delay of ULF signal propagation from the ionospheric source was carried out at SURA facility in 2012 and the results are presented in this paper. The comparison with numerical simulation of the time delay using the adjusted IRI model and ionosonde data shows well agreement with the experimental observations. The work was supported by RFBR grant 11-02-00419-a and RF Ministry of education and science by state contract 16.518.11.7066.

  15. The STAFF-DWP wave instrument on the DSP equatorial spacecraft: description and first results

    NASA Astrophysics Data System (ADS)

    Cornilleau-Wehrlin, N.; Alleyne, H. St. C.; Yearby, K. H.; de La Porte de Vaux, B.; Meyer, A.; Santolík, O.; Parrot, M.; Belmont, G.; Rezeau, L.; Le Contel, O.; Roux, A.; Attié, D.; Robert, P.; Bouzid, V.; Herment, D.; Cao, J.

    2005-11-01

    The STAFF-DWP wave instrument on board the equatorial spacecraft (TC1) of the Double Star Project consists of a combination of 2 instruments which are a heritage of the Cluster mission: the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment and the Digital Wave-Processing experiment (DWP). On DSP-TC1 STAFF consists of a three-axis search coil magnetometer, used to measure magnetic fluctuations at frequencies up to 4 kHz and a waveform unit, up to 10 Hz, plus snapshots up to 180 Hz. DWP provides several onboard analysis tools: a complex FFT to fully characterise electromagnetic waves in the frequency range 10 Hz-4 kHz, a particle correlator linked to the PEACE electron experiment, and compression of the STAFF waveform data. The complementary Cluster and TC1 orbits, together with the similarity of the instruments, permits new multi-point studies. The first results show the capabilities of the experiment, with examples in the different regions of the magnetosphere-solar wind system that have been encountered by DSP-TC1 at the beginning of its operational phase. An overview of the different kinds of electromagnetic waves observed on the dayside from perigee to apogee is given, including the different whistler mode waves (hiss, chorus, lion roars) and broad-band ULF emissions. The polarisation and propagation characteristics of intense waves in the vicinity of a bow shock crossing are analysed using the dedicated PRASSADCO tool, giving results compatible with previous studies: the broad-band ULF waves consist of a superimposition of different wave modes, whereas the magnetosheath lion roars are right-handed and propagate close to the magnetic field. An example of a combined Cluster DSP-TC1 magnetopause crossing is given. This first case study shows that the ULF wave power intensity is higher at low latitude (DSP) than at high latitude (Cluster). On the nightside in the tail, a first wave event comparison - in a rather quiet time interval - is shown. It opens the doors to future studies, such as event timing during substorms, to possibly determine their onset location.

  16. A non-storm time enhancement of outer radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Li, X.; Blum, L. W.; Jaynes, A. N.; Malaspina, D.; Tu, W.; Turner, D. L.; Blake, J. B.

    2013-12-01

    On January 13th, 2013, a high-speed solar wind stream impacted Earth's magnetosphere, resulting in low geomagnetic activity (Real-Time Dst minimum of -30 nT). However, the relativistic electron population was enhanced by over two orders of magnitude in the outer radiation belt. Fortunately, during the event, the outer belt was well sampled by a variety of missions, including the Van Allen Probes, THEMIS, GOES, and the Colorado Student Space Weather Experiment (CSSWE). The energetic electrons are measured in-situ using flux and phase space density observations from the Magnetic Electron Ion Spectrometer (MagEIS) onboard the Van Allen Probes, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard CSSWE, and SST onboard THEMIS. These measured electron populations are the net result of the balance between concurrent loss and acceleration processes. Precipitation loss is quantified using REPTile measurements at low altitudes, while the energization mechanisms, namely interactions with whistler-mode chorus and Pc5 ULF waves, are investigated using Van Allen Probes' MagEIS and Electric Fields and Waves Suite (EFW), THEMIS' EFI and SCM instrument suites, and GOES magnetometers. The quantity and quality of measurements during this event provide a rare opportunity to address outstanding science questions; such as, whether the energetic electrons originate from inward injections associated with substorms or are accelerated via local heating, as well as what the energy dependence of the enhancement is during a period of such low geomagnetic activity.

  17. VLF Wave Local Acceleration & ULF Wave Radial Diffusion: The Importance of K-Dependent PSD Analysis for Diagnosing the cause of Radiation Belt Acceleration.

    NASA Astrophysics Data System (ADS)

    Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.

    2017-12-01

    We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.

  18. Cluster spacecraft observations of a ULF wave enhanced by Space Plasma Exploration by Active Radar (SPEAR)

    NASA Astrophysics Data System (ADS)

    Badman, S. V.; Wright, D. M.; Clausen, L. B. N.; Fear, R. C.; Robinson, T. R.; Yeoman, T. K.

    2009-09-01

    Space Plasma Exploration by Active Radar (SPEAR) is a high-latitude ionospheric heating facility capable of exciting ULF waves on local magnetic field lines. We examine an interval from 1 February 2006 when SPEAR was transmitting a 1 Hz modulation signal with a 10 min on-off cycle. Ground magnetometer data indicated that SPEAR modulated currents in the local ionosphere at 1 Hz, and enhanced a natural field line resonance with a 10 min period. During this interval the Cluster spacecraft passed over the heater site. Signatures of the SPEAR-enhanced field line resonance were present in the magnetic field data measured by the magnetometer on-board Cluster-2. These are the first joint ground- and space-based detections of field line tagging by SPEAR.

  19. ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared

    NASA Astrophysics Data System (ADS)

    Palmroth, Minna; Rami, Vainio; Archer, Martin; Hietala, Heli; Afanasiev, Alexandr; Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2015-04-01

    For decades, a certain type of ultra low frequency waves with a period of about 30 seconds have been observed in the Earth's quasi-parallel foreshock. These waves, with a wavelength of about an Earth radius, are compressive and propagate with an average angle of 20 degrees with respect of the interplanetary magnetic field (IMF). The latter property has caused trouble to scientists as the growth rate for the instability causing the waves is maximized along the magnetic field. So far, these waves have been characterized by single or multi-spacecraft methods and 2-dimensional hybrid-PIC simulations, which have not fully reproduced the wave properties. Vlasiator is a newly developed, global hybrid-Vlasov simulation, which solves the six-dimensional phase space utilising the Vlasov equation for protons, while electrons are a charge-neutralising fluid. The outcome of the simulation is a global reproduction of ion-scale physics in a holistic manner where the generation of physical features can be followed in time and their consequences can be quantitatively characterised. Vlasiator produces the ion distribution functions and the related kinetic physics in unprecedented detail, in the global scale magnetospheric scale with a resolution of a couple of hundred kilometres in the ordinary space and 20 km/s in the velocity space. We run Vlasiator under a radial IMF in five dimensions consisting of the three-dimensional velocity space embedded in the ecliptic plane. We observe the generation of the 30-second ULF waves, and characterize their evolution and physical properties in time. We compare the results both to THEMIS observations and to the quasi-linear theory. We find that Vlasiator reproduces the foreshock ULF waves in all reported observational aspects, i.e., they are of the observed size in wavelength and period, they are compressive and propagate obliquely to the IMF. In particular, we discuss the issues related to the long-standing question of oblique propagation.

  20. Ground Signatures of EMIC Waves obtained From a 3D Global Wave Model

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Sydorenko, D.; Zong, Q.; Zhang, L.

    2016-12-01

    EMIC waves generated in the inner magnetosphere are important drivers of radiation belt particle loss. Van Allen Probes and ground observations of EMIC waves suggest that localized magnetospheric sources inject waves that are guided along geomagnetic field lines and then reflected and refracted in the low altitude magnetosphere [Kim, E.-H., and J. R. Johnson (2016), Geophys. Res. Lett., 43, 13-21, doi:10.1002/2015GL066978] before entering the ionosphere. The waves then spread horizontally within the F-region waveguide and propagate to the ground. To understand the observed properties of EMIC waves, a global 3D model of ULF waves in Earth's magnetosphere, ionosphere, and neutral atmosphere has been developed. The simulation domain extends from Earth's surface to a spherical boundary a few tens of thousands of km in radius. The model uses spherical coordinates and incorporates an overset Yin-Yang grid that eliminates the singularity at the polar axis and improves uniformity of the grid in the polar areas [Kageyama, A., and T. Sato (2004), Geochem. Geophys. Geosyst., 5, Q09005, doi:10.1029/2004GC000734]. The geomagnetic field in the model is general, but is dipole in this study. The plasma is described as a set of electron and multiple species ion conducting fluids. Realistic 3D density profiles of various ion species as well as thermospheric parameters are provided by the Canadian Ionosphere Atmosphere Model (C-IAM) [Martynenko O.V. et al. (2014), J. Atmos. Solar-Terr. Phys., 120, 51-61, doi:10.1016/j.jastp.2014.08.014]. The global ULF wave model is applied to study propagation of EMIC waves excited in the equatorial plane near L=7. Wave propagation along field lines, reflection and refraction in the zone of critical frequencies, and further propagation through the ionosphere to the ground are discussed.

  1. The new geophysical observatory in Northern Caucasus (Elbrus volcanic area) and results of studies of ULF magnetic variations preceding strong geodynamic events

    NASA Astrophysics Data System (ADS)

    Sobissevitch, Leonid E.; Sobissevitch, Alex L.; Kanonidi, Konstantin Kh.; Filippov, Ivan N.

    2010-05-01

    The new geophysical observatory for fundamental scientific studies of geophysical processes in the Elbrus volcanic area (Northern Caucasus) has been organized recently as a result of merging of five geophysical laboratories positioned round the Elbrus volcano and equipped with modern geophysical instruments including broadband tri-axial seismometers, quartz tilt-meters, magnetic variometers, geo-acoustic sensors, hi-precision distributed thermal sensors, gravimeters, and network-enabled data acquisition systems with precise GPS-timing and integrated monitoring of auxiliary parameters (variations on ambient humidity, atmospheric pressure etc). Two laboratories are located in the horizontal 4.3 km deep tunnel drilled under the mount Andyrchi, about 20 km from the Elbrus volcano. Analysis of multi-parameter streams of experimental data allows one to study the structure of geophysical wave fields induced by earthquakes and regional catastrophic events (including snow avalanches). On the basis of continuous observations carried out since 2007 there have been determined anomalous wave forms in ULF geomagnetic variations preceding strong seismic events with magnitude 7 or more. Mentioned wave forms may be natively related to processes of evolution of dilatational structures in a domain of forthcoming seismic event. Specific patterns in anomalous ULF wave forms are distinguished for undersea earthquakes and for earthquakes responsible for triggering tsunami events. Thus, it is possible to consider development of a future technology to suggest the possible area and the time frame of such class of catastrophic events with additional reference to forecast information (including acoustic, hydro-acoustic and geo-acoustic) being concurrently analyzed.

  2. New GOES High-Resolution Magnetic Measurements and their Contribution to Understanding Magnetospheric Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Redmon, R. J.; Loto'aniu, P. T. M.; Boudouridis, A.; Chi, P. J.; Singer, H. J.; Kress, B. T.; Rodriguez, J. V.; Abdelqader, A.; Tilton, M.

    2017-12-01

    The era of NOAA observations of the geomagnetic field started with SMS-1 in May 1974 and continues to this day with GOES-13-16 (on-orbit). We describe the development of a new 20+ year archive of science-quality, high-cadence geostationary measurements of the magnetic field from eight NOAA spacecraft (GOES-8 through GOES-15), the status of GOES-16 and new scientific results using these data. GOES magnetic observations provide an early warning of impending space weather, are the core geostationary data set used for the construction of magnetospheric magnetic models, and can be used to estimate electromagnetic wave power in frequency bands important for plasma processes. Many science grade improvements are being made across the GOES archive to unify the format and content from GOES-8 through the new GOES-R series (with the first of that series launched on November 19, 2016). A majority of the 2-Hz magnetic observations from GOES-8-12 have never before been publicly accessible due to processing constraints. Now, a NOAA Big Earth Data Initiative project is underway to process these measurements starting from original telemetry records. Overall the new archive will include vector measurements in geophysically relevant coordinates (EPN, GSM, and VDH), comprehensive documentation, highest temporal cadence, best calibration parameters, recomputed means, updated quality flagging, full spacecraft ephemeris information, a unified standard format and public access. We are also developing spectral characterization tools for estimating power in standard frequency bands (up to 1 Hz for G8-15), and detecting ULF waves related to field-line resonances. We present the project status and findings, including in-situ statistical and extreme ULF event properties, and case studies where the ULF oscillations along the same field line were observed simultaneously by GOES near the equator in the magnetosphere, the ST-5 satellites at low altitudes, and ground magnetometer stations. For event studies, we find that the wave amplitude of poloidal oscillations is amplified at low altitudes but attenuated on the ground, confirming the theoretical predictions of wave propagation from the magnetosphere to the ground. We include examples of GOES-16 particle flux and magnetic field observations illustrating complex particle dynamics.

  3. Response of radiation belt simulations to different radial diffusion coefficients for relativistic and ultra-relativistic electrons

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam

    Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  4. Loss of ring current O(+) ions due to interaction with Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Li, Xinlin; Hudson, Mary; Chan, Anthony; Roth, Ilan

    1993-01-01

    A test particle code is used here to investigate ring current ion interaction with Pc 5 waves, combined with convection and corotation electric fields, with emphasis on the loss of O(+) ions over the dayside magnetosphere. A new loss mechanism for the O(+) ions due to the combined effects of convection and corotation electric fields and interactions with Pc 5 waves via a magnetic drift-bound resonance is presented. For given fields, whether a particle gains or losses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O(+) ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. Due to interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle is lost to the dayside magnetopause by a sunward E x B drift.

  5. Significant initial results from the environmental measurements experiment on ATS-6

    NASA Technical Reports Server (NTRS)

    Fritz, T. A.; Arthur, C. W.; Blake, J. B.; Coleman, P. J., Jr.; Corrigan, J. P.; Cummings, W. D.; Deforest, S. E.; Erickson, K. N.; Konradi, A.; Lennartsson, W.

    1977-01-01

    The Applications Technology Satellite (ATS-6), launched into synchronous orbit on 30 May 1974, carried a set of six particle detectors and a triaxial fluxgate magnetometer. The particle detectors were able to determine the ion and electron distribution functions from 1 to greater than 10 to the 8th power eV. It was found that the magnetic field is weaker and more tilted than predicted by models which neglect internal plasma and that there is a seasonal dependence to the magnitude and tilt. ATS-6 magnetic field measurements showed the effects of field-aligned currents associated with substorms, and large fluxes of field-aligned particles were observed with the particle detectors. Encounters with the plasmasphere revealed the existence of warm plasma with temperatures up to 30 eV. A variety of correlated waves in both the particles and fields were observed: pulsation continuous oscillations, seen predominantly in the plasmasphere bulge; ultralow frequency (ULF) standing waves; ring current proton ULF waves; and low frequency waves that modulate the energetic electrons. In additon, large scale waves on the energetic-ion-trapping boundary were observed, and the intensity of energetic electrons was modulated in association with the passage of sector boundaries of the interplanetary magnetic field.

  6. Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Bourdarie, S.; Khotyaintsev, Y.; Santolik, O.; Horne, R.; Mann, I.; Turner, D.; Anastasiadis, A.; Angelopoulos, V.; Balasis, G.; Chatzichristou, E.; Cully, C.; Georgiou, M.; Glauert, S.; Grison, B.; Kolmasova, I.; Lazaro, D.; Macusova, E.; Maget, V.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Usanova, M.

    2012-09-01

    We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Furthermore, we will incorporate multi-spacecraft particle measurements into data assimilation tools, aiming at a new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven to be a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system.

  7. Magnetosheath plasma stability and ULF wave occurrence as a function of location in the magnetosheath and upstream bow shock parameters

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Escoubet, C. Philippe; Grison, Benjamin

    2015-04-01

    We present the results of a statistical study of the distribution of mirror and Alfvén-ion cyclotron (AIC) waves in the magnetosheath together with plasma parameters important for the stability of ULF waves, specifically ion temperature anisotropy and ion beta. Magnetosheath crossings registered by Cluster spacecraft over the course of 2 years served as a basis for the statistics. For each observation we used bow shock, magnetopause, and magnetosheath flow models to identify the relative position of the spacecraft with respect to magnetosheath boundaries and local properties of the upstream shock crossing. A strong dependence of both plasma parameters and mirror/AIC wave occurrence on upstream ΘBn and MA is identified. We analyzed a joint dependence of the same parameters on ΘBn and fractional distance between shock and magnetopause, zenith angle, and length of the flow line. Finally, the occurrence of mirror and AIC modes was compared against the respective instability thresholds. We noted that AIC waves occurred nearly exclusively under mirror stable conditions. This is interpreted in terms of different characters of nonlinear saturation of the two modes.

  8. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  9. Observations and analysis of Alfvén wave phase mixing in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Sarris, T. E.; Wright, A. N.; Li, X.

    2009-03-01

    Signatures of Alfvén wave phase mixing in the Earth's magnetosphere, observed as polarization rotation of a transverse, Pc5 magnetospheric pulsation, are presented and compared to theory. The polarization rotation occurred during a rare event of a dayside narrowband ULF magnetospheric pulsation that lasted for 5 consecutive days, from 24 to 30 November 1997; details of this event were reported by Sarris et al. (2009) through observations at geosynchronous orbit and on the ground. In this paper we investigate the polarization signatures of the pulsation by performing a detailed analysis of its transverse components as observed through hodogram plots. Density measurements from one of the Los Alamos National Laboratory (LANL) spacecraft which had its L shells closest to GOES-8 are used to calculate field line resonance frequencies at geosynchronous orbit; these frequency calculations show good agreement with the observed pulsations but also have a local time offset. For an instance of an observed polarization rotation we estimate the observed poloidal lifetime of the pulsation by the time taken for the poloidal and toroidal amplitudes to become equal, which we compare with the theoretical approximation to the poloidal lifetime, as calculated in a box model magnetosphere by Mann and Wright (1995). Density measurements from different LANL spacecraft at geosynchronous orbit and their varying L shells as derived from their varying local times are used to estimate a local gradient in the local Alfvén speed, which is then used in the calculation of the predicted poloidal lifetime. This is the first time that such polarization rotations are directly observed and compared with theoretical predictions.

  10. ULF Waves in the Ionospheric Alfven Resonator: Modeling of MICA Observations

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Tulegenov, B.

    2017-12-01

    We present results from a numerical study of physical processes responsible for the generation of small-scale, intense electromagnetic structures in the ultra-low-frequency range frequently observed in the close vicinity of bright discrete auroral arcs. In particular, our research is focused on the role of the ionosphere in generating these structures. A significant body of observations demonstrate that small-scale electromagnetic waves with frequencies below 1 Hz are detected at high latitudes where the large-scale, downward magnetic field-aligned current (FAC) interact with the ionosphere. Some theoretical studies suggest that these waves can be generated by the ionospheric feedback instability (IFI) inside the ionospheric Alfven resonator (IAR). The IAR is the region in the low-altitude magnetosphere bounded by the strong gradient in the Alfven speed at high altitude and the conducting bottom of the ionosphere (ionospheric E-region) at low altitude. To study ULF waves in this region we use a numerical model developed from reduced two fluid MHD equations describing shear Alfven waves in the ionosphere and magnetosphere of the earth. The active ionospheric feedback on structure and amplitude of magnetic FACs that interact with the ionosphere is implemented through the ionospheric boundary conditions that link the parallel current density with the plasma density and the perpendicular electric field in the ionosphere. Our numerical results are compared with the in situ measurements performed by the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched on February 19, 2012 from Poker Flat Research Range in Alaska to measure fields and particles during a passage through a discreet auroral arc. Parameters of the simulations are chosen to match actual MICA parameters, allowing the comparison in the most precise and rigorous way. Waves generated in the numerical model have frequencies between 0.30 and 0.45 Hz, while MICA measured similar waves in the range from 0.18 to 0.50 Hz. These results prove that the IFI driven inside the IAR by a system of large-scale upward-downward currents is the main mechanism responsible for the generation of small-scale intense ULF waves in the vicinity of discrete auroral arcs.

  11. Waves and Instabilities in Collisionless Shocks

    DTIC Science & Technology

    1984-04-01

    occur in the electron foreshock and are driven by suprathermal electrons escaping into the region upstream of the shock. Both the ion-acoustic and...ULF waves occur in the ion foreshock and are associated with ions streaming into the region upstream of 11 the shock. The region downstream of the...the discussion of these waves it is useful to distinguish two regions, called the electron foreshock and the ion foreshock . Because the particles

  12. Two-and-one-half-dimensional magnetohydrodynamic simulations of the plasma sheet in the presence of oxygen ions: The plasma sheet oscillation and compressional Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Lu, Li; Liu, Zhen-Xing; Cao, Jin-Bin

    2002-02-01

    Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere.

  13. Collisionless shock structures of Earth and other planets

    NASA Technical Reports Server (NTRS)

    Greenstadt, Eugene W.; Moses, Stewart L.

    1993-01-01

    This report summarizes the closing segment of our multi-spacecraft, multi-instrument study of collisionless shock structure. In this last year of our study, we have necessarily concentrated on subjects that limited time and remaining resources could be expected to bring to reasonable stopping points, if not full conclusions. Our attention has been focused therefore on matters that were either well underway when the year began or that could be expected to yield rapidly completed reports publishable quickly in abbreviated versions. Contemporary publication delays prevent any new initiatives from reaching the literature within the year in the best of circumstances. The topics that fell into these categories were detailed plasma wave (pw) phenomenology in slow shocks in the Earth's distant geomagnetic tail, instantaneous orientations of theta(sub Bn) in quasiparallel (Q(sub parallel)) shock structure, and a comprehensive overview of the relationship between structural ULF waves in the Qll shock environment and waves in the magnetosphere, i.e. geomagnetic ULF pulsations. The remainder of this report describes our freshly completed results, discusses two related investigations of pw waves in the foreshock and magnetosheath, and appends the abstracts of published papers and the texts of papers in press.

  14. Nonlinear wave particle interaction in the Earth's foreshock

    NASA Technical Reports Server (NTRS)

    Mazelle, C.; LeQueau, D.; Meziane, K.; Lin, R. P.; Parks, G.; Reme, H.; Sanderson, T.; Lepping, R. P.

    1997-01-01

    The possibility that ion beams could provide a free energy source for driving an ion/ion instability responsible for the ULF wave occurrence is investigated. For this, the wave dispersion relation with the observed parameters is solved. Secondly, it is shown that the ring-like distributions could then be produced by a coherent nonlinear wave-particle interaction. It tends to trap the ions into narrow cells in velocity space centered around a well-defined pitch-angle, directly related to the saturation wave amplitude in the analytical theory. The theoretical predictions with the observations are compared.

  15. Reconnection During Periods of Large IMF By Producing Shear Instabilities at the Dayside Convection Reversal Boundary

    NASA Astrophysics Data System (ADS)

    Qamar, S.; Clauer, C. R.; Hartinger, M.; Xu, Z.

    2017-12-01

    During periods of large interplanetary magnetic field (IMF) By component and small negative Bz (GSM Coordinates), the ionospheric polar electric potential system is distorted so as to produce large east-west convection shears across local noon. Past research has shown examples of ULF waves with periods of approximately 10 - 20 minutes observed at this convection shear by the Greenland west coast chain of magnetometers. Past work has shown examples of these waves and associated them with conditions in the solar wind and IMF, particularly periods of large IMF By component. Here we report the results of a search of several years of solar wind data to identify periods when the IMF By component is large and the magnetometer chains along the 40-degree magnetic meridian (Greenland west coast and conjugate Antarctic chains) are within a few hours of local noon. We test here the hypothesis that large IMF By reconnection leads to large convection shears across local noon that generate ULF waves through, presumably, a shear instability such as Kelvin-Helmholtz.

  16. ULF waves and plasma stability in different regions of the magnetosheath

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Escoubet, C. Philippe; Grison, Benjamin

    2016-04-01

    We present a statistical study of the occurrence and properties of ultra low frequency waves in the magnetosheath and interpret the results in terms of the competition of mirror and Alfvén-ion-cyclotron (AIC) instabilities. Both mirror and AIC waves are generated in high beta plasma of the magnetosheath when ion temperature anisotropy exceeds the threshold of the respective instabilities. These waves are frequently observed in the terrestrial and planetary magnetosheaths, but their distribution within the magnetosheath is inhomogeneous and their character varies as a function of location, local and upstream plasma parameters. We studied the spatial distribution of the two wave modes in the magnetosheath together with the local plasma parameters important for the stability of ULF waves. This analysis was performed on a dataset of all magnetosheath crossings observed by Cluster spacecraft over two years. For each observation we used bow shock, magnetopause and magnetosheath flow models to identify the relative position of the spacecraft with respect to magnetosheath boundaries and local properties of the upstream shock crossing. A strong dependence of parameters characterizing plasma stability and mirror/AIC wave occurrence on upstream ΘBn and MA is identified. The occurrence of mirror and AIC modes was compared against the respective instability thresholds and it was observed that AIC waves occurred nearly exclusively under mirror stable conditions. This is interpreted in terms of the different character of non-linear saturation of the two modes.

  17. Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; hide

    2016-01-01

    Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.

  18. Magnetospheric space plasma investigations

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.; Horwitz, James L.

    1996-01-01

    The discussion in this final report is limited to a summary of important accomplishments. These accomplishments include the generalized semikinetic (GSK) model, O(+) outflows in the F-region ionosphere, field-aligned flows and trapped ion distributions, ULF wave ray-tracing, and plasmasphere-ionosphere coupling.

  19. Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth's plasmapause

    NASA Astrophysics Data System (ADS)

    Pickett, J. S.; Grison, B.; Omura, Y.; Engebretson, M. J.; Dandouras, I.; Masson, A.; Adrian, M. L.; Santolík, O.; Décréau, P. M. E.; Cornilleau-Wehrlin, N.; Constantinescu, D.

    2010-05-01

    The Cluster spacecraft were favorably positioned on the nightside near the equatorial plasmapause of Earth at L ˜ 4.3 on 30 March 2002 to observe electromagnetic ion cyclotron (EMIC) rising tone emissions in association with Pc1 waves at 1.5 Hz. The EMIC rising tone emissions were found to be left-hand, circularly polarized, dispersive, and propagating away from the equator. Their burstiness and dispersion of ˜30s/Hz rising out of the 1.5 Hz Pc1 waves are consistent with their identification as EMIC triggered chorus emissions, the first to be reported through in situ observations near the plasmapause. Along with the expected H+ ring current ions seen at higher energies (>300 eV), lower energy ions (300 eV and less) were observed during the most intense EMIC triggered emission events. Nonlinear wave-particle interactions via cyclotron resonance between the ˜2-10 keV H+ ions with temperature anisotropy and the linearly-amplified Pc1 waves are suggested as a possible generation mechanism for the EMIC triggered emissions.

  20. Plasma and field observations of a Pc 5 wave event

    NASA Technical Reports Server (NTRS)

    Waite, J. H.; Gallagher, D. L.; Chappell, C. R.; Chandler, M. O.; Olsen, R. C.; Comfort, R. H.; Johnson, J. F. E.; Peterson, W. K.; Weimer, D.; Shawhan, S. D.

    1986-01-01

    The particle detector and electric field data collected by the Dynamo Explorer 1 on the Pc 5 wave event encounter on July 14, 1982 are presented, yielding a nearly complete picture of the event. The overall structure of the Pc 5 seems to order the event into two distinct halves, suggesting a temporal or spatial variation of the micropulsation. Thermal plasma measurements showed that the dominant ion throughout both lobes was H(+). Significant quantities of He(+), O(+), N(+), and O(2+) were also observed to be present and rotating together in a plane normal to the magnetic field direction, due to the Pc5 E x B drift. The plasma parameters determined for the two lobes were used in theoretical calculations to predict the period of the observed resonance.

  1. Plasma and field observations of a Pc 5 wave event

    NASA Astrophysics Data System (ADS)

    Waite, J. H.; Gallagher, D. L.; Chandler, M. O.; Olsen, R. C.; Comfort, R. H.; Johnson, J. F. E.; Chappell, C. R.; Peterson, W. K.; Weimer, D.; Shawhan, S. D.

    1986-10-01

    The particle detector and electric field data collected by the Dynamo Explorer 1 on the Pc 5 wave event encounter on July 14, 1982 are presented, yielding a nearly complete picture of the event. The overall structure of the Pc 5 seems to order the event into two distinct halves, suggesting a temporal or spatial variation of the micropulsation. Thermal plasma measurements showed that the dominant ion throughout both lobes was H(+). Significant quantities of He(+), O(+), N(+), and O(2+) were also observed to be present and rotating together in a plane normal to the magnetic field direction, due to the Pc5 E x B drift. The plasma parameters determined for the two lobes were used in theoretical calculations to predict the period of the observed resonance.

  2. A real time index of geomagnetic background noise for the MAD (Magnetic Anomaly Detection) frequency band

    NASA Astrophysics Data System (ADS)

    Bernardi, A.; Fraser-Smith, A. C.; Villard, O. G.

    1985-02-01

    An index of geomagnetic activity in the upper part of the ultra low frequency (ULF) range (less than 4.55 Hz) has been developed. This index will be referred to as the MA index (magnetic activity index). The MA index is prepared every half hour and is a measure of the strength of the geomagnetic activity in the Pc1-Pc3 pulsation frequency range during that half hour period. Activity in the individual Pc pulsation ranges can also be measured, if desired. The index is calculated from the running average of the full-wave rectified values of the band pass filtered geomagnetic signals and thus it provides a better indication of the magnitude of these band pass filtered magnetic pulsations than does the ap index, for example. Daily variations of the band pass filtered magnetic signals are also better captured by the MA index. To test this system we used analog tape recordings of wide-band geomagnetic signals. The indices for these tapes are presented in the form of plots, together with a comparison with the ap indices of the same time intervals. The MA index shows the daily variation of the geometric signals quite clearly during times when there is strong activity, i.e., when the ap index values are large. Because impulsive signals, such as lightning discharges, tend to be suppressed in the averaging process, the MA index is insensitive to impulsive noise. It is found that the time variation of the MA index is in general markedly different from the variation of the ap index for the same time intervals.

  3. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  4. Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind

    NASA Technical Reports Server (NTRS)

    Liou, Kan; Sibeck, David G.

    2018-01-01

    We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.

  5. The latitudinal structure of Pc 5 waves in space - Magnetic and electric field observations

    NASA Technical Reports Server (NTRS)

    Singer, H. J.; Kivelson, M. G.

    1979-01-01

    The occurrence frequency and spatial structure of Pc 5 magnetic pulsations in the dawnside of the plasma trough have been studied using data from the Ogo 5 satellite. The wave magnetic fields were obtained from the University of California, Los Angeles, flux-gate magnetometer measurements, and one component of the wave electric field was inferred from oscillations of the ion flux measured by the Lockheed light ion mass spectrometer. During portions of seven of the 19 passes comprising the survey, Pc 5 oscillations were observed in the ion flux but not in the magnetic field, and in each case the satellite was within 10 deg of the geomagnetic equator. Above 10 deg latitude, transverse magnetic and electric oscillations were both observed. The results are consistent with the model of a standing Alfven wave along a resonant field line with the geomagnetic equator as a node of the magnetic perturbation, that is, an odd mode.

  6. Microwave emission and scattering from Earth surface and atmosphere

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lee, M. C.

    1986-01-01

    Nonlinear Electromagnetic (EM) wave interactions with the upper atmosphere were investigated during the period 15 December 1985 to 15 June 1986. Topics discussed include: the simultaneous excitation of ionospheric density irregularities and Earth's magnetic field fluctuations; the electron acceleration by Langmuir wave turbulence; and the occurrence of artificial spread F. The role of thermal effects in generating ionospheric irregularities by Whistler waves, intense Quasi-DC electric fields, atmospheric gravity waves, and electrojets was investigated. A model was developed to explain the discrete spectrum of the resonant ultralow frequency (ULF) waves that are commonly observed in the magnetosphere.

  7. Quasiperiodic modulations of energetic electron fluxes in the ULF range observed by the ERG satellite

    NASA Astrophysics Data System (ADS)

    Teramoto, M.; Hori, T.; Kurita, S.; Yoshizumi, M.; Saito, S.; Higashio, N.; Mitani, T.; Matsuoka, A.; Park, I.; Takashima, T.; Nomura, R.; Nose, M.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Shinohara, I.

    2017-12-01

    Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016. The Extremely High-Energy Electron Experiment (XEP) and High-Energy Electron Experiments (HEP-L and HEP-H) are carried by the ERG satellite to observe energetic electrons. These instruments frequently observed quasiperiodic modulations of energetic electron fluxes with period of 100-600 sec. Continuous flux modulations with the period of 600 s appeared in the 700keV-3.6MeV energy range during the period 0920UT-1120UT on March 31, 2017 when the ERG satellite was located at L 5.5-6.1 and MLT 3-4 h. We compare these flux modulations with the magnetic field observed by the Magnetic Field Experiment (MGF) on the ERG satellite. It is found that these flux modulations are not accompanied by corresponding magnetic signatures. It indicates that these quasiperiodic flux modulations are not caused by drift-resonant interactions between ULF waves and energetic electrons, at least locally. In this study, we will show several events and discuss possible mechanism for quasiperiodic flux modulations of energetic electrons on XEP and HEP.

  8. Charged particle and magnetic field research in space

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Research completed and in progress is described, related publications and reports are listed, and abstracts of papers and talks on results of the research are given. The charged particle research centered on OGO-5 and OGO-6 electron spectrometer data, and theoretical radiation belt studies. Work on the ATS-1 magnetometer project included development of production data reduction programs, development of spectral analysis procedures, and scientific studies of ULF waves at synchronous orbit. The magnetic fields research also included work on the Mariner project and theoretical studies on the solar wind.

  9. Lifestyle factors and multimorbidity: a cross sectional study

    PubMed Central

    2014-01-01

    Background Lifestyle factors have been associated mostly with individual chronic diseases. We investigated the relationship between lifestyle factors (individual and combined) and the co-occurrence of multiple chronic diseases. Methods Cross-sectional analysis of results from the Program of Research on the Evolution of a Cohort Investigating Health System Effects (PRECISE) in Quebec, Canada. Subjects aged 45 years and older. A randomly-selected cohort in the general population recruited by telephone. Multimorbidity (3 or more chronic diseases) was measured by a simple count of self-reported chronic diseases from a list of 14. Five lifestyle factors (LFs) were evaluated: 1) smoking habit, 2) alcohol consumption, 3) fruit and vegetable consumption, 4) physical activity, and 5) body mass index (BMI). Each LF was given a score of 1 (unhealthy) if recommended behavioural targets were not achieved and 0 otherwise. The combined effect of unhealthy LFs (ULFs) was evaluated using the total sum of scores. Results A total of 1,196 subjects were analyzed. Mean number of ULFs was 2.6 ± 1.1 SD. When ULFs were considered separately, there was an increased likelihood of multimorbidity with low or high BMI [Odd ratio (95% Confidence Interval): men, 1.96 (1.11-3.46); women, 2.57 (1.65-4.00)], and present or past smoker [men, 3.16 (1.74-5.73)]. When combined, in men, 4-5 ULFs increased the likelihood of multimorbidity [5.23 (1.70-16.1)]; in women, starting from a threshold of 2 ULFs [1.95 (1.05-3.62)], accumulating more ULFs progressively increased the likelihood of multimorbidity. Conclusions The present study provides support to the association of lifestyle factors and multimorbidity. PMID:24996220

  10. Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

    NASA Astrophysics Data System (ADS)

    Daglis, I.; Balasis, G.; Bourdarie, S.; Horne, R.; Khotyaintsev, Y.; Mann, I.; Santolik, O.; Turner, D.; Anastasiadis, A.; Georgiou, M.; Giannakis, O.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Angelopoulos, V.; Glauert, S.; Grison, B., Kersten T.; Kolmasova, I.; Lazaro, D.; Mella, M.; Ozeke, L.; Usanova, M.

    2013-09-01

    We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Multi-spacecraft particle measurements will be incorporated into data assimilation tools, leading to new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven as a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system. The MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project has received funding from the European Union’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520.

  11. Anik-E1 and E2 satellite failures of January 1994 revisited

    NASA Astrophysics Data System (ADS)

    Lam, H.-L.; Boteler, D. H.; Burlton, B.; Evans, J.

    2012-10-01

    The consecutive failures of the geosynchronous Anik-E1 communication satellite on January 20, 1994, and Anik-E2 about nine hours later on January 21 (both incidents occurred on January 20 local time) received considerable publicity because the malfunctions of the satellites disrupted television and computer data transmissions across Canada, as well as telephone services to remote northern communities for hours. This often-cited event is revisited here with materials not covered before. Using publicly available information, Anik-E failure details, media coverage, recovery effort and cost incurred are first presented. This is then followed by scrutiny of space weather conditions pertinent to the occurrences of the Anik-E upsets. We trace the space weather episode's inception on the Sun, propagation through interplanetary medium, and manifestation in magnetic field variations as well as in energetic electron flux increases, and its eventual impact on the Anik-Es. The genesis of the energetic electron enhancements that have been blamed for the satellite malfunctions is thus traceable via high-speed solar wind stream with Alfven wave fluctuations to a longitudinally wide coronal hole on the Sun. Furthermore, strong magnetic pulsations preceding electron flux peaks indicate Pc5 ULF (Ultra Low Frequency) waves as a probable acceleration mechanism for the energetic electron flux enhancement that resulted in the internal charging of the Anik-Es. The magnetic fluctuations may even be possible triggers for the subsequent discharge that caused the satellites to malfunction. This incident illustrates that satellite operators should be on alert for elevated high-energy electron environment that is above established thresholds, as specifications in satellite design may not render a satellite immune from internal charging.

  12. A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.

  13. Shear Alfven Wave Injection in the Magnetosphere by Ionospheric Modifications in the Absence of Electrojet Currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.

    2011-12-01

    A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program

  14. Theory and observations of electromagnetic ion cyclotron waves in Saturn's inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1993-01-01

    High-resolution Voyager 1 magnetic field observations of Saturn's inner magnetosphere are examined for the presence of ULF waves. Quasi-circular left-hand polarized transverse oscillations are found in the near-equatorial region of 5-7 Rs with a wave period about 10 s and peak amplitude of about 2 nT. The wave is identified as the electromagnetic oxygen cyclotron mode occurring at a frequency just below the O(+) ion cyclotron frequency. A theoretical model of wave excitation based on gyroresonant coupling through a temperature anisotropy of O(+) pickup ions is developed which accounts for the principal features of the wave spectrum. It is hypothesized that wave-particle interactions provide a level of scattering commensurate with the weak pitch angle diffusion regime but nonetheless one that regulates and maintains a constant thermal anisotropy of ions along the magnetic field. Arguments are also presented that O(+) was the dominant thermal ion of the Dione-Tethys plasma torus at the time of the Pioneer 11 encounter the year previous to the Voyager 1 measurements.

  15. Field-aligned currents, convection electric fields, and ULF-ELF waves in the cusp

    NASA Technical Reports Server (NTRS)

    Saflekos, N. A.; Potemra, T. A.; Kintner, P. M., Jr.; Green, J. L.

    1979-01-01

    Nearly simultaneous observations from the Triad and Hawkeye satellites over the Southern Hemisphere, at low altitudes near the noon meridian and close to the usual polar cusp latitudes, show that in and near the polar cusp there exist several relationships between field-aligned currents (FACs), convection electric fields, ULF-ELF magnetic noise, broadband electrostatic noise and interplanetary magnetic fields. The most important findings are (1) the FACs directed into the ionosphere in the noon-to-dusk local time sector and directed away from the ionosphere in the noon-to-dawn local time sector and identified as region-1 permanent FACs (Iijima and Potemra, 1976a) and are located equatorward of the regions of antisunward (westward) convection; (2) the observations are consistent with a two-cell convection pattern symmetric in one case (throat positioned at noon) and asymmetric in another (throat located in a sector on the forenoon side in juxtaposition to the region of strong convection on the afternoon side); and (3) fine-structure FACs are responsible for the generation of ULF-ELF noise in the polar cusp.

  16. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    DOE PAGES

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.; ...

    2017-02-24

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves aremore » a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.« less

  17. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves aremore » a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.« less

  18. Ultralow-field and spin-locking relaxation dispersion in postmortem pig brain.

    PubMed

    Dong, Hui; Hwang, Seong-Min; Wendland, Michael; You, Lixing; Clarke, John; Inglis, Ben

    2017-12-01

    To investigate tissue-specific differences, a quantitative comparison was made between relaxation dispersion in postmortem pig brain measured at ultralow fields (ULF) and spin locking at 7 tesla (T). The goal was to determine whether ULF-MRI has potential advantages for in vivo human brain imaging. Separate specimens of gray matter and white matter were investigated using an ULF-MRI system with superconducting quantum interference device (SQUID) signal detection to measure T1ULF at fields from 58.7 to 235.0 μT and using a commercial MRI scanner to measure T1ρ7T at spin-locking fields from 5.0 to 235.0 μT. At matched field strengths, T1ρ7T is 50 to 100% longer than T1ULF. Furthermore, dispersion in T1ULF is close to linear between 58.7 and 235 µT, whereas dispersion in T1ρ7T is highly nonlinear over the same range. A subtle elbow in the T1ULF dispersion at approximately 140 µT is tentatively attributed to the local dipolar field of macromolecules. It is suggested that different relaxation mechanisms dominate each method and that ULF-MRI has a fundamentally different sensitivity to the macromolecular structure of neural tissue. Ultralow-field MRI may offer distinct, quantitative advantages for human brain imaging, while simultaneously avoiding the severe heating limitation imposed on high-field spin locking. Magn Reson Med 78:2342-2351, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Loss of ring current O+ ions due to interaction with Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Hudson, Mary; Chan, Anthony; Roth, Ilan

    1993-01-01

    The behavior of ring current ions in low-frequency geomagnetic pulsations is investigated analytically and numerically. We focus primarily on ring current O+ ions, whose flux increases dramatically during geomagnetic storms and decays at a rate which is not fully explained by collisional processes. This paper presents a new loss mechanism for the O+ ions due to the combined effects of convection and corotation electric fields and interaction with Pc 5 waves (wave period: 150-600 s) via a magnetic drift-bounce resonance. A test particle code has been developed to calculate the motion of the ring current O+ ions in a time-independent dipole magnetic field, and convection and corotation electric fields, plus Pc 5 wave fields, for which a simple analytical model has been formulated based on spacecraft observations. For given fields, whether a particle gains or loses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O+ ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. The former is due to the wave-particle interaction causing the ion to gain or lose energy, while the latter is due to the convection electric field. Our simulations show that, due to the interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle will be lost to the dayside magnetopause by a sunward E×B drift. This may contribute to the loss of O+ ions at intermediate energies (tens of keV) observed during the recovery phase of geomagnetic storms.

  20. Criticality features in ULF magnetic fields prior to the 2011 Tohoku earthquake

    PubMed Central

    HAYAKAWA, Masashi; SCHEKOTOV, Alexander; POTIRAKIS, Stelios; EFTAXIAS, Kostas

    2015-01-01

    The criticality of ULF (Ultra-low-frequency) magnetic variations is investigated for the 2011 March 11 Tohoku earthquake (EQ) by natural time analysis. For this attempt, some ULF parameters were considered: (1) Fh (horizontal magnetic field), (2) Fz (vertical magnetic field), and (3) Dh (inverse of horizontal magnetic field). The first two parameters refer to the ULF radiation, while the last parameter refers to another ULF effect of ionospheric signature. Nighttime (L.T. = 3 am ± 2 hours) data at Kakioka (KAK) were used, and the power of each quantity at a particular frequency band of 0.03–0.05 Hz was averaged for nighttime hours. The analysis results indicate that Fh fulfilled all criticality conditions on March 3–5, 2011, and that the additional parameter, Dh reached also a criticality on March 6 or 7. In conclusion, criticality has reached in the pre-EQ fracture region a few days to one week before the main shock of the Tohoku EQ. PMID:25743063

  1. Azimuthal propagation and frequency characteristic of compressional Pc 5 waves observed at geostationary orbit

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Higbie, P. R.; Baker, D. N.

    1985-02-01

    Properties of compressional Pc 5 waves as deduced from multiple-satellite observations at geosynchronous orbit are presented. The occurrence characteristics of the waves are determined, and the relation between variations in particle fluxes and magnetic field is examined. The spatiotemporal structure of the waves is considered, including the propagation perpendicular to the ambient magnetic field and the relation of the frequency characteristics to harmonic waves. It is demonstrated that the waves have large azimuthal wave numbers from 40 to 120, westward propagation at a typical velocity of 10 km/s, frequency roughly 25 percent of the second harmonic of the poloidal wave, and phase lag of 180 deg between the parallel and radial components of the wave magnetic field and + or -90 deg between the parallel and azimuthal components. These features are discussed in the light of existing theories of instabilities in the ring current plasma.

  2. Direct Determination of Wavenumbers of ULF Waves Using the Cluster Multipoint and Multicomponent Measurements

    NASA Astrophysics Data System (ADS)

    Grison, B.; Escoubet, C.; Santolik, O.; Cornilleau-Wehrlin, N.

