Sample records for pcb waste disposal

  1. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB... to manage municipal or industrial solid waste, or in a facility with an approval to dispose of PCB...

  2. 40 CFR 761.215 - Exception reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Exception reporting. (a) A generator of PCB waste... the designated PCB commercial storage or disposal facility within 35 days of the date the waste was... commitments or other factors affecting the facility's disposal capacity, the disposer of PCB waste could not...

  3. 40 CFR 761.215 - Exception reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Exception reporting. (a) A generator of PCB waste... the designated PCB commercial storage or disposal facility within 35 days of the date the waste was... commitments or other factors affecting the facility's disposal capacity, the disposer of PCB waste could not...

  4. 40 CFR 761.219 - One-year exception reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.219 One-year exception reporting. (a) A disposer of... affecting the facility's disposal capacity, the disposer of PCB waste could not dispose of the affected PCBs... PCB Items within 1 year from the date of removal from service for disposal. (d) PCB/radioactive waste...

  5. 40 CFR 761.219 - One-year exception reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.219 One-year exception reporting. (a) A disposer of... affecting the facility's disposal capacity, the disposer of PCB waste could not dispose of the affected PCBs... PCB Items within 1 year from the date of removal from service for disposal. (d) PCB/radioactive waste...

  6. 40 CFR 761.202 - EPA identification numbers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.202 EPA identification numbers. (a) General. Any... identification number from EPA. (4) A disposer of PCB waste shall not accept any PCB waste for disposal without... disposal facility or mobile treatment unit shall not accept waste unless the disposer has received an EPA...

  7. 40 CFR 761.211 - Unmanifested waste report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...

  8. 40 CFR 761.211 - Unmanifested waste report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...

  9. 40 CFR 761.211 - Unmanifested waste report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...

  10. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB remediation waste. 761.61 Section... PROHIBITIONS Storage and Disposal § 761.61 PCB remediation waste. This section provides cleanup and disposal options for PCB remediation waste. Any person cleaning up and disposing of PCBs managed under this section...

  11. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  12. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  13. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  14. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  15. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.345 Form of the waste to be sampled. PCB bulk product waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  16. 40 CFR 761.218 - Certificate of disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...

  17. 40 CFR 761.218 - Certificate of disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...

  18. 40 CFR 761.218 - Certificate of disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...

  19. 40 CFR 761.218 - Certificate of disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...

  20. 40 CFR 761.208 - Use of the manifest.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.208 Use of the manifest. (a)(1) The generator of PCB... dilution. (ii) The PCB waste is accepted by the transporter for transport only to a storage or disposal... disposal facility listed on the manifest. (ii) The next designated transporter of PCB waste. (8) If the PCB...

  1. 40 CFR 761.208 - Use of the manifest.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.208 Use of the manifest. (a)(1) The generator of PCB... dilution. (ii) The PCB waste is accepted by the transporter for transport only to a storage or disposal... disposal facility listed on the manifest. (ii) The next designated transporter of PCB waste. (8) If the PCB...

  2. 40 CFR 761.207 - The manifest-general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.207 The manifest—general..., the earliest date of removal from service for disposal, and the weight in kilograms of the PCB waste..., the date of removal from service for disposal, and weight in kilograms of the PCB waste in each PCB...

  3. 40 CFR 761.207 - The manifest-general requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.207 The manifest—general..., the earliest date of removal from service for disposal, and the weight in kilograms of the PCB waste..., the date of removal from service for disposal, and weight in kilograms of the PCB waste in each PCB...

  4. 40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...

  5. 40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...

  6. 40 CFR 761.218 - Certificate of disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the owner or operator of the disposal facility shall prepare a Certificate of Disposal for the PCBs and PCB...

  7. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  8. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  9. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  10. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  11. 40 CFR 761.356 - Conducting a leach test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...

  12. 40 CFR 761.202 - EPA identification numbers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.202 EPA identification numbers. (a) General. Any generator, commercial storer, transporter, or disposer of PCB waste who is required to have an EPA identification number under this subpart must notify EPA of his/her PCB waste handling activities, using the...

  13. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    .... Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Public Comment. SUMMARY... biphenyl (PCB) disposal regulations regarding PCB bulk product and PCB remediation waste. The proposed... regarding PCB bulk product and PCB remediation waste under regulations promulgated at 40 CFR part 761. The...

  14. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface waters. (6) Solvent disposal, recovery, and/or reuse is in accordance with relevant provisions of... waste shall dispose of or reuse them using one of the following methods: (A) Non-liquid cleaning...-site cleanup and disposal of PCB remediation waste, a uniform placement of concrete, asphalt, or...

  15. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface waters. (6) Solvent disposal, recovery, and/or reuse is in accordance with relevant provisions of... waste shall dispose of or reuse them using one of the following methods: (A) Non-liquid cleaning...-site cleanup and disposal of PCB remediation waste, a uniform placement of concrete, asphalt, or...

  16. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation... a cone; that is, having a circular base with PCB bulk product waste or PCB remediation waste... one pile. If the PCB bulk product waste or PCB remediation waste consists of more than one pile or...

  17. Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of PCB Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

    EPA Pesticide Factsheets

    Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl (PCB) Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

  18. 40 CFR 761.209 - Retention of manifest records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.209 Retention of manifest records. (a) A generator of PCB waste shall keep a copy of each manifest signed in accordance with § 761.208(a)(1) until the... the PCB waste. The copy signed by the commercial storer or disposer shall be retained for at least 3...

  19. 40 CFR 761.348 - Contemporaneous sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  20. 40 CFR 761.348 - Contemporaneous sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  1. 40 CFR 761.348 - Contemporaneous sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  2. 40 CFR 761.216 - Unmanifested waste report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Unmanifested waste report. 761.216... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.216 Unmanifested waste report. (a) If a facility accepts for storage or disposal any PCB waste from an off-site source without an accompanying manifest, or...

  3. 40 CFR 761.216 - Unmanifested waste report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Unmanifested waste report. 761.216... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.216 Unmanifested waste report. (a) If a facility accepts for storage or disposal any PCB waste from an off-site source without an accompanying manifest, or...

  4. 40 CFR 761.346 - Three levels of sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  5. 40 CFR 761.356 - Conducting a leach test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  6. 40 CFR 761.346 - Three levels of sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  7. 40 CFR 761.356 - Conducting a leach test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  8. 40 CFR 761.346 - Three levels of sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  9. 40 CFR 761.356 - Conducting a leach test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  10. 40 CFR 761.356 - Conducting a leach test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  11. 40 CFR 761.208 - Use of the manifest.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.208 Use of the manifest. (a)(1) The generator of PCB... accompany the shipment of PCB waste. (2) For bulk shipments of PCB waste within the United States... PCB waste within the United States which originate at the site of generation, the generator shall send...

  12. 40 CFR 761.348 - Contemporaneous sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Contemporaneous sampling. 761.348... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...

  13. 40 CFR 761.348 - Contemporaneous sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Contemporaneous sampling. 761.348... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...

  14. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  15. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  16. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  17. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  18. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  19. 40 CFR 761.346 - Three levels of sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Three levels of sampling. 761.346... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...

  20. 40 CFR 761.346 - Three levels of sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Three levels of sampling. 761.346... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...

  1. 40 CFR 761.60 - Disposal requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PCB Articles or non-liquid PCB wastes, in a chemical waste landfill which complies with § 761.75 if: (i) [Reserved] (ii) Information is provided to or obtained by the owner or operator of the chemical... described in § 761.75(b)(8)(iii). (b) PCB Articles. This paragraph does not authorize disposal that is...

  2. 40 CFR 761.60 - Disposal requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PCB Articles or non-liquid PCB wastes, in a chemical waste landfill which complies with § 761.75 if: (i) [Reserved] (ii) Information is provided to or obtained by the owner or operator of the chemical... described in § 761.75(b)(8)(iii). (b) PCB Articles. This paragraph does not authorize disposal that is...

  3. 40 CFR 761.60 - Disposal requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PCB Articles or non-liquid PCB wastes, in a chemical waste landfill which complies with § 761.75 if: (i) [Reserved] (ii) Information is provided to or obtained by the owner or operator of the chemical... described in § 761.75(b)(8)(iii). (b) PCB Articles. This paragraph does not authorize disposal that is...

  4. 40 CFR 761.60 - Disposal requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PCB Articles or non-liquid PCB wastes, in a chemical waste landfill which complies with § 761.75 if: (i) [Reserved] (ii) Information is provided to or obtained by the owner or operator of the chemical... described in § 761.75(b)(8)(iii). (b) PCB Articles. This paragraph does not authorize disposal that is...

  5. 40 CFR 761.340 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... leaching characteristics for storage or disposal. (a) Existing accumulations of non-liquid, non-metal PCB bulk product waste. (b) Non-liquid, non-metal PCB bulk product waste from processes that continuously generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...

  6. 40 CFR 761.64 - Disposal of wastes generated as a result of research and development activities authorized under...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... includes: sample preparation, sample extraction, extract cleanup, extract concentration, addition of PCB... concentration of PCBs are unregulated for PCB disposal under this part. (b) All other wastes generated during...

  7. 40 CFR 761.208 - Obtaining manifests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.208 Obtaining manifests. (a)(1) A generator may use... 761.208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL...) Commercial printer; (iii) PCB waste generator, transporter or, designated facility; or (iv) PCB waste broker...

  8. 40 CFR 761.208 - Obtaining manifests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.208 Obtaining manifests. (a)(1) A generator may use... 761.208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL...) Commercial printer; (iii) PCB waste generator, transporter or, designated facility; or (iv) PCB waste broker...

  9. 40 CFR 761.211 - Manifest system-Transporter requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Manifest system—Transporter... storage or disposal facility owned or operated by the generator of the PCB waste. (2) [Reserved] (b...

  10. 40 CFR 761.211 - Manifest system-Transporter requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Manifest system—Transporter... storage or disposal facility owned or operated by the generator of the PCB waste. (2) [Reserved] (b...

  11. 40 CFR 761.359 - Reporting the PCB concentrations in samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting the PCB concentrations in... COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off...

  12. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Determining the PCB concentration of..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation...

  13. 40 CFR 761.209 - Retention of manifest records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.209 Retention of manifest records. (a) A generator of... storage or disposal facility that receives off-site shipments of PCB waste shall retain at the facility... Section 761.209 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  14. 40 CFR 761.209 - Retention of manifest records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.209 Retention of manifest records. (a) A generator of... storage or disposal facility that receives off-site shipments of PCB waste shall retain at the facility... Section 761.209 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  15. Documents About the Approval to Dispose of Less than 50 Parts Per Million (ppm) PCB Remediation Waste Issued to National Rural Electric Cooperative Association (NRECA) Members

    EPA Pesticide Factsheets

    Documents About the Approval to Dispose of Less than 50 Parts Per Million (ppm) Polychlorinated Biphenyl (PCB) Remediation Waste Issued to National Rural Electric Cooperative Association (NRECA) Members

  16. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.« less

  17. 40 CFR 761.210 - Manifest discrepancies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.210 Manifest discrepancies. (a) Manifest discrepancies are differences between the quantity or type of PCB waste designated on the manifest or shipping paper and the quantity or type of PCB waste actually delivered to and received by a designated facility...

  18. 40 CFR 761.340 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance... generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...

  19. 40 CFR 761.202 - EPA identification numbers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false EPA identification numbers. 761.202... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.202 EPA identification numbers. (a) General. Any generator, commercial storer, transporter, or disposer of PCB waste who is required to have an EPA...

  20. 40 CFR 761.202 - EPA identification numbers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false EPA identification numbers. 761.202... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.202 EPA identification numbers. (a) General. Any generator, commercial storer, transporter, or disposer of PCB waste who is required to have an EPA...

  1. 40 CFR 761.202 - EPA identification numbers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false EPA identification numbers. 761.202... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.202 EPA identification numbers. (a) General. Any generator, commercial storer, transporter, or disposer of PCB waste who is required to have an EPA...

  2. 40 CFR 761.205 - Notification of PCB waste activity (EPA Form 7710-53).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.205 Notification of... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Notification of PCB waste activity...

  3. 40 CFR 761.205 - Notification of PCB waste activity (EPA Form 7710-53).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.205 Notification of... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Notification of PCB waste activity...

  4. 40 CFR 761.205 - Notification of PCB waste activity (EPA Form 7710-53).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.205 Notification of... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Notification of PCB waste activity...

  5. 40 CFR 761.205 - Notification of PCB waste activity (EPA Form 7710-53).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.205 Notification of... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Notification of PCB waste activity...

  6. 40 CFR 761.207 - The manifest-general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.207 The manifest—general requirements. (a) A generator who relinquishes control over PCB wastes by transporting, or offering for transport by his own vehicle or by a vehicle owned by another person, PCB waste for commercial off-site...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, G.D.

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of thismore » waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.« less

  8. 40 CFR 761.359 - Reporting the PCB concentrations in samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off...

  9. 40 CFR 761.359 - Reporting the PCB concentrations in samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off...

  10. 40 CFR 761.359 - Reporting the PCB concentrations in samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off...

  11. 40 CFR 761.359 - Reporting the PCB concentrations in samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off...

  12. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  13. EPA Settlement with UConn Resolves Improper PCB Disposal Activity

    EPA Pesticide Factsheets

    The University of Connecticut has taken steps to ensure its PCB waste is properly disposed of in the future to settle claims by the U.S. Environmental Protection Agency (EPA) that it improperly disposed of PCBs during a 2013 renovation project at its Storr

  14. 40 CFR 761.350 - Subsampling from composite samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off.... 761.350 Section 761.350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  15. 40 CFR 761.350 - Subsampling from composite samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off.... 761.350 Section 761.350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  16. 40 CFR 761.350 - Subsampling from composite samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off.... 761.350 Section 761.350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  17. 40 CFR 761.340 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance... generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...

  18. 40 CFR 761.340 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance... generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...

  19. 40 CFR 761.340 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance... generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...

  20. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  1. 40 CFR 761.99 - Other transboundary shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of this subpart, the following transboundary shipments are not considered exports or imports: (a) PCB... disposal. (b) PCB waste in transit, including any residuals resulting from cleanup of spills during transit, through the United States (e.g., from Mexico to Canada, from Canada to Mexico). (c) PCB waste transported...

  2. Decontamination and disposal of PCB wastes.

    PubMed Central

    Johnston, L E

    1985-01-01

    Decontamination and disposal processes for PCB wastes are reviewed. Processes are classed as incineration, chemical reaction or decontamination. Incineration technologies are not limited to the rigorous high temperature but include those where innovations in use of oxident, heat transfer and residue recycle are made. Chemical processes include the sodium processes, radiant energy processes and low temperature oxidations. Typical processing rates and associated costs are provided where possible. PMID:3928363

  3. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.358 Determining the PCB... samples of waste. 761.358 Section 761.358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...

  4. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.358 Determining the PCB... samples of waste. 761.358 Section 761.358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...

  5. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.358 Determining the PCB... samples of waste. 761.358 Section 761.358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...

  6. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.358 Determining the PCB... samples of waste. 761.358 Section 761.358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...

  7. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  8. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  9. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  10. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  11. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  12. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  13. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  14. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  15. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    no author on report

    2014-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) tomore » submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.« less

  16. 40 CFR 761.215 - Manifest discrepancies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Manifest discrepancies. (a) Manifest... Section 761.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... quantity or type of PCB waste designated on the manifest or shipping paper, and the quantity and type of...

  17. 40 CFR 761.215 - Manifest discrepancies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Manifest discrepancies. (a) Manifest... Section 761.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... quantity or type of PCB waste designated on the manifest or shipping paper, and the quantity and type of...

  18. 75 FR 4759 - Polychlorinated Biphenyls: Manufacturing (Import) Exemption for Veolia ES Technical Solutions, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... Protection Agency (EPA) requesting to import up to 20,000 tons of polychlorinated biphenyl (PCB) waste from... requesting to import up to 20,000 tons of PCB waste from various locations in Mexico for disposal at Veolia's...

  19. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  20. 40 CFR 761.212 - Transporter compliance with the manifest.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.212 Transporter compliance with the manifest. (a) The transporter must deliver the entire quantity of PCB waste which he has accepted...

  1. 40 CFR 761.212 - Transporter compliance with the manifest.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.212 Transporter compliance with the manifest. (a) The transporter must deliver the entire quantity of PCB waste which he has accepted...

  2. Dechlorination of small quantities of mixed waste from a DOE site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeffner, S.L.

    1994-12-31

    Sludge from tank bottoms containing PCB`s, radioactivity and hazardous constituents are present in several tanks at one of the National Laboratories. Disposal of the material can proceed if the material is removed from TSCA regulations by decreasing the concentration of the PCB`s to {le}2 ppm. ON the bench scale, this sludge was treated by the DECHLOR/KGME{sup {trademark}} chemical dechlorination process. The levels of PCB`s were reduced to below 2 ppm, allowing the material to be managed outside the TSCA regulations. RUST believes that this is the first successful chemical dechlorination of a radioactive, RCRA listed, PCB bearing waste. A pilotmore » scale unit is available to provide on-site treatment of the remaining waste. Because of the small amounts of waste, treatment costs are high on a per unit volume. As a result of these high costs and other concerns the client is investigating potential non-treatment options of delisting the waste of obtaining a waiver. In the event that this particular waste cannot be delisted or a waiver is not granted, then dechlorination of the waste to remove it from TSCA regulations remains a viable option to allow the material to be disposed.« less

  3. 40 CFR 761.217 - Exception reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.217 Exception reporting. (a)(1) A generator of PCB waste, who does not receive a copy of the manifest with the handwritten signature of the owner or... 761.217 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL...

  4. 40 CFR 761.217 - Exception reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.217 Exception reporting. (a)(1) A generator of PCB waste, who does not receive a copy of the manifest with the handwritten signature of the owner or... 761.217 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL...

  5. FACILITIES EVALUATION OF HIGH EFFICIENCY BOILER DESTRUCTION PCB WASTE

    EPA Science Inventory

    The report gives results of an evaluation of destruction in two different high-efficiency boilers (as an alternative to landfill disposal) of waste (a rendering plant byproduct, yellow grease) found to be contaminated by PCBs from a transformer leak. (The PCB content--under 500 p...

  6. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, N.

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generationmore » of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.« less

  7. 40 CFR 761.210 - Use of the manifest-Generator requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.210 Use of the manifest... remaining copies of the manifest. (c) For shipments of PCB waste within the United States solely by water...

  8. 40 CFR 761.214 - Retention of manifest records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.214 Retention of manifest records. (a)(1) A generator... Section 761.214 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... receives a signed copy from the designated facility which received the PCB waste. This signed copy must be...

  9. 40 CFR 761.214 - Retention of manifest records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.214 Retention of manifest records. (a)(1) A generator... Section 761.214 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... receives a signed copy from the designated facility which received the PCB waste. This signed copy must be...

  10. 40 CFR 761.210 - Use of the manifest-Generator requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.210 Use of the manifest... remaining copies of the manifest. (c) For shipments of PCB waste within the United States solely by water...

  11. Open burning of household waste: Effect of experimental condition on combustion quality and emission of PCDD, PCDF and PCB

    EPA Science Inventory

    Open burning for waste disposal is, in many countries, the dominant source of polychlorinated dibenzodioxins/dibenzofurans and polychlorinated biphenyls (PCDD/PCDF/PCB) release to the environment. To generate emission factors for open burning, experimental pile burns of ca 100 k...

  12. 40 CFR 761.210 - Manifest discrepancies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.210 Manifest discrepancies. (a) Manifest... commercial storage or disposal facility shall attempt to reconcile the discrepancy with the waste generator... Section 761.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  13. 40 CFR 761.210 - Manifest discrepancies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.210 Manifest discrepancies. (a) Manifest... commercial storage or disposal facility shall attempt to reconcile the discrepancy with the waste generator... Section 761.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  14. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Decisions based on PCB concentration... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.298 Decisions based on PCB concentration measurements resulting from sampling. (a) For...

