Science.gov

Sample records for pcb-contaminated soils risk

  1. PCB contamination in soils of the Pearl River Delta, South China: levels, sources, and potential risks.

    PubMed

    Zhang, Haibo; Luo, Yongming; Teng, Ying; Wan, Hongfu

    2013-08-01

    Polychlorinated biphenyls (PCBs) contamination in tropical and sub-tropical areas and the associated risks have attracted great concern. A total of 69 samples representing five distinct land types were collected to assess PCB concentrations in the Pearl River Delta (PRD), South China, including spatial distributions in soils of the area, the probable anthropogenic sources, and related potential risks. PCBs concentrations in soils of the PRD ranged from 0.3 to 202 ng g(-1). More severe PCBs contamination was presented in the western part than in the eastern part of the PRD region. The PCBs were dominated by low-chlorinated biphenyls; however, the proportion of higher-chlorinated biphenyls was elevated with the influence of industrial activities. Principal component analysis indicated that PCBs contamination in soils of the PRD region was mainly associated with 1#PCBs, while 2#PCB and e-waste emission in South China also accounted for it partly, especially to the industrial activity severely impacted areas. Toxic equivalent (TEQ) of the dioxin-like PCBs in the soils indicated that higher risk of PCB contamination was presented in the Dongjiang River Valley (55 ng TEQ kg(-1), on average) than in the Xijiang River Valley, and were mostly contributed by the congener of PCB126.

  2. Mechanochemical remediation of PCB contaminated soil.

    PubMed

    Wang, Haizhu; Hwang, Jisu; Huang, Jun; Xu, Ying; Yu, Gang; Li, Wenchao; Zhang, Kunlun; Liu, Kai; Cao, Zhiguo; Ma, Xiaohui; Wei, Zhipeng; Wang, Quhui

    2017-02-01

    Soil contaminated by polychlorinated biphenyls (PCBs) is a ubiquitous problem in the world, which can cause significant risks to human health and the environment. Mechanochemical destruction (MCD) has been recognized as a promising technology for the destruction of persistent organic pollutants (POPs) and other organic molecules in both solid waste and contaminated soil. However, few studies have been published about the application of MCD technology for the remediation of PCB contaminated soil. In the present study, the feasibility of destroying PCBs in contaminated soil by co-grinding with and without additives in a planetary ball mill was investigated. After 4 h milling time, more than 96% of PCBs in contaminated soil samples were destroyed. The residual concentrations of PCBs decreased from 1000 mg/kg to below the provisional Basel Convention limit of less than 50 mg/kg. PCDD/F present in the original soil at levels of 4200 ng TEQ/kg was also destroyed with even a slightly higher destruction efficiency. Only minor dechlorinations of the PCBs were observed and the destruction of the hydrocarbon skeleton is proposed as the main degradation pathway of PCBs.

  3. Incineration of PCB-contaminated soils: Effect on soil properties

    SciTech Connect

    Chaouki, J.; Guy, C.; Gonzalez, A.; Mourot, P.; Masciotra, P.

    1995-12-31

    An experimental program was conducted to determine the effect of fluidized bed combustion on the properties and characteristics of a soil lightly contaminated with PCBs. The following properties of a soil sample and its leachate were characterized before and after incineration: pH, particle size distribution, and contaminant content. Three runs were carried out on a pilot scale fluidized bed at identical conditions, with three different soil samples: set point temperature of 870 {+-} 40 C and minimal residence time of 30 min. The main conclusions can be summarized as follows: under the operating conditions of the test, PCBs present in soil are eliminated to below the detection level; the runs showed good reproducibility; soil pH increases from 8.6 {+-} 0.1 to 10.7 {+-} 0.2 because of the natural limestone (CaCO{sub 3}), which calcines and then hydrolyzes to basic calcium hydroxide (Ca(OH){sub 2}); the incineration seems to lead to soil agglomeration; soil heavy metal content is decreased significantly after incineration; soil leachate heavy metal content is not significantly affected by incineration, except for chromium (from 0.02 to 0.06 mg/L) and zinc (from 0.1 to 0.25 mg/L); treated soil leachate content for organics and organochlorines is below the detection level.

  4. Evaluation of treatment options for mercury/PCB contaminated soil

    SciTech Connect

    Camacho, J.M.

    1996-12-31

    The purpose of this project was to evaluate treatment alternatives for soil contaminated with mercury and polychlorinated biphenyl (PCB) aroclor 1268 at the LCP site, a former chlor-alkali plant, in Brunswick, GA. The site was operated as a petroleum refinery from 1919 to 1930. Based on past experience and a literature search, soil washing and thermal desorption were deemed to be the most promising technologies. A bulk soil sample was collected from the south process area and analyzed to have 190 mg/kg mercury and 405 mg/kg of PCB aroclor 1268. The soil was screened to {1/4} treatability tests. Testing was performed in three parts consisting of a round of geophysical and chemical analyses to determine matrix characteristics; thermal desorption tests at temperatures ranging from 100 C to 700 C to determine the volatility of mercury and PCB aroclor 1268; and a soil-washing study matrix to evaluate the effect of chemical additives such as acids, oxidizers, and surfactants to physically and chemically remove contaminants from the soil matrix.

  5. Effect of a base-catalyzed dechlorination process on the genotoxicity of PCB-contaminated soil

    SciTech Connect

    DeMarini, D.M.; Houk, V.S.; Kornel, A.; Rogers, C.J.

    1992-01-01

    We evaluated the genotoxicity of dichloromethane (DCM) extracts of PCB-contaminated soil before and after the soil had been treated by a base-catalyzed dechlorination process, which involved heating a mixture of the soil, polyethylene glycol, and sodium hydroxide to 250-350 C. This dechlorination process reduced by over 99% the PCB concentration in the soil, which was initially 2,200 ppm. The DCM extracts of both control and treated soils were not mutagenic in strain TA100 of Salmonella, but they were mutagenic in strain TA98. The base-catalyzed dechlorination process reduced the mutagenic potency of the soil by approximately one-half. The DCM extracts of the soils before and after treatment were equally genotoxic in a prophage-induction assay in E. coli, which detects some chlorinated organic carcinogens that were not detected by the Salmonella mutagenicity assay. These results show that treatment of PCB-contaminated soil by this base-catalyzed dechlorination process did not increase the genotoxicity of the soil.

  6. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.

    PubMed

    Kalinovich, Indra; Rutter, Allison; Poland, John S; Cairns, Graham; Rowe, R Kerry

    2008-12-15

    The site BAF-5 is located on the summit of Resolution Island, Nunavut, just southeast of Baffin Island at 61 degrees 35'N and 60 degrees 40'W. The site was part of a North American military defense system established in the 1950s that became heavily contaminated with PCBs during and subsequent, its operational years. Remediation through excavation of the PCB contaminated soil at Resolution Island began in 1999 and at its completion in 2006 approximately 5 tonnes of pure PCBs in approximately 20,000 m3 of soil were remediated. Remediation strategies were based on both quantity of soil and level of contamination in the soil. Excavation removed 96% of the PCB contaminated soil on site. In 2003, a surface funnel-and-gate permeable reactive barrier was design and constructed to treat the remaining contamination left in rock crevices and inaccessible areas of the site. Excavation had destabilized contaminated soil in the area, enabling contaminant migration through erosion and runoff pathways. The barrier was designed to maximize sedimentation through settling ponds. This bulk removal enabled the treatment of highly contaminated fines and water through a permeable gate. The increased sediment loading during excavation required both modifications to the funnel and a shift to a more permeable, granular system. Granulated activated charcoal was chosen for its ability to both act as a particle retention filter and adsorptive filter. The reduction in mass of PCB and volume of soils trapped by the funnel of the barrier indicate that soils are re-stabilizing. In 2007, nonwoven geotextiles were re-introduced back into the filtration system as fine filtering could be achieved without clogging. Monitoring sites downstream indicate that the barrier system is effective. This paper describes the field progress of PCB remediation at Resolution Island.

  7. Consumption of PCB-contaminated sport fish and risk of spontaneous fetal death

    SciTech Connect

    Mendola, P.; Buck, G.M.; Vena, J.E.; Zielezny, M.; Sever, L.E.

    1995-05-01

    Spontaneous fetal death has been observed among various mammalian species after exposure to polychlorinated biphenyls (PCBs). Our exposure-based cohort study assessed the relationship between consumption of PCB-contaminated Lake Ontario sport fish and spontaneous fetal death using 1820 multigravid fertile women from the 1990-1991 New York State Angler Cohort Study. Fish consumption data were obtained from food frequency questionnaires and history of spontaneous fetal death from live birth certificates. Analyses were stratified by number of prior pregnancies and controlled for smoking and maternal age. No significant increases in risk for fetal death were observed across four measures of exposure: a lifetime estimate of PCB exposure based on species-specific PCB levels; the number of years of fish consumption; kilograms of sport fish consumed in 1990-1991; and a lifetime estimate of kilograms eaten. A slight risk reduction was seen for women with two prior pregnancies at the highest level of PCB exposure (odds ratio = 0.36; 95% CI, 0.14-0.92) and for women with three or more prior pregnancies with increasing years of fish consumption (odds ratio = 0.97; 95% CI, 0.94-0.99). These findings suggest that consumption of PCB-contaminated sport fish does not increase the risk of spontaneous fetal death. 50 refs., 2 tabs.

  8. Consumption of PCB-contaminated sport fish and risk of spontaneous fetal death.

    PubMed Central

    Mendola, P; Buck, G M; Vena, J E; Zielezny, M; Sever, L E

    1995-01-01

    Spontaneous fetal death has been observed among various mammalian species after exposure to polychlorinated biphenyls (PCBs). Our exposure-based cohort study assessed the relationship between consumption of PCB-contaminated Lake Ontario sport fish and spontaneous fetal death using 1820 multigravid fertile women from the 1990-1991 New York State Angler Cohort Study. Fish consumption data were obtained from food frequency questionnaires and history of spontaneous fetal death from live birth certificates. Analyses were stratified by number of prior pregnancies and controlled for smoking and maternal age. No significant increases in risk for fetal death were observed across four measures of exposure: a lifetime estimate of PCB exposure based on species-specific PCB levels; the number of years of fish consumption; kilograms of sport fish consumed in 1990-1991; and a lifetime estimate of kilograms eaten. A slight risk reduction was seen for women with two prior pregnancies at the highest level of PCB exposure (odds ratio = 0.36; 95% CI, 0.14-0.92) and for women with three or more prior pregnancies with increasing years of fish consumption (odds ratio = 0.97; 95% CI, 0.94-0.99). These findings suggest that consumption of PCB-contaminated sport fish does not increase the risk of spontaneous fetal death. PMID:7656880

  9. Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current.

    PubMed

    Gomes, Helena I; Ottosen, Lisbeth M; Ribeiro, Alexandra B; Dias-Ferreira, Celia

    2015-03-15

    Contaminated soils and sediments with polychlorinated biphenyls (PCB) are an important environmental problem due to the persistence of these synthetic aromatic compounds and to the lack of a cost-effective and sustainable remediation technology. Recently, a new experimental setup has been proposed using electrodialytic remediation and iron nanoparticles. The current work compares the performance of this new setup (A) with conventional electrokinetics (setup B). An historically contaminated soil with an initial PCB concentration of 258 μg kg(-1) was treated during 5, 10, 20 and 45 d using different amounts of iron nanoparticles in both setups A and B. A PCB removal of 83% was obtained in setup A compared with 58% of setup B. Setup A also showed additional advantages, such as a higher PCB dechlorination, in a shorter time, with lower nZVI consumption, and with the use of half of the voltage gradient when compared with the traditional setup (B). Energy and nZVI costs for a full-scale reactor are estimated at 72 € for each cubic meter of PCB contaminated soil treated on-site, making this technology competitive when compared with average off-site incineration (885 € m(-3)) or landfilling (231 € m(-3)) cost in Europe and in the USA (327 USD m(-3)).

  10. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application.

    PubMed

    Gomes, Helena I; Dias-Ferreira, Celia; Ribeiro, Alexandra B

    2013-02-15

    Polychlorinated biphenyls (PCB) are persistent organic pollutants used worldwide between the 1930s and 1980s. Although their use has been heavily restricted, PCB can be found in contaminated soils and sediments. The most frequent remediation solutions adopted are "dig and dump" and "dig and incinerate", but there are currently new methods that could be more sustainable alternatives. This paper takes a look into the remediation options available for PCB-contaminated soils and sediments, differentiating between biological, chemical, physical and thermal methods. The use of combined technologies was also reviewed. Most of them are still in an initial development stage and further research in different implementation issues is needed. There is no single technology that is the solution for PCB contamination problem. The successful remediation of a site will depend on proper selection, design and adjustment of the technology or combined technologies to the site characteristics.

  11. Remediation of PCB-contaminated soil using a combination of mechanochemical method and thermal desorption.

    PubMed

    Zhao, Zhong-Hua; Li, Xiao-Dong; Ni, Ming-Jiang; Chen, Tong; Yan, Jian-Hua

    2017-03-24

    The combination of mechanochemical method and thermal desorption for remediating polychlorinated biphenyls (PCBs) in contaminated soil was tested in this study. The effects of grinding time and heating time on PCB removal efficiency were investigated. The contaminated soil, mixed with CaO powder at a weight ratio of 1:1, was first ground using a planetary ball mill. After 4 h of grinding, the total PCB concentration and its toxic equivalence quantity (TEQ) decreased by 74.6 and 75.8%, respectively. Then, after being heated at 500 °C for 60 min, the residual PCBs in mechanochemical + thermal treated soil decreased to 247 ng/g, resulting in a removal efficiency of 99.95%. The removal effect can be promoted by longer grinding time and heating time; however, increased energy consumption was inevitable. The combination of grinding time and heating time should be optimized in a practical remediation process.

  12. Bioremediation of long-term PCB-contaminated soil by white-rot fungi.

    PubMed

    Stella, Tatiana; Covino, Stefano; Čvančarová, Monika; Filipová, Alena; Petruccioli, Maurizio; D'Annibale, Alessandro; Cajthaml, Tomáš

    2017-02-15

    The objective of this work was to test the PCB-degrading abilities of two white-rot fungi, namely Pleurotus ostreatus and Irpex lacteus, in real contaminated soils with different chemical properties and autochthonous microflora. In addition to the efficiency in PCB removal, attention was given to other important parameters, such as changes in the toxicity and formation of PCB transformation products. Moreover, structural shifts and dynamics of both bacterial and fungal communities were monitored using next-generation sequencing and phospholipid fatty acid analysis. The best results were obtained with P. ostreatus, which resulted in PCB removals of 18.5, 41.3 and 50.5% from the bulk, top (surface) and rhizosphere, respectively, of dumpsite soils after 12 weeks of treatment. Numerous transformation products were detected (hydoxylated and methoxylated PCBs, chlorobenzoates and chlorobenzyl alcohols), which indicates that both fungi were able to oxidize and decompose the aromatic moiety of PCBs in the soils. Microbial community analysis revealed that P. ostreatus efficiently colonized the soil samples and suppressed other fungal genera. However, the same fungus substantially stimulated bacterial taxa that encompass putative PCB degraders. The results of this study finally demonstrated the feasibility of using this fungus for possible scaled-up bioremediation applications.

  13. Remediation Versus Prevention of PCB Contamination: A Comparison Based on Risk and Cost Analyses

    DTIC Science & Technology

    1989-01-01

    REFERENCES 74 . By OD,t it: t, ’ IOist 1 A-11i LIST OF FIGURES (Figures in Appendices not included) Figure 1. Human Risk Comparison (Base vs. Background Risk...Costs (Uncertainty Case 5) Figure 11. Human Risk Comparison (Risk Range) Figure 12. Cost Range with Base Risk ii * LIST OF TABLES (Tables in appendices...Study of Newly Hatched Fathead Minnows (Aroclor 1248) Table 6. FDA Regulations for PCBs Table 7. Applicable or Relevant and Appropriate Requirements

  14. A Monte Carlo analysis of health risks from PCB-contaminated mineral oil transformer fires.

    PubMed

    Eschenroeder, A Q; Faeder, E J

    1988-06-01

    The objective of this study is the estimation of health hazards due to the inhalation of combustion products from accidental mineral oil transformer fires. Calculations of production, dispersion, and subsequent human intake of polychlorinated dibenzofurans (PCDFs) provide us with exposure estimates. PCDFs are believed to be the principal toxic products of the pyrolysis of polychlorinated biphenyls (PCBs) sometimes found as contaminants in transformer mineral oil. Cancer burdens and birth defect hazard indices are estimated from population data and exposure statistics. Monte Carlo-derived variational factors emphasize the statistics of uncertainty in the estimates of risk parameters. Community health issues are addressed and risks are found to be insignificant.

  15. TREATABILITY STUDY REPORT OF GREEN MOUNTAIN LABORATORIES, INC.'S BIOREMEDIATION PROCESS, TREATMENT OF PCB CONTAMINATED SOILS, AT BEEDE WASTE OIL/CASH ENERGY SUPERFUND SITE, PLAISTOW, NEW HAMPSHIRE

    EPA Science Inventory

    In 1998, Green Mountain Laboratories, Inc. (GML) and the USEPA agreed to carry out a Superfund Innovative Technology Evaluation (SITE) project to evaluate the effectiveness of GML's Bioremediation Process for the treatment of PCB contaminated soils at the Beede Waste Oil/Cash Ene...

  16. DETERMINATION OF RATES AND EXTENT OF DECHLORINATION IN PCB-CONTAMINATED SEDIMENTS DURING MONITORED NATURAL RECOVERY

    EPA Science Inventory

    This "Sediment Issue" summarizes investigations carried out by the National Risk Management Research Laboratory (NRMRL) of U.S. EPA to evaluate the long-term recovery of polychlorinated biphenyl (PCB)-contaminated sediments via reductive dechlorination. The magnitude, extent, an...

  17. Using SPMDs To Assess Natural Recovery Of PCB-Contaminated Sediments In Lake Hartwell, SC: I. A Field Test Of New In-Situ Deployment Methods

    EPA Science Inventory

    Results from the field testing of some innovative sampling methods developed to evaluate risk management strategies for polychlorinated biphenyl (PCB) contaminated sediments are presented. Semipermeable membrane devices (SPMDs) were combined with novel deployment methods to quan...

  18. Low birth weight and residential proximity to PCB-contaminated waste sites.

    PubMed Central

    Baibergenova, Akerke; Kudyakov, Rustam; Zdeb, Michael; Carpenter, David O

    2003-01-01

    Previous investigations have shown that women exposed to polychlorinated biphenyls (PCBs) are at increased risk of giving birth to an infant with low birth weight (< 2,500 g), and that this relationship is stronger for male than for female infants. We have tested the hypothesis that residents in a zip code that contains a PCB hazardous waste site or abuts a body of water contaminated with PCBs are at increased risk of giving birth to a low-birth-weight baby. We used the birth registry of the New York State Vital Statistics to identify all births between 1994 and 2000 in New York State except for New York City. This registry provides information on the infant, mother, and father together with the zip code of the mother's residence. The 865 state Superfund sites, the 86 National Priority List sites, and the six Areas of Concern in New York were characterized regarding whether or not they contain PCBs as a major contaminant. We identified 187 zip codes containing or abutting PCB-contaminated sites, and these zip codes were the residences of 24.5% of the 945,077 births. The birth weight in the PCB zip codes was on average 21.6 g less than in other zip codes (p < 0.001). Because there are many other risk factors for low birth weight, we have adjusted for these using a logistic regression model for these confounders. After adjusting for sex of the infant, mother's age, race, weight, height, education, income, marital status, and smoking, there was still a statistically significant 6% increased risk of giving birth to a male infant of low birth weight. These observations support the hypothesis that living in a zip code near a PCB-contaminated site poses a risk of exposure and giving birth to an infant of low birth weight. PMID:12896858

  19. Characterization and risk assessment of polychlorinated biphenyls in city park soils of Xi'an, China.

    PubMed

    Lu, Hongxuan; Liu, Weiguo

    2015-03-01

    Polychlorinated biphenyl (PCB) concentrations in surface soil samples (0-10 cm) from 23 city parks (8 urban and 15 suburban) from Xi'an, China were presented. The average concentration of Σ7 PCBs among all the sites was 1.68 ng g(-1) dry weight. High detection frequency (100 %) of PCB 28 and PCB 52 suggested wide occurrence of PCB contaminations in Xi'an. Among these PCBs, PCB 28, 52 and 153 were the most dominant compounds (14.9 %, 39.3 % and 9.5 % of the Σ7 PCBs on average, respectively). "Urban fractionation effect" was found in Xi'An. In other words, PCB concentrations were higher in the urban city park soils than those in suburban park soils. The PCB contamination in Xi'an city park soils were at a low level based on the Dutch guideline. However, dioxin-like PCB congeners were detected from 12 parks, which indicated further investigation was urgently required in future. Furthermore, total PCB concentrations were used to evaluate the cancer risk via ingestion, dermal and inhalation and the results showed that the total cancer risk was at the very low level in this area.

  20. Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms.

    PubMed

    Dudášová, Hana; Lukáčová, Lucia; Murínová, Slavomíra; Puškárová, Andrea; Pangallo, Domenico; Dercová, Katarína

    2014-04-01

    This study was focused on the characterization of 15 bacterial strains isolated from long-term PCB-contaminated sediment located at the Strážsky canal in eastern part of Slovakia, in the surroundings of a former PCB producer. PCB-degrading strains were isolated and identified as Microbacterium oleivorans, Stenotrophomonas maltophilia, Brevibacterium sp., Ochrobactrum anthropi, Pseudomonas mandelii, Rhodococcus sp., Achromobacter xylosoxidans, Stenotrophomonas sp., Ochrobactrum sp., Pseudomonas aeruginosa, and Starkeya novella by the 16S rRNA gene sequence phylogenetic analysis. This study presents a newly isolated bacterial strain S. novella with PCB-degrading ability in liquid medium as well as in sediment. For A. xylosoxidans, the bphA gene was identified. The best growth ability in the presence of all sole carbon sources (biphenyl and PCBs vapor) was obtained for Ochrobactrum sp. and Rhodococcus sp. Uncultured Achromobacter sp. showed the highest potential for bioaugmentation of PCB-contaminated sediment.

  1. Cancer Mortality Following Polychlorinated Biphenyl (PCB) Contamination of a Guam Village

    PubMed Central

    Badowski, Grazyna; Bordallo, Renata

    2011-01-01

    Beginning more than 10 years after the release of polychlorinated biphenyl (PCB) contamination in the favored fishing grounds of Merizo village, an increase in the proportional cancer mortality rate was observed among residents of the village. This increased rate continued for approximately 20 years after which it returned to near island-wide Guam levels. Although the temporal association between PCB contamination of the environment of this village and an increase in cancer mortality is intriguing, it does not necessarily demonstrate a cause and effect relationship. Objective To investigate a possible temporal relationship between PCB contamination of the Cocos Lagoon and cancer deaths in the adjoining village of Merizo. Methods Data utilized in the study included deaths recorded by the Guam Cancer Registry (years 2000 to 2007) and data collected from original death certificates (years 1968–1999). To check whether there was a significant difference in the proportion of deaths due to cancer in Merizo compared with the rest of Guam, deaths were grouped in four 10-year periods, 1968–1977, 1978–1987, 1988–1997, and 1998–2007, and the Pearson Chi-Square test was calculated for each period separately Results While the number of new cancer cases recorded in the village of Merizo were insufficient in number to draw a statistically significant conclusion when single year incidence rates were compared to the rest of the island, a proportional mortality study showed a distinct increase for the village of Merizo compared to other villages for the period 1978–1997. Conclusion While it is not possible to conclude with certainty that PCB contamination of the Cocos Lagoon was responsible for the observed increase in the proportion of cancer deaths in Merizo village beginning during the 10-year period 1978–1987, that increase and the subsequent decrease as PCB levels also decreased presents the possibility that these trends may be related. PMID:22235158

  2. Reproductive and behavioral abnormalities in tree swallows with high levels of PCB contamination

    SciTech Connect

    McCarty, J. |; Secord, A.; Tillitt, D.

    1995-12-31

    Tree Swallows (Tachycineta bicolor) breeding along the Hudson River forage extensively on PCB contaminated insects that emerge from the river. The authors studied the reproductive ecology and behavior of tree swallows breeding at several sites along the Hudson River. These sites vary in the severity of PCB contamination. PCB levels in both eggs and chicks were found to be among the highest ever reported in this species, with concentrations comparable to those found in aquatic organisms in the Hudson River. In 1994 reproductive success at PCB contaminated sites was significantly impaired, relative to other sites in New York. Reduced reproductive success was largely attributed to high levels of nest abandonment during incubation and reduced hatchability of eggs. Growth and development of nestlings was not significantly impaired. Abnormal nest building behavior was also noted in 1994, and this was studied in detail in 1995. Nests from contaminated areas are significantly smaller than those at a nearby reference site and at other sites in New York. The authors suggest that the reduced reproductive outputs at these sites are, in large part, a result of effects on the behavior of incubating females. The population-level implications of these patterns are unknown.

  3. USING SPMDS TO ASSESS MANAGEMENT STRATEGIES FOR PCB CONTAMINATED SEDIMENTS.

    EPA Science Inventory

    Abstract: Dredging in-place treatment, capping and monitored natural recovery, used together or separately are the primary approaches for managing contaminated sediment risks. Understanding how well different approaches work in different environments is critical for choosing an...

  4. USING SPMDS TO ACCESS MANAGEMENT STRATEGIES FOR PCB CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Dredging, in-place treatment, capping and monitored natural recovery, used together or separately are the primary approaches for managing contaminated sediment risks. Understanding how well different approaches work in different environments is critical for choosing an appropria...

  5. USING SPMDS TO ACCESS MANAGMENT STRATEGIES FOR PCB CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Dredging, in-place treatment, capping and monitored natural recovery, used together or separately are the primary approaches for managing contaminated sediment risks. Understanding how well different approaches work in different environments is critical for choosing an appropria...

  6. Proof of concept for the use of macroinvertebrates as indicators of polychlorinated biphenyls (PCB) contamination in Lake Hartwell.

    PubMed

    Lazorchak, James M; Griffith, Michael B; Mills, Marc; Schubauer-Berigan, Joseph; McCormick, Frank; Brenner, Richard; Zeller, Craig

    2015-06-01

    The US Environmental Protection Agency (USEPA) develops methods and tools for evaluating risk management strategies for sediments contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and other legacy pollutants. Monitored natural recovery is a risk management alternative that relies on existing physical, chemical, and biological processes to contain, destroy, and/or reduce the bioavailability or toxicity of in-place contaminants. These naturally occurring processes are monitored to ensure that management and recovery are progressing as expected. One approach frequently used to evaluate the recovery of contaminated sediments and associated biota is the assessment of contaminant tissue levels, or body burden concentrations, in top trophic level fish. In the present study, aquatic invertebrates were examined as an indicator of recent exposure to PCBs. The approach aimed to determine whether invertebrates collected using artificial substrates (i.e., Hester-Dendy samplers) could be used to discriminate among contaminated sites through the analyses of PCBs in whole homogenates of macroinvertebrates. Macroinvertebrates were sorted, preserved, and analyzed for total PCBs (t-PCBs), by summing 107 PCB congeners. Macroinvertebrate body burden concentrations showed similar trends to sediment t-PCB concentrations at the sites sampled. The results indicate that macroinvertebrates can be used to assess sediment contamination among sites that have different PCB contamination levels.

  7. Effects of PCB contamination on the reproduction of the DAB Limanda limanda L. under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Fonds, Mark; Casal, Elizabeth; Schweizer, Dominik; Boon, Jan P.; Van der Veer, Henk W.

    The effect of PCB contamination on the reproduction of female dab was studied under laboratory conditions. Females were contaminated during gonad maturation by multiple oral administration of capsules containing the technical PCB mixture Clophen A40. PCB contamination resulted in increased levels in the eggs, with concentrations of selected PCB congeners of 35 to 86 μg·g -1 lipid for PCB-exposed fish, 10 μg·g -1 lipid for eggs from fish fed with mussel meat and fish fed with shrimp. A statistically significant dose-effect relationship was found between the PCB content of the eggs and the PCB dose ingested by the fish. For eggs from the PCB-treated fish the mean fertilization rate was 61% and mean hatching 45%, compared to 67% fertilization and 59% hatching for eggs from untreated fish. Rate of development and survival of the eggs and mortality of the larvae after hatching were mainly related to incubation temperature. No statistically significant differences between untreated and PCB-treated fish could be found in egg production, egg quality, fertilization rate, hatching rate and survival of larvae.

  8. An Unrecognized Source of PCB Contamination in Schools and Other Buildings

    PubMed Central

    Herrick, Robert F.; McClean, Michael D.; Meeker, John D.; Baxter, Lisa K.; Weymouth, George A.

    2004-01-01

    An investigation of 24 buildings in the Greater Boston Area revealed that one-third (8 of 24) contained caulking materials with polychlorinated biphenyl (PCB) content exceeding 50 ppm by weight, which is the U.S. Environmental Protection Agency (U.S. EPA) specified limit above which this material is considered to be PCB bulk product waste. These buildings included schools and other public buildings. In a university building where similar levels of PCB were found in caulking material, PCB levels in indoor air ranged from 111 to 393 ng/m3; and in dust taken from the building ventilation system, < 1 ppm to 81 ppm. In this building, the U.S. EPA mandated requirements for the removal and disposal of the PCB bulk product waste as well as for confirmatory sampling to ensure that the interior and exterior of the building were decontaminated. Although U.S. EPA regulations under the Toxic Substances Control Act stipulate procedures by which PCB-contaminated materials must be handled and disposed, the regulations apparently do not require that materials such as caulking be tested to determine its PCB content. This limited investigation strongly suggests that were this testing done, many buildings would be found to contain high levels of PCBs in the building materials and potentially in the building environment. The presence of PCBs in schools is of particular concern given evidence suggesting that PCBs are developmental toxins. PMID:15238275

  9. High breast milk levels of polychlorinated biphenyls (PCBs) among four women living adjacent to a PCB-contaminated waste site.

    PubMed Central

    Korrick, S A; Altshul, L

    1998-01-01

    As a consequence of contamination by effluents from local electronics manufacturing facilities, the New Bedford Harbor and estuary in southeastern Massachusetts is among the sites in the United States that are considered the most highly contaminated by polychlorinated biphenyls (PCBs). Since 1993, measures of intrauterine PCB exposure have been obtained for a sample of New Bedford area infants. Among 122 mother-infant pairs, we identified four milk samples with total PCB levels that were significantly higher than the rest, with estimated total PCBs ranging from 1,100 to 2,400 ng/g milk fat compared with an overall mean of 320 ng/g milk fat for the 122 women. The congener profile and history of one case was consistent with past occupational PCB exposures. Otherwise, the source of PCB exposures in these cases was difficult to specify. Environmental exposures including those from fish consumption were likely, whereas residence adjacent to a PCB-contaminated site was considered an unlikely exposure source. In all four cases, the infants were full-term, healthy newborns. Because the developing nervous system is believed to be particularly susceptible to PCBs (for example, prenatal PCB exposures have been associated with prematurity, decrements in birth weight and gestation time, and behavioral and developmental deficits in later infancy and childhood, including decrements in IQ), it is critical to ascertain if breast-feeding is a health risk for the women's infants. Despite the potential for large postnatal PCB exposures via breast milk, there is limited evidence of significant developmental toxicity associated with the transmission of moderate PCB concentrations through breast milk. Breast-feeding is associated with substantial health benefits including better cognitive skills among breast-fed compared with formula-fed infants. We conclude, based on evidence from other studies, that the benefits of breast-feeding probably outweigh any risk from PCB exposures via breast

  10. Risk analysis of PCB exposure via the soil-food crop pathway, and alternatives for remediation at Serpukhov, Russian Federation.

    PubMed

    Tsongas, T; Orlinskii, D; Priputina, I; Pleskachevskaya, G; Fetishchev, A; Hinman, G; Butcher, W

    2000-02-01

    A risk assessment was conducted to determine the likelihood of certain health risks resulting from exposure to soils and food crops contaminated with polychlorinated biphenyl (PCBs). PCBs have contaminated soils, river sediments, and air in the past as a result of industrial activities at a capacitor plant located in the City of Serpukhov, Russian Federation. This risk assessment and suggestions for remediation are designed to aid in decision-making efforts by a joint Russian-American research team developing a community, national, and international response to industrial contamination. Bobovnikova et al. (The Science of the Total Environment 139/140, 357-364, [1993]) have reported that PCBs are elevated in soils and sediments, breast milk, and locally grown foods in the Serpukhov area. Data from these and other investigators have been used in this risk assessment to calculate a potential cancer risk resulting from exposure to PCBs. Our assessment indicates that members of the local population may be at increased risk of cancer, and possibly other adverse health effects, as a result of PCB contamination of their environment. Because previously unassessed environmental contamination is a common problem in the former Soviet Republics, as well as many other areas of the world, we believe this type of evaluation, using known methods, can serve as a model for assessment efforts in other parts of the globe and result in remediative efforts in regions constrained by faltering economies.

  11. PCB dechlorination in anaerobic soil slurry reactors

    SciTech Connect

    Klasson, K.T.; Evans, B.S.

    1993-11-29

    Many industrial locations, including the US Department of Energy`s, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period.

  12. U.S. Air Force Proposes Plan for Interim Remedial Action for PCB contaminated Soils

    DTIC Science & Technology

    1993-06-01

    Repository" listed on page 15 of this Proposed Plan. Superfund is the common name for the Comprehensive Environmental Response, You are encouraged to...review and comment on all Compensation, and Liability Act ( CERCLA ). This alternatives considered, including the preferred is a federal law enacted in 1980...and was amended alternative and other relevant documents, which by the Superfund Amendments and Reauthonzation constitute the Administrative Record

  13. Engineering Issue: Technology Alternatives for the Remediation of PCB Contaminated Soils and Sediments

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Engineering Issue papers are a series of documents that summarize the available information on specific contaminates, selected treatment and site remediation technologies, and related issues. This Engineering Issue paper is intended...

  14. Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings -- Part 4. Evaluation of the Activated Metal Treatment System (AMTS) for On-site Destruction of PCBs

    EPA Science Inventory

    This is the fourth, also the last, report of the report series entitled “Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings.” This report evaluates the performance of an on-site PCB destruction method, known as the AMTS method, developed ...

  15. Determinants of polychlorinated biphenyls (PCBs) in the sera of mothers and children from Michigan farms with PCB-contaminated silos

    SciTech Connect

    Schantz, S.L.; Jacobson, J.L.; Jacobson, S.W.; Humphrey, H.E.B.; Welch, R.; Gasior, D.

    1994-11-01

    Blood samples were collected from 28 mothers and from 38 school-aged children from Michigan farms on which there were polychlorinated biphenyl (PCB)-contaminated silos. The samples were analyzed for PCBs and other contaminants, including polybrominated biphenyls (PBBs) and dichlorodiphenyl trichloroethane (p,p{prime}-DDT + p,p{prime}-DDE) via packed column gas chromatography. The PCBs were quantified, using the Webb-McCall method, with Aroclors 1016 and 1260 used as reference standards. Approximately 42% of the children had serum PCB levels above the detection limit of 3.0 ng/ml. The values ranged from 3.1 to 23.3 ng/ml, with a mean of 6.8 ng/ml. In contrast, PCBs were detected in 86% of the mothers. The mean serum concentration was somewhat higher for the mothers (9.6 ng/ml), but the range was similar to that found for the children. PBBs were not detected in any of the children, but were present in trace amounts in 25% of the mothers. Conversely, DDT was present in 66% of the children and 93% of the mothers. As with PCBs, DDT concentrations were somewhat higher in the mothers. DDE accounted for 89% of the total DDT in serum. Various potential sources of exposure were evaluated as possible determinants of serum PCB levels, using hierarchical multiple regression. Years of residence on a silo farm and consumption of PCB-contaminated Great Lakes fish both accounted for significant portions of the variance in maternal serum PCB levels. Exposure via breast-feeding explained a large and highly significant proportion of the variance in the children`s serum PCB concentrations, suggesting that breast milk was the primary source of PCB exposure for these children. Years of residence on a silo farm also explained a significant proportion of the variance in children`s serum PCBs. 29 refs., 1 fig., 5 tabs.

  16. DEVELOPING TOOLS FOR MONITORED NATURAL RECOVERY OF PCB-CONTAMINATED SEDIMENTS AT LAKE HARTWELL, SC

    EPA Science Inventory

    Contaminated sediments pose a risk to human health and the environment . The management of this risk is currently limited practically to three technologies: dredging, capping, and natural recovery. Monitored natural recovery relies on the natural burial and removal mechanisms to...

  17. Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron.

    PubMed

    Srinivasa Varadhan, A; Khodadoust, Amid P; Brenner, Richard C

    2011-10-01

    Reductive dehalogenation of polychlorinated biphenyls (PCBs) by indigenous dehalorespiring microorganisms in contaminated sediments may be enhanced via biostimulation by supplying hydrogen generated through the anaerobic corrosion of elemental iron added to the sediment. In this study, the effect of periodic amendment of sediment with various dosages of iron on the microbial community present in sediment was investigated using phospholipid fatty acid analysis (PLFA) over a period of 18 months. Three PCB-contaminated sediments (two freshwater lake sediments and one marine sediment) were used. Signature biomarker analysis of the microbial community present in all three sediments revealed the enrichment of Dehalococcoides species, the population of which was sustained for a longer period of time when the sediment microcosms were amended with the lower dosage of iron (0.01 g iron per g dry sediment) every 6 months as compared to the blank system (without iron). Lower microbial stress levels were reported for the system periodically amended with 0.01 g of iron per g dry sediment every 6 months, thus reducing the competition from other hydrogen-utilizing microorganisms like methanogens, iron reducers, and sulfate reducers. The concentration of hydrogen in the system was found to be an important factor influencing the shift in microbial communities in all sediments with time. Periodic amendment of sediment with larger dosages of iron every 3 months resulted in the early prevalence of Geobacteraceae and sulfate-reducing bacteria followed by methanogens. An average pH of 8.4 (range of 8.2-8.6) and an average hydrogen concentration of 0.75% (range of 0.3-1.2%) observed between 6 and 15 months of the study were found to be conducive to sustaining the population of Dehalococcoides species in the three sediments amended with 0.01 g iron per g dry sediment. Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of

  18. Effects of activated carbon ageing in three PCB contaminated sediments: Sorption efficiency and secondary effects on Lumbriculus variegatus.

    PubMed

    Nybom, Inna; Waissi-Leinonen, Greta; Mäenpää, Kimmo; Leppänen, Matti T; Kukkonen, Jussi V K; Werner, David; Akkanen, Jarkko

    2015-11-15

    The sorption efficiency and possible secondary effects of activated carbon (AC) (ø 63-200 μm) was studied with Lumbriculus variegatus in three PCB contaminated sediments applying long AC-sediment contact time (3 years). AC amendment efficiently reduced PCB bioavailability as determined with both, L. variegatus bioaccumulation test and passive samplers. However, dose related secondary effects of AC on egestion rate and biomass were observed (applied doses 0.25% and 2.5% sediment dry weight). The sorption capacity and secondary effects remained similar when the experiments were repeated after three years of AC-sediment contact time. Further, transmission electron microscopy (TEM) samples revealed morphological changes in the L. variegatus gut wall microvilli layer. Sediment properties affected both sorption efficiency and secondary effects, but 2.5% AC addition had significant effects regardless of the sediment. In, conclusion, AC is an efficient and stable sorbent to decrease the bioavailability of PCBs. However, sediment dwelling organisms, such as Oligochaete worms in this study, may be sensitive to the carbon amendments. The secondary effects and possible morphological changes in benthic organisms should not be overlooked as in many cases they form the basis of the aquatic food webs.

  19. TOOLS FOR ASSESSING MONITORED NATURAL RECOVERY OF PCB-CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Management of contaminated sediments poses many challenges due to varied contaminants and volumes of sediments to manage. dredging, capping, and monitored natural recovery (MNR) are the primary approaches at this time for managing contaminated sediment risks. Understanding how we...

  20. Application of the base catalyzed decomposition process to treatment of PCB-contaminated insulation and other materials associated with US Navy vessels. Final report

    SciTech Connect

    Schmidt, A.J.; Zacher, A.H.; Gano, S.R.

    1996-09-01

    The BCD process was applied to dechlorination of two types of PCB-contaminated materials generated from Navy vessel decommissioning activities at Puget Sound Naval Shipyard: insulation of wool felt impregnated with PCB, and PCB-containing paint chips/debris from removal of paint from metal surfaces. The BCD process is a two-stage, low-temperature chemical dehalogenation process. In Stage 1, the materials are mixed with sodium bicarbonate and heated to 350 C. The volatilized halogenated contaminants (eg, PCBs, dioxins, furans), which are collected in a small volume of particulates and granular activated carbon, are decomposed by the liquid-phase reaction (Stage 2) in a stirred-tank reactor, using a high-boiling-point hydrocarbon oil as the reaction medium, with addition of a hydrogen donor, a base (NaOH), and a catalyst. The tests showed that treating wool felt insulation and paint chip wastes with Stage 2 on a large scale is feasible, but compared with current disposal costs for PCB-contaminated materials, using Stage 2 would not be economical at this time. For paint chips generated from shot/sand blasting, the solid-phase BCD process (Stage 1) should be considered, if paint removal activities are accelerated in the future.

  1. Long-term recovery of PCB-contaminated surface sediments at the Sangamo-westonl Twelvemile Creek/lake Hartwell Superfund Site.

    PubMed

    Brenner, Richard C; Magar, Victor S; Ickes, Jennifer A; Foote, Eric A; Abbott, James E; Bingler, Linda S; Crecelius, Eric A

    2004-04-15

    Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contaminant transport into the food chain by limiting bioturbation of contaminated surface or near-surface sediments. This study evaluated the natural recovery of surface sediments contaminated with polychlorinated biphenyls (PCBs) at the Sangamo-Weston/Twelvemile Creek/Lake Hartwell Superfund Site (Lake Hartwell), Pickens County, SC. The primary focus was on sediment recovery resulting from natural capping processes. Total PCB (t-PCB), lead-210 (210Pb), and cesium-137 (137Cs) sediment core profiles were used to establish vertical t-PCB concentration profiles, age date sediments, and determine surface sedimentation and surface sediment recovery rates in 18 cores collected along 10 transects. Four upgradient transects in the headwaters of Lake Hartwell were impacted by historical sediment releases from three upgradient sediment impoundments. These transects were characterized by silt/ clay and sand layering. The highest PCB concentrations were associated with silt/clay layers (1.8-3.5% total organic carbon (TOC)), while sand layers (0.05-0.32% TOC) contained much lower PCB concentrations. The historical sediment releases resulted in substantial burial of PCB-contaminated sediment in the vicinity of these four cores; each core contained less than 1 mg/kg t-PCBs in the surface sand layers. Cores collected from six downgradient Lake Hartwell transects consisted primarily of silt and clay (0.91-5.1% TOC) and were less noticeably impacted by the release of sand from the impoundments. Vertical t-PCB concentration profiles in these cores began with relatively low PCB concentrations at the sediment-water interface and increased in concentration with depth until maximum PCB concentrations were measured at

  2. Sequential anaerobic-aerobic degradation of indigenous PCBs in a contaminated soil matrix

    SciTech Connect

    Klasson, K.T.; Reeves, M.E.; Evans, B.S.; Dudley, C.A.

    1994-12-31

    Many industrial locations, including the US Department of Energy`s, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges; however, a practicable remediation technology has not yet been demonstrated. A biological treatment technology is likely to consist of an anaerobic fermentation step in which PCB dechlorination takes place producing PCBs with fewer chlorines. These products are then more susceptible to aerobic mineralization. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River and Woods Pond have been used to obtain anaerobic dechlorination of PCBs in soil slurry reactors. The anaerobic dechlorination was followed by qualitative estimation of the effect of aerobic fermentation of the dechlorination products based on literature data. The sequential anaerobic-(simulated) aerobic treatment constituted an improvement compared anaerobic treatment alone.

  3. Soil-ecological risks for soil degradation estimation

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Shirkin, Leonid; Kust, German; Andreeva, Olga

    2016-04-01

    Soil degradation includes the processes of soil properties and quality worsening, primarily from the point of view of their productivity and decrease of ecosystem services quality. Complete soil cover destruction and/or functioning termination of soil forms of organic life are considered as extreme stages of soil degradation, and for the fragile ecosystems they are normally considered in the network of their desertification, land degradation and droughts /DLDD/ concept. Block-model of ecotoxic effects, generating soil and ecosystem degradation, has been developed as a result of the long-term field and laboratory research of sod-podzol soils, contaminated with waste, containing heavy metals. The model highlights soil degradation mechanisms, caused by direct and indirect impact of ecotoxicants on "phytocenosis- soil" system and their combination, frequently causing synergistic effect. The sequence of occurring changes here can be formalized as a theory of change (succession of interrelated events). Several stages are distinguished here - from heavy metals leaching (releasing) in waste and their migration downward the soil profile to phytoproductivity decrease and certain phytocenosis composition changes. Phytoproductivity decrease leads to the reduction of cellulose content introduced into the soil. The described feedback mechanism acts as a factor of sod-podzolic soil self-purification and stability. It has been shown, that using phytomass productivity index, integrally reflecting the worsening of soil properties complex, it is possible to solve the problems dealing with the dose-reflecting reactions creation and determination of critical levels of load for phytocenosis and corresponding soil-ecological risks. Soil-ecological risk in "phytocenosis- soil" system means probable negative changes and the loss of some ecosystem functions during the transformation process of dead organic substance energy for the new biomass composition. Soil-ecological risks estimation is

  4. Estimation of the health risks associated with polychlorinated biphenyl (PCB) concentrations found onboard older U.S. Navy vessels.

    PubMed

    Still, K R; Arfsten, D P; Jederberg, W W; Kane, L V; Larcom, B J

    2003-10-01

    PCBs have been identified on surfaces and in component materials and equipment from inactive U.S. Navy nuclear submarines commissioned prior to 1970. Health risks associated with PCBs present onboard submarines were estimated for hypothetical crew members and shipyard workers. Median non-cancer hazard quotients for shipyard workers and submarine crew ranged between 0.4-54.6, with the highest quotients estimated for unprotected shipyard workers. Median cancer risk estimates ranged from 7.3 x 10(-6) to 1.1 x 10(-3) with the highest estimated risk calculated for unprotected shipyard workers. Our findings suggest that PCB surface concentrations found onboard inactive nuclear submarines commissioned prior to 1970 may be high enough to constitute a possible risk to the health of persons involved in dismantling of Navy submarines if PCB exposure is not minimized. Potential sources of uncertainty in our risk assessment include the correlation between PCB contamination levels on inactive versus active nuclear submarine vessels, the relationship between wipe sample concentrations and human exposure, dermal contact frequency with PCB-contaminated surfaces, carcinogenicity of PCBs in humans, and uncertainties inherent with the PCB cancer slope factor and oral RfD. Our findings support Navy policy that shipyard workers should wear personal protective equipment when PCB contamination is suspected or has been identified and that IH surveys should continue to identify sources of PCB contamination onboard vessels and reduce PCB contamination to concentrations that are reasonably achievable.

  5. A PHYSICAL, CHEMICAL, AND BIOLOGICAL ASSESSMENT OF MONITORED NATURAL RECOVERY OF PCB-CONTAMINATED SEDIMENTS IN LAKE HARTWELL, CLEMSON, NC

    EPA Science Inventory

    Management of contaminated sediments poses significant challenges due to varied contaminants and volumes of sediments to manage. Dredging, capping, and monitored natural recovery (MNR) are the primary approaches for managing the contaminated sediment risks. Understanding how eff...

  6. PHYSICAL, CHEMICAL AND BIOLOGICAL TOOLS FOR EVALUATING, MONITORED NATURAL RECOVERY OF PCB CONTAMINATED SEDIMENTS IN LAKE HARTWELL, CLEMSON, SC

    EPA Science Inventory

    Management of contaminated sediments poses significant challenges due to varied contaminants and volumes of sediments to
    manage. Dredging, capping, and monitored natural recovery (MNR) are the primary approaches for managing the contaminated sediment risks.
    Understanding ho...

  7. Extinction risk of soil biota.

    PubMed

    Veresoglou, Stavros D; Halley, John M; Rillig, Matthias C

    2015-11-23

    No species lives on earth forever. Knowing when and why species go extinct is crucial for a complete understanding of the consequences of anthropogenic activity, and its impact on ecosystem functioning. Even though soil biota play a key role in maintaining the functioning of ecosystems, the vast majority of existing studies focus on aboveground organisms. Many questions about the fate of belowground organisms remain open, so the combined effort of theorists and applied ecologists is needed in the ongoing development of soil extinction ecology.

  8. Extinction risk of soil biota

    PubMed Central

    Veresoglou, Stavros D.; Halley, John M.; Rillig, Matthias C.

    2015-01-01

    No species lives on earth forever. Knowing when and why species go extinct is crucial for a complete understanding of the consequences of anthropogenic activity, and its impact on ecosystem functioning. Even though soil biota play a key role in maintaining the functioning of ecosystems, the vast majority of existing studies focus on aboveground organisms. Many questions about the fate of belowground organisms remain open, so the combined effort of theorists and applied ecologists is needed in the ongoing development of soil extinction ecology. PMID:26593272

  9. Histopathology of brown bullhead (Ameiurus nebulosus), smallmouth bass (Micropterus dolomieu), and yellow perch (Perca flavescens) in relation to polychlorinated biphenyl (PCB) contamination in the Hudson River.

    PubMed

    Pinkney, Alfred E; Myers, Mark S; Rutter, Michael A

    2017-01-01

    From the 1940s through 1977, at least 590,000kg of polychlorinated biphenyls (PCBs) were released into the Hudson River from General Electric manufacturing plants located in Hudson Falls and Fort Edward, New York. In 1984, the U.S. Environmental Protection Agency designated a nearly 322km reach as the Hudson River PCBs Superfund Site. Here we describe a Fish Health Assessment study, part of a Natural Resource Damage Assessment, that evaluated the prevalence of toxicopathic lesions in adult brown bullhead (Ameiurus nebulosus), smallmouth bass (Micropterus dolomieu), and yellow perch (Perca flavescens). In fall 2001, 29-51 fish of each species were collected in fall 2001 from highly contaminated areas below the plants (Thompson Island Pool (TIP) and Stillwater Dam Pool (STW)), an upriver reference area (Feeder Dam Pool (FDP)), and a reference lake, Oneida Lake (ODA). The focus was on histopathologic lesions and observations associated with contaminant exposure: liver-neoplasms, foci of cellular alteration, bile duct hyperplasia; testes-ovotestis (testicular oocytes), germ cell degeneration, altered developmental stage; ovaries-atresia and altered developmental stage. Lesions associated with PCB exposure were defined as those with significantly greater prevalence and/or severity in TIP and STW compared with ODA and FDP. For brown bullhead and smallmouth bass, no lesions or changes in gonadal development met those criteria. In yellow perch, ovarian atresia was the only lesion associated with PCB exposure. Prevalence was 53% in FDP, 75% in ODA, and 100% in both STW and TIP; severity increased from mostly minimal to mild-moderate. Because of the high prevalence of atresia in reference collections, it is likely that factors other than PCBs are also involved. As part of a post-dredging monitoring plan, we recommend assessing gonad structure and function in yellow perch collected at the time of spawning in locations with a range of PCB contamination.

  10. EMERGING TECHNOLOGY REPORT: BENCH-SCALE TESTING OF PHOTOLYSIS, CHEMICAL OXIDATION AND BIODEGRADATION OF PCB CONTAMINATED SOILS AND PHOTOLYSIS OF TCDD CONTAMINATED SOILS

    EPA Science Inventory

    This report presents the results of bench-scale testing on degradation of 2,3,7,8-TCDD using W photolysis, and PCB degradation using UV photolysis, chemical oxidation and biological treatment. Bench-scale tests were conducted to investigate the feasibility of a two-phase detoxifi...

  11. AN IMPROVED UNDERSTANDING OF SOIL CD RISK TO HUMANS AND LOW COST METHODS TO PHYTOEXTRACT CD FROM CONTAMINATED SOILS TO PREVENT SOIL CD RISKS

    EPA Science Inventory

    We have described a new paradigm for human risk from soil Cd that reflects many years of agronomic, nutritional and toxicological research. This new model for soil Cd risk reflects the ability of rice to accumulate soil Cd in grain while excluding Fe, Zn and Ca even though the s...

  12. Comprehensive methodology for ecological risk assessment of contaminated soils

    SciTech Connect

    Kuperman, R.G.

    1994-12-31

    Development of a comprehensive methodology for ecological risk assessment and monitoring of contaminated soils is essential to assess the impacts of environmental contaminants on soil community and biologically-mediated processes in soil. The proposed four-step plan involves (1) a thorough survey of the soil community to establish biodiversity and a base-line community structure, (2) toxicity trials on indicator species and whole soil invertebrate communities, (3) laboratory and field tests on indicator processes and (4) the use of statistical and simulation models to ascertain changes in the soil ecosystems. This methodology was used in portions of the US Army`s Aberdeen Proving Ground, Maryland as part of an ecological risk assessment. Previous soil analyses showed extensive surface soil contamination with metals, nitrate and PCBs. Preliminary results from field surveys of soil invertebrate communities showed significant reductions in total abundance of animals, reductions in the abundance of several taxonomic and functional groups of soil invertebrates, and changes in the activity of epigeic arthropods in contaminated areas when compared with the local ``background`` area. Laboratory tests also demonstrated that microbial activity and success of egg hatching of ground beetle Harpalus pensylvanicus were reduced in contaminated soils. These results suggest that impacts to soil ecosystems should be explicitly considered in ecological risk assessment. The proposed comprehensive methodology appears to offer an efficient and potentially cost saving tool for remedial investigations of contaminated sites.

  13. Dechlorination of polychlorinated biphenyl-contaminated soil via anaerobic composting with pig manure.

    PubMed

    Zhang, Chi; Du, Yao; Tao, Xiao-Qing; Zhang, Kun; Shen, Dong-Sheng; Long, Yu-Yang

    2013-10-15

    Anaerobic dechlorination is an effective degradation pathway of higher chlorinated polychlorinated biphenyls (PCBs). The efficiency of anaerobic composting remediation of PCB-contaminated soil using pig manure was determined. The results show that the dechlorination of PCB-contaminated soil via anaerobic composting with pig manure is feasible. PCB concentration is the most critical factor. Elevated PCB concentrations can inhibit dechlorination but does not disrupt the anaerobic fermentation process. At 1 mg kg(-1) PCBs, the degradation rate of five or more chlorinated biphenyls is 43.8%. The highest dechlorination performance in this experiment was obtained when the soil-to-organic waste ratio, carbon-to-nitrogen ratio, moisture content, and PCB concentration were 2:3, 20, 60%, and 1 mg kg(-1), respectively.

  14. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  15. Urban Community Gardeners' Knowledge and Perceptions of Soil Contaminant Risks

    PubMed Central

    Kim, Brent F.; Poulsen, Melissa N.; Margulies, Jared D.; Dix, Katie L.; Palmer, Anne M.; Nachman, Keeve E.

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether. PMID:24516570

  16. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    PubMed

    Kim, Brent F; Poulsen, Melissa N; Margulies, Jared D; Dix, Katie L; Palmer, Anne M; Nachman, Keeve E

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  17. Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil biota.

    PubMed

    von Mérey, Georg; Manson, Philip S; Mehrsheikh, Akbar; Sutton, Peter; Levine, Steven L

    2016-11-01

    Glyphosate is a broad-spectrum herbicide used widely in agriculture, horticulture, private gardens, and public infrastructure, where it is applied to areas such as roadsides, railway tracks, and parks to control the growth of weeds. The exposure risk from glyphosate and the primary soil metabolite aminomethylphosphonic acid (AMPA) on representative species of earthworms, springtails, and predatory soil mites and the effects on nitrogen-transformation processes by soil microorganisms were assessed under laboratory conditions based on internationally recognized guidelines. For earthworms, the reproductive no-observed-effect concentration (NOEC) was 472.8 mg glyphosate acid equivalent (a.e.)/kg dry soil, which was the highest concentration tested, and 198.1 mg/kg dry soil for AMPA. For predatory mites, the reproductive NOEC was 472.8 mg a.e./kg dry soil for glyphosate and 320 mg/kg dry soil for AMPA, the highest concentrations tested. For springtails, the reproductive NOEC was 472.8 mg a.e./kg dry soil for glyphosate and 315 mg/kg dry soil for AMPA, the highest concentrations tested. Soil nitrogen-transformation processes were unaffected by glyphosate and AMPA at 33.1 mg a.e./kg soil and 160 mg/kg soil, respectively. Comparison of these endpoints with worst-case soil concentrations expected for glyphosate (6.62 mg a.e./kg dry soil) and AMPA (6.18 mg/kg dry soil) for annual applications at the highest annual rate of 4.32 kg a.e./ha indicate very low likelihood of adverse effects on soil biota. Environ Toxicol Chem 2016;35:2742-2752. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  18. Cleanup of contaminated soil -- Unreal risk assumptions: Contaminant degradation

    SciTech Connect

    Schiffman, A.

    1995-12-31

    Exposure assessments for development of risk-based soil cleanup standards or criteria assume that contaminant mass in soil is infinite and conservative (constant concentration). This assumption is not real for most organic chemicals. Contaminant mass is lost from soil and ground water when organic chemicals degrade. Factors to correct for chemical mass lost by degradation are derived from first-order kinetics for 85 organic chemicals commonly listed by USEPA and state agencies. Soil cleanup criteria, based on constant concentration, are then corrected for contaminant mass lost. For many chemicals, accounting for mass lost yields large correction factors to risk-based soil concentrations. For degradation in ground water and soil, correction factors range from greater than one to several orders of magnitude. The long exposure durations normally used in exposure assessments (25 to 70 years) result in large correction factors to standards even for carcinogenic chemicals with long half-lives. For the ground water pathway, a typical soil criterion for TCE of 1 mg/kg would be corrected to 11 mg/kg. For noncarcinogens, correcting for mass lost means that risk algorithms used to set soil cleanup requirements are inapplicable for many chemicals, especially for long periods of exposure.

  19. A MULTI-ORD LAB AND REGIONAL ASSESSMENT OF MONITORED NATURAL RECOVERY OF PCB-CONTAMINATED SEDIMENTS IN LAKE HARTWELL, CLEMSON, SC

    EPA Science Inventory

    Management of contaminated sediments poses many challenges due to varied contaminants and volumes of sediments to manage. Dredging, capping, and monitored natural recovery (MNR) are the primary approaches for managing the contaminated sediment risks. Understanding how well the ...