    2013-12-01

    The wavenumber is a key parameter to understand the physics of the interactions between the electromagnetic waves and the ionized particles in space plasmas. Search-coil magnetometers and electric antennas measure time series of both magnetic and electric field fluctuations, respectively. The fleet of four Cluster spacecraft made possible to determine the full wave vector and even to differentiate the waves present at the same frequency in the spacecraft frame through various techniques: k-filtering analysis, wave telescope, phase differentiating method. However the fleet configuration (inter-spacecraft separation, tetrahedron elongation and planarity) limit the possibilities to use these techniques. From single spacecraft measurements, assumptions concerning the wave mode -and thus, concerning the physical processes- are usually required to derive the corresponding wavenumber. Using three orthogonal magnetic components and two electric antennas, it is possible to estimate n/Z where n is the refractive index and Z the transfer function of the interface between the plasma and the electric antennas. For ULF waves we assume Z=1 and we thus obtain the wavenumber. We test this hypothesis on a case where the spacecraft are in a close configuration in the distant cusp region and where we are able to apply the k-filtering analysis, too. The results obtained by multispacecraft and multicomponents analysis are close to each other and permit us to precise the value of Z. We test this procedure on several events (in various regions of the magnetosphere) in order to get more precise wave number measurements from the single spacecraft analysis. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement n. 284520 (MAARBLE).

  3. Satellite and Ground Signatures of Kinetic and Inertial Scale ULF Alfven Waves Propagating in Warm Plasma in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Sydorenko, D.

    2015-12-01

    Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.

  4. Functional Testing and Evaluation of Actiwatch Spectrum Devices for Launch on STS-133/ULF5

    NASA Technical Reports Server (NTRS)

    Rollins, Selisa F.; Humbert, Scott; Tysdal, Jessica A.

    2010-01-01

    The Actiwatch Spectrum (AWS) is a wrist-worn device that may be used for obtaining ground or on-orbit light exposure patterns and movement data. The objective of this project was to prepare AWS devices for launch on STS-133/ULF5 by a means of implementing functional tests and engineering evaluations. The data obtained from these tests and evaluations served as a means for detecting any plausible issues that the AWS may encounter while on-orbit. Subsequent steps after detecting anomalies with AWS devices encompassed identifying their root causes and taking the steps needed to mitigate them. As a result of this study, the overall success of sleep/wake research studies for STS-133/ULF5 and future missions will be enhanced.

  5. Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Hoppe, M. M.

    1983-01-01

    The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.

  6. Unusual Childhood Waking as a Possible Precursor of the 1995 Kobe Earthquake

    PubMed Central

    Ikeya, Motoji; Whitehead, Neil E.

    2013-01-01

    Simple Summary The paper investigates whether young children may waken before earthquakes through a cause other than foreshocks. It concludes there is statistical evidence for this, but the mechanism best supported is anxiety produced by Ultra Low Frequency (ULF) electromagnetic waves. Abstract Nearly 1,100 young students living in Japan at a range of distances up to 500 km from the 1995 Kobe M7 earthquake were interviewed. A statistically significant abnormal rate of early wakening before the earthquake was found, having exponential decrease with distance and a half value approaching 100 km, but decreasing much slower than from a point source such as an epicentre; instead originating from an extended area of more than 100 km in diameter. Because an improbably high amount of variance is explained, this effect is unlikely to be simply psychological and must reflect another mechanism—perhaps Ultra-Low Frequency (ULF) electromagnetic waves creating anxiety—but probably not 222Rn excess. Other work reviewed suggests these conclusions may be valid for animals in general, not just children, but would be very difficult to apply for practical earthquake prediction. PMID:26487316

  7. Ring Current He Ion Control by Bounce Resonant ULF Waves

    NASA Astrophysics Data System (ADS)

    Kim, Hyomin; Gerrard, Andrew J.; Lanzerotti, Louis J.; Soto-Chavez, Rualdo; Cohen, Ross J.; Manweiler, Jerry W.

    2017-12-01

    Ring current energy He ion (˜65 keV to ˜520 keV) differential flux data from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft show considerable variability during quiet solar wind and geomagnetic time periods. Such variability is apparent from orbit to orbit (˜9 h) of the spacecraft and is observed to be ˜50-100% of the nominal flux. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument, also aboard the Van Allen Probes spacecraft, we identify that a dominant source of this variability is from ULF waveforms with periods of tens of seconds. These periods correspond to the bounce resonant timescales of the ring current He ions being measured by RBSPICE. A statistical survey using the particle and field data for one full spacecraft precession period (approximately 2 years) shows that the wave and He ion flux variations are generally anticorrelated, suggesting the bounce resonant pitch angle scattering process as a major component in the scattering of He ions.

  8. Explaining the Diverse Response of the Ultra-relativistic Van Allen Radiation Belt to Solar Wind Forcing

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Ozeke, L.; Murphy, K. R.; Claudepierre, S. G.; Rae, J.; Milling, D. K.; Kale, A.; Baker, D. N.

    2017-12-01

    The NASA Van Allen Probes have opened a new window on the dynamics of ultra-relativistic electrons in the Van Allen radiation belts. Under different solar wind forcing the outer belt is seen to respond in a variety of apparently diverse and sometimes remarkable ways. For example, sometimes a third radiation belt is carved out (e.g., September 2012), or the belts can remain depleted for 10 days or more (September 2014). More usually there is a sequential response of a strong and sometimes rapid depletion followed by a re-energization, the latter increasing outer belt electron flux by orders of magnitude on hour timescales during some of the strongest storms of this solar cycle (e.g., March 2013, March 2015). Such dynamics also appear to be often bounded at low-L by an apparently impenetrable barrier at L 2.8 through which ultra-relativistic electrons do not penetrate. Many studies in the Van Allen Probes era have sought explanations for these apparently diverse features, often incorporating the effects from multiple plasma waves. In contrast, we show how this apparently diverse behaviour can instead be explained by one dominant process: ULF wave radial transport. Once ULF wave transport rates are accurately specified by observations, and coupled to the dynamical variation of the outer boundary condition at the edge of the outer belt, the observed diverse responses can all be explained. However, in order to get good agreement with observations, the modeling reveals the importance of still currently unexplained very fast loss in the main phase which results in an almost total extinction of the belts and decouples pre- and post-storm ultra-relativistic electron flux on hour timescales. Similarly, varying plasmasheet source populations are seen to be of critical importance such that near-tail dynamics play a crucial role in Van Allen belt dynamics. Nonetheless, simple models incorporating accurate transport rates derived directly from ULF wave measurements are shown to provide a single natural, compelling, and at times elegant explanation for such previously unexplained and apparently diverse responses to solar wind forcing.

  9. An unambiguous determination of the propagation of a compressional Pc 5 wave

    NASA Technical Reports Server (NTRS)

    Lin, N.; Mcpherron, R. L.; Kivelson, M. G.; Williams, D. J.

    1988-01-01

    A compressional Pc5 event observed by the ISEE-1 magnetometer and Medium Energetic Particle Experiment instrument on August 21 and 22, 1978, is examined. The propagation properties of the compressional waves were determined using a technique which utilizes the finite Larmor radius effects in the signature of the multichannel energetic ion detector. It is shown that this technique determines unambiguously the propagation characteristics of the wave in both the azimuthal and the radial directions in the plane perpendicular to the background magnetic field; the results remained valid even though heavy energetic ions with Larmor radii larger than proton Larmor radii were present in the plasma.

  10. An unambiguous determination of the propagation of a compressional Pc 5 wave

    NASA Astrophysics Data System (ADS)

    Lin, N.; McPherron, R. L.; Kivelson, M. G.; Williams, D. J.

    1988-06-01

    A compressional Pc5 event observed by the ISEE-1 magnetometer and Medium Energetic Particle Experiment instrument on August 21 and 22, 1978, is examined. The propagation properties of the compressional waves were determined using a technique which utilizes the finite Larmor radius effects in the signature of the multichannel energetic ion detector. It is shown that this technique determines unambiguously the propagation characteristics of the wave in both the azimuthal and the radial directions in the plane perpendicular to the background magnetic field; the results remained valid even though heavy energetic ions with Larmor radii larger than proton Larmor radii were present in the plasma.

  11. A storm time, Pc 5 event observed in the outer magnetosphere by ISEE 1 and 2 - Wave properties

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Scarf, F. L.; Mcpherron, R. L.; Anderson, R. R.

    1986-01-01

    The properties of the waves composing a classical storm time Pc 5 event, recorded by the satellite pair ISEE 1,2 during an inbound nearly equatorial pass in the dusk sector on August 21-22, 1978, are described. On the basis of these observations it is concluded that the events of the August 21-22 pass resulted from a combination of sources, namely, distant wideband excitation and ion drift instability, plus a coupling of wave modes. It is suggested that the observed phenomenon was a radial cross section of the type of event reported by Barfield et al. (1972).

  12. Summary of types of radiation belt electron precipitation observed by BARREL

    NASA Astrophysics Data System (ADS)

    Halford, Alexa

    2016-07-01

    The Balloon Array for Relativistic Radiation belt Electron Loss (BARREL) was able to infer precipitation of radiation belt electrons on multiple time scales and due to multiple loss mechanisms. One storm will be specifically highlighted which occurred on 26 January 2013 when a solar wind shock hit the Earth. Although MeV electrons were observed to be lost due to an EMIC wave event [Zhang et al in prep], and multiple periods of electron loss during substorms were observed [Rae et al submitted JGR, Mann et al in prep], we will consider an event period where loss associated with multiple time scales, and thus possibly different loss mechanisms was observed from 1000 - 1200 UT on 26 January 2013. At about 1005 UT on 26 January 2013 an injection of radiation belt electrons followed by drift echoes for energies of ˜80 - 400 keV. BARREL observed X-rays with energies less than 180 keV associated with multiple temporal structures during the drift echo event period. The Van Allen Probes were at similar L-values but upwards of 2 hours away in MLT. Upper band chorus and ULF waves were observed during the event period. Throughout the beginning of the event period, microbursts were clearly observed. During this time lower band chorus waves as well as time domain structures were observed at Van Allen Probe A located upwards of 2 hours away in MLT. This large difference in MLT meant that neither potential loss mechanism was able to be clearly associated with the microbursts. As the lower band chorus and time domain structures were observed to recede, the microbursts were also observed to subside. ULF time scale modulation of the X-rays was also observed throughout most of the event period. We will examine if the ULF waves are the cause of the precipitation themselves, or are modulating the loss of particles from a secondary loss mechanism [Brito et al 2015 JGR, Rae et al Submitted JGR]. Although the 100s ms and ULF time scales are clearly observed, there is an ˜20 minute overarching structure observed in the X-rays at BARREL. This longer time scale appears to match the drift period of the ˜300 keV electrons observed by the Van Allen probes. However the inferred energy of the precipitating electrons is ˜150 keV. It is unclear what may be causing the ˜20 minute structure in the X-rays. At the time of writing this abstract, it is unclear if the drifting of the 300 keV electrons is related to the precipitation of the lower energy electrons (< 180 keV) or if it is just coincidence that they have the same temporal structure.

  13. Observations of explosion generated PcP spectra at near-normal incidence

    NASA Astrophysics Data System (ADS)

    Niazi, Mansour; McLaughlin, Keith L.

    1987-10-01

    Short period recordings of PcP at the SRO station ANTO have been observed at epicentral distance of 13.5° from presumed underground explosions in western Kazahk, USSR. The core reflections are narrow band (0.6 to 2.4 Hz), short duration (3 sec) signals. Comparison of these near normally incident reflections to P waveforms observed at greater distances reveals that the PcP spectra are peaked with respect to the more representative P-wave spectra. The 1.2 Hz spectral peak is also observed for PcP waves recorded at 50 degrees. Corrections for frequency independent mantle Q attnuation models only increase the high frequency deficiency of the PcP spectra at frequencies above 1.2 Hz. A plausible explanation calls for finer structural features of core-mantle boundary (CMB) than hitherto suggested. The influence of small scale lateral heterogeneities, however, cannot be completely ruled out. (Mantle-core boundary, near normal PcP reflection.)

  14. Analysis of ULF Waves During Substorms Observed in the Ionosphere from the Dayside Ground Magnetometer and in the Solar Wind from the Satellite

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Alimaganbetov, M.

    2017-12-01

    Magnetospheric substorm is one of the most interesting and complicated phenomena of solar-terrestrial interactions. Despite numerous theoretical and experimental studies conducted during last 50 years, its several important phenomena are not completely understood yet. One of them are intense, ultra-low-frequency (from 0.5 mHz to 100 mHz), electromagnetic pulsations which are always observed during the substorms with the ground-based magnetometers and radars at high latitudes. These waves have the largest amplitudes in the power spectral densities during substorms. Hence, they are the most effective drivers of such mechanisms as high-latitude ionosphere energization, ion outflow production, formation of plasma density cavities, etc. In our study, we focus on the waves with frequencies 0.5-1.0 mHz, which is the lowest part of the frequency spectra observed during the substorm. The questions of what phenomena cause these oscillations and what are their spatiotemporal properties are among the most important ones about the physics of the substorm. To answer these questions, we analyzed disturbances of the magnetic field obtained from the two sources for the period from October 2015 to November 2016 during several substorms. One source is the fluxgate magnetometer in Poker Flat, Alaska. Another is the NASA Advanced Composite Explorer satellite in the Lagrangian L1 point that detects most of the solar wind from the Sun. The goal of our project is to find correlations between the disturbances observed from these sources, which will be a strong argument that the solar wind has a strong influence on the electromagnetic coupling between the ionosphere and magnetosphere of the Earth during the substorms. We observed 48 substorms during the abovementioned period. Our findings show that 1) the dominant frequency of the large-amplitude ULF waves observed during the substorms is 1 mHz or less; and 2) the same frequencies are frequently observed in the waves detected from the both sources. However, there are also some cases of either mismatch of expectation and occurrence of substorm or weak correlation of frequencies. While this work is only focused on 48 events within a year, and utilizes data from a single ground station, it constitutes a firm foundation to investigate theoretical reasoning behind substorm development further.

  15. VLF imaging of the Venus foreshock

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1993-01-01

    VLF plasma wave measurements obtained from the Pioneer Venus Orbiter Electric Field Detector (OEFD) have been used to construct statistical images of the Venus foreshock. Our data set contains all upstream measurements from an entire Venus year (approximately 200 orbits). Since the foreshock VLF characteristics vary with Interplanetary Magnetic Field (IMF) orientation we restrict the study to IMF orientations near the nominal Parker spiral angle (25 to 45). Our results show a strong decrease in 30 kHz wave intensity with both foreshock depth and distance. There is also an asymmetry in the 30 kHz emissions from the upstream and downstream foreshocks. The ion foreshock is characterized by strong emissions in the 5.4 kHz OEFD channel which are positioned much deeper in the foreshock than expected from terrestrial observations. No activity is observed in the region where field aligned ion distributions are expected. ULF wave activity, while weaker than at Earth, shows similar behavior and may indicate the presence of similar ion distributions.

  16. Optimal duration of ultra low frequency-transcutaneous electrical nerve stimulation (ULF-TENS) therapy for muscular relaxation in neuromuscular occlusion: A preliminary clinical study.

    PubMed

    Esclassan, Rémi; Rumerio, Anaïs; Monsarrat, Paul; Combadazou, Jean Claude; Champion, Jean; Destruhaut, Florent; Ghrenassia, Christophe

    2017-05-01

    The primary aim of this work was to determine the duration of ultra-low-frequency transcutaneous electrical nerve stimulation (ULF-TENS) application necessary to achieve sufficient relaxation of the masticatory muscles. A secondary aim was to analyze the influence of stimulation on muscle relaxation in pathological subjects and determine whether ULF-TENS has a noteworthy impact on muscle relaxation. Sixteen adult subjects with temporomandibular disorders (TMD) and muscle pain and a group of four control subjects were included in this study. ULF-TENS was applied, and muscular activities of the masseter, temporal, and sternocleidomastoid muscles (SCM) were recorded for 60 min. Significant relaxation was achieved in the TMD group from 20, 40, and 60 min for the temporal, masseter, and SCM muscles (p < 0.05), respectively. Maximum relaxation was achieved in 12.5% of the subjects after 20 min, in a further 12.5% after 40 min, and in the remaining 75% after 60 min. Significant relaxation was achieved in the control group from 20 to 40 min for the masseter and temporal muscles, respectively (p < 0.05). Taken together, the results suggest that an ideal ULF-TENS application would last 40 min to obtain sufficient muscle relaxation both in patients with masticatory system disorders and healthy subjects, a time constraint that is consistent with everyday clinical practice.

  17. Extremely low-frequency Lamb wave band gaps in a sandwich phononic crystal thin plate

    NASA Astrophysics Data System (ADS)

    Shen, Li; Wu, Jiu Hui; Liu, Zhangyi; Fu, Gang

    2015-11-01

    In this paper, a kind of sandwich phononic crystal (PC) plate with silicon rubber scatterers embedded in polymethyl methacrylate (PMMA) matrix is proposed to demonstrate its low-frequency Lamb wave band gap (BG) characteristics. The dispersion relationship and the displacement vector fields of the basic slab modes and the locally resonant modes are investigated to show the BG formation mechanism. The anti-symmetric Lamb wave BG is further studied due to its important function in reducing vibration. The analysis on the BG characteristics of the PC through changing their geometrical parameters is performed. By optimizing the structure, a sandwich PC plate with a thickness of only 3 mm and a lower boundary (as low as 23.9 Hz) of the first anti-symmetric BG is designed. Finally, sound insulation experiment on a sandwich PC plate with the thickness of only 2.5 mm is conducted, showing satisfactory noise reduction effect in the frequency range of the anti-symmetric Lamb BG. Therefore, this kind of sandwich PC plate has potential applications in controlling vibration and noise in low-frequency ranges.

  18. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    NASA Technical Reports Server (NTRS)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the fast mode cutoff that exists at larger radial distances.

  19. First Vlasiator results on foreshock ULF wave activity

    NASA Astrophysics Data System (ADS)

    Palmroth, M.; Eastwood, J. P.; Pokhotelov, D.; Hietala, H.; Kempf, Y.; Hoilijoki, S.; von Alfthan, S.; Vainio, R. O.

    2013-12-01

    For decades, a certain type of ultra low frequency waves with a period of about 30 seconds have been observed in the Earth's quasi-parallel foreshock. These waves, with a wavelength of about an Earth radius, are compressive and propagate obliquely with respect to the interplanetary magnetic field (IMF). The latter property has caused trouble to scientists as the growth rate for the instability causing the waves is maximized along the magnetic field. So far, these waves have been characterized by single or multi-spacecraft methods and 2-dimensional hybrid-PIC simulations, which have not fully reproduced the wave properties. Vlasiator is a newly developed, global hybrid-Vlasov simulation, which solves ions in the six-dimensional phase space using the Vlasov equation and electrons using magnetohydrodynamics (MHD). The outcome of the simulation is a global reproduction of ion-scale physics in a holistic manner where the generation of physical features can be followed in time and their consequences can be quantitatively characterized. Vlasiator produces the ion distribution functions and the related kinetic physics in unprecedented detail, in the global magnetospheric scale presently with a resolution of 0.13 RE in the ordinary space and 20 km/s in the velocity space. We run two simulations, where we use both a typical Parker-spiral and a radial IMF as an input to the code. The runs are carried out in the ecliptic 2-dimensional plane in the ordinary space, and with three dimensions in the velocity space. We observe the generation of the 30-second ULF waves, and characterize their evolution and physical properties in time, comparing to observations by Cluster spacecraft. We find that Vlasiator reproduces these waves in all reported observational aspects, i.e., they are of the observed size in wavelength and period, they are compressive and propagate obliquely to the IMF. In particular, we investigate the oblique propagation and discuss the issues related to the long-standing question of oblique propagation.

  20. Relationships between SC- and SI-associated ULF waves and ionospheric HF Doppler oscillations during the great geomagnetic storm of February 1986

    NASA Technical Reports Server (NTRS)

    Yumoto, K.; Takahashi, K.; Ogawa, T.; Tsunomura, S.; Nagai, T.

    1989-01-01

    The SC- and SI-associated ionospheric Doppler velocity oscillations and geomagnetic pulsations during the great geomagnetic storm of February 1986 are interpreted. This is done by considering the 'dynamo-motor' mechanism of ionospheric E-field and the global compressional oscillations of the magnetosphere and the ionosphere, respectively.

  1. Plasma and field observations of a compressional Pc 5 wave event

    NASA Astrophysics Data System (ADS)

    Baumjohann, W.; Sckopke, N.; LaBelle, J.; Klecker, B.; Lühr, H.; Glassmeier, K. H.

    1987-11-01

    The full complement of data obtained by all the instruments on board the AMPTE/IRM satellite during a Pc 5 wave event on October 24, 1984 is analyzed. Both energetic proton and electron fluxes were anticorrelated with the compressional magnetic field oscillations, indicating that the event belongs to the class of 'in-phase events'. The energetic proton data also exhibited a new feature: flux minima and maxima at low energies were observed somewhat later than those at higher energies. The magnetic and plasma pressure oscillations satisfy the pressure balance equation for the drift mirror mode much better than that for drift compressional Alfven waves. However, the classical criterion for the onset of the mirror instability is not satisfied.

  2. Observation and theory of Pc 5 waves with harmonically related transverse and compressional components

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Cheng, C. Z.; McEntire, R. W.; Kistler, L. M.

    1990-02-01

    The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studied. These events are selected on the basis of the field magnitude which oscillated at the second harmonic of a simultaneously present transverse oscillation. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1600-2100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number estimated from an ion finite Larmor radius effect, is generally large (about 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate left-hand polarization with respect to the ambient magnetic field, and propagate eastward with respect to the spacecraft. In the dusk sector the waves have high frequencies (5-15 mHz), indicate right-hand polarization, and propagate westward. It is suggested that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties.

  3. Observation and theory of Pc 5 waves with harmonically related transverse and compressional components

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Mcentire, R. W.; Cheng, C. Z.; Kistler, L. M.

    1990-01-01

    The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studied. These events are selected on the basis of the field magnitude which oscillated at the second harmonic of a simultaneously present transverse oscillation. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1600-2100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number estimated from an ion finite Larmor radius effect, is generally large (about 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate left-hand polarization with respect to the ambient magnetic field, and propagate eastward with respect to the spacecraft. In the dusk sector the waves have high frequencies (5-15 mHz), indicate right-hand polarization, and propagate westward. It is suggested that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties.

  4. Statistical Study in the mid-altitude cusp region: wave and particle data comparison using a normalized cusp crossing duration

    NASA Astrophysics Data System (ADS)

    Grison, B.; Escoubet, C. P.; Pitout, F.; Cornilleau-Wehrlin, N.; Dandouras, I.; Lucek, E.

    2009-04-01

    In the mid altitude cusp region the DC magnetic field presents a diamagnetic cavity due to intense ion earthward flux coming from the magnetosheath. A strong ultra low frequency (ULF) magnetic activity is also commonly observed in this region. Most of the mid altitude cusp statistical studies have focused on the location of the cusp and its dependence and response to solar wind, interplanetary magnetic field, dipole tilt angle parameters. In our study we use the database build by Pitout et al. (2006) in order to study the link of wave power in the ULF range (0.35-10Hz) measured by STAFF SC instrument with the ion plasma properties as measured by CIS (and CODIF) instrument as well as the diamagnetic cavity in the mid-altitude cusp region with FGM data. To compare the different crossings we don`t use the cusp position and dynamics but we use a normalized cusp crossing duration that permits to easily average the properties over a large number of crossings. As usual in the cusp, it is particularly relevant to sort the crossings by the corresponding interplanetary magnetic field (IMF) orientation in order to analyse the results. In particular we try to find out what is the most relevant parameter to link the strong wave activity with. The global statistic confirms previous single case observations that have noticed a simultaneity between ion injections and wave activity enhancements. We will also present results concerning other ion parameters and the diamagnetic cavity observed in the mid altitude cusp region.

  5. Monitoring of ULF (ultra-low-frequency) Geomagnetic Variations Associated with Earthquakes

    PubMed Central

    Hayakawa, Masashi; Hattori, Katsumi; Ohta, Kenji

    2007-01-01

    ULF (ultra-low-frequency) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake prediction. This paper reviews previous convincing evidence on the presence of ULF emissions before a few large earthquakes. Then, we present our network of ULF monitoring in the Tokyo area by describing our ULF magnetic sensors and we finally present a few, latest results on seismogenic electromagnetic emissions for recent large earthquakes with the use of sophisticated signal processings.

  6. How did the urban land in floodplains distribute and expand in China from 1992-2015?

    NASA Astrophysics Data System (ADS)

    Du, Shiqiang; He, Chunyang; Huang, Qingxu; Shi, Peijun

    2018-03-01

    Urban land in floodplains (ULF) is a vital component of flood exposure and its variations can cause changes in flood risk. In the context of rapid urbanization, ULF is expanding rapidly in China and imperiling societal sustainability. However, a national-scale analysis of ULF patterns and dynamics has yet to be conducted. Therefore, this study aims to investigate the spatiotemporal changes in China’s ULF at different spatial scales (the country, region, basin, and sub-basin scales) from 1992-2015. We found that ULF accounted for 44.41% of the total urban land in China in 2015, which was 3.68 times greater than the proportion of floodplains relative to the total land area in China (12.06%). From 1992-2015, the ULF area increased by 26.43 × 103 km2, or 542.21%. Moreover, the ULF area is expected to grow by 16.89 × 103 km2 (53.38%) between 2015 and 2050. ULF growth was strongly associated with the flood occurrence in China, and continued growth will pose a considerable challenge to urban sustainability, particularly in basins with poor flood defenses. Greater attention should thus be paid to ULF dynamics in China.

  7. Theoretical investigation of the generation and injection of electromagnetic waves in space plasma by means of a long-orbiting tether

    NASA Technical Reports Server (NTRS)

    Dobrowolny, M.

    1981-01-01

    Analysis of the various mechanisms of electromagnetic wave generation by the shuttle-borne orbiting tether of the T.S.S. Facility shows that significant electrodynamic power levels are available even when overestimating the loss mechanisms expected to intervene. This electrodynamic power is in part dissipated by Joule losses in the tether, in part goes to accelerate electrons through the sheath surrounding the balloon (when in a downward deployment), and in part goes into e.m. wave generation. A preliminary estimate shows that a 100 km tether in orbit would produce ULF/ELF signals that are detectable on the ground with state-of-the-art magnetometric instrumentation.

  8. ULF waves at comets Halley and Giacobini-Zinner - Comparison with simulations

    NASA Astrophysics Data System (ADS)

    Le, G.; Russell, C. T.; Gary, S. P.; Smith, E. J.; Riedler, W.; Schwingenschuh, K.

    1989-09-01

    A comparison is made between observations and numerical simulations of magnetic fluctuations near the proton and water group ion cyclotron frequencies as a function of distance from the comets Halley and Giacobini-Zinner. The amplitude of waves due to different cyclotron resonant instabilities is monitored by examining the amplitude of waves near the gyrofrequency of the respective ions, measured in by the ICE spacecraft. The results are compared with a one-dimensional electromagnetic hybrid simulation of two-ion pickup based on the predictions of Gary et al. (1989). The observations are consistent with the prediction that amplitudes are dependent on the properties of the injected beams and the local injection rate.

  9. Dynamics of the Trapped Electron Phase Space Density in Relation to the Wave Activity in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J.

    2008-05-01

    The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.

  10. A model for the harmonic of compressional Pc 5 waves

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Acuna, M. H.

    1987-01-01

    Compressional Pc 5 magnetic waves in the magnetosphere are a unique phenomenon showing a nonsinusoidal waveform in spite of a well-defined period. Although the waveform can be Fourier-decomposed into the fundamental and the second harmonics, the phase between the two is kept constant from event to event, implying that the waveform is not the result of a chance superposition of two magnetospheric eigenmodes. A phenomenological explanation to this waveform is offered using a field-line configuration model that is a modified version of a previously proposed antisymmetric standing wave. In this model, the location of the equatorial node of field-line displacement is assumed to oscillate with the wave, with a peak-to-peak amplitude greater than 10 percent of the wavelength of the standing wave. The predicted waveform at various magnetic latitudes is found to be in excellent agreement with an observation taken near the magnetic equator by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer spacecraft.

  11. A model for the harmonic of compressional Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Acuna, M. H.

    1987-04-01

    Compressional Pc 5 magnetic waves in the magnetosphere are a unique phenomenon showing a nonsinusoidal waveform in spite of a well-defined period. Although the waveform can be Fourier-decomposed into the fundamental and the second harmonics, the phase between the two is kept constant from event to event, implying that the waveform is not the result of a chance superposition of two magnetospheric eigenmodes. A phenomenological explanation to this waveform is offered using a field-line configuration model that is a modified version of a previously proposed antisymmetric standing wave. In this model, the location of the equatorial node of field-line displacement is assumed to oscillate with the wave, with a peak-to-peak amplitude greater than 10 percent of the wavelength of the standing wave. The predicted waveform at various magnetic latitudes is found to be in excellent agreement with an observation taken near the magnetic equator by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer spacecraft.

  12. PC-5 Waves and Low Energy Plasma in the Outer Magnetosphere

    NASA Technical Reports Server (NTRS)

    Gallanger, Dennis L.; Vaisberg, Oleg L.; Coffey, Victoria N.

    1999-01-01

    The Interball Tail Probe crosses the dayside magnetopause at low latitudes where it frequently measures low energy ion plasma (<100 eV) in the outer magnetosphere. We present the wave characteristics associated with this cold component.

  13. First demonstration of HF-driven ionospheric currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.

    2011-10-01

    The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.

  14. Wave and plasma observations during a compressional Pc 5 wave event August 10, 1982

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Waite, J. H., Jr.; Gallagher, D. L.; Chandler, M. O.; Sugiura, M.

    1986-01-01

    Magnetometer and thermal plasma instruments on the polar-orbiting Dynamics Explorer 1 satellite observed a small-amplitude ultralow frequency pulsation event at the outer edge of the plasmapause near the geomagnetic equator in the midafternoon sector on August 10, 1982, during the recovery phase of a magnetic storm. Transverse pulsations of 30-50 s period were observed throughout the event, and a 270-s period, purely compressional Pc 5 pulsation with several shifts in phase occurred within + or - 5 deg of the geomagnetic equator. Electric fields and the motion of thermal ions appeared to be in quadrature with pulsations in magnetic field magnitude throughout the event. This suggests that the net Poynting flux for the compressional waves was zero, consistent with their being standing waves. Large fluxes of trapped 90 deg pitch angle 10-eV protons, also symmetric about the geomagnetic equator, were observed in conjunction with the waves. These may serve as a source of free energy for the pulsations. These observations lend support to recent studies suggesting that many dayside compressional wave events are related to localized field line resonance near plasmapauselike boundaries, but also include features that cannot be explained by existing theories.

  15. Wave and plasma observations during a compressional Pc 5 wave event August 10, 1982

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Waite, J. H., Jr.; Gallagher, D. L.; Chandler, M. O.; Sugiura, M.; Weimer, D. R.

    1986-06-01

    Magnetometer and thermal plasma instruments on the polar-orbiting Dynamics Explorer 1 satellite observed a small-amplitude ultralow frequency pulsation event at the outer edge of the plasmapause near the geomagnetic equator in the midafternoon sector on August 10, 1982, during the recovery phase of a magnetic storm. Transverse pulsations of 30-50 s period were observed throughout the event, and a 270-s period, purely compressional Pc 5 pulsation with several shifts in phase occurred within + or - 5 deg of the geomagnetic equator. Electric fields and the motion of thermal ions appeared to be in quadrature with pulsations in magnetic field magnitude throughout the event. This suggests that the net Poynting flux for the compressional waves was zero, consistent with their being standing waves. Large fluxes of trapped 90 deg pitch angle 10-eV protons, also symmetric about the geomagnetic equator, were observed in conjunction with the waves. These may serve as a source of free energy for the pulsations. These observations lend support to recent studies suggesting that many dayside compressional wave events are related to localized field line resonance near plasmapauselike boundaries, but also include features that cannot be explained by existing theories.

  16. ‘Conceptualizing’ the Endometrium: Identification of Conceptus-Derived Proteins During Early Pregnancy in Cattle1

    PubMed Central

    Forde, Niamh; Bazer, Fuller W.; Spencer, Thomas E.; Lonergan, Pat

    2015-01-01

    The aim of this study was to identify conceptus-derived proteins, in addition to IFNT, that may facilitate pregnancy recognition in cattle. Analysis of the protein content of the uterine luminal fluid (ULF) from cyclic heifers on Day 16 by nano liquid chromatography tandem mass spectrometry identified 334 proteins. Comparison of these data with 299 proteins identified in the ULF of pregnant heifers on Day 16 identified 85 proteins only present in the ULF of pregnant heifers. Analysis of Day 16 conceptus-conditioned culture medium revealed the presence of 1005 proteins of which 30 proteins were unique to ULF from Day 16 pregnant heifers. Of these 30 proteins, 12 had mRNA expression values at least 2-fold higher in abundance (P < 0.05) in the conceptus compared to the endometrium (ARPC5L, CAPG, CKMT1, CSTB, HSPA8, HSPE1, LGALS3, MSN, NUTF2, P4HB, PRKAR2A, TKT) as determined by RNA sequencing. In addition, genes that have a significant biological interaction with the proteins (ACO2, CKMT1, CSTB, EEF2, GDI1, GLB1, GPLD1, HNRNPA1, HNRNPA2B1, HNRNPF, HSPA8, HSPE1, IDH2, KRT75, LGALS3, MSN, NUTF2, P4HB, PRKAR2A, PSMA4, PSMB5, PSMC4, SERPINA3, TKT) were differentially expressed in the endometrium of pregnant compared to cyclic heifers during the pregnancy recognition period (Days 16–18). These results indicate that 30 proteins unique to ULF from pregnant heifers and produced by short-term in vitro cultured Day 16 conceptuses could potentially be involved in facilitating the interactions between the conceptus and the endometrium during the pregnancy recognition period. PMID:25947061

  17. Generation of Pc 1 waves by the ion temperature anisotropy associated with fast shocks caused by sudden impulses

    NASA Technical Reports Server (NTRS)

    Mandt, M. E.; Lee, L. C.

    1991-01-01

    The high correlation of Pc 1 events with magnetospheric compressions is known. A mechanism is proposed which leads to the generation of Pc 1 waves. The interaction of a dynamic pressure pulse with the earth's bow shock leads to the formation of a weak fast-mode shock propagating into the magnetoshealth. The shock wave can pass right through a tangential discontinuity (magnetopause) and into the magnetosphere, without disturbing either of the structures. In a quasiperpendicular geometry, the shock wave exhibits anisotropic heating. This anisotropy drives unstable ion-cyclotron waves which can contribute to the generation of the Pc 1 waves which are detected. The viability of the mechanism is demonstrated with simulations. This mechanism could explain the peak in the occurrence of observed Pc 1 waves in the postnoon sector where a field-aligned discontinuity in the solar wind would most often be parallel to the magnetopause surface due to the average Parker-spiral magnetic-field configuration.

  18. Interaction of the solar wind with comets: a Rosetta perspective

    NASA Astrophysics Data System (ADS)

    Glassmeier, Karl-Heinz

    2017-05-01

    The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov-Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring-beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the `singing' of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction. This article is part of the themed issue 'Cometary science after Rosetta'.

  19. Coordinated Polar Spacecraft, Geosynchronous Spacecraft, and Ground-based Observations of Magnetopause Oscillations and Pc5 Waves in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Le, G.; Chen, S.; Zheng, Y.; Russell, C. T.; Slavin, J. A.; Huang, C.-S.; Petrinec, S. S.; Moore, T. E.; Samson, J.; Singer, H. J.

    2005-01-01

    In this paper, we present in situ observations of surface waves at the magnetopause and oscillatory magnetospheric field lines, and coordinated observations Pc5 waves at geosynchronous orbit by the GOES spacecraft, and on the ground by CANOPUS and 210 Degree Magnetic Meridian (210MMJ magnetometer arrays. On February 7,2002 during a highspeed solar wind stream, the Polar spacecraft was skimming the magnetopause in a post-noon meridian plane for approximately 3 hours. During this interval, it made two short excursions and a few partial crossings into the magnetosheath and observed quasi-periodic cold ion bursts in the region adjacent to the magnetopause current layer. The multiple magnetopause crossings as well as the velocity of the cold ion bursts indicate that the magnetopause was oscillating with about 6 minute period. Simultaneous observations of Pc5 waves at geosynchronous orbit by the GOES spacecraft and on the ground by the CANOPUS magnetometer array reveal that these magnetospheric pulsations were forced oscillations of magnetic field lines directly driven by the magnetopause oscillations. The magnetospheric pulsations occurred only in a limited longitudinal region in the post-noon dayside sector, and were not a global phenomenon as one would expect for global field line resonance. Thus, the magnetopause oscillations at the source were also limited to a localized region spanning about 4 hours in local time.

  20. A STUDY OF THE η^'π^- SYSTEM PRODUCED IN THE REACTION π^-parrowη^'π^- p AT 18 GeV/c

    NASA Astrophysics Data System (ADS)

    Ivanov-Tatar, Emil

    2000-04-01

    The η^'π^- system has been studied in the reaction π^-parrowη^'π^- p at 18 GeV/c. The partial wave analysis of 6040 kinematically-identified events shows that the reaction is dominated by natural parity exchange. The production of an exotic isovector state π_1(1600) is observed in the I^G(J^PC) = 1^-(1^-+) wave. The mass and the width of that state are estimated via simultaneous mass-dependent fits of the I^G(J^PC) = 1^-(1^-+) and I^G(J^PC) = 1^-(2^++) waves. The a_2^-(1320) and a wide structure at 1.8 GeV/c^2 are observed in the I^G(J^PC) = 1^-(2^++) wave. The amplitude analysis of the mass interval above 1.8 GeV/c^2 indicates an interference between I^G(J^PC) = 1^-(2^++) and I^G(J^PC) = 1^-(4^++) waves.

  1. Radar Ocean Wave Spectrometer (ROWS) preprocessing program (PREROWS2.EXE). User's manual and program description

    NASA Technical Reports Server (NTRS)

    Vaughn, Charles R.

    1993-01-01

    This Technical Memorandum is a user's manual with additional program documentation for the computer program PREROWS2.EXE. PREROWS2 works with data collected by an ocean wave spectrometer that uses radar (ROWS) as an active remote sensor. The original ROWS data acquisition subsystem was replaced with a PC in 1990. PREROWS2.EXE is a compiled QuickBasic 4.5 program that unpacks the recorded data, displays various variables, and provides for copying blocks of data from the original 8mm tape to a PC file.

  2. Self-organizing Large-scale Structures in Earth's Foreshock Waves

    NASA Astrophysics Data System (ADS)

    Ganse, U.; Pfau-Kempf, Y.; Turc, L.; Hoilijoki, S.; von Alfthan, S.; Vainio, R. O.; Palmroth, M.

    2017-12-01

    Earth's foreshock is populated by plasma waves in the ULF regime, assumed to be caused by wave instabilities of shock-reflected particle beams. While in-situ observation of these waves has provided plentiful data of their amplitudes, frequencies, obliquities and relation to local plasma conditions, global-scale structures are hard to grasp from observation data alone. The hybrid-Vlasov simulation system Vlasiator, designed for kinetic modeling of the Earth's magnetosphere, has been employed to study foreshock formation under radial and near-radial IMF conditions on global scales. Structures arising in the foreshock can be comprehensively studied and directly compared to observation results. Our modeling results show that foreshock waves present emergent large-scale structures, in which regions of waves with similar phase exist. At the interfaces of these regions ("spines") we observe high wave obliquity, higher beam densities and lower beam velocities than inside them. We characterize these apparently self-organizing structures through the interplay between wave- and beam properties and present the microphysical mechanisms involved in their creation.

  3. Strange VLF bursts in northern Scandinavia: case study of the afternoon "mushroom-like" hiss on 8 December 2013

    NASA Astrophysics Data System (ADS)

    Manninen, J.; Kleimenova, N. G.; Kozlovsky, A.; Kornilov, I. A.; Gromova, L. I.; Fedorenko, Y. V.; Turunen, T.

    2015-08-01

    We investigate a non-typical very low frequency (VLF) 1-4 kHz hiss representing a sequence of separated noise bursts with a strange "mushroom-like" shape in the frequency-time domain, each one lasting several minutes. These strange afternoon VLF emissions were recorded at Kannuslehto (KAN, ϕ = 67.74° N, λ = 26.27° E; L ∼ 5.5) in northern Finland during the late recovery phase of the small magnetic storm on 8 December 2013. The left-hand (LH) polarized 2-3 kHz "mushroom caps" were clearly separated from the right-hand (RH) polarized "mushroom stems" at the frequency of about 1.8-1.9 kHz, which could match the lower ionosphere waveguide cutoff (the first transverse resonance of the Earth-ionosphere cavity). We hypothesize that this VLF burst sequence could be a result of the modulation of the VLF hiss electron-cyclotron instability from the strong Pc5 geomagnetic pulsations observed simultaneously at ground-based stations as well as in the inner magnetosphere by the Time History of Events and Macroscale Interactions during Substorms mission probe (THEMIS-E; ThE). This assumption is confirmed by a similar modulation of the intensity of the energetic (1-10 keV) electrons simultaneously observed by the same ThE spacecraft. In addition, the data of the European Incoherent Scatter Scientific Association (EISCAT) radar at Tromsø show a similar quasi-periodicity in the ratio of the Hall-to-Pedersen conductance, which may be used as a proxy for the energetic particle precipitation enhancement. Our findings suggest that this strange mushroom-like shape of the considered VLF hiss could be a combined mutual effect of the magnetospheric ULF-VLF (ultra low frequency-very low frequency) wave interaction and the ionosphere waveguide propagation.

  4. Measurement technology for seismomagnetic signals

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Dudkin, Fedir; Marusenkov, Andriy

    2010-05-01

    Ultra low frequency (ULF) band (0.001-3 Hz) is usually used for study of natural magnetic field variations of ionospheric and magnetospheric origin. At present this frequency range gains in importance at monitoring of lithospheric magnetic activity in seismo-hazardous areas for application to short-time earthquake (EQ) forecasting. A big number of publications confirm that ULF magnetic precursors were recorded from few weeks up to few hours before EQ. The measurement technology of these signals has several peculiarities. First, the lithospheric ULF EQ magnetic precursors as a rule are very weak and their frequency range is overlapping with signals of magnetospheric or ionospheric origin. Second, for resolution of magnetic precursors at the background of more powerful sources it is necessary to have magnetic field sensors with wide dynamics and minimum possible spectral noise density (SND) level. Additionally, monitoring of lithospheric activity should be provided in close proximity to probable EQ area and almost in real-time regime. For the study of ULF magnetic precursors the magnetometers with search-coil (SC) and fluxgate (FG) sensors are used. SC sensors for ULF band usually have length 0.8-1.2 m, diameter 10-15 cm and weight few kilograms with SND 0.1-200 pT/Hz0.5 (here and further maximum SND value relates to a lower part of frequency range). FG sensors are very compact (pencil-shaped with length ~ 4 cm) but have greater SND in this band (about 10-500 pT/Hz0.5). Next requirement, if to use SC, is that at 3-component magnetic field measurement it is necessary to provide spacing between sensors about 1-2 of their length for avoiding mutual influence between them. This requirement creates problems caused by non-rigidity of such construction and their spatial instability relatively ground surface (or horizontal plane). In addition, for such a long sensor a ratio of core length/diameter is big enough, what leads to increased SC sensor sensitivity to variety of mechanical deformations of sensor body. These factors increase the real SC SND because of induction effect in the Earth's magnetic field. Simple estimations show that sensitivity to changing of sensor axis direction can achieve a level about 250 pT for one second of arc. To overcome majority of these problems, a specialized FG with length 10 cm has been developed. This newly developed device has SND in ULF band about 1-30 pT/Hz0.5 and moderate consumed power. Additional merit of this sensor is extremely low noise density in the most prospective EQ magnetic precursors frequency range (0.001-0.03 Hz) - about 3-30 pT/Hz0.5- which is less than SND for the best recent SCs. A ULF magnetometer with such a compact solid sensor unit at partial compensation of the Earth's magnetic field in the sensor volume allows drastic decreasing the mechanical artefacts influence and facilitates the constructing of measuring sites for field works. As an example of SND necessity decrease the experimental data from seismo-hazardous region of China are discussed. It is shown that high SND of magnetometers leads to appearance of false background lithospheric signals and complicates the procedure of EQ related signals selection. The comparison of parameter set for FG and SC has been made and a specific design of FG dedicated for seismogenic ULF signals measurements has been discussed. This work is supported by STCU grant 4818.

  5. Vimentin filament precursors exchange subunits in an ATP-dependent manner

    PubMed Central

    Robert, Amélie; Rossow, Molly J.; Hookway, Caroline; Adam, Stephen A.; Gelfand, Vladimir I.

