Science.gov

Sample records for pca-lasl facility

  1. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  2. Facility Focus: Science Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses design and architectural features of two new science facilities at the Florida Institute of Technology in Melbourne, Florida, and a new graduate research tower the University of Wisconsin at Madison. Notes the important convenience associated with interior windows in these facilities, which allow researchers, faculty, and students to see…

  3. Facility Microgrids

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  4. Rendezvous facilities

    SciTech Connect

    Gehani, N.H.; Roome, W.D.

    1988-11-01

    The concurrent programming facilities in both Concurrent C and the Ada language are based on the rendezvous concept. Although these facilities are similar, there are substantial differences. Facilities in Concurrent C were designed keeping in perspective the concurrent programming facilities in the Ada language and their limitations. Concurrent C facilities have also been modified as a result of experience with its initial implementations. In this paper, the authors compare the concurrent programming facilities in Concurrent C and Ada, and show that it is easier to write a variety of concurrent programs in Concurrent C than in Ada.

  5. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  6. Facility Planning.

    ERIC Educational Resources Information Center

    Graves, Ben E.

    1984-01-01

    This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

  7. Facilities Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents responses from Matt McGovern, "School Planning and Management's" Maintenance and Operations columnist, on the issue of school facility maintenance. McGovern does not believe schools will ever likely meet acceptable levels of maintenance, nor use infrared thermography for assessing roofs, outsource all maintenance work, nor find…

  8. Downgrading Nuclear Facilities to Radiological Facilities

    SciTech Connect

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  9. Breadboard Facility

    NASA Technical Reports Server (NTRS)

    1977-01-01

    In the sixties, Chrysler was NASA's prime contractor for the Saturn I and IB test launch vehicles. The company installed and operated at Huntsville what was known as the Saturn I/IB Development Breadboard Facility. "Breadboard," means an array of electrical and electronic equipment for performing a variety of development and test functions. This work gave Chrysler a broad capability in computerized testing to assure quality control in development of solid-state electronic systems. Today that division is manufacturing many products not destined for NASA, most of them being associated with the company's automotive line. A major project is production and quality-control testing of the "lean-burn" engine, one that has a built-in Computer to control emission timing, and allow the engine to run on a leaner mixture of fuel and air. Other environment-related products include vehicle emission analyzers. The newest of the line is an accurate, portable solid state instrument for testing auto exhaust gases. The exhaust analyzers, now being produced for company dealers and for service

  10. Facility Focus: Sports and Recreation Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2000

    2000-01-01

    Examines projects that demonstrate three different commitments administrators make to their athletic facilities: convenience; excellence; and comfort. Projects discussed involve a fitness center, a football stadium, and a multi-sport indoor practice facility. (GR)

  11. Guide to research facilities

    SciTech Connect

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  12. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  13. Sports Facility Management.

    ERIC Educational Resources Information Center

    Walker, Marcia L., Ed.; Stotlar, David K., Ed.

    The numbers of both sports facility management college courses and sport and exercise facilities are increasing, along with the need for an understanding of the trends and management concepts of these facilities. This book focuses exclusively on managing facilities where sporting events occur and includes examples in physical education, athletics,…

  14. Reliable Facility Location Problem with Facility Protection.

    PubMed

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  15. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  16. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  17. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The capabilities of the Spacelab Data Processing Facility (SPDPF) are highlighted. The capturing, quality monitoring, processing, accounting, and forwarding of vital Spacelab data to various user facilities around the world are described.

  18. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  19. FDA Certified Mammography Facilities

    MedlinePlus

    ... Program Consumer Information (MQSA) Search for a Certified Facility Share Tweet Linkedin Pin it More sharing options ... Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on Search ...

  20. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  1. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and

  2. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  3. Facilities Engineering in NASA

    NASA Technical Reports Server (NTRS)

    Pagluiso, M. A.

    1970-01-01

    An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.

  4. Considerations on Facilities Planning

    ERIC Educational Resources Information Center

    Baule, Steven

    2007-01-01

    Most facilities renovation projects occur because someone at the executive or board level has lobbied successfully for them. Often in public schools, the voters have agreed to the project as well via a building referendum. Therefore, facilities projects are highly visible to the community. Unlike many other issues in schools, facilities projects…

  5. Indoor Athletic Facilities.

    ERIC Educational Resources Information Center

    Fleming, E. Scott

    2000-01-01

    Examines the concept of shared-use facilities to help financially support and meet the demand for athletic facilities. Shared-use considerations are explored including cost sharing of ongoing operations, aesthetics, locker rooms, support facilities, parking and site access, and building access and security. (GR)

  6. Developing a facility strategy.

    PubMed

    Capps, D M

    1994-05-01

    Successful planning for capital investment relies upon the ability of the management team to establish a cogent and comprehensive direction for facility development. The selection of an appropriate strategy integrates multiple issues: mission, service needs of the community, the external environment, the organization's ethos, current physical resources, operational systems, and vision. This paper will identify and discuss key components and data integral to formulating a facility strategy that outlines the basic direction for developing a facility master plan. The process itself will be presented as a working methodology that can be applied to the organization's resources and vision to generate a coherent facility strategy.

  7. Relocatale Learning Facilities.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto. School Planning and Building Research Section.

    This document supplies guidelines for the future design of structures within one category of relocatable learning facilities--divisible facilities. The current use and average cost of portables; and teacher, student, and community reactions are discussed. Four types of relocatable structures are described: portable, mobile, divisible, and…

  8. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  9. Florida Educational Facilities, 2000.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This publication describes Florida school and community college facilities completed in 2000, including photographs and floor plans. The facilities profiled are:J. R. Arnold High School (Bay County); Falcon Cove Middle School (Broward); Floranada Elementary School (Broward); Lyons Creek Middle School (Broward); Parkside Elementary School…

  10. BIBLIOGRAPHY OF FACILITIES INFORMATION.

    ERIC Educational Resources Information Center

    American Association of Junior Colleges, Washington, DC.

    PERSONNEL OF THE FACILITIES INFORMATION SERVICE OF THE AMERICAN ASSOCIATION OF JUNIOR COLLEGES COMPILED THIS LISTING OF BOOKS, ARTICLES, MONOGRAPHS, AND OTHER PRINTED MATERIALS RELEVANT TO JUNIOR COLLEGE FACILITIES PLANNING, DESIGN, AND CONSTRUCTION. IN ADDITION TO A "GENERAL" CATEGORY, REFERENCES ARE GROUPED UNDER HEADINGS OF AUDITORIUMS, COLLEGE…

  11. Shaping Campus Facilities.

    ERIC Educational Resources Information Center

    Calcara, James R.

    1999-01-01

    Explains how colleges and universities, faced with emerging trends and increased competition, can utilize their facilities as strategic resources. Examines technology changes in the classroom and the effects on user needs, the trend toward real-world learning environments, and facility design planning that responds to social interaction and…

  12. Future User Facilities

    NASA Astrophysics Data System (ADS)

    Riedinger, Lee

    2002-10-01

    The southeastern part of the U.S. is blessed with an array of national user facilities that are accessible to scientists in the region. The Oak Ridge National Laboratory (ORNL) operates 17 officially designated user facilities for the Department of Energy, the Jefferson Lab operates the Continuous Electron Beam Accelerator Facility (CEBAF), and a number of universities have forefront experimental facilities that are widely accessible. The long lead time necessary to originate and construct new user facilities makes it imperative to consider the needs of the physical sciences 10 to 20 years in the future. The construction of the Spallation Neutron Source at ORNL positions the southeast to lead in neutron science. Upgrades are desired for CEBAF and the Holifield Radioactive Ion Beam Facility (ORNL). The more future possibilities are less clear, but are becoming a focus of strategic planning among the national laboratories. Possibilities may arise in the U.S. for next-generation light sources, large computational centers, advanced fusion devices, nanotechnology centers, and perhaps facilities that are not yet contemplated. A regional discussion of the needs for large-scale user facilities in the southeast is important.

  13. Long Range Facilities Planning

    DTIC Science & Technology

    1982-04-01

    Richard Muther range facilities Many alterna- analysis indi- cated that if NASSCO ever expected to surpass its output of the last several years, current...Marine Engineers (SNAME) SP-1 Panel Meeting. The Maritime Administration had Richard Muther (an authority on long range facility planning) address a

  14. 17. Topside facility, interior of facility manager's room, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Topside facility, interior of facility manager's room, view towards south. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  15. 18. Topside facility, interior of facility manager's room, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Topside facility, interior of facility manager's room, view towards west. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  16. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  17. GRC Ground Support Facilities

    NASA Technical Reports Server (NTRS)

    SaintOnge, Thomas H.

    2010-01-01

    The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.

  18. National Facilities study

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This study provides a set of recommendations for improving the effectiveness of our nation's aeronautics and space facilities. The study plan considers current and future government and commercial needs as well as DOD and NASA mission requirements through the year 2023. It addresses shortfalls in existing capabilities, new facility requirements, upgrades, consolidations, and phase-out of existing facilities. If the recommendations are implemented, they will provide world-class capability where it is vital to our country's needs and make us more efficient in meeting future needs.

  19. Substance Abuse Treatment Facility Locator

    MedlinePlus

    ... denied message goes here Share Share Print Share Facility List From: Receiver(s): Add Receiver Message: Additional Comments: ... Sort Filter and Sort Sort by: Filter by: Facility name Facility address Phone number Apply Clear Cancel ...

  20. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  1. NETL - Fuel Reforming Facilities

    ScienceCinema

    None

    2016-07-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  2. Future School Facility Design.

    ERIC Educational Resources Information Center

    Keck, Dan

    1994-01-01

    Educational facility planners can work with educators to design learning environments for the future as places that will be flexible, adaptable, and readily reconfigured when appropriate. Planners and educators need to understand the effectiveness of learners, teachers, and organizations. (MLF)

  3. Shuttle Landing Facility

    NASA Video Gallery

    The Shuttle Landing Facility at NASA's Kennedy Space Center in Florida marked the finish line for space shuttle missions since 1984. It is also staffed by a group of air traffic controllers who wor...

  4. A cryogenic test facility

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  5. Facility Focus: Food Service.

    ERIC Educational Resources Information Center

    College Planning & Management, 2000

    2000-01-01

    Examines three renovated college facilities that offer student-friendly dining space. Renovation problems in the areas of food and entertainment, service and choice, and image versus architectural history preservation are addressed. (GR)

  6. FDA Certified Mammography Facilities

    MedlinePlus

    ... Products Radiation-Emitting Products Home Radiation-Emitting Products Mammography Quality Standards Act and Program Consumer Information (MQSA) ... it Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on ...

  7. NETL - Fuel Reforming Facilities

    SciTech Connect

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  8. Special Feature: Facilities.

    ERIC Educational Resources Information Center

    Storm, George; And Others

    1993-01-01

    Includes "Planning Laboratory Design" (Storm); "Perkins Money for Automotive Programs" (Cash); "Stretching a Budget" (Warren); "Video Teleconferencing--Powerful Communication for Occupational Educators" (Major); "Danger: Hazardous Materials" (Brown); and "Keeping Facilities Safe--Electrical…

  9. Auditing radiation sterilization facilities

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  10. Hanford Facility contingency plan

    SciTech Connect

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials.

  11. Business Planning Core Facilities

    PubMed Central

    Itzkowitz, G.N.

    2014-01-01

    Thoughtful business planning is pivotal to the success of any business/operational venture. When planned in a thoughtful and detailed manner there are very few operational or financial surprises for an institution or facility (service center) to contend with. At Stony Brook Medicine we include SWOT analysis and a detailed Market Analysis as part of the process. This is bolstered by an initiative to ensure institutional policies are met so that facilities remain in compliance throughout their lifecycle. As we operate 14 facilities we have had the opportunity to become creative in our approach to coordinate activities, virtualize services, integrate new software business-to-business partners, and finally coordinate plans for phased consolidation instead of outright termination of services when required. As the Associate Dean for Scientific Operations and Research Facilities, the shared research facilities (cores) of the Medical School are in my direct line of sight. We understand their value to the meeting our overall research mission. We have found that an active process of monitoring to predict trouble as much as possible is the best approach for facilities. Some case analysis of this type of interaction will be presented as well.

  12. Facility Environmental Vulnerability Assessment

    SciTech Connect

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and poor

  13. Comprehensive facilities plan

    SciTech Connect

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  14. Berkeley Low Background Facility

    SciTech Connect

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-08-17

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  15. Mars ultraviolet simulation facility.

    PubMed

    Zill, L P; Mack, R; DeVincenzi, D L

    1979-12-01

    A facility was established for long-duration ultraviolet (UV) radiation exposure of natural and synthetic materials in order to test hypotheses concerning Martian soil chemistry observed by the Viking Mars landers. The system utilized a 2500 watt xenon lamp as the radiation source, with the beam passing through a heat-dissipating water filter before impinging upon an exposure chamber containing the samples to be irradiated. The chamber was designed to allow for continuous tumbling of the samples, maintenance of temperatures below 0 degrees C during exposure, and monitoring of beam intensity. The facility also provided for sample preparation under a variety of atmospheric conditions, in addition to the Mars nominal. As many as 33 sealed sample ampules have been irradiated in a single exposure. Over 100 samples have been irradiated for approximately 100 to 700 h. The facility has performed well in providing continuous UV irradiation of multiple samples for long periods of time under simulated Mars atmospheric and thermal conditions.

  16. Facility capability assessment.

    PubMed

    McCandless, J

    1994-06-01

    An inspection and evaluation procedure has been developed to assess the capabilities of contract toxicology laboratories. This procedure has been used for the inspection of 18 different contract toxicology laboratories. There are 10 areas inspected: 1. Facility 2. Personnel 3. Operations 4. Animals/Animal Care 5. Standard Operating Procedures 6. Quality Assurance 7. Equipment 8. Test Article 9. Data 10. Archives. Each of these areas is divided into categories with each category divided further into specific topics. Points are assigned to each topic. The points earned by the laboratory reflect the inspector's assessment of the laboratory's quality in each area. Area scores are added and a percentage score for the facility is calculated. This approach provides a clear distinction among the laboratories evaluated. The facility inspection and rating system played an important role in screening laboratories when the author worked for the Atlantic Richfield Company (ARCO) corporate toxicology department. It highlighted strengths and weaknesses of individual laboratories.

  17. Modernizing sports facilities

    SciTech Connect

    Dustin, R.

    1996-09-01

    Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team to meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.

  18. A Materials Exposure Facility

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.; Avery, Don E.

    1995-01-01

    The objective of the Materials Exposure Facility (MEF) is to provide a test bed in space for conducting long-term (greater than one year) materials experiments which require exposure to the low Earth orbit (LEO) space environment. The proposed MEF is planned to be an integral part of the agency's Space Environments and Effects Research Program. The facility will provide experiment trays similar to the Long Duration Exposure Facility (LDEF). Each tray location is planned to have a power and data interface and robotic installation and removal provisions. Space environmental monitoring for each side of the MEF will also be provided. Since routine access to MEF for specimen retrieval is extremely important to the materials research, Space Station Freedom has been chosen as the preferred MEF carrier.

  19. Modular space station facilities.

    NASA Technical Reports Server (NTRS)

    Parker, P. J.

    1973-01-01

    The modular space station will operate as a general purpose laboratory (GPL). In addition, the space station will be able to support many attached or free-flying research and application modules that would be dedicated to specific projects like astronomy or earth observations. The GPL primary functions have been organized into functional laboratories including an electrical/electronics laboratory, a mechanical sciences laboratory, an experiment and test isolation laboratory, a hard data process facility, a data evaluation facility, an optical sciences laboratory, a biomedical and biosciences laboratory, and an experiment/secondary command and control center.

  20. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  1. Administering the Preschool Facility.

    ERIC Educational Resources Information Center

    Coonrod, Debbie

    Securing the right environment for a preschool program requires planning and research. Administrators or searching parties are advised to study zoning codes to become acquainted with state sanitation and safety regulations and laws, to involve teachers in cooperative planning, to design facilities which discourage vandalism, facilitate…

  2. Optimal Facility-Location.

    PubMed

    Goldman, A J

    2006-01-01

    Dr. Christoph Witzgall, the honoree of this Symposium, can count among his many contributions to applied mathematics and mathematical operations research a body of widely-recognized work on the optimal location of facilities. The present paper offers to non-specialists a sketch of that field and its evolution, with emphasis on areas most closely related to Witzgall's research at NBS/NIST.

  3. Food Service Facilities.

    ERIC Educational Resources Information Center

    Rifenbark, Ray

    This annotated bibliography included summaries of 14 articles and one report dealing with the topic of school and college food service programs. A brief introduction discusses the current trend toward more diversified use of food service facilities and describes recent innovations in the preparation and distribution of students' meals. Many of the…

  4. Variable gravity research facility

    NASA Technical Reports Server (NTRS)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  5. Calibration facility safety plan

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1971-01-01

    A set of requirements is presented to insure the highest practical standard of safety for the Apollo 17 Calibration Facility in terms of identifying all critical or catastrophic type hazard areas. Plans for either counteracting or eliminating these areas are presented. All functional operations in calibrating the ultraviolet spectrometer and the testing of its components are described.

  6. Aid for Facilities

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2009-01-01

    Even before the state fire marshal ordered the Somersworth (N.H.) School District in 2007 to abandon the top two floors of Hilltop Elementary School because of safety concerns, folks in the city of 12,000 had been debating whether the aging facility should be replaced--and how to pay for it. Finally, in February 2009, the city council approved…

  7. Facilities of the Future

    ERIC Educational Resources Information Center

    Grayson, Jennifer

    2009-01-01

    The bricks-and-mortar infrastructure of community colleges has not nearly kept pace with increases in student enrollments. Not only are colleges bursting at the proverbial seams, but, according to the American Graduation Initiative, many two-year institutions "face large needs due to deferred maintenance or lack the modern facilities and…

  8. Mineral facilities of Europe

    USGS Publications Warehouse

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  9. QF monitoring. [Qualifying Facilities

    SciTech Connect

    Greenwald, S. ); Hoffman, B. )

    1991-10-01

    This article examines the effects on project financing of independent power projects of the California Public Utilities Commission decision to grant authority to California utilities to monitor and enforce compliance with the Federal Energy Regulatory Commission Qualifying Facility standards. The topics of the article include monitoring proposals, monitoring guidelines, the effects of monitoring, minimizing status loss and monitoring requirements.

  10. Facility effluent monitoring

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  11. Revitalization of School Facilities.

    ERIC Educational Resources Information Center

    Coffey, Andrea Barlow

    This study analyzed current practices in the revitalization of school buildings and assimilates data that can be used by school administrators when deciding on revitalization issues. Data from nine revitalized schools since 1985 and a literature review of the elements for planning the revitalization of school facilities indicate that structural…

  12. Facilities Data System Manual.

    ERIC Educational Resources Information Center

    Acridge, Charles W.; Ford, Tim M.

    The purposes of this manual are to set forth the scope and procedures for the maintenance and operation of the University of California facilities Data System (FDX) and to serve as a reference document for users of the system. FDX is an information system providing planning and management data about the existing physical plant. That is, it…

  13. Science and Technology Facilities

    ERIC Educational Resources Information Center

    Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne

    2004-01-01

    These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…

  14. Facilities of Environmental Distinction

    ERIC Educational Resources Information Center

    Pascopella, Angela

    2011-01-01

    Three of nine school buildings that have won the latest Educational Facility Design Awards from the American Institute of Architects (AIA) Committee on Architecture for Education stand out from the crowd of other school buildings because they are sustainable and are connected to the nature that surrounds them. They are: (1) Thurston Elementary…

  15. Facility Focus: Science Buildings.

    ERIC Educational Resources Information Center

    College Planning & Management, 1998

    1998-01-01

    Provides an overview of five custom designs used in university science buildings. Descriptions include renovation to a mechanical engineering lab, construction of a new building for molecular biology, the reconstruction of chemistry labs, the renovation of a vision lab, and a new research and education facility. Includes photos. (RJM)

  16. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  17. Industrial Education Facilities.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Public Instruction, Lansing.