  20. LONG-TERM RECOVERY OF PCB-CONTAMINATED SURFACE SEDIMENTS AT THE SANGAMO-WESTON/TWELVEMILE CREEK/LAKE HARTWELL SUPERFUND SITE

    EPA Science Inventory

    Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contamin...

  1. Potential ecological risk assessment and predicting zinc accumulation in soils.

    PubMed

    Baran, Agnieszka; Wieczorek, Jerzy; Mazurek, Ryszard; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka

    2017-02-22

    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil-zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg(-1) d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining-metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg(-1) d.m. (0.01 mol dm(-3) CaCl2), and between 0.03 and 71.54 mg kg(-1) d.m. (1 mol dm(-3) NH4NO3). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90

  2. Risk assessment of soil compaction in Walloon Region (Belgium)

    NASA Astrophysics Data System (ADS)

    Charlotte, Rosiere; Marie-France, Destain; Jean-Claude, Verbrugge

    2010-05-01

    The proposed Soil Framework Directive COM(2006)232 requires Member States to identify areas at risk of erosion, decline in organic matter, salinisation, compaction, sealing and landslides, as well as to set up an inventory of contaminated sites. The present project aims to identify the susceptibility to compaction of soils of the Walloon Region (Belgium) and to recommend good farming practices avoiding soil compaction as far as possible. Within this scope, the concept of precompression stress (Pc) (Horn and Fleige, 2003) was used. Pc is defined as the maximum major principal stress that a soil horizon can withstand against any applied external vertical stress. If applied stress is higher than Pc, the soil enters in a plastic state, not easily reversible. For a given soil, the intensity of soil compaction is mainly due to the applied load which depends on vehicle characteristics (axle load, tyre dimensions, tyre inflation pressure, and vehicle velocity). To determine soil precompression stress, pedotransfert functions of Lebert and Horn (1991) defined at two water suctions (pF 1.8 and 2.5) were used. Parameters required by these functions were found within several databases (Aardewerk and Digital Map of Walloon Soils) and literature. The validation of Pc was performed by measuring stress-strain relationships using automatic oedometers. Stresses of 15.6, 31, 3, 62.5, 125, 250, 500 and 1000 kPa were applied for 10 min each. In this study, the compaction due to beet harvesters was considered because the axle load can exceed 10 tons and these machines are often used during wet conditions. The compaction at two depth levels was considered: 30 and 50 cm. Compaction of topsoil was not taken into account because, under conventional tillage, the plough depth is lower than 25 cm. Before and after the passage of the machines, following measurements were performed: granulometry, density, soil moisture, pF curve, Atterberg limits, ... The software Soilflex (Keller et al., 2007

  3. Risk assessment of soils contaminated by mercury mining, Northern Spain.

    PubMed

    Ordóñez, A; Alvarez, R; Charlesworth, S; De Miguel, E; Loredo, J

    2011-01-01

    Analytical results of soil samples taken in three different mercury mining sites in Northern Spain are studied to assess the potential adverse health effects of the exposure to trace elements associated with the mining process. Doses contacted through ingestion and inhalation and the dose absorbed through the skin were calculated using USEPA's exposure parameters and the US Department of Energy's toxicity values. The results of the risk assessment indicate that the highest risk is associated with ingestion of soil particles and that the trace element of major concern is arsenic, the exposure to which results in a high cancer risk value for all the sites ranging from 3.3 × 10(-5) to 3.6 × 10(-3), well above the 1 × 10(-5) probability level deemed unacceptable by most regulatory agencies. Regarding non-cancer effects, exposure to polluted soils yields an aggregate hazard index above the threshold value of 1 for all three sites, with As and Hg as the main contributors. Risk assessment has proven to be a very useful tool to identify the contaminants and exposure pathways of most concern in the soils from metal mining sites, as well as to categorize them in terms of action priority to ensure fitness for use.

  4. Effect of ozonation on polychlorinated biphenyl degradation and on soil physico-chemical properties.

    PubMed

    Javorská, Hana; Tlustos, Pavel; Komárek, Michael; Lestan, Domen; Kaliszová, Regina; Száková, Jirina

    2009-01-30

    The objectives of this study were to investigate the effectiveness of ozone treatment on degradation of polychlorinated biphenyl (PCB) contaminated soils and to observe the subsequent changes in soil physico-chemical properties. Furthermore, the ability of plants to grow on the ozone-treated soils was evaluated. Soils with different physico-chemical characteristics spiked with seven PCB congeners in two different time periods were chosen. Ozonation was more efficient for PCB degradation in freshly spiked soils and the removal efficiency increased with increasing ozonation time. The highest decrease was found in the soil with a lower soil organic matter (SOM) content and a coarser soil structure indicating the substantial effect of soil characteristics on the efficiency of ozonation. The composition of individual PCB congeners changed in all treatments in terms of higher accumulation rate of highly chlorinated biphenyls with a higher ozonation time. Increased mobility of several elements, changes in SOM content and in soil pH were detected after ozonation. Vulnerability of plants to these modifications was documented on rape seedlings. No inhibition in growth during any treatment and predominantly higher concentration of PCB in non-ozonated treatments were observed. Results suggest that this method can present a promising environmental friendly remediation technology for PCB contaminated soils.

  5. RISK ASSESSMENT OF DIOXINS ON SOIL INHABITANTS IN JAPAN - VERIFICATION AND PROPOSAL -

    NASA Astrophysics Data System (ADS)

    Hase, Emiko; Kitano, Masaru; Kawabe, Yoshishige; Komai, Takeshi

    Soil environmental assessment is a great importance for the protection of soil biodiversity. Environmental risk of dioxins on earthworm and soil microorganism was evaluated to propose a new soil risk assessment standard. The proposed approach in this study may be a useful tool for precautionary approach and management for soil and ground water contamination in Japan. The procedure consists of exposure assessment, effects assessment and risk evaluation. In the exposure assessment, Predicted Environmental Concentration (PEC) for soil, hereby PECsoil, was calculated. In the effects assessment, Predicted non-Effects Concentration (PNEC) for soil invertebrate and microorganisms, hereby PNECsoil and PNECsoilmicroorg, were calculated. Risk Characterization Ratio (RCR; ratio of PECsoil and PNECsoil, and PEC soil and PNECsoilmicroorg.) for dioxins were applied to quantify the level of risk. Under the assumption that RCR is 1, the risk-based soil concentration limits (allowance levels) were calculated to be up to 885 pg-TEQ/g for earthworm and to be 998,000 pg-TEQ/g soil for soil microorganism. This means that the risk level to representative soil invertebrates and microorganisms could be tolerable when the soil concentration was below these values. We propose this risk assessment method as one of measures to investigate, estimate and evaluate the soil biodiversity so that proper risk management measures are conducted and then biodiversity is preserved forever.

  6. Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook on plant-microbe beneficial interactions.

    PubMed

    Vergani, Lorenzo; Mapelli, Francesca; Zanardini, Elisabetta; Terzaghi, Elisa; Di Guardo, Antonio; Morosini, Cristiana; Raspa, Giuseppe; Borin, Sara

    2017-01-01

    Polychlorinated biphenyls (PCBs) are toxic chemicals, recalcitrant to degradation, bioaccumulative and persistent in the environment, causing adverse effects on ecosystems and human health. For this reason, the remediation of PCB-contaminated soils is a primary issue to be addressed. Phytoremediation represents a promising tool for in situ soil remediation, since the available physico-chemical technologies have strong environmental and economic impacts. Plants can extract and metabolize several xenobiotics present in the soil, but their ability to uptake and mineralize PCBs is limited due to the recalcitrance and low bioavailability of these molecules that in turn impedes an efficient remediation of PCB-contaminated soils. Besides plant degradation ability, rhizoremediation takes into account the capability of soil microbes to uptake, attack and degrade pollutants, so it can be seen as the most suitable strategy to clean-up PCB-contaminated soils. Microbes are in fact the key players of PCB degradation, performed under both aerobic and anaerobic conditions. In the rhizosphere, microbes and plants positively interact. Microorganisms can promote plant growth under stressed conditions typical of polluted soils. Moreover, in this specific niche, root exudates play a pivotal role by promoting the biphenyl catabolic pathway, responsible for microbial oxidative PCB metabolism, and by improving the overall PCB degradation performance. Besides rhizospheric microbial community, also the endophytic bacteria are involved in pollutant degradation and represent a reservoir of microbial resources to be exploited for bioremediation purposes. Here, focusing on plant-microbe beneficial interactions, we propose a review of the available results on PCB removal from soil obtained combining different plant and microbial species, mainly under simplified conditions like greenhouse experiments. Furthermore, we discuss the potentiality of "omics" approaches to identify PCB

  7. Estimating the Pollution Risk of Cadmium in Soil Using a Composite Soil Environmental Quality Standard

    PubMed Central

    Huang, Biao; Zhao, Yongcun

    2014-01-01

    Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data set from a 150 km2 area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection Administration of China. The method may be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs. PMID:24672364

  8. Estimating the pollution risk of cadmium in soil using a composite soil environmental quality standard.

    PubMed

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2014-01-01

    Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data set from a 150 km(2) area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection Administration of China. The method may be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs.

  9. Percutaneous absorption of PCBs from soil: In vivo rhesus monkey, in vitro human skin, and binding to powdered human stratum corneum

    SciTech Connect

    Wester, R.C.; Maibach, H.I.; Sedik, L.; Melendres, J.; Wade, M. )

    1993-07-01

    Polychlorinated biphenyls (PCBs) are ubiquitous and persistent environmental pollutants. The major resident site for these PCBs is the soil, and human skin is frequently in contact with soil. Our objective was to determine the percutaneous absorption of the PCBs Aroclor 1242 and Aroclor 1254 from soil. PCB-contaminated soil was prepared at levels of 44 ppm Aroclor 1242 and 23 ppm Aroclor 1254. PCB concentrations on skin were 1.75 micrograms/cm2 for Aroclor 1242 and 0.91 microgram/cm2 for Aroclor 1254. In vivo percutaneous absorption in the rhesus monkey was determined by urinary and fecal [14C]-PCB excretion for a 5-wk period following topical dosing. Absorption of Aroclor 1242 was determined in vitro with human skin for comparative purposes. In vivo in the rhesus monkey the percutaneous absorption of Aroclor 1242 was 13.8 +/- 2.7 (SD)% of the dose and the absorption of Aroclor 1254 was 14.1 +/- 1.0%. These absorption amounts are similar to the absorption of Aroclor 1242 and 1254 from other vehicles (mineral oil, trichlorobenzene, acetone). With in vitro percutaneous absorption through human skin, most of the Aroclor 1242 and Aroclor 1254 resided in the skin and the amounts were dependent upon dosing vehicle (water > mineral oil > soil). Both PCBs readily partitioned from water into soil and human powdered stratum corneum. By difference the partitioning favored both PCBs going from soil into stratum corneum. These data emphasize the role of soil in percutaneous absorption and provide information for appropriate risk assessment.

  10. Risk assessment of soils identified on firefighter turnout gear.

    PubMed

    Easter, Elizabeth; Lander, Deborah; Huston, Tabitha

    2016-09-01

    The purpose of this research was to identify the composition of soils on firefighter turnout gear and to determine the dermal exposure risks associated with the soils. Nine used Nomex hoods from the Philadelphia fire department were analyzed for the presence of trace metals and seven sets of used turnout gear were analyzed for semi-volatile organics. Turnout gear samples were removed from areas of the gear known to have high levels of dermal absorption including the collar, armpit, wrist, and crotch areas, from either the outer shell or thermal liner layers. The following compounds were detected: polycyclic aromatic hydrocarbons (PAHs), phthalate plasticizers, and polybrominated diphenyl ether flame retardants (PBDEs). A screening risk assessment was conducted by converting the measured concentrations to an estimated dermally absorbed dose based on estimates for the permeation coefficient (Kp) and an assumed firefighting exposure scenario. Benzo(a) pyrene had the highest dermal exposure risk based on carcinogenic effects and PBDE-99 had the highest dermal exposure risk based on non-carcinogenic effects. For the metals, arsenic had the highest dermal exposure risk for the use hoods.

  11. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale

    PubMed Central

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-01-01

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale. PMID:26675587

  12. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale.

    PubMed

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-12-17

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of "loading capacity" (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale.

  13. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus.

    PubMed

    Jalali, Mohsen; Jalali, Mahdi

    2017-03-01

    Accurate estimation of phosphorus (P) leaching is important because excess P may reduce surface and ground water quality. Little attention has been paid to estimate P leaching from soil tests in calcareous soils. The relation between different soil tests P (STP), P sorption index (PSI) and degree of P saturation (DPS) and leaching of P were examined for assessing the risk of P loss from calcareous soils. Columns leaching repacked with native soils were leached with either distilled water or 10 mM CaCl2 solutions, separately. Four leaching events were performed at four days, and 28.7 mm of distilled water or 10 mM CaCl2 solutions was applied at each leaching events. Compared with distilled water, CaCl2 had a small ability to solubilize P from soils. Concentration of P in leachate in both leaching solutions was exceeding 0.1 mg l(-1) associated with eutrophication. Cumulative P leached P was ranged from 0.17 to 18.59 mg P kg(-1) and 0.21-8.16 mg P kg(-1), when distilled water and 10 mM CaCl2 solutions were applied, respectively and it was higher in sandy clay loam soils compared with clay soils. Among evaluated environmental soil P tests, PCaCl2-3h (P extracted by 10 mM CaCl2 for 3 h), PCaCl2-1h (P extracted by 10 mM CaCl2 for 1 h) were more accurate than other soil P tests for predicting P concentration in the leachates in both leaching solutions and accounting for 83% and 72% of variation of P concentration, respectively. The water extractable P (WEP) (r = 0.771) and Olsen-P (POls)(r = 0.739) were significantly related to the leached P concentration using distilled water solution in a split line model, with a change point of 27.4 mg P kg(-1) and 61.5 mg P kg(-1), respectively. Various DPS were calculated and related to the leached P concentration. Based on P extracted by Mehlich-3 (PM3) and HCl (PHCl) and PSI, the change point of the relationship between leached P concentration and DPSM3-3 (PM3(PM3+PSI)×100) and DPSHCl-2 (PHCl(PHCl+PSI)×100

  14. Assessing the bioavailability and risk from metal contaminated soils and dusts#

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human and ecological risk assessment and often is the "risk-driver" for metal contaminated soil. Site-specific soil physical and chemical characteristics, as well as biological factors, determine the bioavailabilit...

  15. IMPROVED RISK ASSESSMENT AND REMEDIATION OF SOIL METALS BASED ON BIOAVAILABILITY MEASUREMENTS

    EPA Science Inventory

    Heavy metals in soils can comprise risk through plant uptake or soil ingestion. Recent research results and progress in understandings of risks and methods for soil metal remediation will be presented. Beneficial use of composts/bosolids plus limestone to remediate metal killed e...

  16. Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment.

    PubMed

    Kammenga, J E; Dallinger, R; Donker, M H; Köhler, H R; Simonsen, V; Triebskorn, R; Weeks, J M

    2000-01-01

    This review has served to present the most recent information on a selected series of biomarker studies undertaken on soil invertebrates during two extensive European-funded scientific consortia, BIOPRINT and BIOPRINT-II. The goals were to develop and validate methods for the analysis of markers of stress in a range of soil-dwelling organisms. We have discussed the potential and limitations of the following invertebrate biomarkers for soil risk assessment purposes: heat shock proteins, histological and ultrastructural markers, metallothioneins and metal-binding proteins, esterases, lysosomal integrity, and the novel biomarker histidine. The hsp response in soil invertebrates is especially suitable to indicate the effects of exposure to comparatively low concentrations for a range of toxicants and can be regarded as a biomarker of general stress. The application of MTs and other metal-binding proteins as biomarkers for exposure in soil invertebrates has been well described, and new methods are being developed for analyzing MT induction both at the protein and molecular level, and reliable and reproducible methods are now available. (Cd)-MT is well characterized for the springtails and its MT concentration is a useful biomarker for exposure as well as for effect. For snails, (Cd)-MT can accumulate in the midgut gland over extended periods of time and therefore its concentration is a biomarker not only for recent intoxication but also for events of cadmium exposure that snails may have experienced a long time before the measurement took place. Cellular and histological alterations can be regarded as reflecting the "health" state of a cell, which may be a measure for the presence of toxicants. Histopathological work on terrestrial invertebrates, however, is still scarce. Isozymes have been poorly studied in soil invertebrates despite their promising role as potential biomarkers in aquatic organisms. Among the large diversity of isozymes, the most well studied are

  17. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  18. European risk assessment of LAS in agricultural soil revisited: species sensitivity distribution and risk estimates.

    PubMed

    Jensen, John; Smith, Stephen R; Krogh, Paul Henning; Versteeg, Donald J; Temara, Ali

    2007-10-01

    Linear alkylbenzene sulphonate (LAS) is used at a rate of approximately 430,000 tons/y in Western Europe, mainly in laundry detergents. It is present in sewage sludge (70-5,600 mg/kg; 5-95th percentile) because of its high usage per capita, its sorption and precipitation in primary settlers, and its lack of degradation in anaerobic digesters. Immediately after amendment, calculated and measured concentrations are <1 to 60 mg LAS/kg soil. LAS biodegrades rapidly in soil with primary and ultimate half-lives of up to 7 and 30 days, respectively. Calculated residual concentrations after the averaging time (30 days) are 0.24-18 mg LAS/kg soil. The long-term ecotoxicity to soil microbiota is relatively low (EC10 >or=26 mg sludge-associated LAS/kg soil). An extensive review of the invertebrate and plant ecotoxicological data, combined with a probabilistic assessment approach, led to a PNEC value of 35 mg LAS/kg soil, i.e. the 5th percentile (HC5) of the species sensitivity distribution (lognormal distribution of the EC10 and NOEC values). Risk ratios were identified to fall within a range of 0.01 (median LAS concentration in sludge) to 0.1 (95th percentile) and always below 0.5 (maximum LAS concentration measured in sludge) according to various scenarios covering different factors such as local sewage influent concentration, water hardness, and sewage sludge stabilisation process. Based on the present information, it can be concluded that LAS does not represent an ecological risk in Western Europe when applied via normal sludge amendment to agricultural soil.

  19. Potential change in soil erosion trend and risk during 2010-2039 in central Oklahoma, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential for global climate changes to increase risk of soil erosion is clear, but quantitative analysis of this risk is limited due to high spatial and temporal variability in projected climate change scenarios. For accurate prediction of soil erosion risk under climate change, climate chang...

  20. Treatment of Aroclor 1016 contaminated soil by hydrogen peroxide: laboratory column study.

    PubMed

    Viisimaa, Marika; Veressinina, Jelena; Goi, Anna

    2012-09-01

    The potential and feasibility of treating soil contaminated with electrical insulating oil, Aroclor 1016, containing polychlorinated biphenyls (PCBs) with stabilized hydrogen peroxide were evaluated using columns packed with soils of two different matrixes. The column experiments showed that PCBs degraded by the stabilized hydrogen peroxide treatment in both soil matrixes, although the efficacy of the treatment depended strongly on the soil characteristics. The removal of PCB-containing oil was higher in sandy silt soil than in sandy soil. While a higher iron content promoted hydrogen peroxide oxidation of the contaminant in sandy silt soil, lower permeability and higher organic matter content contributed to an oxidation decrease as a function of depth. Dehydrogenase activity measurements indicated no substantial changes in microbial activity during the treatment of both sandy and sandy silt soils, thus offering opportunities to apply the hydrogen peroxide treatment to the remediation of PCB-contaminated soil.

  1. The occurrence, sources and spatial characteristics of soil salt and assessment of soil salinization risk in Yanqi basin, northwest China.

    PubMed

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO4(2-), EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3(-) and HCO3(2-)) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3(-), had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world.

  2. The Occurrence, Sources and Spatial Characteristics of Soil Salt and Assessment of Soil Salinization Risk in Yanqi Basin, Northwest China

    PubMed Central

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO42-, EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3- and HCO32-) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3-, had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world. PMID:25211240

  3. Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Performance of compost and biochar amendments for in situ risk mitigation of aged DDT, DDE and dieldrin residues in an old orchard soil was examined. The change in bioavailability of pesticide residues relative to an unamended control soil was assessed using Lumbricus terrestris in 4-L soil microcos...

  4. Toxicity and bioaccumulation of soil PCBs in crickets: Comparison of laboratory and field studies

    SciTech Connect

    Paine, J.M.; McKee, M.J.; Ryan, M.E. . Cooperative Wildlife Research Lab. and Dept. of Zoology)

    1993-11-01

    Laboratory and field studies were used to investigate toxicity and bioaccumulation of PCBs in crickets exposed to contaminated soil. A 14-d laboratory soil bioassay with the house cricket (Acheta domesticus) yielded an LC50 of 1,200 ppm Aroclor 1254. Mean whole-body concentrations of Aroclor 1254 in exposed crickets were 11, 48, 92, 149, and 144 ppm for soil test concentrations of 100, 250, 500, 1,000, and 2,000 ppm, respectively. A whole-body concentration of about 150 ppm appears to be a threshold concentration above which acute mortality will be observed. House crickets placed in cages on a PCB-contaminated landfill accumulated 1.6 and 0.9 ppm of PCBs after 3 and 7 d of exposure, respectively. Although this represents a rapid uptake of PCBs, whole-body concentrations remained considerably below levels expected to cause acute mortality. Abundance of another species, the field cricket (Gryllus pennsylvanicus), was investigated using pitfall traps placed at the PCB-contaminated landfill and a reference site. No adverse effect on abundance was observed at the contaminated site, nor was pitfall trap success correlated to soil PCB concentration. These data indicate that PCBs in soil can rapidly move into epigeic fauna but that the likelihood of acquiring sufficient body burdens to cause acute mortality is low.

  5. Approaches to assessing the risk of chemical contamination of Urban Soils

    NASA Astrophysics Data System (ADS)

    Makarov, O. A.; Makarov, A. A.

    2016-09-01

    The existing approaches to studying the risk of chemical contamination of soils are analyzed. It is noted that the actual and critical loads of contaminants on the soil cover are often compared for estimating these risks. The insufficient use of economic tools and methods for assessing the risk of soil contamination is emphasized. The sanitary-hygienic standards are found out to be exceeded for lead, zinc, cadmium and copper content in soils in six localities, each of 6250 m2 in the area, situated in the industrial and transport zones of Podol'sk and Moscow. The values of actual and maximal permissible damage exerted by the heavy-metal contamination to the studied soils are calculated. The probable damage R and the degree of probable damage implementation (DPDI) are used as the indices of soil contamination risk.

  6. PROVIDING SOLUTIONS FOR A BETTER TOMORROW: REDUCING THE RISKS ASSOCIATED WITH LEAD IN SOIL; URL:

    EPA Science Inventory

    This brief publication describes, in general language, the health risks associated with exposure to soil and dust contaminated with lead as well as an innovative method to immobilize lead contaminants in the soil (and thereby reduce the risk of exposure) at Superfund sites. Also ...

  7. Human health risk from arsenical pesticide contaminated soils: a long-term greenhouse study.

    PubMed

    Quazi, Shahida; Sarkar, Dibyendu; Datta, Rupali

    2013-11-15

    Arsenic (As) bioaccessibility is an important factor in estimating human health risk. Bioaccessibility of As in soils is primarily dependent on As adsorption, which varies with residence time. This study evaluated the effect of soil aging on potential lifetime cancer risk associated with chronic exposure to As contaminated soils. Four soils, chosen based on their differences in As reactivity, were amended with two arsenical pesticides--sodium arsenate, and dimethylarsinic acid (DMA) at two rates (675 and 1500 mg kg(-1)). Rice was used as the test crop. Soil was sampled immediately after spiking, after 6 months, 1 year, and 3 years. Bioaccessible and total soil As concentrations were used to calculate lifetime excess cancer risk (ECR), which decreased significantly with soil-pesticide equilibration time. Immokalee soil, with the least As adsorption capacity, showed the highest decrease in ECR after 6 months resulting in values lower than the USEPA's cancer risk range of 1 × 10(-4) to 1 × 10(-6). For all other soils, the ECR was much higher than the target range even after 3 years. In the absence of significant changes in As bioaccessibility with time, the total soil As concentration more directly influenced the changes in ECR values with soil aging.

  8. [Study on ecological risk assessment technology of fluoride pollution from arid oasis soil].

    PubMed

    Xue, Su-Yin; Li, Ping; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    According to translocation regulation of fluoride in the typical oasis soil-plant system under field, an ecological risk assessment model of fluoride was established, and this model was used to assess ecological risk to fluoride pollution from suburban oasis soils in Baiyin City, which was specifically expressed with the potential ecological risk of bioavailability (ER(bc)) model to assess ecological risk of fluoride pollution in oasis regions. Results showed that the ecological risk indices of fluoride pollution from this region were 1.37-24.81, the level of risk at most sites was high to very high, the average ecological risk index was 11.28, belonged to very high risk. This indicated that in the suburb soil of Baiyin City needs to be concerned about the remediation of fluoride pollution.

  9. Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China.

    PubMed

    Li, Fei; Zhang, Jingdong; Jiang, Wei; Liu, Chaoyang; Zhang, Zhongmin; Zhang, Chengde; Zeng, Guangming

    2016-08-18

    Due to rapid urbanization and the implementation of ecological civilization construction in China, many industrial factories have been closed or relocated. Therefore, numbers of contaminated sites were generated with contaminated soils which may pose a risk to receptors living nearby. This study presented a spatial health risk assessment and hierarchical risk management policy making for mercury (Hg) in soils from a typical contaminated site in the Hunan Province, central China. Compared with the second class value (0.3 mg/kg) of the Chinese Environmental Quality Standard for Soils, the mean concentrations of Hg in the three soil depths exceeded the second class value. The non-carcinogenic risk of Hg probably posed adverse health effects in 41, 30 and 36 % of the surface soil, the moderate soil and subsoil, respectively, under a sensitive land scenario. The non-carcinogenic risk temporarily posed no adverse health effects in most areas under an insensitive land scenario except for the area around sampling site S29. Spatially, the central, southwest and northeast parts of the contaminated land under a sensitive land scenario should be regarded as the priority regions. For non-carcinogenic effects, the exposure pathways that resulted in the higher levels of exposure risk were ingestion and inhalation of vapors, followed by dermal contact and inhalation of particles. A risk-based integrated risk management policy including the hierarchical risk control values for different soil depths and the calculated remediation earthwork was proposed with consideration of the cost-benefit effect for the related decision-makers.

  10. Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk.

    PubMed

    Moreno-Jiménez, Eduardo; Beesley, Luke; Lepp, Nicholas W; Dickinson, Nicholas M; Hartley, William; Clemente, Rafael

    2011-10-01

    Monitoring soil pollution is a key aspect in sustainable management of contaminated land but there is often debate over what should be monitored to assess ecological risk. Soil pore water, containing the most labile pollutant fraction in soils, can be easily collected in situ offering a routine way to monitor this risk. We present a compilation of data on concentration of trace elements (As, Cd, Cu, Pb, and Zn) in soil pore water collected in field conditions from a range of polluted and non-polluted soils in Spain and the UK during single and repeated monitoring, and propose a simple eco-toxicity test using this media. Sufficient pore water could be extracted for analysis both under semi-arid and temperate conditions, and eco-toxicity comparisons could be effectively made between polluted and non-polluted soils. We propose that in-situ pore water extraction could enhance the realism of risk assessment at some contaminated sites.

  11. Ecotoxicological risk assessment of undisturbed metal contaminated soil at two remote lighthouse sites.

    PubMed

    Chapman, E Emily V; Dave, Göran; Murimboh, John D

    2010-07-01

    Ecotoxicological risk assessments of contaminated soil are commonly completed using guideline values based on total concentrations. However, only certain fractions of contaminants are bioavailable and pose a hazard to the environment. This paper investigates the relationship between measured metal concentrations in soil and soil leachate, and the effects in organisms exposed to intact, undisturbed soil cores (wheat, Tricum aestivum) and soil leachate (lettuce, Lactuca sativa, and water flea, Daphnia magna). Despite the samples containing metal concentrations significantly above guideline values, metals of concern (e.g. Pb and Zn) did not have a significant toxic effect on wheat or D. magna. During weeks with low leachate pH, an effect on lettuce root elongation was observed in the most contaminated samples. This study has shown that bioassays with intact soil cores can indicate metal bioavailability and provide a better estimate of ecological risk than total metal concentrations in the soil.

  12. Improvement of erosion risk modelling using soil information derived from aerial Vis-NIR imagery

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Raclot, Damien; Le Bissonnais, Yves

    2016-04-01

    The aim of this research is to test the benefit of the hyperspectral imagery in soil surface properties characterisation for soil erosion modelling purposes. The research area is the Lebna catchment located in the in the north of Tunisia (Cap Bon Region). Soil erosion is evaluated with the use of two different soil erosion models: PESERA (Pan-European Soil Erosion Risk Assessment already used for the soil erosion risk mapping for the European Union, Kirkby et al., 2008) and Mesales (Regional Modelling of Soil Erosion Risk developed by Le Bissonnais et al., 1998, 2002); for that, different sources for soil properties and derived parameters such as soil erodibility map and soil crusting map have been evaluated with use of four different supports: 1) IAO soil map (IAO, 2000), 2) Carte Agricole - CA - (Ministry of Agriculture, Tunisia), 3) Hyperspectral VIS-NIR map - HY - (Gomez et al., 2012; Ciampalini t al., 2012), and, 3) a here developed Hybrid map - CY - integrating information from Hyperspectral VIS-NIR and pedological maps. Results show that the data source has a high influence on the estimation of the parameters for both the models with a more evident sensitivity for Pesera. With regard to the classical pedological data, the VIS-NIR data clearly ameliorates the spatialization of the texture, then, the spatial detail of the results. Differences in the output using different maps are more important in Pesera model than in Mesales showing no-change ranges of about 15 to 41% and 53 to 67%, respectively.

  13. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wu, Jin; Wang, Jinsheng

    2016-02-01

    Understanding the exposure risks of trace metals in contamination soils and apportioning their sources are the basic preconditions for soil pollution prevention and control. In this study, a detailed investigation was conducted to assess the health risks of trace metals in surface soils of Beijing which is one of the most populated cities in the world and to apportion their potential sources. The data set of metals for 12 elements in 240 soil samples was collected. Pollution index and enrichment factor were used to identify the general contamination characteristic of soil metals. The probabilistic risk model was employed for health risk assessment, and a chemometrics technique, multivariate curve resolution-weighted alternating least squares (MCR-WALS), was applied to apportion sources. Results suggested that the soils in Beijing metropolitan region were contaminated by Hg, Cd, Cu, As, and Pb in varying degree, lying in the moderate pollution level. As a whole, the health risks posed by soil metals were acceptable or close to tolerable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Atmospheric deposition, fertilizers and agrochemicals, and natural source were apportioned as the potential sources determining the contents of trace metals in soils of Beijing area with contributions of 15.5%-16.4%, 5.9%-7.7% and 76.0%-78.6%, respectively.

  14. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wei; Guo, Mingxing; Ji, Junfeng

    2017-02-01

    The bioavailability of heavy metals in soil is controlled by their concentrations and soil properties. Diffuse reflectance mid-infrared Fourier-transform spectroscopy (DRIFTS) is capable of detecting specific organic and inorganic bonds in metal complexes and minerals and therefore, has been employed to predict soil composition and heavy metal contents. The present study explored the potential of DRIFTS for estimating soil heavy metal bioavailability. Soil and corresponding wheat grain samples from the Yangtze River Delta region were analyzed by DRIFTS and chemical methods. Statistical regression analyses were conducted to correlate the soil spectral information to the concentrations of Cd, Cr, Cu, Zn, Pb, Ni, Hg and Fe in wheat grains. The principal components in the spectra influencing soil heavy metal bioavailability were identified and used in prediction model construction. The established soil DRIFTS-based prediction models were applied to estimate the heavy metal concentrations in wheat grains in the mid-Yangtze River Delta area. The predicted heavy metal concentrations of wheat grain were highly consistent with the measured levels by chemical analysis, showing a significant correlation (r2 > 0.72) with acceptable root mean square error RMSE. In conclusion, DRIFTS is a promising technique for assessing the bioavailability of soil heavy metals and related ecological risk.

  15. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy

    PubMed Central

    Wang, Cheng; Li, Wei; Guo, Mingxing; Ji, Junfeng

    2017-01-01

    The bioavailability of heavy metals in soil is controlled by their concentrations and soil properties. Diffuse reflectance mid-infrared Fourier-transform spectroscopy (DRIFTS) is capable of detecting specific organic and inorganic bonds in metal complexes and minerals and therefore, has been employed to predict soil composition and heavy metal contents. The present study explored the potential of DRIFTS for estimating soil heavy metal bioavailability. Soil and corresponding wheat grain samples from the Yangtze River Delta region were analyzed by DRIFTS and chemical methods. Statistical regression analyses were conducted to correlate the soil spectral information to the concentrations of Cd, Cr, Cu, Zn, Pb, Ni, Hg and Fe in wheat grains. The principal components in the spectra influencing soil heavy metal bioavailability were identified and used in prediction model construction. The established soil DRIFTS-based prediction models were applied to estimate the heavy metal concentrations in wheat grains in the mid-Yangtze River Delta area. The predicted heavy metal concentrations of wheat grain were highly consistent with the measured levels by chemical analysis, showing a significant correlation (r2 > 0.72) with acceptable root mean square error RMSE. In conclusion, DRIFTS is a promising technique for assessing the bioavailability of soil heavy metals and related ecological risk. PMID:28198802

  16. Determining the relative importance of soil sample locations to predict risk of child lead exposure.

    PubMed

    Zahran, Sammy; Mielke, Howard W; McElmurry, Shawn P; Filippelli, Gabriel M; Laidlaw, Mark A S; Taylor, Mark P

    2013-10-01

    Soil lead in urban neighborhoods is a known predictor of child blood lead levels. In this paper, we address the question where one ought to concentrate soil sample collection efforts to efficiently predict children at-risk for soil Pb exposure. Two extensive data sets are combined, including 5467 surface soil samples collected from 286 census tracts, and geo-referenced blood Pb data for 55,551 children in metropolitan New Orleans, USA. Random intercept least squares, random intercept logistic, and quantile regression results indicate that soils collected within 1m adjacent to residential streets most reliably predict child blood Pb outcomes in child blood Pb levels. Regression decomposition results show that residential street soils account for 39.7% of between-neighborhood explained variation, followed by busy street soils (21.97%), open space soils (20.25%), and home foundation soils (18.71%). Just as the age of housing stock is used as a statistical shortcut for child risk of exposure to lead-based paint, our results indicate that one can shortcut the characterization of child risk of exposure to neighborhood soil Pb by concentrating sampling efforts within 1m and adjacent to residential and busy streets, while significantly reducing the total costs of collection and analysis. This efficiency gain can help advance proactive upstream, preventive methods of environmental Pb discovery.

  17. Accumulation and risks of polycyclic aromatic hydrocarbons and trace metals in tropical urban soils.

    PubMed

    Khillare, P S; Hasan, Amreen; Sarkar, Sayantan

    2014-05-01

    The study deals with the combined contribution of polycyclic aromatic hydrocarbons (PAHs) and metals to health risk in Delhi soils. Surface soils (0-5 cm) collected from three different land-use regions (industrial, flood-plain and a reference site) in Delhi, India over a period of 1 year were characterized with respect to 16 US Environmental Protection Agency priority PAHs and five trace metals (Zn, Fe, Ni, Cr and Cd). Mean annual ∑16PAH concentrations at the industrial and flood-plain sites (10,893.2 ± 2826.4 and 3075.4 ± 948.7 μg/kg, respectively) were ~15 and ~4 times, respectively, higher than reference levels. Significant spatial and seasonal variations were observed for PAHs. Toxicity potentials of industrial and flood-plain soils were ~88 and ~8 times higher than reference levels. Trace metal concentrations in soils also showed marked dependencies on nearness to sources and seasonal effects. Correlation analysis, PAH diagnostic ratios and principal component analysis (PCA) led to the identification of sources such as coal and wood combustion, vehicular and industrial emissions, and atmospheric transport. Metal enrichment in soil and the degree of soil contamination were investigated using enrichment factors and index of geoaccumulation, respectively. Health risk assessment (incremental lifetime cancer risk and hazard index) showed that floodplain soils have potential high risk due to PAHs while industrial soils have potential risks due to both PAHs and Cr.

  18. Ecological Risk of Heavy Metals and a Metalloid in Agricultural Soils in Tarkwa, Ghana.

    PubMed

    Bortey-Sam, Nesta; Nakayama, Shouta M M; Akoto, Osei; Ikenaka, Yoshinori; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-09-11

    Heavy metals and a metalloid in agricultural soils in 19 communities in Tarkwa were analyzed to assess the potential ecological risk. A total of 147 soil samples were collected in June, 2012 and analyzed for As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Mean concentrations (mg/kg dw) of heavy metals in the communities decreased in order of Zn (39) ˃ Cr (21) ˃ Pb (7.2) ˃ Cu (6.2) ˃ As (4.4) ˃ Ni (3.7) ˃ Co (1.8) ˃ Hg (0.32) ˃ Cd (0.050). Correlations among heavy metals and soil properties indicated that soil organic matter could have substantial influence on the total contents of these metals in soil. From the results, integrated pollution (C(deg)) in some communities such as, Wangarakrom (11), Badukrom (13) and T-Tamso (17) indicated high pollution with toxic metals, especially from As and Hg. Potential ecological risk (RI) indices indicated low (Mile 7) to high risks (Wangarakrom; Badukrom) of metals. Based on pollution coefficient (C(i)(f)), C(deg), monomial ecological risk (E(i)(r)) and RI, the investigated soils fall within low to high contamination and risk of heavy metals to the ecological system especially plants, soil invertebrates and/or mammalian wildlife. This represented moderate potential ecological risk in the study area, and mining activities have played a significant role.

  19. Ecological Risk of Heavy Metals and a Metalloid in Agricultural Soils in Tarkwa, Ghana

    PubMed Central

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    Heavy metals and a metalloid in agricultural soils in 19 communities in Tarkwa were analyzed to assess the potential ecological risk. A total of 147 soil samples were collected in June, 2012 and analyzed for As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Mean concentrations (mg/kg dw) of heavy metals in the communities decreased in order of Zn (39) ˃ Cr (21) ˃ Pb (7.2) ˃ Cu (6.2) ˃ As (4.4) ˃ Ni (3.7) ˃ Co (1.8) ˃ Hg (0.32) ˃ Cd (0.050). Correlations among heavy metals and soil properties indicated that soil organic matter could have substantial influence on the total contents of these metals in soil. From the results, integrated pollution (Cdeg) in some communities such as, Wangarakrom (11), Badukrom (13) and T–Tamso (17) indicated high pollution with toxic metals, especially from As and Hg. Potential ecological risk (RI) indices indicated low (Mile 7) to high risks (Wangarakrom; Badukrom) of metals. Based on pollution coefficient (Cif), Cdeg, monomial ecological risk (Eir) and RI, the investigated soils fall within low to high contamination and risk of heavy metals to the ecological system especially plants, soil invertebrates and/or mammalian wildlife. This represented moderate potential ecological risk in the study area, and mining activities have played a significant role. PMID:26378563

  20. Method for Assessing the Integrated Risk of Soil Pollution in Industrial and Mining Gathering Areas

    PubMed Central

    Guan, Yang; Shao, Chaofeng; Gu, Qingbao; Ju, Meiting; Zhang, Qian

    2015-01-01

    Industrial and mining activities are recognized as major sources of soil pollution. This study proposes an index system for evaluating the inherent risk level of polluting factories and introduces an integrated risk assessment method based on human health risk. As a case study, the health risk, polluting factories and integrated risks were analyzed in a typical industrial and mining gathering area in China, namely, Binhai New Area. The spatial distribution of the risk level was determined using a Geographic Information System. The results confirmed the following: (1) Human health risk in the study area is moderate to extreme, with heavy metals posing the greatest threat; (2) Polluting factories pose a moderate to extreme inherent risk in the study area. Such factories are concentrated in industrial and urban areas, but are irregularly distributed and also occupy agricultural land, showing a lack of proper planning and management; (3) The integrated risks of soil are moderate to high in the study area. PMID:26580644

  1. Method for Assessing the Integrated Risk of Soil Pollution in Industrial and Mining Gathering Areas.

    PubMed

    Guan, Yang; Shao, Chaofeng; Gu, Qingbao; Ju, Meiting; Zhang, Qian

    2015-11-13

    Industrial and mining activities are recognized as major sources of soil pollution. This study proposes an index system for evaluating the inherent risk level of polluting factories and introduces an integrated risk assessment method based on human health risk. As a case study, the health risk, polluting factories and integrated risks were analyzed in a typical industrial and mining gathering area in China, namely, Binhai New Area. The spatial distribution of the risk level was determined using a Geographic Information System. The results confirmed the following: (1) Human health risk in the study area is moderate to extreme, with heavy metals posing the greatest threat; (2) Polluting factories pose a moderate to extreme inherent risk in the study area. Such factories are concentrated in industrial and urban areas, but are irregularly distributed and also occupy agricultural land, showing a lack of proper planning and management; (3) The integrated risks of soil are moderate to high in the study area.

  2. Molecular diagnostics and chemical analysis for assessing biodegradation of polychlorinated biphenyls in contaminated soils.

    PubMed

    Layton, A C; Lajoie, C A; Easter, J P; Jernigan, R; Sanseverino, J; Sayler, G S

    1994-11-01

    The microbial populations in PCB-contaminated electric power substation capacitor bank soil (TVA soil) and from another PCB-contaminated site (New England soil) were compared to determine their potential to degrade PCB. Known biphenyl operon genes were used as gene probes in colony hybridizations and in dot blots of DNA extracted from the soil to monitor the presence of PCB-degrading organisms in the soils. The microbial populations in the two soils differed in that the population in New England soil was enriched by the addition of 1000 p.p.m. 2-chlorobiphenyl (2-CB) whereas the population in the TVA capacitor bank soil was not affected. PCB degradative activity in the New England soil was indicated by a 50% PCB disappearance (gas chromatography), accumulation of chlorobenzoates (HPLC), and 14CO2 evolution from 14C-2CB. The PCB-degrading bacteria in the New England soil could be identified by their positive hybridization to the bph gene probes, their ability to produce the yellow meta-cleavage product from 2,3-dihydroxybiphenyl (2,3-DHB), and the degradation of specific PCB congeners by individual isolates in resting cell assays. Although the TVA capacitor bank soil lacked effective PCB-degrading populations, addition of a PCB-degrading organism and 10,000 p.p.m. biphenyl resulted in a > 50% reduction of PCB levels. Molecular characterization of soil microbial populations in laboratory scale treatments is expected to be valuable in the design of process monitoring and performance verification approaches for full scale bioremediation.

  3. An empirical approach to estimate soil erosion risk in Spain.

    PubMed

    Martín-Fernández, Luis; Martínez-Núñez, Margarita

    2011-08-01

    Soil erosion is one of the most important factors in land degradation and influences desertification worldwide. In 2001, the Spanish Ministry of the Environment launched the 'National Inventory of Soil Erosion (INES) 2002-2012' to study the process of soil erosion in Spain. The aim of the current article is to assess the usefulness of this National Inventory as an instrument of control, measurement and monitoring of soil erosion in Spain. The methodology and main features of this National Inventory are described in detail. The results achieved as of the end of May 2010 are presented, together with an explanation of the utility of the Inventory as a tool for planning forest hydrologic restoration, soil protection, erosion control, and protection against desertification. Finally, the authors make a comparative analysis of similar initiatives for assessing soil erosion in other countries at the national and European levels.

  4. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    PubMed Central

    Lai, Hung-Yu; Hseu, Zeng-Yei; Chen, Ting-Chien; Chen, Bo-Ching; Guo, Horng-Yuh; Chen, Zueng-Sang

    2010-01-01

    Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act) uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs) have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1) food safety risk assessment for brown rice growing in a HMs-contaminated site; (2) a tiered approach to health risk assessment for a contaminated site; (3) risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4) soil remediation cost analysis for contaminated sites in Taiwan. PMID:21139851

  5. Ecological risk assessment of soil pollution with heavy metals

    SciTech Connect

    Kuperman, R.G.

    1995-12-31

    The structure and function of soil ecosystems in an area with a wide range of concentrations of heavy metals were studied in portions of the US Army`s Aberdeen Proving Ground, Maryland. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach which integrated biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to establish community structure, (2) laboratory and field tests on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input in the decision making process. Soil invertebrate communities showed significant reductions in the abundance of several taxonomic and trophic groups in contaminated areas. The numbers of soil microorganisms were lower in areas of soil contamination. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area. The proposed methodology appears to offer an efficient and potentially cost saving tool for remedial investigations at contaminated sites.

  6. A review of soil cadmium contamination in China including a health risk assessment.

    PubMed

    Wang, Lin; Cui, Xiangfen; Cheng, Hongguang; Chen, Fei; Wang, Jiantong; Zhao, Xinyi; Lin, Chunye; Pu, Xiao

    2015-11-01

    Cadmium (Cd) is one of the most serious soil contaminants in China, and it poses an increasing risk to human health as large amounts of Cd are emitted into the environment. However, knowledge about soil Cd concentrations and the human health risks of these concentrations at a national scale is limited. In this study, we conducted a review of 190 articles about soil Cd concentrations during 2001 to 2010. The study involved 146 cities in China, and we quantified the risks to human health according to different regions. The results showed that elevated Cd levels were present compared to the background value of soil in 1990, and the soil Cd concentrations in the Guangxi province exceeded even the class III Soil Environmental Quality standard, which is the limit for the normal growth of plants. The Chinese soil Cd concentrations ranged from 0.003 mg kg(-1) to 9.57 mg kg(-1). The soil Cd concentrations had the following trend: northwest > southwest > south central > east > northeast > north. The sources of soil Cd are mainly from smelting, mining, waste disposal, fertilizer and pesticide application, and vehicle exhaust, etc. but differentiated in various regions. The soil Cd contamination in urban areas was more serious than contamination in the agricultural areas. Currently, there is no significant non-carcinogenic risk in any of the provinces. Regarding the different exposure pathways, the dermal pathway is the primary source of soil Cd exposure, and the risk associated with this pathway is generally hundreds of times higher than the risk for an ingestion pathway. For most of the provinces, the health risk to the urban population was higher than the risk to the rural population. For each population, the carcinogenic risk was less than 10(-6) in most of the provinces, except for the urban population in the Hunan province. If the other exposure pathways are fully considered, then the people in these areas may have a higher carcinogenic risk. This

  7. Assessing soil erosion risk using RUSLE through a GIS open source desktop and web application.

    PubMed

    Duarte, L; Teodoro, A C; Gonçalves, J A; Soares, D; Cunha, M

    2016-06-01

    Soil erosion is a serious environmental problem. An estimation of the expected soil loss by water-caused erosion can be calculated considering the Revised Universal Soil Loss Equation (RUSLE). Geographical Information Systems (GIS) provide different tools to create categorical maps of soil erosion risk which help to study the risk assessment of soil loss. The objective of this study was to develop a GIS open source application (in QGIS), using the RUSLE methodology for estimating erosion rate at the watershed scale (desktop application) and provide the same application via web access (web application). The applications developed allow one to generate all the maps necessary to evaluate the soil erosion risk. Several libraries and algorithms from SEXTANTE were used to develop these applications. These applications were tested in Montalegre municipality (Portugal). The maps involved in RUSLE method-soil erosivity factor, soil erodibility factor, topographic factor, cover management factor, and support practices-were created. The estimated mean value of the soil loss obtained was 220 ton km(-2) year(-1) ranged from 0.27 to 1283 ton km(-2) year(-1). The results indicated that most of the study area (80 %) is characterized by very low soil erosion level (<321 ton km(-2) year(-1)) and in 4 % of the studied area the soil erosion was higher than 962 ton km(-2) year(-1). It was also concluded that areas with high slope values and bare soil are related with high level of erosion and the higher the P and C values, the higher the soil erosion percentage. The RUSLE web and the desktop application are freely available.

  8. Risk assessment applications for determining cleanup limits for uranium in treated and untreated soils

    SciTech Connect

    Armstrong, A.Q.; Layton, D.W.; Rutz, E.E.

    1994-06-01

    Uranium-contaminated soils are present at various locations across the US where uranium was processed for nuclear fuels or atomic weapons. Important issues relative to such contamination include the assessment of potential health risks associated with human exposures to the residual uranium and the determination of safe levels of uranium in soils that have been treated by a given technology. This paper discusses various risk assessment considerations that must be dealt with when developing cleanup limits for uranium in treated and untreated soils. Key issues addressed include alternative land use scenarios, potential exposure pathways, characterization of the bioavailability of uranium compounds in food and water, a brief overview of health risks associated with uranium and its daughter products as well as a summary of considerations for development of risk-based cleanup limits for uranium in soils.

  9. Sequestration and bioavailability of perfluoroalkyl acids (PFAAs) in soils: Implications for their underestimated risk.

    PubMed

    Zhao, Lixia; Zhu, Lingyan; Zhao, Shuyan; Ma, Xinxin

    2016-12-01

    Different from typical hydrophobic organic contaminants (HOCs), perfluoroalkyl acids (PFAAs) are more soluble in water and less partitioned to soil than the HOCs. It remains unclear whether and to what extent PFAAs could be sequestrated in soil. In this study, sequential extraction of PFAAs in soil and bioaccumulation of PFAAs in earthworm were carried out to understand the sequestration and bioavailability of PFAAs in soils with different soil organic matter (SOM) and aged for different time periods (7 and 47d). Sequestration occurred in different degrees depending on the amount and compositions of SOM in soil, structural properties of PFAAs and aging time. Surprisingly, in one peat soil with high fraction of organic carbon (foc, 59%), the PFAAs were completely sequestrated in the soil. Aging might lead to further sequestration of PFAAs in soil with relatively lower foc. As a consequence of sequestration, the bioavailability of PFAAs in peat soils was reduced 3-10 times compared to that in the plain farmland soil. However, the sequestrated PFAAs were still bioaccumulative in earthworms to some extent. The results indicated that the risk of PFAAs in field soil with high content of SOM could be underestimated if only free PFAAs using mild solvent extraction were monitored.

  10. Assessment of Potential Environmental Risks from Saline Soils Subsidence

    NASA Astrophysics Data System (ADS)

    Pobereznyi, L. Ya; Poberezhna, L. Ya; Maruschak, P. O.; Panin, S. V.

    2017-01-01

    The nature and causes of soil subsidence in the areas of liquidated mining and chemical companies of the Carpathians are analyzed. Based on calculation results, was obtained dependences of salts concentration in the liquid, and the specific content of salt through the thickness of soil over time in cases of the dispersed and film salinity.

  11. The risk implications of approaches to setting soil remediation goals at hazardous waste contaminated sites

    SciTech Connect

    Labieniec, Paula Ann

    1994-08-01

    An integrated exposure and carcinogenic risk assessment model for organic contamination in soil, SoilRisk, was developed and used for evaluating the risk implications of both site-specific and uniform-concentration approaches to setting soil remediation goals at hazardous-waste-contaminated sites. SoilRisk was applied to evaluate the uncertainty in the risk estimate due to uncertainty in site conditions at a representative site. It was also used to evaluate the variability in risk across a region of sites that can occur due to differences in site characteristics that affect contaminant transport and fate when a uniform concentration approach is used. In evaluating regional variability, Ross County, Ohio and the State of Ohio were used as examples. All analyses performed considered four contaminants (benzene, trichloroethylene (TCE), chlordane, and benzo[a]pyrene (BAP)) and four exposure scenarios (commercial, recreational and on- and offsite residential). Regardless of whether uncertainty in risk at a single site or variability in risk across sites was evaluated, the exposure scenario specified and the properties of the target contaminant had more influence than variance in site parameters on the resulting variance and magnitude of the risk estimate. In general, variance in risk was found to be greater for the relatively less degradable and more mobile of the chemicals studied (TCE and chlordane) than for benzene which is highly degradable and BAP which is very immobile in the subsurface.

  12. Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil-Brassica chinensis system.

    PubMed

    Zhang, Juan; Fan, Shukai; Du, Xiaoming; Yang, Juncheng; Wang, Wenyan; Hou, Hong

    2015-01-01

    Farmland soil and leafy vegetables accumulate more polycyclic aromatic hydrocarbons (PAHs) in suburban sites. In this study, 13 sampling areas were selected from vegetable fields in the outskirts of Xi'an, the largest city in northwestern China. The similarity of PAH composition in soil and vegetation was investigated through principal components analysis and redundancy analysis (RDA), rather than discrimination of PAH congeners from various sources. The toxic equivalent quantity of PAHs in soil ranged from 7 to 202 μg/kg d.w., with an average of 41 μg/kg d.w., which exceeded the agricultural/horticultural soil acceptance criteria for New Zealand. However, the cancer risk level posed by combined direct ingestion, dermal contact, inhalation of soil particles, and inhalation of surface soil vapor met the rigorous international criteria (1 × 10(-6)). The concentration of total PAHs was (1052 ± 73) μg/kg d.w. in vegetation (mean ± standard error). The cancer risks posed by ingestion of vegetation ranged from 2×10-5 to 2 × 10(-4) with an average of 1.66 × 10(-4), which was higher than international excess lifetime risk limits for carcinogens (1 × 10(-4)). The geochemical indices indicated that the PAHs in soil and vegetables were mainly from vehicle and crude oil combustion. Both the total PAHs in vegetation and bioconcentration factor for total PAHs (the ratio of total PAHs in vegetation to total PAHs in soil) increased with increasing pH as well as decreasing sand in soil. The total variation in distribution of PAHs in vegetation explained by those in soil reached 98% in RDA, which was statistically significant based on Monte Carlo permutation. Common pollution source and notable effects of soil contamination on vegetation would result in highly similar distribution of PAHs in soil and vegetation.

  13. Accumulation, Allocation, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil-Brassica chinensis System

    PubMed Central

    Zhang, Juan; Fan, Shukai; Du, Xiaoming; Yang, Juncheng; Wang, Wenyan; Hou, Hong

    2015-01-01

    Farmland soil and leafy vegetables accumulate more polycyclic aromatic hydrocarbons (PAHs) in suburban sites. In this study, 13 sampling areas were selected from vegetable fields in the outskirts of Xi’an, the largest city in northwestern China. The similarity of PAH composition in soil and vegetation was investigated through principal components analysis and redundancy analysis (RDA), rather than discrimination of PAH congeners from various sources. The toxic equivalent quantity of PAHs in soil ranged from 7 to 202 μg/kg d.w., with an average of 41 μg/kg d.w., which exceeded the agricultural/horticultural soil acceptance criteria for New Zealand. However, the cancer risk level posed by combined direct ingestion, dermal contact, inhalation of soil particles, and inhalation of surface soil vapor met the rigorous international criteria (1×10−6). The concentration of total PAHs was (1052±73) μg/kg d.w. in vegetation (mean±standard error). The cancer risks posed by ingestion of vegetation ranged from 2×10−5 to 2×10−4 with an average of 1.66×10−4, which was higher than international excess lifetime risk limits for carcinogens (1×10−4). The geochemical indices indicated that the PAHs in soil and vegetables were mainly from vehicle and crude oil combustion. Both the total PAHs in vegetation and bioconcentration factor for total PAHs (the ratio of total PAHs in vegetation to total PAHs in soil) increased with increasing pH as well as decreasing sand in soil. The total variation in distribution of PAHs in vegetation explained by those in soil reached 98% in RDA, which was statistically significant based on Monte Carlo permutation. Common pollution source and notable effects of soil contamination on vegetation would result in highly similar distribution of PAHs in soil and vegetation. PMID:25679782

  14. Bioconcentration factors and the risk concentrations of potentially toxic elements in garden soils.

    PubMed

    Boim, Alexys Giorgia Friol; Melo, Leônidas Carrijo Azevedo; Moreno, Fabio Netto; Alleoni, Luís Reynaldo Ferracciú

    2016-04-01

    Empirical models describe soil-plant transfers to explain the variations in the occurrence of potentially toxic elements (PTE) in soils and to estimate the Bioconcentration Factor (BCF). In this study, results were selected based on data in the literature on soils of humid tropical and temperate regions to evaluate soil-plant transfer models, to calculate the BCF and to derive risk concentrations of Cu, Cr, Pb, Ni and Zn present in the exposure pathway leading to the consumption of contaminated vegetables. The Cetesb (Environmental Agency of the State of Sao Paulo, Brazil) mathematical model was used to derive the risk posed by soil concentrations in urban and rural exposure scenarios. The results of the pseudo total contents of PTE in the soil and the contents absorbed by plants were compared and the BCFs were calculated by the use of geometric means, including a correction factor appropriate to each particular type of soil. Differences were observed between BCFs calculated for each climate region: humid tropical (HTR) and temperate (TE), which the first one presented the highest values to BCF in leaves and the lowest BCF values for root, except Ni, compared to second one. The soil concentrations with the highest risk were found in humid tropical regions as compared with those found in temperate regions, except for Ni. The obtained BCFs may contribute to any future revisions of guideline values as well as help other state environmental agencies to establish their own guideline values.

  15. Current status and associated human health risk of vanadium in soil in China.

    PubMed

    Yang, Jie; Teng, Yanguo; Wu, Jin; Chen, Haiyang; Wang, Guoqiang; Song, Liuting; Yue, Weifeng; Zuo, Rui; Zhai, Yuanzheng

    2017-03-01

    A detailed assessment of vanadium contamination characteristics in China was conducted based on the first national soil pollution survey. The map overlay analysis was used to evaluate the contamination level of vanadium and the non-carcinogenic risk assessment model was calculated to quantify the vanadium exposure risks to human health. The results showed that, due to the drastically increased mining and smelting activities, 26.49% of soils were contaminated by vanadium scattered in southwest of China. According to Canadian soil quality guidelines, about 8.6% of the national soil pollution survey samples were polluted, and pose high non-carcinogenic risks to the public, especially to children living in the vicinity of heavily polluted mining areas. We propose the area near the boundary of Yunnan, Guizhou, Guangxi, and Sichuan provinces as priority control areas due to their higher geochemical background or higher health risks posed to the public. Finally, recommendations for management are proposed, including minimization of contaminant inputs, establishing stringent monitoring program, using phytoremediation, and strengthening the enforcement of relevant laws. Therefore, this study provides a comprehensive assessment of soil vanadium contamination in China, and the results will provide valuable information for China's soil vanadium management and risk avoidance.