    2015-01-01

    Intermediate filaments (IFs) are a component of the cytoskeleton capable of profound reorganization in response to specific physiological situations, such as differentiation, cell division, and motility. Various mechanisms were proposed to be responsible for this plasticity depending on the type of IF polymer and the biological context. For example, recent studies suggest that mature vimentin IFs (VIFs) undergo rearrangement by severing and reannealing, but direct subunit exchange within the filament plays little role in filament dynamics at steady state. Here, we studied the dynamics of subunit exchange in VIF precursors, called unit-length filaments (ULFs), formed by the lateral association of eight vimentin tetramers. To block vimentin assembly at the ULF stage, we used the Y117L vimentin mutant (vimentinY117L). By tagging vimentinY117L with a photoconvertible protein mEos3.2 and photoconverting ULFs in a limited area of the cytoplasm, we found that ULFs, unlike mature filaments, were highly dynamic. Subunit exchange among ULFs occurred within seconds and was limited by the diffusion of soluble subunits in the cytoplasm rather than by the association and dissociation of subunits from ULFs. Our data demonstrate that cells expressing vimentinY117L contained a large pool of soluble vimentin tetramers that was in rapid equilibrium with ULFs. Furthermore, vimentin exchange in ULFs required ATP, and ATP depletion caused a dramatic reduction of the soluble tetramer pool. We believe that the dynamic exchange of subunits plays a role in the regulation of ULF assembly and the maintenance of a soluble vimentin pool during the reorganization of filament networks. PMID:26109569

  6. Analysis of field-aligned structure of compressional Pc 5 waves and associated energetic ion modulations observed by Polar at L~9.5

    NASA Astrophysics Data System (ADS)

    Capman, E.; Engebretson, M. J.; Pilipenko, V.; Russell, C. T.; Peterson, W. K.

    2012-12-01

    Nearly all previous studies of storm-time compressional Pc 5 waves have used data from low-inclination satellites, so the field-aligned structure of these waves could be determined only statistically or by inference. However, the high inclination of the Polar satellite's orbit allowed it to approximately follow a flux tube across the equator. In this study we present examples of compressional Pc 5 events identified during Polar's 2001-02 and 2002-03 duskside passages. The focus of this presentation is on exploring the field-aligned structure of the observed waves near the geomagnetic equator. At least two frequencies were identified in each event. In many cases these are a 1st (fundamental) harmonic with a node in the field-aligned (Bz) component near the geomagnetic equator, and a 2nd harmonic with an anti-node near the equator. To verify this assumption we applied the analytical signal method, verified by manual hodogram analysis, to monitor the amplitude and phase variations of the radial (Bx) and compressional (Bz) components at certain frequencies. The following transitions occurred near the time when Polar crossed the geomagnetic equator: The phase difference was 0° in the southern hemisphere and then 180° out of phase in the northern hemisphere. The waves were often linearly polarized, and the inclination angle of the polarization ellipse in the Bx-Bz plane was negative in the southern hemisphere and positive in the northern hemisphere. The ellipticity still had a slight positive bias in the southern hemisphere and a slight negative bias in the northern hemisphere. These observational results are compared with the results of modeling of coupled MHD Alfven and slow magnetosonic modes.

  7. Ultra-low field T1 vs. T1rho at 3T and 7T: study of rotationally immobilized protein gels and animal brain tissues

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Inglis, Ben; Barr, Ian; Clarke, John

    2015-03-01

    Clinical magnetic resonance imaging (MRI) machines operating in static fields of typically 1.5 T or 3 T can capture information on slow molecular dynamics utilizing the so-called T1rho technique. This technique, in which a radiofrequency (RF) spin-lock field is applied with microtesla amplitude, has been used, for example, to determine the onset time of stroke in studies on rats. The long RF pulse, however, may exceed the specific absorption rate (SAR) limit, putting subjects at risk. Ultra-low-field (ULF) MRI, based on Superconducting Quantum Interference Devices (SQUIDs), directly detects proton signals at a static magnetic field of typically 50-250 μT. Using our ULF MRI system with adjustable static field of typically 55 to 240 μT, we systematically measured the T1 and T2 dispersion profiles of rotationally immobilized protein gels (bovine serum albumin), ex vivo pig brains, and ex vivo rat brains with induced stroke. Comparing the ULF results with T1rho dispersion obtained at 3 T and 7 T, we find that the degree of protein immobilization determines the frequency-dependence of both T1 and T1rho. Furthermore, T1rho and ULF T1 show similar results for stroke, suggesting that ULF MRI may be used to image traumatic brain injury with negligible SAR. This research was supported by the Henry H. Wheeler, Jr. Brain Imaging Center and the Donaldson Trust.

  8. Ultralow frequency MHD waves in Jupiter's middle magnetosphere

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.; Kivelson, Margaret G.

    1989-01-01

    Ultralow frequency (ULF) magnetohydrodynamic pulsations (periods between 10 and 20 min) were observed on July 8-11, 1979 as Voyager 2 traveled through the middle magnetosphere of Jupiter between radial distances of 10 R(J) and 35 R(J). The particle and magnetic pressure perturbations associated with the waves were anticorrelated. The electron and ion perturbations on the dayside were in phase. The pressure perturbations occurred both within and outside of the plasma sheet. Perturbations in the transverse components of the magnetic field were associated with the compressional perturbations but the transverse power peaked within the plasma sheet of Jupiter and diminished rapidly outside of it.

  9. Field-aligned structure of the storm time Pc 5 wave of November 14-15, 1979

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Higbie, P. R.; Fennell, J. F.; Amata, E.

    1987-06-01

    Magnetic field data from the four satellites SCATHA (P78-2), GOES 2, GOES 3, and GOES 2 have been analyzed to examine the magnetic field-aligned structure of a storm time Pc 5 wave that occurred on November 14-15, 1979. The wave had both transverse and compressional components. At a given instance, the compressional and the radial components oscillated in phase or 180 deg out of phase, and the compressional and the azimuthal components oscillated +90 deg or -90 deg out of phase. In addition, each component changed its amplitude with magnetic latitude: the compressional component had a minimum at the magnetic equator, whereas the transverse components had a maximum at the equator and minima several degrees off the equator. A 180 deg relative phase switching among the components occurred across the latitudes of amplitude minima. From these observations, the field line displacement of the wave is confirmed to have an antisymmetric standing structure about the magnetic equator with a parallel wave length of a few earth radii.

  10. Study of interaction of ELF-ULF range (0.1-200 Hz) electromagnetic waves with the earth's crust and the ionosphere in the field of industrial power transmission lines (FENICS experiment)

    NASA Astrophysics Data System (ADS)

    Zhamaletdinov, A. A.; Shevtsov, A. N.; Velikhov, E. P.; Skorokhodov, A. A.; Kolesnikov, V. E.; Korotkova, T. G.; Ryazantsev, P. A.; Efimov, B. V.; Kolobov, V. V.; Barannik, M. B.; Prokopchuk, P. I.; Selivanov, V. N.; Kopytenko, Yu. A.; Kopytenko, E. A.; Ismagilov, V. S.; Petrishchev, M. S.; Sergushin, P. A.; Tereshchenko, P. E.; Samsonov, B. V.; Birulya, M. A.; Smirnov, M. Yu.; Korja, T.; Yampolski, Yu. M.; Koloskov, A. V.; Baru, N. A.; Poljakov, S. V.; Shchennikov, A. V.; Druzhin, G. I.; Jozwiak, W.; Reda, J.; Shchors, Yu. G.

    2015-12-01

    This article is devoted to describing the theory, technique, and first experimental results of a control source electromagnetic (CSEM) study of the Earth's crust and ionosphere with the use of two mutually orthogonal industrial transmission lines 109 and 120 km in length in the frame of FENICS (Fennoscandian Electrical Conductivity from Natural and Induction Control Source Soundings) experiment. The main part of the measurements is executed on the territory of the Fennoscandian shield at distances from the first hundreds kilometers up to 856 km from the source with the purpose of the deep electromagnetic sounding of the Earth's crust and upper mantle. According to the results of these studies clarifying the parameters of "normal" (standard) geoelectric section of the lithosphere to a depth of 60-70 km, the anisotropy parameters are evaluated and a geothermal and rheological interpretation in conjunction with the analysis of the seismic data is executed. Furthermore, to study the propagation of ELF-LLF waves (0.1-200 Hz) in an "Earth-Ionosphere" waveguide, the measurements are carried out apart from Fennoscandian shield at distances up to 5600 km from the source (in Ukraine, Spitsbergen, Poland, Kamchatka, and other areas). According to the results of these studies, the experimental estimates of the influence of the ionosphere and of the displacement currents on the propagation of ELF-ULF waves in the upper half-space at the different azimuths generation of the primary field are obtained.

  11. Localized double-array stacking analysis of PcP: D″ and ULVZ structure beneath the Cocos plate, Mexico, central Pacific, and north Pacific

    USGS Publications Warehouse

    Hutko, Alexander R.; Lay, Thorne; Revenaugh, Justin

    2009-01-01

    A large, high quality P-wave data set comprising short-period and broadband signals sampling four separate regions in the lowermost mantle beneath the Cocos plate, Mexico, the central Pacific, and the north Pacific is analyzed using regional one-dimensional double-array stacking and modelling with reflectivity synthetics. A data-screening criterion retains only events with stable PcP energy in the final data stacks used for modelling and interpretation. This significantly improves the signal stacks relative to including unscreened observations, allows confident alignment on the PcP arrival and allows tight bounds to be placed on P-wave velocity structure above the core–mantle boundary (CMB). The PcP reflections under the Cocos plate are well modelled without any ultra-low velocity zone from 5 to 20°N. At latitudes from 15 to 20°N, we find evidence for two P-wave velocity discontinuities in the D″ region. The first is ∼182 km above the CMB with a δln Vp of +1.5%, near the same depth as a weaker discontinuity (<+0.5%) observed from 5 to 15°N in prior work. The other reflector is ∼454 km above the CMB, with a δln Vp of +0.4%; this appears to be a shallower continuation of the joint P- and S-wave discontinuity previously detected south of 15° N, which is presumed to be the perovskite to post-perovskite phase transition. The data stacks for paths bottoming below Mexico have PcP images that are well matched with the simple IASP91 structure, contradicting previous inferences of ULVZ presence in this region. These particular data are not very sensitive to any D″ discontinuities, and simply bound them to be <∼2%, if present. Data sampling the lowermost mantle beneath the central Pacific confirm the presence of a ∼15-km thick ultra-low velocity zone (ULVZ) just above the CMB, with δln Vp and δln Vs of around −3 to −4% and −4 to −8%, respectively. The ULVZ models predict previous S-wave data stacks well. The data for this region indicate laterally varying Vp discontinuities in D″, with one subregion having a δln Vp of 0.5% 140 km above the CMB. Beneath the north Pacific, the PcP arrivals are compatible with only weak ULVZ (δln Vp ∼ 0 to −3%), and there is a weak D″ reflector with δln Vp = 0.5%, near 314 km above the CMB. These results indicate localized occurrence of detectable ULVZ structures rather than ubiquitous ULVZ structure and emphasize the distinctiveness between the large low shear velocity province under the central Pacific and circum-Pacific regions.

  12. New observations, new theoretical results and controversies regarding PC 3-5 waves

    NASA Astrophysics Data System (ADS)

    Takahashi, K.

    Observations and theories of medium- to long-period (Pc 3-5) magnetic pulsations excited by magnetospheric particles are described. Satellite observations indicate that most pulsations can be classified into two groups according to their magnetic field polarization. One group has a transverse magnetic perturbation and the other strongly compressional perturbation. Despite this difference in polarization they share common characteristics, including large azimuthal wave number, westward propagation, and antisymmetric field-aligned structure. Recent theories describe these observations in a unified framework. It has been pointed out that trapped energetic ions play an important role in determining the instability threshold and the mode structure of the pulsations. Observations and theories of energetic particle response to the excited pulsations are also described.

  13. Interaction of the solar wind with comets: a Rosetta perspective

    PubMed Central

    2017-01-01

    The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov–Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring--beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the ‘singing’ of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554976

  14. Modulation of auroras by Pc5 pulsations in the dawn sector in association with reappearance of energetic particles at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Saka, O.; Hayashi, K.; Klimushkin, D. Yu.; Mager, P. N.

    2014-04-01

    Geomagnetic Pc5 pulsations were observed in the dawn sector of the auroral zone on 17 January 1994 in association with increased energetic ion fluxes at geosynchronous orbit 10 min after the Pi2 onset. The characteristic properties of auroras associated with these pulsations were studied using movies taken by an all-sky imager. It was found that a pulsating aurora (PA) can be an optical manifestation of the Pc5 waves by a strong poloidal component observed with ground-based magnetometers. Goes7 observations showed compressional pulsations with the same period which can be attributed to the influence of the finite pressure of plasma and field line curvature on the poloidally polarized Alfvén waves. These poloidal pulsations may be generated by the ion injection observed with the LANL 1989-046 satellite. Two auroral arcs were observed north of the PA with optical features characteristic for the toroidal field line resonances: strong localization across L-shells, 180° phase change across the resonance, poleward phase propagation. Thus the Pc5 oscillations split into the toroidal and poloidal mode and oscillated coherently at latitudes from 62°N to 70°N. This study provides observational evidence of polarization splitting of the Alfven oscillation spectrum. Such a polarization splitting would occur in association with the reappearance of the energetic particles at geosynchronous orbit.

  15. ULF Narrowband Emissions Analysis in the Terrestrial Polar Cusps

    NASA Astrophysics Data System (ADS)

    Grison, B.; Pisa, D.

    2013-05-01

    Polar cusps are known to be a key region for transfer of mass and momentum between the adjacent magnetosheath and the magnetosphere. The 4 spacecraft of the Cluster ESA mission crossed the polar cusps in their most distant part to the Earth in the early years of the mission (2000-2004) because of their highly eccentric orbit. The ULF wave activity in the cusp region has been linked with the magnetosheath plasma penetration since HEOS observations (D'Angelo et al., 1974). Wave and particle interaction play an important role in this colisionless plasma. The observed wave activity certainly results from both distant and local generation mechanisms. From Cluster case studies we propose to focus on one aspect for each of this place of generation. Concerning the distant generation, the possibility of a wave generation at the magnetopause itself is investigated. For this purpose we compare the propagation of the emissions on each side of the magnetopasue, i.e. in the cusp and in the magnetosheath. Concerning the local generation, the presence of locally generated waves above the local proton gyrofrequency that display a left hand polarization has been reported in Polar and Cluster studies (Le et al., 2001; Nykyri et al., 2003 ). The Doppler shift was not large enough to explain the observed frequency. We propose here to combine various techniques (k-filtering analysis, WHAMP simulations) to achieve a precise wave vector estimation and to explain these observations. References: D'Angelo, N., A. Bahnsen, and H. Rosenbauer (1974), Wave and particle measurements at the polar cusp, J. Geophys. Res., 79( 22), 3129-3134, doi:10.1029/JA079i022p03129. Le, G., X. Blanco-Cano, C. T. Russell, X.-W. Zhou, F. Mozer, K. J. Trattner, S. A. Fuselier, and B. J. Anderson (2001), Electromagnetic ion cyclotron waves in the high-altitude cusp: Polar observations, J. Geophys. Res., 106(A9), 19067-19079, doi:10.1029/2000JA900163. Nykyri, K., P. J. Cargill, E. A. Lucek, T. S. Horbury, A. Balogh, B. Lavraud, I. Dandouras, and H. Rème, Ion cyclotron waves in the high altitude cusp: CLUSTER observations at varying spacecraft separations, Geophys. Res. Lett., 30(24), 2263, doi:10.1029/2003GL018594, 2003.

  16. Propagation characteristics of Pc 3 compressional waves generated at the dayside magnetopause

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Comfort, R. H.; Musielak, Z. E.; Moore, T. E.; Gallagher, D. L.; Green, J. L.

    1993-01-01

    New, 3D ray tracing of Pc 3 compressional waves from the magnetosheath reveals that the magnetosphere can present a major propagation barrier to the penetration of these waves to the plasmasphere. This barrier is the ion-ion cutoff between the He(+) and O(+) gyroresonances. As a result of the frequency-dependent location of this cutoff, the magnetosphere behaves like a filter for Pc 3 compressional waves, and only low-frequency components of Pc 3 compressional waves can penetrate to inner magnetosphere. Results are in agreement with previous satellite observations. This 'filter action' strongly depends on the relative concentration of He(+) and O(+) and is therefore sensitive to solar and magnetic activity. Ray-tracing results are based on a cold plasma dispersion relation, a semiempirical model of plasma density, and the Mead-Fairfield (1975) magnetic field model.

  17. Properties of ultra low frequency upstream waves at Venus and Saturn: A comparison

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1995-01-01

    The upstream regions of all planets, except Pluto, have been investigated, using in situ spacecraft measurements and a variety of analysis techniques. The detailed studies at Earth indicate that these waves are generated locally in the magnetically connected solar wind by the interaction with ions backstreaming from the shock. However, since the properties of the solar wind vary with heliocentric distance and since properties of planetary shocks depend on plasma beta, interplanetary magnetic field (IMF) spiral angle and Mach number, the amount of heating, acceleration efficiencies, etc. significantly change with heliocentric distance. In turn the waves seen at each planet propagate not in the same but different (physical) propagation modes. In this paper we compare the ULF wave observations at an outer and an inner planet. We use the results of the ratio, quantites easily derivable with sufficient accuracy at each planet. We use the full electromagnetic dispersion relation for comparison with theoretical predictions.

  18. Penetration of ELF currents and electromagnetic fields into the Earth's equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Papadopoulos, K.

    2009-10-01

    The penetration of extremely low frequency (ELF) transient electromagnetic fields and associated currents in the Earth's equatorial E-region plasma is studied theoretically and numerically. In the low-frequency regime, the plasma dynamics of the E-region is characterized by helicon waves since the ions are viscously coupled to neutrals while the electrons remain mobile. For typical equatorial E-region parameters, the plasma is magnetically insulated from penetration of very long timescale magnetic fields by a thin diffusive sheath. Wave penetration driven by a vertically incident pulse localized in space and time leads to both vertical penetration and the triggering of ELF helicon/whistler waves that carry currents obliquely to the magnetic field lines. The study presented here may have relevance for ELF wave generation by lightning discharges and seismic activity and can lead to new concepts in ELF/ULF injection in the earth-ionosphere waveguide.

  19. Testing relativistic electron acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Green, Janet Carol

    2002-09-01

    This dissertation tests models of relativistic electron acceleration in the earth's outer radiation belt. The models fall into two categories: external and internal. External acceleration models transport and accelerate electrons from a source region in the outer magnetosphere to the inner magnetosphere. Internal acceleration models accelerate a population of electrons already present in the inner magnetosphere. In this dissertation, we test one specific external acceleration mechanism, perform a general test that differentiates between internal and external acceleration models, and test one promising internal acceleration model. We test the models using Polar-HIST data that we transform into electron phase space density (PSD) as a function of adiabatic invariants. We test the ultra low frequency (ULF) wave enhanced radial diffusion external acceleration mechanism by looking for a causal relationship between increased wave power and increased electron PSD at three L* values. One event with increased wave power at two L* values and no subsequent PSD increase does not support the model suggesting that ULF wave power alone is not sufficient to cause an electron response. Excessive loss of electrons and the duration of wave power do not explain the lack of a PSD enhancement at low L*. We differentiate between internal and external acceleration mechanisms by examining the radial profile of electron PSD. We observe PSD profiles that depend on local time. Nightside profiles are highly dependent on the magnetic field model used to calculate PSD as a function of adiabatic invariants and are not reliable. Dayside PSD profiles are more robust and consistent with internal acceleration of electrons. We test one internal acceleration model, the whistler/electromagnetic ion cyclotron wave model, by comparing observed pitch angle distributions to those predicted by the model using a superposed epoch analysis. The observations show pitch angle distributions corresponding to electrons with energy >=4.0 MeV becoming more peaked at 90° during the storm recovery phase. The observation is consistent with but does not confirm the model. Our tests indicate that relativistic electrons are accelerated by an internal source acceleration mechanism but we do not identify a unique mechanism.

  20. Major results of the MAARBLE project

    NASA Astrophysics Data System (ADS)

    Daglis, Ioannis A.; Bourdarie, Sebastien; Horne, Richard B.; Khotyaintsev, Yuri; Mann, Ian R.; Santolik, Ondrej; Turner, Drew L.; Balasis, Georgios

    2016-04-01

    The goal of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project was to shed light on the ways the dynamic evolution of the Van Allen belts is influenced by low-frequency electromagnetic waves. MAARBLE was implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employed multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energisation and loss. Particular attention was paid to the role of ULF/VLF waves. Within MAARBLE we created a database containing properties of ULF and VLF waves, based on measurements from the Cluster, THEMIS and CHAMP missions and from the CARISMA and IMAGE ground magnetometer networks. The database is now available to the scientific community through the Cluster Science Archive as auxiliary content. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region has been developed. Multi-spacecraft particle measurements have been incorporated into data assimilation tools, leading to a more accurate estimate of the state of the radiation belts. The synergy of wave and particle observations is in the core of MAARBLE research studies of radiation belt dynamics. Results and conclusions from these studies will be presented in this paper. The MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project has received funding from the European Unions Seventh Framework Programme (FP7-SPACE 2011-1) under grant agreement no. 284520. The complete MAARBLE Team: Ioannis A. Daglis, Sebastien Bourdarie, Richard B. Horne, Yuri Khotyaintsev, Ian R. Mann, Ondrej Santolik, Drew L. Turner, Georgios Balasis, Anastasios Anastasiadis, Vassilis Angelopoulos, David Barona, Eleni Chatzichristou, Stavros Dimitrakoudis, Marina Georgiou, Omiros Giannakis, Sarah Glauert, Benjamin Grison, Zuzana Hrbackova, Andy Kale, Christos Katsavrias, Tobias Kersten, Ivana Kolmasova, Didier Lazaro, Eva Macusova, Vincent Maget, Meghan Mella, Nigel Meredith, Fiori-Anastasia Metallinou, David Milling, Louis Ozeke, Constantinos Papadimitriou, George Ropokis, Ingmar Sandberg, Maria Usanova, Iannis Dandouras, David Sibeck, Eftyhia Zesta.

  1. Magnetospheric filter effect for Pc 3 Alfven mode waves

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.

    1995-01-01

    We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.

  2. Magnetospheric filter effect for Pc 3 Alfven mode waves

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.

    1994-01-01

    We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.

  3. International Space Station United States Laboratory Module Water Recovery Management Subsystem Verification from Flight 5A to Stage ULF2

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Labuda, Laura

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system comprises of seven subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), Vacuum System (VS), Water Recovery and Management (WRM), and Waste Management (WM). This paper provides a summary of the nominal operation of the United States (U.S.) Laboratory Module WRM design and detailed element methodologies utilized during the Qualification phase of the U.S. Laboratory Module prior to launch and the Qualification of all of the modification kits added to it from Flight 5A up and including Stage ULF2.

  4. Pre-Earthquake Unipolar Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Freund, F.

    2013-12-01

    Transient ultralow frequency (ULF) electromagnetic (EM) emissions have been reported to occur before earthquakes [1,2]. They suggest powerful transient electric currents flowing deep in the crust [3,4]. Prior to the M=5.4 Alum Rock earthquake of Oct. 21, 2007 in California a QuakeFinder triaxial search-coil magnetometer located about 2 km from the epicenter recorded unusual unipolar pulses with the approximate shape of a half-cycle of a sine wave, reaching amplitudes up to 30 nT. The number of these unipolar pulses increased as the day of the earthquake approached. These pulses clearly originated around the hypocenter. The same pulses have since been recorded prior to several medium to moderate earthquakes in Peru, where they have been used to triangulate the location of the impending earthquakes [5]. To understand the mechanism of the unipolar pulses, we first have to address the question how single current pulses can be generated deep in the Earth's crust. Key to this question appears to be the break-up of peroxy defects in the rocks in the hypocenter as a result of the increase in tectonic stresses prior to an earthquake. We investigate the mechanism of the unipolar pulses by coupling the drift-diffusion model of semiconductor theory to Maxwell's equations, thereby producing a model describing the rock volume that generates the pulses in terms of electromagnetism and semiconductor physics. The system of equations is then solved numerically to explore the electromagnetic radiation associated with drift-diffusion currents of electron-hole pairs. [1] Sharma, A. K., P. A. V., and R. N. Haridas (2011), Investigation of ULF magnetic anomaly before moderate earthquakes, Exploration Geophysics 43, 36-46. [2] Hayakawa, M., Y. Hobara, K. Ohta, and K. Hattori (2011), The ultra-low-frequency magnetic disturbances associated with earthquakes, Earthquake Science, 24, 523-534. [3] Bortnik, J., T. E. Bleier, C. Dunson, and F. Freund (2010), Estimating the seismotelluric current required for observable electromagnetic ground signals, Ann. Geophys., 28, 1615-1624. [4] Bleier, T., C. Dunson, M. Maniscalco, N. Bryant, R. Bambery, and F. Freund (2009), Investigation of ULF magnetic pulsations, air conductivity changes, infrared signatures associated with the 30 October 2007 Alum Rock M5.4 earthquake, Nat. Hazards Earth Syst. Sci., 9, 585-603. [5] Heraud, J. A., V, A. Centa, T. Bleier, and C. Dunson (2013), Determining future epicenters by triangulation of magnetometer pulses in Peru, AGU Fall Meeting, Session NH014

  5. Simultaneous Traveling Convection Vortex (TCV) Events and Pc 1-2 Wave Bursts at Cusp/Cleft Latitudes observed in Arctic Canada and Svalbard

    NASA Astrophysics Data System (ADS)

    Posch, J. L.; Witte, A. J.; Engebretson, M. J.; Murr, D.; Lessard, M.; Raita, T.; Singer, H. J.

    2010-12-01

    Traveling convection vortices (TCVs), which appear in ground magnetometer records at near-cusp latitudes as solitary ~5 mHz pulses, are now known to originate in instabilities in the ion foreshock just upstream of Earth’s bow shock. They can also stimulate compressions or relaxations of the dayside magnetosphere (evident in geosynchronous satellite data). These transient compressions can in turn sharply increase the growth rate of electromagnetic ion cyclotron (EMIC) waves, which also appear in ground records at near-cusp latitudes as bursts of Pc 1-2 pulsations. In this study we have identified simultaneous TCV - Pc 1-2 burst events occurring from 2008 through the first 7 months of 2010 in Eastern Arctic Canada and Svalbard, using a combination of fluxgate magnetometers (MACCS and IMAGE) and search coil magnetometers in each region. Magnetometer observations at GOES 10 and 12, at longitudes near the MACCS sites, are also used to characterize the strength of the magnetic perturbations. There is no direct proportion between the amplitude of TCV and Pc 1-2 wave events in either region, consistent with the highly variable densities and pitch angle distributions of plasma of ring current / plasma sheet energies in the outer dayside magnetosphere.

  6. Seismo-electromagnetic phenomena in the western part of the Eurasia-Nubia plate boundary

    NASA Astrophysics Data System (ADS)

    Gonçalves da Silva, Hugo; Bezzeghoud, Mourad; Biagi, Pier; Namorado Rosa, Rui; Salgueiro da Silva, Manuel; Caldeira, Bento; Heitor Reis, Artur; Borges, José Fernando; Tlemçani, Mouhaydine; Manso, Marco

    2010-05-01

    This paper presents a future research plan that aims to monitor Seismo-electromagnetic (SEM) phenomena in the western part of the Eurasia-Nubia plate boundary (WENP). This region has a significant tectonic activity [1] combined with relatively low electromagnetic noise levels and for that reason presents the possibility to perform high quality SEM measurements. Further, it is known that low-frequency [ultra (ULF), very (VLF), and low-frequencies (LF)] electromagnetic (EM) waves produce more convincing earthquake precursors (compared to higher frequencies) because of less contamination, large skin depth, and low attenuation [2]. Thus, two SEM effects will be considered: ULF electromagnetic field emissions [3], and VLF/LF radio broadcastings [4]. With respect to the ULF measurements, as a start, three ULF sensors are planned to be installed in the South of Iberian Peninsula supported by the existing networks of seismic research stations. Subsequent development of this initial plan could result in the implementation of a lager ULF monitoring network not only in the Iberian Peninsula, but also in the rest of Europe. Possible integration in the SEGMA array is now under consideration. Another perspective is to use a portable station to track seismic events. Regarding the VLF/LF radio broadcastings, a receiver is planned to be mounted in University of Évora. Radio signals from up to 10 transmitters (in these bands) of interest to study the seismic activity in the WENP region will be monitored. Actually, the radio path from the transmitter to the receiver should cross the epicentral area, therefore two possible transmitters are the ones installed in Monaco (France) and Sicily (Italy). Furthermore, the system will integrate the INFREP network and in this context it will not be restricted to WENP region. With the development of these research plans we aim to collect novel SEM data emerging from the seismic activity in the WENP region. We expect to address the time variations of EM properties of the crust/plate in relation with the strain field, and in space in relation with composition and temperature and stress fields. Further, the interplay between atmospheric (and solar) perturbations with crust perturbations will be monitored, to observe geomagnetic perturbations at different locations. Our study will be focused in the analyses of low magnitude earthquakes with M =< 4, these events are frequent in the WENP region, but have been almost completely disregarded in literature [5,6]. [1] J. Borges, A. J. S. Fitas, M. Bezzeghoud, and P. Teves-Costa, Tectonophysics 337, 373 (2001). [2] V. Chauhan, O.P. Singh, V. Kushwah, V. Singh, B. Singh, Journal of Geodynamics 48, 68 (2009). [3] L. Telesca, V. Lapenna, M. Macchiato, and K. Hattori, Earth and Planet. Science Lett. 268, 219 (2008). [4] P. F. Biagi, L. Castellana, T. Maggipinto, D. Loiacono, L. Schiavulli, T. Ligonzo, M. Fiore, E. Suciu, and A. Ermini, Nat. Hazards Earth Syst. Sci. 9, 1551 (2009). [5] A. Rozhnoi , M.S. Solovieva, O.A. Molchanov, and M. Hayakawa, Phys. and Chem. of the Earth 29, 589-598 (2004). [6] K. Hattori, I. Takahashi, C. Yoshino, N. Isezaki, H. Iwasaki, M. Harada, K. Kawabata, E. Kopytenko, Y. Kopytenko, P. Maltsev, V. Korepanov, O. Molchanov, M. Hayakawa, Y. Noda, T. Nagao, S. Uyeda, Physics and Chemistry of the Earth 29, 481-494 (2004).

  7. Vascular responses to manual PC6 acupuncture in nonsmokers and smokers assessed by the second derivative of the finger photoplethysmogram waveform.

    PubMed

    Rivas-Vilchis, José F; Escorcia-Gaona, Ricardo; Cervantes-Reyes, Jorge A; Román-Ramos, Rubén

    2008-09-01

    Smoking is reported to increase arterial stiffness. Indices obtained from the second derivative of digital volume pulse (SDDVP) waveform have been proposed to characterize vascular aging and arterial rigidity. PC6 (Neiguan) is a traditional acupoint in each forearm that has been shown to modify cardiovascular functioning. To investigate the acute effects of manual needling with PC6 on SDDVP indices in healthy chronic smoker and nonsmoker subjects. Aging index (AI) was defined as (b - c - d - e)/a, B:A was calculated as the ratio of the absolute value for the height of the b wave (B) to that of the a wave (A), and D:A was calculated as the ratio of the absolute value for the height of the d wave (D) to that of the a wave (A). These indices derived of the wave components of SDDVP of healthy nonsmokers (n=40; 28.3+/-3.0 years old) vs. chronic smokers (n=30; 29.9+/-2.9 years old) were compared. The digital volume pulse (DVP) was obtained by measuring infrared light transmission through the finger. Of each subject, a DVP registration 20 minutes long was obtained. PC6 was stimulated unilaterally by manual needling for 5 minutes (1-6 minutes). SDDVP indices were compared in each subject in pre- vs. post-acupuncture periods (30 seconds vs. 18 minutes, respectively). At baseline, we found significant difference in B:A between nonsmokers and smokers. Comparing pre- vs. post-acupuncture periods, B:A and D:A did not show significant differences among nonsmokers, but B:A improved significantly in smokers and AI improved significantly in both nonsmokers and smokers. These findings suggest that manual needling with PC6 could revert some of the deleterious effects on vascular functioning produced by chronic cigarette smoking.

  8. Investigating the effect of background magnetic field on the resonance condition between EMIC waves and relativistic electrons

    NASA Astrophysics Data System (ADS)

    Woodger, L. A.; Millan, R. M.

    2017-12-01

    Balloon-borne x-ray detectors observe bremsstrahlung from precipitating electrons, offering a unique opportunity to observe sustained precipitation from a quasi-geosynchronous platform. Recent balloon observations of duskside relativistic electron precipitation (REP) on BARREL confirm that Electro-Magnetic Ion Cyclotron (EMIC) waves cause electron precipitation [e.g. Li et al., 2014]. However, BARREL observations show precipitation does not occur everywhere that waves are observed; precipitation is confined to narrow magnetic local time (MLT) regions in the duskside magnetosphere [Blum et al., 2015]. Furthermore, modulation of relativistic electron precipitation on Ultra Low Frequency (ULF) wave (f < 20 mHz) timescales has been reported in several events from balloon X-ray observations [Foat et al., 1998; Millan et al., 2002]. Wave-particle interaction between relativistic electrons and EMIC waves is a highly debated loss processes contributing to the dynamics of Earth's radiation belts. We present REP from balloon x-ray observations in the context of precipitation driven by EMIC waves. We investigate how background magnetic field strength could drive the localization, distribution, and temporal structure of the precipitating electrons.

  9. Temporal-Spatial Pattern of Pre-earthquake Signatures in Atmosphere and Ionosphere Associated with Major Earthquakes in Greece.

    NASA Astrophysics Data System (ADS)

    Calderon, I. S.; Ouzounov, D.; Anagnostopoulos, G. C.; Pulinets, S. A.; Davidenko, D.; Karastathis, V. K.; Kafatos, M.

    2015-12-01

    We are conducting validation studies on atmosphere/ionosphere phenomena preceding major earthquakes in Greece in the last decade and in particular the largest (M6.9) earthquakes that occurred on May 24, 2014 in the Aegean Sea and on February 14, 2008 in South West Peloponisos (Methoni). Our approach is based on monitoring simultaneously a series of different physical parameters from space: Outgoing long-wavelength radiation (OLR) on the top of the atmosphere, electron and electron density variations in the ionosphere via GPS Total Electron Content (GPS/TEC), and ULF radiation and radiation belt electron precipitation (RBEP) accompanied by VLF wave activity into the topside ionosphere. In particular, we analyzed prospectively and retrospectively the temporal and spatial variations of various parameters characterizing the state of the atmosphere and ionosphere several days before the two M6.9 earthquakes. Concerning the Methoni EQ, DEMETER data confirm an almost standard profile before large EQs, with TEC, ULF, VLF and RBEP activity preceding some (four) days the EQ occurrence and silence the day of EQ; furthermore, during the period before the EQ, a progressive concentration of ULF emission centers around the future epicenter was confirmed. Concerning the recent Greek EQ of May 24, 2014, thermal anomaly was discovered 30 days and TEC anomaly 38 hours in advance accordingly. The spatial characteristics of pre-earthquake anomalous behavior were associated with the epicentral region. Our analysis of simultaneous space measurements before the great EQs suggests that they follow a general temporal-spatial pattern, which has been seen in other large EQs worldwide.

  10. Coupling of ELF/ULF energy from lightning and MeV particles to the middle atmosphere, inosphere, and global circuit

    NASA Technical Reports Server (NTRS)

    Hale, Leslie C.

    1994-01-01

    In an attempt to explain numerous atmospheric electrical phenomena, the elements of the global electrical circuit are reexamined. In addition to being a 'quasi-static 'DC' generator' and source of radiated energy at VLF and higher, the thunderstorm is found to be a pulse generator, with most of the external energy contained in ELF and ULF pulse currents to the ionosphere (and Earth). The pulse energy is found to deposit largely in the middle atmosphere above the thunderstorm. The VLF and above components are well understood, as are the ULF components due to the conductivity gradient. However, a previously poorly understood ELF component on the millsecond timescale, or 'slow tail,' contains a large fraction of the electrical energy. This component couples strongly to the ionosphere and also launches a unipolar transverse electromagnetic (TEM) wavelet in the radial Earth-ionosphere transmission line. The increase in charge with distance associated with such wavelets, and their ensemble sum at a point, may explain some large mesospheric 'DC' fields but there are still difficulties explaining other than rare occurrences, except for antipodal reconvergence. These millisecond duration unipolar wavelets also coupled to the ionosphere and may trigger other lightning at a distance. A schema is elucidated by which the charge of MeV particles deposited in the middle atmosphere persists for much longer than the local relaxation time. This also gives rise to unipolar waves of global extent which may explain lower-latitude field perturbations associated with solar/geomagnetic events.

  11. Cluster observations of band-limited Pc 1 waves associated with streaming H+ and O+ ions in the high-altitude plasma mantle

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Kahlstorf, C. R. G.; Murr, D. L.; Posch, J. L.; Keiling, A.; Lavraud, B.; Rème, H.; Lessard, M. R.; Kim, E.-H.; Johnson, J. R.; Dombeck, J.; Grison, B.; Robert, P.; Glassmeier, K.-H.; Décréau, P. M. E.

    2012-10-01

    Bursts of band-limited Pc 1 waves (0.2 to ˜1.0 Hz) with normalized frequency f/fH+ ˜ 0.5 have been observed by the Cluster spacecraft during many passes through the high-latitude plasma mantle. These transverse, left-hand polarized waves are associated with regions of H+ and O+ ions streaming away from Earth along magnetic field lines at the same velocity (˜140 km/s). Waves were observed only when H+ fluxes increased by factors of 10-1000 and energies of both ion species increased by factors of up to 10. We present two satellite-ground conjunctions to demonstrate the high latitude localization of these waves and their ability to reach the polar ionosphere and two extended examples of waves and associated ion distribution functions near the southern dusk flank magnetopause. We also present the results of a search for all such events during Cluster's 2002 and 2003 passages through the magnetotail, with orbital precession covering dawn to dusk on Earth's night side (June through December). A total of 46 events (band-limited Pc 1-2 waves accompanied by a sustained population of streaming H+ and O+ ions, separated by at least 12 min) were observed on 29 days. The waves were generally associated with intervals of southward IMF Bz and/or large IMF By (times of active cusp reconnection), and often but not always occurred during the main phase or early recovery phase of magnetic storms. Analysis of selected events shows that the waves are associated with large H+ temperature anisotropy, and that the waves propagate opposite to the direction of the streaming ions. A wave instability analysis using the WHAMP code confirms that the generation of these waves, via the ion cyclotron instability, is basically consistent with known physics. Their extended region of wave growth is likely, however, to reach tailward significantly beyond the Cluster orbit.

  12. Radial Diffusion study of the 1 June 2013 CME event using MHD simulations.

    NASA Astrophysics Data System (ADS)

    Patel, M.; Hudson, M.; Wiltberger, M. J.; Li, Z.; Boyd, A. J.

    2016-12-01

    The June 1, 2013 storm was a CME-shock driven geomagnetic storm (Dst = -119 nT) that caused a dropout affecting all radiation belt electron energies measured by the Energetic Particle, Composition and Thermal Plasma Suite (ECT) instrument on Van Allen Probes at higher L-shells following dynamic pressure enhancement in the solar wind. Lower energies (up to about 700 keV) were enhanced by the storm while MeV electrons were depleted throughout the belt. We focus on depletion through radial diffusion caused by the enhanced ULF wave activity due to the CME-shock. This study utilities the Lyon-Fedder-Mobarry (LFM) model, a 3D global magnetospheric simulation code based on the ideal MHD equations, coupled with the Magnetosphere Ionosphere Coupler (MIX) and Rice Convection Model (RCM). The MHD electric and magnetic fields with equations described by Fei et al. [JGR, 2006] are used to calculate radial diffusion coefficients (DLL). These DLL values are input into a radial diffusion code to recreate the dropouts observed by the Van Allen Probes. The importance of understanding the complex role that ULF waves play in radial transport and the effects of CME-driven storms on the relativistic energy electrons in the radiation belts can be accomplished using MHD simulations to obtain diffusion coefficients, initial phase space density and the outer boundary condition from the ECT instrument suite and a radial diffusion model to reproduce observed fluxes which compare favorably with Van Allen Probes ECT measurements.

  13. Possible precursors to the 2011 3/11 Japan earthquake:

    NASA Astrophysics Data System (ADS)

    Hayakawa, M.; Hobara, Y.; Schekotov, A.; Rozhnoi, A.; Solovieva, M.

    2012-04-01

    The purpose of this paper is to present a possible precursor to the 2011 March 11 Japan earthquake. First of all, we present the results on subionospheric VLF/LF propagation anomaly (ionospheric perturbation) by means of Japan-Russia VLF network. It is found that the ionospheric perturbation is clearly detected on March 4, 5 and 6 on the propagation paths of NLK (Seattle, USA) to Japanese stations and on a path of JJI (Miyazaki, Kyushu) to Kamchatka. Next, we present the results on the ULF depression (horizontal component) on the same days, which is interpreted in terms of the absorption in the disturbed lower ionosphere of the downgoing magnetospheric Alfve'n waves. These two precursors are considered to be due to the same effect of the lower ionospheric perturbation about one week before the earthquake.

  14. One-way mode transmission in one-dimensional phononic crystal plates

    NASA Astrophysics Data System (ADS)

    Zhu, Xuefeng; Zou, Xinye; Liang, Bin; Cheng, Jianchun

    2010-12-01

    We investigate theoretically the band structures of one-dimensional phononic crystal (PC) plates with both antisymmetric and symmetric structures, and show how unidirectional transmission behavior can be obtained for either antisymmetric waves (A modes) or symmetric waves (S modes) by exploiting mode conversion and selection in the linear plate systems. The theoretical approach is illustrated for one PC plate example where unidirectional transmission behavior is obtained in certain frequency bands. Employing harmonic frequency analysis, we numerically demonstrate the one-way mode transmission for the PC plate with finite superlattice by calculating the steady-state displacement fields under A modes source (or S modes source) in forward and backward direction, respectively. The results show that the incident waves from A modes source (or S modes source) are transformed into S modes waves (or A modes waves) after passing through the superlattice in the forward direction and the Lamb wave rejections in the backward direction are striking with a power extinction ratio of more than 1000. The present structure can be easily extended to two-dimensional PC plate and efficiently encourage practical studies of experimental realization which is believed to have much significance for one-way Lamb wave mode transmission.

  15. Ionospheric modification by radio waves: An overview and novel applications

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.

    2008-12-01

    High-power high-frequency radio waves, when beamed into the Earth's ionosphere, can heat the plasma by particle collisions in the D-layer or generate wave-plasma resonances in the F-layer. These basic phenomena have been used in many research applications. In the D-layer, ionospheric currents can be modulated through conductance modification to produce artificial ULF and VLF waves, which propagate allowing magnetospheric research. In the mesopause, PMSE can be modified allowing dusty plasma research. In the F-layer, wave-plasma interactions generate a variety of artificially stimulated phenomena, such as (1) magnetic field-aligned plasma irregularities linked to anomalous radio wave absorption, (2) stimulated electromagnetic emissions linked to upper-hybrid resonance, (3) optical emissions linked to electron acceleration and collisions with neutrals, and (4) Langmuir turbulence linked to enhanced radar backscatter. These phenomena are reviewed. In addition, some novel applications of ionospheric heaters will be presented, including HF radar sounding of the magnetosphere, the production of E-region optical emissions, and measurements of D-region electron temperature for controlled PMSE research.

  16. Structural Characterization of Unsaturated Phosphatidylcholines Using Traveling Wave Ion Mobility Spectrometry

    PubMed Central

    Kim, Hugh I.; Kim, Hyungjun; Pang, Eric S.; Ryu, Ernest K.; Beegle, Luther W.; Loo, Joseph A.; Goddard, William A.; Kanik, Isik

    2009-01-01

    A number of phosphatidylcholine (PC) cations spanning a mass range of 400 to 1000 Da are investigated using electrospray ionization mass spectrometry coupled with traveling wave ion mobility spectrometry (TWIMS). A high correlation between mass and mobility is demonstrated with saturated phosphatidylcholine cations in N2. A significant deviation from this mass-mobility correlation line is observed for the unsaturated PC cation. We found that the double bond in the acyl chain causes a 5% reduction in drift time. The drift time is reduced at a rate of ~1% for each additional double bond. Theoretical collision cross sections of PC cations exhibit good agreement with experimentally evaluated values. Collision cross sections are determined using the recently derived relationship between mobility and drift time in TWIMS stacked ring ion guide (SRIG) and compared to estimate collision cross-sections using empiric calibration method. Computational analysis was performed using the modified trajectory (TJ) method with nonspherical N2 molecules as the drift gas. The difference between estimated collision cross-sections and theoretical collision cross-sections of PC cations is related to the sensitivity of the PC cation collision cross-sections to the details of the ion-neutral interactions. The origin of the observed correlation and deviation between mass and mobility of PC cations is discussed in terms of the structural rigidity of these molecules using molecular dynamic simulations. PMID:19764704

  17. Excitation of the ionospheric Alfvén resonator from the ground: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C.-L.; Labenski, J.; Milikh, G.; Vartanyan, A.; Snyder, A. L.

    2011-10-01

    We report results from numerical and experimental studies of the excitation of ULF shear Alfvén waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during the October-November 2010 experimental campaign reveal that the IAR quality is higher during nighttime conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low Earth orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, (1) observations from the ground-based magnetometer at the HAARP site demonstrate no significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and (2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  18. Excitation of Ionospheric Alfvén Resonator with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C.; Labenski, J.; Milikh, G. M.; Vartanyan, A.; Snyder, A. L.