    Factors for consideration by an industrial education planning committee are discussed. Selection, purchasing, and storage of new types of equipment and supplies, in addition to students' project storage, are noted as worthy of consideration in planning the shop facility. Planning factors for the various types of industrial arts laboratories are…

  18. Financing School Facilities.

    ERIC Educational Resources Information Center

    Honeyman, David S., Ed.

    Millions of students are attending classes in substandard schools, a condition that is becoming a major concern for many public school parents, teachers, students, and administrators. This report is the result of research investigating school facility issues, assessing the scope of the problem, and making recommendations to the membership of the…

  19. NRL Tropical Exposure Facilities

    DTIC Science & Technology

    1947-04-01

    canal. To the east, on the opposite side of Limon Bay, lies Cristobal , Coco Solo, and Colon . Travel between Fort Sherman and Cristobal is accomplished...precision equipment. I 4 NRL TROPICAL EXPOSURE FACILITIES 5 Accessibility Proximity of the station to the port of Cristobal and to the Naval Air Station

  20. Surveying School Facilities Needs.

    ERIC Educational Resources Information Center

    Weichel, Harry J.; Dennell, James

    1990-01-01

    Ralston (Nebraska) Public School District's communitywide survey helped set school facilities priorities while keeping the district's finite resources firmly in mind. With an outline of maintenance costs for the next 10 years, the district can develop a strategic construction schedule. The board also has the option of financing projects through a…

  1. Test facilities for VINCI®

    NASA Astrophysics Data System (ADS)

    Greuel, Dirk; Schäfer, Klaus; Schlechtriem, Stefan

    2013-09-01

    With the replacement of the current upper-stage ESC-A of the Ariane 5 launcher by an enhanced cryogenic upper-stage, ESA's Ariane 5 Midterm Evolution (A5-ME) program aims to raise the launcher's payload capacity in geostationary transfer orbit from 10 to 12 tons, an increase of 20 %. Increasing the in-orbit delivery capability of the A5-ME launcher requires a versatile, high-performance, evolved cryogenic upper-stage engine suitable for delivering multiple payloads to all kinds of orbits, ranging from low earth orbit to geostationary transfer orbit with increased perigee. In order to meet these requirements the re-ignitable liquid oxygen/liquid hydrogen expander cycle engine VINCI® currently under development is designated to power the future upper stage, featuring a design performance of 180 kN of thrust and 464 s of specific impulse. Since 2010 development tests for the VINCI® engine have been conducted at the test benches P3.2 and P4.1 at DLR test site in Lampoldshausen under the ESA A5-ME program. For the VINCI® combustion chamber development the P3.2 test facility is used, which is the only European thrust chamber test facility. Originally erected for the development of the thrust chamber of the Vulcain engine, in 2003 the test facility was modified that today it is able to simulate vacuum conditions for the ignition and startup of the VINCI® combustion chamber. To maintain the test operations under vacuum conditions over an entire mission life of the VINCI® engine, including re-ignition following long and short coasting phases, between 2000 and 2005 the test facility P4.1 was completely rebuilt into a new high-altitude simulation facility. During the past two P4.1 test campaigns in 2010 and 2011 a series of important milestones were reached in the development of the VINCI® engine. In preparation for future activities within the frame of ESA's A5-ME program DLR has already started the engineering of a stage test facility for the prospective upper stage

  2. The Multistage Compressor Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie

    2004-01-01

    Research and developments of new aerospace technologies is one of Glenn Research Center's specialties. One facility that deals with the research of aerospace technologies is the High-speed Multistage Compressor Facility. This facility will be testing the performance and efficiency of an Ultra Efficient Engine Technology (UEET) two-stage compressor. There is a lot of preparation involved with testing something of this caliber. Before the test article can be installed into the test rig, the facility must be fully operational and ready to run. Meaning all the necessary instrumentation must be calibrated and installed in the facility. The test rig should also be in safe operating condition, and the proper safety permits obtained. In preparation for the test, the Multistage Compressor Facility went through a few changes. For instance the facility will now be utilizing slip rings, the gearbox went through some maintenance, new lubrications systems replaced the old ones, and special instrumentation needs to be fine tuned to achieve the maximum amount of accurate data. Slips rings help gather information off of a rotating device - in this case from a shaft - onto stationary contacts. The contacts (or brushes) need to be cooled to reduce the amount of frictional heat produced between the slip ring and brushes. The coolant being run through the slip ring is AK-225, a material hazardous to the ozone. To abide by the safety regulations the coolant must be run through a closed chiller system. A new chiller system was purchased but the reservoir that holds the coolant was ventilated which doesn t make the system truly closed and sealed. My task was to design and have a new reservoir built for the chiller system that complies with the safety guidelines. The gearbox had some safety issues also. Located in the back of the gearbox an inching drive was set up. When the inching drive is in use the gears and chain are bare and someone can easily get caught up in it. So to prevent

  3. VIEW TO NORTHWEST, SHOWING FACILITY NO. 525 AND HOSPITAL (FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO NORTHWEST, SHOWING FACILITY NO. 525 AND HOSPITAL (FACILITY No. 515) BEYOND. See CA-2398-CP-8 for detail of the stairway in the distance - Hamilton Field, Amphitheater, North Oakland Drive near East Hospital Drive, Novato, Marin County, CA

  4. View of Facility 222 (on right) and Facility 221 through ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Facility 222 (on right) and Facility 221 through trees (parapet of latter above trees) from the parade ground. - U.S. Naval Base, Pearl Harbor, Gymnasium & Theater, Neville Way, Pearl City, Honolulu County, HI

  5. Universal Test Facility

    NASA Technical Reports Server (NTRS)

    Laughery, Mike

    1994-01-01

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  6. Universal Test Facility

    NASA Astrophysics Data System (ADS)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  7. Facilities evaluation report

    SciTech Connect

    Sloan, P.A.; Edinborough, C.R.

    1992-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

  8. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Spacelab Data Processing Facility (SDPF) processes, monitors, and accounts for the payload data from Spacelab and other Shuttle missions and forwards relevant data to various user facilities worldwide. The SLDPF is divided into the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). The SIPS division demultiplexes, synchronizes, time tags, quality checks, accounts for the data, and formats the data onto tapes. The SOPS division further edits, blocks, formats, and records the data on tape for shipment to users. User experiments must conform to the Spacelab's onboard High Rate Multiplexer (HRM) format for maximum process ability. Audio, analog, instrumentation, high density, experiment data, input/output data, quality control and accounting, and experimental channel tapes along with a variety of spacelab ancillary tapes are provided to the user by SLDPF.

  9. UNISOR Nuclear Orientation Facility

    SciTech Connect

    Girit, I.C.

    1988-01-01

    The combination of an on-line isotope separator and a dilution refrigerator has increased the applicability of the nuclear orientation technique to a wide range of nuclei, especially those very far from stability. The UNISOR Nuclear Orientation Facility (UNISOR/NOF) is among the two (the other being NICOLE at CERN) that have recently become operational. The following is an overall view of the UNISOR system and recent results. 24 refs., 3 figs.

  10. Future Facilities Summary

    SciTech Connect

    Albert De Roeck, Rolf Ent

    2009-10-01

    For the session on future facilities at DIS09 discussions were organized on DIS related measurements that can be expected in the near and medium –or perhaps far– future, including plans from JLab, CERN and FNAL fixed target experiments, possible measurements and detector upgrades at RHIC, as well as the plans for possible future electron proton/ion colliders such as the EIC and the LHeC project.

  11. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  12. ORNL calibrations facility

    SciTech Connect

    Berger, C.D.; Gupton, E.D.; Lane, B.H.; Miller, J.H.; Nichols, S.W.

    1982-08-01

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL.

  13. BIOLOGICAL IRRADIATION FACILITY

    DOEpatents

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  14. TACS Central Control Facility.

    DTIC Science & Technology

    1981-02-12

    Central Control Facility 6 3. System Management Data Flow 7 B. Hardware Operating Environment 9 1. Computer 9 2. TACS Interfaces 9 3. Other Central...TERMINATION TIMING 131 Appendix C SYSTEM MANAGEMENT DATA FORMATS 135 Appendix D FIVE- AND NINE-SLOT SYSTEM IMPLEMENTATION DIFFERENCES 147 Appendix E...control burst management ) 26 2-7 Call Progress Messages 29 2-8 Flowchart of Assignment/Blockage Decision Process for All-Member Net Requests 30 2-9

  15. Microgravity Simulation Facility (MSF)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Zhang, Ye

    2016-01-01

    The Microgravity Simulator Facility (MSF) at Kennedy Space Center (KSC) was established to support visiting scientists for short duration studies utilizing a variety of microgravity simulator devices that negate the directional influence of the "g" vector (providing simulated conditions of micro or partial gravity). KSC gravity simulators can be accommodated within controlled environment chambers allowing investigators to customize and monitor environmental conditions such as temperature, humidity, CO2, and light exposure.

  16. Facility decontamination technology workshop

    SciTech Connect

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  17. NEP facilities (LeRC)

    NASA Technical Reports Server (NTRS)

    Vetrone, Robert H.

    1993-01-01

    The topics are presented in viewgraph form and include the following: the Electric Propulsion Research Building (no. 16) the Electric Power Laboratory (BLDG. 301); the Tank 6 Vacuum Facility; and test facilities for electric propulsion and LeRC.

  18. Robot Serviced Space Facility

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R. (Inventor)

    1992-01-01

    A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.

  19. The National Ignition Facility

    SciTech Connect

    Miller, G H; Moses, E I; Wuest, C R

    2004-02-06

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter-diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5-ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance, and results from recent laser commissioning shots. We follow this with a discussion of NIF's high-energy-density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

  20. Hot Hydrogen Test Facility

    SciTech Connect

    W. David Swank

    2007-02-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  1. Medical Image Analysis Facility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  2. Hot Hydrogen Test Facility

    SciTech Connect

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-30

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 deg. C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  3. The Francium facility at TRIUMF

    NASA Astrophysics Data System (ADS)

    Aubin, S.; Behr, J. A.; Chen, G.; Collister, R.; Flambaum, V. V.; Gomez, E.; Gwinner, G.; Jackson, K. P.; Melconian, D.; Orozco, L. A.; Pearson, M. R.; Ruiz, M. C.; Sheng, D.; Shin, Y. H.; Sprouse, G. D.; Tandecki, M.; Zhang, J.; Zhao, Y.

    2013-04-01

    We present the current status of the Francium Trapping Facility at ISAC at TRIUMF. The facility will enable future experiments on the weak interaction with measurements of atomic parity non-conservation laser-cooled samples of artificially produced francium. These experiments require a precisely controlled environment, which the facility is designed to provide. The facility has been constructed and is being prepared for a series of commissioning runs.

  4. A3 Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Dulreix, Lionel J.

    2009-01-01

    This slide presentation shows drawings, diagrams and photographs of the A3 Altitude Test Facility. It includes a review of the A3 Facility requirements, and drawings of the various sections of the facility including Engine Deck and Superstructure, Test Cell and Thrust Takeout, Structure and Altitude Support Systems, Chemical Steam generators, and the subscale diffuser. There are also pictures of the construction site, and the facility under construction. A Diagram of the A3 Steam system schematic is also shown

  5. Indoor Lighting Facilities

    NASA Astrophysics Data System (ADS)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  6. School Nutrition Facility Planning Guide.

    ERIC Educational Resources Information Center

    Pannell, Dorothy VanEgmond

    This publication is designed to help superintendents, local facilities coordinators, and food-service directors in planning the remodeling of an outdated food-service facility or the building of a new one. The introduction describes the roles of the local facility coordinator, the local child-nutrition director, the architect, the food-service…

  7. Physical Recreation Facilities. A Report.

    ERIC Educational Resources Information Center

    Educational Facilities Labs., Inc., New York, NY.

    New goals in physical education are leading instructors to seek new kinds of athletic facilities. School administrators are in the process of rethinking the classical facilities, i.e., the box-shaped gymnasium -- facilities designed without sensitivity to the students' desire to participate in the games they can continue to play after graduation.…

  8. DTRA National Ignition Facility (NIF)

    DTIC Science & Technology

    2009-01-16

    DTRA National Ignition Facility ( NIF ) ___________________________________ JSR-08- 800 September 29...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DTRA National Ignition Facility ( NIF ) 5b. GRANT NUMBER 5c...only). 13. SUPPLEMENTARY NOTES 14. ABSTRACT JASON was asked to address the utility of the National Ignition Facility ( NIF ) to the Defense Threat

  9. Workforce Development Education Facilities Planner.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    This publication, a supplement to the "North Carolina Public Schools Facilities Guidelines," describes work force development education programs and facilities. It is intended as a resource that can assist design professionals in planning facilities that meet the evolving needs of public schools in the state. The first part of the guide…

  10. Industrial Arts Facility Planning Guide.

    ERIC Educational Resources Information Center

    Hughes, Thomas A., Jr.; And Others

    This guidebook presents facility guidelines to aid the school planner in determining appropriate facilities for a model curriculum. The first of four major sections, The Intent of Industrial Arts, discusses the mission and goals, instructional objectives, function of industrial arts, and the model curriculum. Section 2 focuses on facilities for…

  11. Education Funding for Residential Facilities.

    ERIC Educational Resources Information Center

    Ohio State Legislative Office of Education Oversight, Columbus.

    About 167 residential facilities in Ohio serve approximately 7,000 youth on any given day. Youth are placed in residential facilities because they have committed a crime or have behavioral problems. An "education provider" operates an on-grounds school in most facilities. Because of ongoing concerns about education funding for youth in…

  12. Facilities removal working group

    SciTech Connect

    1997-03-01

    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  13. The assess facility descriptor module

    SciTech Connect

    Jordan, S.E.; Winblad, A.; Key, B.; Walker, S.; Renis, T.; Saleh, R.

    1989-01-01

    The Facility Descriptor (Facility) module is part of the Analytic System and Software for Evaluating Safeguards and Security (ASSESS). Facility is the foundational software application in the ASSESS system for modelling a nuclear facility's safeguards and security system to determine the effectiveness against theft of special nuclear material. The Facility module provides the tools for an analyst to define a complete description of a facility's physical protection system which can then be used by other ASSESS software modules to determine vulnerability to a spectrum of insider and outsider threats. The analyst can enter a comprehensive description of the protection system layout including all secured areas, target locations, and detailed safeguards specifications. An extensive safeguard component catalog provides the reference data for calculating delay and detection performance. Multiple target locations within the same physical area may be specified, and the facility may be defined for two different operational states such as dayshift and nightshift. 6 refs., 5 figs.

  14. Thermal Simulation Facilities Handbook.

    DTIC Science & Technology

    1983-02-01

    DOE tests is not expected. 4.4.3 Costs The cost of a test at the CRTF solar furnace will be based on the time of the manpower, materials, and utilities ...fires, JP-4 fuel fires, and con- centrated solar radiation. The facility has several different types of sources for thermal radiant energy . The two... optical axis. Normally the solar image can be stablilzed to within *0.1 inch (25 mm) of the optical axis. Winds in excess of 15 miles per hour (7 cm/sec

  15. 310 Facility chemical specifications

    SciTech Connect

    Hagerty, K.J.

    1997-05-21

    The 300 area Treated Effluent Disposal Facility (TEDF) was designed and built to treat the waste water from the 300 area process sewer system. Several treatment technologies are employed to remove the trace quantities of contaminants in the stream, including iron coprecipitation, clarification, filtration, ion exchange, and ultra violet light/hydrogen peroxide oxidation of organics. The chemicals that will be utilized in the treatment process are hydrogen peroxide, sulfuric acid, sodium hydroxide, and ferric chloride. This document annotates the required chemical characteristics of TEDF bulk chemicals as well as the criteria that were used to establish these criteria. The chemical specifications in appendix B are generated from this information.

  16. Constellation Training Facility Support

    NASA Technical Reports Server (NTRS)

    Flores, Jose M.

    2008-01-01

    The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The Cx

  17. The LERIX User Facility

    SciTech Connect

    Seidler, G.T.; Fister, T.T.; Cross, J.O.; Nagle, K.P.

    2007-01-18

    We describe the lower energy resolution inelastic x-ray scattering (LERIX) spectrometer, located at sector 20 PNC-XOR of the Advanced Photon Source. This instrument, which is now available to general users, is the first user facility optimized for high throughput measurements of momentum transfer dependent nonresonant inelastic x-ray scattering (NRIXS) from the core shell electrons of relatively light elements or the less-tightly bound electrons of heavier elements. By means of example, we present new NRIXS measurements of the near-edge structure for the L-edges of Al and the K-edge in Si.

  18. Large coil test facility

    SciTech Connect

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system.

  19. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities...

  20. 42 CFR 483.374 - Facility reporting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for the Use of Restraint or Seclusion in Psychiatric Residential Treatment Facilities Providing Inpatient Psychiatric Services for Individuals Under Age 21 § 483.374 Facility reporting. (a) Attestation of facility compliance. Each psychiatric residential treatment facility that provides inpatient...

  1. 42 CFR 483.374 - Facility reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for the Use of Restraint or Seclusion in Psychiatric Residential Treatment Facilities Providing Inpatient Psychiatric Services for Individuals Under Age 21 § 483.374 Facility reporting. (a) Attestation of facility compliance. Each psychiatric residential treatment facility that provides inpatient...

  2. 42 CFR 483.374 - Facility reporting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for the Use of Restraint or Seclusion in Psychiatric Residential Treatment Facilities Providing Inpatient Psychiatric Services for Individuals Under Age 21 § 483.374 Facility reporting. (a) Attestation of facility compliance. Each psychiatric residential treatment facility that provides inpatient...

  3. 42 CFR 483.374 - Facility reporting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for the Use of Restraint or Seclusion in Psychiatric Residential Treatment Facilities Providing Inpatient Psychiatric Services for Individuals Under Age 21 § 483.374 Facility reporting. (a) Attestation of facility compliance. Each psychiatric residential treatment facility that provides inpatient...

  4. 42 CFR 483.374 - Facility reporting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for the Use of Restraint or Seclusion in Psychiatric Residential Treatment Facilities Providing Inpatient Psychiatric Services for Individuals Under Age 21 § 483.374 Facility reporting. (a) Attestation of facility compliance. Each psychiatric residential treatment facility that provides inpatient...

  5. NVESD mine lane facility

    NASA Astrophysics Data System (ADS)

    Habersat, James D.; Marshall, Christopher; Maksymonko, George

    2003-09-01

    The NVESD Mine Lane Facility has recently undergone an extensive renovation. It now consists of an indoor, dry lane portion, a greenhouse portion with moisture-controlled lanes, a control room, and two outdoor lanes. The indoor structure contains six mine lanes, each approximately 2.5m (width) × 1.2m (depth) × 33m(length). These lanes contain six different soil types: magnetite/sand, silt, crusher run gravel (bluestone gravel), bank run gravel (tan gravel), red clay, and white sand. An automated trolley system is used for mounting the various mine detection systems and sensors under test. Data acquisition and data logging is fully automated. The greenhouse structure was added to provide moisture controlled lanes for measuring the effect of moisture on sensor effectiveness. A gantry type crane was installed to permit remotely controlled positioning of a sensor package over any portion of the greenhouse lanes at elevations from ground level up to 5m without shadowing the target area. The roof of the greenhouse is motorized, and can be rolled back to allow full solar loading. A control room overlooking the lanes is complete with recording and monitoring devices and contains controls to operate the trolleys. A facility overview is presented and typical results from recent data collection exercises are presented.