  16. Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils, Central India.

    PubMed

    Das, Suvendu; Jean, Jiin-Shuh; Kar, Sandeep

    2013-06-01

    Incidental soil ingestion is expected to be a significant exposure route to arsenic for children because of the potentially high arsenic contents found in certain soils. Therefore, it is prudent to get information on oral bioaccessibility of arsenic following incidental soil ingestion and its relevance in health risk assessment for future remediation strategies. Soil samples were collected from eight villages of Ambagarh Chauki block, Chhattisgarh, Central India. The soils from seven villages had total arsenic content more than the background level of 10mgkg(-1) (ranged from 16 to 417mgkg(-1)), whereas the total arsenic content of soil from Hauditola was 7mgkg(-1). Bioaccessible arsenic assessed by the simplified bioaccessibility extraction test (SBET) ranged from 5.7 to 46.3%. Arsenic bioaccessibility was significantly influenced by clay content (R(2)=0.53, p<0.05, n=8), TOC (R(2)=0.50, p<0.05, n=8), Fe content (R(2)=0.47, p<0.05, n=8) and soil pH (R(2)=0.75, p<0.01, n=8). Risk assessment of the study sites showed that hazard index of arsenic under incidental soil ingestion was below 1 in all the study sites, except Kaudikasa. However, carcinogenic risk probability for arsenic to children from the villages Meregaon, Thailitola, Joratarai and Kaudikasa was below acceptable level (<1×10(-4)), suggesting potential health risk for children from these sites could not be overlooked. With high carcinogenic risk value (3.8E-05) and HI index (>1) for arsenic in soils of Kaudikasa, attention should be paid for development of remediation measure.

  17. Pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils.

    PubMed

    Liu, Yihua; Li, Shiliang; Ni, Zhanglin; Qu, Minghua; Zhong, Donglian; Ye, Caifen; Tang, Fubin

    2016-01-15

    Extreme and uncontrolled usage of pesticides produces a number of problems for vegetation and human health. In this study, the existence of organophosphates (OPs), organochlorines (OCs), pyrethroids (PYs) and fungicides (FUs) were investigated in persimmons/jujubes and their planted soils, which were collected from China. One OP (dimethoate), three OCs (DDT, quintozene and aldrin), six PYs (bifenthrin, fenpropathrin, cyhalothrin, cypermethrin, fenvalerate and deltamethrin) and two FUs (triadimefon and buprofezin) were found in 36.4% of persimmons and 70.8% of jujubes, with concentrations from 1.0 μg/kg to 2945.0 μg/kg. The most frequently detected pesticides in the two fruits were fenpropathrin in persimmons and cypermethrin in jujubes, with the detection frequencies of 30.0% and 22.7%, respectively. The residues of 4.5% (persimmon) and 25.0% (jujube) of samples were higher than the maximum residue limits (MRLs) of China. Compared with the fruits, more types of pesticides and higher residues were observed in their planted soils. The most frequently detected pesticides were HCH in persimmon soil and DDT in jujube soil, with the detection frequencies of 10.9% and 12.7%, respectively. For the tested samples, 39.1% of fruit samples and 63.0% of soil samples with multiple residues (containing more than two pesticides) were noted, even up to 8 residues in fruits and 14 residues in soils. Except for cyhalothrin, the other short-term risks for the tested pesticides in the fruits were below 10%, and the highest long-term risk was 14.13% for aldrin and dieldrin. There was no significant health risk for consumers via consumption of the two fruits.

  18. [Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park].

    PubMed

    Li, Jiong-Hui; Weng, Shan; Fang, Jing; Huang, Jia-Lei; Lu, Fang-Hua; Lu, Yu-Hao; Zhang, Hong-Ming

    2014-04-01

    The pollution status and potential ecological risks of heavy metal in soils around Haining electroplating industrial park were studied. Hakanson index approach was used to assess the ecological hazards of heavy metals in soils. Results showed that average concentrations of six heavy metals (Cu, Ni, Pb, Zn, Cd and Cr) in the soils were lower than the secondary criteria of environmental quality standard for soils, indicating limited harmful effects on the plants and the environment in general. Though the average soil concentrations were low, heavy metal concentrations in six sampling points located at the side of road still exceeded the criteria, with excessive rate of 13%. Statistic analysis showed that concentrations of Cu and Cd in roadside soils were significantly higher than those in non-roadside soils, indicating that the excessive heavy metal accumulations in the soil closely related with traffic transport. The average potential ecological hazard index of soils around Haining electroplating industrial park was 46.6, suggesting a slightly ecological harm. However, the potential ecological hazard index of soils with excessive heavy metals was 220-278, suggesting the medium ecological hazards. Cd was the most seriously ecological hazard factor.

  19. [Health risk assessment of soil heavy metals in residential communities built on brownfields].

    PubMed

    Chen, Xing; Ma, Jian-Hua; Li, Xin-Ning; Liu, De-Xin; Li, Yi-Meng

    2014-03-01

    Nine residential communities which were built on different brownfields in a city of Henan Province were chosen to investigate the health risks of heavy metals (As, Hg, Cd, and Pb) in surface soils. Concentrations of soil heavy metals were measured according to the methods described in the national standard. Based on the health risk models recommended by the U. S. Environmental Protection Agency (US EPA), non-carcinogenic and carcinogenic health risks of soil heavy metals were assessed. The results showed that compared with the original brownfields, the heavy metal concentrations in soils and their health risks in residential communities built on brownfields were significantly improved, and the concentrations and health risks of soil heavy metals in these communities were all higher than those in non-brownfield residential communities. The HQ and HI values of soil heavy metals in all the residential communities were lower than 1, which indicated that there was no non-carcinogenic risk in these communities. Meanwhile, the values of CR and TCR were slightly higher than the standard suggested by the US EPA, indicating that slight carcinogenic risks in the communities, but these values were lower than the lenient standard proposed by some experts. The HI value of the four metals for children was exactly seven times higher than that for adults. The contribution rate of HQ(As) to HI was about 75%, CR(AS) to TCR was about 80%, and therefore arsenic was the crucial factor for carcinogenic and non-carcinogenic risk in the residential communities of the city.

  20. Risk assessment of urban soils contamination: The particular case of polycyclic aromatic hydrocarbons.

    PubMed

    Cachada, A; da Silva, E Ferreira; Duarte, A C; Pereira, R

    2016-05-01

    The assessment of soil quality and characterization of potential risks to the environment and human health can be a very difficult task due to the heterogeneity and complexity of the matrix, the poor understanding about the fate of contaminants in the soil matrix, scarcity of toxicological/ecotoxicological data and variability of guidelines. In urban soils these difficulties are enhanced by the patchy nature of urban areas and the presence of complex mixtures of organic and inorganic contaminants resulting from diffuse pollution caused by urban activities (e.g. traffic, industrial activity, and burning of carbon sources for heating). Yet, several tools are available which may help to assess the risks of soil contamination in a simpler, cost effective and reliable way. Within these tools, a tiered risk assessment (RA) approach, first based on a chemical screening in combination with geostatistical tools, may be very useful in urban areas. However, there is still much to improve and a long way to go in order to obtain a reliable RA, especially in the case of hydrophobic organic compounds such as polycyclic aromatic hydrocarbons (PAHs). This paper aims at proposing a RA framework to assess the environmental and human health risks of PAHs present in urban soils, based on existing models. In addition, a review on ecotoxicological, toxicological, and exposure assessment data was made, as well as of the existing soil quality guidelines for PAHs that can be used in the RA process.

  1. [Soil salinity in greenland irrigated with reclaimed water and risk assessment].

    PubMed

    Pan, Neng; Chen, Wei-Ping; Jiao, Wen-Tao; Zhao, Zhong-Ming; Hou, Zhen-An

    2012-12-01

    Compared to drinking water or groundwater, reclaimed water contains more salts. Therefore, the effects of application of reclaimed water on the soil salinity have received great attentions. To evaluate the potential risks posed by long-term reclaimed water irrigation, we collected surface soil samples from urban green lands and suburban farmlands of Beijing represented different irrigation durations. The electrical conductivity (EC) and sodium adsorption ratio (SAR) in soils were measured subsequently. Both EC1:5 and SAR1.5 from the green land and farmland soils irrigated with reclaimed water were significantly higher than those of control treatments (drinking water or groundwater irrigation). The EC1:5 values increased by 12.4% and 84.2% than control treatments in the greenland and farmland, respectively. The SAR1:5 values increased by 64.5% and 145.8% than control treatments, respectively. No significant differences of both EC1:5 and SAR1:5 were found between of 0-10 cm and 10-20 cm soil layer. A slight decrease of soil porosity was observed. The field investigation suggested there was a high potential of soil salinization under long-term reclaimed water irrigation. Proper management practices should be implemented to minimize the soil salinity accumulation risk when using reclaimed water for irrigation in Beijing.

  2. Ecological risk assessment: influence of texture on background concentration of microelements in soils of Russia.

    NASA Astrophysics Data System (ADS)

    Beketskaya, Olga

    2010-05-01

    In Russia quality standards of contaminated substances values in environment consist of ecological and sanitary rate-setting. The sanitary risk assessment base on potential risk that contaminants pose to protect human beings. The main purpose of the ecological risk assessment is to protect ecosystem. To determine negative influence on living organisms in the sanitary risk assessment in Russia we use MPC. This value of contaminants show how substances affected on different part of environment, biological activity and soil processes. The ecological risk assessment based on comparison compounds concentration with background concentration for definite territories. Taking into account high interval of microelements value in soils, we suggest using statistic method for determination of concentration levels of chemical elements concentration in soils of Russia. This method is based on determination middle levels of elements content in natural condition. The top limit of middle chemical elements concentration in soils is value, which exceed middle regional background level in three times standard deviation. The top limit of natural concentration excess we can explain as anthropogenic impact. At first we study changing in the middle content value of microelements in soils of geographic regions in European part of Russia on the basis of cartographical analysis. Cartographical analysis showed that the soil of mountainous and mountain surrounding regions is enriched with microelements. On the plain territory of European part of Russia for most of microelements was noticed general direction of increasing their concentration in soils from north to south, also in the same direction soil clay content rise for majority of soils. For all other territories a clear connection has been noticed between the distribution of sand sediment. By our own investigation and data from scientific literature data base was created. This data base consist of following soil properties: texture

  3. Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms.

    PubMed

    Lu, Yan-Fei; Lu, Mang; Peng, Fang; Wan, Yun; Liao, Min-Hong

    2014-07-01

    In this work, a laboratory experiment was performed to investigate the influences of inoculation with the arbuscular mycorrhizal fungus (AMF) Glomus caledoniun L. and/or epigeic earthworms (Eisenia foetida) on phytoremediation of a PCB-contaminated soil by ryegrass grown for 180d. Planting ryegrass, ryegrass inoculated with earthworms, ryegrass inoculated with AMF, and ryegrass co-inoculated with AMF and earthworms decreased significantly initial soil PCB contents by 58.4%, 62.6%, 74.3%, and 79.5%, respectively. Inoculation with AMF and/or earthworms increased the yield of plants, and the accumulation of PCBs in ryegrass. However, PCB uptake by ryegrass accounted for a negligible portion of soil PCB removal. The number of soil PCB-degrading populations increased when ryegrass was inoculated with AMF and/or earthworms. The data show that fungal inoculation may significantly increase the remedial potential of ryegrass for soil contaminated with PCBs.

  4. Mapping regional soil water erosion risk in the Brittany-Loire basin for water management agency

    NASA Astrophysics Data System (ADS)

    Degan, Francesca; Cerdan, Olivier; Salvador-Blanes, Sébastien; Gautier, Jean-Noël

    2014-05-01

    Soil water erosion is one of the main degradation processes that affect soils through the removal of soil particles from the surface. The impacts for environment and agricultural areas are diverse, such as water pollution, crop yield depression, organic matter loss and reduction in water storage capacity. There is therefore a strong need to produce maps at the regional scale to help environmental policy makers and soil and water management bodies to mitigate the effect of water and soil pollution. Our approach aims to model and map soil erosion risk at regional scale (155 000 km²) and high spatial resolution (50 m) in the Brittany - Loire basin. The factors responsible for soil erosion are different according to the spatial and time scales considered. The regional scale entails challenges about homogeneous data sets availability, spatial resolution of results, various erosion processes and agricultural practices. We chose to improve the MESALES model (Le Bissonnais et al., 2002) to map soil erosion risk, because it was developed specifically for water erosion in agricultural fields in temperate areas. The MESALES model consists in a decision tree which gives for each combination of factors the corresponding class of soil erosion risk. Four factors that determine soil erosion risk are considered: soils, land cover, climate and topography. The first main improvement of the model consists in using newly available datasets that are more accurate than the initial ones. The datasets used cover all the study area homogeneously. Soil dataset has a 1/1 000 000 scale and attributes such as texture, soil type, rock fragment and parent material are used. The climate dataset has a spatial resolution of 8 km and a temporal resolution of mm/day for 12 years. Elevation dataset has a spatial resolution of 50 m. Three different land cover datasets are used where the finest spatial resolution is 50 m over three years. Using these datasets, four erosion factors are characterized and

  5. Risk of classic Kaposi sarcoma with residential exposure to volcanic and related soils in Sicily

    PubMed Central

    Pelser, Colleen; Dazzi, Carmelo; Graubard, Barry I.; Lauria, Carmela; Vitale, Francesco; Goedert, James J.

    2009-01-01

    Purpose Before AIDS, endemic (African) Kaposi sarcoma (KS) was noted to occur in volcanic areas and was postulated to result from dirt chronically embedded in the skin of the lower extremities. The primary cause of all KS types is KS-associated herpesvirus (KSHV) infection, but co-factors contribute to the neoplasia. We investigated whether residential exposure volcanic or related soils was associated with the risk of classic Kaposi sarcoma (cKS) in Sicily. Methods Risk of incident cKS (n=141) compared to population-based KSHV seropositive controls (n=123) was estimated for residential exposure to four types of soil, categorized with maps from the European Soil Database and direct surveying. Questionnaire data provided covariates. Results Residents in communities high in luvisols were approximately 2.7-times more likely to have cKS than those in communities with no luvisols. Risk was not specific for cKS on the limbs, but it was elevated approximately 4–5-fold with frequent bathing or tap water drinking in high luvisols communities. Risk was unrelated to communities high in andosols, tephra, or clay soils. Conclusions Iron and alumino-silicate clay, major components of luvisols, may increase cKS risk, but formal investigation and consideration of other soil types and exposures are needed. PMID:19576540

  6. Health risk estimates for groundwater and soil contamination in the Slovak Republic: a convenient tool for identification and mapping of risk areas.

    PubMed

    Fajčíková, K; Cvečková, V; Stewart, A; Rapant, S

    2014-10-01

    We undertook a quantitative estimation of health risks to residents living in the Slovak Republic and exposed to contaminated groundwater (ingestion by adult population) and/or soils (ingestion by adult and child population). Potential risk areas were mapped to give a visual presentation at basic administrative units of the country (municipalities, districts, regions) for easy discussion with policy and decision-makers. The health risk estimates were calculated by US EPA methods, applying threshold values for chronic risk and non-threshold values for cancer risk. The potential health risk was evaluated for As, Ba, Cd, Cu, F, Hg, Mn, NO3 (-), Pb, Sb, Se and Zn for groundwater and As, B, Ba, Be, Cd, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se and Zn for soils. An increased health risk was identified mainly in historical mining areas highly contaminated by geogenic-anthropogenic sources (ore deposit occurrence, mining, metallurgy). Arsenic and antimony were the most significant elements in relation to health risks from groundwater and soil contamination in the Slovak Republic contributing a significant part of total chronic risk levels. Health risk estimation for soil contamination has highlighted the significance of exposure through soil ingestion in children. Increased cancer risks from groundwater and soil contamination by arsenic were noted in several municipalities and districts throughout the country in areas with significantly high arsenic levels in the environment. This approach to health risk estimations and visualization represents a fast, clear and convenient tool for delineation of risk areas at national and local levels.

  7. Solubility and Leaching Risks of Organic Carbon in Paddy Soils as Affected by Irrigation Managements

    PubMed Central

    Yang, Shihong; Wei, Qi; Gao, Xiaoli

    2013-01-01

    Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha−1, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants. PMID:23935423

  8. Solubility and leaching risks of organic carbon in paddy soils as affected by irrigation managements.

    PubMed

    Xu, Junzeng; Yang, Shihong; Peng, Shizhang; Wei, Qi; Gao, Xiaoli

    2013-01-01

    Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha⁻¹, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants.

  9. Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks.

    PubMed

    Sun, J T; Pan, L L; Zhan, Yu; Tsang, Daniel C W; Zhu, L Z; Li, X D

    2017-04-01

    Atrazine is one of the most widely applied and persistent herbicides in the world. In view of limited information on the regional contamination of atrazine in soils in China, this study investigated the spatial distribution and environmental impacts of atrazine in agricultural soils collected from the Yangtze River Delta (YRD) as an illustrative analysis of rapidly developing regions in the country. The results showed that the concentrations of atrazine in the YRD agricultural soils ranged from <1.0 to 113 ng/g dry weight, with a mean of 5.7 ng/g, and a detection rate of 57.7 % in soils. Pesticide factory might be a major source for the elevated levels of atrazine in Zhejiang Province. The contamination of atrazine was closely associated with land use types. The concentrations and detection rates of atrazine were higher in corn fields and mulberry fields than in rice paddy fields. There was no significant difference in compositions of soil microbial phospholipids fatty acids among the areas with different atrazine levels. Positive relationship (R = 0.417, p < 0.05, n = 30) was observed between atrazine and total microbial biomass. However, other factors, such as soil type and land management practice, might have stronger influences on soil microbial communities. Human health risks via exposure to atrazine in soils were estimated according to the methods recommended by the US EPA. Atrazine by itself in all the soil samples imposed very low carcinogenic risks (<10(-6)) and minimal non-cancer risks (hazard index <1) to adults and children.

  10. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan.

    PubMed

    Khan, Kifayatullah; Lu, Yonglong; Khan, Hizbullah; Ishtiaq, Muhammad; Khan, Sardar; Waqas, Muhammad; Wei, Luo; Wang, Tieyu

    2013-08-01

    This study assessed the concentrations of heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni) and zinc (Zn) in agricultural soils and crops (fruits, grains and vegetable) and their possible human health risk in Swat District, northern Pakistan. Cd concentration was found higher than the limit (0.05 mg/kg) set by world health organization in 95% fruit and 100% vegetable samples. Moreover, the concentrations of Cr, Cu, Mn, Ni and Zn in the soils were shown significant correlations with those in the crops. The metal transfer factor (MTF) was found highest for Cd followed by Cr>Ni>Zn>Cu>Mn, while the health risk assessment revealed that there was no health risk for most of the heavy metals except Cd, which showed a high level of health risk index (HRI⩾10E-1) that would pose a potential health risk to the consumers.

  11. Contamination features and health risk of soil heavy metals in China.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wang, Jinsheng

    2015-04-15

    China faces a big challenge of environmental deterioration amid its rapid economic development. To comprehensively identify the contamination characteristics of heavy metals in Chinese soils on a national scale, data set of the first national soil pollution survey was employed to evaluate the pollution levels using several pollution indicators (pollution index, geoaccumulation index and enrichment factor) and to quantify their exposure risks posed to human health with the risk assessment model recommended by the US Environmental Protection Agency. The results showed that, due to the drastically increased industrial operations and fast urban expansion, Chinese soils were contaminated by heavy metals in varying degrees. As a whole, the exposure risk levels of soil metals in China were tolerable or close to acceptable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Cadmium and mercury have been identified as the priority control metals due to their higher concentrations in soils or higher health risks posed to the public, as well as, arsenic, lead, chromium and nickel. Spatial distribution pattern analysis implied that the soil metal pollutions in southern provinces of China were relatively higher than that in other provinces, which would be related to the higher geochemical background in southwest regions and the increasing human activities in southeast areas. Meanwhile, it should be noticed that Beijing, the capital of China, also has been labeled as the priority control province for its higher mercury concentration. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention and control in China.

  12. Soil risk assessment of As and Zn contamination in a coal mining region using geostatistics [corrected].

    PubMed

    Komnitsas, Kostas; Modis, Kostas

    2006-12-01

    The present paper aims to map As and Zn contamination and assess the risk for agricultural soils in a wider disposal site containing wastes derived from coal beneficiation. Geochemical data related to environmental studies show that the waste characteristics favor solubilisation and mobilization of inorganic contaminants and in some cases the generation of acidic leachates. 135 soil samples were collected from a 34 km(2) area and analysed by using geostatistics under the maximum entropy principle in order to produce risk assessment maps and estimate the probability of soil contamination. In addition, the present paper discusses the main issues related to risk assessment in wider mining and waste disposal sites in order to assist decision makers in selecting feasible rehabilitation schemes.

  13. Mapping of monthly soil erosion risk of mainland Mauritius and its aggregation with delineated basins

    NASA Astrophysics Data System (ADS)

    Nigel, Rody; Rughooputh, Soonil

    2010-01-01

    This paper reports the mapping of monthly soil erosion risk on Mauritius which was carried out using GIS, decision rules and readily available data namely, monthly rainfall depth, soil types, slope and land cover. Slope and soil were first combined to produce soil erosion susceptibility followed by land cover to produce erosion sensitivity, and then rainfall to produce erosion risk. The high erosion areas of the Island have been extracted from the soil erosion risk maps, whereby these areas can face land degradation problems and can be responsible for sediment discharge into wetlands located at the outlet of drainage basins. As such, drainage basins have been delineated using automatic catchment delineation tools and their percentage of high erosion areas computed. Basins with the greatest percentage of high erosion areas and particularly those that directly have a wetland at the outlet can be given priority for soil and water conservation efforts. The mapping reported in this paper can be adapted to other countries which need an erosion assessment for the identification of high erosion areas and priority action areas.

  14. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil.

    PubMed

    Zhang, Juan; Wang, Li-Hong; Yang, Jun-Cheng; Liu, Hui; Dai, Jiu-Lan

    2015-03-01

    The toxicities and effects of various metals and metalloids would be misunderstood by health risks based on their concentrations, when their effects on bacterial and ecological functions in soil are disregarded. This study investigated the concentrations and health risks of heavy metals, soil properties, and bacterial 16S rRNA gene in soil around the largest fresh water lake in North China. The health risks posed by Mn and As were higher than those of other heavy metals and metalloids. Mn, As, and C were significantly correlated with the bacterial species richness indices. According to canonical correspondence analysis, species richness was mainly affected by Mn, Pb, As, and organic matter, while species evenness was mainly affected by Mn, pH, N, C, Cd, and Pb. Covariable analysis confirmed that most effects of metals on bacterial diversity were attributed to the combined effects of metals and soil properties rather than single metals. Most bacteria detected in (almost) all soil were identified as Gammaproteobacteria. Specific bacteria belonging to Proteobacteria (Gamma, Alpha, Epsilon, and Beta), Firmicutes, Actinobacteria, Cyanobacterium, Nitrospirae, and Fusobacterium were only identified in soil with high concentrations of Mn, Pb, and As, indicating their remediation potency. Bacterial abilities and mechanisms in pollutant resistance and element cycling in the region were also discussed.

  15. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    NASA Astrophysics Data System (ADS)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  16. Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils.

    PubMed

    Centofanti, Tiziana; McConnell, Laura L; Chaney, Rufus L; Beyer, W Nelson; Andrade, Natasha A; Hapeman, Cathleen J; Torrents, Alba; Nguyen, Anh; Anderson, Marya O; Novak, Jeffrey M; Jackson, Dana

    2016-03-01

    Performance of compost and biochar amendments for in situ risk mitigation of aged DDT, DDE and dieldrin residues in an old orchard soil was examined. The change in bioavailability of pesticide residues to Lumbricus terrestris L. relative to the unamended control soil was assessed using 4-L soil microcosms with and without plant cover in a 48-day experiment. The use of aged dairy manure compost and biosolids compost was found to be effective, especially in the planted treatments, at lowering the bioavailability factor (BAF) by 18-39%; however, BAF results for DDT in the unplanted soil treatments were unaffected or increased. The pine chip biochar utilized in this experiment was ineffective at lower the BAF of pesticides in the soil. The US EPA Soil Screening Level approach was used with our measured values. Addition of 10% of the aged dairy manure compost reduced the average hazard quotient values to below 1.0 for DDT + DDE and dieldrin. Results indicate this sustainable approach is appropriate to minimize risks to wildlife in areas of marginal organochlorine pesticide contamination. Application of this remediation approach has potential for use internationally in areas where historical pesticide contamination of soils remains a threat to wildlife populations.

  17. Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy.

    PubMed

    Cinelli, G; Tositti, L; Capaccioni, B; Brattich, E; Mostacci, D

    2015-04-01

    Vulsini Volcanic district in Northern Latium (Central Italy) is characterized by high natural radiation background resulting from the high concentrations of uranium, thorium and potassium in the volcanic products. In order to estimate the radon radiation risk, a series of soil gas radon measurements were carried out in Bolsena, the principal urban settlement in this area NE of Rome. Soil gas radon concentration ranges between 7 and 176 kBq/m(3) indicating a large degree of variability in the NORM content and behavior of the parent soil material related in particular to the occurrence of two different lithologies. Soil gas radon mapping confirmed the existence of two different areas: one along the shoreline of the Bolsena lake, characterized by low soil radon level, due to a prevailing alluvial lithology; another close to the Bolsena village with high soil radon level due to the presence of the high radioactive volcanic rocks of the Vulsini volcanic district. Radon risk assessment, based on soil gas radon and permeability data, results in a map where the alluvial area is characterized by a probability to be an area with high Radon Index lower than 20 %, while probabilities higher than 30 % and also above 50 % are found close to the Bolsena village.

  18. Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils

    USGS Publications Warehouse

    Centofantia, Tiziana; McConnell, Laura L.; Chaney, Rufus L.; Beyer, W. Nelson; Andradea, Natasha A.; Hapeman, Cathleen J.; Torrents, Alba; Nguyen, Anh; Anderson, Marya O.; Novak, J. M.; Jackson, Dana

    2015-01-01

    Performance of compost and biochar amendments for in situ risk mitigation of aged DDT, DDE and dieldrin residues in an old orchard soil was examined. The change in bioavailability of pesticide residues to Lumbricus terrestris L. relative to the unamended control soil was assessed using 4-L soil microcosms with and without plant cover in a 48-day experiment. The use of aged dairy manure compost and biosolids compost was found to be effective, especially in the planted treatments, at lowering the bioavailability factor (BAF) by 18–39%; however, BAF results for DDT in the unplanted soil treatments were unaffected or increased. The pine chip biochar utilized in this experiment was ineffective at lower the BAF of pesticides in the soil. The US EPA Soil Screening Level approach was used with our measured values. Addition of 10% of the aged dairy manure compost reduced the average hazard quotient values to below 1.0 for DDT + DDE and dieldrin. Results indicate this sustainable approach is appropriate to minimize risks to wildlife in areas of marginal organochlorine pesticide contamination. Application of this remediation approach has potential for use internationally in areas where historical pesticide contamination of soils remains a threat to wildlife populations.

  19. Effects of pollution sources and soil properties on distribution of polycyclic aromatic hydrocarbons and risk assessment.

    PubMed

    Zhang, Juan; Yang, Jun-cheng; Wang, Ren-qing; Hou, Hong; Du, Xiao-ming; Fan, Shu-kai; Liu, Jiang-sheng; Dai, Jiu-lan

    2013-10-01

    In this study, the concentrations of polycyclic aromatic hydrocarbons (PAHs) in soil profiles and the soil properties were analyzed in Hunpu, a typical wastewater irrigation area, northeast of China. The total concentrations of 16 priority control PAHs ranged from 7.88 to 2,231.42 μg/kg. Among 16 PAHs, the most abundant was Phenanthrene and the 3- or 4- ring PAHs were predominant. The PAH concentrations were higher in the upland fields near the oil wells, whereas leaching of PAH into the groundwater caused low concentrations in the paddy fields. The geochemical indices and the results from the principal component analysis of all 16 PAHs indicated that PAHs were mainly from atmospheric dusts in the top soil in I-1P/I-3P/I-7P and through soil profiles in I-4U/I-5P/I-8U, whereas those in the bottom layers were mainly from petroleum production and wastewater irrigation in I-1P/I-3P/I-7P and through soil profiles in I-2U and I-6U. In the redundancy analysis, PAHs exhibited negative correlation with pH, depth, silt, and clay, but had positive correlation with sand and organic matter. Finally, total toxic equivalent in the soil profiles and the calculated health risk of PAHs in the surface soil using contaminated land exposure assessment model elucidated the cancer risk that PAHs pose on human health in the Hunpu region.

  20. The Integrated Soil Erosion Risk Management Model of Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, M. A.; Stoetter, J.; Sartohadi, J.; Christanto, N.

    2009-04-01

    Many types of soil erosion modeling have been developed worldwide; each of models has its own advantage and assumption based on the originated area. Ironically, in the tropical countries where the rainfall intensity is higher than other area, the soil erosion problem gain less attention. As in Indonesia, due the inadequate supporting data and method to dealing with, the soil erosion management appears to be least prior in the policy decision. Hence, there is increasing necessity towards the initiation and integration of risk management model in the soil erosion, to prevent further land degradation problem in Indonesia. The main research objective is to generate a model which can analyze the dynamic system of soil erosion problem. This model will comprehensively consider four main aspects within the dynamic system analysis, i.e.: soil erosion rate modeling, the tolerable soil erosion rate, total soil erosion cost, and soil erosion management measures. The generating model will involve some sub-software i.e. the PC Raster to maintain the soil erosion modeling, Powersim Constructor Ver. 2.5 as the tool to analyze the dynamic system and Python Ver. 2.6.1 to build the main Graphical User Interface model. The first step addressed in this research is figuring the most appropriate soil erosion model to be applied in Indonesia based on landscape, climate, and data availability condition. This appropriate model must have the simplicity aspect in input data but still deal with the process based analysis. By using the soil erosion model result, the total soil erosion cost will be calculated both on-site and off-site effect. The total soil erosion cost will be stated in Rupiah (Indonesian currency) and Dollar. That total result is then used as one of input parameters for the tolerable soil erosion rate. Subsequently, the tolerable soil erosion rate decides whether the soil erosion rate has exceeded the allowed value or not. If the soil erosion rate has bigger value than the

  1. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation

    NASA Astrophysics Data System (ADS)

    Park, Soyoung; Oh, Cheyoung; Jeon, Seongwoo; Jung, Huicheul; Choi, Chuluong

    2011-03-01

    SummarySoil erosion reduces crop productivity and water storage capacity, and, both directly and indirectly, causes water pollution. Loss of soil has become a problem worldwide, and as concerns about the environment grow, active research has begun regarding soil erosion and soil-preservation policies. This study analyzed the amount of soil loss in South Korea over a recent 20-year period and estimated future soil loss in 2020 using the revised universal soil loss equation (RUSLE). Digital elevation (DEM) data, detailed soil maps, and land cover maps were used as primary data, and geographic information system (GIS) and remote sensing (RS) techniques were applied to produce thematic maps, based on RUSLE factors. Using the frequency ratio (FR), analytic hierarchy process (AHP), and logistic regression (LR) approaches, land suitability index (LSI) maps were developed for 2020, considering the already established Environmental Conservation Value Assessment Map (ECVAM) for Korea. Assuming a similar urban growth trend and 10-, 50-, and 100-year rainfall frequencies, soil loss in 2020 was predicted by analyzing changes in the cover-management factor and rainfall-runoff erosivity factor. In the period 1985-2005, soil loss showed an increasing trend, from 17.1 Mg/ha in 1985 to 17.4 Mg/ha in 1995, and to 20.0 Mg/ha in 2005; the 2005 value represents a 2.8 Mg/ha (16.6%) increase, compared with 1985 and is attributable to the increased area of grassland and bare land. In 2020, the estimated soil loss, considering the ECVAM, was 19.2-19.3 Mg/ha for the 10-year rainfall frequency, 36.4-36.6 Mg/ha for the 50-year rainfall frequency, and 45.7-46.0 Mg/ha for the 100-year rainfall frequency. Without considering the ECVAM, the amount of soil loss was about 0.4-1.6 Mg/ha larger than estimates that did consider the ECVAM; specifically, the values were 19.6-19.9 Mg/ha for the 10-year rainfall frequency, 37.1-37.8 Mg/ha for the 50-year frequency, and 46.7-47.5 Mg/ha for the 100-year

  2. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil.

    PubMed

    Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas

    2013-10-01

    The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites

  3. Atmospheric deposition of mercury in Atlantic Forest and ecological risk to soil fauna

    NASA Astrophysics Data System (ADS)

    Cristhy Buch, Andressa; Cabral Teixeira, Daniel; Fernandes Correia, Maria Elizabeth; Vieira Silva-Filho, Emmanoel

    2014-05-01

    The increasing levels of mercury (Hg) found in the atmosphere nowadays has a great contribution from anthropogenic sources and has been a great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. Certainly, the petroleum refineries have significant contribution, seen that 100 million m3 of crude oil are annually processed. These refineries contribute with low generation of solid waste; however, a large fraction of Hg can be emitted to the atmosphere. There are sixteen refineries in Brazil, three of them located in the state of Rio de Janeiro. The Hg is a toxic and hazardous trace element, naturally found in the earth crust. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of great importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transfer to the soil through litterfall, which play an important role as Hg sink. The Atlantic Forest of Brazil is the greater contributor of fauna and flora biodiversity in the world and, according to recent studies, this biome has the highest concentrations of mercury in litter in the world, as well as in China, at Subtropical Forest. Ecotoxicological assessments can predict the potential ecological risk of Hg toxicity in the soil can lead to impact the soil fauna and indirectly other trophic levels of the food chain within one or more ecosystems. This study aims to determine mercury levels that represent risks to diversity and functioning of soil fauna in tropical forest soils. The study is conducted in two forest areas inserted into conservation units of Rio de Janeiro state. One area is located next to an important petroleum refinery in activity since fifty-two years ago, whereas the other one is located next to other refinery under construction (beginning activities in 2015), which will

  4. Identification of soil erosion risk areas for conservation planning in different states of India.

    PubMed

    Sharda, V N; Mandal, Debashis; Ojasvi, P R

    2013-03-01

    Assessment of soil erosion risks, especially in the developing countries, is a challenging task mainly due to non-availability or insufficiency of relevant data. In this paper, the soil erosion risks have been estimated by integrating the spatial data on potential erosion rates and soil loss tolerance limits for conservation planning at state level in India. The erosion risk classes have been prioritized based upon the difference between the prevailing erosion rates and the permissible erosion limits. The analysis revealed that about 50% of total geographical area (TGA) of India, falling in five priority erosion risk classes, requires different intensity of conservation measures though about 91% area suffers from potential erosion rates varying from < 5 to > 40 t ha(-1) yr(-1). Statewise analysis indicated that Andhra Pradesh, Maharashtra and Rajasthan share about 75% of total area under priority Class 1 (6.4 M ha) though they account for only 19.4% of the total area (36.2 M ha) under very severe potential erosion rate category (> 40 t ha(-1)yr(-1)). It was observed that about 75% of total geographical area (TGA) in the states of Bihar, Gujarat, Haryana, Kerala and Punjab does not require any specific soil conservation measure as the potential erosion rates are well within the tolerance limits. The developed methodology can be successfully employed for prioritization of erosion risk areas at watershed, region or country level.

  5. Ecological and human health risks associated with abandoned gold mine tailings contaminated soil

    PubMed Central

    Ngole-Jeme, Veronica Mpode; Fantke, Peter

    2017-01-01

    Gold mining is a major source of metal and metalloid emissions into the environment. Studies were carried out in Krugersdorp, South Africa, to evaluate the ecological and human health risks associated with exposure to metals and metalloids in mine tailings contaminated soils. Concentrations of arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) in soil samples from the area varied with the highest contamination factors (expressed as ratio of metal or metalloid concentration in the tailings contaminated soil to that of the control site) observed for As (3.5x102), Co (2.8x102) and Ni (1.1x102). Potential ecological risk index values for metals and metalloids determined from soil metal and metalloid concentrations and their respective risk factors were correspondingly highest for As (3.5x103) and Co (1.4x103), whereas Mn (0.6) presented the lowest ecological risk. Human health risk was assessed using Hazard Quotient (HQ), Chronic Hazard Index (CHI) and carcinogenic risk levels, where values of HQ > 1, CHI > 1 and carcinogenic risk values > 1×10−4 represent elevated risks. Values for HQ indicated high exposure-related risk for As (53.7), Cr (14.8), Ni (2.2), Zn (2.64) and Mn (1.67). Children were more at risk from heavy metal and metalloid exposure than adults. Cancer-related risks associated with metal and metalloid exposure among children were also higher than in adults with cancer risk values of 3×10−2 and 4×10−2 for As and Ni respectively among children, and 5×10−3 and 4×10−3 for As and Ni respectively among adults. There is significant potential ecological and human health risk associated with metal and metalloid exposure from contaminated soils around gold mine tailings dumps. This could be a potential contributing factor to a setback in the health of residents in informal settlements dominating this mining area as the immune systems of some of these residents are already

  6. Ecological and human health risks associated with abandoned gold mine tailings contaminated soil.

    PubMed

    Ngole-Jeme, Veronica Mpode; Fantke, Peter

    2017-01-01

    Gold mining is a major source of metal and metalloid emissions into the environment. Studies were carried out in Krugersdorp, South Africa, to evaluate the ecological and human health risks associated with exposure to metals and metalloids in mine tailings contaminated soils. Concentrations of arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) in soil samples from the area varied with the highest contamination factors (expressed as ratio of metal or metalloid concentration in the tailings contaminated soil to that of the control site) observed for As (3.5x102), Co (2.8x102) and Ni (1.1x102). Potential ecological risk index values for metals and metalloids determined from soil metal and metalloid concentrations and their respective risk factors were correspondingly highest for As (3.5x103) and Co (1.4x103), whereas Mn (0.6) presented the lowest ecological risk. Human health risk was assessed using Hazard Quotient (HQ), Chronic Hazard Index (CHI) and carcinogenic risk levels, where values of HQ > 1, CHI > 1 and carcinogenic risk values > 1×10-4 represent elevated risks. Values for HQ indicated high exposure-related risk for As (53.7), Cr (14.8), Ni (2.2), Zn (2.64) and Mn (1.67). Children were more at risk from heavy metal and metalloid exposure than adults. Cancer-related risks associated with metal and metalloid exposure among children were also higher than in adults with cancer risk values of 3×10-2 and 4×10-2 for As and Ni respectively among children, and 5×10-3 and 4×10-3 for As and Ni respectively among adults. There is significant potential ecological and human health risk associated with metal and metalloid exposure from contaminated soils around gold mine tailings dumps. This could be a potential contributing factor to a setback in the health of residents in informal settlements dominating this mining area as the immune systems of some of these residents are already compromised by

  7. GEMAS: Use of monitoring data for risk assessment of metals in soil.

    NASA Astrophysics Data System (ADS)

    Oorts, Koen; Schoeters, Ilse

    2014-05-01

    For a number of years, Europe has legislation in place (e.g. the REACH regulation) to ensure chemicals are produced and used safely in Europe. Accurate risk assessments of metals in the soil compartment at regional scale were, however, difficult due to the absence of a robust harmonised monitoring database. The background concentration of metals in soils typically varies orders of magnitude at a national or continental scale. Similarly, soil properties affecting the fate, behaviour and bioavailability of metals in the terrestrial environment, e.g., pH, clay content, organic matter content, effective cation exchange capacity, vary strongly among soil types. High (bioavailable) metal concentrations may result in toxic effects to terrestrial organisms, while low concentrations of essential elements may entail a risk for deficiency and suboptimal ecosystem functioning. A sound risk assessment on toxicity or deficiency of elements in soil takes into account this spatial variation. Data availability for all these properties, however, differs largely across countries or regions, and where data is lacking, conservative assumptions are often made. Differences in data availability, therefore, preclude accurate risk assessments on a large (e.g., regional or continental) scale and it makes comparison of country or region specific assessments difficult. The GEMAS project filled this important data gap by providing high quality European wide geo-referenced data on metal concentrations and properties influencing metal bioavailability in agricultural and grazing land soil. The GEMAS data provide a strong basis for more robust risk assessments in Europe, taking into account the spatial variability of both exposure (metal concentrations) and bioavailability of metals in soil. The results allow for a uniform approach for assessment of the risks for both toxicity and deficiency. The use of the GEMAS monitoring data for regional and local risk assessments will be discussed and

  8. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance.

    PubMed

    Castillo Diaz, Jean Manuel; Martin-Laurent, Fabrice; Beguet, Jérèmie; Nogales, Rogelio; Romero, Esperanza

    2017-02-01

    The fate and impact of pesticide on soil depend partly on the agricultural practices, such as prior treatment with pesticide and/or organic amendments. As a means of determining how the previous soil conditions can affect the fate of imidacloprid (IMI) and its effect on soil functions, experiments were made with soil samples, double-amended or not with either vine-shoot (W) or olive cake (O) vermicompost or contaminated or not with IMI. These soil samples, incubated for 3months, were placed in two microcosms (M1 with the pre-amended soils and M2 with the pre-exposed soils), treated with IMI and amended with vermicomposts and then incubated for 3months. The IMI distribution on soil fractions, sorption processes, dissipation kinetics, and biochemical as well as genetic structure and bacterial abundance were determined to assess the fate and impact of IMI on the soil. The addition of W vermicompost to the soil reduced the IMI availability. The dissipation kinetic in soils from M1 and M2 followed, respectively, a single first-order and a double first-order in parallel models. The lowest IMI persistence corresponded to the soil from M2 amended with O-vermicompost with DT50 and DT90 values of 67d and 265d, while in the other soils 90% dissipation required >512d. The vermicomposts-amended contaminated soils increased the dehydrogenase activity by 2- and 4-fold respect the control soils. However, the urease activity decreased due to the IMI influence. The changes in the bacterial community in the contaminated soil amended with O-vermicompost during incubation were correlated with the dissipation rate constant of IMI, suggesting a better tolerance of microorganisms to IMI. Thus, in the soil contaminated with IMI, the amendment with the vermicompost from olive cake can mitigate the impact of this insecticide on soil functions and promote its depuration capability while minimizing environmental risks.

  9. Impacts of soil and water pollution on food safety and health risks in China.

    PubMed

    Lu, Yonglong; Song, Shuai; Wang, Ruoshi; Liu, Zhaoyang; Meng, Jing; Sweetman, Andrew J; Jenkins, Alan; Ferrier, Robert C; Li, Hong; Luo, Wei; Wang, Tieyu

    2015-04-01

    Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to 'cancer villages' which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach.

  10. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China.

    PubMed

    Liu, Guannan; Wang, Juan; Zhang, Erxi; Hou, Jing; Liu, Xinhui

    2016-05-01

    Heavy metal contamination of soils has been a long-standing environmental problem in many parts of the world, and poses enormous threats to ecosystem and human health. Speciation of heavy metals in soils is crucial to assessing environmental risks from contaminated soils. In this study, total concentrations and speciation of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn were measured for agricultural soils near mines along the Diaojiang River in Guangxi Zhuang Autonomy Region, China. The sources of heavy metals in soils also were identified to assess their effect on speciation distribution of soil heavy metals. Furthermore, the speciation distribution of Cd and Zn, main soil heavy metal pollutants, in dry land and paddy soils were compared. Results showed that there were two severely polluted regions near mine area reaching alarming pollution level. As, Cd, Pb, and Zn were more affected by mining activities, showing very strong pollution level in soils. The mean percentage of exchangeable and carbonate fraction was highest and up to 46.8 % for Cd, indicating a high environmental risk. Greater bioavailable fractions of As, Cd, Cu, Mn, Pb, and Zn were found in soils heavily polluted by mining activities, whereas Cr and Ni as geogenic elements in the stable residual fraction. In addition, in the dry land soils, reducible fraction proportion of Cd was higher than that in the paddy soils, whereas exchangeable and carbonate fraction of Cd was lower than that in the paddy soils. Oxidizable fraction of Zn was higher in the paddy soils than that in the dry land soils. The results indicate that the sources of soil heavy metals and land types affect heavy metal speciation in the soil and are significant for environmental risk assessment of soil heavy metal pollutions.

  11. A Linkage Between Parent Materials of Soil and Potential Risk of Heavy Metals in Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Cheng, X.

    2015-12-01

    A large area exceeding soil quality standards for heavy metals in South western China has been identified previously reported on a nationwide survey of soil pollution, yet the ecological risk of heavy metal in soil is unknown or uncertainty.To assess thoroughly the ecological risk in this region, seven soil profiles with a depth of 2m on the different parent materials of soil were conducted in Yunnan province, China, and the level of total concentrations and the fraction of water soluble, ion exchangeable, carbonates, humic acid, iron and manganese oxides and organic matter of As, Cd, Hg and Pb was investigated in soil profiles. The results indicate that parent materials of soil critically influenced the ecological risk of heavy metal.The fraction of water soluble and ion exchangeable of Cd and Hg in alluvial material and in terrigenous clastic rocks showed 2-6 times higher than those in carbonate rock; As and Pb has almost same fraction of water soluble and ion exchangeable in three parent materials of soil.The findings suggest that parent materials of soil play a critical role in ecological risk of heavy metal.Thus, more studies are needed to better understand a linkage between the parent materials of soil, different soil-forming processes and the potential risk of heavy metals under various geographic conditions, which is the key for the evaluating soil quality and food safety. Those soils with high concentration of Cd and Hg originated alluvial material and terrigenous clastic rocks need to be continuously monitored before determining a cost-effective remediation technology. Keywords: Heavy metals; Ecological risk;Parent materials of soil;China

  12. Estimation of decrease in cancer risk by biodegradation of PAHs content from an urban traffic soil.

    PubMed

    Tarafdar, Abhrajyoti; Sinha, Alok

    2017-03-09

    The role of preferential biodegradation in the reduction of cancer risk caused by polycyclic aromatic hydrocarbons (PAHs) has been studied. A consortium of microorganisms isolated from aged oil refinery exposed soil was used to degrade 13 PAHs content extracted from an urban traffic site soil. The biodegradation arranged in a batch process with a mineral salt broth, where PAHs were the sole carbon source. 70.46% biodegradation of the total PAHs occurred in an incubation period of 25 days. Sequential or preferential biodegradation took place as the lower molecular weight (LMW) PAHs were more prone to biodegradation than that of the higher molecular weight (HMW) PAHs. Microorganisms from the isolated consortia preferred the simpler carbon sources first. The relatively higher carcinogenicity of the HMW PAHs than that of the LMW PAHs leads to only 40.26% decrement in cancer risk. Initial cancer risk for children was 1.60E-05, which was decreased to 9.47E-06, whereas, for the adults, the risk decreased to 1.01E-05 from an initial value of 1.71E-05. The relative skin adherence factor for soil (AF) turned out to be the most influential parameter with 54.2% contributions to variance in total cancer risk followed by the exposure duration (ED) for children. For the adults, most contributions to the variance in total cancer risk were 58.5% by ED and followed by AF.

  13. Predicting dioxin-like PCBs soil contamination levels using milk of grazing animal as indicator.

    PubMed

    Perugini, Monia; Nuñez, Esteban Gabriel Herrera; Baldi, Loredana; Esposito, Mauro; Serpe, Francesco Paolo; Amorena, Michele

    2012-11-01

    Dioxin-like PCBs (dl-PCBs) are ubiquitous persistent organic pollutants of recognized negative effects on human health. Assessing highly polluted areas should be an important public health issue. This study proposes to use the milk of grazing animals as a bioindicator of dl-PCB contamination in the environment. The hypothesis is that milk concentration of dl-PCBs are related to soil concentrations of these compounds, and that soils are generally reflective of a larger environmental issue of dl-PCB contamination. In this study, we evaluate the possibility of predicting soil concentrations using milk of sheep, cows and buffalos in a spatial model. For this purpose, samples of soil and milk collected in Campania (Italy) were introduced in a GIS platform to perform geostatistical analysis for building a simple predictive model. The ordinary least squares regressions (OLS) showed a statistically significant correlation (p<0.05) between soil and milk contamination. However, this relationship was spatially variable. Thus, a geographically weighted regression (GWR) was performed, obtaining R(2) values of 0.91, 0.77 and 0.66 for sheep's, buffalo's and cow's milk respectively. Assessed the mathematical relationships between the variables, new data was introduced to evaluate the performance of the model. Predictions of soil contamination with dl-PCBs using sheep's, cow's and buffalo's milk showed a mean error of 23%, 25% and 36% respectively. According to these results the sheep's milk can be considered the best bioindicator of dl-PCBs contamination among the three species. The results of this project evidence the potentialities of the proposed approach to assess bioindicator performance in a spatial predictive model.

  14. Superfund risk assessment in soil contamination studies: Second volume

    SciTech Connect

    Hoddinott, K.B.

    1996-12-31

    This conference was held January 26--27, 1995 in Phoenix, Arizona. The purpose of this conference was to collate the current modifications of the EPA`s basic risk assessment methodology in a series of symposia and technical publications. Individual papers have been processed separately for inclusion in the appropriate data bases.

  15. A risk assessment example for soil invertebrates using spatially explicit agent-based models.

    PubMed

    Reed, Melissa; Alvarez, Tania; Chelinho, Sónia; Forbes, Valery; Johnston, Alice; Meli, Mattia; Voss, Frank; Pastorok, Rob

    2016-01-01

    Current risk assessment methods for measuring the toxicity of plant protection products (PPPs) on soil invertebrates use standardized laboratory conditions to determine acute effects on mortality and sublethal effects on reproduction. If an unacceptable risk is identified at the lower tier, population-level effects are assessed using semifield and field trials at a higher tier because modeling methods for extrapolating available lower-tier information to population effects have not yet been implemented. Field trials are expensive, time consuming, and cannot be applied to variable landscape scenarios. Mechanistic modeling of the toxicological effects of PPPs on individuals and their responses combined with simulation of population-level response shows great potential in fulfilling such a need, aiding ecologically informed extrapolation. Here, we introduce and demonstrate the potential of 2 population models for ubiquitous soil invertebrates (collembolans and earthworms) as refinement options in current risk assessment. Both are spatially explicit agent-based models (ABMs), incorporating individual and landscape variability. The models were used to provide refined risk assessments for different application scenarios of a hypothetical pesticide applied to potato crops (full-field spray onto the soil surface [termed "overall"], in-furrow, and soil-incorporated pesticide applications). In the refined risk assessment, the population models suggest that soil invertebrate populations would likely recover within 1 year after pesticide application, regardless of application method. The population modeling for both soil organisms also illustrated that a lower predicted average environmental concentration in soil (PECsoil) could potentially lead to greater effects at the population level, depending on the spatial heterogeneity of the pesticide and the behavior of the soil organisms. Population-level effects of spatial-temporal variations in exposure were elucidated in the

  16. Martian soils: Varieties, structure, composition, physical properties, drillability, and risks for landers

    NASA Astrophysics Data System (ADS)

    Demidov, N. E.; Bazilevskii, A. T.; Kuz'min, R. O.

    2015-07-01

    This paper has collected data on different properties of Martian soils, which can be of interest to developers of instruments and spacecraft for the exploration of this planet. These data are dispersed in numerous publications of different years, which are not always available; therefore, this collection will facilitate their search and study. It has been shown that, in the first approximation, the diversity of Martian soils can be reduced to four varieties of dry regolith, frozen regolith, soft rocks, and hard rocks. Information on the structure and composition of Martian soils and their physical, thermophysical, and mechanical properties is based on the analysis of orbital sensing data, those obtained by seven landing spacecraft, and analogous terrestrial materials. The drillability of Martial soils and risks for landers are considered separately.

  17. VERTICAL PROFILING OF VOCS IN GROUNDWATER AND SOIL VAPORS TO EVALUATE THE RISK OF VAPOR INTRUSION

    EPA Science Inventory

    The Draft EPA Subsurface Vapor Intrusion Guidance Document was established to address the incremental increases in exposures and risks from subsurface contaminants that may be intruding into indoor air@. The document utilizes attenuation factors based on indoor air/soil gas or i...

  18. Ecological risk assessment of radiological exposure to depleted uranium in soils at a weapons testing facility.

    SciTech Connect

    Hlohowskyj, I.; Cheng, J.; Tsao, C.; Environmental Assessment

    2004-01-01

    The potential for unacceptable risks to biota from radiological exposure to depleted uranium (DU) in soils was evaluated at two sites where DU weapons testing had been conducted in the past. A screening risk assessment was conducted to determine if measured concentrations of DU-associated radionuclides in site soils exceed radionuclide levels considered protective of biota. While concentrations of individual radionuclides did not exceed acceptable levels, total radionuclide concentrations could result in potentially unacceptable doses to exposed biota. Thus, a receptor-specific assessment was conducted to estimate external and internal radiological doses to vegetation and wildlife known or expected to occur at the sites. Wildlife evaluated included herbivores, omnivores, and top-level predators. Internal dose estimates to wildlife considered exposure via fugitive dust inhalation and soil and food ingestion; root uptake was the primary exposure route evaluated for vegetation. Total doses were compared with acceptable dose levels of 1.0 and 0.1 rad/day for vegetation and wildlife, respectively, with potentially unacceptable risks indicated for doses exceeding these levels. All estimated doses were below or approximated acceptable levels, typically by an order of magnitude or more. These results indicate that current levels of DU in soils do not pose unacceptable radiological risks to biota at the sites evaluated.

  19. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment.

    PubMed

    Li, Zhiyuan; Ma, Zongwei; van der Kuijp, Tsering Jan; Yuan, Zengwei; Huang, Lei

    2014-01-15

    Heavy metal pollution has pervaded many parts of the world, especially developing countries such as China. This review summarizes available data in the literature (2005-2012) on heavy metal polluted soils originating from mining areas in China. Based on these obtained data, this paper then evaluates the soil pollution levels of these collected mines and quantifies the risks these pollutants pose to human health. To assess these potential threat levels, the geoaccumulation index was applied, along with the US Environmental Protection Agency (USEPA) recommended method for health risk assessment. The results demonstrate not only the severity of heavy metal pollution from the examined mines, but also the high carcinogenic and non-carcinogenic risks that soil heavy metal pollution poses to the public, especially to children and those living in the vicinity of heavily polluted mining areas. In order to provide key management targets for relevant government agencies, based on the results of the pollution and health risk assessments, Cd, Pb, Cu, Zn, Hg, As, and Ni are selected as the priority control heavy metals; tungsten, manganese, lead-zinc, and antimony mines are selected as the priority control mine categories; and southern provinces and Liaoning province are selected as the priority control provinces. This review, therefore, provides a comprehensive assessment of soil heavy metal pollution derived from mines in China, while identifying policy recommendations for pollution mitigation and environmental management of these mines.

  20. Status of phthalate esters contamination in agricultural soils across China and associated health risks.

    PubMed

    Niu, Lili; Xu, Yang; Xu, Chao; Yun, Lingxiang; Liu, Weiping

    2014-12-01

    The extensive utilization of phthalate-containing products has lead to ubiquitous contamination of phthalate esters (PAEs) in various matrices. However, comprehensive knowledge of their pollution in Chinese farmland and associated risks is still limited. In this study, 15 PAEs were determined in soils from agricultural fields throughout the Mainland China. The concentrations of Σ15PAEs were in the range of 75.0-6369 μg kg(-1). Three provinces (i.e., Fujian, Guangdong and Xinjiang, China) showed the highest loadings of PAEs. Bis(2-Ethylhexyl) phthalate (DEHP) was found as the most abundant component and contributed 71.5% to the ∑15PAEs. The major source of PAEs in arable soils was associated with the application of agricultural plastic films, followed by the activities for soil fertility. Furthermore, the non-cancer and carcinogenic risks of target PAEs were estimated. The hazard indexes (HIs) of PAEs in all samples were below 1 and the carcinogenic risk levels were all within 10(-4). Results from this study will provide valuable information for Chinese agricultural soil management and risk avoidance.

  1. Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation

    SciTech Connect

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

    2009-08-25

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

  2. Approach to study of Cu, Ni and Zn content in soil for ecotoxicological risk assessment

    NASA Astrophysics Data System (ADS)

    Boluda, R.; Marimon, L.; Gil, C.; Roca-Pérez, L.

    2009-04-01

    Current Spanish legislation on contaminated soils defines contaminated soil as "that whose characteristics have been negatively altered by the presence of dangerous human-derived chemical components whose concentration is such that it is an unacceptable risk for human health or the environment and has been expressly declared as such by legal ruling". Regarding heavy metals, the Spanish Autonomous Communities will promote measures to obtain generic reference values to declare a soil to be contaminated. In the Valencian Community, these reference values still do not exist. So if the protection of ecosystems is considered a priority to declare a soil to be contaminated and to assess the level of risk, emergency toxicity tests and seed growth in land plants are resorted to, or tests with aquatic organisms or other experiments with leached soils obtained by standard procedures are carried out. We studied the toxic effects of calcareous contaminated soils by Cu, Ni and Zn on marine bacterium Vibrio fisheri (MicrotoxR test assay) (1) and on barley (Hordeum vulgare L.) in plate (germination index) (2) and pot (UNE 77301) (3) experiments for the purpose of establishing the Cu, Ni and Zn concentrations in soil which may lead to toxicity in order to observe, therefore, whether there is any likelihood of these pollutants coming into contact with any receptor and if adverse effects exist for living beings and the environment. The results showed significant differences among the three types of tests done but, in all cases, the concentrations needed to reflect toxicity effect on organisms were around 20 -70 (Cu and Ni) to 1000 (Zn) times higher than the levels of the control soils. The sensitivity order of the bio-assay was: (1) < (3) < (2). We would like to thank Spanish government-MICINN for partial funding and support (MICINN, project CGL2006-09776).

  3. Soil physical conditions as livestock treading effect in tropical Agroecosystem of dryland and strategies to mitigate desertification risk

    NASA Astrophysics Data System (ADS)

    Florentino, A.; Torres, D.; Ospina, A.; Contreras, J.; Palma, Z.; Silvera, J.