  15. 40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs...-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With... locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after...

  16. 40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs...-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With... locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Deborah L.

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) tomore » submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.« less

  18. Nationwide Risk-Based PCB Remediation Waste Disposal Approvals under Title 40 of the Code of Federal Regulations (CFR) Section 761.61(c)

    EPA Pesticide Factsheets

    This page contains information about Nationwide Risk-Based Polychlorinated Biphenyls (PCBs) Remediation Waste Disposal Approvals under Title 40 of the Code of Federal Regulations (CFR) Section 761.61(c)

  19. 40 CFR 761.99 - Other transboundary shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... disposal. (b) PCB waste in transit, including any residuals resulting from cleanup of spills during transit... from any State to any other State for disposal, regardless of whether the waste enters or leaves the... Section 761.99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  20. 40 CFR 761.99 - Other transboundary shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disposal. (b) PCB waste in transit, including any residuals resulting from cleanup of spills during transit... from any State to any other State for disposal, regardless of whether the waste enters or leaves the... Section 761.99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  1. 40 CFR 761.99 - Other transboundary shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disposal. (b) PCB waste in transit, including any residuals resulting from cleanup of spills during transit... from any State to any other State for disposal, regardless of whether the waste enters or leaves the... Section 761.99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  2. 40 CFR 761.99 - Other transboundary shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disposal. (b) PCB waste in transit, including any residuals resulting from cleanup of spills during transit... from any State to any other State for disposal, regardless of whether the waste enters or leaves the... Section 761.99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  3. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  4. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  5. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  6. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  7. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Decisions based on PCB concentration measurements resulting from sampling. 761.298 Section 761.298 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761...

  8. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Decisions based on PCB concentration measurements resulting from sampling. 761.298 Section 761.298 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761...

  9. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Decisions based on PCB concentration measurements resulting from sampling. 761.298 Section 761.298 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761...

  10. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Decisions based on PCB concentration measurements resulting from sampling. 761.298 Section 761.298 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761...

  11. Food contamination by PCBs and waste disposal crisis: Evidence from goat milk in Campania (Italy).

    PubMed

    Ferrante, M C; Fusco, G; Monnolo, A; Saggiomo, F; Guccione, J; Mercogliano, R; Clausi, M T

    2017-11-01

    The study aims at investigating whether, and if so, to what extent the strong presence of urban and industrial waste in a territory may cause PCB contamination in goat milk produced therein. We compared PCB concentrations in goat milk from three different locations in the Campania region (Italy). One of the three locations, together with its surrounding area, has long suffered from illegal waste disposal and burning mainly by the so-called Ecomafia. The other locations, not involved in these illegal activities, allowed us to create a control group of goats with characteristics very similar to those of main interest. In milk from the waste contaminated area we identified high PCB concentrations (six indicator PCBs amounted to 170 ng g -1 on lipid weight, on average), whereas there was an almost total absence of such pollutants in milk from the control group. Concentrations of the six indicator PCBs were above the current European maximum residue limit fixed by the EU. At the same time, we found a lower average value of lipid content and a negative relationship between lipid content and PCB concentrations. Evidence indicates the potential health risk for consumers living in areas involved in illegal dumping of waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 40 CFR 761.185 - Certification program and retention of records by importers and persons generating PCBs in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturing processes in which PCBs are generated when the PCB level in products leaving any manufacturing... imported products when the PCB concentration of products being imported is greater than 2 µg/g for any... process waste disposal. (2) Whether determinations of compliance are based on actual monitoring of PCB...

  13. 40 CFR 761.65 - Storage for disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Storage for disposal. 761.65 Section... PROHIBITIONS Storage and Disposal § 761.65 Storage for disposal. This section applies to the storage for... greater. (a)(1) Storage limitations. Any PCB waste shall be disposed of as required by subpart D of this...

  14. 40 CFR 761.65 - Storage for disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Storage for disposal. 761.65 Section... PROHIBITIONS Storage and Disposal § 761.65 Storage for disposal. This section applies to the storage for... greater. (a)(1) Storage limitations. Any PCB waste shall be disposed of as required by subpart D of this...

  15. Environmental Compliance Assessment System (ECAS)

    DTIC Science & Technology

    1993-09-01

    hazardous waste onsite? How and where? 8. Do satellite/offpost facilitiesminstallations (i.e., USARCs) transport hazardous wastes to the installation...Contractor ? In-house personnel_ ? 3. Is waste transported off-installation for disposal: a. In landfills? b. In incinerators? c. Transfer stations? d...Does the installation dispose of PCBs or PCB items at the installation? 4. Does the facility transport PCBs? 5. Is there a working management system

  16. Kettleman Hills (en español)

    EPA Pesticide Factsheets

    EPA is currently reviewing an application from Chemical Waste Management, Inc. (CWM) to renew and modify its permits to store and dispose of polychlorinated biphenyl (PCB) waste at its Kettleman Hills Facility (KHF).

  17. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  18. Waste printed circuit board recycling techniques and product utilization.

    PubMed

    Hadi, Pejman; Xu, Meng; Lin, Carol S K; Hui, Chi-Wai; McKay, Gordon

    2015-01-01

    E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly "recycling" has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...

  20. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...

  1. 40 CFR 761.72 - Scrap metal recovery ovens and smelters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Scrap metal recovery ovens and..., AND USE PROHIBITIONS Storage and Disposal § 761.72 Scrap metal recovery ovens and smelters. Any person... § 761.60(b), metal surfaces in PCB remediation waste regulated under § 761.61, or metal surfaces in PCB...

  2. Comparative analysis of polychlorinated biphenyl decomposition processes in air or argon (+oxygen) thermal plasma.

    PubMed

    Kostic, Z G; Stefanovic, P L; Pavlović, P B

    2000-07-10

    Thermal plasmas may solve one of the biggest toxic waste disposal problems. The disposal of polychlorinated biphenyls (PCBs) is a long standing problem which will get worse in the coming years, when 180000 tons of PCB-containing wastes are expected to accumulate in Europe (Hot ions break down toxic chemicals, New Scientist, 16 April 1987, p. 24.). The combustion of PCBs in ordinary incinerators (at temperature T approximately 1100 K, as measured near the inner wall of the combustion chamber (European Parliament and Council Directive on Incineration of Waste (COM/99/330), Europe energy, 543, Sept. 17, 1999, 1-23.)) can cause more problems than it solves, because highly toxic dioxins and dibenzofurans are formed if the combustion temperature is too low (T<1400 K). The paper presents a thermodynamic consideration and comparative analysis of PCB decomposition processes in air or argon (+oxygen) thermal plasmas.

  3. 40 CFR 761.65 - Storage for disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... storage of non-liquid PCB/ radioactive wastes must be designed to prevent the buildup of liquids if such... conditions: (i) The waste is placed in a pile designed and operated to control dispersal of the waste by wind...) A run-on control system designed, constructed, operated, and maintained such that: (1) It prevents...

  4. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... methods or locations will not pose an unreasonable risk or injury to health or the environment. EPA may... method will not pose an unreasonable risk of injury to health or the environment. (d) Disposal as daily.... 761.62 Section 761.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  5. [Oxidative damage and immunotoxicity effect of people who exposed to electronic waste].

    PubMed

    Zhang, Ronghua; Xu, Caiju; Shen, Haitao; Tang, Yun; Meng, Jia; Lu, Wei; Wang, Xiaofeng; Lou, Xiaoming; Song, Yanhua; Han, Guangen; Cai, Delei; Ding, Gangqiang

    2012-03-01

    To investigate the relationship between risk factors and the effects of antioxidation and immune function in adults who exposed to electronic waste( e-waste). The exposed group was chosen from the people who lived in the e-waste disposing areas of Zhejiang province. The control group was chosen from people who lived in unpolluted area. Anticoagulation and coagulation peripheral venous blood samples were collected from 40 exposed persons (22 employees, 18 non-employees) and 36 exposed persons respectively. The oxidative, immune, Cd, Pb, Cr, Hg, and PCB indexes were detected. The contents of Cd, total PCB, MDA statistically increased in exposed group comparing with the control group (P < 0.05). The activity of SOD, GSH-Px, the percentage of helper/inducer T lymphocytes (CD4+) and the content of Cr in exposed group were less than those in the controlgroup (P < 0.05). Oxidative damage and immunotoxicity were observed in the group that lived in e-waste disposing areas. These effects were mainly related to the increase of Cd content or Cd and Pb contents in peripheral venous blood.

  6. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  7. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  8. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  9. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  10. Incineration of polychlorinated biphenyls in high-efficiency boilers: a viable disposal option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, G.T.; Wolf, P.; Fennelly, P.F.

    1984-03-01

    Approximately 750 million pounds of polychlorinated biphenyls (PCBs) remain in service today in the United States. The eventual disposition of these materials and the vast stock piles already removed from commerce and use represents a formidable problem to both U.S. industry (e.g., utility companies) and federal and state environmental agencies. Despite the fact that available disposal options include the use of high-temperature incineration, disposal efforts have been significantly hampered by the lack of approved incineration facilities. The results of comprehensive PCB incineration programs conducted in accordance with EPA test protocols at each of three high-efficiency boiler sites are presented. Fluemore » gas sampling procedures included the use of both the modified method 5 PCB train and the Source Assessment Sampling System (SASS). Analytical protocols included the use of gas chromatography (GC/ECD) and combined gas chromatography/mass spectrometry (GC/MS). PCB destruction efficiency data for each of nine test runs were in excess of the 99.9% values assumed by the EPA regulation. The cumulative data set lends further credibility to the use of high-efficiency boilers as a viable disposal option for PCB contaminated (50-500 ppm) waste oils when conducted in strict accordance with existing EPA protocols.« less

  11. Profiles of polychlorinated biphenyls (PCBs) in cement kilns co-processing solid waste.

    PubMed

    Jin, Rong; Zhan, Jiayu; Liu, Guorui; Zhao, Yuyang; Zheng, Minghui; Yang, Lili; Wang, Mei

    2017-05-01

    Co-incineration of sewage sludge in cement kilns can be used for its disposal. In the present study, samples were collected from three cement production runs where sewage sludge and other wastes (e.g. municipal solid waste, waste acid and wet sewage sludge) were co-processed. The samples were analyzed for polychlorinated biphenyls (PCBs). The dioxin-like (dl)-PCB concentrations in the stack gases from run 1, 2, and 3 were 344.6, 548.7, and 104.3 pg m -3 , respectively. The toxic equivalency (TEQs) values for runs 1, 2, and 3 were 5.6, 8.9, and 0.7 pg TEQ Nm -3 , respectively. Calculation of net emissions for the three runs indicated that the co-incineration of other waste in addition to sewage sludge in cement kilns would not increase emission of the dl-PCBs. PCB concentrations in samples from the suspension boiler and humidifier tower, kiln-end bag filter, and cyclone preheater were much higher than those in samples from the kiln head area, indicating that these stages will be important for controlling PCB formation. Chlorinated biphenyl (CB)-77, CB-105 and CB-118 were the major dl-PCB congeners, CB-52, CB-101 were the major indicator PCB congeners, and tetra-CB to hexa-CB were the major homologues for the total input or output materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Alcoa Public Notice Documents

    EPA Pesticide Factsheets

    This document is the United States Environmental Protection Agency, Region 2's (EPA Region 2) response to and approval of the request for a risk-based disposal of polychlorinated biphenyl (PCB) remediation waste (as defined at 40 C.F.R. §761.3).

  13. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... molded rubber parts and components; applied dried paints, varnishes, waxes or other similar coatings or... released or dispersed by wind or other action; or (2) Under asphalt as part of a road bed. [63 FR 35451...

  14. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... molded rubber parts and components; applied dried paints, varnishes, waxes or other similar coatings or... released or dispersed by wind or other action; or (2) Under asphalt as part of a road bed. [63 FR 35451...

  15. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... molded rubber parts and components; applied dried paints, varnishes, waxes or other similar coatings or... released or dispersed by wind or other action; or (2) Under asphalt as part of a road bed. [63 FR 35451...

  16. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... molded rubber parts and components; applied dried paints, varnishes, waxes or other similar coatings or... released or dispersed by wind or other action; or (2) Under asphalt as part of a road bed. [63 FR 35451...

  17. Alcoa Building 12 Site

    EPA Pesticide Factsheets

    This document is the United States Environmental Protection Agency, Region 2's (EPA Region 2) response to and approval of the request for a risk-based disposal of polychlorinated biphenyl (PCB) remediation waste (as defined at 40 C.F.R. §761.3).

  18. 40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sites at this example location: a loading dock, a transformer storage lot, and a disposal pit. The... (three samples). The non-liquid PCB remediation wastes present at the transformer storage lot are oily...

  19. 40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sites at this example location: a loading dock, a transformer storage lot, and a disposal pit. The... (three samples). The non-liquid PCB remediation wastes present at the transformer storage lot are oily...

  20. Upgrading pyrolytic residue from waste tires to commercial carbon black.

    PubMed

    Zhang, Xue; Li, Hengxiang; Cao, Qing; Jin, Li'e; Wang, Fumeng

    2018-05-01

    The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.

  1. 40 CFR 761.209 - Number of copies of a manifest.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.209 Number of copies of a manifest... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Number of copies of a manifest. 761.209 Section 761.209 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  2. 40 CFR 761.209 - Number of copies of a manifest.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.209 Number of copies of a manifest... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Number of copies of a manifest. 761.209 Section 761.209 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  3. 40 CFR 761.50 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conditions apply to all PCB waste storage and disposal: (1) No person may open burn PCBs. Combustion of PCBs approved under § 761.60 (a) or (e), or otherwise allowed under part 761, is not open burning. (2) No person... accordance with § 761.62. Any person may decontaminate concrete surfaces upon which PCBs have been spilled in...

  4. 40 CFR 761.50 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conditions apply to all PCB waste storage and disposal: (1) No person may open burn PCBs. Combustion of PCBs approved under § 761.60 (a) or (e), or otherwise allowed under part 761, is not open burning. (2) No person... accordance with § 761.62. Any person may decontaminate concrete surfaces upon which PCBs have been spilled in...

  5. 40 CFR 761.50 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conditions apply to all PCB waste storage and disposal: (1) No person may open burn PCBs. Combustion of PCBs approved under § 761.60 (a) or (e), or otherwise allowed under part 761, is not open burning. (2) No person... accordance with § 761.62. Any person may decontaminate concrete surfaces upon which PCBs have been spilled in...

  6. 40 CFR 761.50 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... conditions apply to all PCB waste storage and disposal: (1) No person may open burn PCBs. Combustion of PCBs approved under § 761.60 (a) or (e), or otherwise allowed under part 761, is not open burning. (2) No person... accordance with § 761.62. Any person may decontaminate concrete surfaces upon which PCBs have been spilled in...

  7. 40 CFR 761.50 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditions apply to all PCB waste storage and disposal: (1) No person may open burn PCBs. Combustion of PCBs approved under § 761.60 (a) or (e), or otherwise allowed under part 761, is not open burning. (2) No person... accordance with § 761.62. Any person may decontaminate concrete surfaces upon which PCBs have been spilled in...

  8. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for the disposal of PCBs and PCB Items are as follows: (1) Soils. The landfill site shall be located..., the soil shall have a high clay and silt content with the following parameters: (i) In-place soil thickness, 4 feet or compacted soil liner thickness, 3 feet; (ii) Permeability (cm/sec), equal to or less...

  9. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for the disposal of PCBs and PCB Items are as follows: (1) Soils. The landfill site shall be located..., the soil shall have a high clay and silt content with the following parameters: (i) In-place soil thickness, 4 feet or compacted soil liner thickness, 3 feet; (ii) Permeability (cm/sec), equal to or less...

  10. 40 CFR 761.207 - The manifest-general requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) (2) For each PCB Article Container or PCB Container, the unique identifying number, type of PCB waste... PCB Article not in a PCB Container or PCB Article Container, the serial number if available, or other... only containing PCB waste. However, some States track PCB wastes as State-regulated hazardous wastes...

  11. 40 CFR 761.207 - The manifest-general requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) (2) For each PCB Article Container or PCB Container, the unique identifying number, type of PCB waste... PCB Article not in a PCB Container or PCB Article Container, the serial number if available, or other... only containing PCB waste. However, some States track PCB wastes as State-regulated hazardous wastes...

  12. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less

  13. Interim Basis for PCB Sampling and Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-01-18

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the US. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposalmore » approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QAlG4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1 A, Vol. IV, Section 4.16 (Banning 1999).« less

  14. Interim Basis for PCB Sampling and Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-03-20

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the U.S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposalmore » approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1A, Vol. IV, Section 4.16 (Banning 1999).« less

  15. 40 CFR 761.240 - Scope and definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS Determining a PCB Concentration for Purposes of Abandonment or Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.240 Scope... determine its PCB surface concentration for abandonment-in-place or removal and disposal off-site in...

  16. 40 CFR 750.11 - Filing of petitions for exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Any person seeking an exemption from the PCB manufacturing ban imposed by section 6(e)(3)(A) of TSCA... to: (1) PCB use, which includes storage for use or reuse, manufacture, processing related to...., Washington, DC 20460-0001. (2) PCB disposal, which includes cleanup, storage for disposal, processing related...

  17. 40 CFR 761.257 - Determining the regulatory status of sampled pipe.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COMMERCE, AND USE PROHIBITIONS Determining a PCB Concentration for Purposes of Abandonment or Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe... disposal of a pipe segment that has been sampled, the sample results for that segment determines its PCB...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When themore » proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.« less

  19. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling bulk PCB remediation waste..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.265 Sampling bulk PCB remediation waste and porous surfaces...

  20. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling liquid PCB remediation waste..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase...

  1. Characteristics and potential sources of polychlorinated biphenyl pollution in a suburban area of Guangzhou, southern China

    NASA Astrophysics Data System (ADS)

    Li, Qilu; Wang, Yan; Luo, Chunling; Li, Jun; Zhang, Gan

    2017-05-01

    In this study, 52 paired gas and particle samples were collected from a suburban field in Guangzhou in 2012 using a high-volume active air sampler; they were then analysed for 30 polychlorinated biphenyl (PCB) congeners via gas chromatography with tandem mass spectrometry. Total PCB concentrations ranged from 97.4 to 853 pg m-3. This was a moderate level compared with other cities, undeveloped areas, and electronic waste disposal sites. Atmospheric concentrations of PCBs did not exhibit notable diurnal or seasonal variations, except for a few high measurement. Tetra- and tri-CBs were the predominant PCB compounds, with an average combined contribution of 81.9%. CB-77 was the dominant congener in the particle phase due to a few samples with extremely high mass fraction of CB-77 and relatively low concentrations of other PCBs. Based on measurements of pollution characteristics including diurnal and seasonal variations, we used correlation analysis, principal component analysis and back trajectory modeling to deduce that electronic manufacturing and recycling activities, pigment/paint production, and waste incineration plants are possible sources of PCBs in Guangzhou. Of these sources, the high observed contributions of CB-77 originated mainly from the pigment/paint industry.