    2011-12-01

    We report results from numerical and experimental studies of the excitation of ULF waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during October-November 2010 experimental campaign reveal that the IAR quality is higher during night-time conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low-Earth-orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, 1) observations from the ground-based magnetometer at the HAARP site demonstrate no any significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and 2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  19. Development of Wave Turbine Emulator in a Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Vinatha, U.; Vittal K, P.

    2013-07-01

    Wave turbine emulator (WTE) is an important equipment for developing wave energy conversion system. The emulator reflects the actual behavior of the wave turbine by reproducing the characteristics of real wave turbine without reliance on natural wave resources and actual wave turbine. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators. The emulator can be used for research applications to drive an electrical generator in a similar way as a practical wave turbine. This article presents the development of a WTE in a laboratory environment and studies on the behavior of electrical generator coupled to the emulator. The structure of a WTE consists of a PC where the characteristics of the turbine are implemented, ac drive to emulate the turbine rotor, feedback mechanism from the drive and power electronic equipment to control the drive. The feedback signal is acquired by the PC through an A/D converter, and the signal for driving the power electronic device comes from the PC through a D/A converter.

  20. Field-aligned structure of the storm time Pc 5 wave of November 14-15, 1979

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Higbie, P. R.; Fennell, J. F.; Amata, E.

    1988-02-01

    Magnetic field data from the four satellites--SCATHA (P78-2), GOES 2, GOES 3, and GEOS 2--have been analyzed to examine the magnetic-field-aligned structure of a storm time Pc 5 wave which occurred on November 14-15, 1979. The wave had both transverse and compressional components. At a given instance, the compressional and the radial components oscillated in phase or 180 deg out of phase, and the compressional and the azimuthal components oscillated +90 deg or -90 deg out of phase. In addition, each component changed its amplitude with magnetic latitude: the compressional component had a minimum at the magnetic equator, whereas the transverse components had a maximum at the equator and minima several degrees off the equator. At 180 deg relative phase switching among the components occurred across the latitudes of amplitude minima. From these observations, the field-line displacement of the wave is confirmed to have an antisymmetric standing structure about the magnetic equator with a parallel wave length of a few earth radii. We aslo observed other intriguing properties of the wave, such as different parallel wavelengths of different field components and small-amplitude second harmonics near the nodes. A dielectric tensor appropriate for the ring current plasma is found to give an explanation for the relation between the polarization and the propagation of the wave. However, plasma data available from SCATHA do not support either the drift-mirror instability of Hasegawa or tht coupling between a drift mirror wave and a shear Alfven wave, as discussed by Walker et al.

  1. Are there new findings in the search for ULF magnetic precursors to earthquakes?

    NASA Astrophysics Data System (ADS)

    Masci, F.; Thomas, J. N.

    2015-12-01

    Moore (1964) in a letter published in Nature reported disturbances in geomagnetic field data prior to the 27 March 1964 Alaska earthquake. After the publication of this report, many papers have shown magnetic changes preceding earthquakes. However, a causal relationship between preearthquake magnetic changes and impending earthquakes has never been demonstrated. As a consequence, after 50 years, magnetic disturbances in the geomagnetic field are still candidate precursory phenomena. Some researchers consider the investigation of ultra low frequency (ULF: 0.001-10 Hz) magnetic data the correct approach for identifying precursory signatures of earthquakes. Other researchers, instead, have recently reviewed many published ULF magnetic changes that preceded earthquakes and have shown that these are not actual precursors. The recent studies by Currie and Waters (2014) and Han et al. (2014) aim to provide relevant new findings in the search for ULF magnetic precursory signals. However, in order to contribute to science, alleged precursors must be shown to be valid and reproducible by objective testing. Here we will briefly discuss the state of the art in the search for ULF magnetic precursors, paying special attention to the recent findings of Currie and Waters (2014) and Han et al. (2014). We do not see in these two reports significant evidence that may support the observation of precursory signatures of earthquakes in ULF magnetic records.

  2. Logging impacts on forest structure and seedling dynamics in a Prioria copaifera (Fabaceae) dominated tropical rain forest (Talamanca, Costa Rica).

    PubMed

    Valverde-Barrantes, Oscar J; Rocha, Oscar J

    2014-03-01

    The factors that determine the existence of tropical forests dominated by a single species (monodominated forests) have been the subject of debate for a long time. It has been hypothesized that the low frequency of disturbances in monodominated forests and the tolerance to shade of the monodominant species are two important factors explaining the prolonged dominance of a single species. We determined the role of these two factors by examining the effects of logging activities on the floristic composition and seedling dynamics in a Prioria copaifera dominated forest in Southeastern Costa Rica. We determined the floristic composition for trees > or = 2.5cm DBH and the associated recruitment, survival and mortality of tree canopy seedlings in two sites logged two (L-02) and 12 years (L-12) prior to sampling and an unlogged forest (ULF). Our results showed that L-02 stands had lower species richness (25 species) than the L-12 and ULF stands (49 and 46 species, respectively). As expected, we found significant logging effects on the canopy structure of the altered forests, particularly when comparing the L-02 and the ULF stands. Seedling density was higher in ULF (0.96 seedlings/ m2) than in the L-02 and L-12 stands (0.322 and 0.466 seedlings/m2, respectively). However, seedling mortality was higher in the ULF stands (54%) than in the L-02 (26%) and L-12 (15%) stands. P. macroloba in L-02 was the only species with abundant regeneration under P. copaifera in L-02 stand, where it accounted for 35% of the seedlings. Despite the reduction in seedling abundance observed after logging, P. copaifera seems to maintain large seedling populations in these forests, suggesting that this species maintains its dominance after logging disturbances. Our findings challenge the hypothesis that the regeneration of monodominant species is not likely to occur under heavily disturbed canopy conditions.

  3. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    DOE PAGES

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; ...

    2016-08-16

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less

  4. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less

  5. [Effect of Electroacupuncture at "Neiguan" (PC 6) and "Tianshu" (ST 25) for Colonic Motility and D 2 Receptor in Irritable Bowel Syndrome Rats].

    PubMed

    Wang, Shan; Guo, Meng-Wei; Gao, Yu-Shan; Ren, Xiao-Xuan; Lan, Ying; Ji, Mao-Xian; Wu, Yan-Ying; Li, Kai-Ge; Tan, Li-Hua; Sui, Ming-He

    2018-01-25

    To observe and compare the effects of electroacupuncture (EA) at "Tianshu" (ST 25) and "Neiguan" (PC 6) for colonic motility and the expression of colon dopamine D 2 in irritable bowel syndrome (IBS) rats, and to explore the specificity of different meridians and different acupoints. Forty Wistar newborn rats were randomly divided into blank, model, Tianshu and Neiguan groups. Separation of mother and child and acetic acid coloclyster combined with colorectal distension were used to establish IBS model in the model, Tianshu and Neiguan groups. At the age of 9 weeks, EA at bilateral ST 25 and PC 6 were applied in the corresponding groups 5 times, once every other day. After the intervention, the Bristol fecal score, the latent period of abdominal retraction reflex and the number of contraction waves were recorded. The expression of dopamine D 2 receptor was detected by immunohistochemistry. Compared with the blank group, the Bristol fecal score of the model group was higher ( P <0.01), the 1 st contraction wave latent period was shorter ( P <0.01), the number of contraction waves in 90 s increased ( P <0.01), the immunoreactive expression of D 2 receptor in colon decreased ( P <0.01). Compared with the model group, the Bristol fecal scores of the Tianshu and Neiguan groups decreased ( P <0.01), the 1 st contraction wave latent periods were longer ( P <0.01), the numbers of contraction waves in 90 s decreased ( P <0.01), the positive expressions of D 2 receptor in colon increased ( P <0.01, P <0.05). Compared with the Tianshu group, the immunoreactive expression of D 2 receptor in the Neiguan group decreased ( P <0.01). EA at ST 25 and PC 6 can improve the symptoms of colonic motility in IBS rats. The effect of EA at ST 25 is better, which indicates that different meridians and different acupoints play specific effects.

  6. Perseverative Cognition as an Explanatory Mechanism in the Relation Between Job Demands and Sleep Quality.

    PubMed

    Van Laethem, Michelle; Beckers, Debby G J; Geurts, Sabine A E; Garefelt, Johanna; Magnusson Hanson, Linda L; Leineweber, Constanze

    2018-04-01

    The aim of this longitudinal three-wave study was to examine (i) reciprocal associations among job demands, work-related perseverative cognition (PC), and sleep quality; (ii) PC as a mediator in-between job demands and sleep quality; and (iii) continuous high job demands in relation to sleep quality and work-related PC over time. A representative sample of the Swedish working population was approached in 2010, 2012, and 2014, and 2316 respondents were included in this longitudinal full-panel survey study. Structural equation modelling was performed to analyse the temporal relations between job demands, work-related PC, and sleep quality. Additionally, a subsample (N = 1149) consisting of individuals who reported the same level of exposure to job demands during all three waves (i.e. stable high, stable moderate, or stable low job demands) was examined in relation to PC and sleep quality over time. Analyses showed that job demands, PC, and poor sleep quality were positively and reciprocally related. Work-related PC mediated the normal and reversed, direct across-wave relations between job demands and sleep quality. Individuals with continuous high job demands reported significantly lower sleep quality and higher work-related PC, compared to individuals with continuous moderate/low job demands. This study substantiated reciprocal relations between job demands, work-related PC, and sleep quality and supported work-related PC as an underlying mechanism of the reciprocal job demands-sleep relationship. Moreover, this study showed that chronically high job demands are a risk factor for low sleep quality.

  7. E-wave generated intraventricular diastolic vortex to L-wave relation: model-based prediction with in vivo validation.

    PubMed

    Ghosh, Erina; Caruthers, Shelton D; Kovács, Sándor J

    2014-08-01

    The Doppler echocardiographic E-wave is generated when the left ventricle's suction pump attribute initiates transmitral flow. In some subjects E-waves are accompanied by L-waves, the occurrence of which has been correlated with diastolic dysfunction. The mechanisms for L-wave generation have not been fully elucidated. We propose that the recirculating diastolic intraventricular vortex ring generates L-waves and based on this mechanism, we predict the presence of L-waves in the right ventricle (RV). We imaged intraventricular flow using Doppler echocardiography and phase-contrast magnetic resonance imaging (PC-MRI) in 10 healthy volunteers. L-waves were recorded in all subjects, with highest velocities measured typically 2 cm below the annulus. Fifty-five percent of cardiac cycles (189 of 345) had L-waves. Color M-mode images eliminated mid-diastolic transmitral flow as the cause of the observed L-waves. Three-dimensional intraventricular flow patterns were imaged via PC-MRI and independently validated our hypothesis. Additionally as predicted, L-waves were observed in the RV, by both echocardiography and PC-MRI. The re-entry of the E-wave-generated vortex ring flow through a suitably located echo sample volume can be imaged as the L-wave. These waves are a general feature and a direct consequence of LV and RV diastolic fluid mechanics. Copyright © 2014 the American Physiological Society.

  8. Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment

    PubMed Central

    Galante, Angelo; Sinibaldi, Raffaele; Conti, Allegra; De Luca, Cinzia; Catallo, Nadia; Sebastiani, Piero; Pizzella, Vittorio; Romani, Gian Luca; Sotgiu, Antonello; Della Penna, Stefania

    2015-01-01

    In recent years, ultra-low field (ULF)-MRI is being given more and more attention, due to the possibility of integrating ULF-MRI and Magnetoencephalography (MEG) in the same device. Despite the signal-to-noise ratio (SNR) reduction, there are several advantages to operating at ULF, including increased tissue contrast, reduced cost and weight of the scanners, the potential to image patients that are not compatible with clinical scanners, and the opportunity to integrate different imaging modalities. The majority of ULF-MRI systems are based, until now, on magnetic field pulsed techniques for increasing SNR, using SQUID based detectors with Larmor frequencies in the kHz range. Although promising results were recently obtained with such systems, it is an open question whether similar SNR and reduced acquisition time can be achieved with simpler devices. In this work a room-temperature, MEG-compatible very-low field (VLF)-MRI device working in the range of several hundred kHz without sample pre-polarization is presented. This preserves many advantages of ULF-MRI, but for equivalent imaging conditions and SNR we achieve reduced imaging time based on preliminary results using phantoms and ex-vivo rabbits heads. PMID:26630172

  9. Estimation of the radial diffusion coefficient using REE-associated ground Pc 5 pulsations

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Yumoto, K.

    2010-12-01

    Pc 5 pulsations with frequencies between 1.67 and 6.67 mHz are believed to contribute to the REE in the outer radiation belt during magnetic storms, by means of the observations [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O'Brien et al., 2001, 2003] and several theoretical studies. The latter studies are roughly categorized into two themes: in-situ acceleration at L lower than 6.6 by wave-particle interactions [Liu et al., 199 9; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion from the outer to the inner magnetosphere [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible acceleration mechanism is the resonant interaction with Pc 5 toroidal and poloidal pulsations, referred as the radial diffusion mechanism. One of unsolved problems is where and which Pc 5 pulsation mode (toroidal and/or poloidal) play effective role in the radial diffusion process. In order to verify Pc 5 pulsation as the major roles for REEs, we have to examine the time variation of electron phase space density (cf. Green et al., 2004). Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients which determine the electron transportation efficiency, using ground-based magnetic field data. We estimated the radial diffusion coefficient of ground Pc 5 pulsations associated with the Relativistic Electron Enhancement (REE) in the geosynchronous orbit. In order to estimate the radial diffusion coefficient D_LL, we need the value of in-situ Pc 5 electric field power spectral density. In this paper, however, we estimated the equatorial electric field mapped from Pc 5 pulsations power spectral density on the ground. Reciprocal of radial diffusion coefficient describes the timescale T_LL for an electron to diffuse 1 Re. Applying a superposed epoch analysis about timescales T_LL of the radial diffusion for 12 REE events in 2008, we found that when the relativistic electron enhancements occur, T_LL at higher latitude (L larger than 5) is predominantly diffusional, whereas T_LL at lower latitude (L less than 4) is mainly convectional. We concluded that higher-latitude Pc 5 pulsations play more effective roles than lower latitude Pc 5 pulsations in the radial diffusion process.

  10. Compendium of the ULF/ELF Electromagnetic Fields Generated above a Sea of Finite Depth by Submerged Harmonic Dipoles

    DTIC Science & Technology

    1980-01-01

    CATALOG NUMBER Tech. Report No. E715-1 4. TTE (ln tlitts LTYPE RPOT’ QcOIJj. Compendium of the ULF/ELF Electromagnetic Fields nccnicat Generated above...sidi if noeess’ry arid Identify hy bulock mriifi.rnb) ULF/ELF Electromagnetic Fields VMD, VED, HED, HMD Submerged Dipoles Undersea /Air Communication...a whole, it appears that the vertical electric component produced by th HED in the plane of the dipole (• =0) should be the most useful for undersea

  11. Middle atmosphere electrical energy coupling

    NASA Technical Reports Server (NTRS)

    Hale, L. C.

    1989-01-01

    The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.

  12. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  13. Spatial and temporal characterization of relativistic electron enhancements during the Van Allen Probes era.

    NASA Astrophysics Data System (ADS)

    Pinto, V. A.; Sibeck, D. G.; Moya, P. S.; Lyons, L. R.; Kanekal, S. G.; Kletzing, C.

    2016-12-01

    During the Van Allen probes era from September 2012 to June 2016 we have identified 53 relativistic electron enhancement events determined by increases to 2x103 #/sr-1}s{-1}cm^{-2 and above in the >2 MeV electron fluxes at geostationary orbit as measured by the GOES 13 and 15 Energetic Particle Sensor (EPS) instrument. Using the Van Allen Probes ECT-REPT and GOES EPS instruments we have characterized the radial and temporal profiles of the events, grouping them according to how the increases propagate radially. Using OMNI data we have studied the statistical properties of the solar wind for each group of events and have classified similarities and differences that might be relevant for each enhancement profile. We have also studied temporal and spatial wave activity (ULF and EMIC waves) using GOES magnetometer data and Van Allen Probes EMFISIS data for the different groups of events and categorized the appearance of such waves for the different enhancement profiles.

  14. The quasiperpendicular environment of large magnetic pulses in Earth's quasiparallel foreshock - ISEE 1 and 2 observations

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Moses, S. L.; Coroniti, F. V.; Farris, M. H.; Russell, C. T.

    1993-01-01

    ULF waves in Earth's foreshock cause the instantaneous angle theta-B(n) between the upstream magnetic field and the shock normal to deviate from its average value. Close to the quasi-parallel (Q-parallel) shock, the transverse components of the waves become so large that the orientation of the field to the normal becomes quasi-perpendicular (Q-perpendicular) during applicable phases of each wave cycle. Large upstream pulses of B were observed completely enclosed in excursions of Theta-B(n) into the Q-perpendicular range. A recent numerical simulation included Theta-B(n) among the parameters examined in Q-parallel runs, and described a similar coincidence as intrinsic to a stage in development of the reformation process of such shocks. Thus, the natural environment of the Q-perpendicular section of Earth's bow shock seems to include an identifiable class of enlarged magnetic pulses for which local Q-perpendicular geometry is a necessary association.

  15. High-efficiency THz modulator based on phthalocyanine-compound organic films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Ting; Zhang, Bo, E-mail: bzhang@cnu.edu.cn, E-mail: sjl-phy@cnu.edu.cn; Shen, Jingling, E-mail: bzhang@cnu.edu.cn, E-mail: sjl-phy@cnu.edu.cn

    2015-02-02

    We report a high efficiency, broadband terahertz (THz) modulator following a study of phthalocyanine-compound organic films irradiated with an external excitation laser. Both transmission and reflection modulations of each organic/silicon bilayers were measured using THz time-domain and continuous-wave systems. For very low intensities, the experimental results show that AlClPc/Si can achieve a high modulation factor for transmission and reflection, indicating that AlClPc/Si has a superior modulation efficiency compared with the other films (CuPc and SnCl{sub 2}Pc). In contrast, the strong attenuation of the transmitted and reflected THz waves revealed that a nonlinear absorption process takes place at the organic/silicon interface.

  16. SC- and SI-associated ULF and HF-Doppler oscillations during the great magnetic storm of February 1986

    NASA Technical Reports Server (NTRS)

    Yumoto, K.; Watanabe, T.; Takahashi, K.; Ogawa, T.

    1989-01-01

    Results are presented of an investigation of SC- and SI-associated ULF and HF-Doppler pulsations observed during the great geomagnetic storm of February 1986, which began with a sudden commmencement on February 6 at about 13:12 UT, developed slowly over the next two days, and, after a rapid intensification late on February 8, reached a minimum. It is shown that these ULF and geomagnetic pulsations can be explained by the dynamo-motor mechanism of ionospheric electric fields and by global compressional oscillations in the magnetosphere and ionosphere, respectively.

  17. Phononic band gap and wave propagation on polyvinylidene fluoride-based acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Oltulu, Oral; Simsek, Sevket; Mamedov, Amirullah M.; Ozbay, Ekmel

    2016-12-01

    In the present work, the acoustic band structure of a two-dimensional phononic crystal (PC) containing an organic ferroelectric (PVDF-polyvinylidene fluoride) and topological insulator (SnTe) was investigated by the plane-wave-expansion (PWE) method. Two-dimensional PC with square lattices composed of SnTe cylindrical rods embedded in the PVDF matrix is studied to find the allowed and stop bands for the waves of certain energy. Phononic band diagram ω = ω(k) for a 2D PC, in which non-dimensional frequencies ωa/2πc (c-velocity of wave) were plotted vs. the wavevector k along the Г-X-M-Г path in the square Brillouin zone shows five stop bands in the frequency range between 10 and 110 kHz. The ferroelectric properties of PVDF and the unusual properties of SnTe as a topological material give us the ability to control the wave propagation through the PC over a wide frequency range of 103-106 Hz. SnTe is a discrete component that allows conducting electricity on its surface but shows insulator properties through its bulk volume. Tin telluride is considered as an acoustic topological insulator as the extension of topological insulators into the field of "topological phononics".

  18. Ultracompact photonic crystal polarization beam splitter based on multimode interference.

    PubMed

    Lu, Ming-Feng; Liao, Shan-Mei; Huang, Yang-Tung

    2010-02-01

    We propose a theoretical design for a compact photonic crystal (PC) polarization beam splitter (PBS) based on the multimode interference (MMI) effect. The size of a conventional MMI device designed by the self-imaging principle is not compact enough; therefore, we design a compact PC PBS based on the difference of the interference effect between TE and TM modes. Within the MMI coupler, the dependence of interference of modes on propagation distance is weak for a TE wave and strong for a TM wave; as a result, the length of the MMI section can be only seven lattice constants. Simulation results show that the insertion losses are 0.32 and 0.89 dB, and the extinction ratios are 14.4 and 17.5 dB for Port 1 (TE mode) and Port 2 (TM mode), respectively.

  19. Wave-Particle Interactions in the Radiation Belts, Aurora,and Solar Wind: Opportunities for Lab Experiments

    NASA Astrophysics Data System (ADS)

    Kletzing, C.

    2017-12-01

    The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a triaxial fluxgate magnetometer (MAG) and a Waves instrument which includes a triaxial search coil magnetometer (MSC). We show a variety of waves thought to be important for wave particle interactionsin the radiation belts: low frequency ULF pulsations, EMIC waves, and whistler mode waves including upper and lower band chorus. Outside ofthe radiation belts, Alfven waves play a key role in both solar wind turbulenceand auroral particle acceleration. Several of these wave modes could benefit (or have benefitted) from laboratory studies to further refineour understanding of the detailed physics of the wave-particle interactionswhich lead to energization, pitch angle scattering, and cross-field transportWe illustrate some of the processes and compare the wave data with particle measurements to show relationships between wave activity and particle processobserved in the inner magnetosphere and heliosphere.

  20. Stochastic Acceleration of Ions Driven by Pc1 Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-01-01

    The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  1. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081946 (18 May 2010) --- ISS flight director Emily Nelson monitors data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  2. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081914 (18 May 2010) --- ISS flight director Holly Ridings reviews data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  3. Ultra-low frequency transcutaneous electric nerve stimulation does not affect the centric relation registration.

    PubMed

    de Bragança, Rafaella Mariana Fontes; Rodrigues, Carolina Almeida; Melchior, Melissa Oliveira; Magri, Laís Valencise; Mazzetto, Marcelo Oliveira

    2018-01-01

    To evaluate the influence of ULF-TENS on the displacement of the mandibular condyle and on the repeatability of centric relation (CR) registration of three different techniques: bimanual manipulation (BM), long strip technique, and harmonic centric occlusal relationship (R.O.C.A. wires). Twenty-five participants without temporomandibular disorder (TMD) underwent two study stages conducted via electronic position analysis: (1) three CR records were made, one for each manipulation technique; (2) the ULF-TENS was applied for 30 min, and after that the same CR records were repeated. Mann-Whitney, ICC, and one-tailed F test. The ULF-TENS did not influence the condyle total displacement, regardless of CR recording technique used (p > 0.05). BM showed an improvement in repeatability after ULF-TENS. Concerning the variance, BM showed less variation at the X-axis. Long strip technique and R.O.C.A. wires varied less at the Y-axis. Long strip technique was again less variable at the Z-axis.

  4. SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison

    PubMed Central

    Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.

    2011-01-01

    Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638

  5. A Project to Develop an Index of PC 3,4,5 Geomagnetic Pulsations and to Study Their control by Solar Wind Parameters.

    DTIC Science & Technology

    1983-04-01

    early afternoon. With the exception of Gl, all the spectra show a concentration of powe - between .02 and .07 Hz in the form of a plateau or peak ir the...event on which we concentrate in this report is the sequence of regular waves that began as early as 2345 UT, certainly no later than 0015, and ended...of thc waves, the rxodulation of the waves by the complex media -63- TRW No. 36116-6006-UT-00 throuch which they travel, and th e cortrcl of V.-V

  6. Applying the new method of time-frequency transforms to the analysis of the characteristics of geomagnetic Pc5 pulsations

    NASA Astrophysics Data System (ADS)

    Zelinsky, N. R.; Kleimenova, N. G.; Gromova, L. I.

    2017-09-01

    This study considers the possibility of using the new methods of time-frequency transforms, such as chirplet and warblet transforms, to analyze the digital observational data of geomagnetic pulsations of Pc5 type. For this purpose, necessary algorithms of calculation and appropriate software were developed. The chirplet transform method (CT) is used to analyze signals with a linear frequency modulation. A chirplet variation, the so-called warblet transform, is used to analyze signals with a nonlinear frequency modulation. Since, in studying geomagnetic pulsations, it is difficult to make assumptions on the character of the behavior of the instantaneous frequency of the signal, the special generalized warblet transform (GWT) was used for the analysis. The GWT has a high spatiotemporal resolution and was developed to analyze oscillations both with a periodic and nonperiodic change of the instantaneous frequency. The software developed for GWT calculation was used to study daytime geomagnetic Pc5 pulsations with durations of several hours that were detected via the network of ground-based magnetometers of the Scandinavian IMAGE profile during the magnetic storm of May 29-30, 2003. For the first time, temporal variations of the instantaneous frequency of geomagnetic pulsations are determined and their possible use in studying the fine spatial structure of Pc5 waves is shown.

  7. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    NASA Astrophysics Data System (ADS)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases, the inverted slip model and moment rate function better match previous results incorporating field observations, geodetic and seismic data.

  8. STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086341 (20 May 2010) --- ISS flight director Holly Ridings monitors data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day seven activities.

  9. Kinetic Interactions Between the Solar Wind and Lunar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Fatemi, S.; Turner, D. L.; Holmstrom, M.

    2016-12-01

    Despite their relatively weak strength, small scale, and incoherence, lunar magnetic anomalies can affect the incoming solar wind flow. The plasma interaction with lunar magnetic fields drives significant compressions of the solar wind plasma and magnetic field, deflections of the incoming flow, and a host of plasma waves ranging from the ULF to the electrostatic range. Recent work suggests that the large-scale features of the solar wind-magnetic anomaly interactions may be driven by ion-ion instabilities excited by reflected ions, raising the possibility that they are analogous to ion foreshock phenomena. Indeed, despite their small scale, many of the phenomena observed near lunar magnetic anomalies appear to have analogues in the foreshock regions of terrestrial planets. We discuss the charged particle distributions, fields, and waves observed near lunar magnetic anomalies, and place them in a context with the foreshocks of the Earth, Mars, and other solar system objects.

  10. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  11. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081916 (18 May 2010) --- ISS flight directors Holly Ridings (seated) and Emily Nelson monitor data at their console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  12. Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morvan, B.; Tinel, A.; Sainidou, R.

    2014-12-07

    Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.

  13. Evidence of a Love wave bandgap in a quartz substrate coated with a phononic thin layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ting-Wei; Wu, Tsung-Tsong, E-mail: wutt@ntu.edu.tw; Lin, Yu-Ching

    This paper presents a numerical and experimental study of Love wave propagation in a micro-fabricated phononic crystal (PC) structure consisting of a 2D, periodically etched silica film deposited on a quartz substrate. The dispersion characteristics of Love waves in such a phononic structure were analyzed with various geometric parameters by using complex band structure calculations. For the experiment, we adopted reactive-ion etching with electron-beam lithography to fabricate a submicrometer phononic structure. The measured results exhibited consistency with the numerical prediction. The results of this study may serve as a basis for developing PC-based Love wave devices.

  14. Wave properties near the subsolar magnetopause - Pc 3-4 energy coupling for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Strangeway, R. J.; Wygant, J. R.; Cattell, C. A.; Fitzenreiter, R. J.; Anderson, R. R.

    1993-01-01

    Strong slow mode waves in the Pc 3-4 frequency range are found in the magnetosheath close to the magnetopause. We have studied these waves at one of the ISEE subsolar magnetopause crossings using the magnetic field, electric field, and plasma measurements. We use the pressure balance at the magnetopause to calibrate the Fast Plasma Experiment data versus the magnetometer data. When we perform such a calibration and renormalization, we find that the slow mode structures are not in pressure balance and small scale fluctuations in the total pressure still remain in the Pc 3-4 range. Energy in the total pressure fluctuations can be transmitted through the magnetopause by boundary motions. The Poynting flux calculated from the electric and magnetic field measurements suggests that a net Poynting flux is transmitted into the magnetopause. The two independent measurements show a similar energy transmission coefficient. The transmitted energy flux is about 18 percent of the magnetic energy flux of the waves in the magnetosheath. Part of this transmitted energy is lost in the sheath transition layer before it enters the closed field line region. The waves reaching the boundary layer decay rapidly. Little wave power is transmitted into the magnetosphere.

  15. ISS Potable Water Quality for Expeditions 26 through 30

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin

    2012-01-01

    International Space Station (ISS) Expeditions 26-30 spanned a 16-month period beginning in November of 2010 wherein the final 3 flights of the Space Shuttle program finished ISS construction and delivered supplies to support the post-shuttle era of station operations. Expedition crews relied on several sources of potable water during this period, including water recovered from urine distillate and humidity condensate by the U.S. water processor, water regenerated from humidity condensate by the Russian water recovery system, and Russian ground-supplied potable water. Potable water samples collected during Expeditions 26-30 were returned on Shuttle flights STS-133 (ULF5), STS-134 (ULF6), and STS-135 (ULF7), as well as Soyuz flights 24-27. The chemical quality of the ISS potable water supplies continued to be verified by the Johnson Space Center s Water and Food Analytical Laboratory (WAFAL) via analyses of returned water samples. This paper presents the chemical analysis results for water samples returned from Expeditions 26-30 and discusses their compliance with ISS potable water standards. The presence or absence of dimethylsilanediol (DMSD) is specifically addressed, since DMSD was identified as the primary cause of the temporary rise and fall in total organic carbon of the U.S. product water that occurred in the summer of 2010.

  16. Facilitating Heliophysics Research by the Virtual Wave Observatory (VWO) Context Data Search Capability

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Shao, Xi; Garcia, Leonard N.; Galkin, Ivan A.; Benson, Robert F.

    2009-01-01

    Wave phenomena, ranging from freely propagating electromagnetic radiation (e.g., solar radio bursts, AKR) to plasma wave modes trapped in various plasma regimes (e.g., whistlers, Langmuir and ULF waves) and atmospheric gravity waves, are ubiquitous in the heliosphere. Because waves can propagate, wave data obtained at a given observing location may pertain to wave oscillations generated locally or from afar. While wave data analysis requires knowledge of wave characteristics specific to different wave modes, the search for appropriate data for heliophysics wave studies also requires knowledge of wave phenomena. In addition to deciding whether the interested wave activity is electrostatic (i.e., locally trapped) or electromagnetic (with propagation over distances), considerations must be given to the dependence of the wave activity on observer's location or viewing geometry, propagating frequency range and whether the wave data were acquired by passive or active observations. Occurances of natural wave emissions i the magnetosphere (e.g, auroral kilometric radiation) are often dependent also on the state (e.e., context) of the magnetosphere that varies with the changing solar wind, IMF and geomagnetic conditions. Fung and Shao [2008] showed recently that magnetospheric state can be specified by a set of suitably time-shifted solar wind, IMF and the multi-scale geomagnetic response parameters. These parameters form a magnetospheric state vector that provides the basis for searching magnetospheric wave data by their context conditions. Using the IMAGE Radio Plasma Imager (RPI) data and the NASA Magnetospheric State Query System (MSOS) [Fung, 2004], this presentation demonstrates the VWO context data search capability under development and solicits feedback from the Heliophysics research community for improvements.

  17. Seismic attenuation in the African LLSVP estimated from PcS phases

    NASA Astrophysics Data System (ADS)

    Liu, Chujie; Grand, Stephen P.

    2018-05-01

    Seismic tomography models have revealed two broad regions in the lowermost mantle marked by ∼3% slower shear velocity than normal beneath the south central Pacific and southern Africa. These two regions are known as large-low-shear-velocity provinces (LLSVP). There is debate over whether the LLSVPs can be explained by purely thermal variations or whether they must be chemically distinct from normal mantle. Elastic properties alone, have been unable to distinguish the thermal from chemical interpretations. Anelastic structure, however, can help discriminate among models of the LLSVPs since intrinsic attenuation is more sensitive to temperature than to chemical variations. Here we estimate Qμ (the shear wave quality factor) in the African LLSVP using PcS waves generated from a Scotia Arc earthquake, recorded by broadband seismometers deployed in Southern Africa during the Kaapvaal experiment. The upward leg of the PcS waves sweeps from normal mantle into the African LLSVP across the array. We use the spectral ratio (SR) and instantaneous frequency matching (IFM) techniques to measure the differential attenuation (Δt*) between waves sampling the African LLSVP and the waves that sample normal lower mantle. Using both methods for estimating Δt* we find that PcS waves sampling the LLSVP are more attenuated than the waves that miss the LLSVP yielding a Δt* difference of more than 1 s. Using the Δt* measurements we estimate the average Qμ in the LLSVP to be about 110. Using a range of activation enthalpy (H*) estimates, we find an average temperature anomaly within the LLSVP ranging from +250 to +800 K. Our estimated temperature anomaly range overlaps previous isochemical geodynamic studies that explain the LLSVP as a purely thermal structure although the large uncertainties cannot rule out chemical variations as well.

  18. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-085365 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Emily Nelson holds the Expedition 23 mission logo.

  19. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-19

    JSC2010-E-086277 (19 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Holly Ridings holds the STS-132 mission logo.

  20. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086504 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Scott Stover holds the Expedition 23 mission logo.

  1. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification andmore » security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.« less

  2. Source of seed fluctuations for electromagnetic ion cyclotron waves in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H. K.

    2015-06-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The presented theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz), i.e. into the frequency range of EMIC waves, is able to supply the needed level of seed fluctuations that guarantees growth of EMIC waves up to the observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze the magnetic field data from the Polar and Van Allen Probes spacecraft to test the suggested nonlinear mechanism. In this initial study we restrict our analysis to magnetic fluctuation spectra only. We do not analyze the third-order structure function, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low-frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere data, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability.

  3. Canadian radiation belt science in the ILWS era

    NASA Astrophysics Data System (ADS)

    Mann, I. R.

    The Outer Radiation Belt Injection, Transport, Acceleration, and Loss Satellite (ORBITALS) is a Canadian Space Agency small satellite mission proposed as a Canadian contribution to the satellite infrastructure for the International Living With a Star (ILWS) program. Planned to operate contemporaneously with the NASA Radiation Belt Storm Probes (RBSP), the ORBITALS will monitor the energetic electron and ion populations in the inner magnetosphere across a wide range of energies (keV to tens of MeV) as well as the dynamic electric and magnetic fields, waves, and cold plasma environment which govern the injection, transport, acceleration and loss of these energetic and space weather critical particle populations in the inner magnetosphere. Currently in Phase A Design Study, the ORBITALS will be launched into a low-inclination GTO-like orbit which every second orbit maximizes the long lasting apogee-pass conjunctions with both the ground-based instruments of the Canadian Geospace Monitoring (CGSM) array as well as with the GOES East and West and geosynchronous communications satellites in the North American sector. In a twelve-hour orbit, every second apogee will conjunct with instrumentation 180 degree in longitude away in the Asian sector. Specifically, the ORBITALS will make the measurements necessary to reach reveal fundamental new understanding of the relative importance of different physical processes (for example VLF verses ULF waves) which shape the energetic particle populations in the inner magnetosphere, as well as providing the raw radiation measurements at MEO altitudes necessary for the development of the next-generation of radiation belt specification models. On-board experiments will also monitor the dose, single event upset, and deep-dielectric charging responses of electronic components on-orbit. Supporting ground-based measurements of ULF and higher frequency wave fields from the Canadian CARISMA (www.carisma.ca) magnetometer array, as well as from other distributed networks of ground-based instrumentation will also be critical for reaching science closure. This paper outlines the radiation belt science targets for the ORBITALS mission, and describe how the ORBITALS can provide an essential complement to other proposed inner magnetospheric missions in the ILWS era.

  4. Anomalous geomagnetic variations associated with Parkfield (Ms=6.0, 28-SEP-2004, California, USA) earthquake

    NASA Astrophysics Data System (ADS)

    Kotsarenko, A. A.; Pilinets, S. A.; Perez Enriquez, R.; Lopez Cruz Abeyro, J. A.

    2007-05-01

    Analysis of geomagnetic and telluric data, measured at the station PRK (Parkfield, ULF flux-gate 3-axial magnetometer) 1 week before (including) the day of the major EQ (EarthQuake, Ms=6.0, 28-SEP-2004, 17:15:24) near Parkfield, California, USA, are presented. Spectral analysis reveal the ULF geomagnetic disturbances observed the day before the event, Sep 27, at 15:00- 20:00 by UT, and at the day of the EQ, Sep 28, at 11:00-19:00. Filtering in the corresponding frequency band f = 0.25-0.5 Hz gives the following estimations of the amplitudes of the signals: up to 20 pT for the magnetic channels and 1.5 mkV/km for the telluric ones. Observed phenomena occurs under quiet geomagnetic conditions (|Dst|<20 nT); revision of the referent stations data situated far away from the EQ epicenter (330 km) does not reveal any similar effect. Moreover, the Quake Finder research group (http:www.quakefinder.com) received very similar results (ELF range instrument, placed about 50 km from the EQ epicenter) for the day of the EQ. Mentioned above suggests the localized character of the source, possibly of the ionosphere or tectonic origin rather than of magnetosphere. Comparative analysis of the mentioned 2 stations show that we observed the lower-frequency part of the ULF- ELF burst, localized in the frequency range 0.25-1 Hz, generated 9 hours before the earthquake. Acknowledgements. The authors are grateful to Malcolm Johnston for providing us with the geomagnetic data.

  5. Electromagnetic ion cyclotron waves in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.

    1993-01-01

    Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.

  6. Event-related brain potentials - Comparison between children and adults

    NASA Technical Reports Server (NTRS)

    Courchesne, E.

    1977-01-01

    The reported investigation shows that nontarget stimuli which are infrequently presented and deviate from the background elicit Nc and Pc waves in children. The same stimuli elicit P3 waves in adults. The scalp distribution of P3 waves in adults appears to vary with the ease of stimulus recognition or the degree of stimulus novelty. However, the Nc and Pc distributions in children do not seem to vary with these factors. The differences between children and adults in event-related potentials suggest corresponding differences in the mode of processing employed by each when rare, deviant stimuli are encountered

  7. Ultra-low field MRI: bringing MRI to new arenas

    DOE PAGES

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett; ...

    2016-11-01

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  8. Ultra-low field MRI: bringing MRI to new arenas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  9. Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and dynamics explorer

    NASA Technical Reports Server (NTRS)

    Erlandson, Robert E.

    1994-01-01

    The overall objective of this research is to investigate the generation and propagation of electromagnetic ion cyclotron (EMIC) waves in the frequency range from 0.2 to 5 Hz (Pc 1 frequency band). Data used in this research were acquired by the AMPTE/CCE, DE-1, and DE-2 satellites. One of the primary questions addressed in this research is the role which EMIC waves have on the transfer of energy from the equatorial magnetosphere to the ionosphere. The primary result from this research is that some fraction of EMIC waves, generated in the equatorial magnetosphere, are Landau damped in the ionosphere and are therefore a heat source for ionospheric electrons. This result as well as other results are summarized below.

  10. Results of an all-sky high-frequency Einstein@Home search for continuous gravitational waves in LIGO's fifth science run

    NASA Astrophysics Data System (ADS)

    Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Zhu, Sylvia; Pletsch, Holger; Allen, Bruce; Bock, Oliver; Maschenchalk, Bernd; Prix, Reinhard; Siemens, Xavier

    2016-09-01

    We present results of a high-frequency all-sky search for continuous gravitational waves from isolated compact objects in LIGO's fifth science run (S5) data, using the computing power of the Einstein@Home volunteer computing project. This is the only dedicated continuous gravitational wave search that probes this high-frequency range on S5 data. We find no significant candidate signal, so we set 90% confidence level upper limits on continuous gravitational wave strain amplitudes. At the lower end of the search frequency range, around 1250 Hz, the most constraining upper limit is 5.0 ×10-24, while at the higher end, around 1500 Hz, it is 6.2 ×10-24. Based on these upper limits, and assuming a fiducial value of the principal moment of inertia of 1038 kg m2 , we can exclude objects with ellipticities higher than roughly 2.8 ×10-7 within 100 pc of Earth with rotation periods between 1.3 and 1.6 milliseconds.

  11. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayegan, S.; Shalchi, M. A.; Hadizadeh, M. R.

    The recently developed chiral nucleon-nucleon (NN) potential by E. Epelbaum, W. Gloeckle, and Ulf-G. Meissner, Nucl. Phys. A747, 362 (2005) has been employed to study the two-nucleon bound and scattering states. Chiral NN potential up to next-to-next-to-next-to leading order (N{sup 3}LO) is used to calculate the np differential cross section and deuteron binding energy in a realistic three dimensional approach. The obtained results based on this helicity representation are compared to the standard partial wave (PW) results. This comparison shows that the 3D approach provides the same accuracy in the description of NN observables and the results are in closemore » agreement with available experimental data.« less

  13. Excitation of small-scale waves in the F region of the ionosphere by powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Chernyshev, M. Y.; Kornienko, V. A.

    1998-01-01

    Ionospheric small-scale waves in the F region, initiated by heating facilities in Nizhniy Novgorod, have been studied by the method of field-aligned scattering of diagnostic HF radio signals. Experimental data have been obtained on the radio path Kiev-N. Novgorod-St. Petersburg during heating campaigns with heater radiated power ERP = 20 MW and 100 MW. Observations of scattered HF signals have been made by a Doppler spectrum device with high temporal resolution. Analysis of the experimental data shows a relation between the heater power level and the parameters of ionospheric small-scale oscillations falling within the range of Pc 3-4 magnetic pulsations. It is found that the periods of wave processes in the F region of the ionosphere, induced by the heating facility, decrease with increasing heating power. The level of heating power also has an impact on the horizontal east-west component of the electric field E, the vertical component of the Doppler velocity Vd and the amplitude of the vertical displacements M of the heated region. Typical magnitudes of these parameters are the following: E = 1.25 mVm, Vd = 6 ms, M = 600-1500 m for ERP = 20 MW and E = 2.5-4.5 mVm, Vd = 11-25 ms, M = 1000-5000 m for ERP = 100 MW. The results obtained confirm the hypothesis of excitation of the Alfvén resonator by powerful HF radio waves which leads to the generation of magnetic field oscillations in the heated region giving rise to artificial Pc 3-4 magnetic pulsations and ionospheric small-scale wave processes. In this situation an increase of the heater power would lead to a growth of the electric field of hydromagnetic waves propagating in the ionosphere as well as the amplitude of the vertical displacements of the heated region.

  14. Analysis of Pheochromocytoma (PC12) Membrane Potential under the Exposure to Millimeter-wave Radiation

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Hirata, A.; Kawase, K.; Otani, C.; Nagatsuma, T.

    2004-08-01

    Non-thermal effects of millimeter wave (MMW) on Pheochromocytoma (PC12) were studied by potential measurement with a voltage sensitive dye (DiBAC4(3)). Cells were irradiated at fixed frequencies of 30, 40, 60, 76GHz as well as sweeping frequency between 10 and 100 GHz by an MMW generator based on a uni-traveling-carrier photodiode (UTC-PD), the most widely tunable MMW source. However there were no significant changes in membrane potential between MMW-irradiated and control cells. The results suggest that MMW irradiation in the range from 10 to 100GHz appears to be safe for ordinary PC12 cells under non-thermal conditions.

  15. Chemical Analysis Results for Potable Water from ISS Expeditions 21 to 25

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin

    2010-01-01

    The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 to 25. Over a 14-month period, the Space Shuttle visited the ISS on five occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), STS-132 (ULF4) and STS-133 (ULF5), as well as on Soyuz flights 19-22. This paper reports the analytical results for the returned archival water samples and evaluates their compliance with ISS water quality standards. The WAFAL also received and analyzed aliquots of some Russian potable water samples collected in-flight and pre-flight samples of Rodnik potable water delivered to the Station on the Russian Progress vehicle during Expeditions 21 to 25. These additional analytical results are also reported and discussed in this paper.

  16. Standing waves, clustering, and phase waves in 1D simulations of kinetic relaxation oscillations in NO+NH 3 on Pt(1 0 0) coupled by diffusion

    NASA Astrophysics Data System (ADS)

    Uecker, Hannes

    2004-04-01

    The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.

  17. Magnetic Resonance Relaxometry at Low and Ultra low Fields.

    PubMed

    Volegov, P; Flynn, M; Kraus, R; Magnelind, P; Matlashov, A; Nath, P; Owens, T; Sandin, H; Savukov, I; Schultz, L; Urbaitis, A; Zotev, V; Espy, M

    2010-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 μT to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment.In this regime the proton Larmor frequencies (1 Hz - 100 kHz) of ULF MR overlap (on a time scale of 10 μs to 100 ms) with "slow" molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques.We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented.Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited.

  18. CdTe-based Light-Controllable Frequency-Selective Photonic Crystal Switch for Millimeter Waves

    DTIC Science & Technology

    2011-09-01

    position (magenta curves with circular points which correspond to different light pulses) 23 Fig. 11.3. (a) Phase of transmission wave (in...11.4. Transmission spectra of plastic-air PC with CdTe-coated triple -quartz-wafer insertion of the kind ‘6t-qvqvqs-6t’ (computed yellow and measured...experimental requirements of matching the frequency band of VNA facility (f = 75–110 GHz), PC structures with triple -wafer insertion layers

  19. Impact of estrus expression and conceptus presence on plasma and uterine glucose concentrations up until maternal recognition of pregnancy in beef cattle

    USDA-ARS?s Scientific Manuscript database

    Glucose is an essential component of uterine luminal fluid (ULF), it is a major energy source utilized by the conceptus for growth and development. Previously we reported increased concentrations of glucose in the ULF of cows that exhibited estrus, and observed differences in glucose transporter tr...