  6. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Rountree, Steven Derek

    2014-03-01

    The Kimballton Underground Research Facility (KURF) is an operating deep underground research facility with six active projects, and greater than 50 trained researchers. KURF is 30 minutes from the Virginia Tech (VT) campus in an operating limestone mine with drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' × 20 +' the current lab is 35' × 22' × 100'), and 1700' of overburden (1450m.w.e.). The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ~0.004 muons per square meter, per second, per steradian. The current users are funded by NSF, DOE, and NNSA. Current user group: 1) mini-LENS (VT, Louisiana State University, BNL); 2) Double Beta Decay to Excited States (Duke University); 3) HPGe Low-Background Screening (University of North Carolina (UNC), VT); 4) MALBEK (UNC); 5&6) Watchman - 5) Radionuclide Detector and 6) MARS detector (LLNL, SNL, UC-Davis, UC-Berkeley, UH, Hawaii Pacific, UC-Irvine, VT).

  7. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2011-10-01

    A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20' x 100'; the current lab is 35'x100'x22'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜ 0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program, and exciting plans for the future.

  8. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek; Vogelaar, R. Bruce

    2012-03-01

    A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20+'; the current lab is 35' x 22' x 100'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program and exciting potential for the future.

  9. FRACTURING FLUID CHARACTERIZATION FACILITY

    SciTech Connect

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  10. Variable gravity research facility

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Eight fourth-year engineering design students formed two teams to study methods of varying the perceived gravity level in a variable gravity research facility. A tether system and an arm system were the chosen topics. Both teams have produced and built scale models of their design. In addition, a three-credit Special Topics Course (Aviation 370) was formed, as the project offers an excellent opportunity to build a multi-disciplinary program around the initial conceptualization process. Fifty students were registered in the Special Topics course. Each week during a three hour class, a guest lecturer covered one or more of the many areas associated with the concept of a variable-gravity facility. The students formed small groups organized on a multi-disciplinary basis (there were twelve separate disciplines represented by one or more students) where they discussed among themselves the various issues involved. These groups also met outside class for three or more hours each week. During class each group presented oral reports on their findings during a one-hour general question and answer period.

  11. The ASTROCULTURE Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Research with plants in microgravity offers many exciting opportunities to gain new insights and could improve products on Earth ranging from crop production to fragrances and food flavorings. The ASTROCULTURE facility is a lead commercial facility for plant growth and plant research in microgravity and was developed by the Wisconsin Center for Space Automation and Robotics (WSCAR), a NASA Commercial Space Center. On STS-95 it will support research that could help improve crop development leading to plants that are more disease resistant or have a higher yield and provide data on the production of plant essential oils---oils that contain the essence of the plant and provide both fragrance and flavoring. On STS-95, a flowering plant will be grown in ASTROCULTURE and samples taken using a method developed by the industry partner for this investigation. On Earth, the samples will be analyzed by gas chromatography/mass spectrometry and the data used to evaluate both the production of fragrant oils in microgravity and in the development of one or more products. The ASTROCULTURE payload uses these pourous tubes with precise pressure sensing and control for fluid delivery to the plant root tray.

  12. The ASTROCULTURE Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Research with plants in microgravity offers many exciting opportunities to gain new insights and could improve products on Earth ranging from crop production to fragrances and food flavorings. The ASTROCULTURE facility is a lead commercial facility for plant growth and plant research in microgravity and was developed by the Wisconsin Center for Space Automation and Robotics (WSCAR), a NASA Commercial Space Center. On STS-95 it will support research that could help improve crop development leading to plants that are more disease resistant or have a higher yield and provide data on the production of plant essential oils---oils that contain the essence of the plant and provide both fragrance and flavoring. On STS-95, a flowering plant will be grown in ASTROCULTURE and samples taken using a method developed by the industry partner for this investigation. On Earth the samples will be analyzed by gas chromatography/mass spectrometry and the data used to evaluate both the production of fragrant oils in microgravity and in the development of one or more products.

  13. Geothermal energy conversion facility

    SciTech Connect

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  14. PUREX facility hazards assessment

    SciTech Connect

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  15. Studsvik Processing Facility Update

    SciTech Connect

    Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

    2003-02-25

    Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

  16. SPHERES National Lab Facility

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  17. The National Ignition Facility

    SciTech Connect

    Miller, G H

    2003-12-19

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10'' bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5 ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper discusses NIF's current and future experimental capability, plans for diagnostics, cryogenic target systems, specialized optics for experiments, and potential enhancements to NIF such as multi-color laser operation and high-energy short pulse operation.

  18. Succinonitrile Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Succinonitrile (SCN) Purification Facility provides succinonitrile and succinonitrile alloys to several NRA selected investigations for flight and ground research at various levels of purity. The purification process employed includes both distillation and zone refining. Once the appropriate purification process is completed, samples are characterized to determine the liquidus and/or solidus temperature, which is then related to sample purity. The lab has various methods for measuring these temperatures with accuracies in the milliKelvin to tenths of milliKelvin range. The ultra-pure SCN produced in our facility is indistinguishable from the standard material provided by NIST to well within the stated +/- 1.5mK of the NIST triple point cells. In addition to delivering material to various investigations, our current activities include process improvement, characterization of impurities and triple point cell design and development. The purification process is being evaluated for each of the four vendors to determine the efficacy of each purification step. We are also collecting samples of the remainder from distillation and zone refining for analysis of the constituent impurities. The large triple point cells developed will contain SCN with a melting point of 58.0642 C +/- 1.5mK for use as a calibration standard for Standard Platinum Resistance Thermometers (SPRTs).

  19. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    SciTech Connect

    Simiele, G.A.

    1994-09-29

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  20. Facility effluent monitoring plan for the fast flux test facility

    SciTech Connect

    Nickels, J M; Dahl, N R

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  1. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  2. Indoor Lighting Facilities

    NASA Astrophysics Data System (ADS)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high

  3. Tritium Emissions Reduction Facility

    SciTech Connect

    Wieneke, R.E.; Bowser, R.P.; Hedley, W.H.; Kissner, T.J.; Lamberger, P.H.; Morgan, F.G.; Van Patten, J.F.; Williams, M.A.

    1988-01-01

    The Tritium Emissions Reduction Facility (TERF) will be a system for the continuous processing of tritium containing gases collected from various operations at Mound. The basis of the system operation will be the oxidation of elemental hydrogen isotopes and organic molecules at elevated temperatures on precious metal catalyst beds, and the adsorption of the resulting oxide (water) on molecular sieve dryers. The TERF will be expected to handle from 400,000 to 1,000,000 curies of tritium per year in the process gas stream and release no more than 200 curies per year to the atmosphere. Consequently, the TERF will need to convert and capture tritium at low concentrations in gas efficiently and reliably. 5 refs., 2 figs.

  4. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  5. The Booster Applications Facility

    NASA Astrophysics Data System (ADS)

    Goodwin, David P.

    2001-02-01

    In support of the human exploration program, NASA is providing $33 million to the U.S. Department of Energy to construct a radiation simulator, known as the Booster Applications Facility (BAF). The BAF justification is briefly reviewed (e.g., to reduce the radiation risk uncertainties from its present factor of 4 to 15). The BAF beam specifications are provided, as are discussions of the BAF construction schedule and anticipated operating schedules (e.g., initial operation anticipated for October 1, 2002). A breakdown of the BAF construction costs is included and the operating costs are discussed (e.g., $5 to $6 million per year). The BAF laboratory layout and the various types of DOE support for the BAF are summarized, as are the peer reviews of the project. The characteristic parameters of the Alternating Gradient Synchrotron are also included. .

  6. Temperature dependent BRDF facility

    NASA Astrophysics Data System (ADS)

    Airola, Marc B.; Brown, Andrea M.; Hahn, Daniel V.; Thomas, Michael E.; Congdon, Elizabeth A.; Mehoke, Douglas S.

    2014-09-01

    Applications involving space based instrumentation and aerodynamically heated surfaces often require knowledge of the bi-directional reflectance distribution function (BRDF) of an exposed surface at high temperature. Addressing this need, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed a BRDF facility that features a multiple-port vacuum chamber, multiple laser sources covering the spectral range from the longwave infrared to the ultraviolet, imaging pyrometry and laser heated samples. Laser heating eliminates stray light that would otherwise be seen from a furnace and requires minimal sample support structure, allowing low thermal conduction loss to be obtained, which is especially important at high temperatures. The goal is to measure the BRDF of ceramic-coated surfaces at temperatures in excess of 1000°C in a low background environment. Most ceramic samples are near blackbody in the longwave infrared, thus pyrometry using a LWIR camera can be very effective and accurate.

  7. Space Communications Emulation Facility

    NASA Technical Reports Server (NTRS)

    Hill, Chante A.

    2004-01-01

    Establishing space communication between ground facilities and other satellites is a painstaking task that requires many precise calculations dealing with relay time, atmospheric conditions, and satellite positions, to name a few. The Space Communications Emulation Facility (SCEF) team here at NASA is developing a facility that will approximately emulate the conditions in space that impact space communication. The emulation facility is comprised of a 32 node distributed cluster of computers; each node representing a satellite or ground station. The objective of the satellites is to observe the topography of the Earth (water, vegetation, land, and ice) and relay this information back to the ground stations. Software originally designed by the University of Kansas, labeled the Emulation Manager, controls the interaction of the satellites and ground stations, as well as handling the recording of data. The Emulation Manager is installed on a Linux Operating System, employing both Java and C++ programming codes. The emulation scenarios are written in extensible Markup Language, XML. XML documents are designed to store, carry, and exchange data. With XML documents data can be exchanged between incompatible systems, which makes it ideal for this project because Linux, MAC and Windows Operating Systems are all used. Unfortunately, XML documents cannot display data like HTML documents. Therefore, the SCEF team uses XML Schema Definition (XSD) or just schema to describe the structure of an XML document. Schemas are very important because they have the capability to validate the correctness of data, define restrictions on data, define data formats, and convert data between different data types, among other things. At this time, in order for the Emulation Manager to open and run an XML emulation scenario file, the user must first establish a link between the schema file and the directory under which the XML scenario files are saved. This procedure takes place on the command

  8. Data Management Facility Operations Plan

    SciTech Connect

    Keck, Nicole N

    2014-06-30

    The Data Management Facility (DMF) is the data center that houses several critical Atmospheric Radiation Measurement (ARM) Climate Research Facility services, including first-level data processing for the ARM Mobile Facilities (AMFs), Eastern North Atlantic (ENA), North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) sites, as well as Value-Added Product (VAP) processing, development systems, and other network services.

  9. Regulatory facility guide for Ohio

    SciTech Connect

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O.; Rymer, A.C.

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  10. National Icing Facilities Requirements Investigation.

    DTIC Science & Technology

    1981-06-01

    managing and funding the icing facilities requirements. 1-5 2.0 INTRODUCTION 2.1 BACKGROUND AND OBJECTIVES This analytical investigation of National Icing... conservative , the FAA is reexamining the criteria. Applicability of the Appendix C Envelope Through the 1990s The ensuing years since the definition of the...the development and construction schedule of the proposed facility. 3) Provide the additional funding required to design a facility with a new

  11. The QUASAR facility

    NASA Astrophysics Data System (ADS)

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  12. Safe design of healthcare facilities

    PubMed Central

    Reiling, J

    2006-01-01

    The physical environment has a significant impact on health and safety; however, hospitals have not been designed with the explicit goal of enhancing patient safety through facility design. In April 2002, St Joseph's Community Hospital of West Bend, a member of SynergyHealth, brought together leaders in healthcare and systems engineering to develop a set of safety‐driven facility design recommendations and principles that would guide the design of a new hospital facility focused on patient safety. By introducing safety‐driven innovations into the facility design process, environmental designers and healthcare leaders will be able to make significant contributions to patient safety. PMID:17142606

  13. Making of the NSTX Facility

    SciTech Connect

    C. Neumeyer; M. Ono; S.M. Kaye; Y.-K.M. Peng; et al

    1999-11-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

  14. ROYAL PALMLINED WALK TO FACILITY 1041 (QUARTERS J) WITH FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ROYAL PALM-LINED WALK TO FACILITY 1041 (QUARTERS J) WITH FACILITY 1040 (QUARTERS 1) TO LEFT. TAKEN AT CORNER OF HALE ALII AVENUE AND EIGHTH STREET. VIEW FACING EAST. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hale Alii, Hale Alii Avenue, Eighth Street, & Avenue D, Pearl City, Honolulu County, HI

  15. National Ignition Facility system design requirements conventional facilities SDR001

    SciTech Connect

    Hands, J.

    1996-04-09

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions.

  16. HANGARS, WAREHOUSE (FACILITY NO. 410), AND BARRACKS (FACILITY NO. 424), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HANGARS, WAREHOUSE (FACILITY NO. 410), AND BARRACKS (FACILITY NO. 424), LOOKING EAST FROM RESERVOIR HILL. (Part 1 of a 3 view panorama; see also CA-2398-5 and CA-2398-6.) - Hamilton Field, East of Nave Drive, Novato, Marin County, CA

  17. Development of an ACP facility

    SciTech Connect

    Gil-Sung You; Won-Myung Choung; Jeong-Hoe Ku; il-Je Cho; Dong-Hak Kook; Kie-Chan Kwon; Eun-Pyo Lee; Ji-Sup Yoon; Seong-Won Park; Won-Kyung Lee

    2007-07-01

    KAERI has been developing an advanced spent fuel conditioning process (ACP). The ACP facility for a process demonstration consists of two air-sealed type hot cells. The safety analysis results showed that the facility was designed safely. The relevant integrated performance tests were also carried out successfully. (authors)

  18. Facilities Spending Criticized as Uneven

    ERIC Educational Resources Information Center

    Greifner, Laura

    2006-01-01

    This article features a report on states and school districts spending almost $600 billion on building and renovating schools from 1995 to 2004, an amount that far exceed earlier expectations. The report also emphasized the uneven facilities spending between minority and affluent districts. Besides receiving the least money for facilities, the…

  19. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  20. Accreditation for Indoor Climbing Facilities.

    ERIC Educational Resources Information Center

    Mayfield, Peter

    To ensure that the rapidly growing climbing gym industry maintains the excellent safety record established so far, the Climbing Gym Association (CGA) has developed the Peer Review and Accreditation Program, a process of review between qualified and experienced CGA reviewers and a climbing facility operator to assess the facility's risk management…

  1. State School Facility Programs Overview.

    ERIC Educational Resources Information Center

    California State Dept. of General Services, Sacramento. Office of Public School Construction.

    This overview examines California's various State Allocation Board's funding programs for the construction, modernization, and maintenance of local school facilities. Funding information is provided for each program as are explanations of the school facility program construction process and the lease purchase program. The organizational chart for…

  2. SGSLR Testing Facility at GGAO

    NASA Technical Reports Server (NTRS)

    Hoffman, Evan

    2016-01-01

    This document describes the SGSLR Test Facility at Goddards Geophysical and Astronomical Observatory (NASA Goddard area 200) and its features are described at a high level for users. This is the facility that the Contractor will be required to use for the Testing and Verification of all SGSLR systems.

  3. Facility of Merit Winners, 1997.

    ERIC Educational Resources Information Center

    Schmid, Sue; Sherman, Rachel M.

    1997-01-01

    Presents 10 award-winning college, municipal, and hospital wellness facilities that have been judged to illustrate outstanding standards for quality in planning, design, financing, and operations. Each entry contains photos and information on costs, architectural firms involved, and major facility components. (GR)

  4. Big Explosives Experimental Facility - BEEF

    SciTech Connect

    2014-10-31

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  5. Big Explosives Experimental Facility - BEEF

    ScienceCinema

    None

    2016-07-12

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  6. Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  7. Energy Systems Integration Facility Overview

    ScienceCinema

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2016-07-12

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  8. Energy Systems Integration Facility Overview

    SciTech Connect

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  9. Designing a Distance Learning Facility.

    ERIC Educational Resources Information Center

    Lambert, Michael P.

    1998-01-01

    Details the design of a distance-learning facility through analysis of its functions, paper-handling requirements, and current and future communications-technology needs. It also lists special features the facility should have, including up-to-date wiring capacities for telecommunications, uplink and downlink capabilities to satellites, and…

  10. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  11. Energy Sourcebook for Educational Facilities.

    ERIC Educational Resources Information Center

    Council of Educational Facility Planners, Columbus, OH.

    The Council of Educational Facility Planners, International (CEFP/I) has assembled an authoritative and comprehensive sourcebook for the design and management of energy efficient educational facilities. Information that bridges the gap between scientific energy theory/research/technology and the needs of the educational community is published in…

  12. Empowering Facilities Teams through Technology

    ERIC Educational Resources Information Center

    Cormier, Scott

    2013-01-01

    Facilities departments at colleges and universities are facing the same challenge: how not to do just the most projects, but also the right projects with the limited funds they are given. In order to make the best decisions, they need more control over the capital planning process, which requires accurate, current facility condition data. Each…

  13. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  14. Designing Facilities for Collaborative Operations

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  15. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  16. NASA Critical Facilities Maintenance Assessment

    NASA Technical Reports Server (NTRS)

    Oberhettinger, David J.

    2006-01-01

    Critical Facilities Maintenance Assessment (CFMA) was first implemented by NASA following the March 2000 overtest of the High Energy Solar Spectroscopic Imager (HESSI) spacecraft. A sine burst dynamic test using a 40 year old shaker failed. Mechanical binding/slippage of the slip table imparted 10 times the planned force to the test article. There was major structural damage to HESSI. The mechanical "health" of the shaker had not been assessed and tracked to assure the test equipment was in good working order. Similar incidents have occurred at NASA facilities due to inadequate maintenance (e.g., rainwater from a leaky roof contaminated an assembly facility that housed a spacecraft). The HESSI incident alerted NASA to the urgent need to identify inadequacies in ground facility readiness and maintenance practices. The consequences of failures of ground facilities that service these NASA systems are severe due to the high unit value of NASA products.

  17. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  18. Canastota Renewable Energy Facility Project

    SciTech Connect

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  19. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2004-04-30

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  20. Power Systems Development Facility

    SciTech Connect

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  1. ORNL irradiation creep facility

    SciTech Connect

    Reiley, T.C.; Auble, R.L.; Beckers, R.M.; Bloom, E.E.; Duncan, M.G.; Saltmarsh, M.J.; Shannon, R.H.

    1980-09-01

    A machine was developed at ORNL to measure the rates of elongation observed under irradiation in stressed materials. The source of radiation is a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). This choice allows experiments to be performed which simulate the effects of fast neutrons. A brief review of irradiation creep and experimental constraints associated with each measurement technique is given. Factors are presented which lead to the experimental choices made for the Irradiation Creep Facility (ICF). The ICF consists of a helium-filled chamber which houses a high-precision mechanical testing device. The specimen to be tested must be thermally stabilized with respect to the temperature fluctuations imposed by the particle beam which passes through the specimen. Electrical resistance of the specimen is the temperature control parameter chosen. Very high precision in length measurement and temperature control are required to detect the small elongation rates relevant to irradiation creep in the test periods available (approx. 1 day). The apparatus components and features required for the above are presented in some detail, along with the experimental procedures. The damage processes associated with light ions are discussed and displacement rates are calculated. Recent irradiation creep results are given, demonstrating the suitability of the apparatus for high resolution experiments. Also discussed is the suitability of the ICF for making high precision thermal creep measurements.

  2. PFBC HGCU Test Facility

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  3. Java Metadata Facility

    SciTech Connect

    Buttler, D J

    2008-03-06

    The Java Metadata Facility is introduced by Java Specification Request (JSR) 175 [1], and incorporated into the Java language specification [2] in version 1.5 of the language. The specification allows annotations on Java program elements: classes, interfaces, methods, and fields. Annotations give programmers a uniform way to add metadata to program elements that can be used by code checkers, code generators, or other compile-time or runtime components. Annotations are defined by annotation types. These are defined the same way as interfaces, but with the symbol {at} preceding the interface keyword. There are additional restrictions on defining annotation types: (1) They cannot be generic; (2) They cannot extend other annotation types or interfaces; (3) Methods cannot have any parameters; (4) Methods cannot have type parameters; (5) Methods cannot throw exceptions; and (6) The return type of methods of an annotation type must be a primitive, a String, a Class, an annotation type, or an array, where the type of the array is restricted to one of the four allowed types. See [2] for additional restrictions and syntax. The methods of an annotation type define the elements that may be used to parameterize the annotation in code. Annotation types may have default values for any of its elements. For example, an annotation that specifies a defect report could initialize an element defining the defect outcome submitted. Annotations may also have zero elements. This could be used to indicate serializability for a class (as opposed to the current Serializability interface).