  2. Safety measures for prevention of PCB accidents.

    PubMed Central

    Pajari, J

    1985-01-01

    This paper attempts to clarify the most common measures available for the fire and electrical engineer in the prevention of polychlorinated biphenyl (PCB) hazards. It points out the risks and the potential for making large risks involved in the use of transformers and capacitors more manageable. The focus in solving the PCB problem is on priority. This should be reflected in the agenda of the workshop: it should discuss not only transformers and capacitors as such, but deal more with questions concerning waste disposal, getting correct information to people on substances containing PCBs and on the proper and nonpanicky handling of such substances. The PCB issue does not lend itself to any black and white solution. Instead, a number of different aspects have to be taken into account. Any solutions arrived at are therefore always compromises between risk evaluation and cost effectiveness. Reduction of PCB risks does not have to result, for example, in an increase in fire risks. It is preferable to move step by step and avoid making irretractable decisions. Alternatives available for replacing PCB-filled devices or the widely used method of refilling PCB-filled transformers with silicone oils are not discussed. Refilling is not dealt with because its capacity to reduce the fire risk sufficiently in locations where these transformers are usually found in northern Europe is not known with certainty. PMID:3928364

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J.-J.; Chen, S.-Y.; Environmental Science Division

    This report contains data and analyses to support the approval of authorized release limits for the clearance from radiological control of polychlorinated biphenyl (PCB) capacitors in Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois. These capacitors contain PCB oil that must be treated and disposed of as hazardous waste under the Toxic Substances Control Act (TSCA). However, they had been located in radiological control areas where the potential for neutron activation existed; therefore, direct release of these capacitors to a commercial facility for PCB treatment and landfill disposal is not allowable unless authorized release has been approved. Radiologicalmore » characterization found no loose contamination on the exterior surface of the PCB capacitors; gamma spectroscopy analysis also showed the radioactivity levels of the capacitors were either at or slightly above ambient background levels. As such, conservative assumptions were used to expedite the analyses conducted to evaluate the potential radiation exposures of workers and the general public resulting from authorized release of the capacitors; for example, the maximum averaged radioactivity levels measured for capacitors nearest to the beam lines were assumed for the entire batch of capacitors. This approach overestimated the total activity of individual radionuclide identified in radiological characterization by a factor ranging from 1.4 to 640. On the basis of this conservative assumption, the capacitors were assumed to be shipped from Argonne to the Clean Harbors facility, located in Deer Park, Texas, for incineration and disposal. The Clean Harbors facility is a state-permitted TSCA facility for treatment and disposal of hazardous materials. At this facility, the capacitors are to be shredded and incinerated with the resulting incineration residue buried in a nearby landfill owned by the company. A variety of receptors that have the potential of receiving radiation exposures were analyzed. Based on the dose assessment results, it is indicated that, if the disposition activities are completed within a year, the maximum individual dose would be about 0.021 mrem/yr, which is about 0.02% of the primary dose limit of 100 mrem/yr set by U.S. Department of Energy (DOE) for members of the public. The maximum individual dose was associated with a conservative and unlikely scenario involving a hypothetical farmer who intruded the landfill area to set up a subsistence living above the disposal area 30 years after burial of the incineration residue. Potential collective dose for worker and the general public combined was estimated to be less than 4 x 10{sup -4} person-rem/yr, about 0.004% of the DOE authorized release objective of 10 person-rem/yr for collective exposure. In reality, the actual radiation doses incurred by workers and the general public are expected to be at least two orders of magnitude lower than the estimated values. To follow the ALARA (as low as reasonably achievable) principle of reducing potential radiation exposures associated with authorized release of the PCB capacitors, a dose constraint of 1 mrem/yr, corresponding to a small fraction of the 25 mrem/yr limit set by DOE, was initially used as a reference to derive the authorized release limits. On the basis of the dose assessment results, the following authorized release limits are proposed - 0.6 pCi/g for Mn-54, 0.6 pCi/g for Na-22, 0.1 pCi/g for Co-57, and 2.3 pCi/g for Co-60, with a corresponding maximum individual dose of 0.21 mrem/yr. This maximum dose, about 0.2% of the DOE primary dose limit of 100 mrem/yr for members of the public from all sources and exposure pathways, was then selected as the final dose constraint for releasing the PCB capacitors through the authorized process. The proposed authorized release limits would satisfy the DOE requirements for the release of non-real properties to a commercial treatment and disposal facility. In addition, due to the relatively short half-lives (< 5.27 years) of radionuclides of concern, there will be no long-term buildup of doses either in groundwater or through other exposure pathways associated with this particular release action. Contact with Clean Harbors and the State of Texas has been initiated. The radioactivity levels in the PCB capacitors meet the State of Texas radiological exemption limits and would be accepted by Clean Harbors, subject to the approval by DOE for the authorized release process. Cost benefit analysis shows that authorized release of the PCB capacitors would provide significant cost saving over the low-level radioactive waste (LLRW) disposition alternative, i.e. sending the PCB capacitors to a certified LLRW facility for treatment and disposal, and would not cause a significantly different impact in terms of human health protection. Therefore, authorized release is determined to be the preferred alternative for the disposition of Argonne PCB capacitors.« less

  4. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Subpart N of this part provides a method for collecting new site characterization data or for assessing... left after cleanup is completed. (i) Bulk PCB remediation waste. Bulk PCB remediation waste includes... similar material of minimum thickness spread over the area where remediation waste was removed or left in...

  5. Sydney tar ponds: some problems in quantifying toxic waste.

    PubMed

    Furimsky, Edward

    2002-12-01

    Information on the type and amount of hazardous and toxic waste is required to develop a meaningful strategy and estimate a realistic cost for clean up of the Sydney Tar Pond site which is located on Cape Breton, in the province of Nova Scotia, Canada. The site covers the area of the decommissioned Sysco (Sydney Steel Corporation) plant. The materials of concern include BTEX (benzene, toluene, ethylbenzene, and xylenes), PAH (polycyclic aromatic hydrocarbons), PCB (polychlorinated biphenyl), and particulates laden with toxic metals, such as arsenic, lead, and others. The originally nontoxic materials such as soil, blast furnace slag, and vegetation, as well as surface and ground waters, which were subsequently contaminated, must also be included if they fail tests prescribed by environmental regulations. An extensive sampling program must be undertaken to obtain data for an accurate estimate of the waste to be cleaned and disposed of. Apparently, 700,000 tons of toxic waste, which is believed to be present on the site, may represent only a fraction of the actual amount. The clean-up of the site is only part of the solution. Toxic waste has to be disposed of in accordance with environmental regulations.

  6. Application of the base catalyzed decomposition process to treatment of PCB-contaminated insulation and other materials associated with US Navy vessels. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, A.J.; Zacher, A.H.; Gano, S.R.

    1996-09-01

    The BCD process was applied to dechlorination of two types of PCB-contaminated materials generated from Navy vessel decommissioning activities at Puget Sound Naval Shipyard: insulation of wool felt impregnated with PCB, and PCB-containing paint chips/debris from removal of paint from metal surfaces. The BCD process is a two-stage, low-temperature chemical dehalogenation process. In Stage 1, the materials are mixed with sodium bicarbonate and heated to 350 C. The volatilized halogenated contaminants (eg, PCBs, dioxins, furans), which are collected in a small volume of particulates and granular activated carbon, are decomposed by the liquid-phase reaction (Stage 2) in a stirred-tank reactor,more » using a high-boiling-point hydrocarbon oil as the reaction medium, with addition of a hydrogen donor, a base (NaOH), and a catalyst. The tests showed that treating wool felt insulation and paint chip wastes with Stage 2 on a large scale is feasible, but compared with current disposal costs for PCB-contaminated materials, using Stage 2 would not be economical at this time. For paint chips generated from shot/sand blasting, the solid-phase BCD process (Stage 1) should be considered, if paint removal activities are accelerated in the future.« less

  7. Novel Remanufacturing Process of Recycled Polytetrafluoroethylene(PTFE)/GF Laminate

    NASA Astrophysics Data System (ADS)

    Xi, Z.; Ghita, O. R.; Johnston, P.; Evans, K. E.

    2011-01-01

    Currently, the PTFE/GF laminate and PTFE PCB manufacturers are under considerable pressure to address the recycling issues due to Waste Electrical and Electronic Equipment (WEEE) Directive, shortage of landfill capacity and cost of disposal. This study is proposing a novel manufacture method for reuse of the mechanical ground PTFE/Glass fibre (GF) laminate and production of the first reconstitute PTFE/GF laminate. The reconstitute PTFE/GF laminate proposed here consists of a layer of recycled sub-sheet, additional layers of PTFE and PTFE coated glass cloth, also covered by copper foils. The reconstitute PTFE/GF laminate showed good dielectric properties. Therefore, there is potential to use the mechanical ground PTFE/GF laminate powder to produce reconstitute PTFE/GF laminate, for use in high frequencies PCB applications.

  8. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling liquid PCB remediation waste. 761.269 Section 761.269 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance...

  9. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling liquid PCB remediation waste. 761.269 Section 761.269 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance...

  10. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling liquid PCB remediation waste. 761.269 Section 761.269 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance...

  11. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling liquid PCB remediation waste. 761.269 Section 761.269 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance...

  12. Studies on the reuse of waste printed circuit board as an additive for cement mortar.

    PubMed

    Ban, Bong-Chan; Song, Jong-Yoon; Lim, Joong-Yeon; Wang, Soo-Kyoon; An, Kwang-Guk; Kim, Dong-Su

    2005-01-01

    The recent development in electronic industries has generated a drastic increase in production of printed circuit boards (PCB). Accordingly, the amount of waste PCB from electronic productions and waste electronics and its environmental impact such as soil and groundwater contamination have become a great concern. This study aims to propose a method for reuse of waste PCB as an additive for cement mortar. Although the expansibility of waste PCB powder finer than 0.08 mm in water was observed to be greater than 2.0%, the maximum expansion rates in water for 0.08 to approximately 0.15 and 0.15 to approximately 0.30 mm sized PCB powders were less than 2.0%, which satisfied the necessary condition as an alternative additive for cement mortar in place of sand. The difference in the compressive strength of standard mortar and waste PCB added mortar was observed to be less than 10% and their difference was expected to be smaller after prolonged aging. The durability of waste PCB added cement mortar was also examined through dry/wet conditioning cyclic tests and acidic/alkaline conditioning tests. From the tests, both weight and compressive strength of cement mortar were observed to be recovered with aging. The leaching test for heavy metals from waste PCB added mortar showed that no heavy metal ions such as copper, lead, or cadmium were detected in the leachate, which resulted from fixation effect of the cement hydrates.

  13. Superfund Record of Decision (EPA Region 5): New Brighton/Arden Hills (TCAAP), Twin Cities Army Ammunition Plant, MN. (Seventh remedial action), August 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-11

    The New Brighton/Arden Hills site, also known as the Twin Cities Army Ammunition Plant (TCAAP) site, is in New Brighton, Minnesota. Past disposal of ammunition manufacturing wastes onsite resulted in contamination of ground water beneath and downgradient of the site. A total of 14 waste-disposal locations have been identified and assigned as Sites A through K. During remedial investigations at Site D, soil was discovered to be contaminated with PCBs and other organic and metal contaminants. A soil-gas extraction system was implemented to remove the source of volatile organic contamination and reduce the potential of migration to ground water. Inmore » implementing the soil gas extraction system, PCB-contaminated soil was removed, stockpiled near Site D, and sealed with a plastic-liner material. The interim remedy addresses the treatment and disposal of contaminated soil that is stockpiled near Site D. The primary contaminants of concern affecting the soil are VOCs including TCE and PCE, other organics including PCBs, and metals including arsenic and lead.« less

  14. Proceedings of the Annual Environmental Systems Symposium (12th) Held on May 20-21 1982 at Langley Air Force Base, Virginia

    DTIC Science & Technology

    1982-01-01

    have become highly sensitized to the potential long-term health and environmental effects of the so-called "toxic * and hazardous chemicals," which...their assumption of the Defense Disposal mission. The PCB collection and disposal exercise will be on-going for several years. PCB disposal is by...imposed with respect to the disposal of *. materials at a time when their effects were largely unknown (and in many cases still are). Moreover, the

  15. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  16. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  17. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  18. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  19. Study of contaminant transport at an open-tipping waste disposal site.

    PubMed

    Ashraf, Muhammad Aqeel; Yusoff, Ismail; Yusof, Mohamad; Alias, Yatimah

    2013-07-01

    Field and laboratory studies were conducted to estimate concentration of potential contaminants from landfill in the underlying groundwater, leachate, and surface water. Samples collected in the vicinity of the landfill were analyzed for physiochemical parameters, organic contaminants, and toxic heavy metals. Water quality results obtained were compared from published data and reports. The results indicate serious groundwater and surface water contamination in and around the waste disposal site. Analysis of the organic samples revealed that the site contains polychlorinated biphenyls and other organo-chlorine chemicals, principally chloro-benzenes. Although the amount of PCB concentration discovered was not extreme, their presence indicates a potentially serious environmental threat. Elevated concentrations of lead, copper, nickel, manganese, cadmium, and cobalt at the downgradient indicate that the contamination plume migrated further from the site, and the distribution of metals and metals containing wastes in the site is nonhomogeneous. These results clearly indicate that materials are poorly contained and are at risk of entering the environment. Therefore, full characterization of the dump contents and the integrity of the site are necessary to evaluate the scope of the problem and to identify suitable remediation options.

  20. Estimation of PCB content in agricultural soils associated with long-term fertilization with organic waste.

    PubMed

    Antolín-Rodríguez, Juan M; Sánchez-Báscones, Mercedes; Martín-Ramos, Pablo; Bravo-Sánchez, Carmen T; Martín-Gil, Jesús

    2016-06-01

    Polychlorinated biphenyl (PCB) pollution related to the use of organic waste as fertilizers in agricultural soils is a cause of major concern. In the study presented herein, PCB concentration was studied through a field trial conducted in two agricultural soils in the province of Palencia (Spain) over a 4-year period, assessing the impact of irrigation and of different types of organic waste materials. The amounts of organic waste added to the soil were calculated according to the nitrogen needs of the crop, and the concentration of PCBs was determined before and after the application of the organic waste. The resulting persistence of the total PCB content in the agricultural soils, compared with the PCB concentration in the original soils, ranged from 27% to 90%, with the lowest value corresponding to irrigated soils treated with municipal solid waste compost (MSWC) and the highest value to non-irrigated soils treated with composted sewage sludge (CSS). An estimate of the PCB content in agricultural soils after the application of organic waste materials until year 2050 was obtained, resulting in a value below 5 ng·g(-1), considered a background value for soils in sites far away from potential pollution sources.

  1. Ultrasonic recovery of copper and iron through the simultaneous utilization of Printed Circuit Boards (PCB) spent acid etching solution and PCB waste sludge.

    PubMed

    Huang, Zhiyuan; Xie, Fengchun; Ma, Yang

    2011-01-15

    A method was developed to recover the copper and iron from Printed Circuit Boards (PCB) manufacturing generated spent acid etching solution and waste sludge with ultrasonic energy at laboratory scale. It demonstrated that copper-containing PCB spent etching solution could be utilized as a leaching solution to leach copper from copper contained PCB waste sludge. It also indicated that lime could be used as an alkaline precipitating agent in this method to precipitate iron from the mixture of acidic PCB spent etching solution and waste sludge. This method provided an effective technique for the recovery of copper and iron through simultaneous use of PCB spent acid solution and waste sludge. The leaching rates of copper and iron enhanced with ultrasound energy were reached at 93.76% and 2.07% respectively and effectively separated copper from iron. Followed by applying lime to precipitate copper from the mixture of leachate and rinsing water produced by the copper and iron separation, about 99.99% and 1.29% of soluble copper and calcium were settled as the solids respectively. Furthermore the settled copper could be made as commercial rate copper. The process performance parameters studied were pH, ultrasonic power, and temperature. This method provided a simple and reliable technique to recover copper and iron from waste streams generated by PCB manufacturing, and would significantly reduce the cost of chemicals used in the recovery. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. 40 CFR 761.243 - Standard wipe sample method and size.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND USE PROHIBITIONS Determining a PCB Concentration for Purposes of Abandonment or Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe.../Rinse Cleanup as Recommended by the Environmental Protection Agency PCB Spill Cleanup Policy,” dated...

  3. 40 CFR 761.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., processing, distribution in commerce, use, disposal, storage, and marking of PCBs and PCB Items. (b)(1) This... or PCB Items. Substances that are regulated by this part include, but are not limited to: dielectric..., intermediate, or impurity manufactured at any point in a process. (2) Unless otherwise noted, PCB...

  4. 40 CFR 761.323 - Sample preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Remediation Waste Samples § 761.323 Sample preparation. (a) The comparison study requires analysis of a minimum of 10 samples weighing at least 300 grams each. Samples of PCB remediation waste used in the... PCB remediation waste at the cleanup site, or must be the same kind of material as that waste. For...

  5. 40 CFR 761.77 - Coordinated approval.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other provision of this part, the EPA Regional Administrator for the Region in which a PCB disposal or PCB commercial storage facility described in paragraphs (b) and (c) of this section is located may issue a TSCA PCB Coordinated Approval to the persons described in those paragraphs if the conditions...

  6. Polychlorinated biphenyls in the surrounding of an e-waste recycling facility in North-Rhine Westphalia: Levels in plants and dusts, spatial distribution, homologue pattern and source identification using the combination of plants and wind direction data.

    PubMed

    Klees, Marcel; Hombrecher, Katja; Gladtke, Dieter

    2017-12-15

    During this study the occurrence of polychlorinated biphenyls (PCBs) in the surrounding of an e-waste recycling facility in North-Rhine Westphalia was analysed. PCB levels were analysed in curly kale, spruce needles, street dusts and dusts. Conspicuously high PCB concentrations in curly kale and spruce needles were found directly northwards of the industrial premises. Furthermore a concentration gradient originating from the industrial premises to the residential areas in direction southwest to northeast was evident. Homologue patterns of highly PCB contaminated dusts and street dusts were comparable to the homologue patterns of PCB in curly kale and spruce needles. This corroborates the suspicion that the activities at the e-waste recycling facility were responsible for the elevated PCB levels in curly kale and spruce needles. The utilization of multiple linear regression of wind direction data and analysed PCB concentrations in spruce needles proved that the e-waste recycling facility caused the PCB emissions to the surrounding. Additionally, this evaluation enabled the calculation of source specific accumulation constants for certain parts of the facility. Consequently the different facility parts contribute with different impacts to the PCB levels in bioindicators. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.

    PubMed

    Shah, Monal B; Tipre, Devayani R; Dave, Shailesh R

    2014-11-01

    E-waste printed circuit boards (PCB) of computers, mobile-phones, televisions, LX (LongXiang) PCB in LED lights and bulbs, and tube-lights were crushed to ≥250 µm particle size and 16 different metals were analysed. A comparative study has been carried out to evaluate the extraction of Cu-Zn-Ni from computer printed circuit boards (c-PCB) and mobile-phone printed circuit boards (m-PCB) by chemical and biological methods. Chemical process showed the extraction of Cu-Zn-Ni by ferric sulphate was best among the studied chemical lixiviants. Bioleaching experiments were carried out with the iron oxidising consortium, which showed that when E-waste and inoculum were added simultaneously in the medium (one-step process); 60.33% and 87.50% Cu, 75.67% and 85.67% Zn and 71.09% and 81.87% Ni were extracted from 10 g L(-1) of c-PCB and m-PCB, respectively, within 10-15 days of reaction time. Whereas, E-waste added after the complete oxidation of Fe(2+) to Fe(3+) iron containing medium (two-step process) showed 85.26% and 99.99% Cu, 96.75% and 99.49% Zn and 93.23% and 84.21% Ni extraction from c-PCB and m-PCB, respectively, only in 6-8 days. Influence of varying biogenerated Fe(3+) and c-PCB concentrations showed that 16.5 g L(-1) of Fe(3+) iron was optimum up to 100 g L(-1) of c-PCB. Changes in pH, acid consumed and redox potential during the process were also studied. The present study shows the ability of an eco-friendly process for the recovery of multi-metals from E-waste even at 100 g L(-1) printed circuit boards concentration. © The Author(s) 2014.

  8. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system

    PubMed Central

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g−1 of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples. PMID:22428884

  9. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    PubMed

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorinated dibenzeno-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of residential and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  10. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    PubMed

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  11. Notifications for Polychlorinated Biphenyl (PCB) Activities

    EPA Pesticide Factsheets

    This page contains documents of any company or person storing, transporting or disposing of PCBs or conducting PCB research and development that notified the EPA and received an identification number using Form 7710-53.

  12. 40 CFR 761.272 - Chemical extraction and analysis of samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart...