  20. Thermo-inelastic Response of Polymeric Solids

    DTIC Science & Technology

    2014-08-11

    phenomena. Polymethylmethacrylate (PMMA) and Polycarbonate (PC) are used in this study. Results indicate that the stress on the wall was lowest...explicit scheme for the time evaluation and in order to capture the wave propagation phenomena. Polymethylmethacrylate (PMMA) and Polycarbonate (PC) are...polyurea(PU), polycarbonate(PC), polymethylmethacrylate (PMMA) etc. for the ballistic protection. For example, it can be seen from the figures 1 through 3

  1. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    DOEpatents

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  2. Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.

    2015-12-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work supported by the National Science Foundation under Grant Number AGS-1203516.

  3. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirch, J. D.; Chang, C.-C.; Boyle, C.

    2015-02-09

    Five, 8.36 μm-emitting quantum-cascade lasers (QCLs) have been monolithically phase-locked in the in-phase array mode via resonant leaky-wave coupling. The structure is fabricated by etch and regrowth which provides large index steps (Δn = 0.10) between antiguided-array elements and interelement regions. Such high index contrast photonic-crystal (PC) lasers have more than an order of magnitude higher index contrast than PC-distributed feedback lasers previously used for coherent beam combining in QCLs. Absorption loss to metal layers inserted in the interelement regions provides a wide (∼1.0 μm) range in interelement width over which the resonant in-phase mode is strongly favored to lase. Room-temperature, in-phase-mode operation withmore » ∼2.2 kA/cm{sup 2} threshold-current density is obtained from 105 μm-wide aperture devices. The far-field beam pattern has lobewidths 1.65× diffraction limit (D.L.) and 82% of the light in the main lobe, up to 1.8× threshold. Peak pulsed near-D.L. power of 5.5 W is obtained, with 4.5 W emitted in the main lobe. Means of how to increase the device internal efficiency are discussed.« less

  4. Investigation of GICs Associated with Large dB/dt Variations in Space

    NASA Astrophysics Data System (ADS)

    Dimitrakoudis, S.; Mann, I. R.; Murphy, K. R.; Rae, J.; Denton, M.; Milling, D. K.

    2016-12-01

    Geomagnetically induced currents (GICs) can be driven in terrestrial electrical power grids as a result of the induced electric fields arising from magnetic field changes driven in the coupled magnetosphere-ionosphere-ground system. Substorms are often hypothesised to be associated with the largest GIC effects on the ground, especially at higher latitudes. However, recent studies have suggested that other dayside phenomena such as sudden impulses and even ULF wave trains might also drive significant GICs. Using data from the CARISMA ground-based magnetometer network we examine the GIC response driven from a variety of magnetospheric processes. In particular we focus on events where large dB/dt is observed in-situ on GOES East and West satellites. Auroras, resulting from magnetospheric substorms, give us a dynamical view of sudden destabilizations in the nightside magnetosphere, of large spatial and temporal extent, that can drive large and potentially damaging geomagnetically induced currents (GICs) in terrestrial power grids. Since ground dB/dt can be used as a GIC proxy, we have surveyed GOES data since 2011 for the largest dB/dT events, and found some to be of the order of hundreds of nT in the span of a few seconds. These are observed in both the nightside and dayside, and, as such, we seek to establish connections to drivers affecting both sides of the terminator; tail activations and substorms on the nightside, large amplitude ULF waves, solar wind sudden impulses, and rapid changes in MIC current systems on the dayside. The short duration of these events, coupled with the use of conjugate satellite measurements and ground magnetometer arrays when possible, allows us to investigate their localization and the latitudinal extent of their effects and to further examine the potential role of non-substorm phenomena in generating GICs which may have adverse impacts in electrical power grids.

  5. Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave

    NASA Astrophysics Data System (ADS)

    Oimatsu, S.; Masahito, N.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; MacDowall, R. J.; Smith, C.; Mitchell, D. G.

    2017-12-01

    Poloidal Pc4 wave and proton flux oscillation due to the drift-bounce resonance are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux modulation is observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of poloidal Pc4 wave. We estimate the resonant energy to be 120 keV for pitch angle (α) of 20º-40º or 140º-160º, and 170-180 keV for α=40º-60º or 120º-140º. The drift-bounce resonance theory gives the resonant energy of 110-120 keV, which is consistent with the observation for small α (or large α when α≥90º), but slightly higher than the observation for large α (or small α when α≥90º). We consider that this discrepancy of the resonant energy is due to the drift shell splitting. In order to examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) in both outbound and inbound paths. Results showed positive gradient in both paths, which means that the energy is transferred from the protons to the wave. During the appearance of poloidal Pc4 wave, the Dst* index shows a sudden increase of 6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and the variation of proton flux by the drift-bounce resonance. The estimated energy loss is almost comparable for both cases. Therefore, we suggest that the energy transfer from the ring current protons to the wave via the drift-bounce resonance cause the increase of Dst* index.

  6. The α-Secretase-derived N-terminal Product of Cellular Prion, N1, Displays Neuroprotective Function in Vitro and in Vivo*

    PubMed Central

    Guillot-Sestier, Marie-Victoire; Sunyach, Claire; Druon, Charlotte; Scarzello, Sabine; Checler, Frédéric

    2009-01-01

    Cellular prion protein (PrPc) undergoes a disintegrin-mediated physiological cleavage, generating a soluble amino-terminal fragment (N1), the function of which remained unknown. Recombinant N1 inhibits staurosporine-induced caspase-3 activation by modulating p53 transcription and activity, whereas the PrPc-derived pathological fragment (N2) remains biologically inert. Furthermore, N1 protects retinal ganglion cells from hypoxia-induced apoptosis, reduces the number of terminal deoxynucleotidyltransferase-mediated biotinylated UTP nick end labeling-positive and p53-immunoreactive neurons in a pressure-induced ischemia model of the rat retina and triggers a partial recovery of b-waves but not a-waves of rat electroretinograms. Our work is the first demonstration that the α-secretase-derived PrPc fragment N1, but not N2, displays in vivo and in vitro neuroprotective function by modulating p53 pathway. It further demonstrates that distinct N-terminal cleavage products of PrPc harbor different biological activities underlying the various phenotypes linking PrPc to cell survival. PMID:19850936

  7. Frequency dependent steering with backward leaky waves via photonic crystal interface layer.

    PubMed

    Colak, Evrim; Caglayan, Humeyra; Cakmak, Atilla O; Villa, Alessandro D; Capolino, Filippo; Ozbay, Ekmel

    2009-06-08

    A Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70 degrees angular range when frequency ranges in the 11.88-13.69 GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure.

  8. Extraction of weak PcP phases using the slant-stacklet transform - II: constraints on lateral variations of structure near the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Ventosa, Sergi; Romanowicz, Barbara

    2015-11-01

    Resolving the topography of the core-mantle boundary (CMB) and the structure and composition of the D″ region is key to improving our understanding of the interaction between the Earth's mantle and core. Observations of traveltimes and amplitudes of short-period teleseismic body waves sensitive to lowermost mantle provide essential constraints on the properties of this region. Major challenges are low signal-to-noise ratio of the target phases and interference with other mantle phases. In a previous paper (Part I), we introduced the slant-stacklet transform to enhance the signal of the core-reflected (PcP) phase and to isolate it from stronger signals in the coda of the P wave. Then we minimized a linear misfit between P and PcP waveforms to improve the quality of PcP-P traveltime difference measurements as compared to standard cross-correlation methods. This method significantly increases the quantity and the quality of PcP-P traveltime observations available for the modelling of structure near the CMB. Here we illustrate our approach in a series of regional studies of the CMB and D″ using PcP-P observations with unprecedented resolution from high-quality dense arrays located in North America and Japan for events with magnitude Mw>5.4 and distances up to 80°. In this process, we carefully analyse various sources of errors and show that mantle heterogeneity is the most significant. We find and correct bias due to mantle heterogeneities that is as large as 1 s in traveltime, comparable to the largest lateral PcP-P traveltime variations observed. We illustrate the importance of accurate mantle corrections and the need for higher resolution mantle models for future studies. After optimal mantle corrections, the main signal left is relatively long wavelength in the regions sampled, except at the border of the Pacific large-low shear velocity province (LLSVP). We detect the northwest border of the Pacific LLSVP in the western Pacific from array observations in Japan, and observe higher than average P velocities, or depressed CMB, in Central America, and slightly lower than average P velocities under Alaska/western Canada.

  9. Probing chiral superconductivity in Sr 2RuO 4 underneath the surface by point contact measurements

    DOE PAGES

    Wang, He; Luo, Jiawei; Lou, Weijian; ...

    2017-05-08

    Sr2RuO4 (SRO) is the prime candidate for a chiral p-wave superconductor with critical temperaturemore » $${T}_{{\\rm{c}}}(\\mathrm{SRO})\\sim 1.5$$ K. Chiral domains with opposite chiralities $${p}_{x}\\pm {{\\rm{i}}{p}}_{y}$$ have been proposed, but are yet to be confirmed. We measure the field dependence of the point contact (PC) resistance between a tungsten tip and an SRO–Ru eutectic crystal, where micrometer-sized Ru inclusions are embedded in SRO with an atomically sharp interface. Ruthenium is an s-wave superconductor with $${T}_{{\\rm{c}}}(\\mathrm{Ru})\\sim 0.5$$ K; flux pinned near the Ru inclusions can suppress its superconductivity, as reflected in the PC resistance and spectra. This flux pinning effect originates from SRO underneath the surface and is very strong once flux is introduced. To fully remove flux pinning, one needs to thermally cycle the sample above T c(SRO) or apply alternating fields with decreasing amplitude. With alternating fields, the observed hysteresis in magnetoresistance can be explained by domain dynamics, providing support for the existence of chiral domains. The origin of the strong pinning could be the chiral domains themselves.« less

  10. Probing chiral superconductivity in Sr2RuO4 underneath the surface by point contact measurements

    NASA Astrophysics Data System (ADS)

    Wang, He; Luo, Jiawei; Lou, Weijian; Ortmann, J. E.; Mao, Z. Q.; Liu, Y.; Wei, Jian

    2017-05-01

    Sr2RuO4 (SRO) is the prime candidate for a chiral p-wave superconductor with critical temperature {T}{{c}}({SRO})˜ 1.5 K. Chiral domains with opposite chiralities {p}x+/- {{{i}}{p}}y have been proposed, but are yet to be confirmed. We measure the field dependence of the point contact (PC) resistance between a tungsten tip and an SRO-Ru eutectic crystal, where micrometer-sized Ru inclusions are embedded in SRO with an atomically sharp interface. Ruthenium is an s-wave superconductor with {T}{{c}}({Ru})˜ 0.5 K; flux pinned near the Ru inclusions can suppress its superconductivity, as reflected in the PC resistance and spectra. This flux pinning effect originates from SRO underneath the surface and is very strong once flux is introduced. To fully remove flux pinning, one needs to thermally cycle the sample above T c(SRO) or apply alternating fields with decreasing amplitude. With alternating fields, the observed hysteresis in magnetoresistance can be explained by domain dynamics, providing support for the existence of chiral domains. The origin of the strong pinning could be the chiral domains themselves.

  11. Multiple-frequency continuous wave ultrasonic system for accurate distance measurement

    NASA Astrophysics Data System (ADS)

    Huang, C. F.; Young, M. S.; Li, Y. C.

    1999-02-01

    A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.

  12. Global nature of Pc 5 magnetic pulsation during the WHI observation campaign

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Tokunaga, T.; Abe, S.; Uozumi, T.; Yoshikawa, A.; Yumoto, K.; Group, M.

    2008-12-01

    In conjunction with the activities of IHY(International Heliophysical Year), an international observation campaign was planned and carried out from March 20 to April 16 of 2008. The name of this campaign is Whole Heliosphere Interval (WHI). During WHI, the nations of the world worked together to collect relevant scientific data. As a result, there now exists an exceptionally good data set of multi-point ground-based and satellite magnetometer data for this time frame. There were no clear and outstanding geomagnetic storms during WHI, but there were some moderate geomagnetically active moments. For example, on March 26, Dst index decreased from 25 nT to -41 nT for 10 hours(1000 -1900 UT). The amplitude of Pc 5 pulsation in the frequency band between 1.67 and 6.67 mHz at the MAGDAS stations increased for few days after March 26. Using magnetometer data obtained globally from ULTIMA(Ultra Large Terrestrial International Magnetic Array) stations, we will investigate the occurrence and wave characteristics(amplitude, period and phase) of Pc 5 pulsations. Particularly high-latitude Pc 5 observed at THEMIS (the Time History of Events and Macroscopic Interactions during Substorms), CARISMA(Canadian Array for Realtime Investigations of Magnetic Activity) and McMaC (Mid-continent Magnetoseismic Chain) stations will be compared with equatorial-latitude Pc 5 observed at MAGDAS stations(TIR, DAV, YAP, ANC, EUS, ILR, and UT=LT+5h, +8h, +9h, -5h, -2h and 0h, respectively). Acknowledgment: MAGDAS data used in this paper were obtained in mutual collaborations with the following representatives of various organizations; Prof. Archana Bhattacharya(Indian Institute of Geomagnetism, TIR), Fr. Daniel McNamara(Manila Observatory, DAV), Dr. David Aranug(Weather Service Office YAP, YAP), Dr. Ronald Woodman Pollitt(Instituto Geofisico del Peru, ANC), Dr. Severino L. G. Dutra(Brazilian National Space Research Institute (INPE), EUS), Dr. A. Babatunde Rabiu(Federal University of Technology, ILR).

  13. A Antarctic Magnetometer Chain Along the Cusp Latitude: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2016-12-01

    A magnetometer chain from Zhongshan Station to Dome-A in Antarctica has been established since February 2009, consisting in five fluxgate magnetometers, with one regular magnetometer at Zhongshan Station and four low power magnetometers along the cusp latitude in the southern hemisphere, over a distance of 1260 Km. It is one part of the magnetometer network in Antarctic continent, filling the void area for magnetic observation over east-southern Antarctica, greatly enlarging the coverage of the Zhongshan Station. It is also magnetically conjugated with Svalbard region in the Arctic, with a leg extending to DNB in east coast Greenland. Conjunction observation among these magnetometers could provide excellent tracing of series of the typical space physical phenomena such as FTE, TCV, MIE, ULF waves, etc.

  14. Negative refraction of acoustic waves using a foam-like metallic structure

    NASA Astrophysics Data System (ADS)

    Hladky-Hennion, A.-C.; Vasseur, J. O.; Haw, G.; Croënne, C.; Haumesser, L.; Norris, A. N.

    2013-04-01

    A phononic crystal (PC) slab made of a single metallic phase is shown, theoretically and experimentally, to display perfect negative index matching and focusing capability when surrounded with water. The proposed PC slab is a centimeter scale hollow metallic foam-like structure in which acoustic energy is mediated via the metal lattice. The negative index property arises from an isolated branch of the dispersion curves corresponding to a mode that can be coupled to incident acoustic waves in surrounding water. This band also intercepts the water sound line at a frequency in the ultrasonic range. The metallic structure is consequently a candidate for the negative refraction of incident longitudinal waves.

  15. Location of γ-ray Flare Emission in the Jet of the BL Lacertae Object OJ287 More than 14 pc from the Central Engine

    NASA Astrophysics Data System (ADS)

    Agudo, Iván; Jorstad, Svetlana G.; Marscher, Alan P.; Larionov, Valeri M.; Gómez, José L.; Lähteenmäki, Anne; Gurwell, Mark; Smith, Paul S.; Wiesemeyer, Helmut; Thum, Clemens; Heidt, Jochen; Blinov, Dmitriy A.; D'Arcangelo, Francesca D.; Hagen-Thorn, Vladimir A.; Morozova, Daria A.; Nieppola, Elina; Roca-Sogorb, Mar; Schmidt, Gary D.; Taylor, Brian; Tornikoski, Merja; Troitsky, Ivan S.

    2011-01-01

    We combine time-dependent multi-waveband flux and linear polarization observations with submilliarcsecond-scale polarimetric images at λ = 7 mm of the BL Lacertae type blazar OJ287 to locate the γ-ray emission in prominent flares in the jet of the source >14 pc from the central engine. We demonstrate a highly significant correlation between the strongest γ-ray and millimeter-wave flares through Monte Carlo simulations. The two reported γ-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wave flares originated in the second of two features in the jet that are separated by >14 pc. The simultaneity of the peak of the higher-amplitude γ-ray flare and the maximum in polarization of the second jet feature implies that the γ-ray and millimeter-wave flares are cospatial and occur >14 pc from the central engine. We also associate two optical flares, accompanied by sharp polarization peaks, with the two γ-ray events. The multi-waveband behavior is most easily explained if the γ-rays arise from synchrotron self-Compton scattering of optical photons from the flares. We propose that flares are triggered by interaction of moving plasma blobs with a standing shock. The γ-ray and optical emission is quenched by inverse Compton losses as synchrotron photons from the newly shocked plasma cross the emission region. The millimeter-wave polarization is high at the onset of a flare, but decreases as the electrons emitting at these wavelengths penetrate less polarized regions.

  16. Investigation of EM Emissions by the Electrodynamic Tether, Inclusive of an Observational Program (EMET)

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.

    1998-01-01

    Our TSS-1/R investigation, which we shall refer to as EMET in this report, was an integral part of the effort by the TSS-1/R Investigators' Working Group (IWG) to come to an understanding of the complex interaction between the tethered satellite system and the ionosphere. All of the space-borne experiments were designed to collect data relevant to the local interaction. Only the ground- based experiments, EMET and its Italian counterpart Observations on the Earth's Surface of Electromagnetic Emissions (OESEE), held out any hope of characterizing the long range effects of the interaction. This was to be done by detecting electromagnetic waves generated by the system in the ionosphere, assuming the signal reached the Earth's surface with sufficient amplitude. As the type of plasma waves excited to carry charge away from the charge-exchange regions of the system at each end of the tether is one of the theoretical points about which there is greatest disagreement, a definitive identification of tether-generated waves could mark significant progress in the so-called current closure problem of electrodynamic tethers. Dr. Mario Grossi of the Smithsonian Astrophysical Observatory (SAO) initiated the investigation, and his experience in the field of ULF-ELF waves and their detection was invaluable throughout its course. Rice University had the responsibility of setting up the EMET ULF-VLF ground stations under a subcontract from SAO. Principal Investigator (PI) for the Rice effort was Prof. William E. Gordon, who was primary observer at the Arecibo Observatory during TSS-LR. Dr. Steve Noble handled major day-to-day operations, training, and planning for the ground-based measurements. Dr. James McCoy of NASA JSC, a member of the Mona/Arecibo team, was pilot for the numerous flights ferrying personnel and equipment between Puerto Rico and Mona Island. Final responsibility for the measurements rested with SAO, and the activities of field personnel and SAO investigators were closely co-ordinated during the mission. Dr. Enrico Lorenzini of SAO served as the eyes, ears, and brain of EMET in the Science Operations Area and PI table during the mission, whenever the PI was absent during the round-the-clock mission operations. The Rice University final report to SAO, which is included as an Appendix, contains details of the remote sites, means of communication, sensors, etc., as well as the affiliations of personnel involved in the data-gathering effort.

  17. Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-11-01

    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the S6 LIGO science run. The search was possible thanks to the computing power provided by the volunteers of the Einstein@Home distributed computing project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population. At the frequency of best strain sensitivity, between 170.5 and 171 Hz we set a 90% confidence upper limit of 5.5 ×10-25 , while at the high end of our frequency range, around 505 Hz, we achieve upper limits ≃10-24 . At 230 Hz we can exclude sources with ellipticities greater than 10-6 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038 kg m2 . If we assume a higher (lower) gravitational wave spin-down we constrain farther (closer) objects to higher (lower) ellipticities.

  18. Physical Mechanism of the Surface Air Temperature Variability in Korea and Near Seven-Day Oscillations

    NASA Astrophysics Data System (ADS)

    Kim, K.; Roh, J.

    2009-12-01

    The first three principal modes of wintertime surface temperature variability in Seoul, Korea (126.59°E, 37.33°N) are extracted from the 1979-2008 observed records via cyclostationary EOF (CSEOF) analysis. Then, physically consistent patterns of several key physical variables over East Asia (97.5°-152.5°E×22.5°-72.5°N) are derived from the NCEP/NCAR reanalysis data in order to understand the physical and dynamical mechanisms of the derived CSEOF modes. The first mode represents the seasonal cycle, the principle physical mechanism of which is associated with the continent/ocean sea level pressure contrast. The second mode mainly describes overall wintertime warming or cooling. The third mode depicts subseasonal fluctuations of surface temperature. Sea level pressure anomalies to the west of Korea (eastern China) and those with an opposite sign to the east of Korea (Japan) are a major physical mechanism both for the second mode and the third mode. These sea level pressure anomalies with opposite signs alter the amount of warm air to the south of Korea, which, in turn, varies the surface temperature in Korea. The PC time series of the seasonal cycle is significantly correlated with the East Asian winter monsoon index and exhibits a conspicuous downward trend. The PC time series of the second mode exhibits a positive trend. These trends imply that the wintertime surface temperature in Korea has increased and the seasonal cycle has weakened gradually in the past 30 years; the sign of greenhouse warming is clear in both PC time series. The seasonal cycle has decreased since the impact of warming as reflected in the sea level pressure change is much stronger over the continent than over the ocean; greater sea level pressure decrease over the continent than over the ocean reduces the wintertime sea level pressure contrast between the continent and the ocean thereby weakening the seasonal cycle. The ~7-day oscillations, also called the three-cold-day/four-warm-day events, are clearly seen in the second and the third CSEOF modes. The ~7-day oscillations are a major component of high-frequency variability in much of the analysis domain and are a manifestation of Rossby waves. Rossby waves aloft result in the concerted variation of physical variables in the atmospheric column; the nature of this response is of nearly barotropic and is clearly felt at the surface. Due to the stronger mean zonal wind, the disturbances by Rossby waves propagate eastward at ~8-12 m/sec; the passing of Rossby waves with alternating signs produces the ~7-day temperature oscillations in Korea. Thus, it is the speed of eastward propagation of Rossby waves not the phase speed of Rossby waves that determines the period of oscillations.

  19. Numerical investigation of diffraction of acoustic waves by phononic crystals

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent

    2012-05-01

    Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.

  20. Conjugate Event Study of Geomagnetic ULF Pulsations with Wavelet-based Indices

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Clauer, C. R.; Kim, H.; Weimer, D. R.; Cai, X.

    2013-12-01

    The interactions between the solar wind and geomagnetic field produce a variety of space weather phenomena, which can impact the advanced technology systems of modern society including, for example, power systems, communication systems, and navigation systems. One type of phenomena is the geomagnetic ULF pulsation observed by ground-based or in-situ satellite measurements. Here, we describe a wavelet-based index and apply it to study the geomagnetic ULF pulsations observed in Antarctica and Greenland magnetometer arrays. The wavelet indices computed from these data show spectrum, correlation, and magnitudes information regarding the geomagnetic pulsations. The results show that the geomagnetic field at conjugate locations responds differently according to the frequency of pulsations. The index is effective for identification of the pulsation events and measures important characteristics of the pulsations. It could be a useful tool for the purpose of monitoring geomagnetic pulsations.

  1. Observations of the magnetic fluctuation enhancement in the earth's foreshock region

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.

    1990-01-01

    Upstream waves have been postulated to be a major source of energy for the dayside magnetic pulsations within the magnetosphere. Thus, it is of interest to determine over what frequency range in the ion foreshock the power of fluctuations in the solar wind is enhanced. The magnetic field data from pairs of spacecraft, when they stay on either side of the ion foreshock boundary, were examined. It was found that the power of magnetic fluctuations is enhanced only at periods less than about two minutes, not at longer periods. Thus the upstream waves may contribute to Pc 3 and Pc 4 pulsations in the dayside magnetosphere, but they cannot be directly responsible for the longer-period waves.

  2. A Self-Check System for Mental Health Care based on Nonlinear and Chaos Analysis

    NASA Astrophysics Data System (ADS)

    Oyama-Higa, Mayumi; Miao, Tiejun; Cheng, Huaichang; Tang, Yuan Guang

    2007-11-01

    We applied nonlinear and chaos analysis to fingertip pulse wave data. The largest Lyapunov exponent, a measure of the "divergence" of the trajectory of the attractor in phase space, was found to be a useful index of mental health in humans, particularly for the early detection of dementia and depressive psychosis, and for monitoring mental changes in healthy persons. Most of the methods used for assessing mental health are subjective. A few of existing objective methods, such as those using EEG and ECG, for example, are not simple to use and expansive. Therefore, we developed an easy-to-use economical device, a PC mouse with an integrated sensor for measuring the pulse waves, and its required software, to make the measurements. After about 1 min of measurement, the Lyapunov exponent is calculated and displayed as a graph on the PC. An advantage of this system is that the measurements can be made very easily, and hence mental health can be assessed during operating a PC using the pulse wave mouse. Moreover, the measured data can be saved according to the time and date, so diurnal changes and changes over longer time periods can be monitored as a time series and history. At the time the pulse waves are measured, we ask the subject about his or her physical health and mood, and use their responses, along with the Lyapunov exponents, as factors causing variation in the divergence. The changes in the Lyapunov exponent are displayed on the PC as constellation graphs, which we developed to facilitate simpler self-diagnosis and problem resolution.

  3. Ultralow-frequency Raman system down to 10 cm{sup −1} with longpass edge filters and its application to the interface coupling in t(2+2)LGs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, M.-L.; Qiao, X.-F.; Wu, J.-B.

    Ultralow-frequency (ULF) Raman spectroscopy becomes increasingly important in the area of two-dimensional (2D) layered materials; however, such measurement usually requires expensive and nonstandard equipment. Here, the measurement of ULF Raman signal down to 10 cm{sup −1} has been realized with high throughput by combining a kind of longpass edge filters with a single monochromator, which are verified by the Raman spectrum of L-cystine using three laser excitations. Fine adjustment of the angle of incident laser beam from normal of the longpass edge filters and selection of polarization geometry are demonstrated how to probe ULF Raman signal with high signal-to-noise. Davydovmore » splitting of the shear mode in twisted (2+2) layer graphenes (t(2+2)LG) has been observed by such system in both exfoliated and transferred samples. We provide a direct evidence of twist-angle dependent softening of the shear coupling in t(2+2)LG, while the layer-breathing coupling at twisted interfaces is found to be almost identical to that in bulk graphite. This suggests that the exfoliation and transferring techniques are enough good to make a good 2D heterostructures to demonstrate potential device application. This Raman system will be potentially applied to the research field of ULF Raman spectroscopy.« less

  4. Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids.

    PubMed

    Vu, Ngoc; Brown, Jeffery; Giles, Kevin; Zhang, Qibin

    2017-09-15

    The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Hybridization bandgap induced by an electrical resonance in piezoelectric metamaterial plates

    NASA Astrophysics Data System (ADS)

    Kherraz, N.; Haumesser, L.; Levassort, F.; Benard, P.; Morvan, B.

    2018-03-01

    We demonstrate numerically and experimentally the opening of a locally resonant bandgap in an active phononic crystal (PC) made of a homogeneous piezoelectric plate covered by a 1D periodic array of thin electrodes connected to inductive shunts. The application of periodic electrical boundary conditions (EBCs) enables an at will tailoring of the dispersion properties of the PC plate, thus leading to a control of the dispersion of the propagating guided elastic waves in the plate. Depending on the nature of the EBCs, several bandgaps open up, the most important being a Hybridization Bandgap (HBG) in the subwavelength regime. The PC behaves as a locally resonant metamaterial. The HBG originates from the interaction of propagating elastic waves (Lamb modes) with an electrical resonant mode whose dispersion can be effectively described through an equivalent transmission line model.

  6. [Features of control of electromagnetic radiation emitted by personal computers].

    PubMed

    Pal'tsev, Iu P; Buzov, A L; Kol'chugin, Iu I

    1996-01-01

    Measurements of PC electromagnetic irradiation show that the main sources are PC blocks emitting the waves of certain frequencies. Use of wide-range detectors measuring field intensity in assessment of PC electromagnetic irradiation gives unreliable results. More precise measurements by selective devices are required. Thus, it is expedient to introduce a term "spectral density of field intensity" and its maximal allowable level. In this case a frequency spectrum of PC electromagnetic irradiation is divided into 4 ranges, one of which is subjected to calculation of field intensity for each harmonic frequency, and others undergo assessment of spectral density of field intensity.

  7. Sensory trigeminal ULF-TENS stimulation reduces HRV response to experimentally induced arithmetic stress: A randomized clinical trial.

    PubMed

    Monaco, Annalisa; Cattaneo, Ruggero; Ortu, Eleonora; Constantinescu, Marian Vladimir; Pietropaoli, Davide

    2017-05-01

    Ultra Low Frequency Transcutaneous Electric Nervous Stimulation (ULF-TENS) is extensively used for pain relief and for the diagnosis and treatment of temporomandibular disorders (TMD). In addition to its local effects, ULF-TENS acts on the autonomic nervous system (ANS), with particular reference to the periaqueductal gray (PAG), promoting the release of endogenous opioids and modulating descending pain systems. It has been suggested that the PAG participates in the coupling between the emotional stimulus and the appropriate behavioral autonomic response. This function is successfully investigated by HRV. Therefore, our goal is to investigate the effects of trigeminal ULF-TENS stimulation on autonomic behavior in terms of HRV and respiratory parameters during an experimentally-induced arithmetic stress test in healthy subjects. Thirty healthy women between 25 and 35years of age were enrolled and randomly assigned to either the control (TENS stimulation off) or test group (TENS stimulation on). Heart (HR, LF, HF, LF/HF ratio, DET, RMSSD, PNN50, RR) and respiratory (BR) rate were evaluated under basal, T1 (TENS off/on), and stress (mathematical task) conditions. Results showed that HRV parameters and BR significantly changed during the arithmetic stress paradigm (p<0.01). Independently of stress conditions, TENS and control group could be discriminated only by non-linear HRV data, namely RR and DET (p=0.038 and p=0.027, respectively). During the arithmetic task, LF/HF ratio was the most sensitive parameter to discriminate between groups (p=0.019). Our data suggest that trigeminal sensory ULF-TENS reduces the autonomic response in terms of HRV and BR during acute mental stress in healthy subjects. Future directions of our work aim at applying the HRV and BR analysis, with and without TENS stimulation, to individuals with dysfunctional ANS among those with TMD. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Unusual refilling of the slot region between the Van Allen radiation belts

    NASA Astrophysics Data System (ADS)

    Yang, X.; Yu, J.; Ni, B.; Zhang, Y.; Zhang, X.

    2017-12-01

    Using multi-satellite measurements, the dynamics of relativistic electrons in the slot region are investigated from 2000 to 2011. The dependences of relativistic electron enhancements in the slot region on interplanetary and magnetospheric conditions are researched. It is resulted that the relativistic electron enhancements in the slot region occurred under remarkable interplanetary and magnetospheric conditions. A uniquely strong and long-lived relativistic electron slot region refilling event from November 2004 to January 2005 is studied especially. Both empirically modeled and observationally estimated plasmapause locations demonstrate that the plasmasphere eroded significantly prior to the enhancement phase of this event. The estimated diffusion coefficients indicate that the radial diffusion due to ULF waves is insufficient to account for the observed enhancement of slot region electrons. However, the diffusion coefficients evaluated using the distribution of chorus wave intensities derived from low-altitude POES electron observations indicate that the local acceleration induced by chorus could account for the major feature of observed enhancement outside the plasmapause. When the plasmasphere recovered, the refilled slot region was enveloped inside the plasmapause. In the plasmasphere, while the efficiency of hiss scattering loss increases by including unusually low frequency hiss waves, the interaction with hiss alone cannot fully explain the decay of this event, especially at higher energies, which suggests that EMIC waves contribute to the relativistic electron loss process at such low L-shells for this refilling event.

  9. The soft X-ray background as a supernova blast wave viewed from inside - Solar abundance models

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.

    1986-01-01

    A model of the soft X-ray background is presented in which the sun is assumed to be inside an active supernova blast wave. The blast wave evolves in a preexisting cavity. The broad band surface brightnesses is explained by such a blast wave with an explosion energy of E sub approximately 5 x 10 to the 50th power ergs and radius 80 to 100 pc, using solar abundances. An approach to treating the problem of large anisotropies in the ambient medium is also explored, accommodating the observed anticorrelation between the soft X-ray surface brightness and the 21 cm column density. It is found that only for post shock temperatures below 10 to the 6 power K a shock propagating into a density enhancement will be dimmer than a similar shock in a lower density region.

  10. Remembrances of Ulf Svante von Euler.

    PubMed

    Igić, Rajko

    2018-05-21

    I first met Ulf Svante von Euler when he came to Belgrade, in 1968, to attend an international symposium on the occasion of the 50 th anniversary of the Medical Faculty. I was at that time a graduate student at the Medical Faculty in Sarajevo, and a new researcher. I had finished medical school in Belgrade and had worked for two years as a physician in the northern part of Serbia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. New seismological attempts to study the top of the Earth's core

    NASA Astrophysics Data System (ADS)

    Tanaka, S.

    2007-12-01

    The seismological structure at the top of the Earth's core has been masked by the D", the base of the mantle, that is adjacent above the core. As increasing the high quality digital seismic data, the studies of the region have been revisited. First is the analysis of SmKS phases. Previously, the travel times of SKS, SKKS, and S3KS have been examined by using a regional array or an old global network of which distribution was sparse. Now I show that a new data set consisting of 1211 SmKS (m > 1) waveforms has been obtained from the recent permanent and temporary networks that exist between 1990 and 2003. The new data has been analyzed to investigate the radial seismic velocity structure around the core-mantle boundary (CMB). A stacked waveform at each distance bin coincides with reflectivity synthetic one for PREM very well, whereas those for other global models (iasp91, ak135, and SP6) yield disagreements. Furthermore, a waveform modeling for the D" structure results in a 30 km thick layer with a 10 percent S-wave velocity reduction at the mantle bottom as the best model while the SmKS modeling is insensitive to the lowermost mantle structures with thickness of several hundred kilometers. The possibility of a low P-wave velocity layer in the outermost core is remained because that the waveform fitness for the part of S4KS is improved by further introducing a 140 km thick layer with a 0.8 percent P-wave velocity reduction at the core top. However, a linear velocity gradient is assumed in the modeling of the outermost core. More complicated structure, such as the change of the velocity gradient, would be suffered from the trade-off between the velocity and the core radius. As discussed above, an independent approach is required to investigate to the core radius and topography of the CMB. Thus I have started another project. The combination of P4KP and PcP is suitable for canceling the hypocenter uncertainty and the regional variations in the mantle and the crust. To date, I have obtained 94 P4KP-PcP times from the International Monitoring System (IMS) arrays, the J-array and IRIS stations. The times of P4KP and PcP are carefully picked by hand. The picking points are similar to each other. The ray theoretical travel times of PcP and P4KP-AB are calculated with PREM as a reference. The resultant residuals obtained are scattered from +0 to +5 s. After correcting the travel times due to the ellipticity at the CMB for which the hydrostatic equilibrium are considered, the corrected P4KP-PcP are distributed around 2-3 s. Correction with a global P wave tomography yields a small change as large as 0.2 s. Therefore the P4KP-PcP residuals by 2 to 3 s should be explained by excess core radius by 2 to 3 km comparing to those of PREM if the velocity structure obtained by SmKS phases is adopted. Furthermore, scatterring of P4KP-PcP times are investigated by three CMB topography models (Morelli and Dziewonski, 1987: MD, Dorrnbos and Hilton, 1989: DH, and Sze and van der Hilst, 2003: SH). The correction using the DH model makes scattering of the P4KP-PcP residuals very small. This suggests that the P4KP-PcP data is useful to image the CMB topography if we have an enough data. Furthermore, a simultaneous inversion with SmKS would be important to elucidate the both side structures of the CMB.

  12. A dynamic model of the radiation-belt electron phase-space density based on POLAR/HIST measurements

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J. C.

    2007-12-01

    The response of the energetic-electron phase-space density (PSD) in the radiation belts is subject to a delicate combination of acceleration and loss processes which are strongly determined by the magnetospheric configuration and field disturbance level. We quantify the response of the density to stormtime fields as observed by the HIST detector on board POLAR. Several distinct modes are identified, characterized by peak second- and third- adiabatic invariants and peak delay time. The modes represent quasiadiabatic transport due to ring current activity; high L* (~6), day-long acceleration linked to ULF wave-particle interaction; and low-L* (~3), minute- to hour-long acceleration interpreted to be due to transient inductive fields or VLF wave-particle interaction. The net transport due to these responses is not always or everywhere diffusive, therefore we quantify the degree of departure from diffusive transport for specific storm intervals and radial ranges. Taken together the response modes comprise a dynamic, nonlinear model which allows us to better understand the historic variability of the high-energy tail of the electron distribution in the inner magnetosphere.

  13. Dependence of radiation belt simulations to assumed radial diffusion rates

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Aseev, N.; Kellerman, A. C.; Reeves, G. D.

    2017-12-01

    Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons due to wave-particle interaction with ultra low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting. We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert [2000], Ozeke et al. [2014] and Ali et al. [2016] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following previous studies, we first perform 1-D radial diffusion simulations. To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion. The obtained result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable between simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.

  14. LOCATION OF {gamma}-RAY FLARE EMISSION IN THE JET OF THE BL LACERTAE OBJECT OJ287 MORE THAN 14 pc FROM THE CENTRAL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agudo, Ivan; Jorstad, Svetlana G.; Marscher, Alan P.

    We combine time-dependent multi-waveband flux and linear polarization observations with submilliarcsecond-scale polarimetric images at {lambda} = 7 mm of the BL Lacertae type blazar OJ287 to locate the {gamma}-ray emission in prominent flares in the jet of the source >14 pc from the central engine. We demonstrate a highly significant correlation between the strongest {gamma}-ray and millimeter-wave flares through Monte Carlo simulations. The two reported {gamma}-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wavemore » flares originated in the second of two features in the jet that are separated by >14 pc. The simultaneity of the peak of the higher-amplitude {gamma}-ray flare and the maximum in polarization of the second jet feature implies that the {gamma}-ray and millimeter-wave flares are cospatial and occur >14 pc from the central engine. We also associate two optical flares, accompanied by sharp polarization peaks, with the two {gamma}-ray events. The multi-waveband behavior is most easily explained if the {gamma}-rays arise from synchrotron self-Compton scattering of optical photons from the flares. We propose that flares are triggered by interaction of moving plasma blobs with a standing shock. The {gamma}-ray and optical emission is quenched by inverse Compton losses as synchrotron photons from the newly shocked plasma cross the emission region. The millimeter-wave polarization is high at the onset of a flare, but decreases as the electrons emitting at these wavelengths penetrate less polarized regions.« less

  15. Wave number determination of Pc 1-2 mantle waves considering He++ ions: A Cluster study

    NASA Astrophysics Data System (ADS)

    Grison, B.; Escoubet, C. P.; Santolík, O.; Cornilleau-Wehrlin, N.; Khotyaintsev, Y.

    2014-09-01

    The present case study concerns narrowband electromagnetic emission detected in the distant cusp region simultaneously with upgoing plasma flows. The wave properties match the usual properties of the Pc 1-2 mantle waves: small angle between the wave vector and the magnetic field line, left-hand polarization, and propagation toward the ionosphere. We report here the first direct wave vector measurement of these waves (about 1.2 × 10- 2 rad/km) through multi spacecraft analysis using the three magnetic components and, at the same time, through single spacecraft analysis based on the refractive index analysis using the three magnetic components and two electric components. The refractive index analysis offers a simple way to estimate wave numbers in this frequency range. Numerical calculations are performed under the observed plasma conditions. The obtained results show that the ion distribution functions are unstable to ion cyclotron instability at the observed wave vector value, due to the large ion temperature anisotropy. We thus show that these electromagnetic ion cyclotron (EMIC) waves are amplified in the distant cusp region. The Poynting flux of the waves is counterstreaming with respect to the plasma flow. This sense of propagation is consistent with the time necessary to amplify the emissions to the observed level. We point out the role of the wave damping at the He++ gyrofrequency to explain that such waves cannot be observed from the ground at the cusp foot print location.

  16. Natural time analysis on the ultra-low frequency magnetic field variations prior to the 2016 Kumamoto (Japan) earthquakes

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Schekotov, Alexander; Asano, Tomokazu; Hayakawa, Masashi

    2018-04-01

    On 15 April 2016 a very strong and shallow earthquake (EQ) (MW = 7.0 , depth ∼ 10 km) occurred in Southwest Japan under the city of Kumamoto, while two very strong foreshocks (MW = 6.2 and MW = 6.0) preceded by about one day. The Kumamoto EQs being very catastrophic, have already attracted much attention among the scientific community in a quest for understanding the generation mechanism, as well as for reporting any preseismic anomalies in various observables and assessing the effectivity of the current early warning systems. In the present article we report precursory behavior of the ground-based observed ultra-low frequency (ULF) magnetic field variations before the Kumamoto EQs. By analyzing specific ULF magnetic field characteristics in terms of the recently introduced natural time (NT) analysis method, we identified that ULF magnetic field variations presented critical features from 2 weeks up to 1 month before the Kumamoto EQs. Specifically, the ULF magnetic field characteristics Fh , Fz , Dh and δDep were analyzed. The first two represent variations of the horizontal and vertical components of the geomagnetic field. The third and fourth characteristics correspond to the depression (decrease) and a relative depression of the horizontal magnetic field variations, respectively. The latter depends on the degree of ionospheric disturbance. All of them were found to reach criticality before the Kumamoto EQs; however, in different time periods for each characteristic.

  17. Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt

    DOE PAGES

    Ma, Q.; Li, W.; Thorne, R. M.; ...

    2016-04-28

    The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusivemore » movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Here, our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. Lastly, this study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.« less

  18. Design on compatible stealth photonic crystal of nearmiddle infrared and 1.06 μm laser

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-kui; Wang, Jia-Chun; Wang, Qi-Chao

    2016-01-01

    In the near and middle infrared atmospheric window, infrared stealth material require a low absorptivity (which means a low emissivity according to Kirchhoff's law of black body), at the same time, it also requires high absorptivity so as to decrease the reflectance at military laser wavelength of 1.06μm. Under this circumstances, compatible stealth of infrared and laser is an urgent demand, but the demand is ambivalent for conventional materials. Photonic crystal (PC), as a new type of artificial periodic structure function material, can realize broadband thermal infrared stealth based on its high-reflection photon forbidden band(also called photonic band gap). The high-reflection photon forbidden band of PC can be adjusted to near and middle infrared wave band through some rational methods. When a defect was added into the periodic structure of PC, a "hole-digging" reflection spectrum, which is high absorption at military laser wavelength of 1.06μm, can be achieved, so compatible stealth of near and middle infrared and military laser wavelength of 1.06μm can be achieved too. In this paper, we selected near and middle infrared-transparent materials, Te and MgF2 , as high refractive index and low refractive index material respectively, and designed a one-dimensional one-defect-mode PC whose photon forbidden band was broadened to 1-5μm by constructing two photonic crystals into one. The optical property of the PC was calculated by Transfer matrix method(TMM) of thin-film optical theory, and the results shows that the as-designed PC has a high spectral reflectance in the near and middle infrared band, among which the reflectivity in 1.68μm 5.26μm band reached more than 90%, and the 2.48 5.07μm band even reached 99.99%. The result also shows that between the band gap of 1-5μm, there are one defect mode locating in the wavelength of 1.06μm, whose reflectance is below 0.70%, which means its spectral absorptivity is greater than 99.30%. All the above we have discussed proved that this "hole-digging spectrum" PC can realize the compatible stealth of near and middle infrared and 1.06μm military laser.

  19. Nature of Pre-Earthquake Phenomena and their Effects on Living Organisms

    PubMed Central

    Freund, Friedemann; Stolc, Viktor

    2013-01-01

    Simple Summary Earthquakes are invariably preceded by a period when stresses increase deep in the Earth. Animals appear to be able to sense impending seismic events. During build-up of stress, electronic charge carriers are activated deep below, called positive holes. Positive holes have unusual properties: they can travel fast and far into and through the surrounding rocks. As they flow, they generate ultralow frequency electromagnetic waves. When they arrive at the Earth surface, they can ionize the air. When they flow into water, they oxidize it to hydrogen peroxides. All these physical and chemical processes can have noticeable effects on animals. Abstract Earthquakes occur when tectonic stresses build up deep in the Earth before catastrophic rupture. During the build-up of stress, processes that occur in the crustal rocks lead to the activation of highly mobile electronic charge carriers. These charge carriers are able to flow out of the stressed rock volume into surrounding rocks. Such outflow constitutes an electric current, which generates electromagnetic (EM) signals. If the outflow occurs in bursts, it will lead to short EM pulses. If the outflow is continuous, the currents may fluctuate, generating EM emissions over a wide frequency range. Only ultralow and extremely low frequency (ULF/ELF) waves travel through rock and can reach the Earth surface. The outflowing charge carriers are (i) positively charged and (ii) highly oxidizing. When they arrive at the Earth surface from below, they build up microscopic electric fields, strong enough to field-ionize air molecules. As a result, the air above the epicentral region of an impending major earthquake often becomes laden with positive airborne ions. Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans. In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals. When the charge carriers flow into water, they oxidize water to hydrogen peroxide. This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals. PMID:26487415

  20. Investigation into the High Voltage Shutdown of the Oxygen Generator System in the International Space Station

    NASA Technical Reports Server (NTRS)

    Carpenter, Joyce E.; Gentry, Gregory J.; Diderich, Greg S.; Roy, Robert J.; Golden, John L.; VanKeuren, Steve; Steele, John W.; Rector, Tony J.; Varsik, Jerome D.; Montefusco, Daniel J.; hide

    2012-01-01

    The Oxygen Generation System (OGS) Hydrogen Dome Assembly Orbital Replacement Unit (ORU) serial number 00001 suffered a cell stack high-voltage shutdown on July 5, 2010. The Hydrogen Dome Assembly ORU was removed and replaced with the on-board spare ORU serial number 00002 to maintain OGS operation. The Hydrogen Dome Assembly ORU was returned from ISS on STS-133/ULF-5 in March 2011 with test, teardown and evaluation (TT&E) and failure analysis to follow.