    2012-04-01

    Soil degradation in natural ecosystem of arid and semi-arid zones of Venezuela due to livestock treading (goats) it is an important problem that affect their environment functions; increase soil erodibility, bulk density, water losses and reduce porosity, water infiltration rate and soil structural stability. The presence of biological crust (BSC) in this type of soil it is very common. The objective of this study was to evaluate the soil surface physical quality through the use of selected indicators, mainly some of that related to structural stability, infiltrability and the prediction of soil erosion risk in two zones of Lara state: 1) Quíbor (QUI) and 2) Humocaro Bajo (HB). The study was conducted on two selected plots (30 m x 20 m) in each zone, with natural vegetation and BSC cover, with areas affected by different degree of compaction due to treading in the paths where the goats are moving. Five sites per plot (50 cm x 50 cm) under vegetation cover and five sites over the path with bare soil were sampled (0-7,5 and 7,5-15 cm depth). The results showed that soil macroaggregate stability (equivalent diameter of aggregates >0,25 mm) was significantly higher (p<0,05 %) in soil with vegetation cover and BSC compared with bare soil. Sealing index, as a measure of aggregate stability, determined in laboratory under simulated rain and expressed as hydraulic conductivity of soil surface sealing (Kse), decreased with decreasing soil vegetation cover and the presence of BSC. However, Ksei (i: inicial) and Ksef (f: final) were significantly greater in soil with more than 75 % of BSC in comparison to bare soils. The sealing index it is used to for to estimate changes in soil water losses. As the sealing index increases, the susceptibility of the soil to undergo surface sealing or slaking decrease. These results suggested that soil physical properties are potential indicators of soil quality with regard to soil erodibility and showed that soils under vegetation cover had

  4. [Spatial Distribution and Potential Ecological Risk Assessment of Heavy Metals in Soils and Sediments in Shunde Waterway, Southern China].

    PubMed

    Cai, Yi-min; Chen, Wei-ping; Peng, Chi; Wang, Tie-yu; Xiao, Rong-bo

    2016-05-15

    Environmental quality of soils and sediments around water source area can influence the safety of potable water of rivers. In order to study the pollution characteristics, the sources and ecological risks of heavy metals Zn, Cr, Pb, Cu, Ni and Cd in water source area, surface soils around the waterway and sediments in the estuary of main tributaries were collected in Shunde, and ecological risks of heavy metals were assessed by two methods of potential ecological risk assessment. The mean contents of Zn, Cr, Pb, Cu, Ni and Cd in the surface soils were 186.80, 65.88, 54.56, 32.47, 22.65 and 0.86 mg · kg⁻¹ respectively, and they were higher than their soil background values except those of Cu and Ni. The mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in the sediments were 312.11, 111.41, 97.87, 92.32, 29.89 and 1.72 mg · kg⁻¹ respectively, and they were higher than their soil background values except that of Ni. The results of principal component analysis illustrated that the main source of Cr and Ni in soils was soil parent materials, and Zn, Pb, Cu and Cd in soils mainly came from wastewater discharge of local manufacturing industry. The six heavy metals in sediments mainly originated from industry emissions around the Shunde waterway. The results of potential ecological risk assessment integrating environmental bioavailability of heavy metals showed that Zn, Cu, Pb and Ni had a slight potential ecological risk. Cd had a slight potential ecological risk in surface soils, but a moderate potential ecological risk in surfaces sediments. Because the potential ecological risk assessment integrating environmental bioavailability of heavy metals took the soil properties and heavy metal forms into account, its results of risks were lower than those of Hakanson methods, and it could avoid overestimating the potential risks of heavy metals.

  5. Risk of classic Kaposi sarcoma with exposures to plants and soils in Sicily

    PubMed Central

    2010-01-01

    Background Ecologic and in vitro studies suggest that exposures to plants or soil may influence risk of Kaposi sarcoma (KS). Methods In a population-based study of Sicily, we analyzed data on contact with 20 plants and residential exposure to 17 soils reported by 122 classic KS cases and 840 sex- and age-matched controls. With 88 KS-associated herpesvirus (KSHV) seropositive controls as the referent group, novel correlates of KS risk were sought, along with factors distinguishing seronegatives, in multinomial logistic regression models that included matching variables and known KS cofactors - smoking, cortisone use, and diabetes history. All plants were summed for cumulative exposure. Factor and cluster analyses were used to obtain scores and groups, respectively. Individual plants and soils in three levels of exposure with Ptrend ≤ 0.15 were retained in a backward elimination regression model. Results Adjusted for known cofactors, KS was not related to cumulative exposures to 20 plants [per quartile adjusted odds ratio (ORadj) 0.96, 95% confidence interval (CI) 0.73 - 1.25, Ptrend = 0.87], nor was it related to any factor scores or cluster of plants (P = 0.11 to 0.81). In the elimination regression model, KS risk was associated with five plants (Ptrend = 0.02 to 0.10) and with residential exposure to six soils (Ptrend = 0.01 to 0.13), including three soils (eutric regosol, chromic/pellic vertisol) used to cultivate durum wheat. None of the KS-associated plants and only one soil was also associated with KSHV serostatus. Diabetes was associated with KSHV seronegativity (ORadj 4.69, 95% CI 1.97 - 11.17), but the plant and soil associations had little effect on previous findings that KS risk was elevated for diabetics (ORadj 7.47, 95% CI 3.04 - 18.35) and lower for current and former smokers (ORadj 0.26 and 0.47, respectively, Ptrend = 0.05). Conclusions KS risk was associated with exposure to a few plants and soils, but these may merely be due to chance. Study of

  6. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk.

    PubMed

    Pardo, T; Bernal, M P; Clemente, R

    2014-07-01

    A mesocosm experiment, in columns, was conducted in a growth chamber to assess the viability of two organic materials (pig slurry and compost; in combination with hydrated lime) for the remediation of a highly acidic and trace elements (TEs) contaminated mine soil and the reduction of its associated leaching risks. Their influence on the evolution throughout the soil depth of the physicochemical properties (including TEs mobility) of the soil and soil solution (in situ periodic collection) and on Lolium perenne growth and foliar TEs accumulation was evaluated. Soluble and extractable concentrations of the different TEs were considerably high, although the organic amendments (with lime) and lime addition successfully decreased TEs mobility in the top soil layer, as a consequence of a rise in pH and changes in the redox conditions. Compost and pig slurry increased the soluble organic-C and dissolved N, K and P of the soil, producing a certain downwards displacement of N and K. The organic amendments allowed the growth of L. perenne in the soil, thus indicating improvement of soil conditions, but elevated TEs availability in the soil led to toxicity symptoms and abnormally high TEs concentrations in the plants. An evaluation of the functioning and ecotoxicological risks of the remediated soils is reported in part II: this allows verification of the viability of the amendments for remediation strategies.

  7. Heavy Metal Contamination in Rice-Producing Soils of Hunan Province, China and Potential Health Risks.

    PubMed

    Zeng, Fanfu; Wei, Wei; Li, Mansha; Huang, Ruixue; Yang, Fei; Duan, Yanying

    2015-12-08

    We studied Cd, Cr, As, Ni, Mn, Pb, and Hg in three agricultural areas of Hunan province and determined the potential non-carcinogenic and carcinogenic risks for residents. Soil and brown rice samples from Shimen, Fenghuang, and Xiangtan counties were analyzed by atomic absorption spectroscopy. Soil levels of Cd and Hg were greatest, followed by As and Ni. The mean concentrations of heavy metals in brown rice were Cd 0.325, Cr 0.109, As 0.344, Ni 0.610, Mn 9.03, Pb 0.023, and Hg 0.071 mg/kg, respectively. Cd and Hg had greater transfer ability from soil to rice than the other elements. Daily intake of heavy metals through brown rice consumption were estimated to be Cd 2.30, Cr 0.775, As 2.45, Ni 4.32, Pb 0.162, Mn 64.6 and Hg 0.503 µg/(kg·day), respectively. Cd, Hg and As Hazard Quotient values were greater than 1 and Cd, Cr, As and Ni Cancer Risk values were all greater than 10(-4). The total non-carcinogenic risk factor was 14.6 and the total carcinogenic risk factor was 0.0423. Long-term exposure to heavy metals through brown rice consumption poses both potential non-carcinogenic and carcinogenic health risks to the local residents.

  8. Heavy Metal Contamination in Rice-Producing Soils of Hunan Province, China and Potential Health Risks

    PubMed Central

    Zeng, Fanfu; Wei, Wei; Li, Mansha; Huang, Ruixue; Yang, Fei; Duan, Yanying

    2015-01-01

    We studied Cd, Cr, As, Ni, Mn, Pb, and Hg in three agricultural areas of Hunan province and determined the potential non-carcinogenic and carcinogenic risks for residents. Soil and brown rice samples from Shimen, Fenghuang, and Xiangtan counties were analyzed by atomic absorption spectroscopy. Soil levels of Cd and Hg were greatest, followed by As and Ni. The mean concentrations of heavy metals in brown rice were Cd 0.325, Cr 0.109, As 0.344, Ni 0.610, Mn 9.03, Pb 0.023, and Hg 0.071 mg/kg, respectively. Cd and Hg had greater transfer ability from soil to rice than the other elements. Daily intake of heavy metals through brown rice consumption were estimated to be Cd 2.30, Cr 0.775, As 2.45, Ni 4.32, Pb 0.162, Mn 64.6 and Hg 0.503 µg/(kg·day), respectively. Cd, Hg and As Hazard Quotient values were greater than 1 and Cd, Cr, As and Ni Cancer Risk values were all greater than 10−4. The total non-carcinogenic risk factor was 14.6 and the total carcinogenic risk factor was 0.0423. Long-term exposure to heavy metals through brown rice consumption poses both potential non-carcinogenic and carcinogenic health risks to the local residents. PMID:26670240

  9. Mapping Erosion Risk in California's Rangelands Using the Universal Soil Loss Equation (USLE)

    NASA Astrophysics Data System (ADS)

    Salls, W. B.; O'Geen, T. T.

    2015-12-01

    Soil loss constitutes a multi-faceted problem for agriculture: in addition to reducing soil fertility and crop yield, it compromises downstream water quality. Sediment itself is a major issue for aquatic ecosystems, but also serves as a vector for transporting nutrients, pesticides, and pathogens. Rangelands are thought to be a contributor to water quality degradation in California, particularly in the northern Coast Range. Though total maximum daily loads (TMDLs) have been imposed in some watersheds, and countless rangeland water quality outreach activities have been conducted, the connection between grazing intensity recommendations and changes in water quality is poorly understood at the state level. This disconnect gives rise to poorly informed regulations and discourages adoption of best management practices by ranchers. By applying the Universal Soil Loss Equation (USLE) at a statewide scale, we highlighted areas most prone to erosion. We also investigated how two different grazing intensity scenarios affect modeled soil loss. Geospatial data layers representing the USLE parameters—rainfall erosivity, soil erodibility, slope length and steepness, and cover—were overlaid to model annual soil loss. Monitored suspended sediment data from a small North Coast watershed with grazing as the predominant land use was used to validate the model. Modeled soil loss values were nearly one order of magnitude higher than monitored values; average soil loss feeding the downstream-most site was modeled at 0.329 t ha-1 yr-1, whereas storm-derived sediment passing the site over two years was calculated to be 0.037 t ha-1 yr-1. This discrepancy may stem from the fact that the USLE models detached sediment, whereas stream monitoring reflects sediment detached and subsequently transported to the waterway. Preliminary findings from the statewide map support the concern that the North Coast is particularly at risk given its combination of intense rain, erodible soils, and

  10. Soil heavy metal contamination and risk assessment around the Fenhe Reservoir, China.

    PubMed

    Zhang, Hong; Liu, Guanglei; Shi, Wei; Li, Jinchang

    2014-08-01

    Heavy metal contamination in the soil around a water source is a particularly serious issue, because these heavy metals can be transferred into the water source and can pose significant human health risks through the contamination of drinking water or farmland irrigation water. In this paper, we collected surface soil samples from the area surrounding the Fenhe Reservoir. The concentrations of As, Cd, Cr, Cu, Hg, Ni, and Zn were determined and the potential ecological risks posed by the heavy metals were quantitatively evaluated. The primary inputs for As, Ni, and Zn were natural sources, whereas the other elements were derived from mainly anthropogenic sources. Hg displays more serious environmental impacts than the other heavy metals. The upper reaches of the reservoir, located in the northwest, display a higher potential ecological risk.

  11. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa.

    PubMed

    Mungai, Teresiah Muciku; Owino, Anita Awino; Makokha, Victorine Anyango; Gao, Yan; Yan, Xue; Wang, Jun

    2016-09-01

    The concentration distribution and toxicological assessment of eight heavy metals including lead (Pb), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), mercury (Hg), arsenic (As), and zinc (Zn) in agricultural soils from Kenya, Eastern Africa, were investigated in this study. The results showed mean concentrations of eight heavy metals of Zn, Pb, Cr, Cu, As, Ni, Hg, and Cd in agricultural soils as 247.39, 26.87, 59.69, 88.59, 8.93, 12.56, 8.06, and 0.42 mg kg(-1), respectively. These mean values of eight heavy metals were close to the toxicity threshold limit of USEPA standard values of agricultural soils, indicating potential toxicological risk to the food chain. Pollution index values revealed that eight heavy metals severely decreased in the order Hg > Cd > As > Cu > Pb > Zn > Ni > Cr and the mean value of the overall pollution index of Hg and Cd was 20.31, indicating severe agriculture ecological risk. Potential pollution sources of eight heavy metals in agricultural soils were mainly from anthropogenic activities and natural dissolution. The intensification of human agricultural activities, the growing industrialization, and the rapid urbanization largely influenced the concentration levels of heavy metals in Kenya, Eastern Africa. Moreover, the lack of agricultural normalization management and poor enforcement of environmental laws and regulations further intensified the widespread pollution of agricultural soils in Kenya.

  12. A framework for assessing ecological risks of petroleum-derived materials in soil

    SciTech Connect

    Suter, G.W. II

    1997-05-01

    Ecological risk assessment estimates the nature and likelihood of effects of human actions on nonhuman organisms, populations, and ecosystems. It is intended to be clearer and more rigorous in its approach to estimation of effects and uncertainties than previously employed methods of ecological assessment. Ecological risk assessment is characterized by a standard paradigm that includes problem formulation, analysis of exposure and effects, risk characterization, and communication with a risk manager. This report provides a framework that applies the paradigm to the specific problem of assessing the ecological risks of petroleum in soil. This type of approach requires that assessments be performed in phases: (1) a scoping assessment to determine whether there is a potential route of exposure for potentially significant ecological receptors; (2) a screening assessment to determine whether exposures could potentially reach toxic levels; and (3) a definitive assessment to estimate the nature, magnitude, and extent of risks. The principal technical issue addressed is the chemically complex nature of petroleum--a complexity that may be dealt with by assessing risks on the basis of properties of the whole material, properties of individual chemicals that are representative of chemical classes, distributions of properties of the constituents of chemical classes, properties of chemicals detected in the soil, and properties of indicator chemicals. The advantages and feasibility of these alternatives are discussed. The report concludes with research recommendations for improving each stage in the assessment process.

  13. Biological quality of soils containing hydrocarbons and efficacy of ecological risk reduction by bioremediation alternatives

    SciTech Connect

    Stewart, A.J.; Napolitano, G.E.; Sample, B.E.

    1996-06-01

    This project provides technical support to the Petroleum Environmental Research Forum (PERF; a consortium of petroleum companies) on environmentally acceptable endpoints that may be used to help assess the ecological risk of petroleum hydrocarbon residuals in soils. The project, was designed in consultation with PERF representatives and focuses on the relationship between {open_quotes}chemically available{close_quotes} and {open_quotes}biologically available{close_quotes} measurements of petroleum hydrocarbon compounds in soils, a discrepancy of considerable interest to the petroleum industry. Presently, clean-up standards for soils contaminated with total petroleum hydrocarbon (TPH) constituents are based on concentrations of TPH, as measured in solvent extracts of soil samples. Interestingly, TPH includes a complex mixture of compounds which differ from one another in molecular weight and toxicity. Based on various studies with insecticides, herbicides and metals, some compounds apparently can slowly permeate into soil particles. If this situation occurs, the particle-embedded compounds may be extractable by use of organic solvents, and yet be unavailable biologically. This hypothesis serves as the central focus for our study. If this hypothesis is correct, then soil clean-up standards based on solvent-extractable TPH data may be more stringent than necessary to achieve a desired level of environmental risk. The economic significance of this possibility is considerable, because clean-up costs to achieve a low-risk status would, in most cases, be lower than those needed to achieve a standard based on present limits, which are based on measurements of {open_quotes}extractable{close_quotes} TPH.

  14. Genotoxicity changes in test plot soil: Impact on risk assessment at a contaminated site planning bioremediation

    SciTech Connect

    Collie, S.L.; Donnelly, K.C.

    1995-12-31

    Soil samples from test plots designed to investigate the suitability of biodegradation to reduce levels of polycyclic aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) were collected and solvent-extracted throughout a four-month study. Samples were followed for contaminant concentration and genotoxicity. Test plots were constructed to represent four concentrations of contaminated soil. Although the highest PCP concentration plot was negative in the Salmonella/microsome plate incorporation both with and without metabolic activation at the beginning of the treatment period, these soils became cytotoxic by the end of the study when tested without metabolic activation, and chemical analysis indicated no degradation of PCP. The methanol extract from the lowest PCP concentration plot was positive in the plate incorporation assay at the beginning of the study with an average weighted activity of 29 revertants/gram soil without and 32 revertants/g with metabolic activation at the highest dose level. The mutagenic potential of the methanol extract of this soil increased to an average weighted activity of 306 revertants/g without and 291 revertants/g with metabolic activation, despite a reduction from 46 to below 10 {micro}g PCP/g soil. A human health risk assessment employing the current US/EPA method of incorporating chemical concentration data in calculating cancer risk was then compared with the level of risk that can be inferred from the corresponding bioassay data. These findings emphasize the need for careful remediation design as this step will prove critical in achieving both maximum biodegradation and protection of human health.

  15. Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District, Northeast China

    PubMed Central

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources. PMID:25997173

  16. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China.

    PubMed

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.

  17. Spatial distribution and ecological risk assessment of trace metals in urban soils in Wuhan, central China.

    PubMed

    Zhang, Chutian; Yang, Yong; Li, Weidong; Zhang, Chuanrong; Zhang, Ruoxi; Mei, Yang; Liao, Xiangsen; Liu, Yingying

    2015-09-01

    Surface soil samples from 467 sample sites were collected in urban area of Wuhan City in 2013, and total concentrations of five trace metals (Pb, Zn, Cu, Cr, and Cd) were measured. Multivariate and geostatistical analyses showed that concentrations of Pb, Zn, and Cu are higher along Yangtze River in the northern area of Wuhan, gradually decrease from city center to suburbs, and are mainly controlled by anthropogenic activities, while those of Cr and Cd are relatively spatially homogenous and mainly controlled by soil parent materials. Pb, Zn, Cu, and Cd have generally higher concentrations in roadsides, industrial areas, and residential areas than in school areas, greenbelts, and agricultural areas. Areas with higher road and population densities and longer urban construction history usually have higher trace metal concentrations. According to estimated results of the potential ecological risk index and Nemero synthesis pollution index, almost the whole urban area of Wuhan is facing considerable potential ecological risk caused by soil trace metals. These results reveal obvious trends of trace metal pollution, and an important impact of anthropogenic activities on the accumulation of trace metals in soil in Wuhan. Vehicular emission, industrial activities, and household wastes may be the three main sources for trace metal accumulation. Increasing vegetation cover may reduce this threat. It should be pointed out that Cd, which is strongly accumulated in soil, could be the largest soil pollution factor in Wuhan. Effective measures should be taken as soon as possible to deal with Cd enrichment, and other trace metals in soil should also be reduced, so as to protect human health in this important large city.

  18. Environmental risk assessment of the use of different organic wastes as soil amendments

    NASA Astrophysics Data System (ADS)

    Alvarenga, Paula; Palma, Patrícia; Mourinha, Clarisse; Farto, Márcia; Cunha-Queda, Ana Cristina; Natal-da-Luz, Tiago; Sousa, José Paulo

    2013-04-01

    The use of organic wastes in agriculture is considered a way of maintaining or restoring the quality of soils, enlarging the slow cycling soil organic carbon pool. However, a wide variety of undesired substances, such as potentially trace elements and organic contaminants, can have adverse effects on the environment. That fact was highlighted by the Proposal for a Soil Framework Directive, which recognized that "soil degradation or soil improvements have a major impact on other areas, (…) such as surface waters and groundwater, human health, climate change, protection of nature and biodiversity, and food safety". Taking that into account, the research project "ResOrgRisk" aims to assess the environmental risk involved in the use of different organic wastes as soil amendments, evidencing their benefits and constraints, and defining the most suitable tests to reach such assessment. The organic wastes selected for this purpose were: sewage sludge, limed, not limed, and co-composted with agricultural wastes, agro-industrial sludge, mixed municipal solid waste compost, compost produced from organic farming residues, and pig slurry digestate. Whereas threshold values for heavy metals in sludge used for agriculture have been set by the European Commission, actually there is no definitive European legislation for organic contaminants. Guide values for some organic contaminants (e.g. polychlorinated biphenyls - PCBs, and polycyclic aromatic hydrocarbons - PAHs) have been adopted at national level by many European countries, such as Portugal. These values should be taken into account when assessing the risk involved in the use of organic wastes as soil amendments. However, chemical analysis of organic waste often gives scarce information because it does not include possible interactions between chemicals. Furthermore, an exhaustive identification and quantification of all substances is impractical. In this study, ecotoxicological tests (comprising solid and aquatic phases

  19. Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment

    SciTech Connect

    Saterbak, A.; Toy, R.J.; Wong, D.C.L.; McMain, B.J.; Williams, M.P.; Dorn, P.B.; Brzuzy, L.P.; Chai, E.Y.; Salanitro, J.P.

    1999-07-01

    Ecotoxicological assessments of contaminated soil aim to understand the effect of introduced chemicals on the soil flora and fauna. Ecotoxicity test methods were developed and conducted on hydrocarbon-contaminated soils and on adjacent uncontaminated control soils from eight field locations. Tests included 7-d, 14-d, and chronic survival tests and reproduction assays for the earthworm (Eisenia fetida) and seed germination, root length, and plant growth assays for corn, lettuce, mustard, and wheat. Species-specific responses were observed with no-observed effect concentrations (NOECs) ranging from <1 to 100% contaminated soil. The 14-d earthworm survival NOEC was equal to or greater than the reproduction NOEC values for numbers of cocoons and juveniles, which were similar to one another. Cocoon and juvenile production varied among the control soils. Germination and root length NOECs for mustard and lettuce were less than NOECs for corn and wheat. Root length NOECs were similar to or less than seed germination NOECs. Statistically significant correlations for earthworm survival and seed germination as a function of hydrocarbon measurements were found. The 14-d earthworm survival and the seed germination tests are recommended for use in the context of a risk-based framework for the ecological assessment of contaminated sites.

  20. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    PubMed

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety.

  1. Contamination and risk assessment of heavy metals in soils irrigated with biogas slurry: a case study of Taihu basin.

    PubMed

    Bian, Bo; Wu, Hai suo; Zhou, Ling jun

    2015-04-01

    The accumulation of heavy metals in different soils resulting from irrigation with biogas slurry obtained from Taihu basin may create a potential public health risk. We quantified the concentration of heavy metals (Zn, Pb, Cu, Cr, As, and Cd.) in soils. Results indicated that the concentrations of Ni, Zn, Cd, and Pb in soil exceeded the maximum permitted levels set by Chinese Soil Environmental Quality Standard (GB15618-2008). The highest mean level in the soil was noted for Zn, followed by Zn, Pb, Cu, Cr, As, and Cd, while maximum geoaccumulation index (Igeo) was found for Cd in all soil samples which ranged from strongly polluted to extremely polluted. Pollution levels varied with metals and soil types. Moreover, the concentrations of Mn, Co, Ni, Cu, Zn, As, and Pb in soils showed significant correlations with OM; pH showed positive correlations with Cd, Cu, As, and Cr; pH and OM were the most important factors controlling the uptake of heavy metals by soils. Multivariate principal component analysis showed anthropogenic contributions of Zn, Pb, Cu, As, and Cd in the different kinds of soils. The target hazard quotient (HQ) values of six metals in soils were less than 1, which suggested that non-carcinogenic risks of metal exposure to soils were generally assumed to be safe. The assessment results of carcinogenic risks in soils showed higher risks than an acceptable range of 1E-06 to 1E-04 that would pose potential cancer risks to the farmers due to the work of leafy and root vegetables grown locally.

  2. [Amelioration effects of wastewater sludge biochars on red soil acidity and their environmental risk].

    PubMed

    Lu, Zai-Liang; Li, Jiu-Yu; Jiang, Jun; Xu, Ren-Kou

    2012-10-01

    Biochars were prepared from wastewater sludge from two wastewater treatment plants in Nanjing using a pyrolysis method at 300, 500 and 700 degrees C. The properties of the biochars were measured, and their amelioration effects on the acidity of a red soil and environmental risk of application of sludge biochars were examined to evaluate the possibility of agricultural application of wastewater sludge biochars in red soils. Results indicated that incorporation of both sludge and sludge biochar increased soil pH due to the alkalinity of sludge and sludge biochar, and the mineralization of organic N and nitrification of ammonium N from wastewater sludge induced soil pH fluctuated during incubation. The amelioration effects of biochars generated at 500 and 700 degrees C on the soil were significantly greater than that of sludge significantly. Sludge and sludge biochar contain ample base cations of Ca2+, Mg2+, K+ and Na+ and thus incorporation of sludge and sludge biochar increased the contents of soil exchangeable base cations and decreased soil exchangeable aluminum and H+. Contents of heavy metals in sludge biochars were greater than these in their feedstock sludge, while the contents of Cu, Pb, Ni and As in sludge biochars were lower than the standard values of heavy metals were wastewater sludge for agricultural use in acid soils in China except for Zn and Cd. The contents of available forms of heavy metals in the biochars generated from sludge from Chengdong wastewater treatment plant was lower than these in the corresponding sludge, suggesting that pyrolysis proceed decreased the activity of heavy metals in wastewater sludge. After 90-day incubation of the soil with sludge and sludge biochar, the differences in the contents of soil available heavy metals were not significant between the biochars and their feedstock sludge from Jiangxizhou wastewater treatment plant, and the contents in the treatments with biochars added was lower than these in the treatments with

  3. Soil moisture dynamics and forest fire risk in the Upper North Saskatchewan Watershed, Alberta

    NASA Astrophysics Data System (ADS)

    Dalla Vicenza, S. A.; Byrne, J. M.; Letts, M. G.

    2010-12-01

    The key objective of this research is to assess soil moisture dynamics and forest fire risk as part of an ongoing study assessing water quantity and quality in the Upper North Saskatchewan watershed. The 20, 000 km2 watershed is located in the Rocky Mountains of west-central Alberta. Forest fires are becoming an increasing concern as climate change advances along the eastern slopes of the Rocky Mountains of Alberta, as well as for mountain landscapes worldwide. Global climate change is expected to alter precipitation patterns and intensities and increase temperatures. Rising temperatures can cause decreases in soil moisture and as a result, drier forests and organic soils. The hypothesis to be tested is - will global warming lead to greater forest fire index values (greater risk) and greater duration of high risk index values? A range of climate change scenarios has been chosen to predict potential effects on future forest fire risk for over 900 distinct terrain categories (TC) in the watershed. The goal of this research is to further develop a methodology for predicting the potential frequency or probability of forest fire occurrence. The GENESYS (Generate Earth Systems Science input) hydrometeorology model and the Canadian Forest Fire Weather Index System are being combined to assess possible changes in forest fire occurrence and extent in mountain environments.

  4. Risk assessment of human health for geogenic chromium and nickel in soils derived from serpentines

    NASA Astrophysics Data System (ADS)

    Hseu, Zeng-Yei; Lai, Yun-Jie

    2016-04-01

    Concentrations of Cr and Ni are extremely high in serpentine soils compared to soils from the other parent materials. Three serpentine sites in Taiwan were selected to determine health risk of Cr and Ni as cumulative carcinogenic and non-carcinogenic risks via the multiple routes of ingestion, dermal contact, inhalation, and diet on adults and children. The mean levels of Cr and Ni were higher than the soil control standards of heavy metals in Taiwan (250 and 200 mg/kg of Cr and Ni). For adults and children, the total dose of chronic daily intake (mg/kg/d) was the highest for Ni, followed in descending order by Cr(III) and Cr(VI) at all sites. Regardless inhabitant age, the total carcinogenic risk was much lower than 1.0E-6. However, the hazard index (HI) of non-carcinogenic risk exceeded 1.0 for adults at all sites, which was mainly contributed in Ni by eating rice.

  5. Use of aqueous and solvent extraction to assess risk and bioavailability of contaminated soil

    SciTech Connect

    Bordelon, N.; Huebner, H.; Washburn, K.; Donnelly, K.C.

    1995-12-31

    Contaminated media at Superfund sites typically consist of complex mixtures of organic and inorganic chemicals. These mixtures are difficult to characterize, both analytically and toxicologically, especially the complex mixtures of polycyclic aromatic hydrocarbons. The current approach to risk assessment assumes that all contaminants in the soil are available for human exposure. EPA protocol uses solvent extraction to remove chemicals from the soil as a basis for estimating risk to the human population. However, contaminants that can be recovered with a solvent extract may not represent chemicals that are available for exposure. A system using aqueous extraction provides a more realistic picture of what chemicals are bioavailable through leaching and ingestion. A study was conducted with coal tar contaminated soil spiked with benzo(a)pyrene, and trinitrotoluene. Samples were extracted with hexane:acetone and water titrated to pH 2 and pH 7. HPLC analysis demonstrated up to 35% and 29% recovery of contaminants from aqueous extracts with an estimated cancer risk one order of magnitude less than that for solvent extracts. Analysis using the Salmonella/microsome assay showed that solvent extracts were genotoxic with metabolic activation while aqueous extracts showed no genotoxicity. These results suggest that aqueous extraction may be useful in determining what contaminants are available for human exposure, as well as what compounds may pose a risk to human health.

  6. Mapping soil erosion risk in Serra de Grândola (Portugal)

    NASA Astrophysics Data System (ADS)

    Neto Paixão, H. M.; Granja Martins, F. M.; Zavala, L. M.; Jordán, A.; Bellinfante, N.

    2012-04-01

    Geomorphological processes can pose environmental risks to people and economical activities. Information and a better knowledge of the genesis of these processes is important for environmental planning, since it allows to model, quantify and classify risks, what can mitigate the threats. The objective of this research is to assess the soil erosion risk in Serra de Grândola, which is a north-south oriented mountain ridge with an altitude of 383 m, located in southwest of Alentejo (southern Portugal). The study area is 675 km2, including the councils of Grândola, Santiago do Cacém and Sines. The process for mapping of erosive status was based on the guidelines for measuring and mapping the processes of erosion of coastal areas of the Mediterranean proposed by PAP/RAC (1997), developed and later modified by other authors in different areas. This method is based on the application of a geographic information system that integrates different types of spatial information inserted into a digital terrain model and in their derivative models. Erosive status are classified using information from soil erodibility, slope, land use and vegetation cover. The rainfall erosivity map was obtained using the modified Fournier index, calculated from the mean monthly rainfall, as recorded in 30 meteorological stations with influence in the study area. Finally, the soil erosion risk map was designed by ovelaying the erosive status map and the rainfall erosivity map.

  7. PAHs contamination in urban soils from Lisbon: spatial variability and potential risks

    NASA Astrophysics Data System (ADS)

    Cachada, Anabela; Pereira, Ruth; Ferreira da Silva, Eduardo; Duarte, Armando

    2015-04-01

    Polycyclic Aromatic hydrocarbons (PAHs) can become major contaminants in urban and industrial areas, due to the existence of a plethora of diffuse and point sources. Particularly diffuse pollution, which is normally characterized by continuous and long-term emission of contaminants below risk levels, can be a major problem in urban areas. Since PAHs are persistent and tend to accumulate in soils, levels are often above the recommended guidelines indicating that ecological functions of soils may be affected. Moreover, due to the lipophilic nature, hydrophobicity and low chemical and biological degradation rates of PAHs, which leads to their bioconcentration and bioamplification, they may reach toxicological relevant concentrations in organisms. The importance and interest of studying this group of contaminants is magnified due to their carcinogenic, mutagenic and endocrine disrupting effects. In this study, a risk assessment framework has been followed in order to evaluate the potential hazards posed by the presence of PAHs in Lisbon urban soils. Hence, the first step consisted in screening the total concentrations of PAHs followed by the calculation of risks based on existing models. Considering these models several samples were identified as representing a potential risk when comparing with the guidelines for soil protection. Moreover, it was found that for 38% of samples more than 50% of species can be potentially affected by the mixture of PAHs. The use of geostatistical methods allowed to visualize the predicted distribution of PAHs in Lisbon area and identify the areas where possible risk to the environment are likely occurring However, it is known that total concentration may not allow a direct prediction of environmental risk, since in general only a fraction of total concentration is available for partitioning between soil and solution and thus to be uptake or transformed by organisms (bioacessible or bioavailable) or to be leached to groundwater. The

  8. Evaluation of toxicity to the amphipod, Hyalella azteca, and to the midge, Chironomus dilutus; and bioaccumulation by the oligochaete, Lumbriculus variegatus, with exposure to PCB-contaminated sediments from Anniston, Alabama

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.; Brumbaugh, William G.; Coady, Matthew R.; Farrar, J. Daniel; Lotufo, Guilherme R.; Kemble, Nile E.; Kunz, James L.; Stanley, Jacob K.; Sinclair, Jesse A.; Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.

    2014-01-01

    The U.S. Environmental Protection Agency (USEPA) requested that as part of the remedial investigation for the Anniston, Alabama Polychlorinated Biphenyl (PCB) Site (Anniston PCB Site), that Pharmacia Corporation and Solutia Inc. (P/S) perform long-term reproduction toxicity tests with the amphipod, Hyalella azteca, and the midge, Chironomus dilutus, and bioaccumulation tests with the oligochaete, Lumbriculus variegatus, using sediment samples collected from reference locations and from Operable Unit 4 of the Anniston PCB Site. The sediment toxicity testing and sediment bioaccumulation results will be used by ARCADIS U.S., Inc. (ARCADIS) as part of a weight-of-evidence assessment to evaluate risks and establish sediment remediation goals for contaminants to sediment-dwelling organisms inhabiting the Anniston PCB Site. The goal of this study was to characterize relations between sediment chemistry and sediment toxicity and relations between sediment chemistry and sediment bioaccumulation in samples of sediments collected from the Anniston PCB Site. A total of 32 samples were evaluated from six test sites and one reference site to provide a wide range in concentrations of chemicals of potential concern (COPCs) including PCBs in samples of whole sediment. The goal of this study was not to determine the extent of sediment contamination across the Anniston PCB Site. Hence, the test sites or samples collected from within a test site were not selected to represent the spatial extent of sediment contamination across the Anniston PCB Site. Sediment chemistry, pore-water chemistry, and sediment toxicity data were generated for 26 sediment samples from the Anniston PCB Site. All of the samples were evaluated to determine if they qualified as reference sediment samples. Those samples that met the chemical selection criteria and biological selection criteria were identified as reference samples and used to develop the reference envelope for each toxicity test endpoint. Physical

  9. Behaviour of polychlorinated biphenyls contaminating soil near Zadar.

    PubMed

    Kobasić, Vedranka Hodak; Picer, Mladen; Picer, Nena; Sraka, Mario; Kovac, Tatjana

    2006-09-01

    This study analysed PCB-contaminated natural soil excavated from an area adjacent to an electrical transformer station in Zadar, Croatia. For one year, PCB concentrations were measured in the soil and leachate water under natural climatic conditions. After 12 months, a negligible quantity of Aroclor 1248 (0.024% in average) and a total of seven key PCB congeners (IUPAC No: PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153, and PCB-180) were leached through the soils into water collected under lysimeters (0.032% in average). Although the amounts of leached PCBs were relatively small, their range 2 microg L(-1) to 15 microg L(-1) substantially exceeds the maximal allowed concentration of total PCBs in fishponds which is 1 ng L(-1). Soil samples were taken on two occasions from three depths from each lysimeter. The distribution of total PCBs as Aroclor 1248 equivalents and seven individual PCB congeners was determined within soil layers before and after planting seeds. In all soil plots the content of total seven PCBs and some individual PCB congeners in the surface soil layers significantly decreased. The total content of the seven PCB congeners in the surface soil layer of all soil plots decreased between 19.0% (soil plot 2) and 47.6% (soil plot 1) and in the middle soil layer between 8.1% (soil plot 4) and 37.4% (soil plot 1). PCB-28 and PCB-52 showed the highest percent of removal in all soil plots after 12 months of the experiment. The most important mechanism of removal of "lighter" congeners may be evaporation from the soil surface. Generally, our results showed that the PCBs accumulated in the deepest level of the soil, probably due to vertical transport and decreased evaporation. Some of the PCB content was lost to their degradation in the rhizosphere of the plants growing on the analysed soil plots.

  10. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks.

    PubMed

    Ngole-Jeme, Veronica M

    2016-04-01

    Soils enriched with heavy metals from vehicular emission present a significant exposure route of heavy metals to individuals using unpaved roads. This study assessed the extent of Cd, Cr, Co, Cu, Ni, Pb and Zn contamination of soils along unpaved roads in Cameroon, and the health risks presented by incidental ingestion and dermal contact with the soils using metal contamination factor (CF) pollution load index, hazard quotients (HQ) and chronic hazard index (CHI). CF values obtained (0.9-12.2) indicate moderate to high contamination levels. HQ values for Cr, Cd and Pb exceeded the reference doses. Moderate health hazard exists for road users in the areas with intense anthropogenic activities and high average daily traffic (ADT) volume according to CHI values (1-4) obtained. The economy and quality of life in cities with unpaved roads could be threatened by health challenges resulting from long-term exposure to heavy metal derived from high ADT volumes.

  11. Indoor Soiling Method and Outdoor Statistical Risk Analysis of Photovoltaic Power Plants

    NASA Astrophysics Data System (ADS)

    Rajasekar, Vidyashree

    This is a two-part thesis. Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules. Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives. The indoor and outdoor soiling studies were jointly

  12. Terrestrial risk assessment for linear alkyl benzene sulfonate (LAS) in sludge-amended soils.

    PubMed

    de Wolf, W; Feijtel, T

    1998-03-01

    A comparison of the estimated environmental concentration and the effect concentrations (in the laboratory or field) in the receiving compartment form the basis of environmental risk assessments. This paper reviews processes that critically influence the fate of LAS in the terrestrial environment. Concentrations of LAS in sludge are quite high due to sorption to primary sludge, precipitation of Ca and Mg-salts of LAS, and lack of biodegradation under anaerobic digestion. This implies that when sludge is applied to soil e.g. as a fertilizer, considerable amounts of this important surfactant may enter the terrestrial environment. Influence of aerobic situations on LAS concentrations during sludge storage needs further research to allow incorporation into the risk assessment. Aerobic biodegradation in soil is considered the most important removal mechanism of LAS loading to the terrestrial environment through sludge-amendment. Sorption plays a role in determining the residence time of a chemical in the soil, hereby enabling more time for biodegradation to occur. In addition, sorption may affect the expression of effects of surfactants towards benthic and soil dwelling organisms and plants. Another factor that needs further attention is the form of LAS in the environment, which is not similar to the commercial material applied in detergents. The differential sorption and biodegradation of the LAS components lead to a shift in the alkyl chain length (homologue), and phenylisomer distribution towards increased hydrophobicity. Also, occurrence of Ca/Mg-salts in the environment versus the Na-salt for the commercial material critically impacts the extrapolation of effects data obtained in lab studies (mostly performed with the commercial material) to the field. The literature data were used in combination with strategies and methods provided by the European Union Technical Guidance Document in support of risk assessment of new and notified substances (1996) for the

  13. Heavy metal accumulation in soils, plants, and hair samples: an assessment of heavy metal exposure risks from the consumption of vegetables grown on soils previously irrigated with wastewater.

    PubMed

    Massaquoi, Lamin Daddy; Ma, Hui; Liu, Xue Hui; Han, Peng Yu; Zuo, Shu-Mei; Hua, Zhong-Xian; Liu, Dian-Wu

    2015-12-01

    It is common knowledge that soils irrigated with wastewater accumulate heavy metals more than those irrigated with cleaner water sources. However, little is known on metal concentrations in soils and cultivars after the cessation of wastewater use. This study assessed the accumulation and health risk of heavy metals 3 years post-wastewater irrigation in soils, vegetables, and farmers' hair. Soils, vegetables, and hair samples were collected from villages previously irrigating with wastewater (experimental villages) and villages with no history of wastewater irrigation (control villages). Soil samples were digested in a mixture of HCL/HNO3/HCLO4/HF. Plants and hair samples were digested in HNO3/HCLO4 mixture. Inductive coupled plasma-optical emission spectrometer (ICP-OES) was used to determine metal concentrations of digested extracts. Study results indicate a persistence of heavy metal concentration in soils and plants from farms previously irrigated with wastewater. In addition, soils previously irrigated with wastewater were severely contaminated with cadmium. Hair metal concentrations of farmers previously irrigating with wastewater were significantly higher (P < 0.05) than farmers irrigating with clean water, but metal concentrations in hair samples of farmers previously irrigating with wastewater were not associated with current soil metal concentrations. The study concludes that there is a persistence of heavy metals in soils and plants previously irrigated with wastewater, but high metal concentrations in hair samples of farmers cannot be associated with current soil metal concentrations.

  14. Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi.

    PubMed

    Hurst, Rachel; Siyame, Edwin W P; Young, Scott D; Chilimba, Allan D C; Joy, Edward J M; Black, Colin R; Ander, E Louise; Watts, Michael J; Chilima, Benson; Gondwe, Jellita; Kang'ombe, Dalitso; Stein, Alexander J; Fairweather-Tait, Susan J; Gibson, Rosalind S; Kalimbira, Alexander A; Broadley, Martin R

    2013-01-01

    Selenium (Se) is an essential human micronutrient with critical roles in immune functioning and antioxidant defence. Estimates of dietary Se intakes and status are scarce for Africa although crop surveys indicate deficiency is probably widespread in Malawi. Here we show that Se deficiency is likely endemic in Malawi based on the Se status of adults consuming food from contrasting soil types. These data are consistent with food balance sheets and composition tables revealing that >80% of the Malawi population is at risk of dietary Se inadequacy. Risk of dietary Se inadequacy is >60% in seven other countries in Southern Africa, and 22% across Africa as a whole. Given that most Malawi soils cannot supply sufficient Se to crops for adequate human nutrition, the cost and benefits of interventions to alleviate Se deficiency should be determined; for example, Se-enriched nitrogen fertilisers could be adopted as in Finland.

  15. Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi

    PubMed Central

    Hurst, Rachel; Siyame, Edwin W. P.; Young, Scott D.; Chilimba, Allan D. C.; Joy, Edward J. M.; Black, Colin R.; Ander, E. Louise; Watts, Michael J.; Chilima, Benson; Gondwe, Jellita; Kang'ombe, Dalitso; Stein, Alexander J.; Fairweather-Tait, Susan J.; Gibson, Rosalind S.; Kalimbira, Alexander A.; Broadley, Martin R.

    2013-01-01

    Selenium (Se) is an essential human micronutrient with critical roles in immune functioning and antioxidant defence. Estimates of dietary Se intakes and status are scarce for Africa although crop surveys indicate deficiency is probably widespread in Malawi. Here we show that Se deficiency is likely endemic in Malawi based on the Se status of adults consuming food from contrasting soil types. These data are consistent with food balance sheets and composition tables revealing that >80% of the Malawi population is at risk of dietary Se inadequacy. Risk of dietary Se inadequacy is >60% in seven other countries in Southern Africa, and 22% across Africa as a whole. Given that most Malawi soils cannot supply sufficient Se to crops for adequate human nutrition, the cost and benefits of interventions to alleviate Se deficiency should be determined; for example, Se-enriched nitrogen fertilisers could be adopted as in Finland. PMID:23478344

  16. [Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China].

    PubMed

    Li, Yi-Meng; Ma, Jian-Hua; Liu, De-Xin; Sun, Yan-Li; Chen, Yan-Fang

    2015-03-01

    Ninety-nine topsoil (0-15 cm) samples were collected from Kaifeng City, China using the grid method, and then the concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn in the samples were measured by standard methods. Soil pollution levels and potential ecological risks of the heavy metals were assessed using the pollution load index (PLI) and potential ecological risk index (RI), respectively. Ordinary Kriging interpolation technique was employed to investigate the spatial distribution of PLI and RI of the city. The results showed that high pollution of Cd occurred in Kaifeng urban soils, and there was moderate pollution of Zn, slight pollution of Pb and Cu, and no pollution of Ni, Cr and As. Very high ecological risk was posed by Cd and low risk by other metals. The mean PLI of the 7 metals from all sample points was 2.53, which was categorized as moderate pollution. The average RI was 344.58 which represented a considerable ecological risk. PLI and RI shared a similar spatial distribution with high values centralized in the old industrial area in the southeast and railway stations for passengers and goods in the south of the city, followed by the old town within the ancient city wall, and low values located in the north and west areas. Cadmium was the main factor for both soil pollution and potential ecological risk primarily due to farmland topsoil in the eastern suburb of Kaifeng City with high Cd concentrations resulted from sewage irrigation deposited in the urban area by wind, human activities such as soot discharged from the chemical fertilizer plant of Kaifeng, transportation and coal combustion.

  17. Risks and benefits of gardening in urban soil; heavy metals and nutrient content in Los Angeles Community Gardens

    NASA Astrophysics Data System (ADS)

    Clarke, L. W.; Jenerette, D.; Bain, D. J.

    2012-12-01

    The availability of soil nutrients and heavy metals in urban community gardens can influence health of crops and participants. Interactions between garden history, management, and soils are understudied in cities. In July 2011, we collected soil samples from 45 plots at 6 Los Angeles community gardens. For comparison, 3 samples were collected from uncultivated garden soils and 3 more from outside soils. Samples were then tested for major nutrients- Nitrogen(N), Potassium (K), and Phosphorous (P)- and organic matter (SOM). We also measured concentrations of 29 metals in 3 gardens using Inductively Coupled Plasma- Atomic Emission Spectroscopy. Potassium and phosphorus exceeded optimum levels in all plots, with some over twice the maximum recommended levels. Over-fertilized soils may contribute to local watershed pollution and crop micronutrient deficiencies. Low soil SOM was observed in gardens in impoverished neighborhoods, possibly due to low quality amendments. Our metals analysis showed dangerous levels of lead (Pb)-- up to 1700 ppm in outside soils and 150 ppm in garden soils-- near older gardens, indicating lead deposition legacies. California lead safety standards indicate that children should not play near soils with Pb above 200 ppm, indicating need for long term monitoring of lead contaminated gardens. Arsenic (As) levels exceeded federal risk levels (0.3 ppm) and average CA background levels (2 ppm) in all areas, with some gardens exceeding 10 ppm. Heavy metal legacies in gardens may pose risks to participants with prolonged exposure and remediation of soils may be necessary.

  18. [Distribution and Risk Assessment of Sulfonamides Antibiotics in Soil and Vegetables from Feedlot Livestock].

    PubMed

    Jin, Cai-xia; Si, Xiao-wei; Wang, Zi-ying; Zhang, Qin-wen

    2016-04-15

    Soil and vegetable samples were collected from 13 different livestock farms of different sizes in Xinxiang of China, and the residues of three sulfonamides including sulfadiazine, sulfamonomethoxine, and sulfamethoxazole were analyzed by HPLC with a fluorimetric detector, The results indicated that the total concentration ranges of the three sulfonamides in soil and vegetable were 7.60-176.26 µg · kg⁻¹ and ND-32, 70 µg · kg⁻¹, respectively. The mean concentrations were 70.73 µg · kg⁻¹ and 7.08 µg · kg⁻¹ for soil and vegetables. The residue levels in soil were all lower than the ecotoxic effect trigger value (100 µg · kg⁻¹) set by the Veterinary Medicine International Coordination Commission, indicating the low risk for organisms in soil. The concentrations of three sulfonamides varied significantly in different kinds of vegetables and were all lower than the acceptable daily intake values [50 µg · (kg ·d)⁻¹] set by Joint FAO/WHO Expert CommIttee on Food Additives. But we cannot neglect the potential ecotoxicity and resistance for human via food chain.

  19. Soil factors of ecosystems' disturbance risk reduction under the impact of rocket fuel

    NASA Astrophysics Data System (ADS)

    Krechetov, Pavel; Koroleva, Tatyana; Sharapova, Anna; Chernitsova, Olga

    2016-04-01

    Environmental impacts occur at all stages of space rocket launch. One of the most dangerous consequences of a missile launch is pollution by components of rocket fuels ((unsymmetrical dimethylhydrazine (UDMH)). The areas subjected to falls of the used stages of carrier rockets launched from the Baikonur cosmodrome occupy thousands of square kilometers of different natural landscapes: from dry steppes of Kazakhstan to the taiga of West Siberia and mountains of the Altai-Sayany region. The study aims at assessing the environmental risk of adverse effects of rocket fuel on the soil. Experimental studies have been performed on soil and rock samples with specified parameters of the material composition. The effect of organic matter, acid-base properties, particle size distribution, and mineralogy on the decrease in the concentration of UDMH in equilibrium solutions has been studied. It has been found that the soil factors are arranged in the following series according to the effect on UDMH mobility: acid-base properties > organic matter content >clay fraction mineralogy > particle size distribution. The estimation of the rate of self-purification of contaminated soil is carried out. Experimental study of the behavior of UDMH in soil allowed to define a model for calculating critical loads of UDMH in terrestrial ecosystems.

  20. Assessment of the human health risks posed by exposure to chromium-contaminated soils

    SciTech Connect

    Sheehan, P.J.; Meyer, D.M.; Sauer, M.M.; Paustenbach, D.J. )

    1991-02-01

    Millions of tons of chromite-ore processing residue have been used as fill in various locations in northern New Jersey and elsewhere in the United States. The primary toxicants in the residue are trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)). The hazard posed by Cr(III) is negligible due to its low acute and chronic toxicity. In contrast, Cr(VI) is a human carcinogen following inhalation of high concentrations. It can also cause allergic contact dermatitis. This evaluation addresses a residential site where the arithmetic mean (x) and geometric mean (gm) concentrations of Cr(III) in soil were 2879 and 1212 mg/kg (ppm). The mean concentrations of Cr(VI) were 180 and 4 mg/kg, respectively. The uptake (absorbed dose) of Cr(III) via soil ingestion, consumption of homegrown vegetables, and ingestion of inspired particles was determined. The uptake of Cr(VI) via dermal absorption from contact with surface soil and building wall surfaces, as well as inhalation, was also evaluated. The techniques used in this assessment are applicable for evaluating the human health risks posed by any residential site having contaminated soil. The potential for both sensitized and unsensitized persons to develop allergic contact dermatitis due to exposure to soil contaminated at these levels was found to be negligible. The estimated average daily dose (ADD) via ingestion and dermal absorption for the maximally exposed individual (MEI) was about 1500- and 40-fold below the EPA reference dose (RfD) for Cr(III) and Cr(VI), respectively. It was shown that for residential sites, the most important route of exposure to Cr(III) was incidental soil ingestion. Although not relevant to these sites specifically, if garden vegetables could be successfully grown in these soils, then they would probably be the predominant source of uptake of Cr(III). 163 refs.

  1. [Risk assessment and countermeasures of BTEX contamination in soils of typical pesticide factory].

    PubMed

    Tan, Bing; Wang, Tie-Yu; Li, Qi-Feng; Zhang, Hai-Yan; Pang, Bo; Zhu, Zhao-Yun; Wang, Dao-Han; Lü, Yong-Long

    2014-06-01

    Soil samples around three representative pesticide factories were collected in Zhangjiakou City, Hebei Province, and analyzed to identify their pollution characteristics and health risk of BTEX by purge-and trap and gas chromatography/mass spectroscopy method. Total concentrations of BTEX in soils in Plant A, B and C ranged from 673.50 to 32 363.50 ng x g(-1), nd to 6 461.80 ng x g(-1) and 461.70 to 8 740.80 ng x g(-1), respectively. Concentrations of detected toluene (4 619.50-7 234.30 ng x g(-1)) and ethylbenzene (364.60-7 944.60 ng x g(-1)) had exceeded the Canadian guidelines for industrial land (370 ng x g(-1) and 82 ng x g(-1)), and concentration of xylene (19 799.40 ng x g(-1)) in dust in production area of Plant A was larger than the Dutch soil intervention value (17 000 ng x g(-1)). While concentrationsn of BTEX around Plant A (Region I ) and Plant B and C (Region II) ranged from nd to 645.81 ng x g(-1), and nd to 309.13 ng x g(-1), respectively, which were below the Canadian guidelines for agricultural land. The non-carcinogenic risk of BTEX in Plant A (2.90E-06 -1.32E-04), B (nd -4.30E-05) and C (1.29E-06 -5.64E-05) were all below 1, which suggested that no obvious health risk existed in each plant. The non-carcinogenic risks in Region I (nd -2.02E-06) and Region II (nd -1.10E-06) were below than 1, and also lower than those in factories. High risk areas were mainly concentrated in the downwind, moreover, soils around villages and towns were also with higher risk. In conclusion, soils and dusts in each factory had been polluted and the quality of agricultural land had been partly deteriorated. Finally, environmental management and occupational protection countermeasures were proposed based on the research results.

  2. Recovery of a PCB-Contaminated Creek Fish Community

    EPA Science Inventory

    Polychlorinated Biphenyls (PCBs) from the Sangamo-Weston Superfund Site near Clemson, South Carolina, USA, were released into the Twelvemile Creek until the early 1990s. PCB concentrations in fish in this creek have remained elevated: levels in six target fish species are still a...

  3. Temporal trends toward stability of Hudson River PCB contamination

    SciTech Connect

    Sloan, R.J.; Simpson, K.W.; Schroeder, R.A.; Barnes, C.R.

    1983-10-01

    PCB was used in the manufacture of electrical equipment at two General Electric Company (GE) facilities located on the upper Hudson River about 1 km apart in Fort Edward and Hudson Falls (Washington Co.) New York. Discharges of PCB from these plants resulted in concentrations in bottom sediments of the Hudson River which now exceed those of other major rivers by about two orders of magnitude and those of small remote streams by more than three orders of magnitude. Intensive monitoring was initiated in 1977 by the New York State Department of Environmental Conservation (DEC) to ascertain the magnitude of and trends in contaminant conditions of biotic and physical strata. The paper summarizes PCB trends from 1977 to 1981 in three major monitoring components - water, multiplate residues and fish.

  4. Solvent cleaning of pole transformers containing PCB contaminated insulating oil.

    PubMed

    Kanbe, H; Shibuya, M

    2001-01-01

    In 1989, it was discovered that the recycled insulation oil in pole transformers for electric power supply was contaminated with trace amounts of polychlorinated biphenyls (PCBs; maximum 50 mg-PCB/kg-insulation oil). In order to remove the PCBs from transformer components using n-hexane as a solvent, we investigated the relationship between progressive stages of dismantling and cleaning results. The results are summarized as follows: (1) Based on the cleaning test results, we made an estimate of the residual PCB amount on iron and copper components. By dismantling the test pole transformers into the "iron core and coil portion" and cleaning the components, we achieved a residual PCB amount that was below the limit of detection (0.05 mg-PCB/kg-material). To achieve a residual PCB amount below the limit of detection for the transformer paper component, it was necessary to cut the paper into pieces smaller than 5 mm. We were unable to achieve a residual PCB amount below the limit of detection for the wood component. (2) Compared to Japan's stipulated limited concentration standard values for PCBs, the results of the cleaning test show that cleaning iron or copper components with PCBs only on their surface with the solvent n-hexane will satisfy the limited concentration standard values when care is taken to ensure the component surfaces have adequate contact with the cleaning solvent.

  5. INFECUNDITY AND CONSUMPTION OF PCB-CONTAMINATED SPORT FISH

    EPA Science Inventory

    Biologic capacity for reproduction, or fecundity, may be threatened by environmental contaminants, especially compounds capable of disrupting endocrine pathways. Telephone interviews that focused on reproductive events were conducted with female members of the New York State Angl...

  6. Trace metals in soil and vegetables and associated health risk assessment.

    PubMed

    Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md; Masunaga, Shigeki

    2014-12-01

    The objective of this study was to assess the contamination level of trace metals in soil and vegetables and health risk to the urban population in Bangladesh. The range of Cr, Ni, Cu, As, Cd, and Pb in agricultural soils was 158-1160, 104-443, 157-519, 41-93, 3.9-13, and 84-574 mg/kg, respectively. Sequential extraction tests revealed that the studied metals were predominantly associated with the residual fraction, followed by the organically bound phase. Concerning Cu, Ni, Cd, and Pb in vegetables, more than 50 % samples exceeded the FAO/WHO recommended permissible limits. Considering the transfer of metals from soil to vegetables, Cu and Cd exhibited higher transfer factor (TF) values than the other metals. Target hazard quotient (THQ) for individual metal was below 1, suggesting that people would not experience significant health hazards if they ingest a single metal from vegetables. However, total metal THQ signifies the potential non-carcinogenic health hazard to the highly exposed consumers. The carcinogenic risk (TR) of As (1.9 × 10(-4)) and Pb (2.3 × 10(-5)) through consumption of vegetables were higher than the USEPA threshold level (10(-6)), indicating potential cancer risks.

  7. Assessment of herbicide leaching risk in two tropical soils of Reunion Island (France).

    PubMed

    Bernard, H; Chabalier, P F; Chopart, J L; Legube, B; Vauclin, M

    2005-01-01

    Application of organic chemicals to a newly irrigated sugarcane (Saccharum officinarum L.) area located in the semiarid western part of Reunion Island has prompted local regulatory agencies to determine their potential to contaminate ground water resources. For that purpose, simple indices known as the ground water ubiquity score (Gustafson index, GUS), the retardation factor (RF), the attenuation factor (AF), and the log-transformed attenuation factor (AFT) were employed to assess the potential leaching of five herbicides in two soil types. The herbicides were alachlor [2-chloro-2',6'-diethyl-N-(methoxy-methy) acetanilide], atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine], diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], 2,4-D [(2,4-dichlorophenoxy) acetic-acid], and triclopyr [((3,5,6-trichloro-2-pyridyl)oxy) acetic-acid]. The soil types were Vertic (BV) and Andepts (BA) Inceptisols, which are present throughout the Saint-Gilles study area on Reunion Island. To calculate the indices, herbicide sorption (K(oc)) and dissipation (half-life, DT50) properties were determined from controlled batch experiments. Water fluxes below the root zone were estimated by a capacity-based model driven by a rainfall frequency analysis performed on a 13-yr data series. The results show a lower risk of herbicide leaching than in temperate regions due to the tropical conditions of the study area. Higher temperatures and the presence of highly adsorbent soils may explain smaller DT50 and higher K(oc) values than those reported in literature concerning temperate environments. Based on the RF values, only 2,4-D and triclopyr appear mobile in the BV soil, with all the other herbicides being classified from moderately to very immobile in both soils. The AFT values indicate that the potential leaching of the five herbicides can be considered as unlikely, except during the cyclonic period (about 40 d/yr) when there is a 2.5% probability of recharge rates equal to or

  8. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment.