  4. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  5. Facility effluent monitoring plan for the tank farm facility

    SciTech Connect

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  6. 10 CFR 75.15 - Facility attachments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Facility attachments. 75.15 Section 75.15 Energy NUCLEAR... Accounting and Control for Facilities § 75.15 Facility attachments. (a) The Facility Attachment or Transitional Facility Attachment will document the determinations referred to in § 75.10 and will contain...

  7. 33 CFR 125.07 - Waterfront facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Waterfront facility. 125.07...) WATERFRONT FACILITIES IDENTIFICATION CREDENTIALS FOR PERSONS REQUIRING ACCESS TO WATERFRONT FACILITIES OR VESSELS § 125.07 Waterfront facility. The term waterfront facility as used in this subchapter, means...

  8. 10 CFR 611.206 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 611.206 Section 611.206 Energy... PROGRAM Facility/Funding Awards § 611.206 Existing facilities. The Secretary shall, in making awards to those manufacturers that have existing facilities, give priority to those facilities that are oldest...

  9. 18 CFR 1317.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Comparable facilities... facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to such facilities...

  10. 33 CFR 154.1216 - Facility classification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that handle, store, or transport animal fats or vegetable oils as “substantial harm” facilities because they... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP...

  11. 33 CFR 154.1216 - Facility classification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that handle, store, or transport animal fats or vegetable oils as “substantial harm” facilities because they... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP...

  12. 33 CFR 154.1216 - Facility classification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that handle, store, or transport animal fats or vegetable oils as “substantial harm” facilities because they... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP...

  13. 33 CFR 154.1216 - Facility classification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that handle, store, or transport animal fats or vegetable oils as “substantial harm” facilities because they... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP...

  14. 33 CFR 154.1216 - Facility classification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that handle, store, or transport animal fats or vegetable oils as “substantial harm” facilities because they... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP...

  15. 340 waste handling facility interim safety basis

    SciTech Connect

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  16. SCRIT electron scattering facility

    NASA Astrophysics Data System (ADS)

    Tsukada, Kyo

    2014-09-01

    Electron scattering is the most powerful and reliable tool to investigate the nuclear structure because this reaction has the great advantage that the electron is structureless particle and its interaction is well described by the quantum electrodynamics. As is well known, the charge density distributions of many stable nuclei were determined by elastic electron scattering. Recently, many efforts for studies of unstable nuclei have been made, and the precise information of the structure of unstabe nuclei have been strongly desired. However, due to the difficulty of preparing a short-lived unstable nuclear target, there is no electron scattering on unstable nuclei with a few important exceptions, such as on 3H, 14C and so on. Under these circumstances, we have established a completely new target-forming technique, namely SCRIT (Self-Confining Radioactive isotope Ion Target) which makes electron scattering on unstable nuclei possible. A Dedicated electron scattering facility at RIKEN consists of an electron accelerator with the SCRIT system, an ERIS (Electron-beam-driven RI separator for SCRIT), and a WiSES (Window-frame Spectrometer for Electron Scattering). Feasibility test of the SCRIT and ERIS system have been successfully carried out using the stable nuclei, and more than 1026 [cm-2s-1] luminosity was already achieved. Furthermore, 132Sn, which is one of the important target at the beginning of this project, was also successfully separated in the ERIS. The WiSES with momentum resolution of Δp/p ~ 10-3 consisting of the wide acceptance dipole magnet, two set of drift chambers together with trigger scintillation hodoscope is under construction. Electron scattering on unstable nuclei will start within a year. In this talk, the introduction of our project and the progress of the preparation status will be presented.

  17. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  18. 340 Facility maintenance implementation plan

    SciTech Connect

    1995-03-01

    This Maintenance Implementation Plan (MIP) has been developed for maintenance functions associated with the 340 Facility. This plan is developed from the guidelines presented by Department of Energy (DOE) Order 4330.4B, Maintenance Management Program (DOE 1994), Chapter II. The objective of this plan is to provide baseline information for establishing and identifying Westinghouse Hanford Company (WHC) conformance programs and policies applicable to implementation of DOE order 4330.4B guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at the 340 Facility. Primary responsibility for the performance and oversight of maintenance activities at the 340 Facility resides with Westinghouse Hanford Company (WHC). Maintenance at the 340 Facility is performed by ICF-Kaiser Hanford (ICF-KH) South Programmatic Services crafts persons. This 340 Facility MIP provides interface requirements and responsibilities as they apply specifically to the 340 Facility. This document provides an implementation schedule which has been developed for items considered to be deficient or in need of improvement. The discussion sections, as applied to implementation at the 340 Facility, have been developed from a review of programs and practices utilizing the graded approach. Biennial review and additional reviews are conducted as significant programmatic and mission changes are made. This document is revised as necessary to maintain compliance with DOE requirements.

  19. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    SciTech Connect

    Greager, E.M.

    1997-12-11

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

  20. Facility Effluent Monitoring Plan for the uranium trioxide facility

    SciTech Connect

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  1. Facility effluent monitoring plan for the plutonium uranium extraction facility

    SciTech Connect

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  2. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  3. High-Average Power Facilities

    SciTech Connect

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  4. User's guide to DOE facilities

    SciTech Connect

    Not Available

    1984-01-01

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  5. Structural dynamics verification facility study

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.

    1981-01-01

    The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.

  6. Lightning Protection for Explosive Facilities

    SciTech Connect

    Ong, M

    2001-12-01

    Lawrence Livermore National Laboratory funds construction of lightning protection systems to protect explosive processing and storage facilities. This paper provides an intuitive understanding of the lighting risks and types of lightning protection available. Managers can use this information to decide if limited funds should be spent constructing a lightning protection system for their own facilities. This paper answers the following questions: (1) Why do you need lightning protection systems? (2) How do lightning protection systems work? and (3) Why are there no documented cases of lightning problems at existing explosive facilities?

  7. Arctic production/terminal facility

    SciTech Connect

    Williams, T.E.

    1988-11-22

    This patent describes an offshore facility for use in a body of water in an arctic area, the facility comprising: a main structure having a front and a back and a base adapted to rest on the bottom of the body of water; and a marine slip formed integral within the main structure, the slip opening through the back of the structure and extending inwardly into the main structure and adapted to receive and moor a vessel therein whereby the vessel shall be completely inside the periphery of the facility when in a moored position within the slip.

  8. Window Observational Research Facility (WORF)

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joseph; Sledd, Annette

    2007-01-01

    This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.

  9. Facility effluent monitoring plan for 242-A evaporator facility

    SciTech Connect

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  10. The Zwicky Transient Facility

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shrinivas R.

    2016-01-01

    The Zwicky Transient Facility (ZTF) has been designed with a singular focus: a systematic exploration of the night sky at a magnitude level well suited for spectral classification and follow up with the existing class of 4-m to 10-m class telescopes. ZTF is the successor to the Palomar Transient Factory (PTF). The discovery engine for ZTF is a 47 square degree camera (realized through 16 e2V monolithic CCDs) that fills the entire focal plane of the 48-inch Oschin telescope of the Palomar Observatory. Single 30-s epoch sensitivity is about 20.5 in g and R bands. The Infarared Processing & Analysis Center (IPAC) is the data center for ZTF. ZTF is a public-private partnership with equal contributions from a consortium of world-wide partners and an NSF MSIP grant. Forty percent of ZTF time is set aside for two major community surveys: a 3-day cadence survey of high latitudes (to mimic LSST) and a time domain survey of the entire Northern Galactic plane. We expect first light in February 2017 and begin a 3-year survey starting summer of 2017. The first year will be spent on building up deep reference images of the sky (a must for transient surveys). During the second year IPAC will deliver near archival quality photometric products within 12 hours of observations. By comparison to reference images photometric alerts will be sent out. Year 3 will see the near real-time release of image differencing products. A Community Science Advisory Committee (CSAC), chaired by S. Ridgway (NOAO), has been set up to both advise the PI and to ensure that the US community's interests are well served. Astronomers interested in getting a head start on ZTF may wish to peruse the data releases from PTF. Young people (or young at heart) may wish to attend the annual summer school on PTF/ZTF (August, Caltech campus). The Principal Investigator (PI) for the project is S. Kulkarni and the Project Scientist is Eric Bellm.For further details please consult http://www.ptf.caltech.edu/ztf

  11. 20 CFR 638.307 - Facility surveys.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Facility surveys. 638.307 Section 638.307....307 Facility surveys. The Job Corps Director shall issue procedures to conduct periodic facility surveys of centers....

  12. 20 CFR 638.307 - Facility surveys.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Facility surveys. 638.307 Section 638.307....307 Facility surveys. The Job Corps Director shall issue procedures to conduct periodic facility surveys of centers....

  13. 20 CFR 638.307 - Facility surveys.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Facility surveys. 638.307 Section 638.307....307 Facility surveys. The Job Corps Director shall issue procedures to conduct periodic facility surveys of centers....

  14. 48 CFR 970.3770 - Facilities management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management....

  15. 48 CFR 970.3770 - Facilities management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management....

  16. 48 CFR 970.3770 - Facilities management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management....

  17. 48 CFR 970.3770 - Facilities management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management....

  18. 48 CFR 970.3770 - Facilities management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management....

  19. Skilled nursing and rehabilitation facilities - choosing

    MedlinePlus

    ... ency/patientinstructions/000436.htm Skilled nursing and rehabilitation facilities - choosing To use the sharing features on this ... your stay at the facility. Choosing the Right Facility for you It is always a good idea ...

  20. 9 CFR 3.125 - Facilities, general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Mammals Facilities and Operating Standards § 3.125 Facilities, general. (a) Structural strength. The facility must be constructed of such material and of such strength as appropriate for the animals...

  1. Argonne's new Wakefield Test Facility

    SciTech Connect

    Simpson, J.D.

    1992-07-20

    The first phase of a high current, short bunch length electron beam research facility, the AWA, is near completion at Argonne. At the heart of the facility is a photocathode based electron gun and accelerating sections designed to deliver 20 MeV pulses with up to 100 nC per pulse and with pulse lengths of approximately 15 ps (fw). Using a technique similar to that originated at Argonne's AATF facility, a separate weak probe pulse can be generated and used to diagnose wake effects produced by the intense pulses. Initial planned experiments include studies of plasma wakefields and dielectric wakefield devices, and expect to demonstrate large, useful accelerating gradients (> 100 MeV/m). Later phases of the facility will increase the drive bunch energy to more than 100 MeV to enable acceleration experiments up to the GeV range. Specifications, design details, and commissioning progress are presented.

  2. Hanford Facility RCRA permit handbook

    SciTech Connect

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  3. Disaster Management and Educational Facilities.

    ERIC Educational Resources Information Center

    Kenny, Grace

    2002-01-01

    Summarizes discussions from a seminar focusing on earthquakes and educational facilities, including findings related to educational buildings; partnerships; training; standards, regulations, and procedures; finance and legislation; and research and support. (EV)

  4. Production Facility SCADA Design Report

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Baily, Scott A.; Woloshun, Keith Albert; Wheat, Robert Mitchell Jr.

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  5. Experimenting with Science Facility Design.

    ERIC Educational Resources Information Center

    Butterfield, Eric

    1999-01-01

    Discusses the modern school science facility and how computers and teaching methods are changing their design. Issues include power, lighting, and space requirements; funding for planning; architect assessment; materials requirements for work surfaces; and classroom flexibility. (GR)

  6. Regulatory Facility Guide for Tennessee

    SciTech Connect

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O.; Rymer, A.C.

    1994-02-28

    This guide provides detailed compilations of international, federal, and state transportation related regulations applicable to shipments originating at or destined to Tennessee facilities. Information on preferred routes is also given.

  7. Facility Planning for Technology Implementation.

    ERIC Educational Resources Information Center

    Ross, Tweed W.; Stewart, G. Kent

    1993-01-01

    When planning new school buildings or modifications to existing structures, checking facility planning in relation to technology planning is critical. Areas requiring serious attention include space, electricity, lighting, security, furnishings, shielding, and acoustics. (MLF)

  8. High Pressure Industrial Water Facility

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  9. Canister Transfer Facility Criticality Calculations

    SciTech Connect

    J.E. Monroe-Rammsy

    2000-10-13

    The objective of this calculation is to evaluate the criticality risk in the surface facility for design basis events (DBE) involving Department of Energy (DOE) Spent Nuclear Fuel (SNF) standardized canisters (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 2000a). Since some of the canisters will be stored in the surface facility before they are loaded in the waste package (WP), this calculation supports the demonstration of concept viability related to the Surface Facility environment. The scope of this calculation is limited to the consideration of three DOE SNF fuels, specifically Enrico Fermi SNF, Training Research Isotope General Atomic (TRIGA) SNF, and Mixed Oxide (MOX) Fast Flux Test Facility (FFTF) SNF.

  10. 47 CFR 4.5 - Definitions of outage, special offices and facilities, and 911 special facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... facilities, and 911 special facilities. 4.5 Section 4.5 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Definitions of outage, special offices and facilities, and 911 special facilities. (a) Outage is defined as a... government facilities.” 911 special facilities are addressed separately in paragraph (e) of this section....

  11. Thermal energy storage test facility

    NASA Technical Reports Server (NTRS)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  12. Rocket Altitude Test Facilities Register

    DTIC Science & Technology

    1987-03-01

    Classification of Document UNCLASSIFIED 5. Originator Advisory Group for Aerospace Research and Development North Atlantic Treaty Organization...Emphasis was put on facilities capable of performing research and development tests. This AGARDograph was prepared at the request of the Propulsion... RESEARCH & DEVELOPMENT 7RUEANCELLE 92200 NEUILLY SUR SEINE FRANCE AGARDo^raph N0^97 , Rocket Altitude Test Facilities Register /^ri c^ris

  13. Supporting NASA Facilities Through GIS

    NASA Technical Reports Server (NTRS)

    Ingham, Mary E.

    2000-01-01

    The NASA GIS Team supports NASA facilities and partners in the analysis of spatial data. Geographic Information System (G[S) is an integration of computer hardware, software, and personnel linking topographic, demographic, utility, facility, image, and other geo-referenced data. The system provides a graphic interface to relational databases and supports decision making processes such as planning, design, maintenance and repair, and emergency response.

  14. Interactive Astronomical Data Analysis Facility

    NASA Technical Reports Server (NTRS)

    Klinglesmith, D. A., III

    1980-01-01

    A description is given of the Interactive Astronomical Data Analysis Facility (IADAF) which performs interactive analysis of astronomical data for resident and visiting scientists. The facilities include a Grant measuring engine, a PDS 1010A microdensitometer, a COMTAL image display system and a PDP 11/40 computer system. Both hardware and software systems are examined, including a description of thirteen overlay programs. Some uses of the IADAF are indicated.

  15. The Generic Data Capture Facility

    NASA Technical Reports Server (NTRS)

    Connell, Edward B.; Barnes, William P.; Stallings, William H.

    1987-01-01

    The Generic Data Capture Facility, which can provide data capture support for a variety of different types of spacecraft while enabling operations costs to be carefully controlled, is discussed. The data capture functions, data protection, isolation of users from data acquisition problems, data reconstruction, and quality and accounting are addressed. The TDM and packet data formats utilized by the system are described, and the development of generic facilities is considered.

  16. 14 CFR 1251.301 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; assignment of aides to beneficiaries; home visits; delivery of health, welfare, or other social services at alternate accessible sites; alteration of existing facilities and construction of new facilities...

  17. 10 CFR 1040.72 - Existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to beneficiaries, home visits, delivery of health, welfare, or other social services at alternate accessible sites, alteration of existing facilities and construction of new facilities in conformance...

  18. 10 CFR 1040.72 - Existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to beneficiaries, home visits, delivery of health, welfare, or other social services at alternate accessible sites, alteration of existing facilities and construction of new facilities in conformance...

  19. 14 CFR 1251.301 - Existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; assignment of aides to beneficiaries; home visits; delivery of health, welfare, or other social services at alternate accessible sites; alteration of existing facilities and construction of new facilities...

  20. 10 CFR 1040.72 - Existing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to beneficiaries, home visits, delivery of health, welfare, or other social services at alternate accessible sites, alteration of existing facilities and construction of new facilities in conformance...

  1. 10 CFR 1040.72 - Existing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to beneficiaries, home visits, delivery of health, welfare, or other social services at alternate accessible sites, alteration of existing facilities and construction of new facilities in conformance...

  2. Oil Pollution Act (OPA) and Federal Facilities

    EPA Pesticide Factsheets

    The Oil Pollution Prevention regulation sets forth requirements for prevention of, preparedness for, and response to oil discharges at specific non-transportation-related facilities, including federal facilities.

  3. Site maps and facilities listings

    SciTech Connect

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  4. Optimize facility-siting evaluations

    SciTech Connect

    Wallace, S.J.; Hunter, B.L. )

    1994-05-01

    Case histories show how to combine hazard-evaluation tools that effectively assess facility siting. Depending on the complexity of the process and equipment, more than one tool and hazard analysis method (HAZOP, FMEA, etc.) may be needed. Operating facilities must use all possible resources such as checklists, plot plans/elevation drawings, models, tours, etc., when performing a process hazard analysis (PHA). More importantly, the facility-siting evaluation techniques must be cost-effective, user friendly and results oriented. Facility siting, mandated by federal regulation (OSHA 1910.119), calls for a how to methodology. Because it is an interpretation of risk due to location, facility siting has no single correct method. Operating companies must equip their PHA teams with an optimum combination of hazard-evaluation methods that address actual process consequences and their effects on worker safety. This paper discusses the use of these resources in hazard analysis, then illustrates the methods with several case histories from a refinery, a papermill, and a manufacturing facility.

  5. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam

  6. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  7. EPA Facility Registry Service (FRS): Facility Interests Dataset

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  8. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  9. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  10. EPA Facility Registry Service (FRS): RADINFO

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Radiation Information Database (RADINFO). RADINFO contains information about facilities that are regulated by EPA for radiation and radioactivity. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to RADINFO facilities once the RADINFO data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  11. Facility effluent monitoring plan for the 324 Facility

    SciTech Connect

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  12. Facility effluent monitoring plan for the tank farms facilities

    SciTech Connect

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  13. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  14. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    SciTech Connect

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  15. Earthquake damage to underground facilities

    SciTech Connect

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters.

  16. The Michoud Assembly Facility (MAF)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Michoud Assembly Facility, located in eastern New Orleans, Louisiana, is an 832 acre site that is a government-owned, contractor-operated component of the George C. Marshall Space Flight Center (MSFC). The facility was acquired by NASA in 1961 at the recommendation of Dr. Wernher von Braun and his rocket team in Huntsville Alabama. The cavernous plant served as the assembly facility for the Saturn launch vehicles and most recently the external tank (ET) used for the Space Shuttle Program. The facility features one of the world's biggest manufacturing plants with 43 acres under one roof and a port with deep-water access for the transportation of large space structures. When completed, space hardware is towed on a barge across the Gulf of Mexico, around Florida and up to Kennedy Space Center. The original tract of land was part of a 34,500 acre French Royal land grant to local merchant, Gilbert Antoine de St. Maxent in 1763. Later, the land was acquired by French transplant Antoine Michoud, the son of Napoleon's Administrator of Domains, who moved to the city in 1827. Michoud operated a sugar cane plantation and refinery on the site until his death in 1863. His heirs continued operating the refinery and kept the original St. Maxent estate intact into the 20th century. Two brick smokestacks from the original refinery still stand before the Michoud facility today.