  13. 40 CFR 761.260 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.260 Applicability. This subpart provides a method for collecting new data for characterizing a PCB remediation waste...

  14. [Polychlorinated biphenyls in house dust at an e-waste site and urban site in the Pearl River Delta, southern China: sources and human exposure and health risks].

    PubMed

    Zhu, Zhi-Cheng; Chen, She-Jun; Ding, Nan; Wang, Jing; Luo, Xiao-Jun; Mai, Bi-Xian

    2014-08-01

    Polychlorinated biphenyls (PCBs) were measured in house dust from an e-waste site and urban site in the Pearl River Delta, southern China. The PCB concentrations in house dust at the e-waste site ranged from 12.4 to 87 765 ng x g(-1), with an average of 10 167 ng x g(-1). There was no significant difference in the PCB concentrations between indoor and outdoor dust. The PCB homologue pattern was dominated by tri-, penta-, hexa-, and tetra-CBs, which was not similar to that in Chinese technical PCB product. There was also no significant difference in the PCB compositions between indoor and outdoor dust. PCB sources in house dust at the e-waste site were apportioned by chemical mass balance (CMB) model. The results showed that the PCBs were derived primarily from Aroclor 1262 (36.7% ), Aroclor 1254 (26.7%), Aroclor 1242 (21.4%), and Aroclor 1248 (18.5%). The daily exposure doses were 42, 17, and 2.9 ng x (kg x d)(-1) for toddlers, children/adolescents, and adults in the e-waste area, respectively. Risk assessment indicated that the hazard quotients were higher than 1 for toddlers and children/adolescents indicating adverse effects for them. The lifetime average excess carcinogenic risk for population in the e-waste area was 4.5 x 10(-5), within the acceptable range of U. S. Environmental Protection Agency. The mean concentrations of PCBs in house dust in Guangzhou was 48.7 ng x g(-1). The low PCB level is consistent with the fact that technical PCBs were not widely used in China in the past. The risks of exposure to PCBs via house dust in Guangzhou are very low.

  15. 40 CFR 761.289 - Compositing samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or... compositing bulk PCB remediation waste samples. These procedures are based on the method for selecting...

  16. 40 CFR 761.289 - Compositing samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or... compositing bulk PCB remediation waste samples. These procedures are based on the method for selecting...

  17. 40 CFR 761.97 - Export for disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Export for disposal. 761.97 Section... PROHIBITIONS Transboundary Shipments of PCBs for Disposal § 761.97 Export for disposal. (a) General provisions. No person may export PCBs or PCB Items for disposal without an exemption, except that: (1) PCBs and...

  18. 40 CFR 761.135 - Effect of compliance with this policy and enforcement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Spill Cleanup Policy § 761.135 Effect of compliance with... considered improper PCB disposal, this policy establishes requirements that EPA considers to be adequate...

  19. Polychlorinated biphenyls and their hydroxylated metabolites in the serum of e-waste dismantling workers from eastern China.

    PubMed

    Ma, Shengtao; Ren, Guofa; Zeng, Xiangying; Yu, Zhiqiang; Sheng, Guoying; Fu, Jiamo

    2017-05-05

    A number of studies have reported on the exposure of e-waste dismantling workers to significantly high concentrations of halogenated organic pollutants such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers. Such exposure can have adverse health effects. However, little information on the metabolites of these contaminants exists. In this study, we investigated PCBs levels and their hydroxylated metabolites (OH-PCB) in the serum of e-waste workers in Taizhou in eastern China. Our results indicate elevated PCB and OH-PCB levels in the serum of the workers, with medians of 443.7 and 133.9 ng/g lw, respectively. Tri- to hexachlorinated PCB congeners were the dominant homologue groups in all of the samples. 4-OH-CB107 was the predominant homologue among the hydroxylated metabolites, accounting for 88.9% of the total OH-PCB concentrations. While dietary sources (e.g., fish) appear to be an important route for PCB accumulation in non-occupational exposure groups, exposure via ingestion of house dust and inhalation of pollutants derived from the recycling of PCB-containing e-wastes may primarily contribute to the high body burden observed in the occupational groups. Since we found concentrations of metabolites higher than those of their parent compounds, further studies need to pay more attention to their bioaccumulation and toxicity.

  20. 40 CFR 761.180 - Records and monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PCBs contained in PCB Container(s), or one or more PCB Transformers, or 50 or more PCB Large High or...., transformer or capacitor), the weight in kilograms of the PCB waste in each transformer or capacitor, the date... the calendar year. (iv) The total number of PCB Transformers and total weight in kilograms of PCBs...

  1. 40 CFR 761.180 - Records and monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PCBs contained in PCB Container(s), or one or more PCB Transformers, or 50 or more PCB Large High or...., transformer or capacitor), the weight in kilograms of the PCB waste in each transformer or capacitor, the date... the calendar year. (iv) The total number of PCB Transformers and total weight in kilograms of PCBs...

  2. 40 CFR 761.180 - Records and monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PCBs contained in PCB Container(s), or one or more PCB Transformers, or 50 or more PCB Large High or...., transformer or capacitor), the weight in kilograms of the PCB waste in each transformer or capacitor, the date... the calendar year. (iv) The total number of PCB Transformers and total weight in kilograms of PCBs...

  3. 40 CFR 761.180 - Records and monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PCBs contained in PCB Container(s), or one or more PCB Transformers, or 50 or more PCB Large High or...., transformer or capacitor), the weight in kilograms of the PCB waste in each transformer or capacitor, the date... the calendar year. (iv) The total number of PCB Transformers and total weight in kilograms of PCBs...

  4. 40 CFR 761.180 - Records and monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PCBs contained in PCB Container(s), or one or more PCB Transformers, or 50 or more PCB Large High or...., transformer or capacitor), the weight in kilograms of the PCB waste in each transformer or capacitor, the date... the calendar year. (iv) The total number of PCB Transformers and total weight in kilograms of PCBs...

  5. 40 CFR 761.260 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.260 Applicability. This subpart provides a method for collecting new data for characterizing a PCB remediation waste...

  6. 40 CFR 761.260 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.260 Applicability. This subpart provides a method for collecting new data for characterizing a PCB remediation waste...

  7. 40 CFR 761.260 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.260 Applicability. This subpart provides a method for collecting new data for characterizing a PCB remediation waste...

  8. 40 CFR 761.260 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.260 Applicability. This subpart provides a method for collecting new data for characterizing a PCB remediation waste...

  9. Aroclor misidentification in environmental samples: how do we communicate more effectively between the laboratory and the data user?

    PubMed

    Erickson, Mitchell D

    2018-06-01

    Disposal of carbonless copy paper (CCP) paper sludge during the 1960s contaminated a site in the USA with PCBs. Despite historic records of CCP sludge disposal and absence of evidence of any other disposal, a dispute arose among the parties over the source of the PCBs. Aroclor 1242 is well documented as the PCB mixture used in CCP, yet Aroclors 1242, 1248, 1254, and 1260 were reported by the analytical laboratory. How could the PCBs at a single, small site be reported as four different Aroclors? Some claimed that there had to be at least four Aroclors source inputs to the site. Disposal of four different Aroclors at this site would simply defy logic and the historic record. Weathering of the mixtures is part of the story. A larger issue is the conflict between the intent of the USEPA 8082 method to determine the total PCB content in environmental samples to facilitate environmental cleanup and disposal decisions within a regulatory context versus the data users' intent to identify the PCB sources. This inappropriate extension of the data leads to erroneous conclusions. To mitigate problems like this, laboratory analysis requests need to be matched to the intended data usage; conversely, the data must not be over-interpreted beyond the limits of the method. The PCB analysis community needs to develop a better articulation of the limits of Aroclor identification for the broader community that may naïvely assume that if the laboratory reports "Aroclor 1248," then someone must have placed Aroclor 1248 at the site. After all, when a laboratory reports "lead" or "chloroform," those identifications are never in question.

  10. Polychlorinated biphenyls in settled dust from informal electronic waste recycling workshops and nearby highways in urban centers and suburban industrial roadsides of Chennai city, India: Levels, congener profiles and exposure assessment.

    PubMed

    Chakraborty, Paromita; Prithiviraj, Balasubramanian; Selvaraj, Sakthivel; Kumar, Bhupander

    2016-12-15

    Polychlorinated biphenyls (PCBs) were quantified in settled dust collected from informal electronic waste (e-waste) recycling workshops and nearby highways in the urban centers and roadside dust from the suburban industrial belt of Chennai city in India. Further dust samples were subjected to a high resolution field emission scanning electron microscope equipped with an energy dispersive X-ray spectrometer (FESEM/EDX) to characterize the shape, size and elemental composition of the dust particles. Geomean of total PCB concentration followed the following order: informal e-waste metal recovery workshops (53ngg -1 )>e-waste dismantling sites (3.6ngg -1 )>nearby highways (1.7ngg -1 )>suburban industrial roadsides (1.6ngg -1 ). In e-waste workshops, tetra, penta and hexa-PCB homologs contributed two third of Σ 26 PCB concentration. Informal e-waste recycling workshops contributed more than 80% concentration of all the PCB congeners loaded in the first principal component. Predominance of dioxin like PCBs, PCB-l14, -118 and -126 in the e-waste metal recovery sites were presumably due to combustion and pyrolytic processes performed during recycling of electrical components. According to the morphology and elemental composition, settled dust from e-waste workshops were irregular particles heavily embedded with toxic metals and industrial roadside dust were distinct angular particles. FESEM revealed that average particle size (in Ferret diameter) increased in the following order: e-waste recycling workshops (0.5μm)

  11. METHODS FOR DETERMINING THE POLYCHLORINATED BIPHENYL EMISSIONS FROM INCINERATION AND CAPACITOR AND TRANSFORMER FILLING PLANTS

    EPA Science Inventory

    Described are methods to measure the polychlorinated biphenyl (PCB) emissions from the stacks of municipal waste, industrial waste, and sewage sludge incinerators and from capacitor and transformer filling plants. The PCB emissions from the incineration plants are collected by im...

  12. 40 CFR 761.272 - Chemical extraction and analysis of samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... samples. 761.272 Section 761.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart...

  13. 40 CFR 761.272 - Chemical extraction and analysis of samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... samples. 761.272 Section 761.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart...

  14. 40 CFR 761.272 - Chemical extraction and analysis of samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... samples. 761.272 Section 761.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart...

  15. 40 CFR 761.272 - Chemical extraction and analysis of samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... samples. 761.272 Section 761.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart...

  16. 40 CFR 761.240 - Scope and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.240 Scope and definitions. (a) Use these procedures to select surface sampling sites for natural gas pipe to determine its PCB surface concentration for abandonment-in-place or removal and disposal off-site in...

  17. 40 CFR 761.240 - Scope and definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.240 Scope and definitions. (a) Use these procedures to select surface sampling sites for natural gas pipe to determine its PCB surface concentration for abandonment-in-place or removal and disposal off-site in...

  18. 40 CFR 761.240 - Scope and definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.240 Scope and definitions. (a) Use these procedures to select surface sampling sites for natural gas pipe to determine its PCB surface concentration for abandonment-in-place or removal and disposal off-site in...

  19. 40 CFR 761.240 - Scope and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.240 Scope and definitions. (a) Use these procedures to select surface sampling sites for natural gas pipe to determine its PCB surface concentration for abandonment-in-place or removal and disposal off-site in...

  20. Superfund Record of Decision (EPA Region 3): USA Aberdeen, Operable Unit One, Michaelsville, MD. (Second remedial action), June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-30

    The 20-acre USA Aberdeen Michaelsville Landfill is a municipal landfill located along the Chesapeake Bay in Harford County, Maryland. The site is in the northern portion of the Aberdeen Proving Ground (APG) in the Aberdeen Area (AA) between Michaelsville Road and Trench Warfare Road. The majority of materials reportedly disposed of at the site included domestic trash, trash from nonindustrial sources at APG, solvents, waste motor oils, PCB transformer oils, wastewater treatment sludges, pesticides containing thallium, insecticides containing selenium, and rodenticides containing antimony. The ROD addresses protection of the ground water by minimizing leachate flow and preventing current or futuremore » exposure to waste materials as the first of two OUs planned for the site. The primary contaminants of concern affecting the soil are organics, including pesticides; and metals, including chromium and lead.« less

  1. Waste disposal technologies for polychlorinated biphenyls.

    PubMed Central

    Piver, W T; Lindstrom, F T

    1985-01-01

    Improper practices in the disposal of polychlorinated biphenyl (PCB) wastes by land burial, chemical means and incineration distribute these chemicals and related compounds such as polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzodioxins (PCDDs) throughout the environment. The complete range of methods for disposal that have been proposed and are in use are examined and analyzed, with emphasis given to the two most commonly used methods: land burial and incineration. The understanding of aquifer contamination caused by migration of PCBs from subsurface burial sites requires a description of the physical, chemical and biological processes governing transport in unsaturated and saturated soils. For this purpose, a model is developed and solved for different soil conditions and external driving functions. The model couples together the fundamental transport phenomena for heat, mass, and moisture flow within the soil. To rehabilitate a contaminated aquifer, contaminated groundwaters are withdrawn through drainage wells, PCBs are extracted with solvents or activated carbon and treated by chemical, photochemical or thermal methods. The chemical and photochemical methods are reviewed, but primary emphasis is devoted to the use of incineration as the preferred method of disposal. After discussing the formation of PCDFs and PCDDs during combustion from chloroaromatic, chloroaliphatic, as well as organic and inorganic chloride precursors, performance characteristics of different thermal destructors are presented and analyzed. To understand how this information can be used, basic design equations are developed from governing heat and mass balances that can be applied to the construction of incinerators capable of more than 99.99% destruction with minimal to nondetectable levels of PCDFs and PCDDs. PMID:3921358

  2. Transboundary hazardous waste management. Part I: Waste management policy of importing countries.

    PubMed

    Fan, Kuo-Shuh; Chang, Tien Chin; Ni, Shih-Piao; Lee, Ching-Hwa

    2005-12-01

    Mixed metal-containing waste, polychlorinated biphenyls (PCB) containing capacitors, printed circuit boards, steel mill dust and metal sludge were among the most common wastes exported from Taiwan. Before the implementation of the self-monitoring model programme of the Basel Convention (secretariat of the Basel Convention 2001) in the Asia region, Taiwan conducted a comprehensive 4-year follow-up project involving government authorities and the waste disposal facilities of the importing countries. A total of five countries and nine plants were visited in 2001-2002. The following outcomes can be drawn from these investigations. The Chinese government adopts the strategies of 'on-site processing' and 'relative centralization' on the waste management by tightening permitting and increasing site inspection. A three-level reviewing system is adopted for the import application. The United States have not signed the Basel Convention yet; the procedures of hazardous waste import rely on bilateral agreements. Importers are not required to provide official notification from the waste exporting countries. The operation, administration, monitoring and licensing of waste treatment plants are governed by the state environmental bureau. Finland, France and Belgium are members of the European Union. The procedures and policies of waste import are similar. All of the documents associated with transboundary movement require the approval of each government involved. Practically, the notification forms and tracking forms effectively manage the waste movement.

  3. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung

    2014-01-15

    The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H2, CH4, CO2, and NOx, were 60-115, 0.4-4.0, 1.1-10, 30-95, and 0-0.7mg/g, corresponding to temperatures ranging from 200 to 500°C. When the pyrolysis temperature was lower than 300°C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400°C. When VOC exhaust was flowed through the bed of Fe-impregnated Al2O3, the emission of ozone precursor VOCs could be reduced by 70-80%. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil.

    PubMed

    Taniguchi, Satie; Colabuono, Fernanda I; Dias, Patrick S; Oliveira, Renato; Fisner, Mara; Turra, Alexander; Izar, Gabriel M; Abessa, Denis M S; Saha, Mahua; Hosoda, Junki; Yamashita, Rei; Takada, Hideshige; Lourenço, Rafael A; Magalhães, Caio A; Bícego, Márcia C; Montone, Rosalinda C

    2016-05-15

    High spatial variability in polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides, such as DDTs, and polybrominated diphenylethers was observed in plastic pellets collected randomly from 41 beaches (15 cities) in 2010 from the coast of state of São Paulo, southeastern Brazil. The highest concentrations ranged, in ng g(-1), from 192 to 13,708, 3.41 to 7554 and <0.11 to 840 for PAHs, PCBs and DDTs, respectively. Similar distribution pattern was presented, with lower concentrations on the relatively less urbanized and industrialized southern coast, and the highest values in the central portion of the coastline, which is affected by both waste disposal and large port and industrial complex. Additional samples were collected in this central area and PCB concentrations, in ngg(-)(1), were much higher in 2012 (1569 to 10,504) than in 2009/2010 (173 to 309) and 2014 (411), which is likely related to leakages of the PCB commercial mixture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Field determination of PCB in transformer oil. Volume 2. Clor-N-Oil PCB screening test. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, D.J.; Rouse, T.O.; Lynn, T.

    1984-10-01

    The requirements for handling and disposing of transformer minerals oils containing more than 50 ppM PCB are, by federal regulation, different from those for oils containing lower concentrations. A rapid and simple test to distinguish between samples containing more than or less than this concentration would simplify proper control of transformer oils. This report describes the development of a small disposable test kit that can be used on-site to screen the chlorine content of transformer oils. The kit consists of two soft plastic tubes in which thin walled glass ampules containing premeasured amounts of reagents are broken. The reaction sequencemore » in the kits converts the chlorine in PCB to chloride ion. The color of the liquid in the kit after the last step is blue to purple if the chloride content due to the initial chlorine concentration of the oil is less than 20 ppM. If the chlorine content of the oil is below 20 ppM, the PCB content must be below 50 ppM. The liquid is colorless if the chlorine content is greater than 20 ppM. In this latter case, it is necessary to determine by gas chromatography whether the PCB content is actually greater than 50 ppM or if there is some other source of chlorine in the oil.« less

  6. Recovery of metals from waste printed circuit boards by a mechanical method using a water medium.

    PubMed

    Duan, Chenlong; Wen, Xuefeng; Shi, Changsheng; Zhao, Yuemin; Wen, Baofeng; He, Yaqun

    2009-07-15

    Research on the recycling of waste printed circuit boards (PCB) is at the forefront of environmental pollution prevention and resource recycling. To effectively crush waste PCB and to solve the problem of secondary pollution from fugitive odors and dust created during the crushing process, a wet impacting crusher was employed to achieve comminution liberation of the PCB in a water medium. The function of water in the crushing process was analyzed. When using slippery hammerheads, a rotation speed of 1470 rpm, a water flow of 6m(3)/h and a sieve plate aperture of 2.2mm, 95.87% of the crushed product was sized less than 1mm. 94.30% of the metal was in this grade of product. Using smashed material graded -1mm for further research, a Falcon concentrator was used to recover the metal from the waste PCB. Engineering considerations were the liberation degree, the distribution ratio of the metal and a way to simplify the technology. The separation mechanism for fine particles of different densities in a Falcon concentrator was analyzed in detail and the separation process in the segregation and separation zones was deduced. Also, the magnitude of centrifugal acceleration, the back flow water pressure and the feed slurry concentration, any of which might affect separation results, were studied. A recovery model was established using Design-Expert software. Separating waste PCB, crushed to -1mm, with the Falcon separator gave a concentrated product graded 92.36% metal with a recovery of 97.05%. To do this the reverse water pressure was 0.05 MPa, the speed transducer frequency was set at 30 Hz and the feed density was 20 g/l. A flow diagram illustrating the new technique of wet impact crushing followed by separation with a Falcon concentrator is provided. The technique will prevent environmental pollution from waste PCB and allow the effective recovery of resources. Water was used as the medium throughout the whole process.

  7. Emissions of polychlorinated dibenzodioxins and dibenzofurans and polychlorinated biphenyls from uncontrolled burning of garden and domestic waste (backyard burning).