    PubMed

    Li, Cheng; Chen, Jiayi; Wang, Jihua; Ma, Zhihong; Han, Ping; Luan, Yunxia; Lu, Anxiang

    2015-07-15

    The occurrence of 15 antibiotics in soil and manure samples from 11 large-scale greenhouse vegetable production (GVP) bases in Beijing, China was investigated. Results showed that the greenhouse soils were ubiquitously contaminated with antibiotics, and that antibiotic concentrations were significantly higher in greenhouses than in open field soils. The mean concentrations of four antibiotic classes decreased in the following order: tetracyclines (102μg/kg)>quinolones (86μg/kg)>sulfonamides (1.1μg/kg)>macrolides (0.62μg/kg). This investigation also indicated that fertilization with manure and especially animal feces might be the primary source of antibiotics. A risk assessment based on the calculated risk quotients (RQs) demonstrated that oxytetracycline, chlortetracycline, norfloxacin, ciprofloxacin and enrofloxacin could pose a high risk to soil organisms. These results suggested that the ecological effects of antibiotic contamination in GVP bases and their potential adverse risks on human health need to be given special attention.

  9. Levels and ecological risk assessment of metals in soils from a typical e-waste recycling region in southeast China.

    PubMed

    Zhao, Weituo; Ding, Lei; Gu, Xiaowen; Luo, Jie; Liu, Yunlang; Guo, Li; Shi, Yi; Huang, Ting; Cheng, Shenggao

    2015-11-01

    Due to the high threat to human health and the ecosystem from metals, the levels and distribution of As, Hg, Cr, Co, Ni, Cu, Zn, Cd, Pb, Mn, V, Sn, Sb, Li and Be in various layers of soil from an e-waste recycling area in Guiyu, China were investigated. The extent of pollution from the metals in soil was assessed using enrichment factors (EFs) and the Nemerow pollution index (P N ). To determine the metals' integrated potential ecological risks, the potential ecological risk index (RI) was chosen. The concentrations of Hg, Ni, Cu, Cd, Pb, Sn and Sb were mainly enriched in the topsoil. EF values (2-5) of the elements Hg, Co, Ni, Zn, Sn, Li and Be revealed their moderate enrichment status in the topsoil, derived from e-waste recycling activities. P N presented a decreasing trend in different layers in the order topsoil (0-20 cm) > deep soil (100-150 cm) > middle soil (50-100 cm) > shallow soil (20-50 cm). With higher potential ecological risk factor (E(i)), Hg and Cd are the main contributors to the potential ecological risk. With respect to the RI, all the values in soil from the study area exceeded 300, especially for the soil at sites S2, S4, S5, S7 and S8, where RI was greater than 600. Therefore, immediate remediation of the contaminated soil is necessary to prevent the release of metals and potential ecological harm.

  10. Assessment and optimization of an ultrasound-assisted washing process using organic solvents for polychlorinated biphenyl-contaminated soil.

    PubMed

    Bezama, Alberto; Flores, Alejandra; Araneda, Alberto; Barra, Ricardo; Pereira, Eduardo; Hernández, Víctor; Moya, Heriberto; Konrad, Odorico; Quiroz, Roberto

    2013-10-01

    The goal of this work was to evaluate a washing process that uses organic solutions for polychlorinated biphenyl (PCB)-contaminated soil, and includes an ultrasound pre-treatment step to reduce operational times and organic solvent losses. In a preliminary trial, the suitability of 10 washing solutions of different polarities were tested, from which three n-hexane-based solutions were selected for further evaluation. A second set of experiments was designed using a three-level Taguchi L27 orthogonal array to model the desorption processes of seven different PCB congeners in terms of the variability of their PCB concentration levels, polarity of the washing solution, sonication time, the ratio washing solution/soil, number of extraction steps and total washing time. Linear models were developed for the desorption processes of all congeners. These models provide a good fit with the results obtained. Moreover, statistically significant outcomes were achieved from the analysis of variance tests carried out. It was determined that sonication time and ratio of washing solution/soil were the most influential process parameters. For this reason they were studied in a third set of experiments, constructed as a full factorial design. The process was eventually optimized, achieving desorption rates of more than 90% for all congeners, thus obtaining concentrations lower than 5 ppb in all cases. The use of an ultrasound-assisted soil washing process for PCB-contaminated soils that uses organic solvents seems therefore to be a viable option, especially with the incorporation of an extra step in the sonication process relating to temperature control, which is intended to prevent the loss of the lighter congeners.

  11. Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization.

    PubMed

    Ozsoy, Gokhan; Aksoy, Ertugrul

    2015-07-01

    This paper integrates the Revised Universal Soil Loss Equation (RUSLE) with a GIS model to investigate the spatial distribution of annual soil loss and identify areas of soil erosion risk in the Uluabat sub-watershed, an important agricultural site in Bursa Province, Turkey. The total soil loss from water erosion was 473,274 Mg year(-1). Accordingly, 60.3% of the surveyed area was classified into a very low erosion risk class while 25.7% was found to be in high and severe erosion risk classes. Soil loss had a close relationship with land use and topography. The most severe erosion risk typically occurs on ridges and steep slopes where agriculture, degraded forest, and shrubs are the main land uses and cover types. Another goal of this study was to use GIS to reveal the multi-year urbanization status caused by rapid urbanization that constitutes another soil erosion risk in this area. Urbanization has increased by 57.7% and the most areal change was determined in class I lands at a rate of 80% over 25 years. Urbanization was identified as one of the causes of excessive soil loss in the study area.

  12. Probabilistic risk assessment for linear alkylbenzene sulfonate (LAS) in sewage sludge used on agricultural soil.

    PubMed

    Schowanek, Diederik; David, Helen; Francaviglia, Rosa; Hall, Jeremy; Kirchmann, Holger; Krogh, Paul Henning; Schraepen, Nathalie; Smith, Stephen; Wildemann, Tanja

    2007-12-01

    Deterministic and probabilistic risk assessments were developed for commercial LAS in agricultural soil amended with sewage sludge. The procedure done according to ILSI Europe's Conceptual Framework [Schowanek, D., Carr, R., David, H., Douben, P., Hall, J., Kirchmann, H., Patria, L., Sequi, P., Smith, S., Webb, S.F., 2004. A risk-based methodology for deriving quality standards for organic contaminants in sewage sludge for use in agriculture-conceptual Framework. Regul. Toxicol. Pharmacol. 40 (3), 227-251], consists of three main steps. First, the most sensitive endpoint was determined. This was found to be the chronic ecotoxicity of LAS to soil invertebrates and plants. Additional endpoints, such as potential for plant uptake and transfer in the food chain, leaching to groundwater, surface erosion run-off, human health risk via drinking water, plant consumption and soil ingestion were also systematically evaluated but were all assessed to be of little toxicological significance. In the second step, a back-calculation was conducted from the Predicted No-Effect Concentration in soil (PNECsoil) to a safe level of LAS in sludge (here called 'Sludge Quality Standard'; SQS). The deterministic approach followed the default agricultural soil exposure scenario in the EU-Technical Guidance Document (TGD). The SQS for LAS was calculated as 49 g/kg sludge Dry Matter (DM). In order to assess the potential variability as a result of varying agricultural practices and local environmental conditions, two probabilistic exposure assessment scenarios were also developed. The mean SQS was estimated at 55 and 27.5 g/kg DM for the homogeneous soil mixing and soil injection scenarios, respectively. In the final step, the resulting SQS values were evaluated for consistency and relevance versus available information from agricultural experience and field tests. No build-up, adverse impact on soil fertility, agronomic performance, or animal/human health have been reported for agricultural

  13. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China.

    PubMed

    Zhao, Huarong; Xia, Beicheng; Fan, Chen; Zhao, Peng; Shen, Shili

    2012-02-15

    Soil heavy metal contamination is a major environmental concern, and the ecological risk associated with heavy metals is increasing. In this paper, we investigated heavy metal contamination near Dabaoshan Mine by: using sequential indicator simulation to delineate the spatial patterns of soil data; fitting multiple linear regression models for heavy metal uptake by crops; interpreting land uses from remote sensing images and integrating the spatial patterns, uptake models and land uses into a dose-response model for human health risks from heavy metals. The areas with elevated soil heavy metal concentrations are mainly located at the Dabaoshan Mine site and in the watershed basins of the Hengshi, Tielong and Chuandu rivers. The average concentrations of Cu, Zn, Cd and Pb in soil in the study area are all above the natural soil background levels, but Cd is the major contributor to human health risk in the area. Areas of low soil pH are also found throughout the watershed basins of the Hengshi, Tielong and Chuandu rivers. Of the different land use types in the study area, agricultural and residential land uses have the highest human health risk because ingestion is the dominant exposure pathway for heavy metals. The spatial patterns of the heavy metal concentrations and soil pH indicate that the areas with the highest human health risk regions do not directly coincide with the areas of highest heavy metal concentrations, but do coincide with the areas of lower soil pH. The contamination with high concentrations of heavy metals provides the risk source, but the combination of high heavy metal concentrations, low pH and agricultural or residential land use is required for human health risks to be present. The spatial pattern of the hazard quotients indicates that Cd is the most important pollutant contributing to the human health risk.

  14. Occurrence, sources and health risk assessment of polycyclic aromatic hydrocarbons in urban (Pudong) and suburban soils from Shanghai in China.

    PubMed

    Wang, Xue-Tong; Chen, Lei; Wang, Xi-Kui; Lei, Bing-Li; Sun, Yan-Feng; Zhou, Jun; Wu, Ming-Hong

    2015-01-01

    A comprehensive investigation was conducted to the urban (Pudong) and suburban soils in Shanghai. A total of 154 soil samples were analyzed for 26 PAHs including highly carcinogenic dibenzopyrenes (DBPs). The total concentrations ranged from 25.8 to 7380 μg kg(-1) for Σ26PAHs and 18.8 to 6320 μg kg(-1) for 16 USEPA priority PAHs (Σ16PAHs), respectively. The BaP toxic equivalent (BaPeq) concentrations were between 6.41 and 2880 μg kg(-1) for Σ24PAHs, 1.11 and 620 μg kg(-1) for Σ16PAHs and 2.72 and 2250 μg kg(-1) for Σ4DBPs. The high PAH contamination in green land soils might originate mainly from local road traffic and industrial activities, and sewage sludge application or waste water irrigation for soil. Seven sources of soil PAHs in Shanghai were identified by positive matrix factorization (PMF) model. The mean risk quotient (m-RQ) values indicated that there were medium to high ecological risks in 9.10% of soil samples, pyrene (Pyr), benzo[b]fluoranthene (BbF) and benz[a]anthracene (BaA) were the major ecological risk drivers under agricultural use. The cancer risk (CR) values were within the acceptable range at 35.7%, 35.1% and 31.2% of sampling sites for children, youths and adults, respectively. The total lifetime carcinogenic risk (TLCR) values at 57.8% of sampling sites were within the acceptable range. Overall, cancer risks of soil PAHs in all sampling sites in the studied area were below the highest acceptable risk, suggesting that soil PAHs are unlikely to pose a significant cancer risk for population based on ingestion, dermal contact and inhalation exposure pathways.

  15. A methodology for estimating risks associated with landslides of contaminated soil into rivers.

    PubMed

    Göransson, Gunnel; Norrman, Jenny; Larson, Magnus; Alén, Claes; Rosén, Lars

    2014-02-15

    Urban areas adjacent to surface water are exposed to soil movements such as erosion and slope failures (landslides). A landslide is a potential mechanism for mobilisation and spreading of pollutants. This mechanism is in general not included in environmental risk assessments for contaminated sites, and the consequences associated with contamination in the soil are typically not considered in landslide risk assessments. This study suggests a methodology to estimate the environmental risks associated with landslides in contaminated sites adjacent to rivers. The methodology is probabilistic and allows for datasets with large uncertainties and the use of expert judgements, providing quantitative estimates of probabilities for defined failures. The approach is illustrated by a case study along the river Göta Älv, Sweden, where failures are defined and probabilities for those failures are estimated. Failures are defined from a pollution perspective and in terms of exceeding environmental quality standards (EQSs) and acceptable contaminant loads. Models are then suggested to estimate probabilities of these failures. A landslide analysis is carried out to assess landslide probabilities based on data from a recent landslide risk classification study along the river Göta Älv. The suggested methodology is meant to be a supplement to either landslide risk assessment (LRA) or environmental risk assessment (ERA), providing quantitative estimates of the risks associated with landslide in contaminated sites. The proposed methodology can also act as a basis for communication and discussion, thereby contributing to intersectoral management solutions. From the case study it was found that the defined failures are governed primarily by the probability of a landslide occurring. The overall probabilities for failure are low; however, if a landslide occurs the probabilities of exceeding EQS are high and the probability of having at least a 10% increase in the contamination load

  16. Ecogeochemical mapping of urban soils as a tool for indication of risk factors

    NASA Astrophysics Data System (ADS)

    Sahakyan, Lilit; Saghetalyan, Armen; Asmaryan, Shushanik

    2010-05-01

    Today, most global and local environmental issues are connected with the disturbance of natural equilibrium of chemical elements, which is manifested by two contrary but synchronous and interconnected geochemical processes: dispersion and concentration of chemical elements. The ecological consequence of those intensively running processes is pollution of environmental compartments. High intensity and multi-component character of pollution is common to urban ecosystems. In this respect emphasized should be mining centers representing biogeochemical provinces where the whole range of geochemical processes connected with socio-economic activities of the man reaches its maximum and high natural background of chemical elements is coupled with their man-made load. Ecogeochemical mapping of soils of mining regions and cities is one of major tools while assessing ecological state of the territory and indicating risk factors. When systemizing indices of geochemical pollution, the produced case specific maps coupled with ecogeochemical mapping techniques are territorial generalization of levels of pollution and levels of its danger. This allows indicating its spatial differentiation and finally ranging the city's territory by features of the defined level of ecological risk. Moreover, ecogeochemical mapping of soils allows indicating dominating pollutants, peculiarities of their distribution and major risk factors as well and thus revealing risk groups in the population. An alternative method of ecogeochemical mapping of urban soils which allows to notably reduce the process of pollution level assessment and identification of risk factor is that of remote sensing. Collation between spatially conjugated data of soil analyses and multi-zonal satellite images allows developing spectral characteristics (signatures) of pollution of the territory with heavy metals (HM) and development of appropriate assessment criteria which may be reflected as diverse case specific maps. This

  17. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an].

    PubMed

    Fang, Xiao-bo; Shi, Han; Liao, Xin-feng; Lou, Zhong; Zhou, Lyu-yan; Yu, Hai-xia; Yao, Lin; Sun, Li-ping

    2015-06-01

    An investigation was carried out in an attempt to reveal the characteristics of heavy metals contamination in the soils of Phyllostachys praecox forest in Lin' an. Based on the concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in 160 topsoil samples, the pollution status and ecological risks of heavy metals in the soils were assessed by single factor pollution index, Nemerow integrated pollution index and Hankanson potential ecological risk index. The spatial variability of heavy metal concentrations in the soils closely related to the distribution of traffic, industrial and livestock pollution sources. The average concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in the soils were 0.16, 7.41, 34.36, 87.98, 103.98, 0.26, 59.12, 29.56, 11.44 and 350.26 mg · kg(-1), respectively. Pb, Cd, Zn and Cu concentrations were as 2.89, 1.70, 1.12 and 1.12 times as the background values of soil in Zhejiang Province, respectively. But their concentrations were all lower than the threshold values of the National Environmental Quality Standard for Soil (GB 15618-1995). The average single factor pollution index revealed that the level of heavy metal pollution in the soils was in order of Pb>Cd>Cu= Zn>Hg>As>Ni>Co>Cr>Mn. Pb pollution was of moderate level while Cd, Cu and Zn pollutions were slight. There was no soil pollution caused by the other heavy metals. However, the Nemerow integrated pollution index showed that all the 160 soil samples were contaminated by heavy metals to a certain extent. Among total 160 soil samples, slight pollution level, moderate pollution level and heavy pollution level accounted for 55.6%, 29.4% and 15.0%, respectively. The average single factor potential ecological risk index (Er(i)) implied that the potential ecological risk related to Cd reached moderate level, while the others were of slight level. Furthermore, Cd and Hg showed higher potential ecological risk indices which reached up to 256.82 and 187.33 respectively

  18. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China.

    PubMed

    Tang, Zhenwu; Zhang, Lianzhen; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2015-12-01

    Plastic wastes are increasingly being recycled in many countries. However, available information on the metals released into the environment during recycling processes is rare. In this study, the contamination features and risks of eight heavy metals in soils and sediments were investigated in Wen'an, a typical plastic recycling area in North China. The surface soils and sediments have suffered from moderate to high metal pollution and in particular, high Cd and Hg pollution. The mean concentrations of Cd and Hg were 0.355 and 0.408 mg kg(-1), respectively, in the soils and 1.53 and 2.10 mg kg(-1), respectively, in the sediments. The findings suggested that there is considerable to high potential ecological risks in more than half of the soils and high potential ecological risk in almost all sediments. Although the health risk levels from exposure to soil metals were acceptable for adults, the non-carcinogenic risks to local children exceeded the acceptable level. Source assessment indicated that heavy metals in soils and sediments were mainly derived from inputs from poorly controlled plastic waste recycling operations in this area. The results suggested that the risks associated with heavy metal pollution from plastic waste recycling should be of great concern.

  19. Soil heavy metal dynamics and risk assessment under long-term land use and cultivation conversion.

    PubMed

    Wang, Xuelei; Xu, Yiming

    2015-01-01

    Long-term agricultural development and cultivation conversions affect soil heavy metal balance and the regional environmental safety. In this study, heavy metal parameters were used to identify changes in soil properties in response to land use and cultivation conversions. The integrated soil quality index, which involves seven heavy metal indices, was proposed to assess the environmental risk of long-term human activities in Northeast China. We used the remote sensing and geographical data for the four-term land use distribution from 1979 to 2009 to identify the spatial patterns of regional land use conversions. Then, 41 samples from the top 20 cm of the soil at sites corresponding to these seven types of conversions were collected (permanent dry land, dry land converted from wetland, dry land converted from forest, permanent wetland, permanent forest, paddy land converted from dry land, and paddy land converted from wetland). Based on the local soil properties and tillage practices, the following seven heavy metal parameters were employed: Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb), and Zinc (Zn). The conversion of farmland from wetland resulted in an increase in the concentration of Pb and Cr in the soil. In contrast, the concentrations of Zn, Cu, Ni, and Cd decreased when wetland was converted into farmland because the tillage practices washed these heavy metals away. During the conversion of dry land and paddy land to wetland, the levels of Pb increased by approximately 28.6% and 24.7%, respectively. Under the same conditions, the concentration of As increased by 32.5% and 14.1%, respectively. The integrated index also demonstrated that the farmlands were not contaminated by the heavy metals during long-term agricultural development.

  20. Is the risk for soil arthropods covered by new data requirements under the EU PPP Regulation No. 1107/2009?

    PubMed

    Kohlschmid, E; Ruf, D

    2016-12-01

    Testing of effects on earthworms and non-target foliar arthropods is an integral part of the ecotoxicological risk assessment for the authorization of plant protection products. According to the new data requirements, which came into force in 2014 for active substances and in 2016 for plant protection products, the chronic earthworm toxicity test with Eisenia fetida based on reproductive, growth, and behavioral effects instead of the acute earthworm toxicity test based on mortality, has to be conducted routinely. Additional testing of effects on soil arthropods (Folsomia candida, Hyposaspis aculeifer) is required if the risk assessment of foliar applications raises concerns regarding non-target foliar arthropods (Aphidius rhopalosiphi, Typhlodromus pyri) or if the product is applied directly on or into the soil. Thus, it was investigated whether the sublethal earthworm endpoint is more sensitive than the sublethal soil arthropod endpoint for different types of pesticides and whether the risk assessment for non-target arthropods would trigger the testing of effects on soil arthropods in the cases where soil arthropods are more sensitive than earthworms. Toxicity data were obtained from Swiss ecotoxicological database, EFSA Conclusions and scientific literature. For insecticides and herbicides, no general conclusion regarding differences in sensitivity of either earthworms or soil arthropods based on sublethal endpoints were possible. For fungicides, the data indicated that in general, earthworms seemed to be more sensitive than soil arthropods. In total, the sublethal F. candida or H. aculeifer endpoint was lower than the sublethal E. fetida endpoint for 23 (34 %) out of 68 active substances. For 26 % of these 23 active substances, testing of soil arthropods would not have been triggered due to the new data requirement. These results based on sublethal endpoints show that earthworms and soil arthropods differ in sensitivity toward certain active substances and

  1. Operational methods for minimising soil compaction and diffuse pollution risk from wheelings in winter cereals

    NASA Astrophysics Data System (ADS)

    Jackson, Bob; Silgram, Martyn; Quinton, John

    2010-05-01

    Recent UK government-funded research has shown that compacted, unvegetated tramlines wheelings can represent an important source and transport pathway, which can account for 80% of surface runoff, sediment and phosphorus losses to edge-of-field from cereals on moderate slopes. For example, recent research found 5.5-15.8% of rainfall lost as runoff, and losses of 0.8-2.9 kg TP/ha and 0.3-4.8 T/ha sediment from tramline wheelings. When compaction was released by shallow cultivation, runoff was reduced to 0.2-1.7% of rainfall with losses of 0.0-0.2 kg TP/ha and 0.003-0.3 T/ha sediment respectively i.e. close to reference losses from control areas without tramlines. Recent independent assessments using novel tracer techniques have also shown that tramline wheelings can represent important sediment sources at river catchment scale. In response to these latest findings, a new project is now underway investigating the most cost-effective and practical ways of operationalising methods for managing tramline wheelings in autumn-sown cereal systems to reduce the risk of soil compaction from the autumn spray operation and the associated risk of surface runoff and diffuse pollution loss of sediment, phosphorus and nitrogen to edge of field. Research is focusing on the over-winter period when soils are close to field capacity and the physical protection of the soil surface granted by growing crop is limited. This paper outlines this new multi-disciplinary project and associated methodologies, which include hillslope-scale event-based evaluations of the effectiveness of novel mitigation methods on surface runoff and diffuse pollution losses to edge of field, assessments of the economic and practical viability of mitigation methods, and modelling the impact on water quality of implementation of the most promising techniques at both farm and catchment scale. The study involves a large consortium with 20 partners, including many industrial organisations representing tractor, crop

  2. Reflectance spectroscopy: a tool for predicting the risk of iron chlorosis in soils

    NASA Astrophysics Data System (ADS)

    Cañasveras, J. C.; Barrón, V.; Del Campillo, M. C.; Viscarra Rossel, R. A.

    2012-04-01

    Chlorosis due to iron (Fe) deficiency is the most important nutritional problem a plant can have in calcareous soils. The most characteristic symptom of Fe chlorosis is internervial yellowing in the youngest leaves due to a lack of chlorophyll caused by a disorder in Fe nutrition. Fe chlorosis is related with calcium carbonate equivalent (CCE), clay content and Fe extracted with oxalate (Feo). The conventional technique for determining these properties and others, based on laboratory analysis, are time-consuming and costly. Reflectance spectroscopy (RS) is a rapid, non-destructive, less expensive alternative tool that can be used to enhance or replace conventional methods of soil analysis. The aim of this work was to assess the usefulness of RS for the determination of some properties of Mediterranean soils including clay content, CCE, Feo, cation exchange capacity (CEC), organic matter (OM) and pHw, with emphasis on those with a specially marked influence on the risk of Fe chlorosis. To this end, we used partial least-squares regression (PLS) to construct calibration models, leave-one-out cross-validation and an independent validation set. Our results testify to the usefulness of qualitative soil interpretations based on the variable importance for projection (VIP) as derived by PLS decomposition. The accuracy of predictions in each of the Vis-NIR, MIR and combined spectral regions differed considerably between properties. The R2adj and root mean square error (RMSE) for the external validation predictions were as follows: 0.83 and 37 mg kg-1 for clay content in the Vis-NIR-MIR range; 0.99 and 25 mg kg-1 for CCE, 0.80 and 0.1 mg kg-1 for Feo in the MIR range; 0.93 and 3 cmolc kg-1 for CEC in the Vis-NIR range; 0.87 and 2 mg kg-1 for OM in the Vis-NIR-MIR range, 0.61 and 0.2 for pHw in the MIR range. These results testify to the potential of RS in the Vis, NIR and MIR ranges for efficient soil analysis, the acquisition of soil information and the assessment of the

  3. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China.

    PubMed

    Li, J T; Qiu, J W; Wang, X W; Zhong, Y; Lan, C Y; Shu, W S

    2006-09-01

    This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0-24 times and 4.0-10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04-0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents.

  4. Ecological risk assessment of heavy metals in soils surrounding oil waste disposal areas.

    PubMed

    Xu, Jianling; Wang, Hanxi; Liu, Yuanyuan; Ma, Mengchao; Zhang, Tian; Zheng, Xiaoxue; Zong, Meihan

    2016-02-01

    More attention is being devoted to heavy metal pollution because heavy metals can concentrate in higher animals through the food chain, harm human health and threaten the stability of the ecological environment. In this study, the effects of heavy metals (Cu, Cr, Zn, Pb, Cd, Ni and Hg) emanating from oil waste disposal on surrounding soil in Jilin Province, China, were investigated. A potential ecological risk index was used to evaluate the damage of heavy metals and concluded that the degree of potential ecological damage of heavy metals can be ranked as follows: Hg > Cd > Pb > Cu > Ni > Cr > Zn. The average value of the potential ecological harm index (Ri) is 71.93, thereby indicating light pollution. In addition, this study researched the spatial distribution of soil heavy metals by means of ArcGIS (geographic information system) spatial analysis software. The results showed that the potential ecological risk index (R) of the large value was close to the distance from the oil waste disposal area; it is relatively between the degree of heavy metals in soil and the distance from the waste disposal area.

  5. Distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) from Liaohe estuarine wetland soils.

    PubMed

    Lang, Yinhai; Wang, Nannan; Gao, Huiwang; Bai, Jie

    2012-09-01

    Thirty-one surface soil samples were collected from Liaohe estuarine wetland in October 2008 and May and August 2009. The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), identified as priority pollutants by the US EPA, were measured by gas chromatography. PAHs were predominated by three- and four-ring compounds. The total PAH concentrations ranged from 704.7 to 1,804.5 μg/kg with a mean value of 1,001.9 μg/kg in October 2008, from 509.7 to 1,936.9 μg/kg with an average of 887.1 μg/kg in May 2009, and from 293.4 to 1,735.9 μg/kg with a mean value of 675.4 μg/kg in August 2009. The PAH concentration detected at most sites shared the same pattern, with maximum concentrations during the autumn (October) and minimum concentrations during the summer (August). The ecological risk assessment of PAHs showed that adverse effects would occasionally occur in the soils from Liaohe estuarine wetland based on the effects range low (ERL)/effects range median and the toxic equivalency factors. The results revealed that some of the individual PAHs were in excess of ERL which implied possible acute adverse biological effects. The BaP(eq) values in some sites surpassed the Dutch target value. Therewith, quite a part of soils in the wetland were subjected to potential ecological risks.

  6. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils.

    PubMed

    Nabulo, G; Young, S D; Black, C R

    2010-10-15

    Fifteen tropical leafy vegetable types were sampled from farmers' gardens situated on nine contaminated sites used to grow vegetables for commercial or subsistence consumption in and around Kampala City, Uganda. Trace metal concentrations in soils were highly variable and originated from irrigation with wastewater, effluent discharge from industry and dumping of solid waste. Metal concentrations in the edible shoots of vegetables also differed greatly between, and within, sites. Gynandropsis gynandra consistently accumulated the highest Cd, Pb and Cu concentrations, while Amaranthus dubius accumulated the highest Zn concentration. Cadmium uptake from soils with contrasting sources and severity of contamination was consistently lowest in Cucurbita maxima and Vigna unguiculata, suggesting these species were most able to restrict Cd uptake from contaminated soil. Concentrations of Pb and Cr were consistently greater in unwashed, than in washed, vegetables, in marked contrast to Cd, Ni and Zn. The risk to human health, expressed as a 'hazard quotient' (HQ(M)), was generally greatest for Cd, followed successively by Pb, Zn, Ni and Cu. Nevertheless, it was apparent that urban cultivation of leafy vegetables could be safely pursued on most sites, subject to site-specific assessment of soil metal burden, judicious choice of vegetable types and adoption of washing in clean water prior to cooking.

  7. Concentrations, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soils of Liaohe estuarine wetland.

    PubMed

    Wang, Nannan; Lang, Yinhai; Cheng, Fangfang; Wang, Minjie

    2011-10-01

    Concentration, source, and risk of PAHs were investigated in 31 sites from surface soils of Liaohe estuarine wetland. Total PAHs concentrations ranged from 293.4 to 1735.9 ng/g with a mean of 675.4 ng/g. The 3- and 4-ring PAHs were the dominant species. The ratios of high-molecular weight PAHs to low-molecular weight PAHs and anthracene/(anthracene+phenanthrene) were calculated to apportion sources of PAHs. It was found that both pyrogenic and petrogenic PAHs sources were important. Effect range low and effect range median showed that the PAHs would occasionally cause adverse effects. The nemerow composite index revealed that about 41.9% soil sampling sites were safety; about 58.1% sites had different grades of PAHs pollution.

  8. Heavy metals in apple orchard soils and fruits and their health risks in Liaodong Peninsula, Northeast China.

    PubMed

    Wang, Quanying; Liu, Jingshuang; Cheng, Shuai

    2015-01-01

    This study aimed to assess the heavy metal concentrations in soils and fruits and their possible human health risk in apple orchards of Liaodong Peninsula-a well-known fruit-producing area of China. The soil pollution index (PI) and health risk assessment methods (daily intake of metals (DIM) and health risk index (HRI)) were employed to explore the soil pollution levels and the potential health hazards of heavy metals in fruits. The results showed that all orchard soils were with low PI values (PI ≤1) for Cd and Zn, while 2.78 and 5.56% of the soil samples exceeded the allowable levels of Cr and Cu for orchard soil, respectively. The Cd, Cu, and Zn concentrations for the apple flesh samples were all lower than the national maximum permissible concentrations. While 6.34% of apple peel samples for Cd, 76.5% of apple peel samples and 65.6% of apple flesh samples for Cr, and 28.1% of apple peel samples for Zn exceeded the national maximum permissible levels, respectively. Furthermore, both the DIM and the HRI values for all the apple flesh samples were within the safe limits, indicating that no health risk was found for heavy metals in the fruits of the study area. In order to protect the consumers from fruits that might cause health risks, results from this study suggested that the regular survey of heavy metal pollution levels should be conducted for the orchards of Liaodong Peninsula.

  9. Human Health Risks Associated with Metals from Urban Soil and Road Dust in an Oilfield Area of Southeastern Algeria.

    PubMed

    Benhaddya, Mohammed Lamine; Boukhelkhal, Abdelaziz; Halis, Youcef; Hadjel, Mohammed

    2016-04-01

    Hassi Messaoud town is a recent city that is situated inside the oil field, which hosts an important petroleum extraction field and refinery. Large-scale and long-term oil refinery and corresponding industrial activities may contaminate the surrounding soil/dust and could lead to pollution levels that can affect human health. The soil and road dust samples were analysed for different trace elements: copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn). Geo-accumulation index (I(geo)), pollution index (PI), and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of urban soil and road dust. The I(geo) values indicate unpolluted to moderate polluted of investigated metals in the soil samples. The assessment results of PI support the results of I(geo), and IPI indicates heavy metals in road dust polluted seriously. The noncarcinogenic health risk assessment shows that ingestion of soil/dust particles is the route for exposure to heavy metals, followed by dermal adsorption. The human exposure risk assessment based on different exposure pathways showed that the hazard index (HI) was <1.0 for all of the elements. The relative exposure risk (noncarcinogenic) was greater for toddlers. Although the overall risk was within the acceptable limit of 1.00, the HI of Pb from the soil (0.103) and road dust (0.132) was close to the threshold limits, which over the long-term may pose a health risk.

  10. The Distribution and Health Risk Assessment of Metals in Soils in the Vicinity of Industrial Sites in Dongguan, China

    PubMed Central

    Liu, Chao; Lu, Liwen; Huang, Ting; Huang, Yalin; Ding, Lei; Zhao, Weituo

    2016-01-01

    Exponential industrialization and rapid urbanization have resulted in contamination of soil by metals from anthropogenic sources in Dongguan, China. The aims of this research were to determine the concentration and distribution of various metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)) in soils and identify their potential health risks for local residents. A total of 106 soil samples were collected from the vicinity of industrial sites in Dongguan. Two types of samples were collected from each site: topsoil (0–20 cm, TS) and shallow soil (20–50 cm, SS). Results showed that the soils were contaminated by metals and pollution was mainly focused on TS. The geoaccumulation index (Igeo) and pollution indexes (PI) implied that there was a slight increase in the concentrations of Cd, Cu, Hg, Ni, and Pb, but the metal pollution caused by industrial activities was less severe, and elements of As and Cr exhibited non-pollution level. The risk assessment results suggested that there was a potential health risk associated with As and Cr exposure for residents because the carcinogenic risks of As and Cr via corresponding exposure pathways exceeded the safety limit of 10−6 (the acceptable level of carcinogenic risk for humans). Furthermore, oral ingestion and inhalation of soil particles are the main exposure pathways for As and Cr to enter the human body. This study may provide basic information of metal pollution control and human health protection in the vicinity of industrial regions. PMID:27548198

  11. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses.

    PubMed

    Wang, Jun; Chen, Gangcai; Christie, Peter; Zhang, Manyun; Luo, Yongming; Teng, Ying

    2015-08-01

    Phthalate esters (PAEs) are suspected of having adverse effects on human health and have been frequently detected in soils and vegetables. The present study investigated their occurrence and composition in plastic film greenhouse soil-vegetable systems and assessed their potential health risks to farmers exposed to these widespread pollutants. Six priority control phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP), were determined in 44 plastic film greenhouse vegetables and corresponding soils. Total PAEs ranged from 0.51 to 7.16mgkg(-1) in vegetables and 0.40 to 6.20mgkg(-1) in soils with average concentrations of 2.56 and 2.23mgkg(-1), respectively. DnBP, DEHP and DnOP contributed more than 90% of the total PAEs in both vegetables and soils but the proportions of DnBP and DnOP in vegetables were significantly (p<0.05) higher than in soils. The average concentrations of PAEs in pot herb mustard, celery and lettuce were >3.00mgkg(-1) but were <2.50mgkg(-1) in the corresponding soils. Stem and leaf vegetables accumulated more PAEs. There were no clear relationships between vegetable and soil PAEs. Risk assessment indicates that DnBP, DEHP and DnOP exhibited elevated non-cancer risk with values of 0.039, 0.338 and 0.038, respectively. The carcinogenic risk of DEHP was about 3.94×10(-5) to farmers working in plastic film greenhouses. Health risks were mainly by exposure through vegetable consumption and soil ingestion.

  12. Degradation and environmental risk of surfactants after the application of compost sludge to the soil.

    PubMed

    González, M M; Martín, J; Camacho-Muñoz, D; Santos, J L; Aparicio, I; Alonso, E

    2012-07-01

    In this work, the degradation of anionic and non-ionic surfactants in agricultural soil amended with sewage sludge is reported. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds (NPE), including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO and NP2EO). The degradation studies were carried out under winter (12.7°C) and summer (22.4°C) conditions in Andalusia region. The concentration of LAS was reduced to 2% of the initial concentration 100 day after sludge-application to the soil. The half-life time measured for LAS homologues were ranged between 4 and 14days at 12.7°C and between 4 and 7 days at 22.4°C. With regard to NPE compounds, after 8 and 4days from the beginning of the experiment at 12.7 and 22.4°C, respectively, their concentration levels were increased to 6.5 and 13.5mg/kgdm (dry matter) as consequence of the degradation of nonylphenol polyethoxylates. These concentration levels were reduced to 5% after 63 and 70 days for 12.7°C and 22.4°C, respectively. The half-life times measured for NPEs were from 8 to 16 days at 12.7°C and from 8 to 18 days at 22.4°C. Environmental risk assessment revealed that for LAS homologues no environment risk could be expected after 7 and 8 days of sludge application to the soil for 22.4 and 12.7°C, respectively; however, potential toxic effects could be observed for the nonylphenolic compounds during the first 56 days after sludge application to the soil.

  13. Reducing the Geothermal Exploration Risk by Carbon Dioxide Soil Flux Investigations

    NASA Astrophysics Data System (ADS)

    Carapezza, Maria Luisa; Barberi, Franco; Ranaldi, Massimo; Ricci, Tullio; Tarchini, Luca; De Simone, Gabriele; Gattuso, Alessandro; Silvestri, Mario

    2013-04-01

    In the exploration of medium to high enthalpy geothermal resources it happens rather frequently that deep wells find high temperatures but are not productive because they don't cross any permeable fractured reservoir. Because of the high cost of deep drillings, this aspect represents one of the main economic risks of geothermal exploration. A detailed survey of diffuse CO2 soil flux may allow to identify from the surface the permeable portions of a deep-seated actively degassing geothermal reservoir, drastically reducing this risk. In order to test the effectiveness of CO2 soil flux as a geothermal exploration tool we selected two volcanic areas north of Rome, Latera caldera and Marta zone near lake Bolsena, both hosting a geothermal reservoir with T>200 °C and where productive and non-productive wells had been drilled in the past. We proved that in both zones productive wells are located on high CO2 soil flux zones, whereas the not-productive wells are sited on low flux areas. In addition the surveys allowed to identify some as yet unexplored portions of the geothermal reservoirs where future wells should be conveniently located. Use of the same technique in the medium enthalpy geothermal system of Torre Alfina, Central Italy (T=140°C) showed that the presence of a thick impervious rock cover may be very effective in preventing gas leakages from the reservoir to the surface. Promising results have been obtained also by CO2 soil flux surveys in some geothermal areas of Honduras (Platanares, Azacualpa) and Costa Rica (Las Pailas). Obviously, CO2 flux cannot provide any estimate of temperature at depth, which has to be assessed with other geochemical or geophysical exploration techniques.

  14. Can Physiological Endpoints Improve the Sensitivity of Assays with Plants in the Risk Assessment of Contaminated Soils?

    PubMed Central

    Gavina, Ana; Antunes, Sara C.; Pinto, Glória; Claro, Maria Teresa; Santos, Conceição; Gonçalves, Fernando; Pereira, Ruth

    2013-01-01

    Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and open pit exploration of tin and arsenic minerals were performed for about one century (1857 – 1969). We aimed at obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll fluorescence (Fv/Fm and ΦPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of more phytotoxic soils. The

  15. Health risk assessment of heavy metals in soil-plant system amended with biogas slurry in Taihu basin, China.

    PubMed

    Bian, Bo; Lin, Cheng; Lv, Lin

    2016-09-01

    Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.

  16. Hazardous organic compounds in biogas plant end products--soil burden and risk to food safety.

    PubMed

    Suominen, K; Verta, M; Marttinen, S

    2014-09-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP+NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP+NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland.

  17. Upscaling spatially heterogeneous parameterisations of soil compaction to investigate catchment scale flood risk.

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian

    2016-04-01

    Upscaling land management signals observed at the point scale to the regional scale is challenging for three reasons. Individual catchments are unique and at the point scale land management signals are spatially and temporally variable, depending on topography, soil characteristics and on the individual characteristics of a rainfall event. However at larger scales land management effects diffuse and climatic or human induced signals have a larger impact. This does not mean that there is no influence on river flows, just that the effect is not discernible. Land management practices in different areas of the catchment vary spatially and temporally and their influence on the flood hydrograph will be different at different points within the catchment. Once the water enters the river, the land management effects are disturbed further by hydrodynamic and geomorphological dispersion. Pastoral agriculture is the dominant rural land cover in the UK (40% is classified as improved/ semi-natural grassland - Land Cover Map 2007). The intensification of agriculture has resulted in greater levels of soil compaction associated with higher stocking densities in fields. Natural flood management is the alteration, restoration or use of landscape features to reduce flood risk. Soil compaction has been shown to change the partitioning of rainfall into runoff. However the link between locally observed hydrological changes and catchment scale flood risk has not yet been proven. This paper presents the results of a hydrological modelling study on the impact of soil compaction on downstream flood risk. Field experiments have been conducted in multiple fields in the River Skell catchment, in Yorkshire, UK (area of 120km2) to determine soil characteristics and compaction levels under different types of land-use. We use this data to parameterise and validate the Distributed Physically-based Connectivity of Runoff model. A number of compaction scenarios have been tested that represent

  18. Degradation and environmental risk of surfactants after the application of compost sludge to the soil

    SciTech Connect

    Gonzalez, M.M.; Martin, J.; Camacho-Munoz, D.; Santos, J.L.; Aparicio, I.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Degradation of surfactants in soil amended with sewage sludge during 100 days. Black-Right-Pointing-Pointer Temperature influences on the degradation of the studied compounds. Black-Right-Pointing-Pointer Overall, the LAS degradation is faster than the NP compounds degradation. Black-Right-Pointing-Pointer Therefore, the LAS presented lower environmental risk than the NP compounds. - Abstract: In this work, the degradation of anionic and non-ionic surfactants in agricultural soil amended with sewage sludge is reported. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds (NPE), including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO and NP2EO). The degradation studies were carried out under winter (12.7 Degree-Sign C) and summer (22.4 Degree-Sign C) conditions in Andalusia region. The concentration of LAS was reduced to 2% of the initial concentration 100 day after sludge-application to the soil. The half-life time measured for LAS homologues were ranged between 4 and 14 days at 12.7 Degree-Sign C and between 4 and 7 days at 22.4 Degree-Sign C. With regard to NPE compounds, after 8 and 4 days from the beginning of the experiment at 12.7 and 22.4 Degree-Sign C, respectively, their concentration levels were increased to 6.5 and 13.5 mg/kg dm (dry matter) as consequence of the degradation of nonylphenol polyethoxylates. These concentration levels were reduced to 5% after 63 and 70 days for 12.7 Degree-Sign C and 22.4 Degree-Sign C, respectively. The half-life times measured for NPEs were from 8 to 16 days at 12.7 Degree-Sign C and from 8 to 18 days at 22.4 Degree-Sign C. Environmental risk assessment revealed that for LAS homologues no environment risk could be expected after 7 and 8 days of sludge application to the soil for 22.4 and 12.7 Degree-Sign C, respectively; however, potential toxic effects could be

  19. [Accumulation of Mercury in Soil-maize System of Non-ferrous Metals Smelting Area and Its Related Risk Assessment].

    PubMed

    Ji, Xiao-feng; Zheng, Na; Wang, Yang; Liu, Qiang; Zhang, Jing-jing

    2015-10-01

    Soil heavy metal pollution, especially the mercury pollution, has been widespread concern in non-ferrous metallurgical area. This study focused on the content, distribution and pollution status of Hg in maize soil of Huludao city. Meanwhile, Hg contents in the various organs of maize were analyzed. Hg concentration in soil ranged from 0.25 to 3.49 mg x kg(-1) with the average content of 1.78 mg x kg(-1), which was 48 times as high as the background value of Liaoning soil. Around 2-3m range of zinc plant, the pattern of spatial distribution showed that the content of Hg was gradually increased with the increase of the distance to Huludao zinc plant. The result of geoaccumulation index reflected that Hg pollution is up to moderate pollution level on the whole. 54. 6% of the total sample were belonged to the serious pollution level. The potential ecological risk index of Hakanson was applied to assess the ecological risk of Hg. The target hazard quotient method (THQ) was used to assess the health risk for human, the results revealed that there was no significant health risk by consumption corn. Mercury is very difficult to transport in soil-maize system, and there is no obvious health risks to adults. But the risk coefficient of children, which is up to 0.056. is much higher than adults.

  20. Subsoil compaction in Flanders: from soil map to susceptibility map and risk map for subsoil compaction

    NASA Astrophysics Data System (ADS)

    van de Vreken, Philippe; van Holm, Lieven; Diels, Jan; van Orshoven, Jos

    2010-05-01

    assigned the PCS-value calculated for pF 2.5 or the PCS-value calculated for pF 1.8, based on a decision rule. This rule was based on the expected depth of the groundwater table in spring, from which we calculated the expected pF-value at 40 cm of depth. Then, for each soil map unit this calculated pF was compared to pF 2.5, respectively pF 1.8 in order to determine the closest of the two pF-values and the corresponding PCS-value. Based on the developed susceptibility maps so called ‘risk maps' were constructed which show the modeled maximum allowable wheel load that may be exerted on the surface of each soil map unit by either (i) a 480/80R42 tractor tyre or (ii) a 800/65R32 tyre of a sugarbeet harvester in order not to exceed the estimated ‘pre-compaction PCS' at 40 cm of depth. Therefore we calculated the normal stresses generated by those tyres on the 40 cm reference depth, by making use of the analytical soil compaction model SoilFlex (Keller et al., 2007). Based on the results of a parallel study (Van Holm et al., 2010) in which different soil compaction related parameters were measured on subsoil samples (40 cm) of 17 arable fields, belonging to different soil textural classes and distributed all over Flanders, we could conclude that a severe compaction of subsoil material has taken place since the period 1950-1970 as the PCS-values determined in 2009 for those fields (by uniaxial compaction tests and the Casagrande method; Casagrande, 1936) were always (much) higher then the PCS-values retrieved for the same soil map units from the inherent susceptibility map (= historical map) for the same depth. Knowledge about actual soil bulk density is an important key to actualise the developed maps.

  1. Estimating potential risks to terrestrial invertebrates and plants exposed to bisphenol A in soil amended with activated sludge biosolids.

    PubMed

    Staples, Charles; Friederich, Urs; Hall, Tilghman; Klecka, Gary; Mihaich, Ellen; Ortego, Lisa; Caspers, Norbert; Hentges, Steven

    2010-02-01

    Bisphenol A (BPA) is a high production volume substance primarily used to produce polycarbonate plastic and epoxy resins. During manufacture and use, BPA may enter wastewater treatment plants. During treatment, BPA may become adsorbed to activated sludge biosolids, which may expose soil organisms to BPA if added to soil as an amendment. To evaluate potential risks to organisms that make up the base of the terrestrial food web (i.e., invertebrates and plants) in accordance with international regulatory practice, toxicity tests were conducted with potworms (Enchytraeids) and springtails (Collembolans) in artificial soil, and six plant types using natural soil. No-observed-effect concentrations (NOEC) for potworms and springtails were equal to or greater than 100 and equal to or greater than 500 mg/kg (dry wt), respectively. The lowest organic matter-normalized NOEC among all tests (dry shoot weight of tomatoes) was 37 mg/kg-dry weight. Dividing by an assessment factor of 10, a predicted-no-effect concentration in soil (PNEC(soil)) of 3.7 mg/kg-dry weight was calculated. Following international regulatory guidance, BPA concentrations in soil hypothetically amended with biosolids were calculated using published BPA concentrations in biosolids. The upper 95th percentile BPA biosolids concentration in North America is 14.2 mg/kg-dry weight, and in Europe is 95 mg/kg-dry weight. Based on recommended biosolids application rates, predicted BPA concentrations in soil (PEC(soil)) would be 0.021 mg/kg-dry weight for North America and 0.14 mg/kg-dry weight for Europe. Hazard quotients (ratio of PEC(soil) and PNEC(soil)) for BPA were all equal to or less than 0.04. This indicates that risks to representative invertebrates and plants at the base of the terrestrial food web are low if exposed to BPA in soil amended with activated sludge biosolids.

  2. Soil-Plant Metal Relations in Panax notoginseng: An Ecosystem Health Risk Assessment

    PubMed Central

    Ou, Xiaohong; Wang, Li; Guo, Lanping; Cui, Xiuming; Liu, Dahui; Yang, Ye

    2016-01-01

    This study features a survey of the content of heavy metals (Pb, Cd, Cr, As, Hg and Cu) in root and cultivation soils of Panax notoginseng (P. notoginseng), carried out in China’s Yunnan Province. The average contents of Pb, Cd, Cr, As, Hg, and Cu in the soil were 61.6, 0.4, 102.4, 57.1, 0.3, and 35.1 mg·kg−1, respectively. The heavy metals’ pollution indexes can be ranked as follows: As > Cd > Hg > Cu > Cr > Pb. The proportion of soil samples at slight, middle, strong, very strong, and extremely strong levels of potential environmental risk had values of 5.41%, 21.62%, 35.14%, 10.81%, and 27.03%, respectively. The potential environment risk index (RI) showed that 29.73% out of the total sample sites were above the level of strong and extremely strong. The ranges of Pb, Cd, Cr, As, Hg, and Cu content in tuber were 0.04–3.26, 0.04–0.33, 0.22–5.4, 0.10–1.8, 0.00–0.02, and 5.0–20.9 mg·kg−1, respectively. In combination with P. notoginseng consumption data, the estimated heavy metal daily intakes (EDIs) were 0.08–0.23, 0.006–0.019, 0.17–0.52, 0.04–0.12, 0.001–0.002, and 0.59–1.77 μg·kg−1·bw/day. All target hazard quotients (THQs) of individual elements and hazard indexes (HI) were less than one. The present study indicates that most of the P. notoginseng cultivation soil in the province of Yunnan presented slight and moderate ecological risk. Thus, more attention should be given to the heavy metals As, Cd, and Hg when selecting planting areas for the cultivation of P. notoginseng. Health risks associated with the intake of a single element or consumption of the combined metals through P. notoginseng are absent. PMID:27827951

  3. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  4. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    SciTech Connect

    Paterek, J.R.; Bogan, W.W.; Sirivedhin; Tanita

    2003-03-06

    Research was conducted in six major focus areas: (1) Evaluation of the process using 6 test soils with full chemical and physical characteristics to determine controlling factors for biodegradation and chemical oxidation; (2) Determination of the sequestration time on chemical treatment suspectability; (3) Risk factors, i.e. toxicity after chemical and biological treatment; (4) Impact of chemical treatment (Fenton's Reagent) on the agents of biodegradation; (5) Description of a new genus and its type species that degrades hydrocarbons; and (6) Intermediates generate from Fenton's reagent treatment of various polynuclear aromatic hydrocarbons.

  5. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  6. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution.

    PubMed

    Kalin, Robert M

    2004-06-01

    Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

  7. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Zhao, H. Q.; Yang, Q. C.; Yang, Z. P.

    2014-06-01

    The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.

  8. Potential ecological risk assessment and prediction of soil heavy metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Yang, Q. C.; Yang, Z. P.

    2014-03-01

    Aim of the present study is to evaluate the potential ecological risk and predict the trend of soil heavy metal pollution around a~coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy metal pollution. The potential ecological risk in an order of E(Cd) > E(Pb) > E(Cu) > E(Cr) > E(Zn) have been obtained, which showed that Cd was the most important factor led to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, and the fixed number of years exceeding standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metal, and the relationship between sampling points and variables. These findings provide some useful insights for making appropriate management strategies to prevent and decrease heavy metal pollution around coal gangue dump in Yangcaogou coal mine and other similar areas elsewhere.

  9. PCDD/F formation during thermal desorption of p,p'-DDT contaminated soil.

    PubMed

    Zhao, Zhonghua; Ni, Mingjiang; Li, Xiaodong; Buekens, Alfons; Yan, Jianhua

    2017-04-10

    Thermal treatment of polychlorinated biphenyls (PCB) contaminated soil was shown in earlier work to generate polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). In this study, the PCDD/F were studied arising during the remediation of p,p'-DDT contaminated soil by thermal desorption. Three kinds of soil (sandy, clayey and lateritic soil) were tested to investigate the effect of soil texture on PCDD/F formation. Those soils were artificially polluted with p,p'-DDT, obtaining a concentration level of 100 mg/kg. Thermal desorption experiments were conducted for 10 min at 300 °C in an air atmosphere. The total concentration of PCDD/F generated for three soils were 331, 803 and 865 ng/kg, respectively, and TeCDD and TeCDF were dominant among all PCDD/F congeners. After thermal desorption, the total amount of PCDD/F generated both in soil and in off-gas correlated positively with the amount of DDT added to soil. In addition, a possible pathway of the formation of PCDD/F was presented.

  10. Evaluating the potential health risk of toxic trace elements in vegetables: Accounting for variations in soil factors.

    PubMed

    Yang, Yang; Chen, Weiping; Wang, Meie; Li, Yanling; Peng, Chi

    2017-02-06

    Vegetable crop consumption is one of the main sources of dietary exposure to toxic trace elements (TEs). A paired survey of soil and vegetable samples was conducted in 589 agricultural sites in the Youxian prefecture, southern China, to investigate the effect of soil factors on the accumulation of arsenic, cadmium, mercury, and lead in different vegetables. A site-specific model was developed to estimate the health risk from vegetable consumption. The TE concentration varied in different plant species, and rape can be cultivated in contaminated areas for its potential use in restricting the transfer of TE from soil to edible plant parts. The accumulation of TEs in vegetables was governed by multiple factors, mainly element interaction, metal availability (extractable CaCl2 fraction), and soil pH. Soil Zn may promote Cd accumulation in vegetables when soil Cd/Zn ratio>0.02. Cadmium is a major hazardous component. About 80.8% of the adult populations consuming locally produced vegetables had a daily Cd intake risk above the safe standard. Among investigated vegetables, radish is potentially hazardous for populations because of its high consumption rate and high Cd content but low Zn accumulation. The consumption of radish cultivated in highly acidic soil (4risk was significantly decreased to 8.9% in soil of near-neutral pH (6soil factors suggests that a site-specific risk assessment is needed for better and safer vegetable production.

  11. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China.

    PubMed

    Jiang, Yanxue; Chao, Sihong; Liu, Jianwei; Yang, Yue; Chen, Yanjiao; Zhang, Aichen; Cao, Hongbin

    2017-02-01

    Human activities contribute greatly to heavy metal pollution in soils. Concentrations of 15 metal elements were detected in 105 soil samples collected from a typical rural-industrial town in southern Jiangsu, China. Among them, 7 heavy metals-lead, copper, zinc, arsenic, chromium, cadmium, and nickel-were considered in the health risk assessment for residents via soil inhalation, dermal contact, and/or direct/indirect ingestion. Their potential sources were quantitatively apportioned by positive matrix factorization using the data set of all metal elements, in combination with geostatistical analysis, land use investigation, and industrial composition analysis. Furthermore, the health risks imposed by sources of heavy metal in soil were estimated for the first time. The results indicated that Cr, Cu, Cd, Pb, Ni, and Co accumulated in the soil, attaining a mild pollution level. The total hazard index values were 3.62 and 6.11, and the total cancer risks were 9.78 × 10(-4) and 4.03 × 10(-4) for adults and children, respectively. That is, both non-carcinogenic and carcinogenic risks posed by soil metals were above acceptable levels. Cr and As require special attention because the health risks of Cr and As individually exceeded the acceptable levels. The ingestion of homegrown produce was predominantly responsible for the high risks. The potential sources were apportioned as: a) waste incineration and textile/dyeing industries (28.3%), b) natural sources (45.4%), c) traffic emissions (5.3%), and d) electroplating industries and livestock/poultry breeding (21.0%). Health risks of four sources accounted for 23.5%, 32.7%, 7.4%, and 36.4% of the total risk, respectively.

  12. Field dissipation and risk assessment of typical personal care products TCC, TCS, AHTN and HHCB in biosolid-amended soils.

    PubMed

    Chen, Feng; Ying, Guang-Guo; Ma, Yi-Bing; Chen, Zhi-Feng; Lai, Hua-Jie; Peng, Feng-Jiao

    2014-02-01

    The antimicrobial agents triclocarban (TCC) and triclosan (TCS) and synthetic musks AHTN (Tonalide) and HHCB (Galaxolide) are widely used in many personal care products. These compounds may release into the soil environment through biosolid application to agricultural land and potentially affect soil organisms. This paper aimed to investigate accumulation, dissipation and potential risks of TCC, TCS, AHTN and HHCB in biosolid-amended soils of the three field trial sites (Zhejiang, Hunan and Shandong) with three treatments (CK: control without biosolid application, T1: single biosolid application, T2: repeated biosolid application every year). The one-year monitoring results showed that biosolids application could lead to accumulation of these four chemicals in the biosolid-amended soils, with the residual concentrations in the following order: TCC>TCS>AHTN>HHCB. Dissipation of TCC, TCS, AHTN and HHCB in the biosolid-amended soils followed the first-order kinetics model. Half-lives for TCC, TCS, AHTN and HHCB under the field conditions of Shandong site were 191, 258, 336 and 900 days for T1, and 51, 106, 159 and 83 days for T2, respectively. Repeated applications of biosolid led to accumulation of these personal care products and result in higher ecological risks. Based on the residual levels in the trial sites and limited toxicity data, high risks to soil organisms are expected for TCC and TCS, while low-medium risks for AHTN and HHCB.

  13. Mobility and eco-risk of trace metals in soils at the Hailuogou Glacier foreland in eastern Tibetan Plateau.

    PubMed

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Liang, Jianhong; Wang, Jipeng; Yang, Zijiang

    2016-03-01

    The concentrations and fractions of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in soils collected from Hailuogou Glacier foreland in eastern Tibetan Plateau were analyzed to decipher their mobility, and their eco-risk was assessed combined with multiple environmental indices. The concentrations of Cd were more than ten times higher than its local background in the O horizon and nearly three times higher in the A horizon. The concentrations of Pb and Zn were relatively high in the O horizon, whereas that of Cu increased with soil depth. The main fractions of metals in the surface horizons were reducible and acid-soluble for Cd, oxidizable and residual for Cu, reducible and oxidizable for Pb, and reducible and residual for Zn. The metal mobility generally followed the order of Cd > Pb > Zn > Cu in the O horizon and Cd > Pb > Cu > Zn in the A horizon. Sorption and complexation by soil organic matters imparted an important effect on the mobilization and transformation of Cd, Pb, and Zn in the soils. The oxidizable Cu fraction in the soils showed significant correlation with organic matters, and soil pH mainly modulated the acid-soluble and reducible Cu fractions. The concentrations and other environmental indices including contamination factor, enrichment factor, geoaccumulation index, and risk assessment index revealed that Cd reached high contamination and very high eco-risk, Pb had medium contamination but low eco-risk, Zn showed low contamination and low eco-risk, and Cu was not contaminated in the soils. The data indicated that Cd was the priority to concern in the soils of Hailuogou Glacier catchment.