  17. The Michoud Assembly Facility (MAF)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Michoud Assembly Facility, located in eastern New Orleans, Louisiana, is an 832 acre site that is a government-owned, contractor-operated component of the George C. Marshall Space Flight Center (MSFC). The facility was acquired by NASA in 1961 at the recommendation of Dr. Wernher von Braun and his rocket team in Huntsville Alabama. The cavernous plant served as the assembly facility for the Saturn launch vehicles and most recently the external tank (ET) used for the Space Shuttle Program. The facility features one of the world's biggest manufacturing plants with 43 acres under one roof and a port with deep-water access for the transportation of large space structures. When completed, space hardware is towed on a barge across the Gulf of Mexico, around Florida and up to Kennedy Space Center. The original tract of land was part of a 34,500 acre French Royal land grant to local merchant, Gilbert Antoine de St. Maxent in 1763. Later, the land was acquired by French transplant Antoine Michoud, the son of Napoleon's Administrator of Domains, who moved to the city in 1827. Michoud operated a sugar cane plantation and refinery on the site until his death in 1863. His heirs continued operating the refinery and kept the original St. Maxent estate intact into the 20th century. Visible on the right, is one of two brick smokestacks from the original refinery that still stand before the Michoud facility today.

  18. The Biological Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1991-01-01

    NASA Ames Research Center is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately 30 years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially, the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5-m diam centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

  19. Space Transportation and Destination Facilities

    NASA Technical Reports Server (NTRS)

    Smitherman, David; McClure, Wallace

    1999-01-01

    The Space Transportation and Destination Facilities section focused on space transportation vehicles-from use of existing vehicles to development of specialized transports-and on space stations, space business parks, space hotels, and other facilities in space of the kind that eventually would provide services for general public space travel (PST) and tourism. For both transportation and destination facilities, the emphasis was on the identification of various strategies to enable a realistic incremental progression in the development and acquisition of such facilities, and the identification of issues that need resolution to enable formation of viable businesses. The approach was to determine the best: (1) Strategies for general PST and tourism development through the description and analysis of a wide range of possible future scenarios. With these scenarios in mind the section then identified. (2) Key issues to be explored. (3) opportunities to eliminate barriers. (4) Recommendations for future actions. (5) Top-level requirements and characteristics for general PST and tourism systems and services that would guide the development of transportation and destination facilities.

  20. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    R.L. Thacker

    2005-03-24

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  1. Facility Management's Role in Organizational Sustainability

    ERIC Educational Resources Information Center

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  2. 20 CFR 654.416 - Sleeping facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Sleeping facilities. 654.416 Section 654.416... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.416 Sleeping facilities. (a) Sleeping facilities shall be provided for each person. Such facilities shall consist...

  3. 20 CFR 654.416 - Sleeping facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Sleeping facilities. 654.416 Section 654.416... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.416 Sleeping facilities. (a) Sleeping facilities shall be provided for each person. Such facilities shall consist...

  4. 9 CFR 3.126 - Facilities, indoor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... at all times. Such facilities shall be provided with fresh air either by means of windows, doors... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Facilities, indoor. 3.126 Section 3... Mammals Facilities and Operating Standards § 3.126 Facilities, indoor. (a) Ambient...

  5. 9 CFR 3.126 - Facilities, indoor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... at all times. Such facilities shall be provided with fresh air either by means of windows, doors... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, indoor. 3.126 Section 3... Mammals Facilities and Operating Standards § 3.126 Facilities, indoor. (a) Ambient...

  6. 44 CFR 331.5 - Production facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Production facilities. 331.5... AND FACILITIES IN LABOR SURPLUS AREAS § 331.5 Production facilities. All Federal departments and... production facilities, including expansion, to the extent that such selection is consistent with existing...

  7. 47 CFR 69.110 - Entrance facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Entrance facilities. 69.110 Section 69.110... Computation of Charges § 69.110 Entrance facilities. (a) A flat-rated entrance facilities charge expressed in... that use telephone company facilities between the interexchange carrier or other person's point...

  8. 44 CFR 19.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Comparable facilities. 19.410... Activities Prohibited § 19.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex...

  9. 45 CFR 1170.32 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 1170.32 Section 1170.32... ASSISTED PROGRAMS OR ACTIVITIES Accessibility § 1170.32 Existing facilities. (a) Accessibility. A recipient... require a recipient to make each of its existing facilities or every part of a facility accessible to...

  10. 36 CFR 1211.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Comparable facilities. 1211... § 1211.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable...

  11. 32 CFR 196.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Comparable facilities. 196.410 Section 196.410....410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to...

  12. 45 CFR 1232.14 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Existing facilities. 1232.14 Section 1232.14... ASSISTANCE Accessibility § 1232.14 Existing facilities. (a) A recipient shall operate each program or... existing facilities or every part of a facility accessible to and usable by handicapped persons. (b)...

  13. 42 CFR 136.110 - Facilities construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Facilities construction. 136.110 Section 136.110... Facilities and Services § 136.110 Facilities construction. In addition to other requirements of this subpart..., clinic, health station or quarters for housing personnel associated with such facilities, must in...

  14. 28 CFR 41.57 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Existing facilities. 41.57 Section 41.57... Practices Program Accessibility § 41.57 Existing facilities. (a) A recipient shall operate each program or... existing facilities or every part of an existing facility accessible to and usable by handicapped...

  15. 45 CFR 1151.22 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 1151.22 Section 1151.22... Prohibited Accessibility § 1151.22 Existing facilities. (a) A recipient shall operate each program or... make each of its existing facilities or every part of a facility accessible to and usable...

  16. 10 CFR 1042.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Comparable facilities. 1042.410 Section 1042.410 Energy... Activities Prohibited § 1042.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex...

  17. 24 CFR 3.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Comparable facilities. 3.410....410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to...

  18. 30 CFR 57.6160 - Main facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main facilities. 57.6160 Section 57.6160...-Underground Only § 57.6160 Main facilities. (a) Main facilities used to store explosive material underground... facilities will not prevent escape from the mine, or cause detonation of the contents of another...

  19. 43 CFR 17.217 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Existing facilities. 17.217 Section 17.217... facilities. (a) Accessibility. A recipient shall operate each program or activity so that when each part is... not require a recipient to make each of its existing facilities or every part of a facility...

  20. 33 CFR 154.120 - Facility examinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Facility examinations. 154.120...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK General § 154.120 Facility examinations. (a) The facility operator shall allow the Coast Guard, at any time, to make any examination and...

  1. 9 CFR 590.534 - Freezing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing facilities. 590.534 Section..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the... as set forth in § 590.536. Use of off-premise freezing facilities is permitted only when...

  2. 45 CFR 2555.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Comparable facilities. 2555.410 Section 2555.410... § 2555.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable...

  3. 36 CFR 13.166 - Temporary facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Temporary facilities. 13.166... facilities. A temporary facility or structure directly and necessarily related to the taking of subsistence... facilities which shall be published annually in accordance with § 1.7 of this chapter....

  4. 30 CFR 57.20008 - Toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 57.20008 Section 57.20008....20008 Toilet facilities. (a) Toilet facilities shall be provided at locations that are compatible with the mine operations and that are readily accessible to mine personnel. (b) The facilities shall...

  5. 30 CFR 56.20008 - Toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 56.20008 Section 56.20008... Toilet facilities. (a) Toilet facilities shall be provided at locations that are compatible with the mine operations and that are readily accessible to mine personnel. (b) The facilities shall be kept clean...

  6. 7 CFR 1735.17 - Facilities financed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....12; (3) Facilities to provide service other than 1-party; and (4) System designs or facilities to... improvement, expansion, construction, acquisition, and operation of systems or facilities (including station..., construction, and acquisition of systems or facilities (excluding station apparatus owned by the...

  7. Facilities Performance Indicators Report, 2008-09

    ERIC Educational Resources Information Center

    Hills, Christina, Ed.

    2010-01-01

    This paper features another expanded Web-based Facilities Performance Indicators Report (FPI). The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. The 2008-09 iteration of the Web-based Facilities Performance Indicators Survey was posted and…

  8. 20 CFR 654.416 - Sleeping facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Sleeping facilities. 654.416 Section 654.416... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.416 Sleeping facilities. (a) Sleeping facilities shall be provided for each person. Such facilities shall consist...

  9. 20 CFR 654.416 - Sleeping facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Sleeping facilities. 654.416 Section 654.416... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.416 Sleeping facilities. (a) Sleeping facilities shall be provided for each person. Such facilities shall consist...

  10. 20 CFR 654.416 - Sleeping facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Sleeping facilities. 654.416 Section 654.416... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.416 Sleeping facilities. (a) Sleeping facilities shall be provided for each person. Such facilities shall consist...

  11. 10 CFR 75.15 - Facility attachments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Facility attachments. 75.15 Section 75.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material Accounting and Control for Facilities § 75.15 Facility attachments. (a) The Facility Attachment...

  12. 10 CFR 75.15 - Facility attachments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Facility attachments. 75.15 Section 75.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material Accounting and Control for Facilities § 75.15 Facility attachments. (a) The Facility Attachment...

  13. 10 CFR 75.15 - Facility attachments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Facility attachments. 75.15 Section 75.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material Accounting and Control for Facilities § 75.15 Facility attachments. (a) The Facility Attachment...

  14. 10 CFR 75.15 - Facility attachments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Facility attachments. 75.15 Section 75.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material Accounting and Control for Facilities § 75.15 Facility attachments. (a) The Facility Attachment...

  15. 45 CFR 1232.14 - Existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Existing facilities. 1232.14 Section 1232.14... ASSISTANCE Accessibility § 1232.14 Existing facilities. (a) A recipient shall operate each program or... existing facilities or every part of a facility accessible to and usable by handicapped persons. (b)...

  16. 45 CFR 2555.410 - Comparable facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Comparable facilities. 2555.410 Section 2555.410... § 2555.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable...

  17. 45 CFR 63.37 - Leasing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Leasing facilities. 63.37 Section 63.37 Public... facilities. In the case of a project involving the leasing of a facility, the grantee shall demonstrate that... facility during the proposed period of the project....

  18. 45 CFR 84.22 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Existing facilities. 84.22 Section 84.22 Public... facilities. (a) Accessibility. A recipient shall operate its program or activity so that when each part is... a recipient to make each of its existing facilities or every part of a facility accessible to...

  19. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities...

  20. 25 CFR 502.23 - Facility license.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....23 Facility license. Facility license means a separate license issued by a tribe to each place, facility, or location on Indian lands where the tribe elects to allow class II or III gaming. ... 25 Indians 2 2010-04-01 2010-04-01 false Facility license. 502.23 Section 502.23 Indians...

  1. A Bioinformatics Facility for NASA

    NASA Technical Reports Server (NTRS)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  2. Overview of the SACLA facility

    PubMed Central

    Yabashi, Makina; Tanaka, Hitoshi; Ishikawa, Tetsuya

    2015-01-01

    In March 2012, SACLA started user operations of the first compact X-ray free-electron laser (XFEL) facility. SACLA has been routinely providing users with stable XFEL light over a wide photon energy range from 4 to 15 keV and an ultrafast pulse duration below 10 fs. The facility supports experimental activities in broad fields by offering high-quality X-ray optics and diagnostics, as well as reliable multiport charge-coupled-device detectors, with flexible experimental configurations. A two-stage X-ray focusing system was developed that enables the highest intensity of 1020 W cm−2. Key scientific results published in 2013 and 2014 in diverse fields are reviewed. The main experimental systems developed for these applications are summarized. A perspective on the facility upgrade is presented. PMID:25931056

  3. Compact anti-radon facility

    SciTech Connect

    Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.

    2015-08-17

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  4. RADIATION FACILITY FOR NUCLEAR REACTORS

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  5. Seismic upgrades of healthcare facilities.

    PubMed

    Yusuf, A

    1997-06-01

    Before 1989 seismic upgrading of hospital structures was not a primary consideration among hospital owners. However, after extensive earthquake damage to hospital buildings at Loma Prieta in Northern California in 1989 and then at Northridge in Southern California in 1994, hospital owners, legislators, and design teams become concerned about the need for seismic upgrading of existing facilities. Because the damage hospital structures sustained in the earthquakes was so severe and far-reaching, California has enacted laws that mandate seismic upgrading for existing facilities. Now hospital owners will have to upgrade buildings that do not conform to statewide seismic adequacy laws. By 2030, California expects all of its hospital structures to be sufficiently seismic-resistant. Slowly, regions in the Midwest and on the East Coast are following their example. This article outlines reasons and ways for seismic upgrading of existing facilities.

  6. Low thrust rocket test facility

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

  7. Advanced Hypervelocity Aerophysics Facility Workshop

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)

    1989-01-01

    The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

  8. The Biological Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1993-01-01

    NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

  9. The Right to Own Quality Head Start Facilities. Facilities Focus.

    ERIC Educational Resources Information Center

    Pinckney, Shawna

    1995-01-01

    Notes that previously, Head Start programs were restricted to leasing space, which created renovation and rent difficulties. Examines critical issues confronted by programs since 1992 as they searched for suitable facilities to purchase, and efforts of NHSA to foster collaboration between local programs and community organizations that would…

  10. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher

    2012-10-01

    The 192-beam National Ignition Facility (NIF) at LLNL, operational since March 2009, is conducting experiments in ICF ignition and other scientific areas. The NIF ignition program is conducted by the National Ignition Campaign (NIC). In addition to execution of the ignition program, the NIC is providing the necessary infrastructure for operation of NIF as a user facility open to both US and international scientists. NIF has made significant progress towards operation as a user facility. The NIF laser has demonstrated the necessary performance, including energy, power, precision, and reproducibility, to support NIC and other experiments. NIF has demonstrated full energy and power (1.8 MJ, 500 TW) operation at 0.35-μm. Over 50 diagnostics are operational, and a broad range of target fabrication capabilities is in place. Initial experiments by university users and other scientists external to the National Nuclear Security Administration (NNSA) national laboratory system have been conducted, and additional experiments developed by the broader user community are in process and planned. A governance model has been established, and a NIF User Group has been formed. This presentation will discuss implementation of NIF as a user facility, with emphasis on activities at NIF in fundamental science and other areas carried out in addition to the NIC.

  11. The Facilities Audit. A Process for Improving Facilities Conditions.

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    The problems of deferred maintenance and decaying campus infrastructure have troubled higher education for the past two decades. This book, designed to be a tool for facilities managers, describes a process for inspecting and reporting conditions of buildings and infrastructure. The audit process is meant to be a routine part of maintenance…

  12. REMEDIATION FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    V. Arakali; E. Faillace

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel in the Remediation Facility performing operations to receive, prepare, open, repair, recover, disposition, and correct off-normal and non-standard conditions with casks, canisters, spent nuclear fuel (SNF) assemblies, and waste packages (WP). The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the Remediation Facility and provide occupational dose estimates for the License Application.

  13. Tandem mirror technology demonstration facility

    SciTech Connect

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  14. Test Laboratory Facilities and Capabilities

    NASA Technical Reports Server (NTRS)

    Hamilton, Jeff

    2004-01-01

    The Test Laboratory at NASA's Marshall Space Flight Center, located inside the boundaries of 40,000 acre Redstone Arsenal military reservation, has over 50 test facilities across 400+ acres, many inside an additional secure, fenced area. About 150 Government and 250 contractor personnel operate test facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength/dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.

  15. Radiation Recordkeeping Practices at DOE Facilities

    SciTech Connect

    Traub, R.J.

    1994-03-15

    In order to evaluate the radiation recordkeeping practices at DOE facilities, a questionnaire was sent to DOE and DOE contractor facilities which requested information concerning the record keeping systems. The questionnaire was sent to the DOE/DOE contractor facilities via DOE/HQ and the respective field offices. The questionnaire stipulated that at multiple contractor sites, only those facilities who kept the records should respond to the questionnaire; however, those responding should indicate the facilities for which they maintained records.

  16. Evaluating Quality in Educational Facilities

    ERIC Educational Resources Information Center

    Abend, Allen; Ornstein, Sheila Walbe; Baltas, Emmanuel; de la Garza, Jaime; Watson, Chris; Lange, Kurt; von Ahlefeld, Hannah

    2006-01-01

    In 2005, the OECD Programme on Educational Building (PEB) organised two international experts' group meetings to discuss how countries define and evaluate quality in educational facilities. The research and experiences of six experts are presented in this article, in addition to the lessons learned from the experts' group meetings. The director of…

  17. Maine School Library Facilities Handbook.

    ERIC Educational Resources Information Center

    Maine Association of School Libraries.

    This handbook provides guidance to school library specialists and architects for planning new or renovated library facilities that will meet the changing resource and technology needs of students and the community. An overview is provided of the essential library areas, including layout, structural, and climate control needs; the internal…

  18. Integrated Disposal Facility Risk Assessment

    SciTech Connect

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  19. Universal Design for Academic Facilities

    ERIC Educational Resources Information Center

    Salmen, John P. S.

    2011-01-01

    Universal design (UD) can play a role in many aspects of academic life and is often thought of in the context of learning. However, this chapter focuses on the impact of UD on the design of facilities in a university or campus setting. Universal design has the potential for transforming universities into truly egalitarian institutions that…

  20. Life Sciences Centrifuge Facility review

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1994-01-01

    The Centrifuge Facility Project at ARC was reviewed by a code U team to determine appropriateness adequacy for the ISSA. This report represents the findings of one consultant to this team and concentrates on scientific and technical risks. This report supports continuation of the project to the next phase of development.

  1. Biotechnology Facility (BTF) for ISS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Engineering mockup shows the general arrangement of the plarned Biotechnology Facility inside an EXPRESS rack aboard the International Space Station. This layout includes a gas supply module (bottom left), control computer and laptop interface (bottom right), two rotating wall vessels (top right), and support systems.

  2. Weapons engineering tritium facility overview

    SciTech Connect

    Najera, Larry

    2011-01-20

    Materials provide an overview of the Weapons Engineering Tritium Facility (WETF) as introductory material for January 2011 visit to SRS. Purpose of the visit is to discuss Safety Basis, Conduct of Engineering, and Conduct of Operations. WETF general description and general GTS program capabilities are presented in an unclassified format.

  3. Facility siting and public opposition

    SciTech Connect

    O'Hare, M.H.; Bacow, L.; Sanderson, D.

    1983-01-01

    This book shows developers how to avoid expensive siting disputes that arise over regionally beneficial but locally undesirable facilities, such as prisons, landfills, and oil refineries. It explains the strategy by offering compensation to communities. Guidelines are included for keeping the public informed without increasing opposition.

  4. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  5. MERLIN/VLBI National Facility

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Multi-Element Radio Linked Interferometer Network (MERLIN) is a unique synthesis radio telescope which was originally developed by the University of Manchester in the late 1970s and came into operation in 1980. After further development, in 1993 it formally became a National Facility operated by the University of Manchester on behalf of the UK PARTICLE PHYSICS AND ASTRONOMY RESEARCH COUNCIL...

  6. Outdoor Education Areas and Facilities.

    ERIC Educational Resources Information Center

    American Association for Health, Physical Education, and Recreation, Washington, DC.

    The facilities described for outdoor education and camping areas are designed to be an integral part of the large college or university campus, and to serve the educational and recreational programs of the educational institution and the total community. The establishment of an outdoor resident center is followed from the rationale for site…

  7. Strong Case for New Facility

    ERIC Educational Resources Information Center

    King, Johathan; Carter, Donn

    1974-01-01

    An award-winning facility that is a superior expression of the latest in construction techniques -- techniques that are paring away at wastes in construction time and money, while maintaining structural quality. A related article is EA 504 766 (American School and University; v46 n7 Mar '74.) (Author)

  8. Playing Hardball with Facilities Expenses.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1997-01-01

    Describes one school district manager's tactics for successfully controlling district costs and increasing capital improvements while only marginally increasing the facilities maintenance budget. Highlights guidelines for controlling personnel requirements and cost-reduction methods. Discusses specific cost-control measures involving telephone…

  9. Supplemental multilayer insulation research facility

    NASA Astrophysics Data System (ADS)

    Dempsey, P. J.; Stochl, R. J.