    PubMed

    Hedman, Björn; Näslund, Morgan; Nilsson, Calle; Marklund, Stellan

    2005-11-15

    To assess emissions of dioxins (chlorinated dibenzodioxins and dibenzofurans) and PCB from uncontrolled domestic combustion of waste ("backyard burning"), test combustions in barrels and open fires were monitored. The waste fuels used were garden waste, paper, paper and plastic packaging, refuse-derived fuel (RDF), PVC, and electronic scrap. Combustions including PVC and electronic scrap emitted several orders of magnitude more dioxins than the other waste fuels. Emissions from the other fuels had considerable variations, but the levels were difficult to relate to waste composition. Emission factors of PCDD/F and PCB from the backyard burning ranged from 2.2 to 13 000 ng (WHO-TEQ)/kg. The levels found in ash usually were less than 5% of the total. For assessment of total emissions of dioxins and PCB from backyard burning of low and moderately contaminated wastes, an emission factor range of 4-72 ng (WHO-TEQ)/kg is suggested. These figures implythat combusting waste in the backyard could contribute substantially to total emissions, even if the amounts of fuel involved are equivalent to just a few tenths of a percent of the amounts combusted in municipal waste incinerators.

  8. 40 CFR 761.91 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section 6 of TSCA applicable to the transboundary shipments of PCBs and PCB Items into and out of the... applicable to imported or exported PCBs and PCB Items under foreign laws, international agreements or... to affect or limit the applicability of any requirement applicable to transporters of PCB waste under...

  9. PCB Analysis Plan for Tank Archive Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NGUYEN, D.M.

    2001-03-22

    This analysis plan specifies laboratory analysis, quality assurance/quality control (QA/QC), and data reporting requirements for analyzing polychlorinated biphenyls (PCB) concentrations in archive samples. Tank waste archive samples that are planned for PCB analysis are identified in Nguyen 2001. The tanks and samples are summarized in Table 1-1. The analytical data will be used to establish a PCB baseline inventory in Hanford tanks.

  10. Monitoring OH-PCBs in PCB transport worker's urine as a non-invasive exposure assessment tool.

    PubMed

    Haga, Yuki; Suzuki, Motoharu; Matsumura, Chisato; Okuno, Toshihiro; Tsurukawa, Masahiro; Fujimori, Kazuo; Kannan, Narayanan; Weber, Roland; Nakano, Takeshi

    2018-06-01

    In this study, we analyzed hydroxylated polychlorinated biphenyls (OH-PCBs) in urine of both PCB transport workers and PCB researchers. A method to monitor OH-PCB in urine was developed. Urine was solid-phase extracted with 0.1% ammonia/ methanol (v/v) and glucuronic acid/sulfate conjugates and then decomposed using β-glucuronidase/arylsulfatase. After alkaline digestion/derivatization, the concentration of OH-PCBs was determined by HRGC/HRMS-SIM. In the first sampling campaign, the worker's OH-PCB levels increased several fold after the PCB waste transportation work, indicating exposure to PCBs. The concentration of OH-PCBs in PCB transport workers' urine (0.55~11 μg/g creatinine (Cre)) was higher than in PCB researchers' urine (< 0.20 μg/g Cre). However, also a slight increase of OH-PCBs was observed in the researchers doing the air sampling at PCB storage area. In the second sampling, after recommended PCB exposure reduction measures had been enacted, the worker's PCB levels did not increase during handling of PCB equipment. This suggests that applied safety measures improved the situation. Hydroxylated trichlorobiphenyls (OH-TrCBs) were identified as a major homolog of OH-PCBs in urine. Also, hydroxylated tetrachlorobiphenyls (OH-TeCBs) to hydroxylated hexachlorobiphenyls (OH-HxCBs) were detected. For the sum of ten selected major indicators, a strong correlation to total OH-PCBs were found and these can possibly be used as non-invasive biomarkers of PCB exposure in workers managing PCB capacitors and transformer oils. We suggest that monitoring of OH-PCBs in PCB management projects could be considered a non-invasive way to detect exposure. It could also be used as a tool to assess and improve PCB management. This is highly relevant considering the fact that in the next 10 years, approx. 14 million tons of PCB waste need to be managed. Also, the selected populations could be screened to assess whether exposure at work, school, or home has taken place.

  11. Factors influencing the atmospheric concentrations of PCBs at an abandoned e-waste recycling site in South China.

    PubMed

    Wang, Yan; Wu, Xiaowei; Hou, Minmin; Zhao, Hongxia; Chen, Ruize; Luo, Chunling; Zhang, Gan

    2017-02-01

    The diurnal atmospheric concentrations of polychlorinated biphenyls (PCBs) were investigated at an abandoned e-waste recycling site in South China during winter and summer. Total PCB concentrations during winter and summer were 27.6-212 and 368-1704pg/m 3 in the particulate phase and 270-697 and 3000-15,500pg/m 3 in the gaseous phase, respectively. Both gaseous and particulate PCB concentrations and compositions exhibited significant difference between winter and summer samples, but no diurnal variations during the measurement period. The correlation analysis between PCB concentrations and meteorological conditions, including atmospheric temperature, humidity, and mixing layer height, suggested that the seasonal variability of atmospheric PCB concentrations was strongly temperature-dependent, while the diurnal variability was probably source-dependent. The temperature-driven variations can also be proved by the significant linear correlation between ln P and 1/T in the Clausius-Clapeyron plot. Although government has implemented controls to reduce e-waste pollution, both the relatively high concentrations of PCBs and the diurnal variation in the air suggested that emissions from occasional e-waste recycling activities may still exist in this recycling area. These results underline the importance of continuing e-waste recycling site management long after abandonment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. PCB concentrations in Pere Marquette River and Muskegon River watersheds, 2002

    USGS Publications Warehouse

    Fogarty, Lisa R.

    2005-01-01

    Polychlorinated biphenyl compounds (PCBs) are a class of209 individual compounds (known as congeners) for which there are no known natural sources. PCBs are carcinogenic and bioaccumulative compounds. For over 40 years, PCBs were manufactured in the United States. The flame resistant property of PCBs made them ideal chemicals for use as flame-retardants, and as coolants and lubricants in transformers and other electrical equipment. PCBs were also used in heating coils, carbonless paper, degreasers, varnishes, lacquers, waterproofing material, and cereal boxes. In addition, they were frequently used in the manufacturing of plastics, adhesives, and paints.During the manufacturing period of PCBs, these chemicals entered the environment though atmospheric release during manufacturing and burning of PCB products, leaks and spills, and improper disposal. Although PCB manufacturing was banned over 20 years ago, PCBs still enter the environment from hazardous waste sites, improper disposals of PCB-containing products, weathering of asphalt and other substances containing PCBs, burning of PCB containing products, leakage from old equipment, leaching from landfills, and release from contaminated sediments. PCBs do not readily break down in the environment, thus remain there for long periods of time. A small amount may remain dissolved in water but most adhere to organic particles and bottom sediments.In sufficient concentrations, PCBs affect human, wildlife, and aquatic health. PCBs accumulate in fatty tissues of animals and fish and are passed on to those that eat them. PCBs are animal teratogens and potentially carcinogenic. They can cause death of animals, fish, and birds; death or low growth rate of plants; shortened lifespan; reproductive problems; and lower fertility. Women who are exposed to high levels of PCBs may have babies with slightly lower birth weights and transfer the PCBs through the breast milk, which may affect the immune system and motor development of the child. Rule 323.1057 (Toxic Substances) of the Part 4. Water Quality Standards gives procedure for calculating water-quality values to protect human, wildlife and aquatic life. For total PCB, the applicable Rule 57 water-quality value is the human cancer value (HCV=0.26 ng/L),In 2002, U. S. Geological Survey (USGS) and Michigan Department of Environmental Quality (MDEQ) cooperatively planned and executed a monitoring program for PCBs in water and sediment from the Pere Marquette River and Muskegon River watersheds. The Pere Marquette and Muskegon River are in the west central part of Michigan's Lower Peninsula (fig. 1). The Pere Marquette River watershed is about 750 square miles, and the Muskegon River is about 2700 square miles. Both rivers are popular recreational waters, and the Pere Marquette River is a Michigan designated Natural River (Part 305 of the Natural Rivers and Environmental Protection Act 451 of 1994).

  13. 40 CFR 761.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; a quantitative comparison record from calibration standards; any identification of PCBs; and/or any... accordance with subpart D of this part. Research and development (R&D) for PCB disposal means demonstrations... not been approved, development of new disposal technologies, and research on chemical transformation...

  14. 40 CFR 761.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; a quantitative comparison record from calibration standards; any identification of PCBs; and/or any... accordance with subpart D of this part. Research and development (R&D) for PCB disposal means demonstrations... not been approved, development of new disposal technologies, and research on chemical transformation...

  15. 40 CFR 761.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; a quantitative comparison record from calibration standards; any identification of PCBs; and/or any... accordance with subpart D of this part. Research and development (R&D) for PCB disposal means demonstrations... not been approved, development of new disposal technologies, and research on chemical transformation...

  16. 40 CFR 761.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; a quantitative comparison record from calibration standards; any identification of PCBs; and/or any... accordance with subpart D of this part. Research and development (R&D) for PCB disposal means demonstrations... not been approved, development of new disposal technologies, and research on chemical transformation...

  17. Converting non-metallic printed circuit boards waste into a value added product.

    PubMed

    Muniyandi, Shantha Kumari; Sohaili, Johan; Hassan, Azman; Mohamad, Siti Suhaila

    2013-01-01

    The aim of this study was to investigate the feasibility of using nonmetallic printed circuit board (PCB) waste as filler in recycled HDPE (rHDPE) in production of rHDPE/PCB composites. Maleic anhydride modified linear low-density polyethylene (MAPE) was used as compatibilizer. In particular, the effects of nonmetallic PCB and MAPE on mechanical properties of the composites were assessed through tensile, flexural and impact testing. Scanning electron microscope (SEM) was used to study the dispersion of nonmetallic PCB and MAPE in the matrix. Nonmetallic PCB was blended with rHDPE from 0-30 wt% and prepared by counter-rotating twin screw extruder followed by molding into test samples via hot press for analysis. A good balance between stiffness, strength and toughness was achieved for the system containing 30 wt% PCB. Thus, this system was chosen in order to investigate the effect of the compatibilizer on the mechanical properties of the composites. The results indicate that MAPE as a compatiblizer can effectively promote the interfacial adhesion between nonmetallic PCB and rHDPE. The addition of 6 phr MAPE increased the flexural strength, tensile strength and impact strength by 71%, 98% and 44% respectively compared to the uncompatibilized composites.

  18. Converting non-metallic printed circuit boards waste into a value added product

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the feasibility of using nonmetallic printed circuit board (PCB) waste as filler in recycled HDPE (rHDPE) in production of rHDPE/PCB composites. Maleic anhydride modified linear low-density polyethylene (MAPE) was used as compatibilizer. In particular, the effects of nonmetallic PCB and MAPE on mechanical properties of the composites were assessed through tensile, flexural and impact testing. Scanning electron microscope (SEM) was used to study the dispersion of nonmetallic PCB and MAPE in the matrix. Nonmetallic PCB was blended with rHDPE from 0–30 wt% and prepared by counter-rotating twin screw extruder followed by molding into test samples via hot press for analysis. A good balance between stiffness, strength and toughness was achieved for the system containing 30 wt% PCB. Thus, this system was chosen in order to investigate the effect of the compatibilizer on the mechanical properties of the composites. The results indicate that MAPE as a compatiblizer can effectively promote the interfacial adhesion between nonmetallic PCB and rHDPE. The addition of 6 phr MAPE increased the flexural strength, tensile strength and impact strength by 71%, 98% and 44% respectively compared to the uncompatibilized composites. PMID:24764542

  19. TREATABILITY STUDY REPORT OF GREEN MOUNTAIN LABORATORIES, INC.'S BIOREMEDIATION PROCESS, TREATMENT OF PCB CONTAMINATED SOILS, AT BEEDE WASTE OIL/CASH ENERGY SUPERFUND SITE, PLAISTOW, NEW HAMPSHIRE

    EPA Science Inventory

    In 1998, Green Mountain Laboratories, Inc. (GML) and the USEPA agreed to carry out a Superfund Innovative Technology Evaluation (SITE) project to evaluate the effectiveness of GML's Bioremediation Process for the treatment of PCB contaminated soils at the Beede Waste Oil/Cash Ene...

  20. Uptake and Translocation of Lesser-Chlorinated Polychlorinated Biphenyls (PCBs) in Whole Hybrid Poplar Plants after Hydroponic Exposure

    PubMed Central

    Liu, Jiyan; Schnoor, Jerald L.

    2009-01-01

    Mono-, di-, tri-, and tetra-chlorinated polychlorinated biphenyls (PCBs) are congeners with greater volatility which remain in air, soils and sediments requiring treatment. In this study, the fate of these PCBs was investigated within whole poplar plants (Populus deltoides x nigra, DN34) with application for a treatment system such as a confined disposal facility for dredged material. Whole hybrid poplars were exposed hydroponically to a mixture of five congeners, common in the environment, having one to four chlorine atoms per molecule. Results indicated that PCB 3, 15, 28, 52, and 77 were initially sorbed to the root systems. The Root Concentration Factor (RCF) of PCBs during the exposure was calculated and correlated with Kow. PCB congeners were taken up by the roots of hybrid poplar, and the translocation of PCBs to stems was inversely related to congener hydrophobicity (Log Kow). PCB 3 and 15 were translocated to the upper stem at small but significant rates. PCB 28 was translocated to the wood of the main stem but no farther; translocation from the roots was not detected for PCB 52 and 77. The distribution of PCBs within poplars was determined, and mass balances were completed to within 15% for each chemical except for PCB 3, the most volatile congener. This is the first report on the transport of PCBs through whole plants designed for use in treatment at disposal facilities. PMID:18793792

  1. Soil Contamination from PCB-Containing Buildings

    PubMed Central

    Herrick, Robert F.; Lefkowitz, Daniel J.; Weymouth, George A.

    2007-01-01

    Background Polychlorinated biphenyls (PCBs) in construction materials, such as caulking used around windows and expansion joints, may constitute a source of PCB contamination in the building interiors and in surrounding soil. Several studies of soil contamination have been conducted around buildings where the caulking has been removed by grinding or scraping. The PCBs in soil may have been generated in the process of removing the caulking, but natural weathering and deterioration of the caulking may have also been a source. Objectives The objectives of this study were to measure PCB levels in soil surrounding buildings where PCB-containing caulk was still in place, and to evaluate the mobility of the PCBs from caulking using the Toxicity Characteristic Leaching Procedure (U.S. Environmental Protection Agency Method 1311). Discussion We found soil PCB contamination ranging from 3.3 to 34 mg/kg around buildings with undisturbed caulking that contained 10,000–36,200 mg/kg PCBs. The results of the Toxicity Characteristic Leaching Procedure (leachate concentrations of 76–288 mg PCB/L) suggest that PCBs in caulking can be mobilized, apparently as complexes with dissolved organic matter that also leach off the caulking material. Conclusions and Recommendations Although these new findings are based on a small sample size, they demonstrate the need for a national survey of PCBs in building materials and in soil surrounding these buildings. Because the buildings constructed during the time the PCB caulking was in use (1960s and 1970s) include schools, hospitals, and apartment buildings, the potential for exposure of children is a particular concern. It is necessary to reconsider the practice of disposing of old PCB caulking removed during building renovations in conventional landfills, given the apparent mobility of PCBs from the caulking material. Disposal of some caulking material in nonhazardous landfills might lead to high PCB levels in landfill leachate. PMID:17384760

  2. BASE CATALYZED DECOMPOSITION (BCD) OF PCB AND DIOXIN CONTAMINATED CONDENSATE OIL FROM THE REMEDIATION OF THE WARREN COUNTY LANDFILL, NC

    EPA Science Inventory

    In the late 1970s thousands of gallons of transformer fluid contaminated with PCBs were illegally sprayed along approximately 210 miles of North Carolina state roadways. Listed as a Superfund site, the contaminated roadway berms were excavated and disposed in an approved PCB land...

  3. 40 CFR 761.77 - Coordinated approval.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 761.77 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... PROHIBITIONS Storage and Disposal § 761.77 Coordinated approval. (a) General requirements. Notwithstanding any other provision of this part, the EPA Regional Administrator for the Region in which a PCB disposal or...

  4. 40 CFR 761.77 - Coordinated approval.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 761.77 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... PROHIBITIONS Storage and Disposal § 761.77 Coordinated approval. (a) General requirements. Notwithstanding any other provision of this part, the EPA Regional Administrator for the Region in which a PCB disposal or...

  5. 40 CFR 761.77 - Coordinated approval.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 761.77 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... PROHIBITIONS Storage and Disposal § 761.77 Coordinated approval. (a) General requirements. Notwithstanding any other provision of this part, the EPA Regional Administrator for the Region in which a PCB disposal or...

  6. 40 CFR 761.77 - Coordinated approval.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 761.77 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... PROHIBITIONS Storage and Disposal § 761.77 Coordinated approval. (a) General requirements. Notwithstanding any other provision of this part, the EPA Regional Administrator for the Region in which a PCB disposal or...

  7. 40 CFR 761.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... screening tests do not usually provide: an identity record generated by an instrument; a quantitative... accordance with subpart D of this part. Research and development (R&D) for PCB disposal means demonstrations... not been approved, development of new disposal technologies, and research on chemical transformation...

  8. Polychlorinated biphenyls in the atmosphere of an urban city: levels, distribution, and emissions.

    PubMed

    Chen, Laiguo; Peng, Xiaochun; Huang, Yumei; Xu, Zhencheng; Mai, Bixian; Sheng, Guoying; Fu, Jiamo; Wang, Xinhua

    2009-10-01

    Polychlorinated biphenyl (PCB) concentrations, profiles, and possible sources were determined in the atmosphere of Guangzhou, the largest city in south China. summation operator PCB concentrations ranged from 160 to 2720 pg/m(3), which is comparable with values found by similar studies in North America, Europe, and Asia. The highest PCB concentrations were found in the old industrial district, suggesting it to be the principal emission source. The most important PCB homologue group was tetra-PCB, followed by tri- and penta-PCB. The PCBs' homologue composition differs from that found in Chinese transformer oils: Chinese PCB products (no. 1 PCB and no. 2 PCB), Aroclor1242, and Aroclor1254. However, it is similar in composition to that found in sediments and soils subjected to arbitrary disposal of used electronic appliances in this region. Our results suggest that volatilization from PCB-contaminated soils in the old urban center may be the major source of PCBs in the atmosphere of Guangzhou. Additional studies will be required to characterize the geochemical cycles of PCBs from the contaminated environmental "hot spots" during the typical subtropical climate conditions in the study regions.

  9. Temporal trends and risk assessment of polychlorinated biphenyls and heavy metals in a solid waste site in Taizhou, China.

    PubMed

    Zhang, Quan; Zhu, Jianqiang; Ye, Jingjia; Qian, Yi; Chen, Fang; Wang, Jinghua; Zhao, Meirong

    2016-01-01

    The solid wastes generated during the production of chemicals are important sources of polychlorinated biphenyls (PCBs) and heavy metals. However, few studies have been conducted regarding long-term monitoring of the risks and states of PCBs and heavy metal pollution from these sources. Herein, we reported the concentrations and risks posed by these pollutants at a chemical solid waste storage site in Taizhou, China, based on data collected before (in 2006) and after clearing the solid waste (in 2013). We examined the concentrations of 24 PCBs, including ten dioxin-like-PCB (DL-PCB) congeners (PCB77, 105, 114, 118, 123, 126, 156, 167, 169, and 189). Our data showed that the mean ∑24PCB concentrations in the soil, water, and plant samples were 6902.90 ng/g, 1637.58 ng/L, and 33.95 ng/g, respectively, in 2013. Furthermore, Cr was the most prevalent contaminant. The hazard quotient (HQ) values showed that Pb posed the highest risk in the soil samples, followed by Hg. The results of the reporter gene assay showed that soil extracts from S1, S2, S3, S4, S5, S6, and S9 exhibited potential estrogenic activities. A comparison of the data showed that the PCB pollution in some sites of this area was still serious. The data provided here are fundamentally useful for policy makers to regulate this type of storage site.