  14. Distribution, sources, and risk assessment of polychlorinated biphenyls in surface waters and sediments of rivers in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Xueping; Han, Jingchao; Bi, Chunjuan; Huang, Xing; Jia, Jinpu; Chen, Zhenlou

    2016-10-01

    The distribution, sources, and potential risks of polychlorinated biphenyl (PCB) contamination in the rivers of Shanghai, China were investigated. Fourteen PCB congeners in surface waters and sediments, which were collected from 53 sampling sites, were quantified by gas chromatography-mass spectrometer (GC-MS). The total concentrations of PCBs in the dissolved phase, in particulates, and in sediments ranged from not detected (nd) to 34.8 ng•L‒1, from 0.76 to 39.71 ng•L‒1, and from 1.46 to 46.11 ng•g-1 (dry weight, dw), respectively. The corresponding WHO toxic equivalents (TEQs) of dioxinlike polychlorinated biphenyls (dl-PCBs) ranged between nd-1135.63 pg TEQ•L-1, 0.02-605.94 pg TEQ•L-1, and 0.05-432.12 pg TEQ•g-1 dw, respectively. The penta-CBs, especially PCB 118 and PCB 105, were the dominant congeners in all samples. Principle Component Analysis (PCA) indicated that the PCBs were mainly influenced by a historical accumulation of commercial PCB products, the burning of house coal, and emissions from municipal solid waste incineration (MSWI) and secondary metallurgy industries. The center of Shanghai was significantly affected by PCB contamination, followed by the industrial parklands and suburban towns, while the farmland of Chongming Island was the least affected area. Adverse biological and health effects would be likely in the central urban areas, industrial parks, and residential towns of Shanghai.

  15. Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia.

    PubMed

    Diami, Siti Merryan; Kusin, Faradiella Mohd; Madzin, Zafira

    2016-10-01

    The composition of heavy metals (and metalloid) in surface soils of iron ore mine-impacted areas has been evaluated of their potential ecological and human health risks. The mining areas included seven selected locations in the vicinity of active and abandoned iron ore-mining sites in Pahang, Malaysia. Heavy metals such as Fe, Mn, Cu, Zn, Co, Pb, Cr, Ni, and Cd and metalloid As were present in the mining soils of the studied area, while Cu was found exceeding the soil guideline value at all sampling locations. However, the assessment of the potential ecological risk index (RI) indicated low ecological risk (RI between 44 and 128) with respect to Cd, Pb, Cu, As, Zn, Co, and Ni in the surface soils. Contributions of potential ecological risk [Formula: see text]by metal elements to the total potential ecological RI were evident for Cd, As, Pb, and Cu. Contribution of Cu appears to be consistently greater in the abandoned mining area compared to active iron ore-mining site. For non-carcinogenic risk, no significant potential health risk was found to both children and adults as the hazard indices (HIs) were all below than 1. The lifetime cancer risk (LCR) indicated that As has greater potential carcinogenic risk compared to other metals that may induce carcinogenic effects such as Pb, Cr, and Cd, while the LCR of As for children fell within tolerable range for regulatory purposes. Irrespective of carcinogenic or non-carcinogenic risk, greater potential health risk was found among children (by an order of magnitude higher for most metals) compared to adults. The hazard quotient (HQ) and cancer risk indicated that the pathways for the risk to occur were found to be in the order of ingestion > dermal > inhalation. Overall, findings showed that some metals and metalloid were still present at comparable concentrations even long after cessation of the iron ore-mining activities.

  16. From chemical risk assessment to environmental quality management: the challenge for soil protection.

    PubMed

    Bone, James; Head, Martin; Jones, David T; Barraclough, Declan; Archer, Michael; Scheib, Catherine; Flight, Dee; Eggleton, Paul; Voulvoulis, Nikolaos

    2011-01-01

    The 40 years that have passed since the beginning of the 'environmental revolution' has seen a large increase in development of policies for the protection of environmental media and a recognition by the public of the importance of environmental quality. There has been a shift from policy in reaction to high profile events, then to control of releases to single environmental media, and to the present position of moving toward integrated management of all environmental media at present. This development has moved away from classical chemical risk assessment toward environmental holism, including recognition of the ecological value of these media. This work details how policy developments have taken place for air and water, with examples from the USA and EU, in order to compare this with policy development regarding soil. Soil, with quite different policy frameworks and distinct uses, understanding, and threats compared to other environmental media, is currently attracting attention regarding the need for its protection independent of use. Challenges for soil policy are identified and evaluated, and recommendations on how these challenges can be overcome are discussed with relevance to water and air protection policy.

  17. Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants.

    PubMed

    Ramadass, Kavitha; Palanisami, Thavamani; Smith, Euan; Mayilswami, Srinithi; Megharaj, Mallavarapu; Naidu, Ravi

    2016-11-01

    Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg(-1) soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm(-1). Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.

  18. Comprehensive comparison of classic Soxhlet extraction with Soxtec extraction, ultrasonication extraction, supercritical fluid extraction, microwave assisted extraction and accelerated solvent extraction for the determination of polychlorinated biphenyls in soil.

    PubMed

    Sporring, Sune; Bøwadt, Søren; Svensmark, Bo; Björklund, Erland

    2005-10-07

    This paper compares the extraction effectiveness of six different commonly applied extraction techniques for the determination of PCBs in soil. The techniques included are Soxhlet, Soxtec, ultrasonication extraction, supercritical fluid extraction, microwave-assisted extraction and accelerated solvent extraction. For none of the techniques were the extraction conditions optimized, but instead the extraction parameters were based on the experience from previous successful investigation published by a number of research groups worldwide. In general, all extraction techniques were capable of producing accurate data for one native PCB contaminated soil diluted with another soil sample to obtain two concentration levels. It could therefore be concluded that any of the investigated techniques can be used with success if the extraction conditions applied are chosen wisely.

  19. Geochemical fractions and risk assessment of trace elements in soils around Jiaojia gold mine in Shandong Province, China.

    PubMed

    Cao, Feifei; Kong, Linghao; Yang, Liyuan; Zhang, Wei

    2015-09-01

    Soils located adjacent to the Jiaojia gold mine were sampled and analyzed to determine the degree of which they were contaminated by trace elements (Hg, As, Cd, Pb, Cu, and Zn) in Shandong Province, China. All 18 samples exhibited mean Hg, As, Cd, and Pb concentrations in excess of local background values, while the mean concentrations of Cu and Zn were below the background values. In addition, the concentrations of trace elements in gold smelter (GS) soils were higher than in the gold mine (GM) soils. The result from a modified Tessier sequential extraction procedure was that with the exception of Cu in soils near the smelter, the trace elements were predominantly associated with the residual fraction. After residual fraction, most Hg was mainly humic acid and strong organic fraction, while most As was the humic acid. Cd was associated with the water soluble, ion exchange, and carbonate fractions compared with the other trace elements. Furthermore, Cu, Pb, and Zn were more concentrated in the humic acid and Fe/Mn oxide fraction. The fractions of trace elements were affected by soil pH and Ec (Electrical conductivity). The humic acid fraction of Hg as well as the ion exchange fraction of Cd and Zn displayed negative correlations with soil pH. The strong organic fraction of Hg, the Fe/Mn oxide fraction of Cd, and the carbonate fraction of Zn were positively related to the soil Ec. The strong organic fraction and ion exchange fraction of Zn were negatively related to soil Ec. However, the ion exchange and carbonate fractions of As showed significant positive correlations with soil pH. A calculated individual availability factor (A f (i) ) is used; the values of each trace element in the soils are in the following order: Cu > Cd > Pb > Zn > As > Hg. When combined with a risk assessment code, data suggest that Hg, As, Pb, and Zn levels showed low risk for the environment, whereas Cd levels in soils adjacent to the GM and Cu levels in soils adjacent to the GS showed

  20. Health risk assessment of urban population exposure to contaminants in the soils of the Southern Kuzbass

    NASA Astrophysics Data System (ADS)

    Osipova, N. A.; Tarasova, N. P.; Osipov, K. Yu.; Maximova, D. I.

    2015-11-01

    This study concerns the human health risk due to exposure of Co, Cu, As, Mn contained in soils of the Southern Kuzbass, where the coal industry is developed. Soil samples of 200 were taken in Mezhdurechensk - city with intensive coal mining and processing industries. The content of heavy metals in samples were determined using the electron spectroscopy. Several samples were also investigated by methods of the instrumental neutron activation analysis (INAA) and the inductively coupled plasma mass spectrometry (ICP-MS). With regard to the effects of heavy metals on the adult population health the total Hazard Index (HI) for ingestion and inhalation routes was 0.87×10-1 and 7.8×10-1 respectively. According to the contribution of Co, Cu, As, Mn to the total HI the elements form the decreasing series Mn (0,42-0,50)> Co (0.18-0.20)> Cu (0,13-0,19 )> As (0,05-0,09). These chemical elements are present in the organic and inorganic forms in coals and coal wastes. Ranking the city territory has shown that administrative districts have different HI values (8.4 10-1 - 8.8 10-1). When analyzing the human health risks of coal mining and coal-processing enterprises the impact of heavy metals as components of coals and combustion products should be taken into account.

  1. TPH-contaminated Mexican refinery soil: health risk assessment and the first year of changes.

    PubMed

    Iturbe, Rosario; Flores, Rosa M; Flores, Carlos R; Torres, Luis G

    2004-02-01

    The soil of a coastal Mexican refinery is quite contaminated, especially by hydrocarbons, with detected concentrations up to 130000 mg kg(-1) as TPHs (total petroleum hydrocarbons). The main sources of contamination are pipelines, valves, and old storage tanks, besides the land disposal of untreated hydrocarbon sediments derived from the cleaning of storage tanks. A health risk assessment (HRA) was carried out in order to measure the risk hazard indexes and clean-up standards for the refinery soil. HRA suggested the following actions to be taken: benzene concentrations must be reduced in eight of the 16 studied refinery zones to 0.0074-0.0078 mg kg(-1). Also, vanadium concentration must be reduced in two zones up to a concentration of 100 mg kg(-1). In only one of all of the studied zones, benzo(a)pyrene concentration must be reduced to 0.1 mg kg(-1). After 1 yr, TPHs showed a diminution of about 52%. Even though TPHs concentrations were variable, during 1999 the average concentrations were as much as 15.5 times the goal concentration. For year 2000, TPHs concentrations were only 7.4-fold the proposed value. For the 1999-2000 period, PAHs (polycyclic aromatic hydrocarbons) concentrations decreased by 82%. Some PAHs with 2, 3, 4, and 5 aromatic rings were removed up to 100% values.

  2. Case studies of geophysical imaging for road foundation design on soft soils and embankment risk assessment

    NASA Astrophysics Data System (ADS)

    Whiteley, Robert J.; Kelly, Richard B.; Stewart, Simon B.

    2015-12-01

    Population growth along the coast of eastern Australia has increased demand for new and upgraded transport infrastructure within intervening coastal floodplains and steeper hinterland areas. This has created additional challenges for road foundation design. The floodplain areas in this region are underlain by considerable thicknesses of recently deposited alluvial and clayey marine sediments. If characterisation of these deposits is inadequate they can increase road construction costs and affect long-term road stability and serviceability. Case studies from a major coastal highway upgrade demonstrate how combining surface wave seismic and electrical geophysical imaging with conventional geotechnical testing enhances characterisation of these very soft and soft soils. The geophysical results also provide initial foundation design parameters such as void ratio and pre-consolidation pressure. A further significant risk issue for roads is potential embankment instability. This can occur during new road construction or when upgrades of existing embankments are required. Assessing the causes of instability of existing steeper embankments with drilling and probing is often difficult and costly due to access and safety problems. In these situations combinations of electrical, ground penetrating radar and P-wave seismic imaging technologies can rapidly provide information on the likely conditions below both the roadway and embankment. Case studies show the application of these technologies on two unstable road embankments. It is concluded that the application of both geophysical imaging and geotechnical testing is a cost-effective enhancement for site characterisation of soft soils and for risk assessment of potentially unstable embankments. This approach overcomes many of the current limitations of conventional methods of site investigation that provide point location data only. The incorporation of geophysics into a well crafted site investigation allows concentration on

  3. Persistence of metaflumizone on cabbage (Brassica oleracea Linne) and soil, and its risk assessment.

    PubMed

    Chatterjee, Niladri Sekhar; Gupta, Suman

    2013-07-01

    Metaflumizone is a novel sodium channel blocker insecticide of semicarbazone class. It provides good to excellent control of most of the economically important lepidopterous pests and certain pests in the orders Coleoptera, Hemiptera, Hymenoptera, Diptera, Isoptera, and Siphonaptera. Although metaflumizone has been marketed globally for several years and got registered in India in the year 2009, specifically for the control of DBM on cabbage, to our knowledge, no food safety aspects of metaflumizone residue on cabbage have ever been reported in the literature in India or elsewhere. The present study was undertaken to evaluate the persistence of metaflumizone on cabbage and soil, vis-a-vis its risk assessment, following two spray applications of metaflumizone 220 SC (Verismo®), each at recommended and double dose of 200 and 400 g a.i. ha(-1) respectively. Initial residue deposits of metaflumizone on cabbage were 0.46 and 0.51 mg kg(-1) at recommended and 0.76 and 0.85 mg kg(-1) at double the recommended dose following the first spray and second spray application. The residues persisted beyond 5 days from both the treatments and dissipated with the half-life ranging from 1.7-2.1 days. Initial deposits of metaflumizone on soil ranged from 0.23-0.37 mg kg(-1) and degraded with a half life ranging from 4.0-4.8 days. No degradation product of metaflumizone was detected in cabbage and soil at any point of time. Soil samples collected from the treated field after 7 days were free from any residue of metaflumizone or its metabolites. A pre-harvest waiting period of 3 days after application was suggested based on calculation of theoretical maximum daily intake.

  4. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa.

    PubMed

    Kamunda, Caspah; Mathuthu, Manny; Madhuku, Morgan

    2016-06-30

    The study evaluates the health risk caused by heavy metals to the inhabitants of a gold mining area. In this study, 56 soil samples from five mine tailings and 17 from two mine villages were collected and analyzed for Asernic (As), Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu) and Zinc (Zn) using ICP-MS. Measured concentrations of these heavy metals were then used to calculate the health risk for adults and children. Their concentrations were such that Cr > Ni > As > Zn > Cu > Co > Pb > Hg > Cd, with As, Cr and Ni higher than permissible levels. For the adult population, the Hazard Index value for all pathways was found to be 2.13, making non-carcinogenic effects significant to the adult population. For children, the Hazard Index value was 43.80, a value >1, which poses serious non-carcinogenic effect to children living in the gold mining area. The carcinogenic risk was found to be 1.7 × 10(-4) implying that 1 person in every 5882 adults may be affected. In addition, for children, in every 2725 individuals, 1 child may be affected (3.67 × 10(-4)). These carcinogenic risk values were both higher than acceptable values.

  5. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa

    PubMed Central

    Kamunda, Caspah; Mathuthu, Manny; Madhuku, Morgan

    2016-01-01

    The study evaluates the health risk caused by heavy metals to the inhabitants of a gold mining area. In this study, 56 soil samples from five mine tailings and 17 from two mine villages were collected and analyzed for Asernic (As), Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu) and Zinc (Zn) using ICP-MS. Measured concentrations of these heavy metals were then used to calculate the health risk for adults and children. Their concentrations were such that Cr > Ni > As > Zn > Cu > Co > Pb > Hg > Cd, with As, Cr and Ni higher than permissible levels. For the adult population, the Hazard Index value for all pathways was found to be 2.13, making non-carcinogenic effects significant to the adult population. For children, the Hazard Index value was 43.80, a value >>1, which poses serious non-carcinogenic effect to children living in the gold mining area. The carcinogenic risk was found to be 1.7 × 10−4 implying that 1 person in every 5882 adults may be affected. In addition, for children, in every 2725 individuals, 1 child may be affected (3.67 × 10−4). These carcinogenic risk values were both higher than acceptable values. PMID:27376316

  6. Risk-based assessment of multimetallic soil pollution in the industrialized peri-urban area of Huelva, Spain.

    PubMed

    Fernández-Caliani, J C

    2012-02-01

    The peri-urban soils of Huelva, one of the first industrial cities in Spain, are subject to severe pollution problems primarily due to past poor management of industrial wastes and effluents. In this study, soil cores were collected in seven sites potentially contaminated with toxic chemicals arising from multiple anthropogenic sources, in order to identify trace elements of concern and to assess human health risks associated with them. In most soil core samples, total concentrations of As (up to 4,390 mg kg(-1)), Cd (up to 12.9 mg kg(-1)), Cu (up to 3,162 mg kg(-1)), Pb (up to 6,385 mg kg(-1)), Sb (up to 589 mg kg(-1)) and Zn (up to 4,874 mg kg(-1)) were by more than one order of magnitude greater than the site-specific reference levels calculated on the basis of regional soil geochemical baselines. These chemicals are transferred from the hazardous wastes, mainly crude pyrite and roasted pyrite cinders, to the surrounding soils by acid drainage and atmospheric deposition of wind-blown dust. Locally, elevated concentrations of U (up to 96.3 mg kg(-1)) were detected in soils affected by releases of radionuclides from phosphogypsum wastes. The results of the human health risk-based assessment for the hypothetical exposure of an industrial worker to the surface soils indicate that, in four of the seven sites monitored, cancer risk due to As (up to 4.4 × 10(-5)) is slightly above the target health risk limit adopted by the Spanish legislation (1 × 10(-5)). The cumulative non-carcinogenic hazard index ranged from 2.0 to 12.2 indicating that there is also a concern for chronic toxic effects from dermal contact with soil.

  7. [Transportation and risk assessment of heavy metal pollution in water-soil from the Riparian Zone of Daye Lake, China].

    PubMed

    Zhang, Jia-quan; Li, Xiu; Zhang, Quan-fa; Li, Qiong; Xiao, Wen-sheng; Wang, Yong-kui; Zhang, Jian-chun; Gai, Xi-guang

    2015-01-01

    Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.

  8. Mapping the spatial patterns of field traffic and traffic intensity to predict soil compaction risks at the field scale

    NASA Astrophysics Data System (ADS)

    Duttmann, Rainer; Kuhwald, Michael; Nolde, Michael

    2015-04-01

    Soil compaction is one of the main threats to cropland soils in present days. In contrast to easily visible phenomena of soil degradation, soil compaction, however, is obscured by other signals such as reduced crop yield, delayed crop growth, and the ponding of water, which makes it difficult to recognize and locate areas impacted by soil compaction directly. Although it is known that trafficking intensity is a key factor for soil compaction, until today only modest work has been concerned with the mapping of the spatially distributed patterns of field traffic and with the visual representation of the loads and pressures applied by farm traffic within single fields. A promising method for for spatial detection and mapping of soil compaction risks of individual fields is to process dGPS data, collected from vehicle-mounted GPS receivers and to compare the soil stress induced by farm machinery to the load bearing capacity derived from given soil map data. The application of position-based machinery data enables the mapping of vehicle movements over time as well as the assessment of trafficking intensity. It also facilitates the calculation of the trafficked area and the modeling of the loads and pressures applied to soil by individual vehicles. This paper focuses on the modeling and mapping of the spatial patterns of traffic intensity in silage maize fields during harvest, considering the spatio-temporal changes in wheel load and ground contact pressure along the loading sections. In addition to scenarios calculated for varying mechanical soil strengths, an example for visualizing the three-dimensional stress propagation inside the soil will be given, using the Visualization Toolkit (VTK) to construct 2D or 3D maps supporting to decision making due to sustainable field traffic management.

  9. Investigation of organochlorine pesticides from the Indus Basin, Pakistan: sources, air-soil exchange fluxes and risk assessment.

    PubMed

    Sultana, Jawairia; Syed, Jabir Hussain; Mahmood, Adeel; Ali, Usman; Rehman, Muhammad Yasir Abdur; Malik, Riffat Naseem; Li, Jun; Zhang, Gan

    2014-11-01

    Present study aimed to evaluate the contamination status of organochlorine pesticides (OCPs) and their associated potential for air-soil exchange and health risks from ecologically important sites of the Indus Basin, Pakistan. Among different OCPs investigated, ΣDDTs and ΣHCHs were more prevalent compounds in the agricultural soils and ambient air samples of the study area. The average concentrations for DDTs were found higher at downstream agricultural sites, particularly at Head Panjnad (Soil: 320 ng/g; Air: 743 pg/m(3)) and acting as an ultimate sink of ΣOCP burden in soils. Spatial distribution patterns inferred ubiquitous distribution of ΣDDTs in soils and air of the study area. Source diagnostic ratios demonstrated that studied OCPs either are illegally being used in agricultural practices or/and they are residues of past use in the environment. Fugacity fraction model revealed wide variations (ff=0.12-0.94) with 20% of OCPs above equilibrium range and net volatilization of α-endosulfan, β-HCH and o,p'-DDD. Assessment of cancer risks for OCPs indicated a higher cancer risk (CR>1×10(-6)) for the residents of the Indus Basin. According to the available soil quality guidelines, DDTs and HCHs were above the permissible limits and pose a threat to natural habitat and biodiversity of the Indus Basin.

  10. Autoclave treatment of pig manure does not reduce the risk of transmission and transfer of tetracycline resistance genes in soil: successive determinations with soil column experiments.

    PubMed

    Kang, Yijun; Gu, Xian; Hao, Yangyang; Hu, Jian

    2016-03-01

    The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge.

  11. VegeSafe: A community science program measuring soil-metal contamination, evaluating risk and providing advice for safe gardening.

    PubMed

    Rouillon, Marek; Harvey, Paul J; Kristensen, Louise J; George, Steven G; Taylor, Mark P

    2017-03-01

    The extent of metal contamination in Sydney residential garden soils was evaluated using data collected during a three-year Macquarie University community science program called VegeSafe. Despite knowledge of industrial and urban contamination amongst scientists, the general public remains under-informed about the potential risks of exposure from legacy contaminants in their home garden environment. The community was offered free soil metal screening, allowing access to soil samples for research purposes. Participants followed specific soil sampling instructions and posted samples to the University for analysis with a field portable X-ray Fluorescence (pXRF) spectrometer. Over the three-year study period, >5200 soil samples, primarily from vegetable gardens, were collected from >1200 Australian homes. As anticipated, the primary soil metal of concern was lead; mean concentrations were 413 mg/kg (front yard), 707 mg/kg (drip line), 226 mg/kg (back yard) and 301 mg/kg (vegetable garden). The Australian soil lead guideline of 300 mg/kg for residential gardens was exceeded at 40% of Sydney homes, while concentrations >1000 mg/kg were identified at 15% of homes. The incidence of highest soil lead contamination was greatest in the inner city area with concentrations declining towards background values of 20-30 mg/kg at 30-40 km distance from the city. Community engagement with VegeSafe participants has resulted in useful outcomes: dissemination of knowledge related to contamination legacies and health risks; owners building raised beds containing uncontaminated soil and in numerous cases, owners replacing all of their contaminated soil.

  12. Ecotoxicological risks associated with land treatment of petrochemical wastes. I. Residual soil contamination and bioaccumulation by cotton rats (Sigmodon hispidus).

    PubMed

    Schroder, Jackie; Basta, Nicholas; Payton, Mark; Wilson, James; Carlson, Ruth; Janz, David; Lochmiller, Robert

    2003-02-28

    Petrochemical waste contains both organic and inorganic contaminants that can pollute soil and may pose significant ecological risks to wildlife. Petrochemical waste typically is disposed of in land treatment units, which are widespread throughout Oklahoma and the United States. Few studies have been conducted evaluating possible toxicity risks to terrestrial organisms residing on these units. In this study, the extent of soil contamination with fluoride (F), metals, and organic hydrocarbons, the bioaccumulation of F and metals in cotton rats (Sigmodon hispidus), the relationship between contaminants in soil and in tissues of cotton rats, and the level of potentially toxic polycyclic aromatic hydrocarbons (PAHs) in soil were determined on land treatment units. Over a 2-yr period, cotton rats and soils were collected and analyzed from 5 land treatment and matched reference units. The number of land treatment units with soil metal contamination (in parentheses) included: Cr, Cu, Pb (5). Al, As, Ni, Sr, Zn (4). Ba (3). and Cd, V (2). The number of land treatment units with soil PAH contamination (in parentheses) were naphthalene, phenanthrene, benzo[g,h,i]perylene (3). acenaphthene, anthracene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[a]pyrene, indeno[1,2,3-c,d]pyrene, dibenz[a,h]anthracene (2). and acenaphthylene, fluorene, fluoranthene, benzo[k]fluoranthene (1). Total PAH and total petroleum hydrocarbons (TPH) were elevated at all five land treatment units. Mean sums of benzo[a]pyrene (BaP) equivalents (BaPequiv ) were not affected on

  13. Environmental impacts on soil and groundwater at airports: origin, contaminants of concern and environmental risks.

    PubMed

    Nunes, L M; Zhu, Y-G; Stigter, T Y; Monteiro, J P; Teixeira, M R

    2011-11-01

    Environmental impacts of airports are similar to those of many industries, though their operations expand over a very large area. Most international impact assessment studies and environmental management programmes have been giving less focus on the impacts to soil and groundwater than desirable. This may be the result of the large attention given to air and noise pollution, relegating other environmental descriptors to a second role, even when the first are comparatively less relevant. One reason that contributes to such "biased" evaluation is the lack of systematic information about impacts to soil and groundwater from airport activities, something the present study intends to help correct. Results presented here include the review of over seven hundred documents and online databases, with the objective of obtaining the following information to support environmental studies: (i) which operations are responsible for chemical releases?; (ii) where are these releases located?; (iii) which contaminants of concern are released?; (iv) what are the associated environmental risks? Results showed that the main impacts occur as a result of fuel storage, stormwater runoff and drainage systems, fuel hydrant systems, fuel transport and refuelling, atmospheric deposition, rescue and fire fighting training areas, winter operations, electrical substations, storage of chemical products by airport owners or tenants, and maintenance of green areas. A new method for ranking environmental risks of organic substances, based on chemical properties, is proposed and applied. Results show that the contaminants with the highest risks are the perfluorochemicals, benzene, trichloroethylene and CCl(4). The obtained information provides a basis for establishing the planning and checking phases of environmental management systems, and may also help in the best design of pollution prevention measures in order to avoid or reduce significant environmental impacts from airports.

  14. Reconciling seasonal hydraulic risk and plant water use through probabilistic soil-plant dynamics.

    PubMed

    Feng, Xue; Dawson, Todd E; Ackerly, David D; Santiago, Louis S; Thompson, Sally E

    2017-01-28

    Current models used for predicting vegetation responses to climate change are often guided by the dichotomous needs to resolve either (i) internal plant water status as a proxy for physiological vulnerability or (ii) external water and carbon fluxes and atmospheric feedbacks. Yet, accurate representation of fluxes does not always equate to accurate predictions of vulnerability. We resolve this discrepancy using a hydrodynamic framework that simultaneously tracks plant water status and water uptake. We couple a minimalist plant hydraulics model with a soil moisture model and, for the first time, translate rainfall variability at multiple timescales - with explicit descriptions at daily, seasonal, and interannual timescales - into a physiologically meaningful metric for the risk of hydraulic failure. The model, parameterized with measured traits from chaparral species native to Southern California, shows that apparently similar transpiration patterns throughout the dry season can emerge from disparate plant water potential trajectories, and vice versa. The parsimonious set of parameters that captures the role of many traits across the soil-plant-atmosphere continuum is then used to establish differences in species sensitivities to shifts in seasonal rainfall statistics, showing that co-occurring species may diverge in their risk of hydraulic failure despite minimal changes to their seasonal water use. The results suggest potential shifts in species composition in this region due to species-specific changes in hydraulic risk. Our process-based approach offers a quantitative framework for understanding species sensitivity across multiple timescales of rainfall variability and provides a promising avenue toward incorporating interactions of temporal variability and physiological mechanisms into drought response models.

  15. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan.

    PubMed

    Lu, Sijin; Wang, Yeyao; Teng, Yanguo; Yu, Xuan

    2015-10-01

    Soil pollution by Cd, Hg, As, Pb, Cr, Cu, and Zn was characterized in the area of the mining and smelting of metal ores at Guiyang, northeast of Hunan Province. A total of 150 topsoil (0-20 cm) samples were collected in May 2012 with a nominal density of one sample per 4 km(2). High concentrations of heavy metals especially, Cd, Zn, and Pb were found in many of the samples taken from surrounding paddy soil, indicating a certain extent of spreading of heavy metal pollution. Sequential extraction technique and risk assessment code (RAC) were used to study the mobility of chemical forms of heavy metals in the soils and their ecological risk. The results reveal that Cd represents a high ecological risk due to its highest percentage of the exchangeable and carbonate fractions. The metals of Zn and Cu pose a medium risk, and the rest of the metals represent a low environmental risk. The range of the potential ecological risk of soil calculated by risk index (RI) was 123.5~2791.2 and revealed a considerable-high ecological risk in study area especially in the neighboring and surrounding the mining activities area. Additionally, cluster analyses suggested that metals such as Pb, As, Hg, Zn, and Cd could be from the same sources probably related to the acidic drainage and wind transport of dust. Cluster analysis also clearly distinguishes the samples with similar characteristics according to their spatial distribution. The results could be used during the ecological risk screening stage, in conjunction with total concentrations and metal fractionation values to better estimate ecological risk.

  16. Risk potentials for humans of original and remediated PAH-contaminated soils: application of biomarkers of effect.

    PubMed

    Roos, Peter H; Tschirbs, Sebastian; Pfeifer, Frank; Welge, Peter; Hack, Alfons; Wilhelm, Michael; Bolt, Hermann M

    2004-12-15

    Contaminated soils represent a potential health risk for the human population. Risk assessment for humans requires specific methods, which must reflect the peculiarities of human behaviour, physiology and biochemistry with respect to contaminant uptake and processing. Biomarkers of effect or exposure have become an appropriate tool. Organic pollutants influence the expression profile of cytochromes P450 (CYP), and CYP1A1 has been shown to be a suitable biomarker for polycyclic aromatic hydrocarbons (PAH). The latter are widely distributed in soils and constitute an important soil contamination. Upon intake of PAH-contaminated soils, CYP1A1 is induced in various organs of rats and minipigs. Increased CYP1A1-levels in lung, kidney and spleen, after oral soil intake, indicate that contaminants escape the primary duodenal and hepatic metabolism and reach further organs. Dose-response relationships reveal that induction effects are to be expected in children based on known exposure conditions. Generally, CYP1A1-induction does not correlate with results of toxicity tests with lower organisms, performed with the same soils. The organic carbon content is largely responsible for this discrepancy. It severely affects the toxicity of soil bound PAH for microorganisms, but obviously affects the mobilization efficiency for PAH in the gastro-intestinal tract of mammals to a minor extent. Soil remediation by different methods may result in a significant reduction of the PAH content and of toxicity. Ingestion of remediated soils by rats shows, however, that the induction potential for CYP1A1 is only slightly decreased after remediation. This means that the major inducing components resist biological remediation or soil washing and remain in the soil. Because data obtained with experimental animals form the guiding principle for in vitro tests to be developed, the suitability of the animal model used for extrapolations to humans has to be proven. Upon soil ingestion, minipigs show

  17. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis.

    PubMed

    Liu, Xingmei; Song, Qiujin; Tang, Yu; Li, Wanlu; Xu, Jianming; Wu, Jianjun; Wang, Fan; Brookes, Philip Charles

    2013-10-01

    Vegetable fields near villages in China are suffering increasing heavy metal damages from various pollution sources including agriculture, traffic, mining and Chinese typical local private family-sized industry. 268 vegetable samples which included rape, celery, cabbages, carrots, asparagus lettuces, cowpeas, tomatoes and cayenne pepper and their corresponding soils in three economically developed areas of Zhejiang Province, China were collected, and the concentrations of five heavy metals (Pb, Cd, Cr, Hg and As) in all the samples were determined. The health risk assessment methods developed by the United States Environmental Protection Agency (US EPA) were employed to explore the potential health hazards of heavy metals in soils growing vegetables. Results showed that heavy metal contaminations in investigated vegetables and corresponding soils were significant. Pollution levels varied with metals and vegetable types. The highest mean soil concentrations of heavy metals were 70.36 mg kg(-1) Pb, 47.49 mg kg(-1) Cr, 13.51 mg kg(-1) As, 0.73 mg kg(-1) for Cd and 0.67 mg kg(-1) Hg, respectively, while the metal concentrations in vegetables and corresponding soils were poorly correlated. The health risk assessment results indicated that diet dominated the exposure pathways, so heavy metals in soil samples might cause potential harm through food-chain transfer. The total non-cancer and cancer risk results indicated that the investigated arable fields near industrial and waste mining sites were unsuitable for growing leaf and root vegetables in view of the risk of elevated intakes of heavy metals adversely affecting food safety for local residents. Chromium and Pb were the primary heavy metals posing non-cancer risks while Cd caused the greatest cancer risk. It was concluded that more effective controls should be focused on Cd and Cr to reduce pollution in this study area.

  18. Enhanced reductive dechlorination of polychlorinated biphenyl-contaminated soil by in-vessel anaerobic composting with zero-valent iron.

    PubMed

    Long, Yu-Yang; Zhang, Chi; Du, Yao; Tao, Xiao-Qing; Shen, Dong-Sheng

    2014-03-01

    Anaerobic dechlorination is an effective degradation pathway for higher chlorinated polychlorinated biphenyls (PCBs). The enhanced reductive dechlorination of PCB-contaminated soil by anaerobic composting with zero-valent iron (ZVI) was studied, and preliminary reasons for the enhanced reductive dechlorination with ZVI were investigated. The results show that the addition of nanoscale ZVI can enhance dechlorination during in-vessel anaerobic composting. After 140 days, the average number of removed Cl per biphenyl with 10 mg g(-1) of added nanoscale ZVI was 0.63, enhancing the dechlorination by 34 % and improving the initial dechlorination speed. The ZVI enhances dechlorination by providing a suitable acid base environment, reducing volatile fatty acid inhibition and stimulating the microorganisms. The C/N ratios for treatments with the highest rate of ZVI addition were smaller than for the control, indicating that ZVI addition can promote compost maturity.

  19. Risk of soil-transmitted helminth infections on agritourism farms in central and eastern Poland.

    PubMed

    Gawor, Jakub; Borecka, Anna

    2015-12-01

    Agritourism provides ecological tourist services for urban dwellers in rural areas. Agritourism farms offer space and attractive scenery for people seeking to rest in quiet place and wanting healthy, outdoor recreational activities. The high epidemiological standard of agritourism farms is beneficial for the health of the farm owners and the guests. Upgraded level of the farm sanitation, also from parasitological point of view is of great importance, especially that among agritourism farms guests predominate families with small children. A field survey was carried out in 57 farms in central-eastern Poland to evaluate the environmental risk factors for geohelminth infections on agritourism farms offering tourist services for urban dwellers. Samples of soil were collected from 76 sites, i.e. yards surrounding houses, vegetable, fruit and flower gardens, playgrounds and sandpits. In addition, samples were taken from 27 public places of recreation (playgrounds at forest clearing) visited by agritourism farm guests. During visits the farms were inspected and the owners were questioned about their awareness of the threat of parasitic infections. Soil contamination with geohelminth eggs was found in 4 examined farms (7.0%), in one locality on each farm. The eggs of Toxocara spp. and Ascaris spp. were detected in single samples from 3 backyards (6.4%) and one sandpit (10.0%). In the soil samples from places of recreation outside the farms eggs of human or animal helminths were not identified. The results of this study showed that the risk of helminth infections on agritourism farms is low, since geohelminth eggs (1-3 per sample) were detected only in four samples (0.5%) among 760 collected from farms households. The farm owners must be aware of the importance of preventive measures to eliminate the environmental contamination with eggs of zoonotic soiltransmitted helminths. Special attention should be paid to the risk of intestinal parasites of cats of semi domestic

  20. Caresoil: A multidisciplinar Project to characterize, remediate, monitor and evaluate the risk of contaminated soils in Madrid (Spain)

    NASA Astrophysics Data System (ADS)

    Muñoz-Martín, Alfonso; Antón, Loreto; Granja, Jose Luis; Villarroya, Fermín; Montero, Esperanza; Rodríguez, Vanesa

    2016-04-01

    Soil contamination can come from diffuse sources (air deposition, agriculture, etc.) or local sources, these last being related to anthropogenic activities that are potentially soil contaminating activities. According to data from the EU, in Spain, and particularly for the Autonomous Community of Madrid, it can be considered that heavy metals, toxic organic compounds (including Non Aqueous Phases Liquids, NAPLs) and combinations of both are the main problem of point sources of soil contamination in our community. The five aspects that will be applied in Caresoil Program (S2013/MAE-2739) in the analysis and remediation of a local soil contamination are: 1) the location of the source of contamination and characterization of soil and aquifer concerned, 2) evaluation of the dispersion of the plume, 3) application of effective remediation techniques, 4) monitoring the evolution of the contaminated soil and 5) risk analysis throughout this process. These aspects involve advanced technologies (hydrogeology, geophysics, geochemistry,...) that require new developing of knowledge, being necessary the contribution of several researching groups specialized in the fields previously cited, as they are those integrating CARESOIL Program. Actually two cases concerning hydrocarbon spills, as representative examples of soil local contamination in Madrid area, are being studied. The first is being remediated and we are monitoring this process to evaluate its effectiveness. In the second location we are defining the extent of contamination in soil and aquifer to define the most effective remediation technique.

  1. Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs, India.

    PubMed

    Singh, Shubhra; Raju, N Janardhana; Nazneen, Sadaf

    2015-06-01

    This study assessed soil pollution in the Varanasi environs of Uttar Pradesh in India. Assessing the concentration of potentially harmful heavy metals in the soils is imperative in order to evaluate the potential risks to human. To identify the concentration and sources of heavy metals and assess the soil environmental quality, 23 samples were collected from different locations covering dumping, road and agricultural area. The average concentrations of the heavy metals were all below the permissible limits according to soil quality guidelines except Cu (copper) and Pb (lead) in dumping and road soils. Soil heavy metal contamination was assessed on the basis of geoaccumulation index (Igeo), pollution index (PI) and integrated pollution index (IPI). The IPI of the metals ranged from 0.59 to 9.94, with the highest IPI observed in the dumping and road soils. A very significant correlation was found between Pb and Cu. The result of principal component analysis suggested that PC1 was mainly affected by the use of agrochemicals, PC2 was affected by vehicular emission and PC3 was affected by dumping waste. Meanwhile, PC4 was mainly controlled by parent material along with anthropogenic activities. Appropriate measures should be taken to minimize the heavy metal levels in soils and thus protect human health.

  2. Patterns and Risk Factors of Soil-Transmitted Helminthiasis Among Orang Asli Subgroups in Peninsular Malaysia.

    PubMed

    Ngui, Romano; Aziz, Shafie; Chua, Kek Heng; Aidil, Roslan Muhammad; Lee, Soo Ching; Tan, Tiong Kai; Sani, Mistam Mohd; Arine, Ahmad Fadzlun; Rohela, Mahmud; Lim, Yvonne A L

    2015-08-01

    A cross-sectional study was conducted to provide comprehensive data on the patterns and associated risk factors of soil-transmitted helminth (STH) infections among five Orang Asli subgroups in Peninsular Malaysia. The overall prevalence of STH infections was 59.9% (95% confidence interval [CI] = 56.1-63.7%). Trichuris trichiura (54.3%; 95% CI = 50.4-58.2%) was the predominant species followed by Ascaris lumbricoides (26.7%; 95% CI = 23.3-30.1%) and hookworm (9.1%; 95% CI = 6.9-11.3%). This study showed diversity for STH infections by subgroup with poverty and personal sanitary behavior as important risk factors for infection. Risk profile analyses indicating that Orang Kuala subgroup who has a generally well-developed infrastructure and better quality of life had a low rate of infection. There is a need for poverty reduction and promotion of deworming programs along with mass scale campaigns to create awareness about health and hygiene to reduce STH infections.

  3. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    PubMed Central

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion. PMID:26959043

  4. Patterns and Risk Factors of Soil-Transmitted Helminthiasis among Orang Asli Subgroups in Peninsular Malaysia

    PubMed Central

    Ngui, Romano; Aziz, Shafie; Chua, Kek Heng; Aidil, Roslan Muhammad; Lee, Soo Ching; Tan, Tiong Kai; Sani, Mistam Mohd; Arine, Ahmad Fadzlun; Rohela, Mahmud; Lim, Yvonne A. L.

    2015-01-01

    A cross-sectional study was conducted to provide comprehensive data on the patterns and associated risk factors of soil-transmitted helminth (STH) infections among five Orang Asli subgroups in Peninsular Malaysia. The overall prevalence of STH infections was 59.9% (95% confidence interval [CI] = 56.1–63.7%). Trichuris trichiura (54.3%; 95% CI = 50.4–58.2%) was the predominant species followed by Ascaris lumbricoides (26.7%; 95% CI = 23.3–30.1%) and hookworm (9.1%; 95% CI = 6.9–11.3%). This study showed diversity for STH infections by subgroup with poverty and personal sanitary behavior as important risk factors for infection. Risk profile analyses indicating that Orang Kuala subgroup who has a generally well-developed infrastructure and better quality of life had a low rate of infection. There is a need for poverty reduction and promotion of deworming programs along with mass scale campaigns to create awareness about health and hygiene to reduce STH infections. PMID:26055746

  5. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment.

    PubMed

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-03-04

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion.

  6. Improved detection of microbial risk of releasing genetically modified bacteria in soil by using massive sequencing and antibiotic resistance selection.

    PubMed

    Han, Il; Lee, Tae Kwon; Han, Jungmin; Doan, Tuan Van; Kim, Seong Bo; Park, Joonhong

    2012-08-15

    High-throughput 16S rRNA gene-targeted pyrosequencing was used with commonly used risk assessment techniques to evaluate the potential microbial risk in soil after inoculating genetically modified (GM) Corynebacterium glutamicum. To verify the risk, reference experiments were conducted in parallel using well-defined and frequently used GM Escherichia coli and wild-type strains. The viable cell count showed that the number of GM bacteria in the soil was reduced to below the detection limit within 10 days, while the molecular indicator for GM plasmids was detected throughout the experiment by using quantitative real-time polymerase chain reactions. Subsequent pyrosequencing showed an insignificant influence of the GM bacteria and/or their GM plasmids on the structure of the soil bacterial community this was similar to non-GM wild-type strains. However, pyrosequencing combined with kanamycin-resistant bacteria selection uncovered a potential risk of GM bacteria on the soil bacterial community and pathogens. The results of the improved methodology showed that the microbial risk attributable to GM C. glutamicum was relatively lower than that attributable to the reference GM E. coli.

  7. Chemistry, toxicology, and human health risk of cyanide compounds in soils at former manufactured gas plant sites.

    PubMed

    Shifrin, N S; Beck, B D; Gauthier, T D; Chapnick, S D; Goodman, G

    1996-04-01

    Cyanide-containing wastes are commonly found in soils at former manufactured gas plant (MGP) sites, also known as town gas sites. The complex forms of cyanide are responsible for the blue-stained soils and rocks found at these sites. Most concentrations of cyanide at MGP sites are below 2000 ppm, although concentrations greater than 20,000 ppm have been observed. An understanding of the chemistry of the MGP cyanide-containing compounds, their fate, and transport as well as their toxicology is critical to accurately assessing potential human health risks from these compounds. In this paper, the authors demonstrate that the most prevalent types of cyanide compounds found at former MGP sites are the relatively nontoxic iron-complexed forms, such as ferric ferrocyanide, rather than the highly toxic free cyanide forms. Moreover, the chemical conditions at most former MGP sites limit the extent to which free cyanide may be released into air and water from complex cyanides. Using a screening analysis, the authors estimate potential risks from a multiroute exposure to complex and free cyanides in soil, air, and groundwater at former MGP sites and demonstrate that such risks are likely to be insignificant. Unfortunately, the lack of readily available measurement techniques to characterize cyanides in soil can result in erroneous conclusions about potential risks from cyanide compounds in soils at former MGP sites, particularly if health-based soil criteria for free cyanide (e.g., the Massachusetts Department of Environmental Protection criterion for free cyanide is 100 ppm (MA. DEP, 1995)) are applied. The authors recommend development of routine methods for field sampling and laboratory testing techniques to demonstrate that cyanides in soil at former MGP sites are predominated by iron-complexed species and that free cyanide is less than levels of concern.

  8. Soil Erosion Risk Map based on irregularity of the vegetative activity

    NASA Astrophysics Data System (ADS)

    Saa-Requejo, Antonio; Tarquis, Ana Maria; Martín-Sotoca, Juan J.; Valencia, Jose L.; Gobin, Anne; Rodriguez-Sinobas, Leonor

    2016-04-01

    Fournier Index on NDVI values seems to synthesize the different parameters of the USLE, referring to rainfall, soil, geomorphology and vegetation cover. Acknowledgements Authors are grateful to TALE project (CICYT PCIN-2014-080) and DURERO project (Env.C1.3913442) for their financial support. References Fournier, F. (1960), Climat et erosion. P.U.F. Paris. Jensen, J.R. (2000). Remote Sensing of the Environment: An Earth Resource Perpective, Prentice Hall, New Jersey. Martínez Sotoca, J. J. (2014) estructura espacial de la sequía en pastos y sus aplicaciones en el seguro agrario indexado. (In Spanish) Master Thesis, UPM. Shamshad, A., Azhari M.N., Isaac, M.H., wan Hussin, W.M.A., Parida, B.P.. (2008). Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. Catena, 72, 423-432. van der Knijff, J.M., Jones, R.J.A., Montanarella, L. (1999). Soil Erosion Risk Assessment Italy Soil Erosion Risk Assessment in Italy. European Commission Soil Bureau Joint Research Centre European Commission. EUR 19022EN.

  9. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh.

    PubMed

    Islam, Md Atikul; Romić, Davor; Akber, Md Ali; Romić, Marija

    2017-01-18

    Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.

  10. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran.

    PubMed

    Dehghani, Sharareh; Moore, Farid; Keshavarzi, Behnam; Hale, Beverley A

    2017-02-01

    In this study a total of 30 street dusts and 10 surface soils were collected in the central district of Tehran and analyzed for major potentially toxic metals. Street dust was found to be greatly enriched in Sb, Pb, Cu and Zn and moderately enriched in Cr, Mn, Mo and Ni. Contamination of Cu, Sb, Pb and Zn was clearly related to anthropogenic sources such as brake wear, tire dust, road abrasion and fossil fuel combustion. Spatial distribution of pollution load index in street dust suggested that industries located south-west of the city intensify street dust pollution. Microscopic studies revealed six dominant group of morphological structures in calculation of the exposurethe street dusts and surface soils, with respect to different geogenic and anthropogenic sources. The BCR (the European Community Bureau of Reference) sequential extraction results showed that Sb, Ni, Mo, As and Cr bonded to silicates and sulfide minerals were highly resistant to dissolution. In contrast, Zn, Cd, and Mn were mostly associated with the exchangeable phase and thus would be easily mobilized in the environment. Cu was the most abundant metal in the reducible fraction, indicating its adsorption to iron and manganese oxy-hydroxides. Pb was equally extracted from exchangeable and reducible fractions. Anthropogenic sources related to traffic apparently play a small role in Cr, Ni and Mo contamination and dispersed them as bioavailable forms but with reduced mobility and bioavailablity due to high potential of complexation and adsorption to organic matter and iron and manganese oxy-hydroxides. Calculated Hazard Index (HI) suggests ingestion as the most important pathway for the majority of PTMs in children and dermal contact as the main exposure route for Cr, Cd and Sb for adults. The HIs and fractionation pattern of elements revealed Pb as the sole element that bears potential health risk in street dust and surface soil.

  11. Soil radioactivity levels, radiological maps and risk assessment for the state of Kuwait.

    PubMed

    Alazemi, N; Bajoga, A D; Bradley, D A; Regan, P H; Shams, H

    2016-07-01

    An evaluation of the radioactivity levels associated with naturally occurring radioactive materials has been undertaken as part of a systematic study to provide a surface radiological map of the State of Kuwait. Soil samples from across Kuwait were collected, measured and analysed in the current work. These evaluations provided soil activity concentration levels for primordial radionuclides, specifically members of the (238)U and (232)Th decay chains and (40)K which. The (238)U and (232)Th chain radionuclides and (40)K activity concentration values ranged between 5.9 ↔ 32.3, 3.5 ↔ 27.3, and 74 ↔ 698 Bq/kg respectively. The evaluated average specific activity concentrations of (238)U, (232)Th and (40)K across all of the soil samples have mean values of 18, 15 and 385 Bq/kg respectively, all falling below the worldwide mean values of 35, 40 and 400 Bq/kg respectively. The radiological risk factors are associated with a mean of 33.16 ± 2.46 nG/h and 68.5 ± 5.09 Bq/kg for the external dose rate and Radium equivalent respectively. The measured annual dose rates for all samples gives rise to a mean value of 40.8 ± 3.0 μSv/y while the internal and internal hazard indices have been found to be 0.23 ± 0.02 and 0.19 ± 0.01 respectively.

  12. Screening-level risk assessment for styrene-acrylonitrile (SAN) trimer detected in soil and groundwater.

    PubMed

    Kirman, C R; Gargas, M L; Collins, J J; Rowlands, J C

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment.

  13. Distribution and risks of polycyclic aromatic hydrocarbons in suburban and rural soils of Beijing with various land uses.

    PubMed

    Peng, Chi; Wang, Meie; Zhao, Yun; Chen, Weiping

    2016-03-01

    We investigated the sources, distribution, and health risks of polycyclic aromatic hydrocarbons (PAHs) in soils of peri-urban Beijing. The mean concentrations of total 16 PAHs in suburban and rural soils of Beijing were 321.8 ± 408.2 and 219.2 ± 233.5 ng/g, respectively. The PAH concentrations decreased along the urban-suburban-rural gradient and varied with land use categories. The industrial areas had the highest soil PAH concentrations followed by the living areas, roadsides, green areas, and agricultural areas. The major sources of PAHs in these soils were coal and biomass combustion. Traffic emission was not the dominant source of PAHs in peri-urban Beijing. At a few sites, high soil PAH contents were caused by point sources such as iron and steel plants and a wood preservative factory. The incremental lifetime cancer risks (ILCRs) of adults and children exposed to PAHs in the soils were acceptable. However, cautions should be paid to the abandoned industrial sites, which might be converted to residential area during the urbanization process.

  14. [Assessment of health risk for mined soils based on critical thresholds for lead, zinc, cadmium and copper].

    PubMed

    Li, Jing; Yu, Tian-ming; Zhou, Jie; Xie, Zheng-miao

    2008-08-01

    Contents of heavy metals (Pb, Zn, Cd, Cu) in soils in terms of point, line and area around a lead/zinc mine in Dongguan town, Zhejiang, China, were investigated to evaluate environmental quality based on index and health risk assessment model for safety of soils-human. The order for average contents of Pb, Zn, Cd, Cu in terms of point, line and area were Pb > Zn > Cu > Cd. The contents of Pb, Zn, Cd, Cu in terms of point and line were much higher than that in terms of area, especially Pb and Zn contents. The distribution of soil heavy metals was asymmetric. The calculated critical threshold in soil for adult was higher than that for children. The average order of individual risk index for children and adult health was Pb > Cd > Cu > Zn. Children were more easily affected by soil heavy metals, for that hazard indexes for children were 3 times of adult health. The environmental quality of Dongguan town was mainly safe correspondingly. The heavy metal environmental quality in terms of point and line near a lead/zinc mine had higher hazard risk and might bring potential hazard to local residents.

  15. Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China.

    PubMed

    Wu, Xiao-Lian; Xiang, Lei; Yan, Qing-Yun; Jiang, Yuan-Neng; Li, Yan-Wen; Huang, Xian-Pei; Li, Hui; Cai, Quan-Ying; Mo, Ce-Hui

    2014-07-15

    Organic fertilizer or manure containing antibiotics has been widely used in organic farms, but the distribution and potential impacts of antibiotics to the local environment are not well understood. In this study, four quinolone antibiotics in soil samples (n=69) from five organic vegetable farms in a subtropical city, Southern China, were analyzed using high performance liquid chromatography-tandem mass spectrometry. Our results indicated that quinolone compounds were ubiquitous in soil samples (detection frequency>97% for all compounds), and their concentrations ranged from not detectable to 42.0 μg/kg. Among the targets, enrofloxacin (ENR) was the dominant compound, followed by ciprofloxacin (CIP) and norfloxacin (NOR). The average total concentrations of four compounds in the soils were affected by vegetable types and species cultivated, decreasing in the order of fruit>rhizome>leaf vegetables. Moreover, the average concentrations of quinolone compounds (except ENR) in open-field soils were higher than those in greenhouse soils. The concentrations of quinolone antibiotics in this study were lower than the ecotoxic effect trigger value (100 μg/kg) proposed by the Veterinary Medicine International Coordination commission. Risk assessment based on the calculated risk quotients indicated that NOR, CIP, and ENR posed mainly medium to low risks to bacteria.

  16. Geophysical surveys combined with laboratory soil column experiments to identify and explore risk areas for soil and water pollution in feedlots

    NASA Astrophysics Data System (ADS)

    Espejo-Pérez, Antonio Jesus; Sainato, Claudia Mabel; Jairo Márquez-Molina, John; Giráldez, Juan Vicente; Vanderlinden, Karl

    2014-05-01

    Changes of land use without a correct planning may produce its deterioration with their social, economical and environmental irreversible consequences over short to medium time range. In Argentina, the expansion of soybean fields induced a reduction of the area of pastures dedicated to stockbreeding. As cattle activity is being progressively concentrated on small pens, at feedlots farms, problems of soil and water pollution, mainly by nitrate, have been detected. The characterization of the spatial and temporal variability of soil water content is very important because the mostly advective transport of solutes. To avoid intensive soil samplings, very expensive, one has to recur to geophysical exploration methods. The objective of this work was to identify risk areas within a feedlot of the NW zone of Buenos Aires Province, in Argentina through geophysical methods. The surveys were carried out with an electromagnetic induction profiler EMI-400 (GSSI) and a Time domain Reflectometry (TDR) survey of depth 0-0.10 m with soil sampling and measurement of moisture content with gravimetric method (0-1.0 m). Several trenches were dug inside the pens and also at a test site, where texture, apparent density, saturated hydraulic conductivity (Ks), electrical conductivity of the saturation paste extract and organic matter content (OM) were measured. The water retention curves for these soils were also determined. At one of the pens undisturbed soil columns were extracted at 3 locations. Laboratory analysis for 0-1.0 m indicated that soil texture was classified as sandy loam, average organic matter content (OM) was greater than 2.3% with low values of apparent density in the first 10 cm. The range of spatial dependence of data suggested that the number of soil samples could be reduced. Soil apparent electrical conductivity (ECa) and soil moisture were well correlated and indicated a clear spatial pattern in the corrals. TDR performance was acceptable to identify the spatial

  17. Scenario-targeted toxicity assessment through multiple endpoint bioassays in a soil posing unacceptable environmental risk according to regulatory screening values.

    PubMed

    Rodriguez-Ruiz, A; Etxebarria, J; Boatti, L; Marigómez, I

    2015-09-01

    Lanestosa is a chronically polluted site (derelict mine) where the soil (Lanestosa (LA) soil) exceeds screening values (SVs) of regulatory policies in force (Basque Country; Europe) for Zn, Pb and Cd. A scenario-targeted toxicity assessment was carried out on the basis of a multi-endpoint bioassay approach. Acute and chronic toxicity bioassays were conducted with selected test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates and with bioaccumulation studies in earthworms. Besides, the toxicity profile was compared with that of the mine runoff (RO) soil and of a fresh artificially polluted soil (LAAPS) resembling LA soil pollutant profile. Extractability studies in LA soil revealed that Pb, Zn and Cd were highly available for exchange and/or release into the environment. Indeed, Pb and Zn were accumulated in earthworms and LA soil resulted to be toxic. Soil respiration, V. fischeri, vegetative and developmental cycles of D. discoideum and survival and juvenile production of E. fetida were severely affected. These results confirmed that LA soil had unacceptable environmental risk and demanded intervention. In contrast, although Pb and Zn concentrations in RO soil revealed also unacceptable risk, both metal extractability and toxicity were much lower than in LA soil. Thus, within the polluted site, the need for intervention varied between areas that posed dissimilar risk. Besides, since LAAPS, with a high exchangeable metal fraction, was the most toxic, ageing under in situ natural conditions seemingly contributed to attenuate LA soil risk. As a whole, combining multi-endpoint bioassays with scenario-targeted analysis (including leaching and ageing) provides reliable risk assessment in soils posing unacceptable environmental risk according to SVs, which is useful to optimise the required intervention measures.

  18. An Integrated H-G Scheme Identifying Areas for Soil Remediation and Primary Heavy Metal Contributors: A Risk Perspective.

    PubMed

    Zou, Bin; Jiang, Xiaolu; Duan, Xiaoli; Zhao, Xiuge; Zhang, Jing; Tang, Jingwen; Sun, Guoqing

    2017-03-23

    Traditional sampling for soil pollution evaluation is cost intensive and has limited representativeness. Therefore, developing methods that can accurately and rapidly identify at-risk areas and the contributing pollutants is imperative for soil remediation. In this study, we propose an innovative integrated H-G scheme combining human health risk assessment and geographical detector methods that was based on geographical information system technology and validated its feasibility in a renewable resource industrial park in mainland China. With a discrete site investigation of cadmium (Cd), arsenic (As), copper (Cu), mercury (Hg) and zinc (Zn) concentrations, the continuous surfaces of carcinogenic risk and non-carcinogenic risk caused by these heavy metals were estimated and mapped. Source apportionment analysis using geographical detector methods further revealed that these risks were primarily attributed to As, according to the power of the determinant and its associated synergic actions with other heavy metals. Concentrations of critical As and Cd, and the associated exposed CRs are closed to the safe thresholds after remediating the risk areas identified by the integrated H-G scheme. Therefore, the integrated H-G scheme provides an effective approach to support decision-making for regional contaminated soil remediation at fine spatial resolution with limited sampling data over a large geographical extent.

  19. Probabilistic health risk assessment of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban soils from a tropical city of India.