    1995-07-01

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.

  10. Supplemental multilayer insulation research facility

    SciTech Connect

    Dempsey, P.J.; Stochl, R.J.

    1996-12-31

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3{times}10{sup -4} N/m{sup 2}(1 x 10{sup -6} torr). Warm side boundary temperatures can be maintained constant between 111 K(200 R) and 361 K(650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 m{sup 3} (120 gal) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH{sub 2} and LN{sub 2} ground storage dewars.

  11. Developing a Shared Research Facility.

    ERIC Educational Resources Information Center

    Goodman, Ira S.; Newcomb, Elizabeth W.

    1990-01-01

    Planning, creation, and current operation of the Transgenic Mouse Research Facility at the New York University Kaplan Cancer Center are discussed. The university considered need, space, funding, supervision, and marketing and followed a logical and structured management process embodying both scientific and administrative input. (Author/MSE)

  12. 1983 Profiles of Educational Facilities.

    ERIC Educational Resources Information Center

    CEFP Journal, 1983

    1983-01-01

    Features photographs, floor plans, and building descriptions of eight American educational facilities, three of which are at universities. Also included are plans for one of the six schools funded by the Southern Italy Earthquake Reconstruction Program, authorized by the United States Government after the 1980 earthquake. (MLF)

  13. Industrial Facility Combustion Energy Use

    DOE Data Explorer

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  14. DKIST facility management system integration

    NASA Astrophysics Data System (ADS)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  15. Mississippi Test Facility research projects

    NASA Technical Reports Server (NTRS)

    Whitehurst, C. A.

    1974-01-01

    Research capabilities of Louisiana State University are reported for sustaining a program which complements the Mississippi Test Facility. Projects reported during this period are discussed and include the development of a spectral analyzer, and investigations of plant physiology. Papers published during this period are also listed.

  16. Supplemental multilayer insulation research facility

    NASA Technical Reports Server (NTRS)

    Dempsey, P. J.; Stochl, R. J.

    1995-01-01

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.

  17. Utilizing Interns in Facilities Management

    ERIC Educational Resources Information Center

    Judkins, Clarissa; Morris, John P.; Molocznik, Chuck

    2011-01-01

    Facilities management is rapidly changing and developing from a position an individual stumbles into--or work one's way up through--to a discipline and vocation all of its own. There is a need for a collaborative strategy among leaders in practice, education, and research to share knowledge and experience and to establish professional and ethical…

  18. (abstract) Cryogenic Telescope Test Facility

    NASA Technical Reports Server (NTRS)

    Luchik, T. S.; Chave, R. G.; Nash, A. E.

    1995-01-01

    An optical test Dewar is being constructed with the unique capability to test mirrors of diameter less than or equal to 1 m, f less than or equal to 6, at temperatures from 300 to 4.2 K with a ZYGO Mark IV interferometer. The design and performance of this facility will be presented.

  19. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    SciTech Connect

    Adams, N

    2007-07-08

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully

  20. Transonic turbine blade cascade testing facility

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.; Camperchioli, William P.; Lopez, Isaac

    1992-01-01

    NASA LeRC has designed and constructed a new state-of-the-art test facility. This facility, the Transonic Turbine Blade Cascade, is used to evaluate the aerodynamics and heat transfer characteristics of blade geometries for future turbine applications. The facility's capabilities make it unique: no other facility of its kind can combine the high degree of airflow turning, infinitely adjustable incidence angle, and high transonic flow rates. The facility air supply and exhaust pressures are controllable to 16.5 psia and 2 psia, respectively. The inlet air temperatures are at ambient conditions. The facility is equipped with a programmable logic controller with a capacity of 128 input/output channels. The data acquisition system is capable of scanning up to 1750 channels per sec. This paper discusses in detail the capabilities of the facility, overall facility design, instrumentation used in the facility, and the data acquisition system. Actual research data is not discussed.

  1. EPA Facility Registry Service (FRS): SDWIS

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Safe Drinking Water Information System (SDWIS). SDWIS contains information about public water systems and their violations of EPA's drinking water regulations. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to SDWIS facilities once the SDWIS data has been integrated into the FRS database. Additional information on FRS is available at the EPA website http://www.epa.gov/enviro/html/fii/index.html.

  2. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  3. The Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kundu, Sampa

    2004-01-01

    Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is

  4. Facility design, construction, and operation

    SciTech Connect

    1995-04-01

    France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l`Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l`Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, including uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec`s contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides` all of the basic information in these areas and reflects actual experience to date.

  5. Orientation to pollution prevention for facility design

    SciTech Connect

    Raney, E.A.; Whitehead, J.K.; Encke, D.B.; Dorsey, J.A.

    1994-01-01

    This material was developed to assist engineers in incorporating pollution prevention into the design of new or modified facilities within the U.S. Department of Energy (DOE). The material demonstrates how the design of a facility can affect the generation of waste throughout a facility`s entire life and it offers guidance on how to prevent the generation of waste during design. Contents include: Orientation to pollution prevention for facility design training course booklet; Pollution prevention design guideline; Orientation to pollution prevention for facility design lesson plan; Training participant survey and pretest; and Training facilitator`s guide and schedule.

  6. Unified Facilities Criteria (UFC) Design Guide. Army Reserve Facilities

    DTIC Science & Technology

    2010-02-01

    compressed air piping system for maintenance bay service tools , typically the air compressor is located in the mechanical room. Other maintenance building...Including Change 3, 1 February 2010 FOREWORD The Unified Facilities Criteria (UFC) system is prescribed by MIL-STD 3007 and provides...Engineering Command (NAVFAC), and Air Force Civil Engineer Support Agency (AFCESA) are responsible for administration of the UFC system . Defense agencies

  7. Space simulation facilities providing a stable thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Tellalian, Martin L.

    1990-01-01

    CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.

  8. Optimal control of hydroelectric facilities

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi

    This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the

  9. Chemical facility vulnerability assessment project.

    PubMed

    Jaeger, Calvin D

    2003-11-14

    Sandia National Laboratories, under the direction of the Office of Science and Technology, National Institute of Justice, conducted the chemical facility vulnerability assessment (CFVA) project. The primary objective of this project was to develop, test and validate a vulnerability assessment methodology (VAM) for determining the security of chemical facilities against terrorist or criminal attacks (VAM-CF). The project also included a report to the Department of Justice for Congress that in addition to describing the VAM-CF also addressed general observations related to security practices, threats and risks at chemical facilities and chemical transport. In the development of the VAM-CF Sandia leveraged the experience gained from the use and development of VAs in other areas and the input from the chemical industry and Federal agencies. The VAM-CF is a systematic, risk-based approach where risk is a function of the severity of consequences of an undesired event, the attack potential, and the likelihood of adversary success in causing the undesired event. For the purpose of the VAM-CF analyses Risk is a function of S, L(A), and L(AS), where S is the severity of consequence of an event, L(A) is the attack potential and L(AS) likelihood of adversary success in causing a catastrophic event. The VAM-CF consists of 13 basic steps. It involves an initial screening step, which helps to identify and prioritize facilities for further analysis. This step is similar to the prioritization approach developed by the American Chemistry Council (ACC). Other steps help to determine the components of the risk equation and ultimately the risk. The VAM-CF process involves identifying the hazardous chemicals and processes at a chemical facility. It helps chemical facilities to focus their attention on the most critical areas. The VAM-CF is not a quantitative analysis but, rather, compares relative security risks. If the risks are deemed too high, recommendations are developed for

  10. High Exposure Facility Technical Description

    SciTech Connect

    Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K.; Smith, Alex K.

    2008-02-12

    The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."

  11. Near-facility environmental monitoring

    SciTech Connect

    Schmidt, J.W.; Johnson, A.R.; Markes, B.M.; McKinney, S.M.; Perkins, C.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the routine near-facility environmental monitoring programs which are presently being conducted at the Hanford Site. Several types of environmental media are sampled near nuclear facilities to monitor the effectiveness of waste management and restoration activities, and effluent treatment and control practices. These media include air, surface water and springs, surface contamination, soil and vegetation, investigative sampling (which can include wildlife), and external radiation. Sampling and analysis information and analytical results for 1994 for each of these media are summarized in this section. Additional data and more detailed information may be found in Westinghouse Hanford Company Operational Environmental Monitoring Annual Report, Calendar Year 1994.

  12. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  13. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  14. Explosive components facility certification tests

    SciTech Connect

    Dorrell, L.; Johnson, D.

    1995-08-01

    Sandia National Laboratories has recently completed construction of a new Explosive Components Facility (ECF) that will be used for the research and development of advanced explosives technology. The ECF includes nine indoor firing pads for detonating explosives and monitoring the detonations. Department of Energy requirements for certification of this facility include detonation of explosive levels up to 125 percent of the rated firing pad capacity with no visual structural degradation resulting from the explosion. The Explosives Projects and Diagnostics Department at Sandia decided to expand this certification process to include vibration and acoustic monitoring at various locations throughout the building during these explosive events. This information could then be used to help determine the best locations for noise and vibration sensitive equipment (e.g. scanning electron microscopes) used for analysis throughout the building. This facility has many unique isolation features built into the explosive chamber and laboratory areas of the building that allow normal operation of other building activities during explosive tests. This paper discusses the design of this facility and the various types of explosive testing performed by the Explosives Projects and Diagnostics Department at Sandia. However, the primary focus of the paper is directed at the vibration and acoustic data acquired during the certification process. This includes the vibration test setup and data acquisition parameters, as well as analysis methods used for generating peak acceleration levels and spectral information. Concerns over instrumentation issues such as the choice of transducers (appropriate ranges, resonant frequencies, etc.) and measurements with long cable lengths (500 feet) are also discussed.

  15. Langley Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.

    1987-01-01

    The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  16. Facile Enzymatic Synthesis of Ketoses**

    PubMed Central

    Wen, Liuqing; Huang, Kenneth; Wei, Mohui; Meisner, Jeffrey; Liu, Yunpeng; Garner, Kristina; Zang, Lanlan; Wang, Xuan; Li, Xu; Fang, Junqiang; Zhang, Houcheng

    2015-01-01

    Studies of rare ketoses have been hampered by a lack of efficient preparation methods. A convenient, efficient, and cost-effective platform for the facile synthesis of ketoses is described. This method enables the preparation of difficult-to-access ketopentoses and ketohexoses from common and inexpensive starting materials with high yield and purity and without the need for a tedious isomer separation step. PMID:26275233

  17. Fumigation success for California facility.

    PubMed

    Hacker, Robert

    2010-02-01

    As Robert Hacker, at the time director of facilities management at the St John's Regional Medical Center in Oxnard, California, explains, the hospital, one of the area's largest, recently successfully utilised a new technology to eliminate mould, selecting a cost and time-saving fumigation process in place of the traditional "rip and tear" method. Although hospital managers knew the technology had been used extremely effectively in other US buildings, this was reportedly among the first ever healthcare applications.

  18. Heritage Park Facilities PV Project

    SciTech Connect

    Hobaica, Mark

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  19. Fracturing fluid characterization facility (FFCF)

    SciTech Connect

    Evans, R.D.; Roegiers, J.C.; Fagan, J.

    1993-12-31

    The Fracturing Fluid Characterization Facility project has as its main focus the design, fabrication, and construction of a high pressure simulator (HPS) and a low pressure simulator (LPS) to be used to experimentally investigate the rheological properties and transport characteristics of proppant laden fracturing fluids. A discussion of each apparatus is provided as well as the auxiliary equipment, and data acquisition and control systems associated with the simulators.

  20. Stennis' granddaughter visits Mississippi Facility

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Jane Kenna of Atlanta, granddaughter of the late Sen. John C. Stennis, stands with her husband, John, near a bust of her grandfather displayed in StenniSphere, the visitor center at NASA's John C. Stennis Space Center. Kenna visited Stennis on April 6, her first trip to the rocket engine testing facility since the 1988 ceremony to rename the site in honor of Stennis.

  1. The mixed waste management facility

    SciTech Connect

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory`s Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to {approximately}$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at {approximately}$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability.

  2. Facility management in German hospitals.

    PubMed

    Gudat, H

    2000-04-01

    Facility management and optimum building management offer for hospitals a chance to reduce costs and to increase quality, process sequences, employee motivation and customer satisfaction. Some years ago simple services such as cleaning, catering or laundry were outsourced. Now, German hospitals progress to more complex fields such as building and medical technology, clinical support processes such as pharmacy, central laboratory and sterilization, goods and logistics services.

  3. Micronized-Coal Burner Facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W.

    1986-01-01

    Micronized-coal (coal-in-oil mix) burner facility developed to fulfill need to generate erosion/corrosion data on series of superalloy specimens. In order to successfully operate gas turbine using COM, two primary conditions must be met. First, there must be adequate atomization of COM and second, minimization of coking of burner. Meeting these conditions will be achieved only by clean burning and flame stability.

  4. National Cryo-Electron Microscopy Facility

    Cancer.gov

    Information about the National Cryo-EM Facility at NCI, created to provide researchers access to the latest cryo-EM technology for high resolution imaging. Includes timeline for installation and how to access the facility.

  5. The low temperature microgravity physics facility

    NASA Technical Reports Server (NTRS)

    Pensinger, J. F.; Croonquist, A P.; Liu, F. C.; Larson, M. E.; Chui, T. C.

    2002-01-01

    The Low Temperature Microgravity Physics Facility currently in the design phase is a multiple user and multiple flight facility intended to provide a long duration low temperature environment onboard the International Space Station.

  6. The Low Temperature Microgravity Physics Facility

    NASA Technical Reports Server (NTRS)

    Pensinger, J. F.; Chui, T.; Croonquist, A.; Larson, M.; Liu, F.

    2002-01-01

    The Low Temperature Microgravity Physics Facility currently in the design phase is a multiple user and multiple flight facility intended to provide a long duration low temperature environment onboard the International Space Station.

  7. Physical Education Facilities for the Handicapped.

    ERIC Educational Resources Information Center

    Isaacs, Larry; Frederick, Stephen D.

    1980-01-01

    Physical education facilities at Wright State University in Dayton, Ohio have been adapted for the recreational needs of handicapped students. Changes include a special exercise room, accessible locker and shower facilities, a pool area, and a wheelchair repair shop. (CJ)

  8. Enforcement and Compliance at Federal Facilities

    EPA Pesticide Factsheets

    Guide for complying with environmental laws and regulations at Federal Facilities This resource updates EPA's The Yellow Book: Guide to Environmental Enforcement and Compliance in Federal Facilities published in 1999.

  9. Quantum computing Hyper Terahertz Facility opens

    NASA Astrophysics Data System (ADS)

    Singh Chadha, Kulvinder

    2016-01-01

    A new facility has opened at the University of Surrey to use terahertz radiation for quantum computing. The Hyper Terahertz Facility (HTF) is a joint collaboration between the University of Surrey and the National Physical Laboratory (NPL).

  10. Facilities Upgrade and Retrofit. Strategies for Success.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2000-01-01

    Provides three articles on the subject of educational facility upgrading and retrofiting that address setting guidelines for classroom acoustics, making sports facilities brighter and more energy-efficient, and cutting energy bills and protecting interiors. (GR)

  11. Skilled nursing facilities after joint replacement

    MedlinePlus

    ... may need to be transferred to a skilled nursing facility. You should talk about this issue with ... Medicare and Medicaid Services. Medicare coverage of skilled nursing facility care. Revised January 2015. www.caretelinns.com/ ...

  12. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  13. 48 CFR 871.208 - Rehabilitation facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Rehabilitation facilities... DEPARTMENT SUPPLEMENTARY REGULATIONS LOAN GUARANTY AND VOCATIONAL REHABILITATION AND EMPLOYMENT PROGRAMS Vocational Rehabilitation and Employment Service 871.208 Rehabilitation facilities. Charges by...

  14. 9 CFR 3.127 - Facilities, outdoor.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Mammals Facilities and Operating Standards § 3.127 Facilities, outdoor. (a) Shelter from sunlight. When... sunlight. (b) Shelter from inclement weather. Natural or artificial shelter appropriate to the...

  15. 9 CFR 3.127 - Facilities, outdoor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Mammals Facilities and Operating Standards § 3.127 Facilities, outdoor. (a) Shelter from sunlight. When... sunlight. (b) Shelter from inclement weather. Natural or artificial shelter appropriate to the...

  16. Strategic facility planning improves capital decision making.

    PubMed

    Reeve, J R

    2001-03-01

    A large, Midwestern IDS undertook a strategic facility-planning process to evaluate its facility portfolio and determine how best to allocate future investments in facility development. The IDS assembled a facility-planning team, which initiated the planning process with a market analysis to determine future market demands and identify service areas that warranted facility expansion. The team then analyzed each of the IDS's facilities from the perspective of uniform capacity measurements, highest and best use compared with needs, building condition and investment-worthiness, and facility growth and site development opportunities. Based on results of the analysis, the strategy adopted entailed, in part, shifting some space from inpatient care to ambulatory care services and demolishing and replacing the 11 percent of facilities deemed to be in the worst condition.

  17. Work control in separations facilities

    SciTech Connect

    Olson, L.D.

    1990-01-01

    The topic addressed in this technical review is the development and implementation of a work control program in one of the chemical separations facilities at the Savannah River Site (SRS) in Aiken, SC. This program will be used as a pilot for the Nuclear Materials Processing Division at the site. The SRS Work Control Pilot program is based on the Institute of Nuclear Power Operations (INPO) good practices and guidelines for the conduct of maintenance and complies with SRS quality assurance and DOE orders on maintenance management. The program follows a ten-step process for control of maintenance and maintenance-related activities in a chemical separations facility. The program took the existing maintenance planning and scheduling system and upgraded it to comply with all INPO work control and related guidelines for histories, post-maintenance testing and scheduling. The development process of adapting a nuclear-related- based plan to a batch/continuous chemical separations plant was a challenge. There were many opportunities to develop improvements in performance while being creative and realistic in applying reactor maintenance technology to chemical plant maintenance. This pilot program for work control in a nonreactor nuclear facility will provide valuable information for applying a controlled maintenance process to a multiphase chemical operating plant environment.

  18. Work control in separations facilities

    SciTech Connect

    Olson, L.D.

    1990-12-31

    The topic addressed in this technical review is the development and implementation of a work control program in one of the chemical separations facilities at the Savannah River Site (SRS) in Aiken, SC. This program will be used as a pilot for the Nuclear Materials Processing Division at the site. The SRS Work Control Pilot program is based on the Institute of Nuclear Power Operations (INPO) good practices and guidelines for the conduct of maintenance and complies with SRS quality assurance and DOE orders on maintenance management. The program follows a ten-step process for control of maintenance and maintenance-related activities in a chemical separations facility. The program took the existing maintenance planning and scheduling system and upgraded it to comply with all INPO work control and related guidelines for histories, post-maintenance testing and scheduling. The development process of adapting a nuclear-related- based plan to a batch/continuous chemical separations plant was a challenge. There were many opportunities to develop improvements in performance while being creative and realistic in applying reactor maintenance technology to chemical plant maintenance. This pilot program for work control in a nonreactor nuclear facility will provide valuable information for applying a controlled maintenance process to a multiphase chemical operating plant environment.

  19. Laser Guide Star Facility Upgrade

    NASA Astrophysics Data System (ADS)

    Lewis, S.; Calia, D. B.; Buzzoni, B.; Duhoux, P.; Fischer, G.; Guidolin, I.; Haimerl, A.; Hackenberg, W.; Hinterschuster, R.; Holzlöhner, R.; Jolley, P.; Pfrommer, T.; Popovic, D.; Alvarez, J.-L.; Beltran, J.; Girard, J.; Pallanca, L.; Riquelme, M.; Gonte, F.