  1. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves.

    PubMed

    Marano, Francesca; Rinella, Letizia; Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D'Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect.

  2. Observation of proton chorus waves close to the equatorial plane by Cluster

    NASA Astrophysics Data System (ADS)

    Grison, B.; Pickett, J. S.; Santolik, O.; Robert, P.; Cornilleau-Wehrlin, N.; Engebretson, M. J.; Constantinescu, D. O.

    2009-12-01

    Whistler mode chorus waves are a widely studied phenomena. They are present in numerous regions of the magnetosphere and are presumed to originate in the magnetic equatorial region. In a spectrogram they are characterized by narrowband features with rise (or fall) in frequency over short periods of time. Being whistler mode waves around a few tenths of the electron cyclotron frequency they interact mainly with electrons. In the present study we report observations by the Cluster spacecraft of what we call proton chorus waves. They have spectral features with rising frequency, similar to the electron chorus waves, but they are detected in a frequency range that starts roughly at 0.50fH+ up to fH+ (the local proton gyro-frequency). The lower part of their spectrum seems to originate from monochromatic Pc 1 waves (1.5 Hz). Proton chorus waves are detected close to the magnetic equatorial plane in both hemispheres during the same event. Our interpretation of these waves as proton chorus is supported by polarization analysis with the Roproc procedures and the Prassadco software using both the magnetic (STAFF-SC) and electric (EFW) parts of the fluctuations spectrum.

  3. NATO Education and Training Network

    DTIC Science & Technology

    2012-02-01

    Warfare Center P.O. Box 8080 Eikesetveien N-4068 Stavanger NORWAY Email: Ivan.Vianello@jwc.nato.int NC3A Mr. Steven BLACKSTONE NATO C3...Sergio Galán,  Stephane Devaud, Steven  Blackstone , Søren Larsen, Thomas Orichel, Tom van den Berg, Torbjörn Hultén, Ulf  Björkman, Ulf Jinnestrand...Steven Blackstone , Vladimir Manda Observer Teams: none Response Cell Observers: EXPCELL-ACT 01.03 Manage and monitor CFBLNet infrastructure

  4. In situ observations of Pc1 pearl pulsations by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Paulson, K. W.; Smith, C. W.; Lessard, M. R.; Engebretson, M. J.; Torbert, R. B.; Kletzing, C. A.

    2014-03-01

    We present in situ observations of Pc1 pearl pulsations using the Van Allen Probes. These waves are often observed using ground-based magnetometers, but are rarely observed by orbiting satellites. With the Van Allen Probes, we have seen at least 14 different pearl pulsation events during the first year of operations. These new in situ measurements allow us to identify the wave classification based on local magnetic field conditions. Additionally, by using two spacecraft, we are able to observe temporal changes in the region of observation. The waves appear to be generated at an overall central frequency, as often observed on the ground, and change polarization from left- to right-handedness as they propagate into a region where they are resonant with the crossover frequency (where R- and L-mode waves have the same phase velocity). By combining both in situ and ground-based data, we have found that the region satisfying electromagnetic ion cyclotron wave generation conditions is azimuthally large while radially narrow. The observation of a similar modulation period on the ground as in the magnetosphere contradicts the bouncing wave packet mechanism of generation.

  5. Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13

    NASA Astrophysics Data System (ADS)

    Cattell, C.; Breneman, A.; Colpitts, C.; Dombeck, J.; Thaller, S.; Tian, S.; Wygant, J.; Fennell, J.; Hudson, M. K.; Ergun, Robert; Russell, C. T.; Torbert, Roy; Lindqvist, Per-Arne; Burch, J.

    2017-09-01

    Observations from Magnetospheric MultiScale ( 8 Re) and Van Allen Probes ( 5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated E × B flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by Magnetospheric MultiScale (MMS), with a speed that is comparable to the E × B flow. The magnetopause speed and the E × B speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF waves also were seen. These observations demonstrate that even very weak shocks can have significant impact on the radiation belts.

  6. Low-cost mm-wave Doppler/FMCW transceivers for ground surveillance applications

    NASA Astrophysics Data System (ADS)

    Hansen, H. J.; Lindop, R. W.; Majstorovic, D.

    2005-12-01

    A 35 GHz Doppler CW/FMCW transceiver (Equivalent Radiated Power ERP=30dBm) has been assembled and its operation described. Both instantaneous beat signals (relating to range in FMCW mode) and Doppler signals (relating to targets moving at ~1.5 ms -1) exhibit audio frequencies. Consequently, the radar processing is provided by laptop PC using its inbuilt video-audio media system with appropriate MathWorks software. The implications of radar-on-chip developments are addressed.

  7. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Kim, Hyangpyo; Park, Jaeheung; Lee, Jaejin

    2018-03-01

    Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites ( 10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a highend formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  8. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    NASA Astrophysics Data System (ADS)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  9. The clinical efficacy of dietary fat restriction in treatment of dogs with intestinal lymphangiectasia.

    PubMed

    Okanishi, H; Yoshioka, R; Kagawa, Y; Watari, T

    2014-01-01

    Intestinal lymphangiectasia (IL), a type of protein-losing enteropathy (PLE), is a dilatation of lymphatic vessels within the gastrointestinal tract. Dietary fat restriction previously has been proposed as an effective treatment for dogs with PLE, but limited objective clinical data are available on the efficacy of this treatment. To investigate the clinical efficacy of dietary fat restriction in dogs with IL that were unresponsive to prednisolone treatment or showed relapse of clinical signs and hypoalbuminemia when the prednisolone dosage was decreased. Twenty-four dogs with IL. Retrospective study. Body weight, clinical activity score, and hematologic and biochemical variables were compared before and 1 and 2 months after treatment. Furthermore, the data were compared between the group fed only an ultra low-fat (ULF) diet and the group fed ULF and a low-fat (LF) diet. Nineteen of 24 (79%) dogs responded satisfactorily to dietary fat restriction, and the prednisolone dosage could be decreased. Clinical activity score was significantly decreased after dietary treatment compared with before treatment. In addition, albumin (ALB), total protein (TP), and blood urea nitrogen (BUN) concentration were significantly increased after dietary fat restriction. At 2 months posttreatment, the ALB concentrations in the ULF group were significantly higher than that of the ULF + LF group. Dietary fat restriction appears to be an effective treatment in dogs with IL that are unresponsive to prednisolone treatment or that have recurrent clinical signs and hypoalbuminemia when the dosage of prednisolone is decreased. © 2014 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  10. Seafloor Pressure Array Studies at Ultra-Low Frequencies

    DTIC Science & Technology

    1991-01-01

    broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high

  11. Partial wave spectroscopic microscopy can predict prostate cancer progression and mitigate over-treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Graff, Taylor; Crawford, Susan; Subramanian, Hariharan; Thompson, Sebastian; Derbas, Justin R.; Lyengar, Radha; Roy, Hemant K.; Brendler, Charles B.; Backman, Vadim

    2016-02-01

    Prostate Cancer (PC) is the second leading cause of cancer deaths in American men. While prostate specific antigen (PSA) test has been widely used for screening PC, >60% of the PSA detected cancers are indolent, leading to unnecessary clinical interventions. An alternative approach, active surveillance (AS), also suffer from high expense, discomfort and complications associated with repeat biopsies (every 1-3 years), limiting its acceptance. Hence, a technique that can differentiate indolent from aggressive PC would attenuate the harms from over-treatment. Combining microscopy with spectroscopy, our group has developed partial wave spectroscopic (PWS) microscopy, which can quantify intracellular nanoscale organizations (e.g. chromatin structures) that are not accessible by conventional microscopy. PWS microscopy has previously been shown to predict the risk of cancer in seven different organs (N ~ 800 patients). Herein we use PWS measurement of label-free histologically-normal prostatic epithelium to distinguish indolent from aggressive PC and predict PC risk. Our results from 38 men with low-grade PC indicated that there is a significant increase in progressors compared to non-progressors (p=0.002, effect size=110%, AUC=0.80, sensitivity=88% and specificity=72%), while the baseline clinical characteristics were not significantly different. We further improved the diagnostic power by performing nuclei-specific measurements using an automated system that separates in real-time the cell nuclei from the remaining prostate epithelium. In the long term, we envision that the PWS based prognostication can be coupled with AS without any change to the current procedure to mitigate the harms caused by over-treatment.

  12. Modeling the GPR response of leaking, buried pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, M.H.; Olhoeft, G.R.

    1996-11-01

    Using a 2.5D, dispersive, full waveform GPR modeling program that generates complete GPR response profiles in minutes on a Pentium PC, the effects of leaking versus non-leaking buried pipes are examined. The program accounts for the dispersive, lossy nature of subsurface materials to GPR wave propagation, and accepts complex functions of dielectric permittivity and magnetic permeability versus frequency through Cole-Cole parameters fit to laboratory data. Steel and plastic pipes containing a DNAPL chlorinated solvent, an LNAPL hydrocarbon, and natural gas are modeled in a surrounding medium of wet, moist, and dry sand. Leaking fluids are found to be more detectablemore » when the sand around the pipes is fully water saturated. The short runtimes of the modeling program and its execution on a PC make it a useful tool for exploring various subsurface models.« less

  13. Ionospheric signatures of cusp latitude Pc 3 pulsations

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Anderson, B. J.; Cahill, L. J., Jr.; Arnoldy, R. L.; Rosenberg, T. J.

    1990-01-01

    Search coil magnetometer, riometer, photometer, and ELF-VLF receiver data obtained at South Pole Station and McMurdo, Antarctica during selected days in March and April 1986 are compared. Narrow-band magnetic pulsations in the Pc 3 period range are observed simultaneously at both stations in the dayside sector during times of low IMF cone angle, but are considerably stronger at South Pole, which is located at a latitude near the nominal foot point of the dayside cusp/cleft region. Pulsations in auroral light at 427.8 nm wavelength are often observed with magnetic pulsations at South Pole, but such optical pulsations are not observed at McMurdo. The observations suggest that precipitating magnetosheathlike electrons at nominal dayside cleft latitudes are at times modulated with frequencies similar to those of upstream waves. These particles may play an important role, via modification of ionospheric currents and conductivities, in the transmission of upstream wave signals into the magnetosphere and in the generation of dayside high-latitude Pc 3 pulsations.

  14. Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer.

    PubMed

    Oida, Takenori; Kobayashi, Tetsuo

    2013-01-01

    Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.

  15. STS 129 Return Samples: Assessment of Air Quality aboard the Shuttle (STS-129) and International Space Station (ULF3)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    Reports on the air quality aboard the Space Shuttle (STS-129), and the International Space station (ULF3). NASA analyzed the grab sample canisters (GSCs) and the formaldehyde badges aboard both locations for carbon monoxide levels. The three surrogates: (sup 13)C-acetone, fluorobenzene, and chlorobenzene registered 109, 101, and 109% in the space shuttle and 81, 87, and 55% in the International Space Station (ISS). From these results the atmosphere in both the Space Shuttle and the International Space Station (ISS) was found to be breathable.

  16. On The Propagation And Modulation Of Electrostatic Solitary Waves Observed Near The Magnetopause On Cluster

    NASA Astrophysics Data System (ADS)

    Pickett, J. S.; Christopher, I. W.; Grison, B.; Grimald, S.; Santolík, O.; Décréau, P. M. E.; Lefebvre, B.; Engebretson, M. J.; Kistler, L. M.; Constantinescu, D.; Chen, L.-J.; Omura, Y.; Lakhina, G. S.; Gurnett, D. A.; Cornilleau-Wehrlin, N.; Fazakerley, A. N.; Dandouras, I.; Lucek, E.

    2011-01-01

    We present the results of a study of Electrostatic Solitary Waves (ESWs) in which propagation of a series of noncyclical ESWs is observed from one Cluster spacecraft to another over distances as great as tens of km and time lags as great as a few tens of ms. This propagation study was conducted for locations near the magnetopause on the magnetosheath side. Propagation was found primarily toward the earth with speeds on the order of 1500 to 2400 km/s. The sizes of the ESWs obtained from these velocities were on the order of 1 km along the magnetic field direction and several tens of km perpendicular. These results are consistent with measurements on single spacecraft in which the ESW propagation is observed with time lags of only ˜0.1 ms. Our results thus show the stability of ESWs over time periods much greater than their own characteristic pulse durations of a few 100s of microseconds. We present also the results of a study of ESW modulation at the magnetopause on the earthward side. We found that ESWs were modulated at ˜1.3 Hz, consistent with a Pc1 wave which was observed concurrently. During this time, tens of eV electron beams are present. We propose a Buneman type instability in which the E″″ component of the Pc1 waves provides a mechanism for accelerating electrons, resulting in the generation of the ESWs modulated at the Pc1 frequency.

  17. Storm surge along the Pacific coast of North America

    NASA Astrophysics Data System (ADS)

    Bromirski, Peter D.; Flick, Reinhard E.; Miller, Arthur J.

    2017-01-01

    Storm surge is an important factor that contributes to coastal flooding and erosion. Storm surge magnitude along eastern North Pacific coasts results primarily from low sea level pressure (SLP). Thus, coastal regions where high surge occurs identify the dominant locations where intense storms make landfall, controlled by storm track across the North Pacific. Here storm surge variability along the Pacific coast of North America is characterized by positive nontide residuals at a network of tide gauge stations from southern California to Alaska. The magnitudes of mean and extreme storm surge generally increase from south to north, with typically high amplitude surge north of Cape Mendocino and lower surge to the south. Correlation of mode 1 nontide principal component (PC1) during winter months (December-February) with anomalous SLP over the northeast Pacific indicates that the dominant storm landfall region is along the Cascadia/British Columbia coast. Although empirical orthogonal function spatial patterns show substantial interannual variability, similar correlation patterns of nontide PC1 over the 1948-1975 and 1983-2014 epochs with anomalous SLP suggest that, when considering decadal-scale time periods, storm surge and associated tracks have generally not changed appreciably since 1948. Nontide PC1 is well correlated with PC1 of both anomalous SLP and modeled wave height near the tide gauge stations, reflecting the interrelationship between storms, surge, and waves. Weaker surge south of Cape Mendocino during the 2015-2016 El Niño compared with 1982-1983 may result from changes in Hadley circulation. Importantly from a coastal impacts perspective, extreme storm surge events are often accompanied by high waves.

  18. Observation of a J(PC)=1-+ exotic resonance in diffractive dissociation of 190   GeV/c π- into π- π- π+.

    PubMed

    Alekseev, M G; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregesilo, A; Badełek, B; Balestra, F; Ball, J; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chapiro, A; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Dafni, T; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Diaz, V; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger, M; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gobbo, B; Goertz, S; Grabmüller, S; Grajek, O A; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heckmann, J; Heinsius, F H; Hermann, R; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Höppner, Ch; d'Hose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Komissarov, E V; Kondo, K; Königsmann, K; Konopka, R; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Krämer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Maximov, A N; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J-F; Ramos, S; Rapatsky, V; Reicherz, G; Reggiani, D; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmitt, L; Schopferer, S; Schröder, W; Shevchenko, O Yu; Siebert, H-W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Venugopal, G; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Windmolders, R; Wiślicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A

    2010-06-18

    The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the π- π- π+ final state using a 190  GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420,000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1  GeV2/c2. The well-known resonances a1(1260), a2(1320), and π2(1670) are clearly observed. In addition, the data show a significant natural-parity exchange production of a resonance with spin-exotic quantum numbers J(PC)=1-+ at 1.66  GeV/c2 decaying to ρπ. The resonant nature of this wave is evident from the mass-dependent phase differences to the J(PC)=2-+ and 1++ waves. From a mass-dependent fit a resonance mass of (1660±10(-64)(+0))  MeV/c2 and a width of (269±21(-64)(+42))  MeV/c2 are deduced, with an intensity of (1.7±0.2)% of the total intensity.

  19. Magnetosphere on May 11, 1999, the day the solar wind almost disappeared: II. Magnetic pulsations in space and on the ground

    NASA Astrophysics Data System (ADS)

    Le, G.; Chi, P. J.; Goedecke, W.; Russell, C. T.; Szabo, A.; Petrinec, S. M.; Angelopoulos, V.; Reeves, G. D.; Chun, F. K.

    2000-08-01

    Simultaneous observations by Wind and IMP-8 in the upstream region on May 11, 1999, when the solar wind density was well below its usual values and the IMF was generally weakly northward, indicate there were upstream waves present in the foreshock, but wave power was an order of magnitude weaker than usual due to an extremely weak bow shock and tenuous solar wind plasma. Magnetic pulsations in the magnetosphere have been observed in the magnetic field data from Polar and at mid-latitude ground stations. By comparing May 11 with a control day under normal solar wind conditions and with a similar foreshock geometry, we find that the magnetosphere was much quieter than usual. The Pc 3-4 waves were nearly absent in the dayside magnetosphere both at Polar and as seen at mid-latitude ground stations even through the foreshock geometry was favorable for the generation of these waves. Since the solar wind speed was not unusual on this day, these observations suggest that it is the Mach number of the solar wind flow relative to the magnetosphere that controls the amplitude of Pc 3-4 waves in the magnetosphere.

  20. PC5-A-mediated processing of pro-neurotensin in early compartments of the regulated secretory pathway of PC5-transfected PC12 cells.

    PubMed

    Barbero, P; Rovère, C; De Bie, I; Seidah, N; Beaudet, A; Kitabgi, P

    1998-09-25

    Among the members of the proprotein convertase (PC) family, PC1 and PC2 have well established roles as prohormone convertases. Another good candidate for this role is PC5-A that has been shown to be present in the regulated secretory pathway of certain neuroendocrine tissues, but evidence that it can process prohormones is lacking. To determine whether PC5-A could function as a prohormone convertase and to compare its cleavage specificity with that of PC1 and PC2, we stably transfected the rat pheochromocytoma PC12 cell line with PC5-A and analyzed the biosynthesis and subcellular localization of the enzyme, as well as its ability to process pro-neurotensin/neuromedin N (pro-NT/NN) into active peptides. Our data showed that in transfected PC12 cells, PC5-A was converted from its 126-kDa precursor form into a 117-kDa mature form and, to a lesser extent, into a C-terminally truncated 65-kDa form of the 117-kDa product. Metabolic and immunochemical studies showed that PC5-A was sorted to early compartments of the regulated secretory pathway where it colocalized with immunoreactive NT. Furthermore, pro-NT/NN was processed in these compartments according to a pattern that differed from that previously described in PC1- and PC2-transfected PC12 cells. This pattern resembled that previously reported for pro-NT/NN processing in the adrenal medulla, a tissue known to express high levels of PC5-A. Altogether, these data demonstrate for the first time the ability of PC5-A to function as a prohormone convertase in the regulated secretory pathway and suggest a role for this enzyme in the physiological processing of pro-NT/NN.

  1. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves

    PubMed Central

    Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D’Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect. PMID:28002459

  2. Constraints on small-scale heterogeneity in the lowermost mantle from observations of near podal PcP precursors

    NASA Astrophysics Data System (ADS)

    Zhang, Baolong; Ni, Sidao; Sun, Daoyuan; Shen, Zhichao; Jackson, Jennifer M.; Wu, Wenbo

    2018-05-01

    Volumetric heterogeneities on large (∼>1000 km) and intermediate scales (∼>100 km) in the lowermost mantle have been established with seismological approaches. However, there are controversies regarding the level of heterogeneity in the lowermost mantle at small scales (a few kilometers to tens of kilometers), with lower bound estimates ranging from 0.1% to a few percent. We take advantage of the small amplitude PcP waves at near podal distances (0-12°) to constrain the level of small-scale heterogeneity within 250 km above the CMB. First, we compute short period synthetic seismograms with a finite difference code for a series of volumetric heterogeneity models in the lowermost mantle, and find that PcP is not identifiable if the small-scale heterogeneity in the lowermost mantle is above 2.5%. We then use a functional form appropriate for coda decay to suppress P coda contamination. By comparing the corrected envelope of PcP and its precursors with synthetic seismograms, we find that perturbations of small-scale (∼8 km) heterogeneity in the lowermost mantle is ∼0.2-0.5% beneath regions of the China-Myanmar border area, Okhotsk Sea and South America. Whereas strong perturbations (∼1.0%) are found beneath Central America. In the regions studied, we find that this particular type of small-scale heterogeneity in the lowermost mantle is weak, yet there are some regions requiring heterogeneity up to 1.0%. Where scattering is stronger, such as under Central America, more chemically complex mineral assemblages may be present at the core-mantle boundary.

  3. Integrated Photonic Orbital Angular Momentum Multiplexing and Demultiplexing on Chip

    DTIC Science & Technology

    2014-10-31

    OAM free space coherent communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT...wave (cw) laser centered at 1540 nm, followed by an erbium-doped fiber amplifier (EDFA), an I/Q modulator, and another EDFA. The I/Q modulator was...communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT: attenuator. BPF: bandpass filter

  4. Energetic Particle Sounding of the Magnetopause Deformed by Hot Flow Anomaly

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zong, Q.; Zhang, H.

    2017-12-01

    Hot flow anomalies (HFAs), which are frequently observed near Earth's bow shock, are phenomena resulting from the interaction between interplanetary discontinuities and Earth's bow shock. Such transient phenomena upstream the bow shock can cause significant deformation of the bow shock and the magnetosphere, generating traveling convection vortices, field-aligned currents, and ULF waves in the Earth's magnetosphere. A large HFA was observed by MMS on November 19, 2015, lasting about 16 minutes. In this study, energetic particle sounding method with high time resolution (150 ms) Fast Plasma Investigation (FPI) data is used to determine the deformed magnetopause distances, orientations, and structures in the interval when MMS pass through the deformed magnetopause. The energetic particle sounding result from single MMS satellite for every moment in the interval when the distance from the magnetopause to the satellite is less than two proton gyro radii shows the profile of the deformed magnetopause.

  5. A high-performance electric field detector for space missions

    NASA Astrophysics Data System (ADS)

    Badoni, D.; Ammendola, R.; Bertello, I.; Cipollone, P.; Conti, L.; De Santis, C.; Diego, P.; Masciantonio, G.; Picozza, P.; Sparvoli, R.; Ubertini, P.; Vannaroni, G.

    2018-04-01

    We present the prototype of an Electric Field Detector (EFD) for space applications, that has been developed in the framework of the Chinese-Italian collaboration on the CSES (China Seismo-Electromagnetic Satellite) forthcoming missions. In particular CSES-1 will be placed in orbit in the early 2018. The detector consists of spherical probes designed to be installed at the tips of four booms deployed from a 3-axes stabilized satellite. The instrument has been conceived for space-borne measurements of electromagnetic phenomena such as ionospheric waves, lithosphere-atmosphere-ionosphere-magnetosphere coupling and anthropogenic electromagnetic emissions. The detector allows to measure electric fields in a wide band of frequencies extending from quasi-DC up to about 4 MHz , with a sensitivity of the order of 1 μV / m in the ULF band. With these bandwidth and sensitivity, the described electric field detector represents a very performing and updated device for electric field measurements in space.

  6. Simultaneous observation of Pc 3-4 pulsations in the solar wind and in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Zanetti, L. J.; Potemra, T. A.; Baumjohann, W.; Luehr, H.; Acuna, M. H.

    1987-01-01

    The equatorially orbiting Active Magnetospheric Particle Tracer Explorers CCE and IRM satellites have made numerous observations of Pc 3-4 magnetic field pulsations (10-s to 100-s period) simultaneously at locations upstream of the earth's bow shock and inside the magnetosphere. These observations show solar wind/IMF control of two categories of dayside magnetospheric pulsations. Harmonically structured, azimuthally polarized pulsations are commonly observed from L = 4 to 9 in association with upstream waves. More monochromatic compressional pulsations are clearly evident on occasion, with periods identical to those observed simultaneously in the solar wind. The observations reported here are consistent with a high-latitude (cusp) entry mechanism for wave energy related to harmonically structured pulsations.

  7. Theoretical investigation of EM wave generation and radiation in the ULF, ELF, and VLF bands by the electrodynamic orbiting tether

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.; Grossi, Mario D.

    1989-01-01

    The problem of electromagnetic wave generation by an electrodynamic tethered satellite system is important both for the ordinary operation of such systems and for their possible application as orbiting transmitters. The tether's ionospheric circuit closure problem is closely linked with the propagation of charge-carrying electromagnetic wave packets away from the tethered system. Work is reported which represents a step towards a solution to the problem that takes into account the effects of boundaries and of vertical variations in plasma density, collision frequencies, and ion species. The theory of Alfen wave packet generation by an electrodynamic tethered system in an infinite plasma medium is reviewed, and brief summary of previous work on the problem is given. The consequences of the presence of the boundaries and the vertical nonuniformity are then examined. One of the most significant new features to emerge when ion-neutral collisions are taken into account is the coupling of the Alfven waves to the fast magnetosonic wave. This latter wave is important, as it may be confined by vertical variations in the Alfven speed to a sort of leaky ionospheric wave guide, the resonances of which could be of great importance to the signal received on the Earth's surface. The infinite medium solution for this case where the (uniform) geomagnetic field makes an arbitrary angle with the vertical is taken as the incident wave-packet. Even without a full solution, a number of conclusions can be drawn, the most important of which may be that the electromagnetic field associated with the operation of a steady-current tethered system will probably be too weak to detect on the Earth's surface, even for large tethered currents. This is due to the total reflection of the incident wave at the atmospheric boundary and the inability of a steady-current tethered system to excite the ionospheric wave-guide. An outline of the approach to the numerical problem is given. The use of numerical integrations and boundary conditions consistent with a conducting Earth is proposed to obtain the solution for the horizontal electromagnetic field components at the boundary of the ionosphere with the atmospheric cavity.

  8. Eddy-current non-inertial displacement sensing for underwater infrasound measurements.

    PubMed

    Donskoy, Dimitri M; Cray, Benjamin A

    2011-06-01

    A non-inertial sensing approach for an Acoustic Vector Sensor (AVS), which utilizes eddy-current displacement sensors and operates well at Ultra-Low Frequencies (ULF), is described here. In the past, most ULF measurements (from mHertz to approximately 10 Hertz) have been conducted using heavy geophones or seismometers that must be installed on the seafloor; these sensors are not suitable for water column measurements. Currently, there are no readily available compact and affordable underwater AVS that operate within this frequency region. Test results have confirmed the validity of the proposed eddy-current AVS design and have demonstrated high acoustic sensitivity. © 2011 Acoustical Society of America

  9. Ultra-low field MRI food inspection system prototype

    NASA Astrophysics Data System (ADS)

    Kawagoe, Satoshi; Toyota, Hirotomo; Hatta, Junichi; Ariyoshi, Seiichiro; Tanaka, Saburo

    2016-11-01

    We develop an ultra-low field (ULF) magnetic resonance imaging (MRI) system using a high-temperature superconducting quantum interference device (HTS-SQUID) for food inspection. A two-dimensional (2D)-MR image is reconstructed from the grid processing raw data using the 2D fast Fourier transform method. In a previous study, we combined an LC resonator with the ULF-MRI system to improve the detection area of the HTS-SQUID. The sensitivity was improved, but since the experiments were performed in a semi-open magnetically shielded room (MSR), external noise was a problem. In this study, we develop a compact magnetically shielded box (CMSB), which has a small open window for transfer of a pre-polarized sample. Experiments were performed in the CMSB and 2D-MR images were compared with images taken in the semi-open MSR. A clear image of a disk-shaped water sample is obtained, with an outer dimension closer to that of the real sample than in the image taken in the semi-open MSR. Furthermore, the 2D-MR image of a multiple cell water sample is clearly reconstructed. These results show the applicability of the ULF-MRI system in food inspection.

  10. Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes.

    PubMed

    Han, Jung Woo; Choi, Juhye; Kim, Young Shin; Kim, Jina; Brinkmann, Ralf; Lyu, Jungmook; Park, Tae Kwann

    2018-02-01

    This study investigated microglia and inflammatory cell responses after selective retina therapy (SRT) with microsecond-pulsed laser in comparison to continuous-wave laser photocoagulation (cwPC). Healthy C57BL/6 J mice were treated with either a train of short pulses (SRT; 527-nm, Q-switched, 1.7-μs pulse) or a conventional thermal continuous-wave (532-nm, 100-ms pulse duration) laser. The mice were sacrificed and their eyes were enucleated 1, 3, 7, and 14 days after both laser treatments. Pattern of cell death on retinal section was evaluated by TUNEL assay, and the distribution of activated inflammatory cells and glial cells were observed under immunohistochemistry. Consecutive changes for the expression of cytokines such as IL-1β, TNF-α, and TGF-β were also examined using immunohistochemistry, and compared among each period after quantification by Western blotting. The numbers of TUNEL-positive cells in the retinal pigment epithelium (RPE) layer did not differ in SRT and cwPC lesions, but TUNEL-positive cells in neural retinas were significantly less on SRT. Vague glial cell activation was observed in SRT-treated lesions. The population of inflammatory cells was also significantly decreased after SRT, and the cells were located in the RPE layer and subretinal space. Proinflammatory cytokines, including IL-1β and TNF-α, showed significantly lower levels after SRT; conversely, the level of TGF-β was similar to the cwPC-treated lesion. SRT resulted in selective RPE damage without collateral thermal injury to the neural retina, and apparently produced negligible glial activation. In addition, SRT showed a markedly less inflammatory response than cwPC, which may have important therapeutic implications for several macular diseases.

  11. Millimeter and Submillimeter Survey of the R Coronae Australis Region

    NASA Astrophysics Data System (ADS)

    Groppi, Christopher E.; Kulesa, Craig; Walker, Christopher; Martin, Christopher L.

    2004-09-01

    Using a combination of data from the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO), the Arizona Radio Observatory Kitt Peak 12 m telescope, and the Arizona Radio Observatory 10 m Heinrich Hertz Telescope, we have studied the most active part of the R CrA molecular cloud in multiple transitions of carbon monoxide, HCO+, and 870 μm continuum emission. Since R CrA is nearby (130 pc), we are able to obtain physical spatial resolution as high as 0.01 pc over an area of 0.16 pc2, with velocity resolution finer than 1 km s-1. Mass estimates of the protostar driving the millimeter-wave emission derived from HCO+, dust continuum emission, and kinematic techniques point to a young, deeply embedded protostar of ~0.5-0.75 Msolar, with a gaseous envelope of similar mass. A molecular outflow is driven by this source that also contains at least 0.8 Msolar of molecular gas with ~0.5 Lsolar of mechanical luminosity. HCO+ lines show the kinematic signature of infall motions, as well as bulk rotation. The source is most likely a Class 0 protostellar object not yet visible at near-IR wavelengths. With the combination of spatial and spectral resolution in our data set, we are able to disentangle the effects of infall, rotation, and outflow toward this young object.

  12. VLF waves in the foreshock

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Crawford, G. K.

    1995-01-01

    Plasma waves observed in the VLF range upstream of planetary bow shocks not only modify the particle distributions, but also provide important information about the acceleration processes that occur at the bow shock. Electron plasma oscillations observed near the tangent field line in the electron foreshock are generated by electrons reflected at the bow shock through a process that has been referred to as Fast Fermi acceleration. Fast Fermi acceleration is the same as shock-drift acceleration, which is one of the mechanisms by which ions are energized at the shock. We have generated maps of the VLF emissions upstream of the Venus bow shock, using these maps to infer properties of the shock energization processes. We find that the plasma oscillations extend along the field line up to a distance that appears to be controlled by the shock scale size, implying that shock curvature restricsts the flux and energy of reflected electrons. We also find that the ion acoustic waves are observed in the ion foreshock, but at Venus these emissions are not detected near the ULF forshock boundary. Through analogy with terrestrial ion observations, this implies that the ion acoustic waves are not generated by ion beams, but are instead generated by diffuse ion distributions found deep within the ion foreshock. However, since the shock is much smaller at Venus, and there is no magnetosphere, we might expect ion distributions within the ion foreshock to be different than at the Earth. Mapping studies of the terrestrial foreshock similar to those carried out at Venus appear to be necessary to determine if the inferences drawn from Venus data are applicable to other foreshocks.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyunbok; Lee, Jeihyun; Yi, Yeonjin, E-mail: yeonjin@yonsei.ac.kr

    Metal phthalocyanines (MPcs) are well known as an efficient hole injection layer (HIL) in organic devices. They possess a low ionization energy, and so the low-lying highest occupied molecular orbital (HOMO) gives a small hole injection barrier from an anode in organic light-emitting diodes. However, in this study, we show that the hole injection characteristics of MPc are not only determined by the HOMO position but also significantly affected by the wave function distribution of the HOMO. We show that even with the HOMO level of a manganese phthalocyanine (MnPc) HIL located between the Fermi level of an indium tinmore » oxide anode and the HOMO level of a N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine hole transport layer the device performance with the MnPc HIL is rather deteriorated. This anomalous hole injection deterioration is due to the contracted HOMO wave function, which leads to small intermolecular electronic coupling. The origin of this contraction is the significant contribution of the Mn d-orbital to the MnPc HOMO.« less

  14. Troitskaya-Bolshakova effect as a manifestation of the solar wind wave turbulence

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Polyushkina, T. N.; Guglielmi, A. V.

    2018-02-01

    The impact of changes in the direction of the interplanetary magnetic field (IMF) on the amplitude of geomagnetic Pc3 pulsations (the Troitskaya-Bolshakova effect) is demonstrated using observations of several pulsation events. We show that the source of changes in the IMF cone angle is sometimes Alfvén waves propagating in the solar wind. For the analysis, measurements of geomagnetic pulsations at the mid-latitude Uzur magneto-telluric observatory and on three spacecraft outside the bow shock wave were used. The results show that the influence is exerted only by waves with a period of more than 40-60 min in a coordinate system fixed relative to the Earth. The Alfvén turbulence of a higher frequency is incoherent; the oscillations are of a chaotic nature, not coordinated in amplitude and phase either between satellites or with variations in the amplitude of Pc3. In some cases, the modulation of the pulsation amplitude is associated with the passage of the IMF sector boundary. An evaluation of the direction of propagation of Alfvén waves showed that they predominantly propagate from the Sun, but the normal of the wave fronts can deviate from the Sun-Earth line. This is quite consistent with earlier published results. The statistics of the basic properties of the oscillatory structures in the interplanetary medium, which we observed during the observation period, are given.

  15. Spontaneous Hot Flow Anomalies at Quasi-Parallel Shocks: 2. Hybrid Simulations

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Zhang, H.; Sibeck, D.; Turner, D.

    2013-01-01

    Motivated by recent THEMIS observations, this paper uses 2.5-D electromagnetic hybrid simulations to investigate the formation of Spontaneous Hot Flow Anomalies (SHFA) upstream of quasi-parallel bow shocks during steady solar wind conditions and in the absence of discontinuities. The results show the formation of a large number of structures along and upstream of the quasi-parallel bow shock. Their outer edges exhibit density and magnetic field enhancements, while their cores exhibit drops in density, magnetic field, solar wind velocity and enhancements in ion temperature. Using virtual spacecraft in the simulation, we show that the signatures of these structures in the time series data are very similar to those of SHFAs seen in THEMIS data and conclude that they correspond to SHFAs. Examination of the simulation data shows that SHFAs form as the result of foreshock cavitons interacting with the bow shock. Foreshock cavitons in turn form due to the nonlinear evolution of ULF waves generated by the interaction of the solar wind with the backstreaming ions. Because foreshock cavitons are an inherent part of the shock dissipation process, the formation of SHFAs is also an inherent part of the dissipation process leading to a highly non-uniform plasma in the quasi-parallel magnetosheath including large scale density and magnetic field cavities.

  16. Pi2 Pulsations During Extremely Quiet Geomagnetic Condition: Van Allen Probe Observations

    NASA Astrophysics Data System (ADS)

    Ghamry, Essam

    2017-06-01

    A ultra low frequency (ULF) wave, Pi2, has been reported to occur during periods of extremely quiet magnetospheric and solar wind conditions. And no statistical study on the Pi2 has been performed during extremely quiet conditions, using satellite observations to the author’s knowledge. Also Pi2 pulsations in the space fluxgate magnetometers near perigee failed to attract scientist’s attention previously. In this paper, Pi2 pulsations detected by the Van Allen probe satellites (VAP-A & VAP-B) were investigated statistically. During the period from October 2012 to December 2014, ninety six Pi2 events were identified using VAP when Kp = 0 while using Kakioka (KAK, L = 1.23) as a reference ground station. Seventy five events had high coherence between VAP-Bz and H components at KAK station. As a result, it was found that 77 % of the events had power spectra between 5 and 12 mHz, which differs from the regular Pi2 band range of from 6.7 to 25 mHz. In addition, it was shown that it is possible to observe Pi2 pulsations from space fluxgate magnetometers near perigee. Twenty two clean Pi2 pulsations were found where L < 4 and four examples of Pi2 oscillations at different L shells are presented in this paper.

  17. 49 CFR Appendix A to Part 531 - Example of Calculating Compliance Under § 531.5(c)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Transmission class Description Actualmeasured fuel economy (mpg) Volume 1 PC A FWD 1.8 A5 2-door sedan 34.0 1,500 2 PC A FWD 1.8 M6 2-door sedan 34.6 2,000 3 PC A FWD 2.5 A6 4-door wagon 33.8 2,000 4 PC A AWD 1.8 A6 4-door wagon 34.4 1,000 5 PC A AWD 2.5 M6 2-door hatchback 32.9 3,000 6 PC B RWD 2.5 A6 4-door...

  18. Unconventional and conventional quantum criticalities in CeRh0.58Ir0.42In5

    NASA Astrophysics Data System (ADS)

    Luo, Yongkang; Lu, Xin; Dioguardi, Aadm P.; Rosa, Priscila F. S.; Bauer, Eric D.; Si, Qimiao; Thompson, Joe D.

    2018-03-01

    An appropriate description of the state of matter that appears as a second order phase transition is tuned toward zero temperature, viz. quantum-critical point (QCP), poses fundamental and still not fully answered questions. Experiments are needed both to test basic conclusions and to guide further refinement of theoretical models. Here, charge and entropy transport properties as well as AC specific heat of the heavy-fermion compound CeRh0.58Ir0.42In5, measured as a function of pressure, reveal two qualitatively different QCPs in a single material driven by a single non-symmetry-breaking tuning parameter. A discontinuous sign-change jump in thermopower suggests an unconventional QCP at pc1 accompanied by an abrupt Fermi-surface reconstruction that is followed by a conventional spin-density-wave critical point at pc2 across which the Fermi surface evolves smoothly to a heavy Fermi-liquid state. These experiments are consistent with some theoretical predictions, including the sequence of critical points and the temperature dependence of the thermopower in their vicinity.

  19. Evaluation of physicochemical and physical habitat associations for Cambarus callainus (Big Sandy crayfish), an imperilled crayfish endemic to the Central Appalachians

    USGS Publications Warehouse

    Loughman, Zachary J.; Welsh, Stuart A.; Sadecky, Nicole M.; Dillard, Zachary W.; Scott, R. Katie

    2017-01-01

    1. Crayfish represent one of the most imperilled animal groups on the planet. Habitat degradation, destruction and fragmentation, introduction of invasive crayfishes, and a lack of applied biological information have all been identified as agents thwarting crayfish conservation.2. Cambarus callainus was warranted federal protection by the United States Fish and Wildlife Service (USFWS) in April, 2016. As part of the USFWS listing procedure, a survey for C. callainus in the Big Sandy River catchment was conducted to determine points of occurrence with a secondary objective of determining reach level physical habitat and physicochemical correlates of C. callainus presence and absence.3. At each site, physicochemical and physical habitat data were collected to determine the influence of abiotic covariates on the presence of C. callainus. Cambarus callainus presence or absence and associated site covariates were modelled using logistic regression.4. Survey results recorded C. callainus at 39 sites in the Upper Levisa Fork (ULF) and Tug Fork (TF) drainages of the Big Sandy River; no C. callainus were collected in the Lower Levisa Fork (LLF). An additive effects model of physical habitat quality (Basin + Boulder presence/embeddedness) was the only model selected, supporting an association of C. callainus with slab boulders, open interstitial spaces, and moderate to no sedimentation. All sites lacking C. callainus were experiencing some degree of sedimentation. Physicochemical covariates were not supported by the data.5. Results indicated that good quality habitat was lacking in the LLF, but was present in the ULF and TF catchments, with ULF supporting the most robust populations and most suitable habitat. Effective conservation for C. callainus should focus on efforts that limit sedimentation as well as restore good quality instream habitat in the greater Big Sandy catchment.

  20. Wave Refraction During the May 2002 Rarefaction Event

    NASA Astrophysics Data System (ADS)

    Smith, C. W.; Mullan, D. J.; Ness, N. F.; Skoug, R. M.

    2002-12-01

    In previous work [Smith et al., 2001] we examined IMF wave refraction during the May 1999 rarefaction interval known as ``The Day The Solar Wind Disappeared.'' On that day, Alfvén speeds remained elevated over an extended region. Analysis of the recorded ACE fields and plasma data revealed depressed magnetic fluctuation levels, reduced compression in the fluctuations, and a reduced wave-like component within the region of elevated Alfvén speed, all consistent with wave refraction. The May 2002 event provides a third such period (the second identified event occured 2 weeks prior to the May 1999 period) and it again demonstrates properties which are consistent with refraction. Smith, C.~W., D.~J. Mullan, N.~F. Ness, R.~M. Skoug, and J.~Steinberg, Day the solar wind almost disappeared: Magnetic field fluctuations, wave refraction and dissipation, J. Geophys. Res., A106, 18,625--18,634, 2001. Efforts at the Bartol Research Institute were supported by CIT subcontract PC251439 under NASA grant NAG5-6912 for support of the ACE magnetic field experiment and by the NASA Delaware Space College Grant. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy with financial support from the NASA ACE program.

  1. Resolved Structure of the Arp 220 Nuclei at λ ≈ 3 mm

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kazushi; Aalto, Susanne; Barcos-Muñoz, Loreto; Costagliola, Francesco; Evans, Aaron S.; Harada, Nanase; Martín, Sergio; Wiedner, Martina; Wilner, David

    2017-11-01

    We analyze the 3 mm emission of the ultraluminous infrared galaxy Arp 220 for the spatially resolved structure and the spectral properties of the merger nuclei. ALMA archival data at ˜0.″05 resolution are used for extensive visibility fitting and deep imaging of the continuum emission. The data are fitted well by two concentric components for each nucleus, such as two Gaussians or one Gaussian plus one exponential disk. The larger components in the individual nuclei are similar in shape and extent, ˜100-150 pc, to the centimeter wave emission due to supernovae. They are therefore identified with the known starburst nuclear disks. The smaller components in both nuclei have about a few 10 pc sizes and peak brightness temperatures ({T}{{b}}) more than twice higher than those in previous single-Gaussian fitting. They correspond to the dust emission that we find centrally concentrated in both nuclei by subtracting the plasma emission measured at 33 GHz. The dust emission in the western nucleus is found to have a peak {T}{{b}}≈ 530 K and an FWHM of about 20 pc. This component is estimated to have a bolometric luminosity on the order of {10}12.5 {L}⊙ and a 20 pc scale luminosity surface density {10}15.5 {{L}}⊙ {{{k}}{{p}}{{c}}}-2. A luminous active galactic nucleus is a plausible energy source for these high values while other explanations remain to be explored. Our continuum image also reveals a third structural component of the western nucleus—a pair of faint spurs perpendicular to the disk major axis. We attribute it to a bipolar outflow from the highly inclined (I≈ 60^\\circ ) western nuclear disk.

  2. Therapeutic Molecules and Endogenous Ligands Regulate the Interaction between Brain Cellular Prion Protein (PrPC) and Metabotropic Glutamate Receptor 5 (mGluR5)*

    PubMed Central

    Haas, Laura T.; Kostylev, Mikhail A.; Strittmatter, Stephen M.