  10. PCBs and PCDD/Fs in soil from informal e-waste recycling sites and open dumpsites in India: Levels, congener profiles and health risk assessment.

    PubMed

    Chakraborty, Paromita; Selvaraj, Sakthivel; Nakamura, Masafumi; Prithiviraj, Balasubramanian; Cincinelli, Alessandra; Bang, John J

    2018-04-15

    Growth of informal electronic waste (e-waste) recycling sector is an emerging problem for India. The presence of halogenated compounds in e-wastes may result in the formation of persistent organic pollutants like polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during recycling processes. We therefore investigated PCBs and PCDD/Fs in surface soils explicitly from the informal e-waste recycling sites and nearby open dumpsites of major metropolitan cities from four corners of India, viz., New Delhi (North), Kolkata (East), Mumbai (West) and Chennai (South). In the informal e-waste recycling sites, the range of Σ 26 PCBs (0.4-488ng/g) and ƩPCDD/Fs (1.0-10.6ng/g) were higher than Ʃ 26 PCBs (0.3-21ng/g) and ƩPCDD/Fs (0.15-7.3ng/g) from open dumpsites. In the e-waste sites, ƩPCDDs were found with increasing trend from ƩTetraCDD to OctaCDD, whereas ƩPCDFs showed a reverse trend. The dominance of PCDF congeners and maximum toxicity equivalents (TEQ) for both PCDDs (17pg TEQ/g) and PCDFs (82pg TEQ/g) at Mandoli in New Delhi has been related to intensive precious metal recovery process using acid bath. Among dumpsites, highest TEQ for PCDD/Fs was observed at Kodangaiyur dumpsite of Chennai (CN DS -02, 45pg TEQ/g). Positive Matrix Factorization (PMF) model identified distinct congener pattern based on the functional activities, such as e-waste dismantling, shredding, precious metal recovery and open burning in dumpsites. E-waste metal recovery factor was loaded with 86-91% of PCB-77, -105, -114, -118 and 30% of PCB-126, possibly associated with the burning of wires during the copper extraction process. Almost 70% of the Ʃ 26 PCB concentrations was comprised of the dioxin-like PCB congeners with a maximum concentration of 437ng/g at New Moore market in Chennai, followed by Wire Lane (102ng/g), in Mumbai. We speculate that PCB-126 might have resulted from combustion of plastic materials in e-waste stream and dumped waste. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China.

    PubMed

    Xing, Guan Hua; Chan, Janet Kit Yan; Leung, Anna Oi Wah; Wu, Sheng Chun; Wong, M H

    2009-01-01

    PCB levels in fish (collected from local rivers), atmosphere and human milk samples have been studied to determine the exposure levels of PCBs for local residents and e-waste workers in Guiyu, a major electronic waste scrapping center in China. The source appointment and correlation analyses showed that homologue composition of PCBs in 7 species of fish were consistent and similar to commercial PCBs Aroclor 1248. PCB levels in air surrounding the open burning site were significantly higher than those in residential area. Inhalation exposure contributed 27% and 93% to the total body loadings (the sum of dietary and inhalation exposure) of the local residents, and e-waste workers engaged in open burning respectively. Total PCB concentrations in human milk ranged from N.D. to 57.6 ng/g lipid, with an average of 9.50 ng/g lipid. The present results indicated that commercial PCBs derived from e-waste recycling are major sources of PCBs accumulating in different environmental media, leading to the accumulation of high chlorinated biphenyls in human beings.

  12. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.

    PubMed

    Li, Jia; Xu, Zhenming; Zhou, Yaohe

    2008-05-30

    Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES.

  13. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  14. 40 CFR 761.60 - Disposal requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a disposal facility approved under this part. (5) Natural gas pipeline systems containing PCBs. The owner or operator of natural gas pipeline systems containing ≥50 ppm PCBs, when no longer in use, shall... the PCB concentrations in natural gas pipeline systems shall do so in accordance with paragraph (b)(5...

  15. Graphene Oxide Attenuates the Cytotoxicity and Mutagenicity of PCB 52 via Activation of Genuine Autophagy.

    PubMed

    Liu, Yun; Wang, Xinan; Wang, Juan; Nie, Yaguang; Du, Hua; Dai, Hui; Wang, Jingjing; Wang, Mudi; Chen, Shaopeng; Hei, Tom K; Deng, Zhaoxiang; Wu, Lijun; Xu, An

    2016-03-15

    Graphene oxide (GO), owing to its large surface area and abundance of oxygen-containing functional groups, is emerging as a potential adsorbent for polychlorinated biphenyls (PCBs), which accumulate over time and are harmful to both natural ecosystems and human health. However, the effect of GO against PCB-induced toxicity remains largely unexplored. The present study aimed to investigate the protective effect of GO against PCB 52 induced cytotoxic and genotoxic response in mammalian cells at various exposure conditions and clarify the protective role of autophagy. Pretreatment with GO dramatically decreased PCB 52 induced cytotoxicity and CD59 gene mutation in human-hamster hybrid (AL) cells. The toxic response in cells either pretreated with PCB 52 and then treated with GO or concurrently treated with GO and PCB 52 did not differ significantly from the toxic response in the cells treated with PCB 52 alone. Using autophagy inhibitors (3-methyladenine and wortmannin) and inducers (trehalose and rapamycin), we found that genuine autophagy induced by GO was involved in decreasing PCB 52 induced toxicity. These findings suggested that GO has an antagonistic effect against the toxicity of PCB 52 mainly by triggering a genuine autophagic process, which might provide new insights into the potential application of GO in PCB disposal and environmental and health risk assessment.

  16. Life cycle assessment of a printed circuit board manufacturing plant in Turkey.

    PubMed

    Ozkan, Elif; Elginoz, Nilay; Germirli Babuna, Fatos

    2017-09-29

    The objective of this study is to investigate the environmental impacts of a printed circuit board (PCB) manufacturing plant through streamlined life cycle assessment approach. As a result, the most effective recommendations on minimizing the environmental impacts for the mentioned sector are revealed and first steps towards establishing a country specific database are taken. The whole PCB production consists of two consecutive stages: namely board fabrication followed by the manufacturing of PCB. Manufacturing of PCB contributes the highest shares to freshwater aquatic ecotoxicity potential (FAETP) and ozone layer depletion potential (ODP). Eighty-nine percent of FAETP is found to be generated from the manufacturing of PCB. Almost all of this contribution can be attributed to the disposal of copper containing wastewater treatment sludge from etching operations to incineration. On the other hand, PCB manufacturing has 73% share in total ODP. Within the manufacturing of PCB, as etching operations are found to be of importance for all the impact categories except eutrophication potential (EP), it is recommended to focus further studies on in-plant control of etching.

  17. Dose-mortality assessment upon reuse and recycling of industrial sludge.

    PubMed

    Lin, Kae-Long; Chen, Bor-Yann

    2007-09-05

    This study provides a novel attempt to put forward, in general toxicological terms, quantitative ranking of toxicity of various sources of sludge for possible reusability in further applications. The high leaching concentrations of copper in printed circuit board (PCB) sludge and chromium in leather sludge apparently exceeded current Taiwan's EPA regulatory thresholds and should be classified as hazardous wastes. Dose-mortality analysis indicated that the toxicity ranking of different sources of sludge was PCB sludge>CaF(2) sludge>leather sludge. PCB sludge was also confirmed as a hazardous waste since the toxicity potency of PCB sludge was nearly identical to CdCl(2). However, leather sludge seemed to be much less toxic than as anticipated, perhaps due to a significant decrease of toxic species bioavailable in the aqueous phase to the reporter bacterium Escherichia coli DH5alpha. For possible reusability of sludge, maximum concentrations allowable to be considered "safe" (ca. EC(100)/100) were 9.68, 42.1 and 176 mgL(-1) for CaF(2) sludge, PCB sludge and leather sludge, respectively.

  18. Concentrations and patterns of polychlorinated biphenyls at different process stages of cement kilns co-processing waste incinerator fly ash.

    PubMed

    Liu, Guorui; Yang, Lili; Zhan, Jiayu; Zheng, Minghui; Li, Li; Jin, Rong; Zhao, Yuyang; Wang, Mei

    2016-12-01

    Cement kilns can be used to co-process fly ash from municipal solid waste incinerators. However, this might increase emission of organic pollutants like polychlorinated biphenyls (PCBs). Knowledge of PCB concentrations and homolog and congener patterns at different stages in this process could be used to assess the possibility of simultaneously controlling emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and "dioxin-like" compounds. To date, emissions from cement kilns co-processing fly ash from municipal solid waste incinerators have not been analyzed for PCBs. In this study, stack gas and particulate samples from two cement kilns co-processing waste incinerator fly ash were analyzed for PCBs. The average total tri- to deca-chlorinated biphenyl (∑ 3-10 PCB) concentration in the stack gas samples was 10.15ngm -3 . The ∑ 3-10 PCB concentration ranges in particulate samples from different stages were 0.83-41.79ngg -1 for cement kiln 1and0.13-1.69ngg -1 for cement kiln 2. The ∑ 3-10 PCB concentrations were much higher in particulate samples from the suspension pre-heater boiler, humidifier tower, and kiln back-end bag filters than in particulate samples from other stages. For these three stages, PCBs contributed to 15-18% of the total PCB, PCDD/F, and polychlorinated naphthalene toxic equivalents in stack gases and particulate matter. The PCB distributions were similar to those found in other studies for PCDD/Fs and polychlorinated naphthalenes, which suggest that it may be possible to simultaneously control emissions of multiple organic pollutants from cement kilns. Homolog patterns in the particulate samples were dominated by the pentachlorobiphenyls. CB-105, CB-118, and CB-123 were the dominant dioxin-like PCB congeners that formed at the back-end of the cement kiln. A mass balance of PCBs in the cement kilns indicated that the total mass of PCBs in the stack gases and clinker was about half the mass of PCBs in the raw materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Elevated levels of polychlorinated biphenyls in plants, air, and soils at an E-waste site in Southern China and enantioselective biotransformation of chiral PCBs in plants.

    PubMed

    Chen, She-Jun; Tian, Mi; Zheng, Jing; Zhu, Zhi-Cheng; Luo, Yong; Luo, Xiao-Jun; Mai, Bi-Xian

    2014-04-01

    E-waste that contains polychlorinated biphenyls (PCBs) is moved across national boundaries, often from industrialized countries in the northern hemisphere, where the items were formerly used, to subtropical and tropical regions in southeastern Asia and Africa. As a result, there is a high likelihood that PCBs will be released into the environment from a primary source due to the elevated temperatures encountered in these low-latitude regions. In the present study, PCBs and enantiomer fractions (EFs) of chiral PCBs (PCB 84, 95, 132, 136, 149, and 183) were analyzed in air, eucalyptus leaves, pine needles, and soil at an e-waste site and a rural site in southern China. The concentrations of PCBs at the e-waste site ranged from 7825 to 76330 pg/m(3), 27.5 to 1993 ng/g, and 24.2 to 12045 ng/g in the air (gas plus particle), plant leaves, and soils, respectively. The atmospheric PCB composition profiles in the present study indicated relatively high abundances of penta- and hexa-PCBs, which were different from those previously observed in the air across China. The Clausius-Clapeyron regression analysis indicated that evaporation from local contaminated surfaces constitutes a primary emission source of PCBs in the air at the e-waste site. The chiral signatures of PCBs in the air at the e-waste site were essentially racemic (mean EFs = (0.484 ± 0.022)-(0.499 ± 0.004) in the gaseous phase) except for PCB 84 (0.420 ± 0.050), indicating that racemic sources dominate the PCB emission in the air. PCB chiral signatures in the soils ((0.422 ± 0.038)-(0.515 ± 0.016)) were similar to those in the air except for PCB 95. However, the chiral PCBs in the plants (especially the eucalyptus leaves) had significantly nonracemic residues ((0.368 ± 0.075)-(0.561 ± 0.045)) compared to those in the air and soil. This finding suggests that enantioselective biotransformation of these atropisomeric PCBs was very likely to occur in the plant leaves, possibly due to metabolism by cytochrome P-450 enzymes in leaves. To our knowledge, this is the first report on the enantioselective metabolism of chiral PCBs in plants under field conditions.

  20. Polychlorinated Biphenyl Levels in the Saginaw Confined Disposal Facility during Disposal Operations, Fall 1987

    DTIC Science & Technology

    1991-01-01

    aluminum foil-lined caps. Prior to use, glass jars and jugs for storage of PCB samples were washed with soap and water, rinsed with tap water, rinsed...technique used in this study. Because differences in solids-liquid separation techniques result in varying amounts of microparticles and/or organic

  1. An improved inventory of polychlorinated biphenyls in China: A case study on PCB-153

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Tian, Chongguo; Wang, Xiaoping; Ma, Jianmin; Tang, Jianhui; Chen, Yingjun; Li, Jun; Zhang, Gan

    2018-06-01

    Emission inventory of pollutants is essential for the environmental fate study and management of the pollutant. To construct a reasonable PCB (polychlorinated biphenyls) inventory in China, this study estimates PCB usage and emission using power generating capacity, installed capacity of power plants and transformer substations, population density and GDP as surrogates. Inventory of representative PCB (PCB-153) with a resolution of 1/4° latitude × 1/4° longitude in China from 1952 to 2005 was generated and assessed as an example. Totally, about 20.3 kt PCBs were applied in China, of which 179 t were PCB-153. By the end of 2005, most of them (56.4%) were emitted into the soil, 2.7% entered the air, and about 20.8% was sealed in storage site or still in service. Historical emissions exhibited increasing trends after 1968, 1984 and 1994, which were mainly associated with usage or disposal processes. Although primary emission has been declined since 2005, the influence of secondary emission from soils, unintentionally produced PCBs (UP-PCB), and reemission from storage sites could be a long-lasting issue in the future. This new emission inventory improves previous PCB emission inventory significantly, which underestimated PCB emission in China considerably.

  2. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board.

    PubMed

    Jiang, Wu; Jia, Li; Zhen-Ming, Xu

    2009-01-15

    The electrostatic separation is an effective method for recycling waste electrical and electronic equipment (WEEE). The efficiency of electrostatic separation processes depends on the ability of the separator. As a classical one, the roll-type corona-electrostatic separator has some advantages in recycling metals and plastics from waste printed circuit board (PCB). However, its industry application still faces some problems, such as: the further disposal of the middling products of the separation process; the balance of the production capacity and the good separation efficiency; the separation of the fine granular mixture and the stability of the separation process. A new "two-roll-type corona-electrostatic separator" was built to overcome the limitation of the classical one. The experimental data were discussed and the results showed that the outcome of the separation process was improved by using the new separator. Compared with the classical machine, the mass of conductive products increases 8.9% (groups 2 and 3) and10.2% (group 4) while the mass of the middling products decreases 45% (groups 2 and 3) and 31.7% (group 4), respectively. The production capacity of the new machine increases, and the stability of the separation process is enhanced.

  3. Amperometric IFN-γ immunosensors with commercially fabricated PCB sensing electrodes.

    PubMed

    Moschou, Despina; Greathead, Louise; Pantelidis, Panagiotis; Kelleher, Peter; Morgan, Hywel; Prodromakis, Themistoklis

    2016-12-15

    Lab-on-a-Chip (LoC) technology has the potential to revolutionize medical Point-of-Care diagnostics. Currently, considerable research efforts are focused on innovative production technologies that will make commercial upscaling of lab-on-chip products financially viable. Printed circuit board (PCB) manufacturing techniques have several advantages in this field. In this paper we focus on transferring a complete IFN-γ enzyme-linked immune-sorbent assay (ELISA) onto a commercial PCB electrochemical biosensing platform, We adapted a commercially available ELISA to detect the enzyme product TMB/H2O2 using amperometry, successfully reproducing the colorimetry-obtained ELISA standard curve. The results demonstrate the potential for the integration of these components into an automated, disposable, electronic ELISA Lab-on-PCB diagnostic platform. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. 40 CFR 761.323 - Sample preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS Self-Implementing Alternative Extraction and Chemical Analysis Procedures for Non-liquid PCB Remediation Waste Samples § 761.323 Sample preparation. (a) The comparison study requires analysis of a... of use in this chemical extraction and chemical analysis comparison study, a person may adjust PCB...

  5. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  6. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  7. Installation Restoration Program. Phase II. Problem Confirmation and Quantification Study, Griffiss Air Force Base, Rome, New York.

    DTIC Science & Technology

    1982-12-01

    Base 6-26 17 Confirmation Stage Soil PCB Data, Building 112, Griffiss Air Force Base 6-27 18 Analysis of Roof and Oil Samples Building 112, Griffiss...Chlordane Application 46 52 (14) Drywell, Building 219 46 36 (14) PCB Spill at Floyd 46 47 17 Hazardous Waste Storage Area, Lot 69 38 47 18 Waste Oil ...specific anions, oil and grease, pH, and specific conductance. * Prepare a field investigations report delineating the nature and magnitude of

  8. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  9. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  10. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  11. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  12. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  13. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  14. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  15. Dioxin-like pcb emissions from cement kilns during the use of alternative fuels.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2017-02-05

    The substitution of combustion fuels in cement plants is increasing throughout many countries, and its individual performance is constantly assessed against strict regulatory standards. For cement plants within Australia, normal operations remain to use petroleum coal as the dominate energy source at the precalciner, avoiding the opportunity to reduce carbon-based resources and pollutant emissions (such as carbon dioxide, oxides of nitrogen, persistent organic pollutants) whilst providing the necessary energy needs through resource recovery. This paper presents stack emission monitoring of health-critical dl-PCB (dioxin-like polychlorinated biphenyl) congeners during the substitution of alternative fuels at ten Australian cement plants, and to distinguish statistical similarities between other key pollutants (such as polychlorinated dibenzo-p-dioxins and furans (PCDD-F) and hydrogen halogens) and amongst the fuels used. Sampling of plant emissions was performed during normal operations (as baseline trials) and with the varied substitution rates of waste oil, solvents, chipped wood, refuge waste, carbon dust, shredded tyres and black sand (as experimental trials). The extraction of field and analytical data during these trials allowed for determining the total and individual unit mass of dl-PCB and PCDD-F isomers, standardised to 10% O 2 and to World Health Organization (2005) toxicity equivalence (TEQ) values. The findings showed waste co-incineration during cement operations does reduce health-critical congeners of dioxins and dl-PCBs whilst providing the necessary energy and calcination needs. Experimental trials showed all dl-PCBs and PCB TEQ are below the internationally regulated Stockholm Convention article of 10pg TEQ/Nm 3 . In several cases, an increased rate of substituted fuel also identified a consistent reduction to baseline dl-PCBs. The distribution of toxic isomers (TCDD-F and PeCDD-F) were shown to be predominate during waste oil, wood chips, and solvent trials. Whereas the use of TDFs consistently showed a lower toxicity contribution. The distribution of dl-PCBs toxic congeners showed PCB-126 (3,3',4,4',5-Pentachlorobiphenyl) to be greatly present during the co-incineration of waste oil, wood chips, solvents and TDF trials. Principle component analysis identified a statistical predominance from the 1,2,3,7,8-PeCDF (Pentachlorodibenzofuran) and 1,2,3,4,7,8-HxCDF (Hexachlorodibenzofuran) congeners, while dl-PCBs TEQs had similar correlation amongst combustion fuels with major contributions being from the PCB-126 and PCB-169 (3,3',4,4',5,5'-Hexachlorobiphenyl) congeners. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Electrostatic separation for recovering metals and nonmetals from waste printed circuit board: problems and improvements.