    PubMed

    Kumar, Bhupander; Verma, Virendra Kumar; Kumar, Sanjay; Sharma, Chandra Shekhar

    2013-01-01

    Distribution of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in urban soils, and their risk for humans was evaluated and presented in this article. The average concentration of ∑16PAHs, ∑carcinogenic PAHs, ∑28PCBs and ∑dioxin-like PCBs was 631.6 ± 244.5 μg kg(-1), 568.8 ± 238.8 μg kg(-1), 11.57 ± 2.00 μg kg(-1) and 2.58 ± 0.34 μg kg(-1), respectively. Environmental and human health risk assessment parameters such as benzo(a)pyrene total potency equivalent (BaP TPE), index of additive cancer risk (IACR), life time average daily dose (LADD) and incremental lifetime cancer risk (ILCR) have been estimated and discussed. The average benzo(a)pyrene total potency equivalent (BaP TPE) estimate was 0.194 mg kg(-1) and ranging between 8.9×10(-4) to 0.87 mg kg(-1). The incremental life time cancer risk (ILCR) of PAHs through soil ingestion for adults and children was estimated as 8.1×10(-6) and 4.2×10(-5), respectively. However, the cancer risk (ILCR) from non-dioxin-like PCBs and dioxin-like PCBs for adults and children ranged between 3.31×10(-8) to 1.741×10(-7) and 1.46×10(-5) to 7.56×10(-5), respectively. These estimated risks were lower than acceptable limits, based on incremental cancer risk from soil exposure. Overall, index of additive cancer risk (IACR) and hazard quotient (HQ) for PAHs and PCBs was lower than safe limit of 1, indicating no environmental and human health risk from PAHs and PCBs in this area of study.

  20. Soil bio-engineering for risk mitigation and environmental restoration in a humid tropical area

    NASA Astrophysics Data System (ADS)

    Petrone, A.; Preti, F.

    2009-07-01

    The use of soil bio-engineering techniques in developing countries is a relevant issue for disaster mitigation, environmental restoration and poverty reduction. Research on authochtonal plants suitable for this kind of works and on economic efficiency is essential for the divulgation of such techniques. The present paper is focused on this two issues related to the realization of various typologies of soil bio-engineering works in the humid tropic of Nicaragua. In the area of Río Blanco, located in the Department of Matagalpa, soil bio-engineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in the works, monitorings were performed, one in the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, collecting survival rate and morphological parameters data. Concerning the economic efficiency we proceed to a financial analysis of the works and once the unit price was obtained, we converted the amount in EPP Dollars (Equal Purchasing Power) in order to compare the Nicaraguan context with the Italian one. Among the used species we found that Madero negro (Gliricidia sepium) and Roble macuelizo (Tabebuia rosea) are adequate for soil-bioengineering measure on slopes while Helequeme (Erythrina fusca) reported a successful behaviour only in the crib wall for riverbank protection. In the comparison of the costs in Nicaragua and in Italy, the unit price reduction for the Central American country ranges between 1.5 times (for the vegetative covering) and almost 4 times (for the fascine mattress) if it's used the EPP dollar exchange rate. Conclusions are reached with regard to hydrological-risk mitigating actions performed on a

  1. Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area

    NASA Astrophysics Data System (ADS)

    Petrone, A.; Preti, F.

    2010-02-01

    The use of soil bio-engineering techniques in developing countries is a relevant issue for disaster mitigation, environmental restoration and poverty reduction. Research on the autochthonal plants suitable for these kinds of interventions and on the economic efficiency of the interventions is essential for the dissemination of such techniques. The present paper is focused on these two issues as related to the realization of various typologies of soil bioengineering works in the humid tropics of Nicaragua. In the area of Río Blanco, located in the Department of Matagalpa, soil bioengineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in these works, monitoring was performed, one on the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, by collecting data on survival rate and morphological parameters. Concerning economic efficiency, we proceeded to a financial analysis of the works. Once the unit price was obtained, we converted the amount into EPP Dollars (Equal Purchasing Power) in order to compare the Nicaraguan context with the European one. Among the species used we found that Gliricidia sepium (local common name: Madero negro) and Tabebuia rosea (local common name: Roble macuelizo) are adequate for soil bioengineering measures on slopes, while Erythrina fusca (local common name: Helequeme) resulted in successful behaviour only in the crib wall for riverbank protection. In comparing costs in Nicaragua and in Italy, the unit price reduction for Nicaragua ranges from 1.5 times (for the vegetative covering) to almost 4 times (for the fascine mattress), using the EPP dollar exchange rate. Our conclusions with

  2. Using Biochar composts for improving sandy vineyard soils while reducing the risk of

    NASA Astrophysics Data System (ADS)

    Kammann, Claudia; Mengel, Jonathan; Mohr, Julia; Muskat, Stefan; Schmidt, Hans-Peter; Löhnertz, Otmar

    2016-04-01

    In recent years, biochar has increasingly been discussed as an option for sustainable environmentalmanagement, combining C sequestration with the aim of soil fertility improvement. Biochar has shownpositive effects in viticulture before (Genesio et al. 2015) which were largely attributed to improved water supply to the plants. However, in fertile temperate soils, the use of pure, untreated biochar does not guarantee economic benefits on the farm level (Ruysschaert et al., 2016). Hence, recent approaches started introducing biochar in management of nutrient-rich agricultural waste, e.g. in compost production (Kammann et al. 2015). Compost is frequently used in German vineyards for humus buildup and as a slow-release organic fertilizer. This, and increasingly mild, precipitation-rich winters, promoting mineralization, increase the risk of unwanted nitrate leaching losses into surface and ground waters during winter. To investigate if biochar pure, or biochar-compost mixtures and -products may have the potential to reduce nitrate leaching, we set up the following experiment: Either 30 or 60 t ha-1 of the following additives were mixed into the top 30 cm of sandy soil in large (120 L) containers, and planted with oneRiesling grapevine (Clone 198-30 GM) per container: Control (no addition), pure woody biochar, pure compost, biochar-compost (produced from the same organic feedstock than the compost, with 20 vol. - % of a woody biochar added), and pure compost plus pure biochar (same mixing ratio as in the former product). Once monthly, containers were exposed to simulated heavy rainfall that caused drainage. Leachates were collected from an outlet at the bottom of the containers, and analyzed for nutrients. The nutrient-rich additives containing compost all improved grape biomass and yield, most markedly pure compost and biochar-compost; same amendments were not significantly different. However,while the addition of the lower amount (30 t ha-1) of compost reduced nitrate

  3. Tempo-spatial downscaling of multiple GCMs projections for soil erosion risk analysis at El Reno, Oklahoma, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper spatial and temporal treatments of climate change scenarios projected by General Circulation Models (GCMs) are critical to accurate assessment of climatic impacts on natural resources and ecosystems. For accurate prediction of soil erosion risk at a particular farm or field under climate cha...

  4. Assessing Climate Change Impacts on Large-Scale Soil Moisture, its Temporal Variability and Associated Drought-Flood Risks

    NASA Astrophysics Data System (ADS)

    Destouni, G.; Verrot, L.

    2015-12-01

    Soil moisture is a dynamic variable of great importance for water cycling and climate, as well as for ecosystems and societal sectors such as agriculture. Model representation of soil moisture and its temporal variability is, for instance, central for assessing the impacts of hydro-climatic change on drought and flood risks. However, our ability to assess such impacts and guide appropriate mitigation and adaptation measures is challenged by the need to link data and modeling across a range of spatiotemporal scales of relevance for the variability and change of soil moisture in long-term time series. This paper synthesizes recent advances for meeting this challenge by a relatively simple, analytical, data-driven approach to modeling the variability and change of large-scale soil moisture under long-term hydro-climatic change. Model application to two major Swedish drainage basins, and model-data comparison for ten study catchments across the United States shows the model ability to reproduce variability dynamics in long-term data series of the key soil-moisture variables: unsaturated water content and groundwater table position. The Swedish application shows that human-driven hydro-climatic shifts may imply increased risk for hydrological drought (runoff-related) and agricultural drought (soil moisture-related), even though meteorological drought risk (precipitation-related) is unchanged or lowered. The direct model-data comparison for ten U.S. catchments further shows good model representation of seasonal and longer-term fluctuation timings and frequencies for water content and groundwater level, along with physically reasonable model tendency to underestimate the local fluctuation magnitudes. Overall, the tested modeling approach can fulfill its main aim of screening long-term time series of large-scale hydro-climatic data (historic or projected for the future by climate modeling) for relatively simple, unexaggerated assessment of variability and change in key

  5. Exposure to toxicants in soil and bottom ash deposits in Agbogbloshie, Ghana: human health risk assessment.

    PubMed

    Obiri, S; Ansa-Asare, O D; Mohammed, S; Darko, H F; Dartey, A G

    2016-10-01

    Recycling of e-waste using informal or crude techniques poses serious health risk not only to the workers but also to the environment as whole. It is against this background that this paper sought to measure health risk faced by informal e-waste workers from exposure to toxicants such as lead, cadmium, chromium, copper, arsenic, tin, zinc and cobalt via oral and dermal contact with bottom ash and soil. Using random sampling techniques, 3 separate sites each (where burning and manual dismantling of e-wastes are usually carried) were identified, and a total of 402 samples were collected. The samples were analysed using standard methods for chemical analysis prescribed by the American Water Works Association (AWWA). Concentrations of Pb, Cd, Cr, Cu, As, Sn, Zn and Co in bottom ash samples from location ASH1 are 5388 ± 0.02 mg/kg (Pb), 2.39 ± 0.01 mg/kg (Cd), 42 ± 0.05 mg/kg (Cr), 7940 ± 0.01 mg/kg (Cu), 20 ± 0.07 mg/kg (As), 225 ± 0.04 mg/kg (Sn), 276 ± 0.04 mg/kg (Zn) and 123 ± 0.04 mg/kg (Co), while concentrations of the aforementioned toxicants in soil samples at location ASG1 are as follows: 1685 ± 0.14 mg/kg (Pb), 26.89 ± 0.30 mg/kg (Cd), 36.86 ± 0.02 mg/kg (Cr), 1427 ± 0.08 mg/kg (Cu), 1622 ± 0.12 mg/kg (As), 234 ± 0.25 mg/kg (Sn), 783 ± 0.31 mg/kg (Zn) and 135 ± 0.01 mg/kg (Co); used as input parameters in assessing health risk faced by workers. The results of cancer health risk faced by e-waste workers due to accidental ingestion of As in bottom ash at ASH1 is 4.3 × 10(-3) (CTE) and 6.5 × 10(-2) (RME), i.e. approximately 4 out of 1000 e-waste workers are likely to suffer from cancer-related diseases via central tendency exposure (CTE parameters), and 7 out of every 100 e-waste worker is also likely to suffer from cancer cases by reasonable maximum exposure (RME) parameters, respectively. The cancer health risk results for the other sampling sites were found to have exceeded the acceptable

  6. Application of humic compounds for remediation of soils contaminated with heavy metals: the benefits and risks

    NASA Astrophysics Data System (ADS)

    Motuzova, Galina; Barsova, Natalia; Stepanov, Andrey; Kiseleva, Violetta; Kolchanova, Ksenia; Starkova, Irina; Karpukhin, Mikhail

    2015-04-01

    found to contain only 3-9% of copper. The content of free Cu2+ ions in the sample extract was negligible. The samples used for field experiments were tested in laboratory to estimate their sorption capacity for Cu. For this purpose, 300 g of substrate (loam and mixed organic substrate) with addition of water (control) and humic preparation (same dose as in the field experiment) were kept in the laboratory for 1 week. Soil samples were then dried and brought into equilibrium with the solution of copper sulfate at concentration of 50 mg/l. The concentration of copper in the solution in equilibrium with HC was 2.5-4 times higher than in the control variant; absorption of copper by solid phase decreased by 5-6%. Results of the laboratory study were in good agreement with the results of the field experiment. Addition of HC increased the content of soluble organic matter and copper complexation by an order of magnitude and thus reduced the activity of copper ions in the liquid phase that was treated as a possible remediation effect of the humic compound for plants and biota. However the increased total metal content mainly in a migration-capable form (negatively charged complexes with organic matter) may increase the risk of contaminating ground waters with heavy metals. Therefore, application of the artificial humic compounds for remediation of soils contaminated with heavy metals requires monitoring and further development of means to prevent their migration.

  7. Polychlorinated biphenyls (PCBs) in air and soil from a high-altitude pasture in the Italian Alps: evidence of CB-209 contamination.

    PubMed

    Tremolada, Paolo; Guazzoni, Niccolò; Comolli, Roberto; Parolini, Marco; Lazzaro, Serena; Binelli, Andrea

    2015-12-01

    This study analyses the seasonal trend of polychlorinated biphenyls (PCB) concentrations in air and soil from a high-altitude mountain pasture in the Italian Alps. PCB concentrations in soil were generally comparable to background levels and were lower than those previously measured in the same area. Only CB-209 unexpectedly showed high concentrations with respect to the other congeners. GC-MS-MS identification was very clear, rising a new problem of increasing PCB contamination concerning only CB-209, which is not present in commercial mixtures used in the past in Italy and Europe. Considering all of the congeners, seasonal PCB trends were observed both in air and in soil that were related to the temperature and precipitation measured specifically in the study area. Highly significant relationships were found between the temperature-normalised concentrations in soil and the precipitation amounts. A north/south enrichment factor was present only in soil with rapid early summer re-volatilisation kinetics from soil to air and autumn re-deposition events from air to soil. Fugacity ratio calculations confirmed these trends. Surface soils respond rapidly to meteorological variables, while subsurface soils respond much more slowly. Seasonal trends were different for the northern and southern sides of the mountain. A detailed picture of the interactions among temperature, precipitation, mountain aspects and soil features was obtained.

  8. Contamination and health risks from heavy metals in cultivated soil in Zhangjiakou City of Hebei Province, China.

    PubMed

    Liang, Qian; Xue, Zhan-Jun; Wang, Fei; Sun, Zhi-Mei; Yang, Zhi-Xin; Liu, Shu-Qing

    2015-12-01

    A total of 79 topsoil samples (ranging from 0 to 20 cm in depth) were collected from a grape cultivation area of Zhangjiakou City, China. The total concentrations of As, Cd, Hg, Cr, Cu, Mn, Ni, Pb, and Zn in soil samples were determined to evaluate pollution levels and associated health risks in each sample. Pollution levels were calculated using enrichment factors (EF) and geoaccumulation index (I geo). Health risks for adults and children were quantified using hazard indexes (HI) and aggregate carcinogenic risks (ACR). The mean concentrations of measured heavy metals Cd, Hg, and Cu, only in the grape cultivation soil samples, were higher than the background values of heavy metals in Hebei Province. According to principal component analysis (PCA), the anthropogenic activities related to agronomic and fossil fuel combustion practices attributed to higher accumulations of Cd, Hg, and Cu, which have slightly polluted about 10-40% of the sampled soils. However, the HI for all of the heavy metals were lower than 1 (within safe limits), and the ACR of As was in the 10(-6)-10(-4) range (a tolerable level). This suggests the absence of both non-carcinogenic and carcinogenic health risks for adults and children through oral ingestion and dermal absorption exposure pathways in the studied area. It should be also noted that the heightened vulnerability of children to health risks was accounted for higher HI and ACR values. Consequently, heavy metal concentrations (e.g., Cd, Hg, Cu) should be periodically monitored in these soils and improved soil management practices are required to minimize possible impacts on children's health.

  9. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk.

    PubMed

    Wang, Xue-Tong; Miao, Yi; Zhang, Yuan; Li, Yuan-Cheng; Wu, Ming-Hong; Yu, Gang

    2013-03-01

    A comprehensive investigation was conducted to the urban soil in the megacity Shanghai in order to assess the levels of PAHs and potential risks to human health, to identify and quantitatively assess source contributions to the soil PAHs. A total of 57 soil samples collected in main urban areas of Shanghai, China were analyzed for 26 PAHs including highly carcinogenic dibenzopyrene isomers. The total concentrations ranged from 133 to 8,650 ng g for ΣPAHs and 83.3 to 7,220 ng g for ΣPAHs, with mean values of 2420 and 1,970 ng g, respectively. DBalP and DBaeP may serve as markers for diesel vehicle emission, while DBahP is a probable marker of coke tar as distinct from diesel emissions. Six sources in Shanghai urban area were identified by PMF model; their relative contributions to the total soil PAH burden were 6% for petrogenic sources, 21% for coal combustion, 13% for biomass burning, 16% for creosote, 23% for coke tar related sources and 21% for vehicular emissions, respectively. The benzo[a]pyrene equivalent (BaP) concentrations ranged from 48.9-2,580 ng g for ΣPAHs, 7.02-869 ng g for ΣPAHs and 35.7-1,990 ng g for ΣDBPs. The BaP concentrations of ΣDBPs made up 72% of ΣPAHs. Nearly half of the soil samples showed concentrations above the safe BaP value of 600 ng g. Exposure to these soils through direct contact probably poses a significant risk to human health from carcinogenic effects of soil PAHs. The index of additive cancer risk (IACR) values in almost one third of urban soil samples were more than the safe value of 1.0, indicating these urban soil PAHs in the study area may pose a potential threat to potable groundwater water quality from leaching of carcinogenic PAH mixtures from soil.

  10. Polycyclic Aromatic Hydrocarbon Contamination in Soils of San Mateo Ixtatán, Guatemala: Occurrence, Sources, and Health Risk Assessment.

    PubMed

    Kasaraneni, Varun K; Oyanedel-Craver, Vinka

    2016-09-01

    Exposure to high concentrations of carcinogenic pollutants in soils and sediments can result in increased health risks. Determining the levels and sources of contamination in developing communities is important for helping to reduce pollution and mitigate the risk of exposure. In the Mayan community of San Mateo Ixtatán, Guatemala, 24 samples of topsoil from urban, peri-urban, and agricultural sites and six samples of river sediment were collected and analyzed for 17 polycyclic aromatic hydrocarbons (PAHs). The sum of the concentrations of these PAHs at the urban and peri-urban sites ranged from 460 to 3251 μg kg (mean, 1401 μg kg), whereas at agricultural sites the range was 350 to 2087 μg kg (mean, 1038 μg kg). Analysis to identify and apportion the source showed that the PAHs emitted from wood stoves contributed 71 and 76% of the total PAHs in urban and agricultural areas soils, respectively. The calculated incremental lifetime cancer risk due to the ingestion of soil, dermal contact, and dietary intake through corn consumption was greater than the acceptable level of 10 established by the USEPA. Our findings suggest that the residents of rural communities can be at increased cancer risk despite little or no industrial activity in the local area. Alternate domestic fuel sources should be considered to reduce the health risk in local communities.

  11. Use of an Enactive Insole for Reducing the Risk of Falling on Different Types of Soil Using Vibrotactile Cueing for the Elderly

    PubMed Central

    Otis, Martin J. -D.; Ayena, Johannes C.; Tremblay, Louis E.; Fortin, Pascal E.; Ménélas, Bob-Antoine J.

    2016-01-01

    Background Our daily activities imply displacements on various types of soil. For persons with gait disorder or losing functional autonomy, walking on some types of soil could be challenging because of the risk of falling it represents. Methods In this paper, we present, in a first part, the use of an enactive shoe for an automatic differentiation of several types of soil. In a second part, using a second improved prototype (an enactive insole), twelve participants with Parkinson’s disease (PD) and nine age-matched controls have performed the Timed Up and Go (TUG) test on six types of soil with and without cueing. The frequency of the cueing was set at 10% above the cadence computed at the lower risk of falling (walking over the concrete). Depending on the cadence computed at the lower risk, the enactive insole activates a vibrotactile cueing aiming to improve gait and balance control. Finally, a risk index is computed using gait parameters in relation to given type of soil. Results The frequency analysis of the heel strike vibration allows the differentiation of various types of soil. The risk computed is associated to an appropriate rhythmic cueing in order to improve balance and gait impairment. The results show that a vibrotactile cueing could help to reduce the risk of falling. Conclusions Firstly, this paper demonstrates the feasibility of reducing the risk of falling while walking on different types of soil using vibrotactile cueing. We found a significant difference and a significant decrease in the computed risks of falling for most of types of soil especially for deformable soils which can lead to fall. Secondly, heel strike provides an approximation of the impulse response of the soil that can be analyzed with time and frequency-domain modeling. From these analyses, an index is computed enabling differentiation the types of soil. PMID:27603211

  12. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China.

    PubMed

    Wang, Meie; Chen, Weiping; Peng, Chi

    2016-02-01

    Cadmium (Cd) contamination in rice in Youxian, Hunan, China is a major environmental health concern. In order to reveal the Cd contamination in rice and paddy soils and the health risks to the population consuming the local rice grain, field surveys were conducted in eight towns in Youxian, China. The Cd contents of paddy soils averaged 0.228-1.91 mg kg(-1), 90% exceeding the allowable limit of 0.3 mg kg(-1) stipulated by the China Soil Environmental Quality Standards. Low average pH values (for air dried oxidized soils) ranging from 4.98 to 6.02 in paddy soil were also found. More than seventy percent (39 of 53) of the grain samples exceeded the maximum safe concentration of Cd, 0.2 mg kg(-1) on a dry weight basis. Considering the high consumption of local rice (339 g capita(-1) DW d(-1)) and Cd levels measured, dietary ingestion of 78% of the sampled rice grains would have adverse health risks because the intake exposure of Cd was greater than the JECFA recommended exposures, 0.8 µg Cd BW kg(-1) day(-1) or 25 µg Cd BW kg(-1) month(-1).

  13. Environmental distribution and associated human health risk due to trace elements and organic compounds in soil in Jiangxi province, China.

    PubMed

    Teng, Yanguo; Li, Jiao; Wu, Jin; Lu, Sijin; Wang, Yeyao; Chen, Haiyang

    2015-12-01

    The government of China launched its first national soil quality and pollution survey (NSQPS) during April 2006 to December 2013. Data gathered in several earlier soil surveys were rarely used to understand the status of pollution. In this study, the dataset collected at the provincial level was analyzed for the first time. Concentrations, distribution, diversity, and human health risks of trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Se, V and Zn) and organic pollutants (benzene hexachloride (BHCs), dichlorodiphenyltrichloroethanes (DDTs), phthalic acid esters (PAEs), polycyclic aromatic hydrocarbon (PAHs), polychlorinated biphenyls (PCBs), and petroleum hydrocarbons (PHCs)) in surface soil samples collected across Jiangxi province,China were presented. The results showed that, the proportion of contaminants with concentrations higher than their corresponding regulatory reference value ranged from 0.12% to 17%. It is worth note that, the local residents are exposed to moderate non-carcinogenic and carcinogenic risks at some sites. The comprehensive analysis of soil pollutants provide baseline information for establishing a long-term soil environmental monitoring program in Jiangxi province, China.

  14. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river-reservoir system.

    PubMed

    Jiang, Xiaoliang; Xiong, Ziqian; Liu, Hui; Liu, Guihua; Liu, Wenzhi

    2017-01-01

    The majority of rivers in the world have been dammed, and over 45,000 large reservoirs have been constructed for multiple purposes. Riparian and reservoir shorelines are the two most important wetland types in a dammed river. To date, few studies have concerned the heavy metal pollution in wetland soils of these river-reservoir systems. In this study, we measured the concentrations of ten heavy metals (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn) in surface soils collected from riparian and reservoir shorelines along the Han River in different seasons. Our results found that the Co, Cu, and Ni concentrations in riparian wetlands were significantly lower than those in reservoir shorelines. In riparian wetlands, only soil Sr concentration significantly increased after summer and autumn submergence. Multivariate statistical analyses demonstrated that Ba and Cd might originate from industrial and mining sources, whereas Sr and Mn predominantly originated from natural rock weathering. The ecological risk assessment analysis indicated that both riparian and reservoir shorelines along the Han River in China exhibited a moderate ecological risk in soil heavy metals. The upper Han River basin is the water resource area of China's Middle Route of the South-to-North Water Transfer Project. Therefore, to control the contamination of heavy metals in wetland soils, more efforts should be focused on reducing the discharge of mining and industrial pollutants into the riparian and reservoir shorelines.

  15. Ecological and human health risks from metal(loid)s in peri-urban soil in Nanjing, China.

    PubMed

    Ding, Zhuhong; Hu, Xin

    2014-06-01

    In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg(-1) for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p < 0.01), and Cr had a significant positive correlation with Ni (p < 0.01). Geoaccumulation indices indicate the presence of Cd and As contamination in all of the peri-urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.

  16. Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk.

    PubMed

    Melgar, M J; Alonso, J; García, M A

    2009-10-01

    Wild growing mushrooms are a popular delicacy in many countries, but some species accumulate high levels of toxic heavy metals, e.g., mercury, both in unpolluted and mildly polluted areas. In this study, we examined the accumulation capacity of mercury in edible mushrooms in relation to certain factors and their possible toxicological implications. Total concentrations of mercury were determined by an anodic stripping voltammetric technique using a gold disc as the working electrode in 238 samples of the fruiting bodies of 28 wild growing edible mushrooms species and the underlying soil. The mushrooms were collected from different sites in the province of Lugo (NW Spain). The hymenophore (H) and the rest of the fruiting body (RFB) were analysed separately. The highest mean mercury concentrations (mg/kg dry weight) were found in Boletus pinophilus (6.9 in H and 4.5 in RFB), Agaricus macrosporus (5.1 in H and 3.7 in RFB), Lepista nuda (5.1 in H and 3.1 in RFB) and Boletus aereus (4.6 in H and 3.3 in RFB), while the lowest was found in Agrocybe cylindrica (0.34 in H and 0.26 in RFB) and Fistulina hepatica (0.30 in H and 0.22 in RFB). All mushroom species accumulated mercury (BCF>1) in relation to the underlying soils. There were no statistically significant differences between the mercury levels in the hymenophore and in the rest of the fruiting body. The total mercury concentrations were compared to data in the literature and to levels set by legislation. It was concluded that consumption of the majority of the studied mushrooms is not a toxicological risk as far as mercury content is concerned, although the species B.pinophilus, A.macrosporus, L.nuda and B.aereus should be consumed in low amounts.

  17. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    PubMed

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  18. Risk management tools and the case study Brassica napus: evaluating possible effects of genetically modified plants on soil microbial diversity.

    PubMed

    Canfora, Loredana; Sbrana, Cristiana; Avio, Luciano; Felici, Barbara; Scatà, Maria Carmela; Neri, Ulderico; Benedetti, Anna

    2014-09-15

    The cultivation of GMPs in Europe raises many questions about the environmental risks, in particular about their ecological impact on non-target organisms and on soil properties. The aim of a multidisciplinary group engaged in a LIFE+project (MAN-GMP-ITA) was to validate and improve an existing environmental risk assessment (ERA) methodology on GMPs within the European legislative framework on GMOs. Given the impossibility of evaluating GMO impact directly, as GMPs are banned in Italy, GMPs have not been used at any stage of the project. The project thus specifically focused on the conditions for the implementation of ERA in different areas of Italy, with an emphasis on some sensitive and protected areas located in the North, Centre, and South of the country, in order to lay the necessary baseline for evaluating the possible effects of a GMP on soil communities. Our sub-group carried out soil analyses in order to obtain soil health and fertility indicators to be used as baselines in the ERA model. Using various methods of chemical, biochemical, functional and genetic analysis, our study assessed the changes in diversity and functionality of bacterial populations, and arbuscular mycorrhizal fungi. The results show that plant identity and growth, soil characteristics, and field site climatic parameters are key factors in contributing to variation in microbial community structure and diversity, thus validating our methodological approach. Our project has come to the conclusion that the uneven composition and biological-agronomical quality of soils need to be taken into consideration in a risk analysis within the framework of ERA for the release of genetically modified plants.

  19. Occurrence, profile and spatial distribution of organochlorines pesticides in soil of Nepal: Implication for source apportionment and health risk assessment.

    PubMed

    Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Li, Jun; Zhang, Gan; Shakya, Pawan Raj

    2016-12-15

    Nepal is a landlocked country located between world's two most populous countries-India and China where high level of organochlorines pesticides has been reported from multi-environmental matrices. In this study, we investigated the occurrence, distributions and profile of selected OCP chemicals in surface soil samples (N=72) from four major cities of Nepal. Overall, the sum of total OCPs in soil ranged from 20 to 250ng/g with Biratnagar being the most polluted site in Nepal. DDTs and endosulfans were the most abundant OCP chemicals in soil samples. The concentration of DDTs ranged from 8 to 230ng/g, 8-56ng/g, 8-63ng/g, and 8-27ng/g in surface soil, while endosulfans were in the range of 2.9-3.3ng/g, 2.8-8.7ng/g, 2.8-3.4ng/g, 2.8-3.2ng/g in Biratnagar, Kathmandu, Pokhara and Birgunj, respectively. The isomeric ratio of DDT and their metabolites suggested the ongoing usages of technical DDT as well as dicofol in this region. Lower ratio of α/β-endosulfan indicated past application of endosulfans in Nepal. HCHs were less detected OCPs in soil sample accounting only 4-9% of ∑OCPs. The isomeric ratio of α-/γ-HCH indicated that the HCHs may be originated from mixed source of technical HCH as well as lindane use. Scattered plot of TOC and BC showed they were weakly and positively related with concentration of OCPs in soil. Health risk assessment modeling study of OCPs in soil suggested moderate cancer risk with ingestion being the most potential pathway of OCPs exposure.

  20. Transformation and accumulation of PAH and bound residues in soil under extreme conditions - a risk assessment approach

    NASA Astrophysics Data System (ADS)

    Eschenbach, Annette

    2010-05-01

    The degradation of PAH in contaminated soil does not proceed completely in the majority of cases. However microorganisms which are able to degrade PAH are present in PAH-contaminated soils normally. A total degradation of PAH in contaminated soils is often limited by a lack of bioavailability, which results from a lack of mass transfer. The analytical depletion of contaminants in soil is not only based on degradation processes but also on a fixation or immobilization of the xenobiotic substances as stronger adsorbed to or bound residues in the soil matrix. These bound residues were verified by using 14C-labelled PAH in different soil samples. To evaluate the long term fate of theses PAH-residues the stability and transformation of 14C-labelled non-extractable PAH-residues was investigated in detail under different extreme ecological and climate conditions such as biological stress, freezing and thawing cycles, and chemical worst case conditions. The transformation and remobilization of non-extractable PAH-residues was observed in long-time experiments and was very limited in general (Eschenbach et al. 2001). Only small amounts of non extractable residues were transformed and converted to CO2 and thereby detoxified. However the treatment with a complexing agent led to an increase of extractable 14C-activity. In a further set of experiments the long term risk of a groundwater contamination was assessed. Therefore the elution rate of 14C-PAH was investigated by a routinely usable column test system. It was found that the PAH elution was not solely controlled by desorption processes. The extractable PAH concentrations and elution rates were affected by the mineralization and formation of bound residues as well. For the assessment of the maximum PAH release rate the soil material was treated by extreme and worst case conditions as well. The impact of the elution of bidestillated water, of repeated freeze-thaw cycles and a simulation of acidic rain was investigated. The

  1. Screening-Level Risk Assessment for Styrene-Acrylonitrile (SAN) Trimer Detected in Soil and Groundwater

    PubMed Central

    Kirman, C. R.; Gargas, M. L.; Collins, J. J.; Rowlands, J. C.

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment. PMID:23030654

  2. Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter?

    PubMed Central

    Williams, Alwyn; Hunter, Mitchell C.; Kammerer, Melanie; Kane, Daniel A.; Jordan, Nicholas R.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde

    2016-01-01

    Yield stability is fundamental to global food security in the face of climate change, and better strategies are needed for buffering crop yields against increased weather variability. Regional- scale analyses of yield stability can support robust inferences about buffering strategies for widely-grown staple crops, but have not been accomplished. We present a novel analytical approach, synthesizing 2000–2014 data on weather and soil factors to quantify their impact on county-level maize yield stability in four US states that vary widely in these factors (Illinois, Michigan, Minnesota and Pennsylvania). Yield stability is quantified as both ‘downside risk’ (minimum yield potential, MYP) and ‘volatility’ (temporal yield variability). We show that excessive heat and drought decreased mean yields and yield stability, while higher precipitation increased stability. Soil water holding capacity strongly affected yield volatility in all four states, either directly (Minnesota and Pennsylvania) or indirectly, via its effects on MYP (Illinois and Michigan). We infer that factors contributing to soil water holding capacity can help buffer maize yields against variable weather. Given that soil water holding capacity responds (within limits) to agronomic management, our analysis highlights broadly relevant management strategies for buffering crop yields against climate variability, and informs region-specific strategies. PMID:27560666

  3. The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils.

    PubMed

    van Gestel, C A; van der Waarde, J J; Derksen, J G; van der Hoek, E E; Veul, M F; Bouwens, S; Rusch, B; Kronenburg, R; Stokman, G N

    2001-07-01

    To compare the effectiveness of acute and chronic bioassays for the ecological risk assessment of polluted soils, soil samples from a site with an historical mineral oil contamination (< 50-3,300 mg oil/kg dry soil) at the Petroleum Harbour in Amsterdam, The Netherlands, were screened for ecological effects using acute and chronic bioassays. A two-step 0.001 M Ca(NO3)2 extraction at a final solution-to-soil ratio of 1:1 was used to prepare extracts for the acute bioassays. Acute bioassays (< or = 5 d) applied to the 0.001 M Ca(NO3)2 extracts from the polluted and reference soils included growth tests with bacteria (Bacillus sp.), algae (Raphidocelis subcapitata), and plants (Lactuca sativa), immobility tests with nematodes (Plectus acuminatus), springtails (Folsomia candida), and cladocerans (Daphnia magna), and the Microtox test (Vibrio fischeri). Chronic bioassays (four weeks) performed on the same soil samples included tests with L. sativa, F. candida, and earthworms (Eisenia fetida) and the bait-lamina test (substrate consumption). The acute bioassays on Microtox showed a response that corresponded with the level of oil pollution. All other acute bioassays did not show such a consistent response, probably because pollutant levels were too low to cause acute effects. All chronic bioassays showed sublethal responses according to the contaminant levels (oil and in some soils also metals). This shows that chronic bioassays on soil samples are more sensitive in assessing the toxicity of mineral oil contamination in soil than acute bioassays on soil extracts. A pilot scale bioremediation study on soils taken from the two most polluted sites and a control site showed a rapid decline of oil concentrations to reach a stable level within eight weeks. Acute bioassays applied to the soils, using Microtox, algae, and D. magna, and chronic bioassays, using plants, Collembola, earthworms, and bait-lamina consumption, in all cases showed a rapid reduction of toxicity, which

  4. The global limits and population at risk of soil-transmitted helminth infections in 2010

    PubMed Central

    2012-01-01

    Background Understanding the global limits of transmission of soil-transmitted helminth (STH) species is essential for quantifying the population at-risk and the burden of disease. This paper aims to define these limits on the basis of environmental and socioeconomic factors, and additionally seeks to investigate the effects of urbanisation and economic development on STH transmission, and estimate numbers at-risk of infection with Ascaris lumbricoides, Trichuris trichiura and hookworm in 2010. Methods A total of 4,840 geo-referenced estimates of infection prevalence were abstracted from the Global Atlas of Helminth Infection and related to a range of environmental factors to delineate the biological limits of transmission. The relationship between STH transmission and urbanisation and economic development was investigated using high resolution population surfaces and country-level socioeconomic indicators, respectively. Based on the identified limits, the global population at risk of STH transmission in 2010 was estimated. Results High and low land surface temperature and extremely arid environments were found to limit STH transmission, with differential limits identified for each species. There was evidence that the prevalence of A. lumbricoides and of T. trichiura infection was statistically greater in peri-urban areas compared to urban and rural areas, whilst the prevalence of hookworm was highest in rural areas. At national levels, no clear socioeconomic correlates of transmission were identified, with the exception that little or no infection was observed for countries with a per capita gross domestic product greater than US$ 20,000. Globally in 2010, an estimated 5.3 billion people, including 1.0 billion school-aged children, lived in areas stable for transmission of at least one STH species, with 69% of these individuals living in Asia. A further 143 million (31.1 million school-aged children) lived in areas of unstable transmission for at least one STH

  5. Determination of soil erosion risk in the Mustafakemalpasa River Basin, Turkey, using the revised universal soil loss equation, geographic information system, and remote sensing.

    PubMed

    Ozsoy, Gokhan; Aksoy, Ertugrul; Dirim, M Sabri; Tumsavas, Zeynal

    2012-10-01

    -geographic information system (GIS) combination and the measured values from the Dolluk sediment gauge station shows that the potential soil erosion risk of the MKP River Basin can be estimated correctly and reliably using the RUSLE function generated in a GIS environment.

  6. Determination of Soil Erosion Risk in the Mustafakemalpasa River Basin, Turkey, Using the Revised Universal Soil Loss Equation, Geographic Information System, and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ozsoy, Gokhan; Aksoy, Ertugrul; Dirim, M. Sabri; Tumsavas, Zeynal

    2012-10-01

    and the measured values from the Dolluk sediment gauge station shows that the potential soil erosion risk of the MKP River Basin can be estimated correctly and reliably using the RUSLE function generated in a GIS environment.

  7. RISK ASSESSMENT AND REMEDIATION OF SOILS CONTAMINATED BY MINING AND SMELTING OF LEAD, ZINC AND CADMIUM

    EPA Science Inventory

    Mining nd smelting of Pb, Zn and Cd ores have caused widespread soil contamination in many countries. In locations with severe soil contamination, and strongly acidic soil or mine waste, ecosystems are devastated. Research has shown that An phytotoxicity, Pb-induced phosphate def...

  8. Mobility and plant availability of risk elements in soil after long-term application of farmyard manure.

    PubMed

    Tlustoš, Pavel; Hejcman, Michal; Hůlka, Martin; Patáková, Michaela; Kunzová, Eva; Száková, Jiřina

    2016-12-01

    Crop rotation long-term field experiments were established in 1955 and 1956 at three locations in the Czech Republic (Čáslav, Ivanovice, and Lukavec) differing in their climatic and soil physicochemical properties. The effect of long-term application of farmyard manure and farmyard manure + NPK treatments on plant-available, easily mobilizable, potentially mobilizable, and pseudo-total contents of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) contents in soils (in 2013) as well as the uptake of these elements by winter wheat (Triticum aestivum L.) grain and straw were analyzed in the two following seasons: 2012 and 2013. The treatments resulted in increasing the soil pH level when compared to the control, but the cation exchange capacity remained unchanged. Although all fertilizers were applied for six decades, the pseudo-total concentration elements in both the soil and wheat plants stayed far below those of the Czech and European threshold limits for agricultural soils and cereals for human nutrition and feedstuff. Although the mobile pools of As, Cu, and Zn were slightly changed at the treated soils, these changes were not related to the element uptake by the wheat plants. Moreover, the effect of the location and growing season was more decisive for the differences in soil and plant element contents than for the individual treatments. Thus, the long-term application of farmyard manure did not result in any substantial change in risk element contents in both soils and winter wheat plants.

  9. Polychlorinated Biphenyls in Residential Soils and their Health Risk and Hazard in an Industrial City in India

    PubMed Central

    Kumar, Bhupander; Verma, Virendra Kumar; Singh, Satish Kumar; Kumar, Sanjay; Sharma, Chandra Shekhar; Akolkar, Avinash B.

    2014-01-01

    Background Polychlorinated biphenyls (PCBs) have never been produced in India, but were used in industrial applications. PCBs have been detected in environmental samples since 1966, and their sources in soils come from depositions of industrial applications, incinerators and biomass combustions. PCBs adsorb to soil particles and persist for long time due to their properties. Their close proximity may also lead to human exposure through ingestion, inhalation, dermal contact, and may exert neurotoxic, mutagenic and carcinogenic health effects. Background Residential soil from Korba, India, was extracted using pressurized liquid extraction procedure, cleaned on modified silica and quantified for PCBs. Soil ingestion was considered as the main exposure pathways of life-long intake of PCBs. Human health risk in terms of life time average daily dose, incremental lifetime cancer risk (ILCR) and non-cancer hazard quotient (HQ) were estimated using established guidelines. Background The estimated average ILCR from non dioxin like PCBs for human adults and children was 3.1×10–8 and 1.1×10–7, respectively. ILCR from dioxin like PCBs for human adults and children was 3.1×10–6 and 1.1×10–5, respectively. The HQ for PCBs was 6.3×10–4 and 2.2×10–3, respectively for human adults and children. Study observed that ILCR from non dioxin like PCBs was lower than acceptable guideline range of 10–6-10–4, and ILCR from dioxin like PCBs was within the limit. HQ was lower than safe limit of 1. Background Study concluded that human population residing in Korba had low health risk due to PCBs in residential soils. Significance for public health The concentrations of polychlorinated biphenyls (PCBs) in soils from an industrial city in India were measured for the assessment of human health risk. PCBs composition profiles were dominated with tri-chlorinated and tetra-chlorinated biphenyls. The possible sources of PCBs contamination can be attributed to local industrial

  10. Implementation of Risk Management Tools to improve Soil fertility in Ethiopian Agro Systems

    NASA Astrophysics Data System (ADS)

    García Moreno, Rosario; Ramos Fuentes, Natalia; Gameda, Samuel; Cruz Díaz Álvarez, M.; Selasie, Yihenew G.

    2013-04-01

    Agriculture is one of the activities with the highest degree of edaphoclimatic risk exposure in Ethiopia. The survival of 80The analysis showed that for most of the medium small farmers it is absolutely necessary the use of risk management tools to mitigate or prevent the consequences. A case that has been very interesting is the use of index insurance based on rain and temperature index as indicators of drought. But these projects have several limitations that make difficult its large-scale development. The main problem is to obtain meteorological data, both by the poor infrastructure and the lack of historical records in many parts of the country. The lack of a legal framework at a national level is also a great barrier for the development of these instruments. In addition, the need of further information on the knowledge and opinions of farmers is also fundamental, as well as the implementation of best soil management practices. The results of the project indicated the needs of obtaining information directed from producers, for that reason a questionnaire was developed according to universities working with the producers, introducing the need of doing a regular survey to get the basic information about the area where we plan to make management improvements. In any case, it was found that to get a better performance on the index insurance projects together with the introduction of best management practices at a large-scale, they must be accompanied by social protection programs. This project is financed by the Spanish Agency for International Development Cooperation (AECID), Ministry of Foreign Affairs and Cooperation, through the PCI funding AP/038205/11 and the economical support of the FES though the Program Angeles Alvariño 2013 of Xunta of Galicia

  11. Assessment of Ecological and Human Health Risks of Heavy Metal Contamination in Agriculture Soils Disturbed by Pipeline Construction

    PubMed Central

    Shi, Peng; Xiao, Jun; Wang, Yafeng; Chen, Liding

    2014-01-01

    The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) levels were evaluated using Index of Geo-accumulation (Igeo) and Potential Ecological Risk Index (RI) values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management. PMID:24590049

  12. The status of organochlorine pesticide contamination in the soils of the Campanian Plain, southern Italy, and correlations with soil properties and cancer risk.

    PubMed

    Qu, Chengkai; Albanese, Stefano; Chen, Wei; Lima, Annamaria; Doherty, Angela L; Piccolo, Alessandro; Arienzo, Michele; Qi, Shihua; De Vivo, Benedetto

    2016-09-01

    The distribution, inventory, and potential risk of organochlorine pesticides (OCPs), including Hexachlorocyclohexanes (HCHs) and Dichlorodiphenyltrichloroethanes (DDTs), and their correlation with soil properties and anthropogenic factors were investigated in soils of the Campanian Plain. The total concentrations of HCHs and DDTs ranged from 0.03 to 17.3 ng/g (geometric mean: GM = 0.05 ng/g), and 0.08-1231 ng/g (GM = 14.4 ng/g), respectively. In general, the concentration of OCPs in farmland and orchards was higher than on land used for non-agricultural purposes. There are significant differences in the concentration of OCPs in the soils across the region, more specifically, the Acerra-Marigliano conurbation (AMC) and Sarno River Basin (SRB) are recognized as severely OCP-contaminated areas. The recent application of technical HCHs and DDTs in large quantities appears unlikely in light of the ratio of α-HCH/β-HCH and p,p'-DDT/p,p'-DDE, and the prohibition of the use of these chemicals in Italy nearly forty years ago. The clear correlation between the concentration of DDTs and organic carbon suggests a typical secondary distribution pattern. The mass inventory of OCPs in soils of the Campanian Plain is estimated to have a GM of 17.3 metric tons. There is no clear evidence linking the impact of geographical distribution of OCPs on the incidence of cancer, and the 95% confidence interval of total incremental lifetime cancer risk (TILCR) data falls below the internationally accepted benchmark value of 1 × 10(-5).

  13. Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China.

    PubMed

    Qi, Jianying; Zhang, Hailong; Li, Xiangping; Lu, Jian; Zhang, Gaosheng

    2016-07-01

    China is one of the largest producers and consumers of lead and zinc in the world. Lead and zinc mining and smelting can release hazardous heavy metals such as Cd, Pb, Zn, and As into soils, exerting health risks to human by chronic exposure. The concentrations of Cd, Zn, Pb, and As in soil samples collected from a Pb-Zn mining area with exploitation history of 60 years were investigated. Health risks of the heavy metals in soil were evaluated using US Environmental Protection Agency (US EPA) recommended method. A geo-statistical technique (Kriging) was used for the interpolation of heavy metals pollution and Hazard Index (HI). The results indicated that the long-term Pb/Zn mining activities caused the serious pollution in the local soil. The concentrations of Cd, As, Pb, and Zn in topsoil were 40.3 ± 6.3, 103.7 ± 37.3, 3518.4 ± 896.1, and 10,413 ± 2973.2 mg/kg dry weight, respectively. The spatial distribution of the four metals possessed similar patterns, with higher concentrations around Aayiken (AYK), Maseka (MSK), and Kuangshan (KS) area and more rapidly dropped concentrations at upwind direction than those at downwind direction. The main pollutions of Cd and Zn were found in the upper 60 cm, the Pb was found in the upper 40 cm, and the As was in the upper 20 cm. The mobility of metals in soil profile of study area was classed as Cd > Zn ≫ Pb > As. Results indicated that there was a higher health risk (child higher than adult) in the study area. Pb contributed to the highest Hazard Quotient (57.0 ~ 73.9 %) for the Hazard Index.

  14. Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico.

    PubMed

    Sariñana-Ruiz, Yareli A; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Labastida, Israel; Armienta, Ma Aurora; Aragón-Piña, Antonio; Escobedo-Bretado, Miguel A; González-Valdez, Laura S; Ponce-Peña, Patricia; Ramírez-Aldaba, Hugo; Lara, René H

    2017-07-01

    Total, bioaccessible and mobile concentrations of arsenic and fluorine are determined in polluted surface soil within the Comarca Lagunera region using standardized protocols to obtain a full description of the environmental behavior for these elements. The composition of mineral phases associated with them is evaluated with microscopic and spectroscopic techniques. Mineralogical characterizations indicate that ultra-fine particles (<1-5 μm) including mimetite-vanadite (Pb5(AsO4)3Cl, Pb5(AsO4, VO4)3Cl)-like, lead arseniate (Pb3(AsO4)2)-like and complex arsenic-bearing compounds are main arsenic-bearing phases, while fluorite (CaF2) is the only fluorine-bearing phase. Total fluorine and arsenic concentrations in surface soil range from 89.75 to 926.63 and 2.7-78.6 mg kg(-1), respectively, exceeding in many points a typical baseline value for fluorine (321 mg kg(-1)), and trigger level criterion for arsenic soil remediation (20 mg kg(-1)); whereas fluoride and arsenic concentrations in groundwater vary from 0.24 to 1.8 mg L(-1) and 0.12-0.650 mg L(-1), respectively. The main bioaccessible percentages of soil in the gastric phase (SBRC-G) are estimated for arsenic from 1 to 63%, and this parameter in the intestinal phase (SBRC-I) fluorine from 2 to 46%, suggesting human health risks for this region. While a negligible/low mobility is found in soil for arsenic (0.1-11%), an important mobility is determined for fluorine (2-39%), indicating environmental risk related to potential fluorine release. The environmental and health risks connected to arsenic and fluorine are discussed based on experimental data.

  15. Ecological risk assessment of on-site soil washing with iron(III) chloride in cadmium-contaminated paddy field.

    PubMed

    Nagai, Takashi; Horio, Takeshi; Yokoyama, Atsushi; Kamiya, Takashi; Takano, Hiroyuki; Makino, Tomoyuki

    2012-06-01

    On-site soil washing with iron(III) chloride reduces Cd levels in soil, and thus the human health risks caused by Cd in food. However, it may threaten aquatic organisms when soil washing effluent is discharged to open aquatic systems. Therefore, we conducted trial-scale on-site soil washing and ecological risk assessment in Nagano and Niigata prefectures, Japan. The ecological effect of effluent water was investigated by two methods. The first was bioassay using standard aquatic test organisms. Twice-diluted effluent water from the Nagano site and the original effluent water from the Niigata site had no significant effects on green algae, water flea, caddisfly, and fish. The safe dilution rates were estimated as 20 times and 10 times for the Nagano and Niigata sites, respectively, considering an assessment factor of 10. The second method was probabilistic effect analysis using chemical analysis and the species sensitivity distribution concept. The mixture effects of CaCl(2), Al, Zn, and Mn were considered by applying a response additive model. The safe dilution rates, assessed for a potentially affected fraction of species of 5%, were 7.1 times and 23.6 times for the Nagano and Niigata sites, respectively. The actual dilution rates of effluent water by river water at the Nagano and Niigata sites were 2200-67,000 times and 1300-110,000 times, respectively. These are much larger than the safe dilution rates derived from the two approaches. Consequently, the ecological risk to aquatic organisms of soil washing is evaluated as being below the concern level.

  16. Health risks of metals in contaminated farmland soils and spring wheat irrigated with Yellow River water in Baotou, China.

    PubMed

    Si, Wantong; Liu, Jumei; Cai, Lu; Jiang, Haiming; Zheng, Chunli; He, Xiaoying; Wang, Jianying; Zhang, Xuefeng

    2015-02-01

    The consumption of water and food crops contaminated with metals is a major food chain route for human exposure. We investigated the health risks of metals in Yellow River (YR) water, farmland soil and spring wheat in the Baotou region, northern China. Data indicated that long-term irrigation with polluted YR water led to metal accumulation in local farmland soil and spring wheat. The consumption of YR water and spring wheat in Baotou region can cause adverse health effects to local people, specifically because of Hg, Pb, and Se in YR water and Cu, Zn, Cd, and Mn in spring wheat. The integrative risk of various metals depends mainly on the spring wheat intake. Current results emphasized the need for routine monitoring and management in order to avoid contamination of YR water and spring wheat from the wastewater irrigation system in Baotou region.

  17. Skin permeation and cutaneous hypersensitivity as a basis for making risk assessments of chromium as a soil contaminant

    SciTech Connect

    Bagdon, R.E. Rutgers, The State Univ. of New Jersey, Piscataway ); Hazen, R.E. )

    1991-05-01

    A literature review of experimental and human exposure studies of skin permeation and cutaneous hypersensitivity reactions evoked by chromium was carried out to provide a basis for making a risk assessment of chromium as a soil contaminant. In vitro and in vivo studies demonstrated that 1 to 4% of the applied dose of hexavalent and trivalent chromium to guinea pig skin penetrated skin within 5 to 24 hours after application. Ultrastructural investigations showed that hexavalent chromium localized intracellularly and extracellularly in the upper layers of guinea pig epidermis. The potential of hexavalent chromium to produce a skin sensitization reaction is readily demonstrated using animal models. The incidence and characteristics of chromium-induced skin hypersensitivity as a clinical entity are described. A health effects survey of populations exposed to chromium slag in soil in Tokyo, Japan extending over 8 years indicated a tendency toward symptoms characterized as headache, chromic fatigue, and gastrointestinal complaints, positive occult blood tests, minute hematuria and albuminuria suggestive of incipient renal disease, and a tendency toward an increase in contact dermatitis that was seasonally related. Based on these data, the cleanup level of total chromium in soil is designated as 75 mg/kg. It is proposed that levels of total chromium lower than 75 mg/kg in soil would avoid undue risk of contact dermatitis.

  18. Residues, spatial distribution and risk assessment of DDTs and HCHs in agricultural soil and crops from the Tibetan Plateau.

    PubMed

    Wang, Chuanfei; Wang, Xiaoping; Gong, Ping; Yao, Tandong

    2016-04-01

    Due to its high elevation and cold temperature, the Tibetan Plateau (TP) is regarded as the "Third Pole". Different from other polar regions, which are truly remote, the TP has a small population and a few agricultural activities. In this study, agricultural soil and crop samples (including highland barley and rape) were collected in the main farmland of the TP to obtain the contamination levels of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) in the Tibetan agricultural system as well as the relevant human exposure risks. The average concentrations of DDTs and HCHs in the agricultural soil, highland barley and rape were 1.36, 0.661, 1.03 ng/g dw and 0.349, 0.0364, 0.0225 ng/g dw, respectively. In the agricultural soil, DDTs and HCHs metabolism (DDE, DDD and β-HCH) were abundant, which indicated a "historical" source, whereas crops contained a similar composition ((DDE + DDD)/DDT, α/β-HCH and α/γ-HCH) to that of wild plants, suggesting that the DDTs and HCHs in crops are likely from long range atmospheric transport. The human health risks via non-dietary and dietary to DDTs and HCHs in the farmland were assessed. All of the hazard index (HI) values of DDTs and HCHs for non-carcinogenic risks were <1, and most of the cancer risk values were <10(-6), suggesting that DDTs and HCHs in the farmland will not pose non-carcinogenic risks and will pose only very low cancer risks to the Tibetan residents.

  19. Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals.

    PubMed

    Islam, Mohammad Nazrul; Jung, Ho-Young; Park, Jeong-Hun

    2015-11-01

    Co-contamination of explosives and heavy metals (HMs) in soil, particularly army shooting range soil, has received increasing environmental concern due to toxicity and risks to ecological systems. In this study, a subcritical water (SCW) extraction process was used to remediate the explosives-plus-HMs-co-contaminated soil. A quantitative evaluation of explosives in the treated soil, compared with untreated soil, was applied to assess explosive removal. The immobilization of HMs was assessed by toxicity characteristic leaching procedure tests, and by investigating the migration of HMs fractions. The environmental risk of HMs in the soil residue was assessed according to the risk assessment code (RAC) and ecological risk indices (Er and RI). The results indicated that SCW treatment could eliminate the explosives, >99%, during the remediation, while the HM was effectively immobilized. The effect of water temperature on reducing the explosives and the risk of HMs in soil was observed. A marked increase in the non-bioavailable concentration of each HM was observed, and the leaching rate of HMs was decreased by 70-97% after SCW treatment at 250 °C, showing the effective immobilization of HMs. According to the RAC or RI, each tested HM showed no or low risk to the environment after treatment.

  20. Risk assessment and remediation suggestion of impacted soil by produced water associated with oil production.

    PubMed

    Abdol Hamid, Hashim R; Kassim, Walid M S; El Hishir, Abdulah; El-Jawashi, Salem A S

    2008-10-01

    Produced water is water trapped in underground formations that is brought to the surface along with oil or gas production. Oilfield impacted soil is the most common environmental problem associated with oil production. The produced water associated with oil-production contaminates the soil and causes the outright death of plants, and the subsequent erosion of topsoil. Also, impacted soil serves to contaminate surface waters and shallow aquifers. This paper is intended to provide an approach for full characterization of contaminated soil by produced water, by means of analysis of both the produced water and the impacted soil using several recommended analytical techniques and then identify and assay the main constituents that cause contamination of the soil. Gialo-59 oilfield (29N, 21E), Libya, has been chosen as the case study of this work. The field has a long history of petroleum production since 1959, where about 300,000 bbl of produced water be discharged into open pit. Test samples of contaminated soil were collected from one of the disposal pits. Samples of produced water were collected from different points throughout the oil production process, and the analyses were carried out at the labs of Libyan Petroleum Institute, Tripoli, Libya. The results are compared with the local environmental limiting constituents in order to prepare for a plan of soil remediation. The results showed that the main constituents (pollutants) that impact the soil are salts and hydrocarbon compounds. Accordingly; an action of soil remediation has been proposed to remove the salts and degradation of hydrocarbons.

  1. Residue patterns of currently, historically and never-used organochlorine pesticides in agricultural soils across China and associated health risks.

    PubMed

    Niu, Lili; Xu, Chao; Zhu, Siyu; Liu, Weiping

    2016-12-01

    Organochlorine pesticides (OCPs) with different usage states, such as currently, historically or never used, may show different behaviors and potential risks in the environment. It is essential to identify their distribution patterns and fates and to assess their associated health risks to humans. In this study, based on a nationwide sampling campaign across China, we determined the concentrations of currently (endosulfan), historically (chlordane and heptachlor) and never-used (aldrin, dieldrin and endrin) OCPs in agricultural soils. The total residue inventories of ∑Endosulfans, ∑Chlordanes, heptachlor and ∑Drins in soils were 260, 64.3, 54.2 and 88.6 t, respectively. The residues of endosulfan were influenced by current usage, showing a latitude transect trend. Drins were mainly from long-range transport, but the illegal usage in China still affected their residues. This finding indicates that endosulfan and drins in Chinese agricultural soils mainly follow the primary and secondary distribution pattern, respectively. Both primary and secondary distribution have a great impact on the distribution pattern of chlordane, which had been banned for only 4 years at the time we sampled. The health risks of these OCPs were estimated based on their concentrations. There were 0.813% and 1.63% of samples that exceeded the target values for chlordane and endrin according to the Netherlands guideline for unpolluted soil. Their residues in most of the samples posed no or few non-carcinogenic and carcinogenic risks to human beings. The results from this study will provide powerful support for pollution control and management.

  2. DDT, DDD, and DDE in soil of Xiangfen County, China: Residues, sources, spatial distribution, and health risks.

    PubMed

    Ma, Jin; Pan, Li-Bo; Yang, Xiao-Yang; Liu, Xiao-Ling; Tao, Shi-Yang; Zhao, Long; Qin, Xiao-Peng; Sun, Zai-Jin; Hou, Hong; Zhou, Yong-Zhang

    2016-11-01

    We collected and analyzed 128 surface soil samples from Xiangfen County for dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethane (DDD), and dichlorodiphenyldichloroethylene (DDE). Total DDT concentrations (DDTs; sum of p,p'-DDD, p,p'-DDE, and p,p'-DDT) ranged from ND to 427.81 ng g(-1) (dry weight, dw), with a mean of 40.26 ng g(-1) (dw). Among the three compounds, p,p'-DDD was the most dominant. The DDTs in Xiangfen County soils mainly originated from historical DDT use, but there were also new inputs likely related to dicofol use. The DDTs in Xiangfen County soils were mainly degraded under anaerobic conditions, and direct degradation to DDD was the main degradation route. Regions with relatively high concentrations of DDTs were mainly located in North and South Xiangfen County. In these regions, many soil samples contained p,p'-DDT as the predominant pollutant, suggestive of extensive new inputs of DDT. A health risk assessment revealed that there are no serious long-term health impacts of exposure to DDTs in soil, for adults or children.