    2014-01-01

    Soluble Amyloid-β oligomers (Aβo) can trigger Alzheimer disease (AD) pathophysiology by binding to cell surface cellular prion protein (PrPC). PrPC interacts physically with metabotropic glutamate receptor 5 (mGluR5), and this interaction controls the transmission of neurotoxic signals to intracellular substrates. Because the interruption of the signal transduction from PrPC to mGluR5 has therapeutic potential for AD, we developed assays to explore the effect of endogenous ligands, agonists/antagonists, and antibodies on the interaction between PrPC and mGluR5 in cell lines and mouse brain. We show that the PrPC segment of amino acids 91–153 mediates the interaction with mGluR5. Agonists of mGluR5 increase the mGluR5-PrPC interaction, whereas mGluR5 antagonists suppress protein association. Synthetic Aβo promotes the protein interaction in mouse brain and transfected HEK-293 cell membrane preparations. The interaction of PrPC and mGluR5 is enhanced dramatically in the brains of familial AD transgenic model mice. In brain homogenates with Aβo, the interaction of PrPC and mGluR5 is reversed by mGluR5-directed antagonists or antibodies directed against the PrPC segment of amino acids 91–153. Silent allosteric modulators of mGluR5 do not alter Glu or basal mGluR5 activity, but they disrupt the Aβo-induced interaction of mGluR5 with PrPC. The assays described here have the potential to identify and develop new compounds that inhibit the interaction of PrPC and mGluR5, which plays a pivotal role in the pathogenesis of Alzheimer disease by transmitting the signal from extracellular Aβo into the cytosol. PMID:25148681

  3. [Effect of mitogen activated protein kinase signal transduction on apoptosis of PC12 cells induced by electromagnetic exposure].

    PubMed

    Yang, Xue-Sen; Zhang, Wei; Gong, Qian-Fen

    2008-06-01

    To observe the effect of mitogen activated protein kinase (MAPK) signal transduction system on the apoptosis induced by electromagnetic exposure in PC12 cells. After pretreated by SB203580 alone or together with U0126, PC12 cells were exposed to 65 mW/cm(2) electromagnetic wave for 20 min. The phosphorylations of ERK1/2, JNK and P38 MAPK were tested by Western-blot at 3 h and 24 h after electromagnetic exposure. The apoptosis of PC12 cells were detected by Annexin-V-FITC flow cytometry. U0126, but not SB203580 could inhibit the activation of ERK1/2 induced by electromagnetic exposure. U0126 and SB203580 had no effects on the activation of JNK. SB203580 could inhibit the activation of P38 MAPK significantly. But U0126 had no such effect on the activation of P38 MAPK. After pretreated by SB203580 alone or together with U0126, the apoptosis of PC12 cells decreased. But the pretreatment by U0126 alone had no influence on the apoptosis of PC12 cells. The P38 MAPK signal transduction modulate the apoptosis of PC12 cells induced by electromagnetic exposure. ERK signal transduction has no effect on the apoptosis of PC12 cells. JNK signal transduction may promote the apoptosis of PC12 cells in the early stage after electromagnetic exposure.

  4. Evidence of low frequency waves penetration in the ionosphere observed by Chibis-M satellite

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Dudkin, Fedir; Korepanov, Valery

    2016-07-01

    Chibis-M microsatellite (MS) was launched using ISS infrastructure to the 500 km circular orbit with inclination 52° and successfully operated during the years 2012-2014. One of the main tasks of this experiment was the study of how powerful natural and technogenic processes are reflected in the ionosphere. For this study, the magnetic wave complex (MWC) was used which measured one electrical component and three components of the magnetic vector in the frequency range 0.1 Hz-40 kHz. Due to the proximity of the magnetic sensors and the satellite control system, their high sensitivity (up to 0.02 pT/sqrt(Hz)) was not used in full because the level of magnetic noise was about 10 pT/sqrt(Hz) in the low-frequency range. Nevertheless, owing to the symmetric fixation of the electric probes relative to the satellite body, the electrical sensor provided high accuracy measurements (about 0.8-0.04 (µV/m)/sqrt(Hz)) in the frequency range of 0.1-40 000 Hz, despite the very small measurement base of 0.42 m. This allowed us to collect valuable information which revealed a number of interesting physical effects, especially in ultralow frequency (ULF) range. In ULF range the ionospheric emissions with a central frequency of 50 (60) Hz - power line emissions (PLE) and the Schumann resonance harmonics (SR) were detected, though, according to the present model of the ionosphere, they have not penetrate there. A detailed study of the obtained data revealed the features of PLE and SR. The spatial distribution of PLE and their connection with the power lines location on the ground were analyzed. It was found that the intensity of PLE depends on the load characteristics of the power line and usually has a minimum in the morning. The cases of an extra long distance of PLE propagation in the Earth's ionosphere over oceans in the equatorial region have been also observed. Further, it was detected that PLE has been recorded both in the shaded and sunlit parts of the orbits and their amplitude does not depend on the level of the total electron content (TEC), as opposed to SR which has been observed only in the nightside of the Earth and with TEC only below 48 TECU. These results should stimulate the ionosphere model correction for ultralow frequency electromagnetic wave propagation as well as the study on the new possibility of the ionosphere diagnostics of Earth-located powerful events should be continued. This work was fulfilled with the support of the Contracts #4-03/13 with State Space Agency of Ukraine and #1601 with Space Research institute of NANU-SSAU.

  5. Study of the relation between Pc 3 micropulsations and magnetosheath fluctuations and of the multisatellite, multimeasurement investigation of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The structure and direction of bow shock waves and the occurence of Pc 3, 4 micropulsations were investigated. An observational description is given of a quasi-parallel structure in a plasma parameter regime. The use of approximation to estimate the thickness of thin, nearly perpendicular bow shocks at supralaminar Mach numbers is discussed. The pattern of energies of backstreaming protons in the foreshock are predicted.

  6. Shock wave structure in a strongly nonlinear lattice with viscous dissipation.

    PubMed

    Herbold, E B; Nesterenko, V F

    2007-02-01

    The shock wave structure in a one-dimensional lattice (e.g., granular chain of elastic particles) with a power law dependence of force on displacement between particles (F proportional to delta(n)) with viscous dissipation is considered and compared to the corresponding long wave approximation. A dissipative term depending on the relative velocity between neighboring particles is included to investigate its influence on the shape of a steady shock. The critical viscosity coefficient p(c), defining the transition from an oscillatory to a monotonic shock profile in strongly nonlinear systems, is obtained from the long-wave approximation for arbitrary values of the exponent n. The expression for the critical viscosity is comparable to the value obtained in the numerical analysis of a discrete system with a Hertzian contact interaction (n=3/2) . The expression for p(c) in the weakly nonlinear case converges to the known equation for the critical viscosity. An initial disturbance in a discrete system approaches a stationary shock profile after traveling a short distance that is comparable to the width of the leading pulse of a stationary shock front. The shock front width is minimized when the viscosity is equal to its critical value.

  7. The Application of Security Concepts to the Personnel Database for the Indonesian Navy.

    DTIC Science & Technology

    1983-09-01

    Postgraduate School, lionterey, California, June 1982. Since 1977, the Indonesian Navy Data Center (DISPULAHTAL) has collected and processed pa-sonnel data to...zel dlta Processing in the Indonesian Navy. 4 -a "o ’% ’." 5. ’S 1 1’S~. . . II. THE _IIIT_ IPR2ES1D PERSONSEL DATABASE SYSTEM The present Database...LEVEL *USER PROCESSING :CONCURRENT MULTI USER/LEVEL Ulf, U 3 , U 3 . . . users S. .. ...... secret C. .. ...... classified U .. .. ..... unclassified

  8. Immunohistochemical evidence for the involvement of protein convertases 5A and 2 in the processing of pro-neurotensin in rat brain.

    PubMed

    Villeneuve, P; Lafortune, L; Seidah, N G; Kitabgi, P; Beaudet, A

    2000-08-28

    The neuropeptides/neurotransmitters neurotensin (NT) and neuromedin (NN) are synthesized by endoproteolytic cleavage of a common inactive precursor, pro-NT/NN. In vitro studies have suggested that the prohormone convertases PC5A and PC2 might both be involved in this process. In the present study, we used dual immunohistochemical techniques to determine whether either one or both of these two convertases were co-localized with pro-NT/NN maturation products and could therefore be involved in the physiological processing of this propeptide in rat brain. PC2-immunoreactive neurons were present in all regions immunopositive for NT. All but three regions expressing NT were also immunopositive for PC5A. Dual localization of NT with either convertase revealed that NT was extensively co-localized with both PC5A and PC2, albeit with regional differences. These results strongly suggest that PC5A and PC2 may play a key role in the maturation of pro-NT/NN in mammalian brain. The regional variability in NT/PC co-localization patterns may account for the region-specific maturation profiles previously reported for pro-NT/NN. The high degree of overlap between PC5A and PC2 in most NT-rich areas further suggests that these two convertases may act jointly to process pro-NT/NN. At the subcellular level, PC5A was largely co-localized with the mid-cisternae Golgi marker MG-160. By contrast, PC2 was almost completely excluded from MG-160-immunoreactive compartments. These results suggest that PC5A, which is particularly efficient at cleaving the two C-terminal-most dibasics of pro-NT/NN, may be acting as early as in the Golgi apparatus to release NT, whereas PC2, which is considerably more active than PC5A in cleaving the third C-terminal doublet, may be predominantly involved further distally along the secretory pathway to release NN. Copyright 2000 Wiley-Liss, Inc.

  9. Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Anderson, P. R.

    1981-01-01

    An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.

  10. Seismic Attenuation in the African LLSVP Estimated from PcS Phases

    NASA Astrophysics Data System (ADS)

    Liu, C.; Grand, S.

    2017-12-01

    Seismic tomography has shown that the lowermost mantle beneath the south central Pacific and southern Africa are marked by broad regions with 3% slower shear velocity than normal. The structures have come to be known as large-low-shear-velocity provinces (LLSVPs). The cause of the seismic anomalies associated with the LLSVPs is of great interest to geophysicists as they are related to the chemical, thermal, and dynamic structure of the mantle. Some have interpreted the heterogeneity in the LLSVPs to be caused by purely thermal effects while others believe the LLSVPs are chemically distinct from normal mantle. Seismic velocity variations alone cannot distinguish the thermal from chemical interpretations. Anelastic structure, however, can help discriminate among models of the LLSVPs as intrinsic attenuation is much more sensitive to temperature than to chemical variations. In this study, we use PcS seismic waves, from an earthquake located in the Scotia Arc, recorded by 50 broadband seismometers deployed in Southern Africa during the Kaapvaal experiment (1997-1999) to estimate Q in the African LLSVP. With increasing epicentral distances, the upward leg PcS waves in lower mantle sweep from normal mantle into the African LLSVP. We divided the PcS data into a group that sampled the LLSVP and another group that passed through normal lower mantle. We determined Δt* between these two groups by stacking spectra and using the spectral ratio method. The waves passing through the LLSVP are noticeably more attenuated than those outside. Taking Q values outside the LLSVP from different published 1D Q models (e.g. PREM [Dziewonski and Anderson, 1981]; QLM9 [Lawrence and Wysession, 2006a]; QHR12 [Hwang and Ritsema, 2011]), we estimate the corresponding average shear wave Q in the African LLSVP to be 127, 115, and 118, far lower than any published average Earth Q models for the lower mantle. Using a range of activation energies (E*), from 200 - 500 kJ/mol (Matas and Bukowinski, 2007), we estimate the temperature anomaly within the African LLSVP to be 400 -1200 K. Uncertainty is primarily due to uncertainties in the activation energy.

  11. Seismo-magnetic observations aboard the upcoming Chinese CSES satellite

    NASA Astrophysics Data System (ADS)

    Schwingenschuh, Konrad; Magnes, Werner; Xuhui, Shen; Wang, Jindong; Pollinger, Andreas; Hagen, Christian; Lammegger, Roland; Ellmeier, Michaela; Prattes, Gustav; Eichelberger, Hans U.; Wolbang, Daniel; Boudjada, Mohammed Y.; Besser, Bruno P.; Rozhnoi, Alexander A.; Zhang, Tielong; Delva, Magda; Jernej, Irmgard; Aydogar, Özer

    2017-04-01

    One objective of the upcoming Chinese Seismo-Electromagnetic Satellite (CSES) mission is the observation of seismo-magnetic phenomena aboard CSES. Several hypothesis exist in order to explain the influence of seismic phenomena on magnetic field variations in the atmosphere and in the ionosphere. The so called microfracture electrification (Molchanov and Hayakawa, 1998) proposes the generation of a broad band electric-magnetic signal which is low-pass filtered by the crustal and atmospheric/ionospheric conductivity. Depending on the environmental conductivity sigma and on the permeability mu (Prattes et al., 2008) the electromagnetic field fluctuations with the frequency omega can propagate approximately d_skin. (d_skin) = sqrt(2/(mu*sigma*omega)) We present the sensitivity of the CSES scalar dark state magnetometer (Schwingenschuh et al., 2016) after the final tests and compare it with seismo-magnetic ULF model results using various earthquake parameters. References: Prattes, G. et al.: Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005, Nat. Hazards Earth Syst. Sci., 8, 501-507, 2008 Molchanov, O. and Hayakawa, M.: On the generation mechanism of ULF seismogenic electromagnetic emissions, Phys. of the Earth and Planet. Int., 105, 201-210, 1998 Schwingenschuh, K. et al.: Study of earthquakes and related phenomena using a satellite scalar magnetometer, Geophysical Research Abstracts, Vol. 18, EGU2016-8448, 2016

  12. Ulf Fernström (1915-1985) and his Contributions to the Development of Artificial Disc Replacements.

    PubMed

    Fisahn, Christian; Burgess, Brittni; Iwanaga, Joe; Chapman, Jens R; Oskouian, Rod J; Tubbs, R Shane

    2017-02-01

    Artificial disc replacements, which serve the function of separating vertebrae to allow for proper spinal alignment, can help treat debilitating low back pain in patients who have failed other conservative methods of treatment. A Swedish surgeon, Ulf Fernström, was the pioneer of artificial disc replacement, and his contribution in the form of Fernström balls dramatically altered spinal surgery and technique by showing the proper technique and implant that should be used for areas requiring motion in many planes. Ulf Fernström created his artificial disc inspired by the movement of the hip and knee joints. His implants attempted to restore disc spacing and articulation in patients who had failed conservative measures of treatment. Fernström balls were the first implants of their kind and represent the first attempt at artificial disc replacement. However, many surgeons and researchers questioned Fernström balls, claiming that their lack of elastic properties could damage patients. Of the wide range of implants on the market for the intervertebral disc space, all designs and applications of products stem from the initial discovery made by Fernström, thus making him a pioneer in disc replacement. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Full particle simulations of short large-amplitude magnetic structures (SLAMS) in quasi-parallel shocks

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.; LembèGe, B.

    2004-02-01

    Dynamics of SLAMS (short large-amplitude magnetic structures) is investigated by the use of one-dimensional, full particle electromagnetic simulations. As previous hybrid simulations and analysis of experimental observations suggested, present results confirm that the SLAMS patterns result from the steepening of long wavelength magnetosonic waves which are excited by diffuse ions (representing the field-aligned reflected ion beam) interacting with the upstream ambient plasma. Five successive phases have been identified in the SLAMS dynamics: ULF wave growth and symmetric, asymmetric, spiky, and late SLAMS. The present accessibility to high-resolution (electron) scales leads to the following new features: (1) the leading edge of the SLAMS steepens over a spatial scale from which a large-amplitude whistler precursor is emitted; (2) this whistler departs from the SLAMS edge and behaves as a new shock front; (3) the spiky SLAMS phase is characterized by the build-up of a strong spiky electrostatic field (its width is about 0.5 ion inertial length) within the whistler precursor and is intermittent with a lifetime less than one inverse ion gyroperiod; (4) the new shock front suffers a local self-reformation typical of a quasi-perpendicular shock in supercritical regime during the late-SLAMS phase. The features of the spiky SLAMS phase can be used as a typical signature in the time history of the SLAMS dynamics. Spatial/time scales of SLAMS have been measured throughout the different phases and are found in good agreement with results issued from previous hybrid simulations and with experimental measurements made by AMPTE UKS/IRM satellites; these are also compared with recent results from Cluster-2 space mission.

  14. Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain.

    PubMed

    Cain, Brian M; Connolly, Kelly; Blum, Alissa; Vishnuvardhan, Daesety; Marchand, James E; Beinfeld, Margery C; Vishnuvardham, Daesety

    2003-12-15

    During posttranslational processing to generate CCK 8, pro-cholecystokinin (CCK) undergoes endoproteolytic cleavage at three sites. Several studies using endocrine and neuronal tumor cells in culture and recombinant enzymes and synthetic substrates in vitro have pointed to the subtilisin/kexin-like enzymes prohormone convertase (PC) 1, PC2, and PC5 as potential candidates for these endoproteolytic cleavages. In these experimental models, they all appear to be able to cleave pro-CCK to make the correct products. One rodent model has provided information about the role of PC2. PC2 knockout mouse brains had less CCK 8 than wild-type, although a substantial amount of CCK was still present. The degree to which CCK levels were reduced in these mice was regionally specific. These data indicated that PC2 is important for normal production of CCK but that it is not the only endoprotease that is involved in CCK processing. To evaluate whether PC1 and PC5 are possible candidates for the other enzymes involved in CCK processing, the distribution of PC1, PC2, and PC5 mRNA was studied in rat brain. Their colocalization with CCK mRNA was examined using double-label in situ hybridization. PC2 was the most abundant of these enzymes in terms of the intensity and number of cells labeled. It was widely colocalized with CCK. PC1 and PC5 mRNA-positive cells were less abundant, but they were also widely distributed and strongly colocalized with CCK in the cerebral cortex, hippocampus, amygdala, ventral tegmental area, and substantia nigra zona compacta. The degree of colocalization of the enzymes with CCK was regionally specific. It is clear that PC1 and PC5 are extensively colocalized with CCK and could be participating in CCK processing in the rat brain and may be able to substitute for PC2 in its absence. These three enzymes may represent a redundant system to ensure production of biologically active CCK. Copyright 2003 Wiley-Liss, Inc.

  15. Ionospheric Alfvén resonator and aurora: Modeling of MICA observations

    NASA Astrophysics Data System (ADS)

    Tulegenov, B.; Streltsov, A. V.

    2017-07-01

    We present results from a numerical study of small-scale, intense magnetic field-aligned currents observed in the vicinity of the discrete auroral arc by the Magnetosphere-Ionosphere Coupling in the Alfvén Resonator (MICA) sounding rocket launched from Poker Flat, Alaska, on 19 February 2012. The goal of the MICA project was to investigate the hypothesis that such currents can be produced inside the ionospheric Alfvén resonator by the ionospheric feedback instability (IFI) driven by the system of large-scale magnetic field-aligned currents interacting with the ionosphere. The trajectory of the MICA rocket crossed two discrete auroral arcs and detected packages of intense, small-scale currents at the edges of these arcs, in the most favorable location for the development of the ionospheric feedback instability, predicted by the IFI theory. Simulations of the reduced MHD model derived in the dipole magnetic field geometry with realistic background parameters confirm that IFI indeed generates small-scale ULF waves inside the ionospheric Alfvén resonator with frequency, scale size, and amplitude showing a good, quantitative agreement with the observations. The comparison between numerical results and observations was performed by "flying" a virtual MICA rocket through the computational domain, and this comparison shows that, for example, the waves generated in the numerical model have frequencies in the range from 0.30 to 0.45 Hz, and the waves detected by the MICA rocket have frequencies in the range from 0.18 to 0.50 Hz.

  16. Living Organisms Coupling to Electromagnetic Radiation Below Thermal Noise

    NASA Astrophysics Data System (ADS)

    Stolc, Viktor; Freund, Friedemann

    2013-04-01

    Ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) radiation is part of the natural environment. Prior to major earthquakes the local ULF and global ELF radiation field is often markedly perturbed. This has detrimental effects on living organisms. We are studying the mechanism of these effects on the biochemical, cellular and organismal levels. The transfer of electrons along the Electron Transfer Chain (ETC) controls the universal reduction-oxidation reactions that are essential for fundamental biochemical processes in living cells. In order for these processes to work properly, the ETC has to maintain some form of synchronization, or coherence with all biochemical reactions in the living cells, including energy production, RNA transcription, and DNA replication. As a consequence of this synchronization, harmful chemical conflict between the reductive and the oxidative partial reactions can be minimized or avoided. At the same time we note that the synchronization allows for a transfer of energy, coherent or interfering, via coupling to the natural ambient EM field. Extremely weak high frequency EM fields, well below the thermal noise level, tuned in frequency to the electron spins of certain steps in the ETC, have already been shown to cause aberrant cell growth and disorientation among plants and animals with respect to the magnetic and gravity vectors. We investigate EM fields over a much wider frequency range, including ULF known to be generated deep in the Earth prior to major earthquakes locally, and ELF known to be fed by lightning discharges, traveling around the globe in the cavity formed between the Earth's surface and the ionosphere. This ULF/ELF radiation can control the timing of the biochemical redox cycle and thereby have a universal effect on physiology of organisms. The timing can even have a detrimental influence, via increased oxidative damage, on the DNA replication, which controls heredity.

  17. Reconstruction of sediment transport pathways in modern microtidal sand flat by multiple classification analysis

    NASA Astrophysics Data System (ADS)

    Yamashita, S.; Nakajo, T.; Naruse, H.

    2009-12-01

    In this study, we statistically classified the grain size distribution of the bottom surface sediment on a microtidal sand flat to analyze the depositional processes of the sediment. Multiple classification analysis revealed that two types of sediment populations exist in the bottom surface sediment. Then, we employed the sediment trend model developed by Gao and Collins (1992) for the estimation of sediment transport pathways. As a result, we found that statistical discrimination of the bottom surface sediment provides useful information for the sediment trend model while dealing with various types of sediment transport processes. The microtidal sand flat along the Kushida River estuary, Ise Bay, central Japan, was investigated, and 102 bottom surface sediment samples were obtained. Then, their grain size distribution patterns were measured by the settling tube method, and each grain size distribution parameter (mud and gravel contents, mean grain size, coefficient of variance (CV), skewness, kurtosis, 5, 25, 50, 75, and 95 percentile) was calculated. Here, CV is the normalized sorting value divided by the mean grain size. Two classical statistical methods—principal component analysis (PCA) and fuzzy cluster analysis—were applied. The results of PCA showed that the bottom surface sediment of the study area is mainly characterized by grain size (mean grain size and 5-95 percentile) and the CV value, indicating predominantly large absolute values of factor loadings in primal component (PC) 1. PC1 is interpreted as being indicative of the grain-size trend, in which a finer grain-size distribution indicates better size sorting. The frequency distribution of PC1 has a bimodal shape and suggests the existence of two types of sediment populations. Therefore, we applied fuzzy cluster analysis, the results of which revealed two groupings of the sediment (Cluster 1 and Cluster 2). Cluster 1 shows a lower value of PC1, indicating coarse and poorly sorted sediments. Cluster 1 sediments are distributed around the branched channel from Kushida River and show an expanding distribution from the river mouth toward the northeast direction. Cluster 2 shows a higher value of PC1, indicating fine and well-sorted sediments; this cluster is distributed in a distant area from the river mouth, including the offshore region. Therefore, Cluster 1 and Cluster 2 are interpreted as being deposited by fluvial and wave processes, respectively. Finally, on the basis of this distribution pattern, the sediment trend model was applied in areas dominated separately by fluvial and wave processes. Resultant sediment transport patterns showed good agreement with those obtained by field observations. The results of this study provide an important insight into the numerical models of sediment transport.

  18. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    PubMed

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  19. Distinguishing Among Mechanisms That Determine Pi 2 Pulsation Period

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Lysak, R. L.; Hartinger, M.; Kletzing, C.; Smith, C. W.; Singer, H. J.

    2017-12-01

    Pi2 pulsations are an integral component of substorms, with their association with magnetic field dipolarization, particle injection, auroral brightening, and intensification of field-aligned currents. An important question about Pi2 pulsations is how their periodicity is established. Two possible mechanisms are forcing of the inner magnetosphere by periodic variations of the near-Earth plasma bulk flows, and the cavity mode response of the plasmasphere to impulsive or irregular disturbances propagating from the tail. We address this question using observations of four Pi2 pulsations that occurred in a 2-hour time span on 29 July 2013. These events were observed by THEMIS, Van Allen Probes (RBSP), and geostationary GOES and ETS-VIII, while some of these spacecraft were nearly radially aligned in the evening sector at radial distances between 2 and 10 Earth radii. Electron density data are available from THEMIS and RBSP to determine the spacecraft location relative to the plasmapause. We examine the time delay of oscillations among the spacecraft and the local wave properties such as polarization and phase delay between the electric and magnetic field components. We compare the observations with ULF wave simulations in a dipole magnetosphere to evaluate which of the two possible Pi2 generation mechanisms was more effective.

  20. Bistable four-wave mixing response in a semiconductor quantum dot coupled to a photonic crystal nanocavity.

    PubMed

    Li, Jian-Bo; Xiao, Si; Liang, Shan; He, Meng-Dong; Luo, Jian-Hua; Kim, Nam-Chol; Chen, Li-Qun

    2017-10-16

    We perform a theoretical study of the bistable four-wave mixing (FWM) response in a coupled system comprised of a semiconductor quantum dot (SQD) and a photonic crystal (PC) nanocavity in which the SQD is embedded. It is shown that the shape of the FWM spectrum can switch among single-peaked, double-peaked, triple-peaked, and four-peaked arising from the vacuum Rabi splitting and the exciton-nanocavity coupling. Especially, we map out bistability phase diagrams within a parameter subspace of the system, and find that it is easy to turn on or off the bistable FWM response by only adjusting the excitation frequency or the pumping intensity. Our results offer a feasible means for measuring the SQD-PC nanocavity coupling strength and open a new avenue to design optical switches and memories.

  1. Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser

    PubMed Central

    Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi

    2017-01-01

    A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148

  2. Acoustic scattering from phononic crystals with complex geometry.

    PubMed

    Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J

    2016-05-01

    This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique.

  3. Radial diffusion with outer boundary determined by geosynchronous measurements: Storm and post-storm intervals

    NASA Astrophysics Data System (ADS)

    Chu, F.; Haines, P.; Hudson, M.; Kress, B.; Freidel, R.; Kanekal, S.

    2007-12-01

    Work is underway by several groups to quantify diffusive radial transport of radiation belt electrons, including a model for pitch angle scattering losses to the atmosphere. The radial diffusion model conserves the first and second adiabatic invariants and breaks the third invariant. We have developed a radial diffusion code which uses the Crank Nicholson method with a variable outer boundary condition. For the radial diffusion coefficient, DLL, we have several choices, including the Brautigam and Albert (JGR, 2000) diffusion coefficient parameterized by Kp, which provides an ad hoc measure of the power level at ULF wave frequencies in the range of electron drift (mHz), breaking the third invariant. Other diffusion coefficient models are Kp-independent, fixed in time but explicitly dependent on the first invariant, or energy at a fixed L, such as calculated by Elkington et al. (JGR, 2003) and Perry et al. (JGR, 2006) based on ULF wave model fields. We analyzed three periods of electron flux and phase space density (PSD) enhancements inside of geosynchronous orbit: March 31 - May 31, 1991, and July 2004 and Nov 2004 storm intervals. The radial diffusion calculation is initialized with a computed phase space density profile for the 1991 interval using differential flux values from the CRRES High Energy Electron Fluxmeter instrument, covering 0.65 - 7.5 MeV. To calculate the initial phase space density, we convert Roederer L* to McIlwain's L- parameter using the ONERA-DESP program. A time averaged model developed by Vampola1 from the entire 14 month CRRES data set is applied to the July 2004 and Nov 2004 storms. The online CRESS data for specific orbits and the Vampola-model flux are both expressed in McIlwain L-shell, while conversion to L* conserves phase space density in a distorted non-dipolar magnetic field model. A Tsyganenko (T04) magnetic field model is used for conversion between L* and L. The outer boundary PSD is updated using LANL GEO satellite fluxes. After calculating the phase space density time evolution for the two storms and post-injection interval (March 31 - May 31, 1991), we compare results with SAMPEX measurements. A better match with SAMPEX measurements is obtained with a variable outer boundary, also with a Kp-dependent diffusion coefficient, and finally with an energy and L-dependent loss term (Summers et al., JGR, 2004), than with a time-independent diffusion coefficient and a simple Kp-parametrized loss rate and location of the plasmapause. Addition of a varying outer boundary which incorporates measured fluxes at geosynchronous orbit using L* has the biggest effect of the three parametrized variations studied. 1Vampola, A.L., 1996, The ESA Outer Zone Electron Model Update, Environment Modelling for Spaced-based Applications, ESA SP-392, ESTEC, Nordwijk, NL, pp. 151-158, W. Burke and T.-D. Guyenne, eds.

  4. The Hagen-Poiseuille, Plane Couette and Poiseuille Flows Linear Instability and Rogue Waves Excitation Mechanism

    NASA Astrophysics Data System (ADS)

    Chefranov, Sergey; Chefranov, Alexander

    2016-04-01

    Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A.G. Chefranov, JETP, v.119, No.2, 331, 2014 2. S.G. Chefranov, A.G. Chefranov, Doklady Physics, vol.60, No.7, 327-332, 2015 3. S.G. Chefranov, A. G. Chefranov, arXiv: 1509.08910v1 [physics.flu-dyn] 29 Sep 2015 (accepted to JETP)

  5. A high-resolution X-ray image of Puppis A - Inhomogeneities in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Petre, R.; Kriss, G. A.; Winkler, P. F.; Canizares, C. R.

    1982-01-01

    Eleven HRI exposures from the Einstein Observatory are assembled into an 0.1-4 keV image of the Puppis A supernova remnant which displays a complex morphology that may reflect the structure of the shocked interstellar medium. In addition to showing a density gradient of a factor greater than four across the approximately 30 pc diameter of the remnant perpendicular to the galactic plane, a shell of X-ray emission is seen surrounding the northern half of Puppis A, coincident with the radio shell, whose edge brightness profile indicates direct hot plasma heating by the blast wave rather than evaporation from clouds. The interior structure of the supernova remnant suggests inhomogeneities whose sizes range over 0.1-5 pc, but with moderate density contrast. Although isolated clouds of 10-30/cu cm density are responsible for the two brightest X-ray features, they represent only a small fraction of the Puppis A mass.

  6. Ponderomotive Forces in Cosmos

    NASA Astrophysics Data System (ADS)

    Lundin, R.; Guglielmi, A.

    2006-12-01

    This review is devoted to ponderomotive forces and their importance for the acceleration of charged particles by electromagnetic waves in space plasmas. Ponderomotive forces constitute time-averaged nonlinear forces acting on a media in the presence of oscillating electromagnetic fields. Ponderomotive forces represent a useful analytical tool to describe plasma acceleration. Oscillating electromagnetic fields are also related with dissipative processes, such as heating of particles. Dissipative processes are, however, left outside these discussions. The focus will be entirely on the (conservative) ponderomotive forces acting in space plasmas. The review consists of seven sections. In Section 1, we explain the rational for using the auxiliary ponderomotive forces instead of the fundamental Lorentz force for the study of particle motions in oscillating fields. In Section 2, we present the Abraham, Miller, Lundin-Hultqvist and Barlow ponderomotive forces, and the Bolotovsky-Serov ponderomotive drift. The hydrodynamic, quasi-hydrodynamic, and ‘`test-particle’' approaches are used for the study of ponderomotive wave-particle interaction. The problems of self-consistency and regularization are discussed in Section 3. The model of static balance of forces (Section 4) exemplifies the interplay between thermal, gravitational and ponderomotive forces, but it also introduces a set of useful definitions, dimensionless parameters, etc. We analyze the Alfvén and ion cyclotron waves in static limit with emphasis on the specific distinction between traveling and standing waves. Particular attention has been given to the impact of traveling Alfvén waves on the steady state anabatic wind that blows over the polar regions (Section~5). We demonstrate the existence of a wave-induced cold anabatic wind. We also show that, at a critical point, the ponderomotive acceleration of the wind is a factor of 3 greater than the thermal acceleration. Section 6 demonstrates various manifestations of ponderomotive forces in the Earth's magnetosphere, for instance the ionospheric plasma acceleration and outflow. The polar wind and the auroral density cavities are considered in relation to results from the Freja and Viking satellites. The high-altitude energization and escape of ions is discussed. The ponderomotive anharmonicity of standing Alfvén waves is analyzed from ground based ULF wave measurements. The complexity of the many challenging problems related with plasma processes near the magnetospheric boundaries is discussed in the light of recent Cluster observations. At the end of Section 6, we consider the application of ponderomotive forces to the diversity of phenomena on the Sun, in the interstellar environment, on newborn stars, pulsars and active galaxies. We emphasize the role of forcing of magnetized plasmas in general and ponderomotive forcing in particular, presenting some simple conceivable scenarios for massive outflow and jets from astrophysical objects.

  7. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  8. Design of Iron(II) Phthalocyanine-Derived Oxygen Reduction Electrocatalysts for High-Power-Density Microbial Fuel Cells.

    PubMed

    Santoro, Carlo; Gokhale, Rohan; Mecheri, Barbara; D'Epifanio, Alessandra; Licoccia, Silvia; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2017-08-24

    Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) μW cm -2 , which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 μW cm -2 ). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dongbo; Zhao, Jinfeng, E-mail: jinfeng.zhao@tongji.edu.cn; Li, Libing

    In this work, we applied a robust and fully air-coupled method to investigate the propagation of the lowest-order antisymmetric Lamb (A{sub 0}) mode in both a stubbed and an air-drilled phononic-crystal (PC) plate. By measuring simply the radiative acoustic waves of A{sub 0} mode close to the plate surface, we observed the band gaps for the stubbed PC plate caused by either the local resonance or the Bragg scattering, in frequency ranges in good agreement with theoretical predictions. We measured then the complete band gap of A{sub 0} mode for the air-drilled PC plate, in good agreement with the bandmore » structures. Finally, we compared the measurements made using the air-coupled method with those obtained by the laser ultrasonic technique.« less

  10. Non-Seismic Pre-Earthquake Phenomena and their Effects on the Biosphere

    NASA Astrophysics Data System (ADS)

    Freund, Friedemann; Stolc, Viktor

    2013-04-01

    Earthquakes occur when tectonic stresses build up deep in the Earth and reach the threshold of catastrophic rupture. During the build-up of stress, long before rupture, processes occur in the Earth crust that lead to the activation of highly mobile electronic charge carriers. One remarkable property of these charge carriers is that they are able to flow out of the stressed rock volume into surrounding rocks. Such an outflow constitutes an electric current, which generates electromagnetic (EM) signals. If the outflow occurs in bursts, the EM signals will consist of short EM pulses. If the outflow is continuous, the currents are likely to fluctuate, generating EM emissions over a wide frequency range. Only the ultralow and extremely low frequency (ULF/ELF) waves can travel through kilometers of rock and reach the Earth surface. These ULF/ELF emissions can last for hours or days. In a companion poster we report on their effects on crucial biochemical reactions in living organisms. Another remarkable property of the outflowing charge carriers is that they are (i) positively charged and (ii) highly oxidizing. When they reach the Earth surface from below, they build up microscopic but very steep electric fields, strong enough to field-ionize air molecules, i.e. rip an electron off air molecules. As a result the air above the epicenter of an impending major earthquake often becomes heavily laden with positive airborne ions. Medical research has long shown that positive airborne ions cause changes in the stress hormone level in animals and humans. Therefore, positive airborne ions are a likely cause for unusual reactions among animals and humans. When the outflowing charge carriers cross from rocks into water, they oxidize the water to hydrogen peroxide. This process, plus oxidation reactions involving dissolved organic compounds in the ground water, are likely candidates for causing behavioral changes, even death, among aquatic animals.

  11. Space Technology 5 Observations of Auroral Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Slavin, James

    2008-01-01

    During its three month long technology validation mission, Space Technology 5 (ST-5) returned high quality multi-point measurements of the near-Earth magnetic field. Its three micro-satellites were launched into a 300 x 4500 km, dawn - dusk, sun synchronous orbit (inclination = 105.60) orbit with a period of 138 min by a Pegasus launch vehicle on March 22, 2006. The spacecraft were maintained in a "pearls on a sting" constellation with controlled spacings ranging from just over 5000 km down to under 50 km. The individual micro-satellites were 48 cm tall octagons with diameters of 50 cm. They were spin-stabilized at approximately 20 rpm at deployment and slowly spun-down to about 15 rpm by the end of the mission. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG) provided by the University of California at Los Angeles mounted at the end of a ultra-low mass 72 cm boom. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness. and current density. Two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit are demonstrated: 1) the -standard method." based upon s/c velocity, but corrected for FAC current sheet motion. and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data sct and expand to include horizontal ionospheric currents. ULF waves and geomagnetic field gradient analyses.

  12. Increased Serum Insulin Exposure Does Not Affect Age or Stage of Pancreatic Adenocarcinoma Diagnosis in Patients with Diabetes Mellitus

    PubMed Central

    Chao, David T.; Shah, Nilesh H.; Zeh, Herbert J.; Bahary, Nathan; Whitcomb, David C.; Brand, Randall E.

    2015-01-01

    Objectives In considering whether medications that increase insulin levels accelerate pancreatic adenocarcinoma (PC) development, we hypothesized that PC patients with diabetes mellitus (DM) who used exogenous insulin or insulin-stimulating medications should have an earlier age of diagnosis or present with more advanced disease. Methods Patients enrolled in our PC registry from 6/1/2003 to 5/31/2012 were stratified according to treatment solely with insulin, insulin-stimulating medications, or insulin-independent medications. Age of PC diagnosis, PC stage, and years between DM and PC diagnoses were analyzed among the cohorts. Results Of 122 DM patients (mean age: 67.4 ± 10.2 years), the mean age of PC diagnosis within the insulin-only (n=40), insulin-stimulating (n=11), insulin-independent (n=71), and non-DM (n=321) cohorts were 68.7 ± 10.5 years, 69.6 ± 10.8 years, 66.3 ± 9.7 years, and 65.5 ± 10.5 years, respectively. No significant difference among the age of PC diagnosis was observed based on duration or type of DM treatment. There was no correlation between PC stage and increased insulin exposure. Conclusions Anti-DM medications that increase exposure to insulin do not appear to accelerate PC development using outcomes of mean age of PC diagnosis, PC stage, or duration between DM and PC diagnoses. PMID:26418902

  13. Synchronization of geomagnetic and ionospheric disturbances over Kazan station

    NASA Astrophysics Data System (ADS)

    Barhatova, Oksana; Kosolapova, Natalia; Barhatov, Nikolay; Revunov, Sergey

    2017-12-01

    The phenomena which accompany synchronization of night-time ionospheric and geomagnetic disturbances in an ULF range with periods 35-50 min near the mid-latitude station Kazan during a global magnetically quiet period have been analyzed. The comparison between dynamic spectra and wavelet patterns of these disturbances has revealed that spectral features of simultaneous disturbances of the F2-layer critical frequency and H, D, Z geomagnetic field components are similar. By studying spectral features of the F2-layer critical frequency over Kazan and disturbances of the H and D geomagnetic field components at magnetic stations which differ from Kazan station in longitude and latitude, we have established that the disturbances considered belong to the class of fast magnetosonic waves. The analysis of solar wind parameters, interplanetary magnetic field (IMF), and values of the auroral index AL in the period under study has shown that this event is associated with IMF Bz component disturbances and occurs during substorm development.

  14. Correlation of solar wind parameters with Pc5 activity at all local times.

    NASA Astrophysics Data System (ADS)

    Baker, G. J.; Donovan, E. F.; Jackel, B. J.

    2001-12-01

    Using ten years of data from the CANOPUS Churchill line of magnetometers, we investigate the statistical properties of Pc5 pulsations, and the band-limited spectral power in the Pc5 frequency range (ie., 1.7-6.7 mHz). In order to determine the band-limited Pc5 power, we apodize with a 45 minute Hanning window, and detrend the data with the best-fit second order polynomial. For each station, we slide the window along in one minute increments, producing time series of absolute power measurements at one minute intervals. In addition, Pc5 pulsations were identified by eye for six of the seven Churchill line stations. Our criterion for classifying a magnetic perturbation as a Pc5 pulsation was that it was nearly monochromatic, and its amplitude did not decrease over at least four periods. Applying this criterion guarantees that the relative power in the Pc5 band is high. We then have a complete data set of Pc5 powers, and a subset corresponding to times when there were Pc5 pulsations present according to our classification. Initial results show the well known correlation between solar wind speed (IMP 8 one hour averages obtained via OMNIWEB) and Pc5 power. For example, for magnetic local times between 0600 and 1000, we obtain correlation coefficients between the logarithm of the band-limited power and the solar wind speed of 0.72 and 0.77, for the case of the entire data set, and the subset, respectively. In this paper, we present results of multivariate analysis of the Pc5 data base and solar wind data, designed to elucidate correlations at all local times. We discuss our results within the context of earlier studies by Engerbretson et al. [JGR, volume 103, 26721-26283, 1998] and Vennerstrom [JGR, volume 104, 10145-10157, 1999].

  15. Management of Pancreatic Calculi: An Update.

    PubMed

    Tandan, Manu; Talukdar, Rupjyoti; Reddy, Duvvur Nageshwar

    2016-11-15

    Pancreatolithiasis, or pancreatic calculi (PC), is a sequel of chronic pancreatitis (CP) and may occur in the main ducts, side branches or parenchyma. Calculi are the end result, irrespective of the etiology of CP. PC contains an inner nidus surrounded by successive layers of calcium carbonate. These calculi obstruct the pancreatic ducts and produce ductal hypertension, which leads to pain, the cardinal feature of CP. Both endoscopic therapy and surgery aim to clear these calculi and decrease ductal hypertension. In small PC, endoscopic retrograde cholangiopancreatography (ERCP) followed by sphincterotomy and extraction is the treatment of choice. Large calculi require fragmentation by extracorporeal shock wave lithotripsy (ESWL) prior to their extraction or spontaneous expulsion. In properly selected cases, ESWL followed by ERCP is the standard of care for the management of large PC. Long-term outcomes following ESWL have demonstrated good pain relief in approximately 60% of patients. However, ESWL has limitations. Per oral pancreatoscopy and intraductal lithotripsy represent techniques in evolution, and in current practice their use is limited to centers with considerable expertise. Surgery should be offered to all patients with extensive PC, associated multiple ductal strictures or following failed endotherapy.

  16. A Simple Pythagorean Interpretation of E2 = p2c2 + (mc2)2

    NASA Astrophysics Data System (ADS)

    Tobar, J. A.; Vargas, E. L.; Andrianarijaona, V. M.

    2015-03-01

    We are considering the relationship between the relativistic energy, the momentum, and the rest energy, E2 =p2c2 + (mc2)2 , and using geometrical means to analyze each individual portion in a spatial setting. The aforementioned equation suggests that pc and mc2 could be thought of as the two axis of a plane. According to de Broglie's hypothesis λ = h / p therefore suggesting that the pc-axis is connected to the wave properties of a moving object, and subsequently, the mc2-axis is connected to the particle properties. Consequently, these two axis could represent the particle and wave properties of the moving object. An overview of possible models and meaningful interpretations will be presented. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  17. Full down-conversion of amber-emitting phosphor-converted light-emitting diodes with powder phosphors and a long-wave pass filter.

    PubMed

    Oh, Jeong Rok; Cho, Sang-Hwan; Park, Hoo Keun; Oh, Ji Hye; Lee, Yong-Hee; Do, Young Rag

    2010-05-24

    This paper reports the possibility of a facile optical structure to realize a highly efficient monochromatic amber-emitting light-emitting diode (LED) using a powder-based phosphor-converted LED combined with a long-wave pass filter (LWPF). The capping of a blue-reflecting and amber-passing LWPF enhances both the amber emission from the silicate amber phosphor layer and the color purity due to the blocking and recycling of the pumping blue light from the InGaN LED. The enhancement of the luminous efficacy of the amber pc-LED with a LWPF (phosphor concentration 20 wt%, 39.4 lm/W) is 34% over that of an amber pc-LED without a LWPF (phosphor concentration 55 wt%, 29.4 lm/W) at 100 mA and a high color purity (>96%) with Commission International d'Eclairage (CIE) color coordinates of x=0.57 and y=0.42.

  18. Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Zi-Qi; Sun, Wen-Rong; Shi, Yu-Ying; Li, Min; Xu, Min

    2017-06-01

    Under investigation in this paper is an inhomogeneous Hirota-Maxwell-Bloch (IHMB) system which can describe the propagation of optical solitons in an erbium-doped optical fiber. The breather multiple births (BMBs) are derived with periodically varying group velocity dispersion (GVD) coefficients. Under large periodic modulations in the GVD coefficient of IHMB system, the Peregrine comb (PC) solution is produced, which can be viewed as the limiting case of the BMBs. When the amplitude of the modulation satisfies a special condition, the Peregrine wall (PW) that can be regarded as an intermediate state between rogue wave and PC is obtained. The effects of the third-order dispersion on the spatiotemporal characteristics of PCs and PWs are studied. Our results may be useful for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in inhomogeneous erbium-doped optical fiber.

  19. A NEW PERSPECTIVE OF THE RADIO BRIGHT ZONE AT THE GALACTIC CENTER: FEEDBACK FROM NUCLEAR ACTIVITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M., E-mail: jzhao@cfa.harvard.edu

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13′ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam{sup −1}, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radiomore » continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2′ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.′3 × 3.′2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ∼2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized wind or outflow has been launched by radiation force produced by the central star cluster. Finally, we remark on the detailed structure of a prominent radio emission feature located within the shell of the Sgr A east supernova remnant. Because this feature—the “Sigma Front”—correlates well in shape and orientation with the nearby edge of the CND, we propose that it is a reflected shock wave resulting from the impact of the Sgr A east blast wave on the CND.« less

  20. A New Perspective of the Radio Bright Zone at The Galactic Center: Feedback from Nuclear Activities

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M.