    PubMed

    Wu, Jiang; Li, Jia; Xu, Zhenming

    2008-07-15

    Electrostatic separation is an effective and environmentally friendly method for recycling comminuted waste printed circuit boards (PCB). As a classical separator, the roll-type corona-electrostatic separator (RTS) has some advantages in this field. However, there are still some notable problems, such as the middling products and their further treatment, impurity of nonconductive products because of the aggregation of fine particles, and stability of the separation process and balance between the production capacity and the separation quality. To overcome these problems, a conception of two-step separation is presented, and a new two-roll type corona-electrostatic separator (T-RTS) was built As compared to RTS, the conductive products increase by 8.9%, the middling products decrease by 45%, and the production capacity increases by 50% in treating comminuted PCB wastes by T-RTS. In addition, the separation process in T-RTS is more stable. Therefore, T-RTS is a promising separator for recycling comminuted PCB.

  17. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.34 Waste... wastes are prohibited from land disposal: the wastes specified in 40 CFR Part 261 as EPA Hazardous Waste... 261. (b) Effective November 26, 1998, the following waste is prohibited from land disposal: Slag from...

  18. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.34 Waste... wastes are prohibited from land disposal: the wastes specified in 40 CFR Part 261 as EPA Hazardous Waste... 261. (b) Effective November 26, 1998, the following waste is prohibited from land disposal: Slag from...

  19. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.34 Waste... wastes are prohibited from land disposal: the wastes specified in 40 CFR Part 261 as EPA Hazardous Waste... 261. (b) Effective November 26, 1998, the following waste is prohibited from land disposal: Slag from...

  20. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...

  1. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...

  2. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...

  3. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...

  4. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...

  5. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...

  6. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...

  7. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...

  8. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...

  9. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...

  10. 40 CFR 268.30 - Waste specific prohibitions-wood preserving wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.30 Waste... prohibited from land disposal: the wastes specified in 40 CFR part 261 as EPA Hazardous Waste numbers F032, F034, and F035. (b) Effective May 12, 1999, the following wastes are prohibited from land disposal...

  11. 40 CFR 268.30 - Waste specific prohibitions-wood preserving wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.30 Waste... prohibited from land disposal: the wastes specified in 40 CFR part 261 as EPA Hazardous Waste numbers F032, F034, and F035. (b) Effective May 12, 1999, the following wastes are prohibited from land disposal...

  12. 40 CFR 268.30 - Waste specific prohibitions-wood preserving wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.30 Waste... prohibited from land disposal: the wastes specified in 40 CFR part 261 as EPA Hazardous Waste numbers F032, F034, and F035. (b) Effective May 12, 1999, the following wastes are prohibited from land disposal...

  13. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  14. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  15. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  16. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  17. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  18. Emissions from simulated deep-seated fires in domestic waste.

    PubMed

    Lönnermark, Anders; Blomqvist, Per; Marklund, Stellan

    2008-01-01

    The emissions from deep-seated fires in domestic waste have been investigated. The gas phase yields of PAH, PCDD/F, PCB, HCB, particles, and metals associated to the particulate matter were analysed during a series of simulated deep-seated fires. The method of extinguishment was varied and in cases where water was used for extinguishment, the runoff water was analysed for PAH, PCDD/F, PCB, hexachlorobenzene, and metals. In total six tests were performed. In four of the tests, samples of the fire residue were analysed for PCDD/F, PCBs, and chlorobenzenes.

  19. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Radulesscu; J.S. Tang

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.« less

  20. Characterising boiler ash from a circulating fluidised bed municipal solid waste incinerator and distribution of PCDD/F and PCB.

    PubMed

    Zhang, Mengmei; Buekens, Alfons; Li, Xiaodong

    2018-05-31

    In this study, ash samples were collected from five locations situated in the boiler of a circulating fluidised bed municipal solid waste incinerator (high- and low-temperature superheater, evaporator tubes and upper and lower economiser). These samples represent a huge range of flue gas temperatures and were characterised for their particle size distribution, surface characteristics, elemental composition, chemical forms of carbon and chlorine and distribution of polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and biphenyls (PCB). Enrichment of chlorine, one of the main elements of organochlorinated pollutants, and copper, zinc and lead, major catalytic metals for dioxin-like compounds, was observed in lower-temperature ash deposits. The speciation of carbon and chlorine on ash surfaces was established, showing a positive correlation between organic chlorine and oxygen-containing carbon functional groups. The load of PCDD/F and PCB (especially dioxin-like PCB) tends to rise rapidly with falling temperature of flue gas, reaching their highest value in economiser ashes. The formation of PCDD/F congeners through the chlorophenol precursor route apparently was enhanced downstream the boiler. Principal component analysis (PCA) was applied to study the links between the ash characteristics and distribution of chloro-aromatics. The primary purpose of this study is improving the understanding of any links between the characteristics of ash from waste heat systems and its potential to form PCDD/F and PCB. The question is raised whether further characterisation of fly ash may assist to establish a diagnosis of poor plant operation, inclusive the generation, destruction and eventual emission of persistent organic pollutants (POPs).

  1. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  2. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  3. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  4. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  5. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  6. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  7. 10 CFR 20.2005 - Disposal of specific wastes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it were...

  8. 10 CFR 20.2005 - Disposal of specific wastes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it were...

  9. Application of Fenton process to remove organic matter and PCBs from waste (fuller's earth) contaminated with insulating oil.

    PubMed

    da Silva, Milady Renata Apolinário; Rodrigues, Eduardo de Oliveira; Espanhol-Soares, Melina; Silva, Flavio Soares; Kondo, Márcia Matiko; Gimenes, Rossano

    2018-01-09

    Polychlorinated biphenyls (PCBs) are carcinogenic to humans and can be found in fuller's earth used for the treatment of used transformer oil. This work describes an optimization of the Fenton process for the removal of contaminants from fuller's earth. The effects of pH (2.5 and 4.0), [H 2 O 2 ] (1.47 and 2.07 mol L -1 ), and [Fe 2+ ] (1.7 and 40 mmol L -1 ) were studied. The Fenton process efficiency was monitored using the decreases in the chemical oxygen demand (COD) and the concentrations of oil and grease, total carbon (TC), PCBs, and H 2 O 2 . The fuller's earth contaminated with insulating oil presented 35% (w/w) of TC, 34% (w/w) of oil and grease, 297.0 g L -1 COD, and 64 mg of PCBs per kg. The material could therefore be considered a dangerous waste. After Fenton treatment, using a slurry mode, there was a removal of 55% of COD, 20% of oil and grease, and 20% of TC, achieved at pH 2.5 using 2.07 mol L -1 of H 2 O 2 and 40.0 mmol L -1 of Fe 2+ . No PCBs were detected in the samples after the Fenton treatment, even using smaller amounts of Fenton reagents (1.47 mol L -1 of H 2 O 2 , 1.7 mmol L -1 of Fe 2+ , pH 2.5). The results indicated that the treated fuller's earth was free from PCB residues and could be disposed of in a simple landfill, in accordance with Brazilian PCB regulations.

  10. Perspectives on Past and Present Waste Disposal Practices: A Community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    PubMed Central

    Zagozewski, Rebecca; Judd-Henrey, Ian; Nilson, Suzie; Bharadwaj, Lalita

    2011-01-01

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities. PMID:21573032

  11. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal...-contaminated equipment and other items that are disposed of as waste, through the application of waste...

  12. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  13. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  14. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  15. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  16. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  17. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Yasser T.

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less

  18. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  19. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...

    EPA Pesticide Factsheets

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.

  20. Lead phytoextraction from printed circuit computer boards by Lolium perenne L. and Medicago sativa L.

    PubMed

    Díaz Martínez, María Esther; Argumedo-Delira, Rosalba; Sánchez Viveros, Gabriela; Alarcón, Alejandro; Trejo-Téllez, Libia Iris

    2018-04-16

    This work assessed the ability of Lolium perenne and Medicago sativa for extracting lead (Pb) from particulate printed circuit computer boards (PCB) mixed in sand with the following concentrations: 0.5, 1.0 and 1.5 g of PCB, and including a control treatment without PCB. The PCB were obtained from computers, and grinded in two particle sizes: 0.0594 mm (PCB1) and 0.0706 mm (PCB2). The PCB particle sizes at their corresponding concentrations were applied to L. perenne and M. sativa by using three experimental assays. In assay II, PCB2 affected the biomass production for both plants. For assay III, the PCB1 increased the biomass of M. sativa (236.5%) and L. perenne (142.2%) when applying either 0.5 or 1.0 g, respectively. In regards to phytoextraction, assay I showed the highest Pb-extraction by roots of L. perenne (4.7%) when exposed to 1.5 g of PCB1. At assay I, L. perenne showed a Pb-bioconcentration factor higher than 1.0 when growing at 0.5 g of PCB1, and when HNO 3 was used as digestion solution; moreover, in assay III both plants showed a Pb-translocation factor higher than 1.0. Therefore, Lolium perenne and Medicago sativa are able to recover Pb from electronic wastes (PCB).

  1. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  2. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  3. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  4. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  5. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  6. 40 CFR 257.13 - Deadline for making demonstrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Hazardous Waste Disposal Units Location Restrictions § 257.13 Deadline for making demonstrations. Existing..., 1998, must not accept CESQG hazardous waste for disposal. Ground-Water Monitoring and Corrective Action ... WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards...

  7. 10 CFR 61.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...

  8. 10 CFR 61.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...

  9. 10 CFR 61.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...

  10. 10 CFR 61.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...

  11. 10 CFR 61.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...

  12. Water-resources activities in New York, 1987-88

    USGS Publications Warehouse

    Marshall, Mary P.; Finch, Anne J.

    1988-01-01

    The U.S. Geological Survey conducted more than 35 water resources projects in New York in 1987-88. These studies, done largely through cooperative joint-funding programs with the state, County, and local agencies, encompass statewide networks of measurement stations that provide continuous records of streamflow, groundwater levels, and water quality; they also address regional and local problems as well as critical problems of national scope. Some of the questions addressed by these studies are the effect of sewers on groundwater levels and streamflow on Long Island; the occurrence and transport of PCB residues within the upper Hudson River basin; the effect of acid rain on streams in the Catskill Mountains; the frequency and magnitude of floods statewide; the role of wetlands in improving the chemical quality of landfill leachate; the direction of groundwater movement from waste disposal sites near the Niagara River; and the location and potential well yields of stratified-drift aquifers in upstate New York. (USGS)

  13. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOEpatents

    Meikrantz, David H.; Mincher, Bruce J.; Arbon, Rodney E.

    1998-01-01

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilogray. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste.

  14. 10 CFR 62.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Emergency access means access to an operating non-Federal or regional low-level radioactive waste disposal... regional low-level radioactive waste disposal facility or facilities for a period not to exceed 180 days... waste. Non-Federal disposal facility means a low-level radioactive waste disposal facility that is...

  15. Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Michael Marquand; Little, Bonnie Colleen

    The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid wastemore » was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.« less

  16. WASTE AND WATER MANAGEMENT FOR CONVENTIONAL COAL COMBUSTION: ASSESSMENT REPORT - 1979. VOLUME V. DISPOSAL OF FGC (FLUE GAS CLEANING) WASTES

    EPA Science Inventory

    The report, the fifth of five volumes, focuses on disposal of coal ash and FGD wastes which (together) comprise FGC wastes. The report assesses the various options for the disposal of FGC wastes with emphasis on disposal on land. A number of technical, economic, and regulatory fa...

  17. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less

  18. 40 CFR 761.64 - Disposal of wastes generated as a result of research and development activities authorized under...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...

  19. 40 CFR 761.64 - Disposal of wastes generated as a result of research and development activities authorized under...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...

  20. 40 CFR 761.64 - Disposal of wastes generated as a result of research and development activities authorized under...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...

  1. 40 CFR 761.64 - Disposal of wastes generated as a result of research and development activities authorized under...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...

  2. Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence.

    PubMed

    Guéguen, Florence; Stille, Peter; Millet, Maurice

    2011-09-01

    Tree barks were used as biomonitors to evaluate past atmospheric pollution within and around the industrial zones of Strasbourg (France) and Kehl (Germany) in the Rhine Valley. The here estimated residence time for trace metals, PCBs and PCDD/Fs in tree bark is >10 years. Thus, all pollution observed by tree bark biomonitoring can be older than 10 years. The PCB baseline concentration (sum of seven PCB indicators (Σ(7)PCB(ind))) determined on tree barks from a remote area in the Vosges mountains is 4 ng g(-1) and corresponds to 0.36 × 10(-3)ng toxic equivalent (TEQ) g(-1) for the dioxin-like PCBs (DL-PCBs). The northern Rhine harbor suffered especially from steel plant, waste incinerator and thermal power plant emissions. The polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) concentrations analyzed in tree barks from this industrial area range between 392 and 1420 ng kg(-1) dry-weight (dw) corresponding to 3.9 ng TEQ(PCDD/Fs) kg(-1) to 17.8 ng TEQ(PCDD/Fs) kg(-1), respectively. Highest PCDD/F values of 7.2 ng TEQ kg(-1) to 17.8 ng TEQ kg(-1) have been observed close to and at a distance of <2 km southwest of the chemical waste incinerator. However, very close to this incinerator lowest TEQ dioxin-like PCB (TEQ(DL-PCB)) values of 0.006 ng TEQ g(-1) have been found. On the other hand close to and southwest and northeast of the steel plant the values are comparatively higher and range between 0.011 ng TEQ g(-1) and 0.026 ng TEQ g(-1). However, even stronger Σ(7)PCB(ind) enrichments have been observed at a few places in the city center of Kehl, where ΣDL-PCB values of up to 0.11 ng TEQ g(-1) have been detected. These enrichments, however, are the result of ancient pollutions since recent long-term measurements at the same sites indicate that the atmospheric PCB concentrations are close to baseline. Emissions from an old landfill of waste and/or great fires might have been the reasons of these PCB enrichments. Other urban environments of the cities of Kehl and Strasbourg show significantly lower Σ(7)PCB(ind) concentrations. They suffer especially from road and river traffic and have typically Σ(7)PCB(ind) concentrations ranging from 11 ng g(-1) to 29 ng g(-1). The PCB concentration of 29 ng g(-1) has been found in tree bark close to the railway station of Strasbourg. Nevertheless, the corresponding TEQ(DL-PCB) are low and range between 0.2 × 10(-3) ng TEQ g(-1) and 7 × 10(-3) ng TEQ g(-1). Samples collected near road traffic are enriched in Fe, Sb, Sn and Pb. Cd enrichments were found close to almost all types of industries. Rural environments not far from industrial sites suffered from organic and inorganic pollution. In this case, TEQ(DL-PCB) values may reach up to 58 × 10(-3) ng TEQ g(-1) and the corresponding V, Cr, Co, Ni, and Cd concentrations are comparatively high. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Risk management for outsourcing biomedical waste disposal - using the failure mode and effects analysis.

    PubMed

    Liao, Ching-Jong; Ho, Chao Chung

    2014-07-01

    Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included "availability of freezing devices", "availability of containers for sharp items", "disposal frequency", "disposal volume", "disposal method", "vehicles meeting the regulations", and "declaration of three lists". This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. 10 CFR 61.12 - Specific technical information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...

  5. 10 CFR 61.12 - Specific technical information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...

  6. 10 CFR 61.12 - Specific technical information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...

  7. 10 CFR 61.12 - Specific technical information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...

  8. 10 CFR 61.12 - Specific technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...

  9. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  10. Notifications Dated October 2, 2014 Submitted by We Energies to Dispose of Polychlorinated Biphenyl Remediation Waste

    EPA Pesticide Factsheets

    Disposal Notifications Dated October 2, 2014 for We Energies and the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl Remediation Waste at the Waste Management Disposal Sites in Menomonee Falls and Franklin, WI

  11. Up from the beach: medical waste disposal rules!

    PubMed

    Francisco, C J

    1989-07-01

    The recent incidents of floating debris, garbage, wood, and medical waste on our nation's beaches have focused public attention on waste management problems. The handling and disposal of solid waste remains a major unresolved national dilemma. Increased use of disposables by all consumers, including the medical profession, and the increasing costs of solid waste disposal options have aggravated the solid waste situation. Medical waste found on beaches in the summer of 1988 could have been generated by a number of sources, including illegal dumping; sewer overflow; storm water runoff; illegal drug users; and inadequate handling of solid waste at landfills and coastal transfer facilities, which receive waste from doctors' offices, laboratories, and even legitimate home users of syringes. As officials from New Jersey have determined, the beach garbage is no mystery. It's coming from you and me. In response to the perceived medical waste disposal problem, various state and federal agencies have adopted rules to regulate and control the disposal of medical waste. This article outlines the more significant rules that apply to medical waste.

  12. Pathways for Disposal of Commercially-Generated Tritiated Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Nancy V.

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste transportation, processing and disposal vary based a number of factors. In many cases, wastes with very low radioactivity are priced primarily based on weight or volume. For higher activities, costs are based on both volume and activity, with the activity-based charges usually being much larger than volume-based charges. Other factors affecting cost include location, waste classification and form, other hazards in the waste, etc. Costs may be based on general guidelines used by an individual disposal or processing site, but final costs are established by specific contract with each generator. For this report, seven hypothetical waste streams intended to represent commercially-generated tritiated waste were defined in order to calculate comparative costs. Ballpark costs for disposition of these hypothetical waste streams were calculated. These costs ranged from thousands to millions of dollars. Due to the complexity of the cost-determining factors mentioned above, the costs calculated in this report should be understood to represent very rough cost estimates for the various hypothetical wastes. Actual costs could be higher or could be lower due to quantity discounts or other factors.« less

  13. 40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...

  14. 40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...

  15. 40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...

  16. 40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...

  17. 40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...

  18. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Disposal of waste. 3596.2 Section 3596.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all...

  19. 76 FR 34200 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... 2050-AG65 Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes AGENCY... concentration limits before the wastes can be land disposed. The lack of readily available analytical standards.... List of Subjects 40 CFR Part 268 Environmental protection, Hazardous waste, Land disposal restrictions...

  20. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Disposal of waste. 3596.2 Section 3596.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all...

  1. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  2. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    PubMed Central

    Szałatkiewicz, Jakub

    2016-01-01

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804

  3. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    PubMed

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  4. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...

  5. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...

  6. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...

  7. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...

  8. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...

  9. Optimal evaluation of infectious medical waste disposal companies using the fuzzy analytic hierarchy process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This ismore » because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms.« less

  10. Optimal evaluation of infectious medical waste disposal companies using the fuzzy analytic hierarchy process.

    PubMed

    Ho, Chao Chung

    2011-07-01

    Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This is because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    PubMed

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  12. Concept for Underground Disposal of Nuclear Waste

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  13. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  14. 76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  15. 76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  16. 75 FR 39041 - Notice of Lodging of Proposed Consent Decree Under the Solid Waste Disposal Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Solid Waste Disposal... the Solid Waste Disposal Act (as amended by the Resource Conservation and Recovery Act), 42 U.S.C... to wildlife, at its commercial oilfield waste disposal facility, located in Campbell County, Wyoming...

  17. 29 CFR 1926.252 - Disposal of waste materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fire regulations. (e) All solvent waste, oily rags, and flammable liquids shall be kept in fire... 29 Labor 8 2014-07-01 2014-07-01 false Disposal of waste materials. 1926.252 Section 1926.252..., Use, and Disposal § 1926.252 Disposal of waste materials. (a) Whenever materials are dropped more than...

  18. 10 CFR 61.24 - Conditions of licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...

  19. 10 CFR 61.24 - Conditions of licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...

  20. 10 CFR 61.24 - Conditions of licenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...

  1. 10 CFR 61.24 - Conditions of licenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...

  2. 10 CFR 61.24 - Conditions of licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...