    2014-03-01

    The Laser Guide Star Facility is part of VLT Unit Telescope 4 and provides a single centre-launched sodium beacon for the two adaptive optics instruments SINFONI and NACO. The original facility, installed in 2006, employed a high-power dye laser source, PARSEC, producing an output beam that was delivered via a single-mode optical fibre to launch optics located behind the telescope secondary mirror. We recently installed a new prototype laser source, PARLA, based on Raman optical fibre technology. Requirements for the new laser include start-up times compatible with flexible observing, an output beam appropriate for the existing fibre-delivery system and an on-sky power of up to 7 watts. This is the first time that this type of laser has been deployed at a major observing facility, and it has a pathfinder role for future adaptive optics systems. Reported here are the main results of the development, deployment and early operation since the resumption of science operation in February 2013.

  20. Engineering the National Ignition Facility

    SciTech Connect

    Bowers, J; Hackel, R; Larson, D; Manes, K; Murray, J; Sawicki, R

    1998-08-19

    The engineering team of the National Ignition Facility (NIF) has developed a highly optimized hardware design that satisfies stringent cost, performance and schedule requirements. After a 3-year effort, the design will culminate at the end of FY98 with the completion of major Title II design reviews. Every element of the facility from optic configuration, facility layout and hardware specifications to material selection, fabrication techniques and part tolerancing has been examined to assure the minimum cost per joule of laser energy delivered on target. In this paper, the design of the major subsystems will be discussed from the perspective of this optimization emphasis. Focus will be placed on the special equipment hardware which includes laser, beam transport, opto-mechanical , system control and target area systems. Some of the unique features in each of these areas will be discussed to highlight how significant cost savings have been achieved while maintaining reasonable and acceptable performance risk. Key to the success has also been a vigorous development program that commenced nearly 4 years ago and has been highly responsive to the specific needs of the NIF project. Supporting analyses and prototyping work that evolved from these parallel activities will also be discussed.

  1. NASA Dryden flow visualization facility

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.

    1995-01-01

    This report describes the Flow Visualization Facility at NASA Dryden Flight Research Center, Edwards, California. This water tunnel facility is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high-incidence angles. The tunnel is used extensively as a low-cost, diagnostic tool to help engineers understand complex flows over aircraft and other full-scale vehicles. The facility consists primarily of a closed-circuit water tunnel with a 16- x 24-in. vertical test section. Velocity of the flow through the test section can be varied from 0 to 10 in/sec; however, 3 in/sec provides optimum velocity for the majority of flow visualization applications. This velocity corresponds to a unit Reynolds number of 23,000/ft and a turbulence level over the majority of the test section below 0.5 percent. Flow visualization techniques described here include the dye tracer, laser light sheet, and shadowgraph. Limited correlation to full-scale flight data is shown.

  2. The Critical Point Facility (CPF)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Critical Point Facility (CPF) is an ESA multiuser facility designed for microgravity research onboard Spacelab. It has been conceived and built to offer investigators opportunities to conduct research on critical point phenomena in microgravity. This facility provides the high precision and stability temperature standards required in this field of research. It has been primarily designed for the purpose of optical investigations of transparent fluids. During a Spacelab mission, the CPF automatically processes several thermostats sequentially, each thermostat corresponding to an experiment. The CPF is now integrated in Spacelab at Kennedy Space Center, in preparation for the International Microgravity Lab. mission. The CPF was designed to submit transparent fluids to an adequate, user defined thermal scenario, and to monitor their behavior by using thermal and optical means. Because they are strongly affected by gravity, a good understanding of critical phenomena in fluids can only be gained in low gravity conditions. Fluids at the critical point become compressed under their own weight. The role played by gravity in the formation of interfaces between distinct phases is not clearly understood.

  3. Mitigating risks related to facilities management.

    PubMed

    O'Neill, Daniel P; Scarborough, Sydney

    2013-07-01

    By looking at metrics focusing on the functionality, age, capital investment, transparency, and sustainability (FACTS) of their organizations' facilities, facilities management teams can build potential business cases to justify upgrading the facilities. A FACTS analysis can ensure that capital spent on facilities will produce a higher or more certain ROI than alternatives. A consistent process for managing spending helps to avoid unexpected spikes that cost the enterprise more in the long run.

  4. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging

  5. 45 CFR 63.37 - Leasing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Leasing facilities. 63.37 Section 63.37 Public... OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION Special Provisions § 63.37 Leasing facilities. In the case of a project involving the leasing of a facility, the grantee shall demonstrate...

  6. 45 CFR 63.37 - Leasing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Leasing facilities. 63.37 Section 63.37 Public... OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION Special Provisions § 63.37 Leasing facilities. In the case of a project involving the leasing of a facility, the grantee shall demonstrate...

  7. 45 CFR 63.37 - Leasing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Leasing facilities. 63.37 Section 63.37 Public... OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION Special Provisions § 63.37 Leasing facilities. In the case of a project involving the leasing of a facility, the grantee shall demonstrate...

  8. New Trends in Facility Asset Management.

    ERIC Educational Resources Information Center

    Adams, Matt

    2000-01-01

    Explains new, positive trends in facility asset management that encompasses greater acceptance and involvement of facility managers in the financial planning process, greater awareness of the need for maintenance, and facility administrators taking a greater role with business officers. The new climate for alternative renewal financing proposals…

  9. 49 CFR 374.309 - Terminal facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Terminal facilities. 374.309 Section 374.309... REGULATIONS Adequacy of Intercity Motor Common Carrier Passenger Service § 374.309 Terminal facilities. (a... attendants and be regularly patrolled. (b) Outside facilities. At terminals and stations that are closed...

  10. 7 CFR 51.57 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Requirements for Plants Operating Under Continuous Inspection on A Contract Basis § 51.57 Facilities. Each packing plant shall be equipped with adequate sanitary facilities and accommodations, including but not... 7 Agriculture 2 2010-01-01 2010-01-01 false Facilities. 51.57 Section 51.57...

  11. State Requirements for Educational Facilities, 1997.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This document updates Florida's deregulation of construction of educational facilities guidelines, while keeping as the primary focus the safety of the students in pre-K through community college facilities. Organized by the sequence of steps required in the facilities procurement process, it covers general definitions, property…

  12. 7 CFR 1738.19 - Facilities financed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... broadband loans to finance broadband facilities leased under the terms of a capital lease as defined in generally accepted accounting principles. RUS will not make a broadband loan to finance facilities leased... Facilities financed. (a) RUS makes broadband loans to finance the construction, improvement, and...

  13. A Program Management Framework for Facilities Managers

    ERIC Educational Resources Information Center

    King, Dan

    2012-01-01

    The challenge faced by senior facility leaders is not how to execute a single project, but rather, how to successfully execute a large program consisting of hundreds of projects. Senior facilities officers at universities, school districts, hospitals, airports, and other organizations with extensive facility inventories, typically manage project…

  14. 7 CFR 210.13 - Facilities management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Facilities management. 210.13 Section 210.13... Participation § 210.13 Facilities management. Link to an amendment published at 74 FR 66216, Dec. 15, 2009. (a..., the added text is set forth as follows: § 210.13 Facilities management. (c) Food safety program....

  15. 28 CFR 42.521 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Existing facilities. 42.521 Section 42...-Implementation of Section 504 of the Rehabilitation Act of 1973 Accessibility § 42.521 Existing facilities. (a... section does not require a recipient to make each of its existing facilities or every part of a...

  16. 31 CFR 28.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Comparable facilities. 28.410 Section... on the Basis of Sex in Education Programs or Activities Prohibited § 28.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but...

  17. 24 CFR 891.675 - Prohibited facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Prohibited facilities. 891.675... and Individuals-Section 162 Assistance § 891.675 Prohibited facilities. The requirements for prohibited facilities for 202/162 projects are provided in § 891.315, except that Section 202/162...

  18. 13 CFR 113.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Comparable facilities. 113.410... Discrimination on the Basis of Sex in Education Programs Or Activities Prohibited § 113.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex,...

  19. 7 CFR 58.406 - Starter facility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Starter facility. 58.406 Section 58.406 Agriculture....406 Starter facility. A separate starter room or properly designed starter tanks and satisfactory air... precaution shall be taken to prevent contamination of the facility, equipment and the air therein. A...

  20. 30 CFR 784.30 - Support facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Support facilities. 784.30 Section 784.30... Support facilities. Each applicant for an underground coal mining and reclamation permit shall submit a description, plans, and drawings for each support facility to be constructed, used, or maintained within...

  1. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved...

  2. 14 CFR 1253.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Comparable facilities. 1253.410 Section... on the Basis of Sex in Education Programs or Activities Prohibited § 1253.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex,...

  3. 28 CFR 54.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Comparable facilities. 54.410 Section 54... in Education Programs or Activities Prohibited § 54.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such...

  4. 30 CFR 780.38 - Support facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Support facilities. 780.38 Section 780.38... Support facilities. Each applicant for a surface coal mining and reclamation permit shall submit a description, plans, and drawings for each support facility to be constructed, used, or maintained within...

  5. 14 CFR 142.15 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Facilities. 142.15 Section 142.15... OTHER CERTIFICATED AGENCIES TRAINING CENTERS General § 142.15 Facilities. (a) An applicant for, or..., sanitation, and health codes; and (2) The facilities used for instruction are not routinely subject...

  6. 43 CFR 41.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Comparable facilities. 41.410 Section 41... Basis of Sex in Education Programs or Activities Prohibited § 41.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but...

  7. 30 CFR 57.6161 - Auxiliary facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary facilities. 57.6161 Section 57.6161...-Underground Only § 57.6161 Auxiliary facilities. (a) Auxiliary facilities used to store explosive material near work places shall be wooden, box-type containers equipped with covers or doors, or...

  8. 24 CFR 1710.214 - Recreational facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Recreational facilities. 1710.214... § 1710.214 Recreational facilities. (a) Submit a synopsis of the proposed plans and estimated cost of any proposed or partially constructed recreational facility disclosed in § 1710.114. This item should...

  9. 34 CFR 106.33 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Comparable facilities. 106.33 Section 106.33 Education... Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 106.33 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex,...

  10. 24 CFR 891.220 - Prohibited facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Prohibited facilities. 891.220 Section 891.220 Housing and Urban Development Regulations Relating to Housing and Urban Development... Housing for the Elderly § 891.220 Prohibited facilities. Projects may not include facilities...

  11. 28 CFR 540.41 - Visiting facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Visiting facilities. 540.41 Section 540... WITH PERSONS IN THE COMMUNITY Visiting Regulations § 540.41 Visiting facilities. The Warden shall have... have a portion of the visiting room equipped and set up to provide facilities for the children...

  12. 36 CFR 13.182 - Temporary facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Temporary facilities. 13.182... NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins Use of Temporary Facilities Related to Taking Fish and Wildlife § 13.182 Temporary facilities. In a national preserve where the taking of fish and wildlife...

  13. Mission analysis report - deactivation facilities at Hanford

    SciTech Connect

    Lund, D.P.

    1996-09-27

    This document examines the portion of the Hanford Site Cleanup Mission that deals with facility deactivation. How facilities get identified for deactivation, how they enter EM-60 for deactivation, programmatic alternatives to perform facility deactivation, the deactivation process itself, key requirements and objectives associated with the deactivation process, and deactivation planning are discussed.

  14. 9 CFR 3.26 - Facilities, indoor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals...

  15. 9 CFR 3.26 - Facilities, indoor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals...

  16. Planning and Managing the Campus Facilities Portfolio

    ERIC Educational Resources Information Center

    Daigneau, William A., Ed.

    2003-01-01

    The campus and facilities of a college should be managed using the same principles as any other investment in an institution's financial portfolio. Stemming from the APPA/National Association of College & University Business Officers (NACUBO) Institute for Facilities Finance, this book addresses the totality of managing the facilities investment…

  17. Maintenance Staffing Guidelines For Educational Facilities.

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, Alexandria, VA.

    The purpose of this publication is to provide a resource or guide for educational facilities in establishing or developing a maintenance trades organization that is sufficient to accomplish basic facilities maintenance functions. The guidelines are intended to suggest staffing levels for those routine facilities maintenance activities that are…

  18. 48 CFR 2945.302 - Providing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Providing facilities. 2945... GOVERNMENT PROPERTY Providing Government Property to Contractors 2945.302 Providing facilities. The HCA is authorized to make the determination to provide facilities to a contractor as prescribed in FAR 45.302-1(a)(4)....

  19. 45 CFR 86.33 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Comparable facilities. 86.33 Section 86.33 Public... Basis of Sex in Education Programs or Activities Prohibited § 86.33 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but...

  20. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  1. 9 CFR 3.25 - Facilities, general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea Pigs and Hamsters Facilities and Operating Standards § 3.25 Facilities, general. (a) Structural strength. Indoor and outdoor housing facilities for guinea pigs or hamsters shall be structurally sound...

  2. Planning Requirements for Small School Facilities.

    ERIC Educational Resources Information Center

    Davis, J. Clark; McQueen, Robert

    The unique requirements of small school facilities, designed to handle multiple curricular functions within the same operational space, necessitate the creation of educational specifications tying the curriculum to that portion of the facility in which each curriculum component will be implemented. Thus, in planning the facility the major concern…

  3. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation,...

  4. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation,...

  5. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation,...

  6. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation,...

  7. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation,...

  8. 18 CFR 154.307 - Joint facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Joint facilities. 154... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment... in the subject rate change and are associated with joint facilities. The methods used in making...

  9. 18 CFR 154.307 - Joint facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Joint facilities. 154... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment... in the subject rate change and are associated with joint facilities. The methods used in making...

  10. 18 CFR 154.307 - Joint facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Joint facilities. 154... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment... in the subject rate change and are associated with joint facilities. The methods used in making...

  11. 18 CFR 154.307 - Joint facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Joint facilities. 154... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment... in the subject rate change and are associated with joint facilities. The methods used in making...

  12. 18 CFR 154.307 - Joint facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Joint facilities. 154... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment... in the subject rate change and are associated with joint facilities. The methods used in making...

  13. 10 CFR 75.10 - Facility information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Facility information. 75.10 Section 75.10 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Facility and Location Information § 75.10 Facility information. (a) Each applicant, licensee, or...

  14. 10 CFR 75.10 - Facility information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Facility information. 75.10 Section 75.10 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Facility and Location Information § 75.10 Facility information. (a) Each applicant, licensee, or...

  15. 10 CFR 75.10 - Facility information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Facility information. 75.10 Section 75.10 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Facility and Location Information § 75.10 Facility information. (a) Each applicant, licensee, or...

  16. 10 CFR 75.10 - Facility information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Facility information. 75.10 Section 75.10 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Facility and Location Information § 75.10 Facility information. (a) Each applicant, licensee, or...

  17. 10 CFR 75.10 - Facility information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Facility information. 75.10 Section 75.10 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Facility and Location Information § 75.10 Facility information. (a) Each applicant, licensee, or...

  18. 21 CFR 1271.190 - Facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.190 Facilities. (a) General. Any..., transmission, or spread of communicable disease. (b) Facility cleaning and sanitation. (1) You must maintain... procedures for facility cleaning and sanitation for the purpose of preventing the introduction,...

  19. Fast Flux Test Facility (FFTF) maintenance provisions

    SciTech Connect

    Marshall, J.L.

    1981-05-01

    The Fast Flux Test Facility (FFTF) was designed with maintainability as a primary parameter, and facilities and provisions were designed into the plant to accommodate the maintenance function. This paper describes the FFTF and its systems. Special maintenance equipment and facilities for performing maintenance on radioactive components are discussed. Maintenance provisions designed into the plant to enhance maintainability are also described.

  20. Planning and Equipping Industrial Arts Facilities.

    ERIC Educational Resources Information Center

    Maine State Dept. of Educational and Cultural Services, Augusta. Bureau of Vocational Education.

    Architectural details, planning, and facility guidelines for industrial arts facilities are given, with data on planning the number, shape, size, and location of school shops. Industrial art programing and performance criteria for varying levels of education are discussed with regard for the different shop curriculums. The facility planning is…

  1. 9 CFR 3.26 - Facilities, indoor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals...

  2. 45 CFR 63.37 - Leasing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Leasing facilities. 63.37 Section 63.37 Public... OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION Special Provisions § 63.37 Leasing facilities. In the case of a project involving the leasing of a facility, the grantee shall demonstrate...

  3. Facility Consideration for Handicapped Intramural Participants.

    ERIC Educational Resources Information Center

    McAvaddy, Jim

    The author discusses the specifics of planning new facilities and restructuring existing ones for intramural and recreational use by handicapped and normal individuals. Detailed are suggestions for general accessibility (including parking, ramps and door hardware aspects), toilet facilities, swimming pools, and such miscellaneous facilities as…

  4. 40 CFR 35.2030 - Facilities planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Facilities planning. 35.2030 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2030 Facilities planning. (a) General. (1) Facilities planning consists of those necessary plans and studies which directly relate...

  5. Hanford facilities tracer study report (315 Water Treatment Facility)

    SciTech Connect

    Ambalam, T.

    1995-04-14

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations.

  6. National Ignition Facility (NIF) FY2015 Facility Use Plan

    SciTech Connect

    Folta, P.; Wisoff, Jeff

    2014-12-18

    Major features of the FY2015 NIF Use Plan include: • Performing a record number of layered DT experiments with 28 planned compared with 15 in FY2014. Executing the first plutonium experiments on the NIF in support of the Science Campaigns. • Over 300 targets shots, a 57% increase compared to FY14. This is a stretch goal defined in the 120-Day Study document, and relies upon the success of many shot-rate improvement actions, as well as on the distribution of shot type selected by the users. While the Plan is consistent with this goal, the increased proportion of layered DT experiments described above reduces the margin against this goal. • Commissioning of initial ARC capability, which will support both SSP-HED and SSPICF programs. • Increase in days allocated to Discovery Science to a level that supports an ongoing program for academic use of NIF and an annual solicitation for new proposals. • Six Facility Maintenance and Reconfiguration (FM&R) periods totaling 30 days dedicated to major facility maintenance and modifications. • Utilization of the NIF Facility Advisory Schedule Committee (FASC) to provide stakeholder review and feedback on the NIF schedule. The Use Plan assumes a total FY2015 LLNL NIF Operations funding in MTE 10.7 of $229.465M and in MTE 10.3 of 47.0M. This Use Plan will be revised in the event of significant changes to the FY2015 funding or if NNSA provides FY2016 budget guidance significantly reduced compared to FY2015.

  7. 33 CFR 127.701 - Security on existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Security § 127.701 Security on...

  8. 33 CFR 106.210 - OCS Facility Security Officer (FSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Requirements § 106.210 OCS Facility Security Officer (FSO). (a)...

  9. 33 CFR 106.230 - OCS facility recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Requirements § 106.230 OCS facility recordkeeping requirements. (a)...

  10. 33 CFR 106.210 - OCS Facility Security Officer (FSO).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Requirements § 106.210 OCS Facility Security Officer (FSO). (a)...

  11. 33 CFR 106.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.305 Facility Security Assessment (FSA)...

  12. 33 CFR 106.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.305 Facility Security Assessment (FSA)...

  13. 33 CFR 106.210 - OCS Facility Security Officer (FSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Requirements § 106.210 OCS Facility Security Officer (FSO). (a)...

  14. 33 CFR 106.210 - OCS Facility Security Officer (FSO).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Requirements § 106.210 OCS Facility Security Officer (FSO). (a)...

  15. 33 CFR 106.230 - OCS facility recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Requirements § 106.230 OCS facility recordkeeping requirements. (a)...

  16. 33 CFR 106.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.305 Facility Security Assessment (FSA)...

  17. 33 CFR 106.230 - OCS facility recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Requirements § 106.230 OCS facility recordkeeping requirements. (a)...

  18. 33 CFR 106.230 - OCS facility recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Requirements § 106.230 OCS facility recordkeeping requirements. (a)...

  19. 33 CFR 106.210 - OCS Facility Security Officer (FSO).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Requirements § 106.210 OCS Facility Security Officer (FSO). (a)...