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13‧ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam-1, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2‧ (5 pc) from the NW and SE tips of the Sgr A west H II region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.‧3 × 3.‧2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ˜2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized wind or outflow has been launched by radiation force produced by the central star cluster. Finally, we remark on the detailed structure of a prominent radio emission feature located within the shell of the Sgr A east supernova remnant. Because this feature—the “Sigma Front”—correlates well in shape and orientation with the nearby edge of the CND, we propose that it is a reflected shock wave resulting from the impact of the Sgr A east blast wave on the CND.

  1. Preoperative assessment of pleural adhesion by Four-Dimensional Ultra-Low-Dose Computed Tomography (4D-ULDCT) with Adaptive Iterative Dose Reduction using Three-Dimensional processing (AIDR-3D).

    PubMed

    Hashimoto, Masayuki; Nagatani, Yukihiro; Oshio, Yasuhiko; Nitta, Norihisa; Yamashiro, Tsuneo; Tsukagoshi, Shinsuke; Ushio, Noritoshi; Mayumi, Masayuki; Kimoto, Tatsuya; Igarashi, Tomoyuki; Yoshigoe, Makoto; Iwai, Kyohei; Tanaka, Koki; Sato, Shigetaka; Sonoda, Akinaga; Otani, Hideji; Murata, Kiyoshi; Hanaoka, Jun

    2018-01-01

    To assess the feasibility of Four-Dimensional Ultra-Low-Dose Computed Tomography (4D-ULDCT) for distinguishing pleural aspects with localized pleural adhesion (LPA) from those without. Twenty-seven patients underwent 4D-ULDCT during a single respiration with a 16cm-coverage of the body axis. The presence and severity of LPA was confirmed by their intraoperative thoracoscopic findings. A point on the pleura and a corresponding point on the outer edge of the costal bone were placed in identical axial planes at end-inspiration. The distance of the two points (PCD), traced by automatic tracking functions respectively, was calculated at each respiratory phase. The maximal and average change amounts in PCD (PCD MCA and PCD ACA ) were compared among 110 measurement points (MPs) without LPA, 16MPs with mild LPA and 10MPs with severe LPA in upper lung field cranial to the bronchial bifurcation (ULF), and 150MPs without LPA, 17MPs with mild LPA and 9MPs with severe LPA in lower lung field caudal to the bronchial bifurcation (LLF) using the Mann-Whitney U test. In the LLF, PCD ACA as well as PCD MCA demonstrated a significant difference among non-LPA, mild LPA and severe LPA (18.1±9.2, 12.3±6.2 and 5.0±3.3mm) (p<0.05). Also in the ULF, PCD ACA showed a significant difference among three conditions (9.2±5.5, 5.7±2.8 and 2.2±0.4mm, respectively) (p<0.05), whereas PCD MCA for mild LPA was similar to that for non-LPA (12.3±5.9 and 17.5±11.0mm). Four D-ULDCT could be a useful non-invasive preoperative assessment modality for the detection of the presence or severity of LPA. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that themore » lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.« less

  3. Theory and experiment research for ultra-low frequency maglev vibration sensor.

    PubMed

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  4. Theory and experiment research for ultra-low frequency maglev vibration sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  5. The cell-specific pattern of cholecystokinin peptides in endocrine cells versus neurons is governed by the expression of prohormone convertases 1/3, 2, and 5/6.

    PubMed

    Rehfeld, Jens F; Bundgaard, Jens R; Hannibal, Jens; Zhu, Xiaorong; Norrbom, Christina; Steiner, Donald F; Friis-Hansen, Lennart

    2008-04-01

    Most peptide hormone genes are, in addition to endocrine cells, also expressed in neurons. The peptide hormone cholecystokinin (CCK) is expressed in different molecular forms in cerebral neurons and intestinal endocrine cells. To understand this difference, we examined the roles of the neuroendocrine prohormone convertases (PC) 1/3, PC2, and PC5/6 by measurement of proCCK, processing intermediates and bioactive, alpha-amidated, and O-sulfated CCK peptides in cerebral and jejunal extracts of null mice, controls, and in the PC5/6-expressing SK-N-MC cell-line. In PC1/3 null mice, the synthesis of bioactive CCK peptide in the gut was reduced to 3% of the translational product, all of which was in the form of alpha-amidated and tyrosine O-sulfated CCK-22, whereas the neuronal synthesis in the brain was largely unaffected. This is opposite to the PC2 null mice in which only the cerebral synthesis was affected. SK-N-MC cells, which express neither PC1/3 nor PC2, synthesized alone the processing intermediate, glycine-extended CCK-22. Immunocytochemistry confirmed that intestinal endocrine CCK cells in wild-type mice express PC1/3 but not PC2. In contrast, cerebral CCK neurons contain PC2 and only little, if any, PC1/3. Taken together, the data indicate that PC1/3 governs the endocrine and PC2 the neuronal processing of proCCK, whereas PC5/6 contributes only to a modest endocrine synthesis of CCK-22. The results suggest that the different peptide patterns in the brain and the gut are due to different expression of PCs.

  6. Identification and characterization of three Penicillium chrysogenum α-l-arabinofuranosidases (PcABF43B, PcABF51C, and AFQ1) with different specificities toward arabino-oligosaccharides.

    PubMed

    Shinozaki, Ayaka; Hosokawa, Sachiko; Nakazawa, Masami; Ueda, Mitsuhiro; Sakamoto, Tatsuji

    2015-06-01

    We previously described four α-l-arabinofuranosidases (ABFs) secreted by Penicillium chrysogenum 31B. Here, we cloned the fifth and sixth genes (Pcabf43B and Pcabf51C) encoding the ABFs PcABF43B and PcABF51C in this strain and overexpressed these genes in Escherichia coli. The deduced amino acid sequences of PcABF43B and PcABF51C were highly similar to putative ABFs belonging to glycoside hydrolase families 43 and 51, respectively. Semiquantitative reverse transcription polymerase chain reaction indicated that both genes were induced by arabinose, arabinitol, arabinan, and arabinoxylan; however, the Pcabf51C gene was constitutively expressed at low levels in P. chrysogenum 31B. PcABF43B had optimal activity at 20°C and pH 5-6, indicating that this enzyme was psychrophilic and had the lowest optimal temperature reported for ABFs. PcABF51C had optimal activity at 45°C and pH 6-7. Both recombinant enzymes showed high activity on arabino-oligosaccharides, but little activity on arabinose-containing polysaccharides, such as l-arabinan. Next, we compared the substrate specificities of PcABF43B, PcABF51C, and AFQ1, a P. chrysogenum ABF that preferentially degraded oligosaccharides over polysaccharides. PcABF43B was found to preferentially hydrolyze (1→3)-linkages in branched arabino-oligosaccharides and released only a small amount of arabinose from linear α-1,5-arabino-oligosaccharides. In contrast, AFQ1 and PcABF51C showed higher activities on linear arabino-oligosaccharides than on branched arabino-oligosaccharides. AFQ1 showed high catalytic efficiencies for α-1,5-l-arabinofuranobiose (α-1,5-Ara2) and α-1,5-l-arabinofuranotriose (α-1,5-Ara3) at the same level. In contrast, intracellular PcABF51C showed much higher catalytic efficiency for α-1,5-Ara2 than for α-1,5-Ara3. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Chargazia, Kh. Z.

    A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth's angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are shearedmore » flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.« less

  8. All n-3 PUFA are not the same: MD simulations reveal differences in membrane organization for EPA, DHA and DPA.

    PubMed

    Leng, Xiaoling; Kinnun, Jacob J; Cavazos, Andres T; Canner, Samuel W; Shaikh, Saame Raza; Feller, Scott E; Wassall, Stephen R

    2018-05-01

    Eicosapentaenoic (EPA, 20:5), docosahexaenoic (DHA, 22:6) and docosapentaenoic (DPA, 22:5) acids are omega-3 polyunsaturated fatty acids (n-3 PUFA) obtained from dietary consumption of fish oils that potentially alleviate the symptoms of a range of chronic diseases. We focus here on the plasma membrane as a site of action and investigate how they affect molecular organization when taken up into a phospholipid. All atom MD simulations were performed to compare 1-stearoyl-2-eicosapentaenoylphosphatylcholine (EPA-PC, 18:0-20:5PC), 1-stearoyl-2-docosahexaenoylphosphatylcholine (DHA-PC, 18:0-22:6PC), 1-stearoyl-2-docosapentaenoylphosphatylcholine (DPA-PC, 18:0-22:5PC) and, as a monounsaturated control, 1-stearoyl-2-oleoylphosphatidylcholine (OA-PC, 18:0-18:1PC) bilayers. They were run in the absence and presence of 20mol% cholesterol. Multiple double bonds confer high disorder on all three n-3 PUFA. The different number of double bonds and chain length for each n-3 PUFA moderates the reduction in membrane order exerted (compared to OA-PC, S¯ CD =0.152). EPA-PC (S¯ CD =0.131) is most disordered, while DPA-PC (S¯ CD =0.140) is least disordered. DHA-PC (S¯ CD =0.139) is, within uncertainty, the same as DPA-PC. Following the addition of cholesterol, order in EPA-PC (S¯ CD =0.169), DHA-PC (S¯ CD =0.178) and DPA-PC (S¯ CD =0.182) is increased less than in OA-PC (S¯ CD =0.214). The high disorder of n-3 PUFA is responsible, preventing the n-3 PUFA-containing phospholipids from packing as close to the rigid sterol as the monounsaturated control. Our findings establish that EPA, DHA and DPA are not equivalent in their interactions within membranes, which possibly contributes to differences in clinical efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

    NASA Astrophysics Data System (ADS)

    Wan, Yong; Jiang, Li-Jun; Xu, Sheng; Li, Meng-Xue; Liu, Meng-Nan; Jiang, Cheng-Yi; Yuan, Feng

    2018-04-01

    Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddle-like curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is > 104, and the normalized delay bandwidth product within a new varying range of n g > 102 or n g > 103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

  10. Source and seed populations for relativistic electrons: Their roles in radiation belt changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaynes, A. N.; Baker, D. N.; Singer, H. J.

    Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August–September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13–22more » September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward interplanetary magnetic field (IMF), showed strong depletion of relativistic electrons (including an unprecedented observation of long-lasting depletion at geostationary orbit) while an immediately preceding, and another immediately subsequent, storm showed strong radiation belt enhancement. We demonstrate with these data that two distinct electron populations resulting from magnetospheric substorm activity are crucial elements in the ultimate acceleration of highly relativistic electrons in the outer belt: the source population (tens of keV) that give rise to VLF wave growth and the seed population (hundreds of keV) that are, in turn, accelerated through VLF wave interactions to much higher energies. ULF waves may also play a role by either inhibiting or enhancing this process through radial diffusion effects. Furthermore, if any components of the inner magnetospheric accelerator happen to be absent, the relativistic radiation belt enhancement fails to materialize.« less

  11. Source and seed populations for relativistic electrons: Their roles in radiation belt changes

    DOE PAGES

    Jaynes, A. N.; Baker, D. N.; Singer, H. J.; ...

    2015-09-09

    Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August–September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13–22more » September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward interplanetary magnetic field (IMF), showed strong depletion of relativistic electrons (including an unprecedented observation of long-lasting depletion at geostationary orbit) while an immediately preceding, and another immediately subsequent, storm showed strong radiation belt enhancement. We demonstrate with these data that two distinct electron populations resulting from magnetospheric substorm activity are crucial elements in the ultimate acceleration of highly relativistic electrons in the outer belt: the source population (tens of keV) that give rise to VLF wave growth and the seed population (hundreds of keV) that are, in turn, accelerated through VLF wave interactions to much higher energies. ULF waves may also play a role by either inhibiting or enhancing this process through radial diffusion effects. Furthermore, if any components of the inner magnetospheric accelerator happen to be absent, the relativistic radiation belt enhancement fails to materialize.« less

  12. Asymmetric Solar Wind driven substorms from ballooning-interchange and magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Horton, W.

    2013-12-01

    For nonsymmetric currents closing in the northern and southern magnetopause, we find new onset conditions for the ballooning-interchange and magnetic reconnections modes. While these two eigenmodes have opposite symmetries in a classic symmetric geotail geometry as in Prichett-Coroniti-Pellat [GRL1997], this symmetry is broken for real solar winds and a tilted Earth magnetic dipole. Extending earlier work, we show a new model that includes distinct north I_[N] and south I_[S] magnetopause return currents and distinct N-S magnetopause boundary boundary conditions. These conditions drive asymmetric wave functions within the geotail. The wave functions in the high β magnetopause give new onset conditions for substorms. The nonlinear growth rates are estimated and nonlinear FLR-fluid simulations are performed. FLR fluid models with 5 to 7 pde's, are compared qualitatively with the PIC simulations of Prichett-Coroniti [ P-C 2013 and 2011] which used 4 billion particles on a Cray XT5 NSF computer. The P-C 2013 simulations capture some features of the THEMIS data and we look for the corresponding features in the FLR-fluid simulations. The classic reconnection parameter Delta^{'} has a complex generalization for the asymmetric solar wind and IMF on the magnetopause [Horton and Tajima, JGR 1988]. When the mid-tail B_z(x) is such as to give the ballooning-interchange instability we show that in the late stage of the evolutions the nonlinear convective derivatives in the pde-system change the symmetry of the structures producing large magnetic islands of the scale observed by CLUSTER substorm data [ Nakamura et al. 2006]. We conclude that asymmetric models are needed to give reliable forecasting of the onset of subtorms and storms.

  13. First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Anderson, D. P.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1 /√{Hz }] . At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8 ×1 0-25. At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9 ×1 0-24. At 55 Hz we can exclude sources with ellipticities greater than 1 0-5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038 kg m2 .

  14. Spin-based diagnostic of nanostructure in copper phthalocyanine-C60 solar cell blends.

    PubMed

    Warner, Marc; Mauthoor, Soumaya; Felton, Solveig; Wu, Wei; Gardener, Jules A; Din, Salahud; Klose, Daniel; Morley, Gavin W; Stoneham, A Marshall; Fisher, Andrew J; Aeppli, Gabriel; Kay, Christopher W M; Heutz, Sandrine

    2012-12-21

    Nanostructure and molecular orientation play a crucial role in determining the functionality of organic thin films. In practical devices, such as organic solar cells consisting of donor-acceptor mixtures, crystallinity is poor and these qualities cannot be readily determined by conventional diffraction techniques, while common microscopy only reveals surface morphology. Using a simple nondestructive technique, namely, continuous-wave electron paramagnetic resonance spectroscopy, which exploits the well-understood angular dependence of the g-factor and hyperfine tensors, we show that in the solar cell blend of C(60) and copper phthalocyanine (CuPc)-for which X-ray diffraction gives no information-the CuPc, and by implication the C(60), molecules form nanoclusters, with the planes of the CuPc molecules oriented perpendicular to the film surface. This information demonstrates that the current nanostructure in CuPc:C(60) solar cells is far from optimal and suggests that their efficiency could be considerably increased by alternative film growth algorithms.

  15. Variations of the ionospheric parameters obtained from ground based measurements of ULF magnetic noise

    NASA Astrophysics Data System (ADS)

    Ermakova, Elena; Kotik, Dmitry; Bösinger, Tilmann

    2016-07-01

    The dynamics of the amplitude spectra and polarization parameter (epsilon)[1] of magnetic ULF noise were investigated during different seasons and high geomagnetic activity time using the data on the horizontal magnetic components monitoring at mid-latitude (New Life, Russia, 56 N, 46 E) and low-latitude stations (Crete, 35.15 N, 25.20 E). It was found that abrupt changes in the spectral polarization parameters can be linked as with variation of height of maximum and the electron density of the F-layer, and with a change in ionospheric parameters profiles at lower altitudes, for example, with the appearance of sporadic Es-layers and intermediate layers, located between the E and F-layers. It was detected the peculiarities in the daily dynamics of the epsilon parameter at low latitudes: a) the appearance in some cases more complicated than in the mid-latitudes, epsilon structure of the spectrum associated with the presence of two different values of the boundary frequency fB [2]; b) a decreasing of fB near local midnight observed in 70% of cases; c) observation of typical for dark time epsilon spectra after sunrise in the winter season. The numerical calculations of epsilon parameter were made using the IRI-2012 model with setting the models of sporadic and intermediate layers. The results revealed the dependence of the polarization spectra of the intensity and height of such thin layers. The specific changes in the electron density at altitudes of 80-350 km during the recovery phase of strong magnetic storms were defined basing on a comparative analysis of the experimental spectra and the results of the numerical calculations. References. 1. E. N. Ermakova, D. S. Kotik, A. V.Ryabov, A. V.Pershin, T. B.osinger, and Q. Zhou, Studying the variation of the broadband spectral maximum parameters in the natural ULF fields, Radiophysics and Quantum Electronics, Vol. 55, No. 10-11, March, 2013 p. 605-615. 2. T. Bosinger, A. G. Demekhov, E. N. Ermakova, C. Haldoupis and Q. Zhou, Pulsating nighttime magnetic background noise in the upper ULF band at low latitudes, J.Geophys. Res., 2014, Space Physics, 119, doi:10.1002/2014JA019906.

  16. Application of the double relaxation oscillation superconducting quantum interference device sensor to micro-tesla 1H nuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho

    2011-09-01

    We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/ϕ0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 μϕ0/√Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 μT Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.

  17. Frontal theta activation during motor synchronization in autism.

    PubMed

    Kawasaki, Masahiro; Kitajo, Keiichi; Fukao, Kenjiro; Murai, Toshiya; Yamaguchi, Yoko; Funabiki, Yasuko

    2017-11-08

    Autism is characterized by two primary characteristics: deficits in social interaction and repetitive behavioral patterns. Because interpersonal communication is extremely complicated, its underlying brain mechanisms remain unclear. Here we showed that both characteristics can be explained by a unifying underlying mechanism related to difficulties with irregularities. To address the issues, we measured electroencephalographm during a cooperative tapping task, which required participants to tap a key alternately and synchronously with constant rhythmic a PC program, a variable rhythmic PC program, or a human partner. We found that people with autism had great difficulty synchronizing tapping behavior with others, and exhibited greater than normal theta-wave (6 Hz) activity in the frontal cortex during the task, especially when their partner behaved somewhat irregularly (i.e. a variable rhythmic PC program or a human partner). Importantly, the higher theta-wave activity was related to the severity of autism, not the performance on the task. This indicates that people with autism need to use intense cognition when trying to adapt to irregular behavior and can easily become overtaxed. Difficulty adapting to irregular behavior in others is likely related to their own tendencies for repetitive and regular behaviors. Thus, while the two characteristics of autism have been comprehended separately, our unifying theory makes understanding the condition and developing therapeutic strategies more tractable.

  18. Poster Presentation: Optical Test of NGST Developmental Mirrors

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Geary, Joseph; Reardon, Patrick; Peters, Bruce; Keidel, John; Chavers, Greg

    2000-01-01

    An Optical Testing System (OTS) has been developed to measure the figure and radius of curvature of NGST developmental mirrors in the vacuum, cryogenic environment of the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The OTS consists of a WaveScope Shack-Hartmann sensor from Adaptive Optics Associates as the main instrument, a Point Diffraction Interferometer (PDI), a Point Spread Function (PSF) imager, an alignment system, a Leica Disto Pro distance measurement instrument, and a laser source palette (632.8 nm wavelength) that is fiber-coupled to the sensor instruments. All of the instruments except the laser source palette are located on a single breadboard known as the Wavefront Sensor Pallet (WSP). The WSP is located on top of a 5-DOF motion system located at the center of curvature of the test mirror. Two PC's are used to control the OTS. The error in the figure measurement is dominated by the WaveScope's measurement error. An analysis using the absolute wavefront gradient error of 1/50 wave P-V (at 0.6328 microns) provided by the manufacturer leads to a total surface figure measurement error of approximately 1/100 wave rms. This easily meets the requirement of 1/10 wave P-V. The error in radius of curvature is dominated by the Leica's absolute measurement error of VI.5 mm and the focus setting error of Vi.4 mm, giving an overall error of V2 mm. The OTS is currently being used to test the NGST Mirror System Demonstrators (NMSD's) and the Subscale Beryllium Mirror Demonstrator (SBNM).

  19. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-05-01

    M2(PcAN)2 (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M2(PcAN)2-W-HZSM-5) or the M2(PcTN)2 doping W-HZSM-5 (M2(PcTN)2/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu2(PcAN)2-W-HZSM-5 and Cu2(PcTN)2/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV-Vis and calcination temperature was obtained by TG-DSC for Cu2(PcTN)2/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N2 adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. The reaction process of ultra-deep desulfurization.

  20. On the reason for the kink in the rigidity spectra of cosmic-ray protons and helium nuclei near 230 GV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loznikov, V. M., E-mail: loznikov@yandex.ru; Erokhin, N. S.; Zol’nikova, N. N.

    A three-component phenomenological model describing the specific features of the spectrum of cosmic-ray protons and helium nuclei in the rigidity range of 30–2×10{sup 5} GV is proposed. The first component corresponds to the constant background; the second, to the variable “soft” (30–500 GV) heliospheric source; and the third, to the variable “hard” (0.5–200 TV) source located inside a local bubble. The existence and variability of both sources are provided by the corresponding “surfatron accelerators,” whose operation requires the presence of an extended region with an almost uniform (in both magnitude and direction) magnetic field, orthogonally (or obliquely) to which electromagneticmore » waves propagate. The maximum energy to which cosmic rays can be accelerated is determined by the source size. The soft source with a size of ∼100 AU is located at the periphery of the heliosphere, behind the front of the solar wind shock wave. The hard source with a size of >0.1 pc is located near the boundary of an interstellar cloud at a distance of ∼0.01 pc from the Sun. The presence of a kink in the rigidity spectra of p and He near 230 GV is related to the variability of the physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law exponents in the dependences of the background, soft heliospheric source, and hard near galactic source. The ultrarelativistic acceleration of p and He by an electromagnetic wave propagating in space plasma across the external magnetic field is numerically analyzed. Conditions for particle trapping by the wave and the dynamics of the particle velocity and momentum components are considered. The calculations show that, in contrast to electrons and positrons (e{sup +}), the trapped protons relatively rapidly escape from the effective potential well and cease to accelerate. Due to this effect, the p and He spectra are softer than that of e{sup +}. The possibility that the spectra of accelerated protons deviate from standard power-law dependences due to the surfatron mechanism is discussed.« less

  1. The in vitro photodynamic effect of laser activated gallium, indium and iron phthalocyanine chlorides on human lung adenocarcinoma cells.

    PubMed

    Maduray, K; Odhav, B

    2013-11-05

    Metal-based phthalocyanines currently are utilized as a colorant for industrial applications but their unique properties also make them prospective photosensitizers. Photosensitizers are non-toxic drugs, which are commonly used in photodynamic therapy (PDT), for the treatment of various cancers. PDT is based on the principle that, exposure to light shortly after photosensitizer administration predominately leads to the production of reactive oxygen species for the eradication of cancerous cells and tissue. This in vitro study investigated the photodynamic effect of gallium (GaPcCl), indium (InPcCl) and iron (FePcCl) phthalocyanine chlorides on human lung adenocarcinoma cells (A549). Experimentally, 2 × 10(4)cells/ml were seeded in 24-well tissue culture plates and allowed to attach overnight, after which cells were treated with different concentrations of GaPcCl, InPcCl and FePcCl ranging from 2 μg/ml to 100 μg/ml. After 2h, cells were irradiated with constant light doses of 2.5 J/cm(2), 4.5 J/cm(2) and 8.5 J/cm(2) delivered from a diode laser (λ = 661 nm). Post-irradiated cells were incubated for 24h before cell viability was measured using the MTT Assay. At 24h after PDT, irradiation with a light dose of 2.5 J/cm(2) for each photosensitizing concentration of GaPcCl, InPcCl and FePcCl produced a significant decrease in cell viability, but when the treatment light dose was further increased to 4.5 J/cm(2) and 8.5 J/cm(2) the cell survival was less than 40%. Results also showed that photoactivated FePcCl decreased cell survival of A549 cells to 0% with photosensitizing concentrations of 40 μg/ml and treatment light dose of 2.5 J/cm(2). A 20 μg/ml photosensitizing concentration of FePcCl in combination with an increased treatment light dose of either 4.5 J/cm(2) or 8.5 J/cm(2) also resulted in 0% cell survival. This PDT study concludes that low concentrations on GaPcCl, InPcCl and FePcCl activated with low level light doses can be used for the effective in vitro killing of lung cancer cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effect of acute millimeter wave exposure on dopamine metabolism of NGF-treated PC12 cells.

    PubMed

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Dréan, Yves Le; Saligaut, Christian

    2017-07-01

    Several forthcoming wireless telecommunication systems will use electromagnetic frequencies at millimeter waves (MMWs), and technologies developed around the 60-GHz band will soon know a widespread distribution. Free nerve endings within the skin have been suggested to be the targets of MMW therapy which has been used in the former Soviet Union. So far, no studies have assessed the impact of MMW exposure on neuronal metabolism. Here, we investigated the effects of a 24-h MMW exposure at 60.4 GHz, with an incident power density (IPD) of 5 mW/cm², on the dopaminergic turnover of NGF-treated PC12 cells. After MMW exposure, both intracellular and extracellular contents of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were studied using high performance liquid chromatography. Impact of exposure on the dopamine transporter (DAT) expression was also assessed by immunocytochemistry. We analyzed the dopamine turnover by assessing the ratio of DOPAC to DA, and measuring DOPAC accumulation in the medium. Neither dopamine turnover nor DAT protein expression level were impacted by MMW exposure. However, extracellular accumulation of DOPAC was found to be slightly increased, but not significantly. This result was related to the thermal effect, and overall, no evidence of non-thermal effects of MMW exposure were observed on dopamine metabolism. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. TRIO (Triplet Ionospheric Observatory) Mission

    NASA Astrophysics Data System (ADS)

    Lee, D.; Seon, J.; Jin, H.; Kim, K.; Lee, J.; Jang, M.; Pak, S.; Kim, K.; Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Roelof, E. C.; Horbury, T. S.

    2009-12-01

    Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  4. Portrait view of ESA Spacelab Specialists

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Portrait view of European Space Agency (ESA) Spacelab Specialist Ulf Merbold in civilian clothes standing in front of a display case. The photo was taken at the Marshall Space Flight Center (MSFC), Huntsville, Alabama.

  5. On precursory ULF/ELF electromagnetic signatures for the Kobe earthquake on April 12, 2013

    NASA Astrophysics Data System (ADS)

    Schekotov, A.; Izutsu, J.; Hayakawa, M.

    2015-12-01

    After the 2011 Tohoku earthquake (EQ), there have been numerous aftershocks in the eastern and Pacific Ocean of Japan, but EQs are still rare in the western part of Japan. In this situation a relatively large (magnitude (M) ∼ 6) EQ happened on April 12 (UT), 2013 at a place close to the 1995 Kobe EQ (M ∼ 7), so we have tried to find whether there existed any electromagnetic precursors to this EQ. Two precursory signatures are detected: one is the depression of ULF (ultra-low-frequency, 0.01-0.02 Hz) geomagnetic variations on April 9, and the second is wideband ELF (extremely low frequency) electromagnetic radiation on April 11. These results for the 2013 Kobe EQ are compared with the corresponding results for the former 1995 Kobe EQ.

  6. Noise Performance of a 72 m Suspended FABRY-PÉROT Cavity

    NASA Astrophysics Data System (ADS)

    Dumas, Jean-Charles; Ju, Li; Barriga, Pablo; Zhao, Chunnong; Woolley, Andrew A.; Blair, David G.

    We report on a seismic isolator with a relatively compact 3 m stack, combining new passive isolation techniques. It consists of three cascaded passive 3D isolator stages suspended from an Ultra Low Frequency (ULF) horizontal Robert linkage stage which itself is suspended from a ULF 3D pre-isolator. The 3D isolators use self-damping pendulums and Euler springs for the horizontal and vertical stages respectively, while the 3D pre-isolator is the combination of an inverse pendulum which provides low frequency horizontal pre-isolation, and a LaCoste linkage for low frequency vertical pre-isolation. Two isolators suspending mirror test masses have been built to form a 72 m optical cavity in order to test their performance. We report results which demonstrate residual motion at nanometer level at frequencies above 1 Hz.

  7. Adsorption heights and bonding strength of organic molecules on a Pb-Ag surface alloy

    NASA Astrophysics Data System (ADS)

    Stadtmüller, Benjamin; Haag, Norman; Seidel, Johannes; van Straaten, Gerben; Franke, Markus; Kumpf, Christian; Cinchetti, Mirko; Aeschlimann, Martin

    2016-12-01

    The understanding of the fundamental geometric and electronic properties of metal-organic hybrid interfaces is a key issue on the way to improving the performance of organic electronic and spintronic devices. Here, we studied the adsorption heights of copper-II-phthalocyanine (CuPc) and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) on a Pb1Ag2 surface alloy on Ag(111) using the normal-incidence x-ray standing waves technique. We find a significantly larger adsorption height of both molecules on the Pb-Ag surface alloy compared to the bare Ag(111) surface which is caused by the larger size of Pb. This increased adsorption height suppresses the partial chemical interaction of both molecules with Ag surface atoms. Instead, CuPc and PTCDA molecules bond only to the Pb atoms with different interaction strength ranging from a van der Waals-like interaction for CuPc to a weak chemical interaction with additional local bonds for PTCDA. The different adsorption heights for CuPc and PTCDA on Pb1Ag2 are the result of local site-specific molecule-surface bonds mediated by functional molecular groups and the different charge donating and accepting character of CuPc and PTCDA.

  8. Management of Pancreatic Calculi: An Update

    PubMed Central

    Tandan, Manu; Talukdar, Rupjyoti; Reddy, Duvvur Nageshwar

    2016-01-01

    Pancreatolithiasis, or pancreatic calculi (PC), is a sequel of chronic pancreatitis (CP) and may occur in the main ducts, side branches or parenchyma. Calculi are the end result, irrespective of the etiology of CP. PC contains an inner nidus surrounded by successive layers of calcium carbonate. These calculi obstruct the pancreatic ducts and produce ductal hypertension, which leads to pain, the cardinal feature of CP. Both endoscopic therapy and surgery aim to clear these calculi and decrease ductal hypertension. In small PC, endoscopic retrograde cholangiopancreatography (ERCP) followed by sphincterotomy and extraction is the treatment of choice. Large calculi require fragmentation by extracorporeal shock wave lithotripsy (ESWL) prior to their extraction or spontaneous expulsion. In properly selected cases, ESWL followed by ERCP is the standard of care for the management of large PC. Long-term outcomes following ESWL have demonstrated good pain relief in approximately 60% of patients. However, ESWL has limitations. Per oral pancreatoscopy and intraductal lithotripsy represent techniques in evolution, and in current practice their use is limited to centers with considerable expertise. Surgery should be offered to all patients with extensive PC, associated multiple ductal strictures or following failed endotherapy. PMID:27784844

  9. Assessment of local pulse wave velocity distribution in mice using k-t BLAST PC-CMR with semi-automatic area segmentation.

    PubMed

    Herold, Volker; Herz, Stefan; Winter, Patrick; Gutjahr, Fabian Tobias; Andelovic, Kristina; Bauer, Wolfgang Rudolf; Jakob, Peter Michael

    2017-10-16

    Local aortic pulse wave velocity (PWV) is a measure for vascular stiffness and has a predictive value for cardiovascular events. Ultra high field CMR scanners allow the quantification of local PWV in mice, however these systems are yet unable to monitor the distribution of local elasticities. In the present study we provide a new accelerated method to quantify local aortic PWV in mice with phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) at 17.6 T. Based on a k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) undersampling scheme, total measurement time could be reduced by a factor of 6. The fast data acquisition enables to quantify the local PWV at several locations along the aortic blood vessel based on the evaluation of local temporal changes in blood flow and vessel cross sectional area. To speed up post processing and to eliminate operator bias, we introduce a new semi-automatic segmentation algorithm to quantify cross-sectional areas of the aortic vessel. The new methods were applied in 10 eight-month-old mice (4 C57BL/6J-mice and 6 ApoE (-/-) -mice) at 12 adjacent locations along the abdominal aorta. Accelerated data acquisition and semi-automatic post-processing delivered reliable measures for the local PWV, similiar to those obtained with full data sampling and manual segmentation. No statistically significant differences of the mean values could be detected for the different measurement approaches. Mean PWV values were elevated for the ApoE (-/-) -group compared to the C57BL/6J-group (3.5 ± 0.7 m/s vs. 2.2 ± 0.4 m/s, p < 0.01). A more heterogeneous PWV-distribution in the ApoE (-/-) -animals could be observed compared to the C57BL/6J-mice, representing the local character of lesion development in atherosclerosis. In the present work, we showed that k-t BLAST PC-MRI enables the measurement of the local PWV distribution in the mouse aorta. The semi-automatic segmentation method based on PC-CMR data allowed rapid determination of local PWV. The findings of this study demonstrate the ability of the proposed methods to non-invasively quantify the spatial variations in local PWV along the aorta of ApoE (-/-) -mice as a relevant model of atherosclerosis.

  10. Simple refractometer based on in-line fiber interferometers

    NASA Astrophysics Data System (ADS)

    Esteban, Ó.; Martínez Manuel, R.; Shlyagin, M. G.

    2015-09-01

    A very simple but accurate optical fiber refractometer based on the Fresnel reflection in the fiber tip and two in-line low-reflective mirrors for light intensity referencing is reported. Each mirror was generated by connecting together 2 fiber sections with FC/PC and FC/APC connectors using the standard FC/PC mating sleeve. For the sensor interrogation, a standard DFB diode laser pumped with a sawtooth-wave current was used. A resolution of 6 x 10-4 was experimentally demonstrated using different liquids. A simple sensor construction and the use of low cost components make the reported system interesting for many applications.

  11. Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Institute of Nanomaterial and Nanostructure, Changsha University of Science and Technology, Changsha 410114; Hu, J.

    2015-07-20

    Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.

  12. Earth observations taken by the STS-9 crew

    NASA Image and Video Library

    2009-06-25

    STS009-40-2575 (28 Nov-8 Dec 1983) --- This view of the Fuji volcano, Japan was taken on the 54th orbit of the Space Shuttle Columbia. The center coordinates are 35.5 degrees north latitude and 139.0 degrees east longitude. This was the first time a non-United States crew member was flown aboard the United States Space Shuttle, European Space Agency (ESA) payload specialist Ulf Merbold, Germany. The crew included NASA astronauts John W. Young, commander; Brewster H. Shaw Jr., pilot; Owen K. Garriott, mission specialist, Robert A. Parker, mission specialist; and Byron Lichtenberg, payload specialist.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loznikov, V. M., E-mail: loznikov@yandex.ru; Erokhin, N. S., E-mail: nerokhin@mx.iki.rssi.ru; Zol’nikova, N. N.

    A three-component phenomenological model for the description of specific features of spectra of cosmic-ray protons and helium nuclei in the hardness range from 30 to 2 × 10{sup 5} GV is proposed. The first component corresponds to the constant background; the second component, to a variable “soft” (30–500 GV) heliospheric source; and the third component, to a variable “hard” (0.5–200 TV) galactic source inside a local bubble. The corresponding “surfatron accelerators” are responsible for the existence and variability of both sources. In order for such accelerators to operate, there should be an extended area with a nearly uniform and constantmore » (in both the magnitude and direction) magnetic field and electromagnetic waves propagating perpendicular (or obliquely) to it. The dimensions of each source determine the maximum energy to which cosmic rays can be accelerated. The soft source with a size of ∼100 au lies at the periphery of the heliosphere, beyond the terminal shock, while the hard source with a size of >0.1 pc is located near the boundary of a local interstellar cloud at a distance of ∼0.01 pc from the Sun. A kink in the hardness spectra of p and He (near the hardness of about 230 GV) is caused by the variability of physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law indices of the background, the soft heliospheric source, and the nearby hard galactic source. Ultrarelativistic acceleration of p and He in space plasma by an electromagnetic wave propagating perpendicular to the external magnetic field is investigated using numerical calculations. The conditions for particle trapping by the wave, as well as the dynamics of the velocity and momentum components, are analyzed. The calculations show that, in contrast to electrons and positrons (e{sup +}), a trapped proton can escape from the effective potential well after a relatively short time, thereby terminating to accelerate. Such an effect gives rise to softer spectra of p and He sources as compared to those of e{sup +}. The possibility of deviation of the spectra of accelerated protons from standard power-law dependences due to the surfatron mechanism is discussed.« less

  14. Terahertz transmission properties of a triadic-Cantor-set photonic crystal containing a semiconductor

    NASA Astrophysics Data System (ADS)

    King, Tzu-Chyang; Liu, Chi-Chung; Huang, Chih-Hsi; Wu, Chien-Jang

    2016-08-01

    Terahertz transmission properties of a stage 3 triadic-Cantor-set photonic crystal (S3 TCS PC) containing a semiconductor of n-InSb are theoretically investigated. With the resonant frequency in the permittivity function of n-InSb, transmission responses can be classified as three regions. In the two regions with frequencies well above and below the resonant frequency, the permittivity functions are nearly a positive constant and n-InSb is dielectric-like. For these two regions, transmittance response of S3 TCS PC at a given number of periods Np reveals that, within a photonic band gap, there are two groups of defect modes with numbers of Np and Np-1, respectively. Defect modes are shown to be blue-shifted as the angle of incidence increases for both TE and TM waves. Additionally, adjusting the layer thickness enables us to control mode positions for the group of (Np-1)-mode, but the one with Np-mode is not able to be controlled. In a region of 5.1-6.2 THz, where the loss is large, there also are many transmission modes.

  15. Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.

  16. Distinct winter patterns of tropical Pacific convection anomaly and the associated extratropical wave trains in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Ding, Shuoyi; Chen, Wen; Graf, Hans-F.; Guo, Yuanyuan; Nath, Debashis

    2017-11-01

    In this paper, distinct patterns of boreal winter convection anomalies over the tropical Pacific and associated wave trains in the extratropics are addressed. The first leading mode (EOF1) of convection anomalies as measured by outgoing longwave radiation demonstrates an east-west oscillation of deep convection with centers over the equatorial central Pacific (CP) and over the tropical western North Pacific and the Maritime Continent. The second leading mode (EOF2) is also a dipole pattern with opposite centers straddling 170°W, possibly modifying EOF1 to some extent. Combining the first two leading modes, five major categories of tropical convection anomalies can be identified for the period 1979/80-2012/13. The comparison between these five categories and the corresponding SST anomaly patterns indicates a nonlinear relationship between convection and SST. The combination of EOF1 and EOF2 with in-phase PCs exhibits an east-west dipole pattern with opposite signs over west of the dateline and the Maritime Continent. The negative phase of the two PCs, named La Niña pattern, induces a negative Pacific/North American—positive North Atlantic Oscillation teleconnection in the extratropics. Approximately opposite responses can be detected in its positive phase, named CP El Niño pattern. The negative PC2 superposing positive PC1, named EP El Niño pattern, shows the strongest convection anomalies with enhanced (depressed) convection over the eastern (western) Pacific and leads to a Tropical/Northern Hemisphere-like teleconnection pattern and an anomalous anticyclone extending from the North Pacific to the North Atlantic. The positive PC2 with neutral PC1, named western CP pattern, shows weakly enhanced convection to the west of the dateline as a response to local SST warming around the dateline. This convection anomaly pattern, although weak, is important and excites a northeastward wave train from the tropics to Greenland, resulting in surface air temperature cooling covering the northeastern North America and warmer and wetter conditions over Western Europe.

  17. Dietary phosphatidylcholine impacts on growth performance and lipid metabolism in adult Genetically Improved Farmed Tilapia (GIFT) strain of Nile tilapia Oreochromis niloticus.

    PubMed

    Tian, Juan; Wen, Hua; Lu, Xing; Liu, Wei; Wu, Fan; Yang, Chang-Geng; Jiang, Ming; Yu, Li-Juan

    2018-01-01

    This study aimed to determine the effects of supplementing the diet of adult Nile tilapia Oreochromis niloticus with phosphatidylcholine (PC) on growth performance, body composition, fatty acid composition and gene expression. Genetically Improved Farmed Tilapia fish with an initial body weight of 83·1 (sd 2·9) g were divided into six groups. Each group was hand-fed a semi-purified diet containing 1·7 (control diet), 4·0, 6·5, 11·5, 21·3 or 41·0 g PC/kg diet for 68 d. Supplemental PC improved the feed efficiency rate, which was highest in the 11·5 g PC/kg diet. Weight gain and specific growth rate were unaffected. Dietary PC increased PC content in the liver and decreased crude fat content in the liver, viscera and body. SFA and MUFA increased and PUFA decreased in muscle with increasing dietary PC. Cytoplasmic phospholipase A 2 and secreted phospholipase A 2 mRNA expression were up-regulated in the brain and heart in PC-supplemented fish. PC reduced fatty acid synthase mRNA expression in the liver and visceral tissue but increased expression in muscle. Hormone-sensitive lipase and lipoprotein lipase expression increased in the liver with increasing dietary PC. Growth hormone mRNA expression was reduced in the brain and insulin-like growth factor-1 mRNA expression in liver reduced with PC above 6·5 g/kg. Our results demonstrate that dietary supplementation with PC improves feed efficiency and reduces liver fat in adult Nile tilapia, without increasing weight gain, representing a novel dietary approach to reduce feed requirements and improve the health of Nile tilapia.

  18. Balanced intake of protein and carbohydrate maximizes lifetime reproductive success in the mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae).

    PubMed

    Rho, Myung Suk; Lee, Kwang Pum

    2016-01-01

    Recent developments in insect gerontological and nutritional research have suggested that the dietary protein:carbohydrate (P:C) balance is a critical determinant of lifespan and reproduction in many insects. However, most studies investigating this important role of dietary P:C balance have been conducted using dipteran and orthopteran species. In this study, we used the mealworm beetles, Tenebrio molitor L. (Coleoptera: Tenebrionidae), to test the effects of dietary P:C balance on lifespan and reproduction. Regardless of their reproductive status, both male and female beetles had the shortest lifespan at the protein-biased ratio of P:C 5:1. Mean lifespan was the longest at P:C 1:1 for males and at both P:C 1:1 and 1:5 for females. Mating significantly curtailed the lifespan of both males and females, indicating the survival cost of mating. Age-specific egg laying was significantly higher at P:C 1:1 than at the two imbalanced P:C ratios (1:5 or 5:1) at any given age throughout their lives, resulting in the highest lifetime reproductive success at P:C 1:1. When given a choice, beetles actively regulated their intake of protein and carbohydrate to a slightly carbohydrate-biased ratio (P:C 1:1.54-1:1.64 for males and P:C 1:1.3-1:1.36 for females). The self-selected P:C ratio was significantly higher for females than males, reflecting a higher protein requirement for egg production. Collectively, our results add to a growing body of evidence suggesting the key role played by dietary macronutrient balance in shaping lifespan and reproduction in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. CCK processing by pituitary GH3 cells, human teratocarcinoma cells NT2 and hNT differentiated human neuronal cells evidence for a differentiation-induced change in enzyme expression and pro CCK processing.

    PubMed

    Beinfeld, Margery C; Wang, Wenge

    2002-02-01

    Human teratocarcinoma Ntera2/c 1.D1 (NT2) cells express very low levels of the prohormone convertase enzyme PC1, moderate levels of PC2 and significant levels of PC5. When infected with an adenovirus which expresses rat CCK mRNA, several glycine-extended forms were secreted that co-eluted with CCK 33, 22 and 12. Amidated CCK is not produced because these cells appear to lack the amidating enzyme. Pituitary GH3 cells express high levels of PC2 and PC5. CCK adenovirus-infected GH3 cells secrete amidated versions of the same peptides as NT2 cells. Differentiation of NT2 cells into hNT cells with retinoic acid and mitotic inhibitors increased expression of PC5 and decreased expression of PCI and PC2. CCK adenovirus-infected differentiated hNT cells also secrete glycine extended CCK products and the major molecular form produced co-eluted with CCK 8 Gly. These experiments demonstrate that the state of differentiation of this neuronal cell line influences its expression of PC 1,2, and 5 and its cleavage of pro CCK and suggests that these cells may make an interesting model to study how differentiation alters prohormone processing. These results also support the hypothesis that PC5 in differentiated neuronal cells is capable of processing pro CCK to glycine-extended CCK 8.

  20. VizieR Online Data Catalog: Search for extraterrestrial intelligence (Isaacson+, 2017)

    NASA Astrophysics Data System (ADS)

    Isaacson, H.; Siemion, A. P. V.; Marcy, G. W.; Lebofsky, M.; Price, D. C.; MacMahon, D.; Croft, S.; Deboer, D.; Hickish, J.; Werthimer, D.; Sheikh, S.; Hellbourg, G.; Enriquez, J. E.

    2017-08-01

    The stellar sample is defined by two selection criteria. The first is a volume-limited sample of stars within 5pc of the Sun. The second is a spectral class complete sample consisting of stars across the main sequence and some giant branch stars, all within 50pc. We combined the two sub-samples (5pc and 5-50pc) to produce the final set of 1709 target stars that are listed in Table 1. (1 data file).

Top