  3. Idaho National Laboratory PCB Annual Document Log and Annual Records Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    no name on report

    The requirements for the reporting of polychlorinated biphenyl (PCB)-related activities are found in 40 Code of Federal Regulations (CFR) 761 Subpart J, "General Records and Reports." The PCB Annual Document Log is a detailed record of the PCB waste handling activities at the facility. The facility must prepare it each year by July 1 and maintain it at the facility for at least 3 years after the facility ceases using or storing PCBs and PCB items. While submittal of the PCB Annual Document Log to the U.S. Environmental Protection Agency (EPA) is not required by regulation, EPA has verbally requestedmore » in telephone conversations that this report be submitted to them on an annual basis. The Annual Document Log section of this report meets the requirements of 40 CFR 761.180(a)(2), as applicable, while the Annual Records section meets the requirement of 40 CFR 761.180(a)(1).« less

  4. Exposure to PCBs, through inhalation, dermal contact and dust ingestion at Taizhou, China--a major site for recycling transformers.

    PubMed

    Xing, Guan Hua; Liang, Ying; Chen, Ling Xuan; Wu, Sheng Chun; Wong, Ming Hung

    2011-04-01

    Air samples containing gaseous and particulate phases were collected from e-waste workplaces and residential areas of an intensive e-waste recycling area and compared with a reference site. The highest total concentration of PCBs was detected at transformer recycling workshops (17.6 ng m(-3)), followed by the residential area (3.37 ng m(-3)) at Taizhou, and the lowest was obtained at the residential area of the reference site, Lin'an (0.46 ng m(-3)). The same trend was also observed with regards to PCB levels in dust samples. The highest average PCBs level of 2824 ng g(-1) (dry wt) was found in the transformer recycling workshops, and was significantly higher than that of residential areas of Taizhou (572 ng g(-1) dry wt) and Lin'an (42.4 ng g(-1) dry wt). WHO-PCB-TEQ level in the workshops of Taizhou was 2216 pg TEQ(1998)g(-1) dry wt or 2159 pg TEQ(2005)g(-1) dry wt, due to the high abundance of PCB 126 (21.5 ng g(-1) dry wt), which contributed 97% or 99% of WHO-PCB-TEQs. The estimated intake of PCBs via dust ingestion and dermal absorption by transformer recycling workers were 77.5×10(-5) and 36.0×10(-5) pg WHO-PCB-TEQ(1998)kg(-1)d(-1), and 67.3×10(-5) and 31.3×10(-5) pg WHO-PCB-TEQ(2005)kg(-1)d(-1), respectively. Copyright © 2011. Published by Elsevier Ltd.

  5. Bioaccumulation of polychlorinated biphenyls in ranid frogs and northern water snakes from a hazardous waste site and a contaminated watershed.

    PubMed

    Fontenot, L W; Noble, G P; Akins, J M; Stephens, M D; Cobb, G P

    2000-04-01

    Livers of bullfrogs (Rana catesbeiana) from a polychlorinated biphenyl (PCB) contaminated watershed and hazardous waste site located in Pickens County, South Carolina, contained significantly higher concentrations of PCBs (2.33 and 2.26 ppm, respectively) than those from a reference site (0.05 ppm). Green frogs (R. clamitans) from the two contaminated sites also accumulated higher levels of PCBs (2.37 and 3.88 ppm, respectively) than those from the reference site (0.02 ppm). No temporal variation was observed in PCB concentrations of bullfrogs or green frogs from the contaminated sites between 1992 and 1993. Levels of PCBs in the livers of northern water snakes (Nerodia sipedon) were significantly higher in snakes from the contaminated watershed (13.70 ppm) than in those from the waste site (2.29 ppm) and two reference sites (2.50 and 1.23 ppm). When compared to frogs, significantly higher bioaccumulation occurred in water snakes from the contaminated watershed. No significant differences in PCB levels were found with respect to sex or body size (snout-vent length (SVL) or body mass) for frogs or snakes. PCBs were detected also in eggs of both frogs and snakes. Results of this study provide baseline data and document the bioaccumulation of PCB residues in frog and snake tissues; however, the significance of these tissue residues to reproduction, survival, growth/development, and population dynamics in contaminated habitats is unknown.

  6. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to...

  7. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to...

  8. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOEpatents

    Meikrantz, D.H.; Mincher, B.J.; Arbon, R.E.

    1998-08-25

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilograms. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste. 5 figs.

  9. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985

    USGS Publications Warehouse

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  10. 40 CFR 257.29 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally Exempt Small Quantity Generator (CESQG) Wastes at Non-Municipal Non-Hazardous Waste Disposal Units...

  11. 40 CFR 257.7 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally Exempt Small Quantity Generator (CESQG) Wastes at Non-Municipal Non-Hazardous Waste Disposal Units...

  12. Low-level radioactive waste disposal. Study of a conceptual nuclear energy center at Green River, Utah

    NASA Astrophysics Data System (ADS)

    Card, D. H.; Hunter, P. H.; Barg, D.; Desouza, F.; Felthauser, K.; Winkler, V.; White, R.

    1982-02-01

    The ramifications of constructing a nuclear energy center in an arid western region were studied. The alternatives for disposing of the low level waste on the site are compared with the alternative of transporting the waste to the nearest commercial waste disposal site for permanent disposal. Both radiological and nonradiological impacts on the local socioeconomic infrastructure and the environment are considered. Disposal on the site was found to cost considerably less than off site disposal with only negligible impacts associated with the disposal option on either mankind or the environment.

  13. U.S. Space Station Freedom waste fluid disposal system with consideration of hydrazine waste gas injection thrusters

    NASA Technical Reports Server (NTRS)

    Winters, Brian A.

    1990-01-01

    The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.

  14. [Pollution characteristics of PCBs in electronic waste dismantling areas of Zhejiang province].

    PubMed

    Wang, Xiaofeng; Lou, Xiaoming; Han, Guangen; Shen, Haitao; Ding, Gangqiang

    2011-09-01

    To study the pollution level and distribution pattern of polychlorinated biphenyls (PCBs) in the environment media in electronic waste dismantling area of Zhejiang province. Water, soil and PM10 were sampled in electronic waste dismantling areas. The contents, distribution characteristics and toxic equivalents (TEQs) of PCBs in local environment were evaluated by ultra-trace detection methods. The PCBs contents of water, soil and PM10 in Luqiao and Zhenhai, the relatively high polluted areas, were higher than those in Longyou, the control area. The dominant PCBs detected from the environment in Luqiao were hexa-CBs (PCB138 and PCB153), while penta-CBs were dominant in Zhenhai and Longyou. TEQs in electronic waste recycling area were higher than those in control areas. The TEQs of PCBs in water and soil were the highest in Zhenhai, while the TEQs of PM10 were the highest in Luqiao. The local environment has been polluted by PCBs emitted from electronic waste recycling. PCBs pollution monitoring in electronic waste recycling area should be strengthened to prevent PCBs-induced health effects.

  15. 10 CFR 61.11 - General information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...

  16. 10 CFR 61.11 - General information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...

  17. 10 CFR 61.11 - General information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...

  18. 10 CFR 61.11 - General information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...

  19. 10 CFR 61.11 - General information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...

  20. Quantification of Food Waste Disposal in the United States: A Meta-Analysis.

    PubMed

    Thyberg, Krista L; Tonjes, David J; Gurevitch, Jessica

    2015-12-15

    Food waste has major consequences for social, nutritional, economic, and environmental issues, and yet the amount of food waste disposed in the U.S. has not been accurately quantified. We introduce the transparent and repeatable methods of meta-analysis and systematic reviewing to determine how much food is discarded in the U.S., and to determine if specific factors drive increased disposal. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137-0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The proportion of food waste increased significantly with time, with the western U.S. region having consistently and significantly higher proportions of food waste than other regions. There were no significant differences in food waste between rural and urban samples, or between commercial/institutional and residential samples. The aggregate disposal rate for food waste was 0.615 pounds (0.279 kg) (95% CI 0.565-0.664) of food waste disposed per person per day, which equates to over 35.5 million tons (32.2 million tonnes) of food waste disposed annually in the U.S.

  1. 40 CFR 268.39 - Waste specific prohibitions-spent aluminum potliners; reactive; and carbamate wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...

  2. 40 CFR 268.39 - Waste specific prohibitions-spent aluminum potliners; reactive; and carbamate wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...

  3. 40 CFR 268.39 - Waste specific prohibitions-spent aluminum potliners; reactive; and carbamate wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...

  4. 40 CFR 268.39 - Waste specific prohibitions-spent aluminum potliners; reactive; and carbamate wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...

  5. 40 CFR 268.39 - Waste specific prohibitions-spent aluminum potliners; reactive; and carbamate wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...

  6. Effects from past solid waste disposal practices.

    PubMed Central

    Johnson, L J; Daniel, D E; Abeele, W V; Ledbetter, J O; Hansen, W R

    1978-01-01

    This paper reviews documented environmental effects experience from the disposal of solid waste materials in the U.S. Selected case histories are discussed that illustrate waste migration and its actual or potential effects on human or environmental health. Principal conclusions resulting from this review were: solid waste materials do migrate beyond the geometric confines of the initial placement location; environmental effects have been experienced from disposal of municipal, agricultural, and toxic chemical wastes; and utilization of presently known science and engineering principles in sitting and operating solid waste disposal facilities would make a significant improvement in the containment capability of shallow land disposal facilities. PMID:367769

  7. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena Arkadievna

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a minedmore » repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.« less

  8. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra

    PubMed Central

    2014-01-01

    Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728

  9. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra.

    PubMed

    Yoada, Ramatta Massa; Chirawurah, Dennis; Adongo, Philip Baba

    2014-07-08

    Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases.

  10. Hanford solid-waste handling facility strategy

    NASA Astrophysics Data System (ADS)

    Albaugh, J. F.

    1982-05-01

    Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.

  11. Technical and economic evaluation of controlled disposal options for very low level radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, P.J.; Vance, J.N.

    1990-08-01

    Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less

  12. 40 CFR 2.305 - Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of... § 2.305 Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. (a) Definitions. For purposes of this section: (1) Act means the Solid Waste Disposal Act, as...

  13. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  14. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  15. 40 CFR 22.37 - Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and (e...

  16. 26 CFR 17.1 - Industrial development bonds used to provide solid waste disposal facilities; temporary rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...

  17. 40 CFR 2.305 - Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of... § 2.305 Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. (a) Definitions. For purposes of this section: (1) Act means the Solid Waste Disposal Act, as...

  18. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  19. 26 CFR 17.1 - Industrial development bonds used to provide solid waste disposal facilities; temporary rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...

  20. 40 CFR 22.37 - Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and (e...

  1. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  2. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  3. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  4. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  5. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  6. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  7. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  8. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  9. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  10. 40 CFR 257.27 - Selection of remedy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 257.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally Exempt Small Quantity Generator (CESQG) Wastes at Non-Municipal Non-Hazardous Waste Disposal Units...

  11. 40 CFR 257.27 - Selection of remedy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 257.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally Exempt Small Quantity Generator (CESQG) Wastes at Non-Municipal Non-Hazardous Waste Disposal Units...

  12. 40 CFR 257.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... demolition (C&D) landfill means a solid waste disposal facility subject to the requirements of subparts A or...

  13. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B.; Shuman, Rob

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a mannermore » that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have been made to utilize the remaining disposal capacity within MDA G to the greatest extent possible. One approach for doing this has been to dispose of low-activity waste from cleanup operations at LANL in the headspace of selected disposal pits. Waste acceptance criteria (WAC) for the material placed in the headspace of pits 15, 37, and 38 have been developed (LANL, 2010) and the impacts of placing waste in the headspace of these units has been evaluated (LANL, 2012a). The efforts to maximize disposal efficiency have taken on renewed importance because of the disposal demands placed on MDA G by the large volumes of waste that are being generated at LANL by cleanup efforts. For example, large quantities of waste were recently generated by the retrieval of waste formerly disposed of at TA-21, MDA B. A portion of this material has been disposed of in the headspace of pit 38 in compliance with the WAC developed for that disposal strategy; a large amount of waste has also been sent to off-site facilities for disposal. Nevertheless, large quantities of MDA B waste remain that require disposal. An extension of pit 38 was proposed to provide the disposal capacity that will be needed to dispose of institutional waste and MDA B waste through 2013. A special analysis was prepared to evaluate the impacts of the pit extension (LANL, 2012b). The analysis concluded that the disposal unit could be extended with modest increases in the exposures projected for the Area G performance assessment and composite analysis, as long as limits were placed on the radionuclide concentrations in the waste that is placed in the headspace of the pit. Based, in part, on the results of the special analysis, the extension of pit 38 was approved and excavation of the additional disposal capacity was started in May 2012. The special analysis presented here uses performance modeling to identify a disposal plan for the placement of waste in pit 38. The modeling uses a refined design of the disposal unit and updated radionuclide inventories to identify a disposal configuration that promotes efficient utilization of the pit and ensures continued compliance with DOE Order 435.1 performance objectives. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3. The disposal plan for pit 38 is provided in Section 4 and the conclusions of the investigation are provided in Section 5. Throughout the report, pit 38 is used to refer to the entire disposal unit, including the existing pit and the extension that is currently under construction. Where a distinction between the two portions of the pit is necessary, the existing unit is referred to as pit 38 proper and the new portion of the pit as the pit 38 extension or, more simply, the extension.« less

  14. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990

    USGS Publications Warehouse

    Trask, N.J.; Stevens, P.R.

    1991-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.

  15. The effect of food waste disposers on municipal waste and wastewater management.

    PubMed

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  16. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...

  17. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  18. Space disposal of nuclear wastes. Volume 1: Socio-political aspects

    NASA Technical Reports Server (NTRS)

    Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.

    1976-01-01

    The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.

  19. Editor's Page: Management of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1980

    1980-01-01

    Discussed is the problem of management of hazardous waste disposal. Included are various federal laws and congressional kills pertinent to the problem of hazardous waste disposal. Suggested is cooperation between government and the chemical industry to work for a comprehensive solution to waste disposal. (DS)

  20. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposalmore » units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.« less

  1. Environmental hazards of waste disposal patterns--a multimethod study in an unrecognized Bedouin village in the Negev area of Israel.

    PubMed

    Meallem, Ilana; Garb, Yaakov; Cwikel, Julie

    2010-01-01

    The Bedouin of the Negev region of Israel are a formerly nomadic, indigenous, ethnic minority, of which 40% currently live in unrecognized villages without organized, solid waste disposal. This study, using both quantitative and qualitative methods, explored the transition from traditional rubbish production and disposal to current uses, the current composition of rubbish, methods of waste disposal, and the extent of exposure to waste-related environmental hazards in the village of Um Batim. The modern, consumer lifestyle produced both residential and construction waste that was dumped very close to households. Waste was tended to by women who predominantly used backyard burning for disposal, exposing villagers to corrosive, poisonous, and dangerously flammable items at these burn sites. Village residents expressed a high level of concern over environmental hazards, yet no organized waste disposal or environmental hazards reduction was implemented.

  2. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) andmore » the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.« less

  3. 40 CFR 268.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... identifies hazardous wastes that are restricted from land disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed. (b) Except as specifically..., storage, and disposal facilities. (c) Restricted wastes may continue to be land disposed as follows: (1...

  4. 40 CFR 268.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identifies hazardous wastes that are restricted from land disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed. (b) Except as specifically..., storage, and disposal facilities. (c) Restricted wastes may continue to be land disposed as follows: (1...

  5. 40 CFR 268.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... identifies hazardous wastes that are restricted from land disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed. (b) Except as specifically..., storage, and disposal facilities. (c) Restricted wastes may continue to be land disposed as follows: (1...

  6. 40 CFR 268.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... identifies hazardous wastes that are restricted from land disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed. (b) Except as specifically..., storage, and disposal facilities. (c) Restricted wastes may continue to be land disposed as follows: (1...

  7. The status of LILW disposal facility construction in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan

    2013-07-01

    In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less

  8. Chaotic time series prediction for prenatal exposure to polychlorinated biphenyls in umbilical cord blood using the least squares SEATR model

    NASA Astrophysics Data System (ADS)

    Xu, Xijin; Tang, Qian; Xia, Haiyue; Zhang, Yuling; Li, Weiqiu; Huo, Xia

    2016-04-01

    Chaotic time series prediction based on nonlinear systems showed a superior performance in prediction field. We studied prenatal exposure to polychlorinated biphenyls (PCBs) by chaotic time series prediction using the least squares self-exciting threshold autoregressive (SEATR) model in umbilical cord blood in an electronic waste (e-waste) contaminated area. The specific prediction steps basing on the proposal methods for prenatal PCB exposure were put forward, and the proposed scheme’s validity was further verified by numerical simulation experiments. Experiment results show: 1) seven kinds of PCB congeners negatively correlate with five different indices for birth status: newborn weight, height, gestational age, Apgar score and anogenital distance; 2) prenatal PCB exposed group at greater risks compared to the reference group; 3) PCBs increasingly accumulated with time in newborns; and 4) the possibility of newborns suffering from related diseases in the future was greater. The desirable numerical simulation experiments results demonstrated the feasibility of applying mathematical model in the environmental toxicology field.

  9. Chaotic time series prediction for prenatal exposure to polychlorinated biphenyls in umbilical cord blood using the least squares SEATR model

    PubMed Central

    Xu, Xijin; Tang, Qian; Xia, Haiyue; Zhang, Yuling; Li, Weiqiu; Huo, Xia

    2016-01-01

    Chaotic time series prediction based on nonlinear systems showed a superior performance in prediction field. We studied prenatal exposure to polychlorinated biphenyls (PCBs) by chaotic time series prediction using the least squares self-exciting threshold autoregressive (SEATR) model in umbilical cord blood in an electronic waste (e-waste) contaminated area. The specific prediction steps basing on the proposal methods for prenatal PCB exposure were put forward, and the proposed scheme’s validity was further verified by numerical simulation experiments. Experiment results show: 1) seven kinds of PCB congeners negatively correlate with five different indices for birth status: newborn weight, height, gestational age, Apgar score and anogenital distance; 2) prenatal PCB exposed group at greater risks compared to the reference group; 3) PCBs increasingly accumulated with time in newborns; and 4) the possibility of newborns suffering from related diseases in the future was greater. The desirable numerical simulation experiments results demonstrated the feasibility of applying mathematical model in the environmental toxicology field. PMID:27118260

  10. 76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ...) Land Disposal Restrictions Phase IV--Treatment Standards for Wood Preserving Wastes, Paperwork... the Carbamate Land Disposal Restrictions; (5) Clarification of Standards for Hazardous Waste LDR...) Emergency Revision of the Land Disposal Restrictions (LDR) Treatment Standards for Listed Hazardous Wastes...

  11. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  12. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  13. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  14. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  15. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  16. Safety in the Chemical Laboratory: Contracts to Dispose of Laboratory Waste.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1985-01-01

    Presents a sample contract for disposing of hazardous wastes in an environmentally sound, timely manner in accordance with all federal, state, and local requirements. Addresses situations where hazardous waste must be disposed of outside the laboratory and where alternate disposal methods are not feasible. (JN)

  17. 75 FR 30392 - Approval of a Petition for Exemption from Hazardous Waste Disposal Injection Restrictions to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... petition for renewal of an existing exemption from the land disposal restrictions of hazardous waste on... Waste Disposal Injection Restrictions to Cabot Corporation Tuscola, Tuscola, IL AGENCY: Environmental... United States Environmental Protection Agency (EPA) that an exemption to the land disposal restrictions...

  18. 41 CFR 50-204.29 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Waste disposal. 50-204.29 Section 50-204.29 Public Contracts and Property Management Other Provisions Relating to Public Contracts... Radiation Standards § 50-204.29 Waste disposal. No employer shall dispose of radioactive material except by...

  19. K Basins sludge removal temporary sludge storage tank system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issuesmore » related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.« less

  20. Hazardous Wastes. Two Games for Teaching about the Problem. Environmental Communications Activities. Bulletin 703.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Cooperative Extension Service.

    Two games are presented which demonstrate the complexity of the hazardous waste problem through an introduction to the: (1) economics of waste disposal; (2) legislation surrounding waste disposal; (3) necessity to handle wastes with care; (4) damages to the environmental and human health resulting from improper disposal; (5) correct ways to…

Top