  20. 33 CFR 106.230 - OCS facility recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Requirements § 106.230 OCS facility recordkeeping requirements. (a)...

  1. Facility Interface Capability Assessment (FICA) project report

    SciTech Connect

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  2. 42 CFR 440.140 - Inpatient hospital services, nursing facility services, and intermediate care facility services...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Inpatient hospital services, nursing facility... Definitions § 440.140 Inpatient hospital services, nursing facility services, and intermediate care facility... section 1903(i)(4) of the Act and subpart H of part 456 of this chapter. (b) Nursing facility...

  3. 26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Exempt facility bonds: solid waste disposal... and Local Bonds § 1.142(a)(6)-1 Exempt facility bonds: solid waste disposal facilities. (a) In general. This section defines the term solid waste disposal facility for purposes of section 142(a)(6)....

  4. 26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Exempt facility bonds: solid waste disposal... and Local Bonds § 1.142(a)(6)-1 Exempt facility bonds: solid waste disposal facilities. (a) In general. This section defines the term solid waste disposal facility for purposes of section 142(a)(6)....

  5. Facilities Performance Indicators Report 2012-13: Tracking Your Facilities Vital Signs

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, 2014

    2014-01-01

    This paper features an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. "The Facilities Performance Indicators Report" is designed for survey…

  6. Facilities Performance Indicators Report, 2004-05. Facilities Core Data Survey

    ERIC Educational Resources Information Center

    Glazner, Steve, Ed.

    2006-01-01

    The purpose of "Facilities Performance Indicators" is to provide a representative set of statistics about facilities in educational institutions. The second iteration of the web-based Facilities Core Data Survey was posted and available to facilities professionals at more than 3,000 institutions in the Fall of 2005. The website offered a printed…

  7. Nuclear electric propulsion development and qualification facilities

    NASA Astrophysics Data System (ADS)

    Dutt, Dale; Thomassen, Keith; Sovey, Jim; Fontana, Mario

    1992-01-01

    This paper summarizes the findings of a Tri-Agency panel; consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD); charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1 thruster developmental testing facility, (2 thruster lifetime testing facility, (3 dynamic energy conversion development and demonstration facility, and (4 advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualification and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000s.

  8. Nuclear electric propulsion development and qualification facilities

    NASA Astrophysics Data System (ADS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-11-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  9. Nuclear electric propulsion development and qualification facilities

    NASA Technical Reports Server (NTRS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-01-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  10. EPA Facility Registry Service (FRS): TRI

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Toxic Release Inventory (TRI) System. TRI is a publicly available EPA database reported annually by certain covered industry groups, as well as federal facilities. It contains information about more than 650 toxic chemicals that are being used, manufactured, treated, transported, or released into the environment, and includes information about waste management and pollution prevention activities. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to TRI facilities once the TRI data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  11. The National Ignition Facility project

    SciTech Connect

    Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.

    1996-06-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KD0), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 {mu}m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, the authors completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program`s site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. This article presents an overview of the NIF project.

  12. Orion: a commissioned user facility

    NASA Astrophysics Data System (ADS)

    Treadwell, P. A.; Allan, P.; Cann, N.; Danson, C.; Duffield, S.; Elsmere, S.; Edwards, R.; Egan, D.; Girling, M.; Gumbrell, E.; Harvey, E.; Hill, M.; Hillier, D.; Hoarty, D.; Hobbs, L.; Hopps, N.; Hussey, D.; Oades, K.; James, S.; Norman, M.; Palmer, J.; Parker, S.; Winter, D.; Bett, T.

    2013-05-01

    The Orion Laser Facility at AWE in the UK consists of ten nanosecond beamlines and two sub-picosecond beamlines. The nanosecond beamlines each nominally deliver 500 J at 351 nm in a 1 ns square temporal profile, but can also deliver a user-definable temporal profile with durations between 0.1 ns and 5 ns. The sub-picosecond beamlines each nominally deliver 500 J at 1053 nm in a 500 fs pulse, with a peak irradiance of greater than 1021 W/cm2. One of the sub-picosecond beamlines can also be frequency-converted to deliver 100 J at 527 nm in a 500 fs pulse, although this is at half the aperture of the 1053 nm beam. Commissioning of all twelve beamlines has been completed, including the 527 nm sub-picosecond option. An overview of the design of the Orion beamlines will be presented, along with a summary of the commissioning and subsequent performance data. The design of Orion was underwritten by running various computer simulations of the beamlines. Work is now underway to validate these simulations against real system data, with the aim of creating predictive models of beamline performance. These predictive models will enable the user's experimental requirements to be critically assessed ahead of time, and will ultimately be used to determine key system settings and parameters. The facility is now conducting high energy density physics experiments. A capability experiment has already been conducted that demonstrates that Orion can generate plasmas at several million Kelvin and several times solid density. From March 2013 15% of the facility operating time will be given over to external academic users in addition to collaborative experiments with AWE scientists.

  13. National Ignition Facility system alignment.

    PubMed

    Burkhart, S C; Bliss, E; Di Nicola, P; Kalantar, D; Lowe-Webb, R; McCarville, T; Nelson, D; Salmon, T; Schindler, T; Villanueva, J; Wilhelmsen, K

    2011-03-10

    The National Ignition Facility (NIF) is the world's largest optical instrument, comprising 192 37 cm square beams, each generating up to 9.6 kJ of 351 nm laser light in a 20 ns beam precisely tailored in time and spectrum. The Facility houses a massive (10 m diameter) target chamber within which the beams converge onto an ∼1 cm size target for the purpose of creating the conditions needed for deuterium/tritium nuclear fusion in a laboratory setting. A formidable challenge was building NIF to the precise requirements for beam propagation, commissioning the beam lines, and engineering systems to reliably and safely align 192 beams within the confines of a multihour shot cycle. Designing the facility to minimize drift and vibration, placing the optical components in their design locations, commissioning beam alignment, and performing precise system alignment are the key alignment accomplishments over the decade of work described herein. The design and positioning phases placed more than 3000 large (2.5 m×2 m×1 m) line-replaceable optics assemblies to within ±1 mm of design requirement. The commissioning and alignment phases validated clear apertures (no clipping) for all beam lines, and demonstrated automated laser alignment within 10 min and alignment to target chamber center within 44 min. Pointing validation system shots to flat gold-plated x-ray emitting targets showed NIF met its design requirement of ±50 μm rms beam pointing to target chamber. Finally, this paper describes the major alignment challenges faced by the NIF Project from inception to present, and how these challenges were met and solved by the NIF design and commissioning teams.

  14. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  15. Facility Interface Capability Assessment (FICA) summary report

    SciTech Connect

    Viebrock, J.M.; Mote, N.; Pope, R.B.

    1992-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from the commercial facilities. In support of the development of the CRWMS, OCRWM sponsored the Facility Interface Capability Assessment (FICA) project. The objective of this project was to assess the capability of each commercial facility to handle various spent nuclear fuel shipping casks. The purpose of this report is to summarize the results of the facility assessments completed within the FICA project. The project was conducted in two phases. During Phase I, the data items required to complete the facility assessments were identified and the data base for the project was created. During Phase II, visits were made to 122 facilities on 76 sites to collect data and information, the data base was updated, and assessments of the cask-handling capabilities at each facility were performed.

  16. WIRELESS FOR A NUCLEAR FACILITY

    SciTech Connect

    Shull, D; Joe Cordaro, J

    2007-03-28

    The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

  17. NASA Regional Planetary Image Facility

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.

    2001-01-01

    The Regional Planetary Image Facility (RPIF) provided access to data from NASA planetary missions and expert assistance about the data sets and how to order subsets of the collections. This ensures that the benefit/cost of acquiring the data is maximized by widespread dissemination and use of the observations and resultant collections. The RPIF provided education and outreach functions that ranged from providing data and information to teachers, involving small groups of highly motivated students in its activities, to public lectures and tours. These activities maximized dissemination of results and data to the educational and public communities.

  18. Consolidated Incineration Facility model videotape

    SciTech Connect

    Krolewski, J F; Augsburger, S T

    1988-01-01

    A Consolidated Incineration Facility (CIF) is in final design for construction at the Savannah River Plant in Aiken, South Carolina. The CIF will detoxify and volume reduce combustible radioactive, hazardous and mixed waste. A study model was constructed during scope development for project authorization to assist with equipment layout and insure sufficient maintenance access. To facilitate the Department of Energy Validation process, a videotape of the model was developed. This ten minute videotape includes general information about the incineration process and a tour of the study model with a discussion of activities in each area. The videotape will be shown and the current status and schedule for the CIF presented.

  19. Federal Facility Agreement progress report

    SciTech Connect

    Not Available

    1993-10-01

    The (SRS) Federal Facility Agreement (FFA) was made effective by the US. Environmental Protection Agency Region IV (EPA) on August 16, 1993. To meet the reporting requirements in Section XXV of the Agreement, the FFA Progress Report was developed. The FFA Progress Report is the first of a series of quarterly progress reports to be prepared by the SRS. As such this report describes the information and action taken to September 30, 1993 on the SRS units identified for investigation and remediation in the Agreement. This includes; rubble pits, runoff basins, retention basin, seepage basin, burning pits, H-Area Tank 16, and spill areas.

  20. The GALATEA Test-facility

    NASA Astrophysics Data System (ADS)

    Abt, I.; Doenmez, B.; Garbini, L.; Irlbeck, S.; Palermo, M.; Schulz, O.

    GALATEA is a test-facility designed to study the properties of Germanium detectors in detail. It is a powerful high precision tool to investigate bulk and surface effects in germanium detectors. A vacuum tank houses an infrared screened volume with a cooled detector inside. A system of three stages allowa a complete scan of the detector. At the moment, a 19-fold segmented Germanium detector is under investigation. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources as well as of a laser beam to study surface effects. The experimental setup is described.

  1. Detailed Facility Report Data Dictionary | ECHO | US EPA

    EPA Pesticide Factsheets

    The Detailed Facility Report Data Dictionary provides users with a list of the variables and definitions that have been incorporated into the Detailed Facility Report. The Detailed Facility Report provides a concise enforcement and compliance history for a facility.

  2. Free floodplains of hazwaste facilities

    SciTech Connect

    Wagner, T.P. )

    1994-03-01

    Only when the waters from last year's flooding along the Mississippi River fully recede will the extent of the damage be known. However, property losses are only the most obvious effects; floods also pose less visible threats by spreading contaminated water and sediment over wide areas. Factories, oil-tank farms, bulk-chemical storage facilities and sewage treatment plants historically have been located along water-ways and within floodplains. Such facilities are built to withstand some flooding; however, a major flood can destroy barriers, rupture storage tanks, and wash out material from hazardous and solid waste landfills, and surface impoundments. Water infiltration can lead to increased leachate production, contaminating groundwater and adjacent surface water. The long-term effects from hazardous materials and waste entering floodwaters during the 1993 flood are significant and difficult to mitigate. Regulations and policies should be evaluated, and practical changes instituted to reduce long-term effects from contaminated floodwaters. Such changes include prohibiting hazardous waste management units in floodplains.

  3. Research facility access & science education

    SciTech Connect

    Rosen, S.P.; Teplitz, V.L.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  4. The Zwicky Transient Facility Camera

    NASA Astrophysics Data System (ADS)

    Dekany, Richard; Smith, Roger M.; Belicki, Justin; Delacroix, Alexandre; Duggan, Gina; Feeney, Michael; Hale, David; Kaye, Stephen; Milburn, Jennifer; Murphy, Patrick; Porter, Michael; Reiley, Daniel J.; Riddle, Reed L.; Rodriguez, Hector; Bellm, Eric C.

    2016-08-01

    The Zwicky Transient Facility Camera (ZTFC) is a key element of the ZTF Observing System, the integrated system of optoelectromechanical instrumentation tasked to acquire the wide-field, high-cadence time-domain astronomical data at the heart of the Zwicky Transient Facility. The ZTFC consists of a compact cryostat with large vacuum window protecting a mosaic of 16 large, wafer-scale science CCDs and 4 smaller guide/focus CCDs, a sophisticated vacuum interface board which carries data as electrical signals out of the cryostat, an electromechanical window frame for securing externally inserted optical filter selections, and associated cryo-thermal/vacuum system support elements. The ZTFC provides an instantaneous 47 deg2 field of view, limited by primary mirror vignetting in its Schmidt telescope prime focus configuration. We report here on the design and performance of the ZTF CCD camera cryostat and report results from extensive Joule-Thompson cryocooler tests that may be of broad interest to the instrumentation community.

  5. Advanced concepts flight simulation facility.

    PubMed

    Chappell, S L; Sexton, G A

    1986-12-01

    The cockpit environment is changing rapidly. New technology allows airborne computerised information, flight automation and data transfer with the ground. By 1995, not only will the pilot's task have changed, but also the tools for doing that task. To provide knowledge and direction for these changes, the National Aeronautics and Space Administration (NASA) and the Lockheed-Georgia Company have completed three identical Advanced Concepts Flight Simulation Facilities. Many advanced features have been incorporated into the simulators - e g, cathode ray tube (CRT) displays of flight and systems information operated via touch-screen or voice, print-outs of clearances, cockpit traffic displays, current databases containing navigational charts, weather and flight plan information, and fuel-efficient autopilot control from take-off to touchdown. More importantly, this cockpit is a versatile test bed for studying displays, controls, procedures and crew management in a full-mission context. The facility also has an air traffic control simulation, with radio and data communications, and an outside visual scene with variable weather conditions. These provide a veridical flight environment to evaluate accurately advanced concepts in flight stations.

  6. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    SciTech Connect

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  7. National Ignition Facility: Experimental plan

    NASA Astrophysics Data System (ADS)

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  8. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility

    SciTech Connect

    Rathbun, R.

    1993-10-01

    Separate review of NMP-NCS-930058, {open_quotes}Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility (U), August 17, 1993,{close_quotes} was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility`s Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2{times}2{times}1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion.

  9. Facility overview for commercial application of selected Rocky Flats facilities

    SciTech Connect

    1996-11-01

    The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative`s Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products.

  10. National Biomedical Tracer Facility: Project definition study

    SciTech Connect

    Heaton, R.; Peterson, E.; Smith, P.

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  11. EPA Facility Registry Service (FRS): RCRA

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of hazardous waste facilities that link to the Resource Conservation and Recovery Act Information System (RCRAInfo). EPA's comprehensive information system in support of the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984, RCRAInfo tracks many types of information about generators, transporters, treaters, storers, and disposers of hazardous waste. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to RCRAInfo hazardous waste facilities once the RCRAInfo data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  12. EPA Facility Registry Service (FRS): RBLC

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the RACT/BACT/LAER Clearinghouse (RBLC). The RBLC database contains case-specific information on the air pollution technologies that have been required to reduce the emission of air pollutions from stationary sources. RACT, or Reasonably Available Control Technology, is required on existing sources in areas that are not meeting national ambient air quality standards. BACT, or Best Available Control Technology, is required on major new or modified sources in clean areas. LAER, or Lowest Achievable Emission Rate, is required on major new or modified sources in non-attainment areas. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to RBLC facilities once the RBLC data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  13. EPA Facility Registry Service (FRS): RMP

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Risk Management Plan (RMP) database. RMP stores the risk management plans reported by companies that handle, manufacture, use, or store certain flammable or toxic substances, as required under section 112(r) of the Clean Air Act (CAA). FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to RMP facilities once the RMP data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  14. Major Facilities for Materials Research and Related Disciplines.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report presents priorities for new facilities and new capabilities at existing facilities with initial costs of at least $5 million. The new facilities in order of priority are: (1) a 6 GeV synchrotron radiation facility; (2) an advanced steady state neutron facility; (3) a 1 to 2 GeV synchrotron radiation facility; and (4) a high intensity…

  15. Active shooter in educational facility.

    PubMed

    Downs, Scott

    2015-01-01

    The last decade has seen several of the most heinous acts imaginable committed against our educational facilities. In light of the recent shooting in Sandy Hook Elementary School in Monroe (Newtown), CT, which took the lives of 20 children and six employees, a new heightened sense of awareness for safety and security among our educational facilities was created.(1) The law enforcement and public-safety community is now looking to work together with many of the educational representatives across the nation to address this issue, which affects the educational environment now and in the future. The US public and private elementary and secondary school systems' population is approximately 55.2 million students with an additional 19.1 million students attending a 2- and 4-year college or university. These same public and private school and degree-granting institutions employ approximately 7.6 million staff members who can be an enormous threshold of potential targets.(2) A terrorist's act, whether domestic, international, or the actions of a Lone Wolf against one of our educational facilities, would create a major rippling effect throughout our nation. Terrorists will stop at nothing to advance their ideology and they must continue to advance their most powerful tool-fear-to further their agenda and mission of destroying our liberty and the advanced civilization of the Western hemisphere. To provide the safety and security for our children and those who are employed to educate them, educational institutions must address this issue as well as nullify the possible threat to our national security. This thesis used official government reports and data interview methodologies to address various concerns from within our nation's educational system. Educational personnel along with safety and security experts identified, describe, and pinpointed the recommended measures that our educational institutions should include to secure our nation from within. These modifications of

  16. Automated protein crystal growth facility

    NASA Technical Reports Server (NTRS)

    Donald, Stacey

    1994-01-01

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is

  17. SRMAFTE facility checkout model flow field analysis

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The Solid Rocket Motor Air Flow Equipment (SRMAFTE) facility was constructed for the purpose of evaluating the internal propellant, insulation, and nozzle configurations of solid propellant rocket motor designs. This makes the characterization of the facility internal flow field very important in assuring that no facility induced flow field features exist which would corrupt the model related measurements. In order to verify the design and operation of the facility, a three-dimensional computational flow field analysis was performed on the facility checkout model setup. The checkout model measurement data, one-dimensional and three-dimensional estimates were compared, and the design and proper operation of the facility was verified. The proper operation of the metering nozzles, adapter chamber transition, model nozzle, and diffuser were verified. The one-dimensional and three-dimensional flow field estimates along with the available measurement data are compared.

  18. Aquaculture Farm Facility Loss Management System

    NASA Astrophysics Data System (ADS)

    Choi, Hyung-Rim; Park, Byoung-Kwon; Park, Yong-Sung; Lee, Chang-Sup; Choi, Ki-Nam; Park, Chang-Hyun; Jo, Yong-Hyun; Lee, Byung-Ha

    The loss of aquaculture farm facilities occurring from natural disasters of accidents can cause not only property damage but also marine environmental pollution and vessel safety accidents. When aquaculture farm facilities have been lost to sink down to the bottom of the water, those should be picked up through direct searches but it is difficult to find them because they cannot be visually identified and they are in the sea. In this study, a system that can efficiently manage aquaculture farm facility loss using a new technology IP-RFID will be presented. By attaching IP-Tags to aquaculture farm facilities, this technology enables the transmission of facility information and locations to diverse users in real time through the IPs and through this, the efficiency of aquaculture farm facility management and supervision can be improved and marine environmental pollution can be reduced.

  19. Assessing the Security Vulnerabilities of Correctional Facilities

    SciTech Connect

    Morrison, G.S.; Spencer, D.S.

    1998-10-27

    The National Institute of Justice has tasked their Satellite Facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps to identi~ the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion fi-om outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees, In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these initial assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.

  20. Establishing and maintaining a facility representative program at DOE nuclear facilities

    SciTech Connect

    Not Available

    1993-08-01

    The purpose of this DOE standard, (Establishing and Maintaining a Facility Representative Program at DOE Nuclear Facilities), is to help ensure that DOE Facility Representatives are selected based on consistently high standards and from the best qualified candidates available, that they receive the training required for them to function effectively, and that their expected duties, responsibilities, and authorities are well understood and accurately documented. To this end, this guidance provides the following practical information: (1) An approach for use in determining the required facility coverage; (2) The duties, responsibilities and authorities expected of a Facility Representative; and (3) The training and qualification expected of a Facility Representative.