  3. An assessment and quantitative uncertainty analysis of the health risks to workers exposed to chromium contaminated soils

    SciTech Connect

    Paustenbach, D.J.; Meyer, D.M.; Sheehan, P.J.; Lau, V. )

    1991-05-01

    Millions of tons of chromite-ore processing residue have been used as fill in various locations in Northern New Jersey and elsewhere in the United States. The primary toxicants in the residue are trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)). The hazard posed by Cr(III) is negligible due to its low acute and chronic toxicity. In contrast, Cr(VI) is considered a inhalation human carcinogen at high concentrations. Approximately 40 commercial and industrial properties in Northern New Jersey have been identified as containing chromite ore processing residue in the soil. The arithmetic mean and geometric mean concentrations of total chromium in soil were 977 and 359 mg/kg, respectively. The data were log-normal distributed. The arithmetic mean and geometric mean concentrations of Cr(VI) in surface soil were 37.6 and 3.1 mg/kg, respectively. The data could not be fit to a standard distribution, likely due to the large number of samples with concentrations below the method detection limit (65%). Dose was calculated for each exposure route using a Monte Carlo statistical simulation. Probability distributions of most exposure parameters were incorporated into the analyses to predict the range and probability of uptake for persons in the exposed population. The exposure parameter distributions included in this assessment are: the concentrations of Cr(VI) and total chromium in air and soil, fraction of the year when suspension of airborne soil particulates is likely to occur due to weather conditions, fraction of Cr(VI) in air which is respirable (less than 10 microns), soil loading rate on skin, occupational tenure, and body weight. The techniques used in this assessment are applicable for evaluating the human health risks posed by most industrial sites having contaminated soil.

  4. Utility of bioassays (lettuce, red clover, red fescue, Microtox, MetSTICK, Hyalella, bait lamina) in ecological risk screening of acid metal (Zn) contaminated soil.

    PubMed

    Chapman, E Emily V; Hedrei Helmer, Stephanie; Dave, Göran; Murimboh, John D

    2012-06-01

    The objective of this study was to assess selected bioassays and ecological screening tools for their suitability in a weight of evidence risk screening process of acidic metal contaminated soil. Intact soil cores were used for the tests, which minimizes changes in pH and metal bioavailability that may result from homogenization and drying of the soil. Soil cores were spiked with ZnCl(2) or CaCl(2). Leachate collected from the soil cores was used to account for the exposure pathways through pore water and groundwater. Tests assessed included MetSTICK in soil cores and Microtox in soil leachate, lettuce (Lactuca sativa), red fescue (Festuca rubra) and red clover (Trifolium pratense) in the soil cores and lettuce and red clover in soil leachate, Hyallella azteca in soil leachate, and an ecological soil function test using Bait Lamina in soil cores. Microtox, H. azteca, lettuce and red fescue showed higher sensitivity to low pH than to Zn concentrations and are therefore not recommended as tests on intact acidic soil cores and soil leachate. The Bait Lamina test appeared sensitive to pH levels below 3.7 but should be investigated further as a screening tool in less acidic soils. Among the bioassays, the MetSTICK and the T. pratense bioassays in soil cores were the most sensitive to Zn, with the lowest nominal NOEC of 200 and 400mg Zn/kg d.w., respectively. These bioassays were also tolerant of low pH, which make them suitable for assessing hazards of metal contaminated acid soils.

  5. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study.

    PubMed

    Datta, Rupali; Sarkar, Dibyendu; Sharma, Saurabh; Sand, Kumarswamy

    2006-12-15

    Organo-arsenical compounds are considered non-carcinogenic, and hence, are still allowed by the regulatory agencies for use in agriculture as pesticides. Due to rapid encroachment of suburban areas into former agricultural lands, the potential for human exposure to soil-arsenic has increased tremendously in recent years. However, insufficient data is available on the stability of organo-arsenicals in soils; as to whether they remain in an organic form, or are converted over time to potentially carcinogenic inorganic forms. A static incubation study was conducted to estimate soil speciation and in-vitro bioavailability (i.e., bioaccessibility) of arsenic as a function of soil properties. Two chemically variant soil types were chosen, based on their potential differences with respect to arsenic reactivity: an acid sand with minimal arsenic retention capacity and an alkaline clay loam with relatively high concentrations of Fe/Al and Ca/Mg. The soils were amended with dimethylarsenic acid (DMA) at three rates, 45, 225 and 450 mg/kg, and incubated for 1 year. A sequential extraction scheme was employed to identify the geochemical forms of arsenic in soils, which were correlated with the in-vitro bioavailable fractions of arsenic. Human health risk calculated in terms of excess cancer risk (ECR) showed that risk assessment based on bioaccessible arsenic concentrations instead of the traditional total soil arsenic is a more realistic approach. Results showed that soil properties (such as pH, Fe/Al content and soil texture) of the two soils dictated the geochemical speciation, and hence, bioaccessibility of arsenic from DMA, indicating that the use of organic arsenicals as pesticides in mineral soils may not be a safe practice from a human health risk perspective.

  6. The assessment of spatial distribution of soil salinity risk using neural network.

    PubMed

    Akramkhanov, Akmal; Vlek, Paul L G

    2012-04-01

    Soil salinity in the Aral Sea Basin is one of the major limiting factors of sustainable crop production. Leaching of the salts before planting season is usually a prerequisite for crop establishment and predetermined water amounts are applied uniformly to fields often without discerning salinity levels. The use of predetermined water amounts for leaching perhaps partly emanate from the inability of conventional soil salinity surveys (based on collection of soil samples, laboratory analyses) to generate timely and high-resolution salinity maps. This paper has an objective to estimate the spatial distribution of soil salinity based on readily or cheaply obtainable environmental parameters (terrain indices, remote sensing data, distance to drains, and long-term groundwater observation data) using a neural network model. The farm-scale (∼15 km(2)) results were used to upscale soil salinity to a district area (∼300 km(2)). The use of environmental attributes and soil salinity relationships to upscale the spatial distribution of soil salinity from farm to district scale resulted in the estimation of essentially similar average soil salinity values (estimated 0.94 vs. 1.04 dS m(-1)). Visual comparison of the maps suggests that the estimated map had soil salinity that was uniform in distribution. The upscaling proved to be satisfactory; depending on critical salinity threshold values, around 70-90% of locations were correctly estimated.

  7. The impact of greenhouse vegetable farming duration and soil types on phytoavailability of heavy metals and their health risk in eastern China.

    PubMed

    Yang, Lanqin; Huang, Biao; Hu, Wenyou; Chen, Yong; Mao, Mingcui; Yao, Lipeng

    2014-05-01

    Heavy metal contamination in vegetables from greenhouse vegetable production (GVP) in China requires major attention. For GVP sustainability at a large regional level, 441 surface GVP soil and 132 corresponding greenhouse vegetable samples were collected from six typical GVP bases in eastern China to systematically evaluate the impact of GVP duration and soil types (Anthrosols and Cambosols) on phytoavailability of four major metals, Cd, Cu, Zn, and Pb, and their health risk. The results revealed high Cd accumulation in leaf vegetables grown in Anthrosols, which might pose potential health risk. Regardless of soil types in the study region, greenhouse farming lowered soil pH and enhanced metal availability with rising GVP duration, which might exacerbate Cd phytoavailability and vegetable Cd contamination as well as potential health risk. Also, increased GVP soil organic matter contents over time, found in some locations, affected crop-depending Cu and Zn uptakes. Furthermore, due to GVP, the annual decrease rate of soil pH and increase rates of soil available metal concentrations were generally much greater in Anthrosols than those in Cambosols, which contributed a lot to high Cd uptake by leaf vegetables grown in Anthrosols and their potential health risk. From sustainable GVP perspective, fertilization strategy with reduced frequency and rate is especially important and effective for abating soil and vegetable contamination by heavy metals under greenhouse farming.

  8. Evaluation of acute bioassays for assessing toxicity of polychlorinated biphenyl-contaminated soils

    SciTech Connect

    Hose, J.E.; Barlow, L.A.; Bent, S.; Elseewi, A.A.; Cliath, M.; Resketo, M.; Doyle, C.

    1986-03-01

    Proposed State of California regulations use fish toxicity information as one criterion in municipal or industrial waste hazard evaluation. Static 96-hr bioassays were performed using fathead minnows (Pimephales promelas), blacksmith (Chromis punctipinnis), and glass shrimp (Palaemonetes kadiakensis) exposed to soil experimentally contaminated with up to 500 ppm polychlorinated biphenyl (PCB) capacitor fluid added at a concentration of 500 mg liter-1. Other bioassays were conducted with a 6-day mixing period prior to the bioassay or with acetone added to solubilize the PCBs. No mortality attributable to PCB toxicity was observed in definitive bioassays using the two fish and one invertebrate species. PCB levels leached from soil containing 500 ppm Aroclor 1242 ranged from less than 0.6 to 3.4 ppb in freshwater tests to 3.5 ppb in seawater bioassays. Using these data as the basis for waste classification, soils contaminated with up to 500 ppb PCBs during capacitor spills would be designated nonhazardous. PCBs are known to be environmentally persistent and to bioaccumulate. Acute toxicity tests, therefore, do not adequately evaluate the general toxicity of PCB-contaminated soils. Hazardous waste regulations for hydrophobic compounds such as PCBs should instead be based upon chronic toxicity data and should also consider bioaccumulation potential.

  9. Evaluation of acute bioassays for assessing toxicity of polychlorinated biphenyl-contaminated soils.

    PubMed

    Hose, J E; Barlow, L A; Bent, S; Elseewi, A A; Cliath, M; Resketo, M; Doyle, C

    1986-03-01

    Proposed State of California regulations use fish toxicity information as one criterion in municipal or industrial waste hazard evaluation. Static 96-hr bioassays were performed using fathead minnows (Pimephales promelas), blacksmith (Chromis punctipinnis), and glass shrimp (Palaemonetes kadiakensis) exposed to soil experimentally contaminated with up to 500 ppm polychlorinated biphenyl (PCB) capacitor fluid added at a concentration of 500 mg liter-1. Other bioassays were conducted with a 6-day mixing period prior to the bioassay or with acetone added to solubilize the PCBs. No mortality attributable to PCB toxicity was observed in definitive bioassays using the two fish and one invertebrate species. PCB levels leached from soil containing 500 ppm Aroclor 1242 ranged from less than 0.6 to 3.4 ppb in freshwater tests to 3.5 ppb in seawater bioassays. Using these data as the basis for waste classification, soils contaminated with up to 500 ppb PCBs during capacitor spills would be designated nonhazardous. PCBs are known to be environmentally persistent and to bioaccumulate. Acute toxicity tests, therefore, do not adequately evaluate the general toxicity of PCB-contaminated soils. Hazardous waste regulations for hydrophobic compounds such as PCBs should instead be based upon chronic toxicity data and should also consider bioaccumulation potential.

  10. Evaluating soil contamination risk impact on land vulnerability and climate change in east Azerbaijan, Iran

    NASA Astrophysics Data System (ADS)

    Shahbazi, Farzin; Anaya-Romero, Maria; de La Rosa, Diego

    2010-05-01

    spring, while will increase 32 and 52 percent in summer and autumn. As most of the arable land that is suitable for cultivation in the study area is already in use, chemical fertilizers application will widely obvious to increase crop production. According to 88 study points identified by grid survey method (44 consecutively profiles and augers), Typic Calcixerepts are the most dominant subgroups in the studied area. Altitude varies from 1300 to 1600m with a mean of about 1450m, and slope gradients vary from flat to more than 10%. The attainable contamination risk for two hypothetical scenarios was estimated for the natural conditions of selected soils, under current Ahar climate conditions and calculated amount according to IPCC report by application of the Pantanal model. Results showed that 32%, 25%, 4% and 27% of total studied area were classified as V1, V2, V3, and V4 vulnerable land due to phosphorous while it will not be changed by climate change. Also, attainable vulnerability classes because of heavy metals will be constant too, but the whole area subdivided as: V1 and V3 in a total of 57% and 31%, respectively. Nitrate is the major nitrogen derived pollutant and the main source of groundwater contamination because of its high mobility. According to the obtained results, nitrogen risk impact on land vulnerability will decrease by climate change while in the future scenario more than 55% of total area will classify as none vulnerable area. Assessing pesticide and climate change impact presents those four vulnerable classes: V1, V2, V3, and V4 in a total of 1%, 2%, 28% and 57% studied are while they will change to 1%, 2%, 49%, and 36%. In other words, 19% of total area will be improved by climate change.

  11. Uncertainties due to soil data in Flood Risk Forecasts with the Water Balance Model LARSIM

    NASA Astrophysics Data System (ADS)

    Mitterer, Johannes

    2016-04-01

    Reliable flood forecasts with quantitative statements about contained uncertainties are essential for far reaching decisions in disaster management. In this paper uncertainties resulting from soil data are analysed for the in the German-speaking world widely used water balance model LARSIM and quantified as far as possible. At the beginning a structural and statistical analysis about the wittingly simple designed soil module is performed. It consists of a storage volume with four separate runoff components only defined by the storage size. Additionally, the model structure is examined with regard to effects of uncertain soil data using a soil map from the Bavarian State Institute for Forestry which already contains estimated minimum and maximum values for important soil parameters. For further analysis, two German catchments in Upper Franconia located at the White Main with a size of 250 km² each, covering a huge variety of soil types are used as case examples. Skeleton is identified as an important source of uncertainty in soil data comparing the quantifiable information of available soil maps and using field and laboratory analysis. Furthermore, surface runoff and fast interflow fluxes show up to be sensitive for peaks of flood events, whereas slow interflow and base flow fluxes have smaller and more long term effects on discharges and the water balance. A reduction of the soil storage basically leads to a more intensified reaction of discharges than an enlargement. The calculation of two extreme scenarios within the statistical analysis result in simulated gage measurements varying from -42 % till +218 % compared to the scenario with the main value of the map. A percental variation of the soil storage shows a doubling of the flood discharges, if the storage size is halved and a reduction up to 20% using a doubled one. Finally, a Monte Carlo Simulation is performed using the statistical data of the soil map combined with a normal distribution, whereby the

  12. Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium.

    PubMed

    Kahru, Anne; Ivask, Angela; Kasemets, Kaja; Põllumaa, Lee; Kurvet, Imbi; François, Matthieu; Dubourguier, Henri-Charles

    2005-11-01

    The combined chemical and ecotoxicological hazard evaluation study was conducted on 60 smelter-influenced soils containing 1 to 13, 50 to 653, and 100 to 1,198 mg/kg of Cd, Pb, and Zn, respectively. For these soils (liquid-to-soil ratio = 10), water extractability of Zn, Cd, and Pb was less than 0.19% (median values). Acetic acid (0.11 M) extracted 23, 9.7, and 0.7% of Cd, Zn, and Pb, respectively. Although heavy metal concentrations in the studied soils were high, the toxic effects of water extracts were observed only in few samples and in few biotests (algae Selenastrum capricornutum and metal detector assay). For most of the aquatic test organisms (e.g., crustaceans, photobacteria), the bioavailable concentrations of metals in soil-water extracts were either subtoxic, or the adverse effects were compensated by soil nutrients, etc. However, analysis of the soils with recombinant Cd sensor Bacillus subtilis (pTOO24) showed that about 65% of these apparently subtoxic samples contained bioavailable Cd when analyzed in the suspension assay (detection limit 1.5 mg Cd/kg soil), indicating the desorption of Cd induced by direct contact of bacteria with soil particles. The median bioavailable fraction of Cd (1%) was 23-fold lower than the fraction extracted by acetic acid. The Pb-Cd sensor Staphylococcus aureus (pT0024) detected bioavailable Pb only in the suspensions of five of the most lead-polluted soils (>417 mg Pb/kg): the median bioavailability of Pb was 0.42%. Consequently, the hazard assessment relying on total metal levels in soils should be revised by critical comparison with data obtained from bioassays. Development and use of biosensors (excellent tools for mechanistic studies and signaling hazard already at subtoxic level) should be encouraged.

  13. Application of ecological risk assessment based on a novel TRIAD-tiered approach to contaminated soil surrounding a closed non-sealed landfill.

    PubMed

    Gutiérrez, Laura; Garbisu, Carlos; Ciprián, Estela; Becerril, José M; Soto, Manu; Etxebarria, Javier; Madariaga, Juan M; Antigüedad, Iñaki; Epelde, Lur

    2015-05-01

    The Ecological Risk Assessment (ERA) is a reliable tool for communicating risk to decision makers in a comprehensive and scientific evidence-based way. In this work, a site-specific ERA methodology based on the TRIAD approach was applied to contaminated soil surrounding a closed non-sealed landfill, as a case study to implement and validate such ERA methodology in the Basque Country (northern Spain). Initially, the procedure consisted of the application of a Parameter Selection Module aimed at selecting the most suitable parameters for the specific characteristics of the landfill contaminated soil, taking into consideration the envisioned land use, intended ecosystem services and nature of contaminants. Afterwards, the selected parameters were determined in soil samples collected from two sampling points located downstream of the abovementioned landfill. The results from these tests were normalized to make them comparable and integrable in a risk index. Then, risk assessment criteria were developed and applied to the two landfill contaminated soil samples. Although the lack of a proper control soil was evidenced, a natural land use was approved by the ERA (at Tier 2) for the two landfill contaminated soils. However, the existence of a potential future risk resulting from a hypothetical soil acidification must be considered.

  14. RISK ASSESSMENT AND EPIDEMIOLOGICAL INFORMATION FOR PATHOGENIC MICROORGANISMS APPLIED TO SOIL

    EPA Science Inventory

    There is increasing interest in the development of a microbial risk assessment methodology for regulatory and operational decision making. Initial interests in microbial risk assessments focused on drinking, recreational, and reclaimed water issues. More recently risk assessmen...

  15. Avoidance tests in site-specific risk assessment--influence of soil properties on the avoidance response of Collembola and earthworms.

    PubMed

    Natal-da-Luz, Tiago; Römbke, Jörg; Sousa, José Paulo

    2008-05-01

    The ability of organisms to avoid contaminated soils can act as an indicator of toxic potential in a particular soil. Based on the escape response of earthworms and Collembola, avoidance tests with these soil organisms have great potential as early screening tools in site-specific assessment. These tests are becoming more common in soil ecotoxicology, because they are ecologically relevant and have a shorter duration time compared with standardized soil toxicity tests. The avoidance response of soil invertebrates, however, can be influenced by the soil properties (e.g., organic matter content and texture) that affect behavior of the test species in the exposure matrix. Such an influence could mask a possible effect of the contaminant. Therefore, the effects of soil properties on performance of test species in the exposure media should be considered during risk assessment of contaminated soils. Avoidance tests with earthworms (Eisenia andrei) and springtails (Folsomia candida) were performed to identify the influence of both organic matter content and texture on the avoidance response of representative soil organisms. Distinct artificial soils were prepared by modifying quantities of the standard artificial soil components described by the Organization for Economic Co-operation and Development to achieve different organic matter and texture classes. Several combinations of each factor were tested. Results showed that both properties influenced the avoidance response of organisms, which avoided soils with low organic matter content and fine texture. Springtails were less sensitive to changes in these soil constituents compared with earthworms, indicating springtails can be used for site-specific assessments of contaminated soils with a wider range of respective soil properties.

  16. Risk assessment of Bt crops on the non-target plant-associated insects and soil organisms.

    PubMed

    Yaqoob, Amina; Shahid, Ahmad Ali; Samiullah, Tahir Rehman; Rao, Abdul Qayyum; Khan, Muhammad Azmat Ullah; Tahir, Sana; Mirza, Safdar Ali; Husnain, Tayyab

    2016-06-01

    Transgenic plants containing Bacillus thuringiensis (Bt) genes are being cultivated worldwide to express toxic insecticidal proteins. However, the commercial utilisation of Bt crops greatly highlights biosafety issues worldwide. Therefore, assessing the risks caused by genetically modified crops prior to their commercial cultivation is a critical issue to be addressed. In agricultural biotechnology, the goal of safety assessment is not just to identify the safety of a genetically modified (GM) plant, rather to demonstrate its impact on the ecosystem. Various experimental studies have been made worldwide during the last 20 years to investigate the risks and fears associated with non-target organisms (NTOs). The NTOs include beneficial insects, natural pest controllers, rhizobacteria, growth promoting microbes, pollinators, soil dwellers, aquatic and terrestrial vertebrates, mammals and humans. To highlight all the possible risks associated with different GM events, information has been gathered from a total of 76 articles, regarding non-target plant and soil inhabiting organisms, and summarised in the form of the current review article. No significant harmful impact has been reported in any case study related to approved GM events, although critical risk assessments are still needed before commercialisation of these crops. © 2016 Society of Chemical Industry.

  17. Risk-Based Disposal Plan for PCB Paint in the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Canal

    SciTech Connect

    R. A. Montgomery

    2008-05-01

    This Toxic Substances Control Act Risk-Based Polychlorinated Biphenyl Disposal plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex, Idaho National Laboratory Site, to address painted surfaces in the empty canal under 40 CFR 761.62(c) for paint, and under 40 CFR 761.61(c) for PCBs that may have penetrated into the concrete. The canal walls and floor will be painted with two coats of contrasting non-PCB paint and labeled as PCB. The canal is covered with open decking; the access grate is locked shut and signed to indicate PCB contamination in the canal. Access to the canal will require facility manager permission. Protective equipment for personnel and equipment entering the canal will be required. Waste from the canal, generated during ultimate Decontamination and Decommissioning, shall be managed and disposed as PCB Bulk Product Waste.

  18. Spatial Patterns and Risk Assessment of Heavy Metals in Soils in a Resource-Exhausted City, Northeast China

    PubMed Central

    Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian

    2015-01-01

    Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1

    soils were reached 57.33%, while 42.65% topsoil samples are moderate polluted (2soil environmental function areas were classified and proper soil environmental management policy was proposed to decrease the environmental risks in the process of industrial city transformation. PMID:26413806

  19. Spatial Patterns and Risk Assessment of Heavy Metals in Soils in a Resource-Exhausted City, Northeast China.

    PubMed

    Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian

    2015-01-01

    Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1

    soils were reached 57.33%, while 42.65% topsoil samples are moderate polluted (2soil environmental function areas were classified and proper soil environmental management policy was proposed to decrease the environmental risks in the process of industrial city transformation.

  20. Polybrominated diphenyl ethers (PBDEs) concentration in soil from San Luis Potosi, Mexico: levels and ecological and human health risk characterization.

    PubMed

    Pérez-Vázquez, Francisco J; Orta-García, Sandra T; Ochoa-Martínez, Ángeles C; Pruneda-Álvarez, Lucia G; Ruiz-Vera, Tania; Jiménez-Avalos, Jorge Armando; González-Palomo, Ana K; Pérez-Maldonado, Iván N

    2016-01-01

    The aim of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs) in soils from the city of San Luis Potosi in Mexico and perform an ecological and human health risk characterization. In order to confirm the presence of PBDEs, outdoor surface soil samples were collected and the concentrations of PBDEs in urban, industrial, agricultural, and brick kiln industry areas were determined. The mean total PBDEs levels obtained in the study sites were 25.0 ± 39.5 μg/kg (geometric mean ± standard deviation) in the brick kiln industry zone; 34.5 ± 36.0 μg/kg in the urban zone; 8.00 ± 7.10 μg/kg in the industrial zone and 16.6 ± 15.3 μg/kg in the agricultural zone. The ecological and human health risk characterization showed relatively low-hazard quotient values. However, the moderately high PBDEs levels found in soils highlight the necessity to establish a systematic monitoring process for PBDEs in environmental and biological samples.

  1. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China.

    PubMed

    Zhang, Fusuo; Cui, Zhenling; Fan, Mingsheng; Zhang, Weifeng; Chen, Xinping; Jiang, Rongfeng

    2011-01-01

    During the past 47 yr (1961-2007), Chinese cereal production has increased by 3.2-fold, successfully feeding 22% of the global human population with only 9% of the world's arable land, but at high environmental cost and resource consumption. Worse, crop production has been stagnant since 1996 while the population and demand for food continue to rise. New advances for sustainability of agriculture and ecosystem services will be needed during the coming 50 yr to reduce environmental risk while increasing crop productivity and improving nutrient use efficiency. Here, we advocate and develop integrated soil-crop system management (ISSM). In this approach, the key points are (i) to take all possible soil quality improvement measures into consideration, (ii) to integrate the utilization of various nutrient resources and match nutrient supply to crop requirements, and (iii) to integrate soil and nutrient management with high-yielding cultivation systems. Recent field experiments have shed light on how ISSM can lead to significant increases in crop yields while increasing nutrient use efficiency and reducing environmental risk.

  2. Bioaccessibility and health risk assessment of arsenic in soil and indoor dust in rural and urban areas of Hubei province, China.

    PubMed

    Liu, Yanzhong; Ma, Junwei; Yan, Hongxia; Ren, Yuqing; Wang, Beibei; Lin, Chunye; Liu, Xitao

    2016-04-01

    Incidental oral ingestion is the main exposure pathway by which human intake contaminants in both soil and indoor dust, and this is especially true for children as they frequently exhibit hand-to-mouth behaviour. Research on comprehensive health risk caused by incidental ingestion of both soil and indoor dust is limited. The aims of this study were to investigate the arsenic concentration and to characterize the health risks due to arsenic (As) exposure via soil and indoor dust in rural and urban areas of Hubei province within central China. Soil and indoor dust samples were collected from schools and residential locations and bioaccessibility of arsenic in these samples was determined by a simplified bioaccessibility extraction test (SBET). The total arsenic content in indoor dust samples was 1.78-2.60 times that measured in soil samples. The mean As bioaccessibility ranged from 75.4% to 83.2% in indoor dust samples and from 13.8% to 20.2% in soil samples. A Pearson's analysis showed that As bioaccessibility was significantly correlated with Fe and Al in soil and indoor dust, respectively, and activity patterns of children were utilised in the assessment of health risk via incidental ingestion of soil and indoor dust. The results suggest no non-carcinogenic health risks (HQ<1) or acceptable carcinogenic health risks (1×10(-6)risk incurred during daily indoor and outdoor activities. The HQ and CR values for children in urban areas were 1.59-1.95 times those for children in rural areas. The HQ and CR values for children three to five years of age were 1.40-1.47 times those for children six to nine years of age. The health risk accounting for bioaccessibility was only 50.8-59.8% of that obtained without consideration of bioaccessibility.

  3. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    PubMed Central

    Tarquis, Ana M.; Cartagena, M. Carmen

    2014-01-01

    New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste's wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems. PMID:25003139

  4. Spatial Variation of Soil Lead in an Urban Community Garden: Implications for Risk-Based Sampling.

    PubMed

    Bugdalski, Lauren; Lemke, Lawrence D; McElmurry, Shawn P

    2014-01-01

    Soil lead pollution is a recalcitrant problem in urban areas resulting from a combination of historical residential, industrial, and transportation practices. The emergence of urban gardening movements in postindustrial cities necessitates accurate assessment of soil lead levels to ensure safe gardening. In this study, we examined small-scale spatial variability of soil lead within a 15 × 30 m urban garden plot established on two adjacent residential lots located in Detroit, Michigan, USA. Eighty samples collected using a variably spaced sampling grid were analyzed for total, fine fraction (less than 250 μm), and bioaccessible soil lead. Measured concentrations varied at sampling scales of 1-10 m and a hot spot exceeding 400 ppm total soil lead was identified in the northwest portion of the site. An interpolated map of total lead was treated as an exhaustive data set, and random sampling was simulated to generate Monte Carlo distributions and evaluate alternative sampling strategies intended to estimate the average soil lead concentration or detect hot spots. Increasing the number of individual samples decreases the probability of overlooking the hot spot (type II error). However, the practice of compositing and averaging samples decreased the probability of overestimating the mean concentration (type I error) at the expense of increasing the chance for type II error. The results reported here suggest a need to reconsider U.S. Environmental Protection Agency sampling objectives and consequent guidelines for reclaimed city lots where soil lead distributions are expected to be nonuniform.

  5. Spatiotemporal Trends in Oral Cancer Mortality and Potential Risks Associated with Heavy Metal Content in Taiwan Soil

    PubMed Central

    Chiang, Chi-Ting; Lian, Ie-Bin; Su, Che-Chun; Tsai, Kuo-Yang; Lin, Yu-Pin; Chang, Tsun-Kuo

    2010-01-01

    Central and Eastern Taiwan have alarmingly high oral cancer (OC) mortality rates, however, the effect of lifestyle factors such as betel chewing cannot fully explain the observed high-risk. Elevated concentrations of heavy metals in the soil reflect somewhat the levels of exposure to the human body, which may promote cancer development in local residents. This study assesses the space-time distribution of OC mortality in Taiwan, and its association with prime factors leading to soil heavy metal content. The current research obtained OC mortality data from the Atlas of Cancer Mortality in Taiwan, 1972–2001, and derived soil heavy metals content data from a nationwide survey carried out by ROCEPA in 1985. The exploratory data analyses showed that OC mortality rates in both genders had high spatial autocorrelation (Moran’s I = 0.6716 and 0.6318 for males and females). Factor analyses revealed three common factors (CFs) representing the major pattern of soil pollution in Taiwan. The results for Spatial Lag Models (SLM) showed that CF1 (Cr, Cu, Ni, and Zn) was most spatially related to male OC mortality which implicates that some metals in CF1 might play as promoters in OC etiology. PMID:21139868

  6. Risk assessment of gas oil and kerosene contamination on some properties of silty clay soil.

    PubMed

    Fallah, M; Shabanpor, M; Zakerinia, M; Ebrahimi, S

    2015-07-01

    Soil and ground water resource pollution by petroleum compounds and chemical solvents has multiple negative environmental impacts. The aim of this research was to investigate the impacts of kerosene and gas oil pollutants on some physical and chemical properties, breakthrough curve (BTC), and water retention curve (SWRC) of silty clay soil during a 3-month period. Therefore, some water-saturated soils were artificially contaminated in the pulse condition inside some glassy cylinders by applying half and one pore volume of these pollutants, and then parametric investigations of the SWRC were performed using RETC software for Van Genukhten and Brooks-Corey equations in the various suctions and the soil properties were determined before and after pollution during 3 months. The results showed that gas oil and kerosene had a slight effect on soil pH and caused the cumulative enhancement in the soil respiration, increase in the bulk density and organic matter, and reduction in the soil porosity and electrical and saturated hydraulic conductivity. Furthermore, gas oil retention was significantly more than kerosene (almost 40%) in the soil. The survey of SWRC indicated that the contaminated soil samples had a little higher amount of moisture retention (just under 15% in most cases) compared to the unpolluted ones during this 3-month period. The parametric analysis of SWRC demonstrated an increase in the saturated water content, Θ s, from nearly 49% in the control sample to just under 53% in the polluted ones. Contaminants not only decreased the residual water content, Θ r, but also reduced the SWRC gradient, n, and amount of α parameter. The evaluation of both equations revealed more accurate prediction of SWRC's parameters by Van Genukhten compared to those of Brooks and Corey.

  7. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    SciTech Connect

    Paterek, J.R.; Bogan, W.W.; Lahner, L.M.; Trbovic, V.

    2003-03-06

    Conducted research in the following major focus areas: (1) Development of mild extraction approaches to estimate bioavailable fraction of crude oil residues in contaminated soils; (2) Application of these methods to understand decreases in toxicity and increases in sequestration of hydrocarbons over time, as well as the influence of soil properties on these processes; (3) Measurements of the abilities of various bacteria (PAH-degraders and others more representative of typical soil bacteria) to withstand oxidative treatments (i.e. Fenton's reaction) which would occur in CBT; and (4) Experiments into the biochemical/genetic inducibility of PAH degradation by compounds formed by the chemical oxidation of PAH.

  8. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk.

    PubMed

    Wang, Chunhui; Wu, Shaohua; Zhou, Sheng Lu; Wang, Hui; Li, Baojie; Chen, Hao; Yu, Yanna; Shi, Yaxing

    2015-09-15

    Polycyclic aromatic hydrocarbons (PAHs) have become a major type of pollutant in urban areas and their degree of pollution and characteristics of spatial distribution differ between various regions. We conducted a comprehensive study about the concentration, source, spatial distribution, and health risk of 16 PAHs from urban to rural soils in Nanjing. The mean total concentrations of 16 PAHs (∑16PAHs) were 3330 ng g(-1) for urban soils, 1680 ng g(-1) for suburban soils, and 1060 ng g(-1) for rural soils. Five sources in urban, suburban, and rural areas of Nanjing were identified by positive matrix factorization. Their relative contributions of sources to the total soil PAH burden in descending order was coal combustion, vehicle emissions, biomass burning, coke tar, and oil in urban areas; in suburban areas the main sources of soil PAHs were gasoline engine and diesel engine, whereas in rural areas the main sources were creosote and biomass burning. The spatial distribution of soil PAH concentrations shows that old urban districts and commercial centers were the most contaminated of all areas in Nanjing. The distribution pattern of heavier PAHs was in accordance with ∑16PAHs, whereas lighter PAHs show some special characteristics. Health risk assessment based on toxic equivalency factors of benzo[a]pyrene indicated a low concentration of PAHs in most areas in Nanjing, but some sensitive sites should draw considerable attention. We conclude that urbanization has accelerated the accumulation of soil PAHs and increased the environmental risk for urban residents.

  9. The Source, Spatial Distribution and Risk Assessment of Heavy Metals in Soil from the Pearl River Delta Based on the National Multi-Purpose Regional Geochemical Survey.

    PubMed

    Zhang, Lingyan; Guo, Shuhai; Wu, Bo

    2015-01-01

    The data on the heavy metal content at different soil depths derived from a multi-purpose regional geochemical survey in the Pearl River Delta (PRD) were analyzed using ArcGIS 10.0. By comparing their spatial distributions and areas, the sources of heavy metals (Cd, Hg, As and Pb) were quantitatively identified and explored. Netted measuring points at 25 ×25 km were set over the entire PRD according to the geochemical maps. Based on the calculation data obtained from different soil depths, the concentrations of As and Cd in a large area of the PRD exceeded the National Second-class Standard. The spatial disparity of the geometric centers in the surface soil and deep soil showed that As in the surface soil mainly came from parent materials, while Cd had high consistency in different soil profiles because of deposition in the soil forming process. The migration of Cd also resulted in a considerable ecological risk to the Beijiang and Xijiang River watershed. The potential ecological risk index followed the order Cd ≥ Hg > Pb > As. According to the sources, the distribution trends and the characteristics of heavy metals in the soil from the perspective of the whole area, the Cd pollution should be repaired, especially in the upper reaches of the Xijiang and Beijiang watershed to prevent risk explosion while the pollution of Hg and Pb should be controlled in areas with intense human activity, and supervision during production should be strengthened to maintain the ecological balance of As.

  10. The Source, Spatial Distribution and Risk Assessment of Heavy Metals in Soil from the Pearl River Delta Based on the National Multi-Purpose Regional Geochemical Survey

    PubMed Central

    Zhang, Lingyan; Guo, Shuhai; Wu, Bo

    2015-01-01

    The data on the heavy metal content at different soil depths derived from a multi-purpose regional geochemical survey in the Pearl River Delta (PRD) were analyzed using ArcGIS 10.0. By comparing their spatial distributions and areas, the sources of heavy metals (Cd, Hg, As and Pb) were quantitatively identified and explored. Netted measuring points at 25 ×25 km were set over the entire PRD according to the geochemical maps. Based on the calculation data obtained from different soil depths, the concentrations of As and Cd in a large area of the PRD exceeded the National Second-class Standard. The spatial disparity of the geometric centers in the surface soil and deep soil showed that As in the surface soil mainly came from parent materials, while Cd had high consistency in different soil profiles because of deposition in the soil forming process. The migration of Cd also resulted in a considerable ecological risk to the Beijiang and Xijiang River watershed. The potential ecological risk index followed the order Cd ≥ Hg > Pb > As. According to the sources, the distribution trends and the characteristics of heavy metals in the soil from the perspective of the whole area, the Cd pollution should be repaired, especially in the upper reaches of the Xijiang and Beijiang watershed to prevent risk explosion while the pollution of Hg and Pb should be controlled in areas with intense human activity, and supervision during production should be strengthened to maintain the ecological balance of As. PMID:26230506

  11. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment.

    PubMed

    Broadway, Andrew; Cave, Mark R; Wragg, Joanna; Fordyce, Fiona M; Bewley, Richard J F; Graham, Margaret C; Ngwenya, Bryne T; Farmer, John G

    2010-12-15

    The Unified Bioaccessibility Method (UBM), which simulates the fluids of the human gastrointestinal tract, was used to assess the oral bioaccessibility of Cr in 27 Glasgow soils. These included several contaminated with Cr(VI), the most toxic form of Cr, from the past disposal of chromite ore processing residue (COPR). The extraction was employed in conjunction with the subsequent determination of the bioaccessible Cr by ICP-OES and Cr(VI) by the diphenylcarbazide complexation colorimetric procedure. In addition, Cr(III)-containing species were determined by (i) HPLC-ICP-MS and (ii) ICP-OES analysis of gel electrophoretically separated components of colloidal and dissolved fractions from centrifugal ultrafiltration of extracts. Similar analytical procedures were applied to the determination of Cr and its species in extracts of the <10 μm fraction of soils subjected to a simulated lung fluid test to assess the inhalation bioaccessibility of Cr. The oral bioaccessibility of Cr was typically greater by a factor of 1.5 in the 'stomach' (pH ~1.2) compared with the 'stomach+intestine' (pH ~6.3) simulation. On average, excluding two COPR-contaminated soil samples, the oral bioaccessibility ('stomach') was 5% of total soil Cr and, overall, similar to the soil Cr(VI) concentration. Chromium(VI) was not detected in the extracts, a consequence of pH- and soil organic matter-mediated reduction in the 'stomach' to Cr(III)-containing species, identified as predominantly Cr(III)-humic complexes. Insertion of oral bioaccessible fraction data into the SNIFFER human health risk assessment model identified site-specific assessment criteria (for residential land without plant uptake) that were exceeded by the soil total Cr (3680 mg kg(-1)) and Cr(VI) (1485 mg kg(-1)) concentration at only the most COPR-Cr(VI)-contaminated location. However, the presence of measurable Cr(VI) in the <10 μm fraction of the two most highly Cr(VI)-contaminated soils demonstrated that inhalation of Cr

  12. Spatio-temporal assessment of soil erosion risk in different agricultural zones of the Inle Lake region, southern Shan State, Myanmar.

    PubMed

    Htwe, Thin Nwe; Brinkmann, Katja; Buerkert, Andreas

    2015-10-01

    Myanmar is one of Southeast Asia's climatically most diverse countries, where sheet, rill, and gully erosion affect crop yields and subsequently livelihood strategies of many people. In the unique wetland ecosystem of Inle Lake, soil erosion in surrounding uplands lead to sedimentation and pollution of the water body. The current study uses the Revised Universal Soil Loss Equation (RUSLE) to identify soil erosion risks of the Inle Lake region in space and time and to assess the relationship between soil erosion and degradation for different agricultural zones and cropping systems. Altogether, 85% of soil losses occurred on barren land along the steep slopes. The hotspot of soil erosion risk is situated in the western uplands characterized by unsustainable land use practices combined with a steep topography. The estimated average soil losses amounted to 19.9, 10.1, and 26.2 t ha(-1) yr(-1) in 1989, 2000, and 2009, respectively. These fluctuations were mainly the results of changes in precipitation and land cover (deforestation (-19%) and expansion of annual cropland (+35%) from 1989 to 2009). Most farmers in the study area have not yet adopted effective soil protection measures to mitigate the effects of soil erosion such as land degradation and water pollution of the lake reservoir. This urgently needs to be addressed by policy makers and extension services.

  13. Anomalous High Rainfall and Soil Saturation as Combined Risk Indicator of Rift Valley Fever Outbreaks, South Africa, 2008–2011

    PubMed Central

    Malherbe, Johan; Weepener, Harold; Majiwa, Phelix; Swanepoel, Robert

    2016-01-01

    Rift Valley fever (RVF), a zoonotic vectorborne viral disease, causes loss of life among humans and livestock and an adverse effect on the economy of affected countries. Vaccination is the most effective way to protect livestock; however, during protracted interepidemic periods, farmers discontinue vaccination, which leads to loss of herd immunity and heavy losses of livestock when subsequent outbreaks occur. Retrospective analysis of the 2008–2011 RVF epidemics in South Africa revealed a pattern of continuous and widespread seasonal rainfall causing substantial soil saturation followed by explicit rainfall events that flooded dambos (seasonally flooded depressions), triggering outbreaks of disease. Incorporation of rainfall and soil saturation data into a prediction model for major outbreaks of RVF resulted in the correctly identified risk in nearly 90% of instances at least 1 month before outbreaks occurred; all indications are that irrigation is of major importance in the remaining 10% of outbreaks. PMID:27403563

  14. IMPLICATIONS OF BIOSOLIDS/COMPOST UTILIZATION ON THE RISK OF SOIL METALS

    EPA Science Inventory

    This presentation summarizes the current work on the fundamental changes in soil mineralogical accomplished by additions of biosolids and P to the system which results in changes in phytoavailability/bioavailability. The concepts of phytoavailability/bioavailability are rather s...

  15. [Vertical transporting risk of nitrogen in purple soil affected by surfactant].

    PubMed

    Chen, Yu-cheng; Yang, Zhi-min; Jiang, Ling; Chen, Qing-hu; Gao, Meng

    2010-07-01

    The simulated leaching experiment was conducted to determine the effects of surfactant of sodium dodecyl benzene sulphonate (SDBS) on vertical transporting of nitrogen in purple soil. SDBS could reduce NH4+ -N loss from soil, and the higher concentration of SDBS, the less loss. SDBS could increase NO3- -N loss from soil, and the order of accumulation loss is SDBS100 > SDBS40 > SDBS0 > SDBS5. Lower concentration SDBS decrease TKN loss, but higher concentration SDBS had a reverse effect, and compared with SDBS0, the accumulation loss TKN of SDBS40, SDBS100 increased by 16.8%, 22.36%, respectively. SDBS could affect vertical transporting of nitrogen in purple soil, that is, the significant down-transporting of nitrogen was observed after leaching with SDBS, and the higher concentration of SDBS, the more obviously transporting trend.

  16. Risk assessment test for lead bioaccessibility to waterfowl in mine-impacted soils

    USGS Publications Warehouse

    Furman, O.; Strawn, D.G.; Heinz, G.H.; Williams, B.

    2006-01-01

    Due to variations in soil physicochemical properties, species physiology, and contaminant speciation, Pb toxicity is difficult to evaluate without conducting in vivo dose-response studies. Such tests, however, are expensive and time consuming, making them impractical to use in assessment and management of contaminated environments. One possible alternative is to develop a physiologically based extraction test (PBET) that can be used to measure relative bioaccessibility. We developed and correlated a PBET designed to measure the bioaccessibility of Pb to waterfowl (W-PBET) in mine-impacted soils located in the Coeur d'Alene River Basin, Idaho. The W-PBET was also used to evaluate the impact of P amendments on Pb bioavailability. The W-PBET results were correlated to waterfowl-tissue Pb levels from a mallard duck [Anas platyrhynchos (L.)] feeding study. The W-PBET Pb concentrations were significantly less in the P-amended soils than in the unamended soils. Results from this study show that the W-PBET can be used to assess relative changes in Pb bioaccessibility to waterfowl in these mine-impacted soils, and therefore will be a valuable test to help manage and remediate contaminated soils.

  17. Short- and medium-chain chlorinated paraffins in urban soils of Shanghai: spatial distribution, homologue group patterns and ecological risk assessment.

    PubMed

    Wang, Xue-Tong; Wang, Xi-Kui; Zhang, Yuan; Chen, Lei; Sun, Yan-Feng; Li, Mei; Wu, Ming-Hong

    2014-08-15

    Chlorinated paraffins (CPs) are toxic, bioaccumulative, persistent, and ubiquitously present in the environment. Data on the presence of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in urban areas with dense population are still scarce to date. SCCPs and MCCPs were measured in urban soils from Shanghai to comprehensively investigate their levels, spatial distribution, homologue group patterns and ecological risk. The concentrations of CPs in soils varied from ND to 615 ng g(-1) with a median value of 15.7 ng g(-1) for SCCPs and from 1.95 to 188 ng g(-1) with a median value of 7.98 ng g(-1) for MCCPs, respectively. The concentrations of SCCPs in most soils were higher than those of MCCPs. The total CP concentrations in soil samples were between 4.10 and 625 ng g(-1) with a median value of 26.4 ng g(-1). For different functional zones, the median concentrations of soil CPs were found higher in green land including park, greenbelt and campus than those in roadside. The highest concentrations of CPs in soils could be derived from sewage sludge application and wastewater irrigation for green land. Three types of soils were classified by hierarchical cluster analysis (HCA) for SCCPs and MCCPs, the most abundant homologue groups in the bulk of the soil samples were C11Cl5-7 and C13Cl5-7 for SCCPs, and C14Cl7-8 and C15Cl7-8 for MCCPs. Correlation analysis and PCA suggested that SCCPs and MCCPs in soils in the studied area derived from different sources. The preliminary ecological risk assessment indicates that soil CPs at present levels poses no significant ecological risk for soil-dwelling organisms.

  18. Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants.

    PubMed

    Dumanoglu, Yetkin; Gaga, Eftade O; Gungormus, Elif; Sofuoglu, Sait C; Odabasi, Mustafa

    2017-02-15

    Atmospheric and concurrent soil samples were collected during winter and summer of 2014 at 41 sites in Kutahya, Turkey to investigate spatial and seasonal variations, sources, air-soil exchange, and associated carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). The highest atmospheric and soil concentrations were observed near power plants and residential areas, and the wintertime concentrations were generally higher than ones measured in summer. Spatial distribution of measured ambient concentrations and results of the factor analysis showed that the major contributing PAH sources in Kutahya region were the coal combustion for power generation and residential heating (48.9%), and diesel and gasoline exhaust emissions (47.3%) while the major PCB sources were the coal (thermal power plants and residential heating) and wood combustion (residential heating) (45.4%), and evaporative emissions from previously used technical PCB mixtures (34.7%). Results of fugacity fraction calculations indicated that the soil and atmosphere were not in equilibrium for most of the PAHs (88.0% in winter, 87.4% in summer) and PCBs (76.8% in winter, 83.8% in summer). For PAHs, deposition to the soil was the dominant mechanism in winter while in summer volatilization was equally important. For PCBs, volatilization dominated in summer while deposition was higher in winter. Cancer risks associated with inhalation and accidental soil ingestion of soil were also estimated. Generally, the estimated carcinogenic risks were below the acceptable risk level of 10(-6). The percentage of the population exceeding the acceptable risk level ranged from <1% to 16%, except, 32% of the inhalation risk levels due to PAH exposure in winter at urban/industrial sites were >10(-6).

  19. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China.

    PubMed

    Li, Peizhong; Lin, Chunye; Cheng, Hongguang; Duan, Xiaoli; Lei, Kai

    2015-03-01

    Anthropogenic emissions of toxic metals from smelters are a global problem. The objective of this study was to investigate the distribution of toxic metals in soils around a 60 year-old Pb/Zn smelter in a town in Yunnan Province of China. Topsoil and soil core samples were collected and analyzed to determine the concentrations of various forms of toxic metals. The results indicated that approximately 60 years of Pb/Zn smelting has led to significant contamination of the local soil by Zn, Pb, Cd, As, Sb, and Hg, which exhibited maximum concentrations of 8078, 2485, 75.4, 71.7, 25.3, and 2.58mgkg(-1), dry wet, respectively. Other metals, including Co, Cr, Cu, Mn, Ni, Sc, and V, were found to originate from geogenic sources. The concentrations of smelter driven metals in topsoil decreased with increasing distance from the smelter. The main contamination by Pb, Zn, and Cd was found in the upper 40cm of soil around the Pb/Zn smelter, but traces of Pb, Zn, and Cd contamination were found below 100cm. Geogenic Ni in the topsoil was mostly bound in the residual fraction (RES), whereas anthropogenic Cd, Pb, and Zn were mostly associated with non-RES fractions. Therefore, the smelting emissions increased not only the concentrations of Cd, Pb, and Zn in the topsoil but also their mobility and bioavailability. The hazard quotient and hazard index showed that the topsoil may pose a health risk to children, primarily due to the high Pb and As contents of the soil.

  20. Quantitative ecological risk assessment of inhabitants exposed to polycyclic aromatic hydrocarbons in terrestrial soils of King George Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Pongpiachan, S.; Hattayanone, M.; Pinyakong, O.; Viyakarn, V.; Chavanich, S. A.; Bo, C.; Khumsup, C.; Kittikoon, I.; Hirunyatrakul, P.

    2017-03-01

    This study aims to conduct a quantitative ecological risk assessment of human exposure to polycyclic aromatic hydrocarbons (PAHs) in terrestrial soils of King George Island, Antarctica. Generally, the average PAH concentrations detected in King George Terrestrial Soils (KGS) were appreciably lower than those of World Marine Sediments (WMS) and World Terrestrial Soils (WTS), highlighting the fact that Antarctica is one of the most pristine continents in the world. The total concentrations of twelve probably carcinogenic PAHs (ΣPAHs: a sum of Phe, An, Fluo, Pyr, B[a]A, Chry, B[b]F, B[k]F, B[a]P, Ind, D[a,h]A and B[g,h,i]P) were 3.21 ± 1.62 ng g-1, 5749 ± 4576 ng g-1, and 257,496 ± 291,268 ng g-1, for KGS, WMS and WTS, respectively. In spite of the fact that KGS has extremely low ΣPAHs in comparison with others, the percentage contribution of Phe is exceedingly high with the value of 50%. By assuming that incidental ingestion and dermal contact are two major exposure pathways responsible for the adverse human health effects, the cancer and non-cancer risks from environmental exposure to PAHs were carefully evaluated based on the ;Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions; memorandum provided by US-EPA. The logarithms of cancer risk levels of PAH contents in KGS varied from -11.1 to -7.18 with an average of -7.96 ± 7.73, which is 1790 times and 80,176 times lower than that of WMS and WTS, respectively. All cancer risk levels of PAH concentrations observed in KGS are significantly (p < 0.001) lower than those of WMS and WTS. Despite the Comandante Ferraz Antarctic Station fire occurred in February 25th, 2012, both the cancer and non-cancer risks of environmental exposure to PAHs were found in ;acceptable level;.

  1. Stagnating crop yields: An overlooked risk for the carbon balance of agricultural soils?

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Kögel-Knabner, Ingrid

    2015-12-01

    The carbon (C) balance of agricultural soils may be largely affected by climate change. Increasing temperatures are discussed to cause a loss of soil organic carbon (SOC) due to enhanced decomposition of soil organic matter, which has a high intrinsic temperature sensitivity. On the other hand, several modeling studies assumed that potential SOC losses would be compensated or even outperformed by an increased C input by crop residues into agricultural soils. This assumption was based on a predicted general increase of net primary productivity (NPP) as a result of the CO2 fertilization effect and prolonged growing seasons. However, it is questionable if the crop C input into agricultural soils can be derived from NPP predictions of vegetation models. The C input in European croplands is largely controlled by the agricultural management and was strongly related to the development of crop yields in the last decades. Thus, a glance at past yield development will probably be more instructive for future estimations of the C input than previous modeling approaches based on NPP predictions. An analysis of European yield statistics indicated that yields of wheat, barley and maize are stagnating in Central and Northern Europe since the 1990s. The stagnation of crop yields can probably be related to a fundamental change of the agricultural management and to climate change effects. It is assumed that the soil C input is concurrently stagnating which would necessarily lead to a decrease of agricultural SOC stocks in the long-term given a constant temperature increase. Remarkably, for almost all European countries that are faced with yield stagnation indications for agricultural SOC decreases were already found. Potentially adverse effects of yield stagnation on the C balance of croplands call for an interdisciplinary investigation of its causes and a comprehensive monitoring of SOC stocks in agricultural soils of Europe.

  2. Soils Project Risk-Based Corrective Action Evaluation Process with ROTC 1 and ROTC 2, Revision 0

    SciTech Connect

    Matthews, Patrick; Sloop, Christina

    2012-04-01

    This document formally defines and clarifies the NDEP-approved process the NNSA/NSO Soils Activity uses to fulfill the requirements of the FFACO and state regulations. This process is used to establish FALs in accordance with the risk-based corrective action (RBCA) process stipulated in Chapter 445 of the Nevada Administrative Code (NAC) as described in the ASTM International (ASTM) Method E1739-95 (NAC, 2008; ASTM, 1995). It is designed to provide a set of consistent standards for chemical and radiological corrective actions.

  3. Health risks resulting from contaminants transfers in soil-plants systems: case study of Atrazine in Lactuca sativa.

    NASA Astrophysics Data System (ADS)

    Mathieu, Camoin

    2015-04-01

    Food safety is presently at the center of great part of scientific and political debates. This represents a field of study in its own right of health risks, including ingestion by humans of hazardous biological, physical, chemical or radiological substances, from contaminated foods during different stages of production. Plant cultivation step is often one of the main sources of contamination, whether of voluntary (pesticide application) or accidental (nuclear, industrial waste, etc.) origin. As a result, the plants growth in an contaminated environment may increase the risk of transfer within the plant, and finally the exposure of humans. Furthermore, pesticides are among the main contaminants investigated in the frame of human health risks resulting from food intakes. However, most of these scientific works focus mainly on their occurrence and persistence in water bodies, and few of them are interested in soil/plants transfer. In this context, the understanding of the processes governing transfers of pesticides in plants is become a necessity, in particular to prevent human risks linked the ingestion of food produced in contaminated environments. This objective can be reached by studying the pollutants behavior in soils/plants transfers, and using various substances/plants couples. In our study, we selected a salad/pesticide couple as our experimental model. Atrazine was chosen as model contaminant because of its problematic presence in a large amount of environmental compartments, its physico-chemical properties and because of its long-term toxicity. Lactuca sativa has been selected as model plant because of its importance in French agriculture, and specifically in Languedoc-Roussillon. Salad has been cultivated in peats and irrigated with an atrazine spiked water solution (concentrations from 10 to 100 μg/L). Plant growth in such conditions has been compared to a growth in clean condition (irrigation with non spiked water). Measurements of atrazine contents in

  4. Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil-rice system under intensive farming: a case study of Nanhu, China.

    PubMed

    Shi, Jiachun; Yu, Xiulin; Zhang, Mingkui; Lu, Shenggao; Wu, Weihong; Wu, Jianjun; Xu, Jianming

    2011-01-01

    Heavy metal (copper [Cu], zinc [Zn], and cadmium [Cd]) pollution of soils from pig manures in soil-rice ( L.) systems under intensive farming was investigated, taking Nanhu, China, as the case study area. Two hundred pig manures and 154 rice straws, brown rice samples, and corresponding surface soil (0-15 cm) samples were collected in paddy fields from 150 farms in 16 major villages within the study area. The mean Cu and Zn concentrations in pig manures consistently exceeded the related standard. About 44 and 60% of soil samples exceed the Chinese Soil Cu and Cd Environmental Quality Standards, respectively. The concentration of Cu, Zn, and Cd in brown rice did not exceed the Chinese Food Hygiene Standard. There was a significant positive correlation between total Cu and Zn contents in soil and application rate of pig manures. Strong correlation was observed between the extractable Cu, Zn, and Cd in soil and the Cu, Zn, and Cd contents in the brown rice. The spatial distribution maps of Cu and Zn concentrations in brown rice, straw, and extractable soil Cu and Zn concentration also showed similar geographical trends. Further analyses on heavy metals loading flux and accumulation rates from pig manure applied suggested that Cu and Cd contents in soil currently have already exceeded the maximum permissible limit, and Zn, if still at current manure application rates, will reach the ceiling concentration limits in 9 yr. This study assists in understanding the risk of heavy metals accumulating from pig manure applications to agricultural soils.

  5. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    PubMed

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils.

  6. Human Health Risk Assessment of 16 Priority Polycyclic Aromatic Hydrocarbons in Soils of Chattanooga, Tennessee, USA

    PubMed Central

    Hussar, Erika; Richards, Sean; Lin, Zhi-Qing; Dixon, Robert P.; Johnson, Kevin A.

    2012-01-01

    South Chattanooga has been home to foundries, coke furnaces, chemical, wood preserving, tanning and textile plants for over 100 years. Most of the industries were in place before any significant development of residential property in the area. During the 1950s and 1960s, however, the government purchased inexpensive property and constructed public housing projects in South Chattanooga. Many neighborhoods that surround the Chattanooga Creek were previous dumping grounds for industry. Polycyclic aromatic hydrocarbons (PAHs) comprised the largest component of the dumping and airborne industrial emissions. To address the human exposure to these PAHs, a broad study of South Chattanooga soil contaminant concentrations was conducted on 20 sites across the city. Sixteen priority pollutant PAHs were quantified at two depths (0-10cm and 10-20cm) and compared against reference site soils, as well as to soils from industrially-impacted areas in Germany, China, and the US. From these data, the probability that people would encounter levels exceeding EPA Residential Preliminary Remediation Goals (PRG) was calculated. Results indicate that South Chattanooga soils have relatively high concentrations of total PAHs, specifically Benzo[a]pyrene (B[a]P). These high concentrations of B[a]P were somewhat ubiquitous in South Chattanooga. Indeed, there is a high probability (88%) of encountering soil in South Chattanooga that exceeds the EPA PRG for B[a]P. However, there is a low probability (15%) of encountering a site with ∑PAHs exceeding EPA PRG guidelines. PMID:23243323

  7. Improving ecological risk assessment in the Mediterranean area: selection of reference soils and evaluating the influence of soil properties on avoidance and reproduction of two oligochaete species.

    PubMed

    Chelinho, Sónia; Domene, Xavier; Campana, Paolo; Natal-da-Luz, Tiago; Scheffczyk, Adam; Römbke, Jörg; Andrés, Pilar; Sousa, José Paulo

    2011-05-01

    A current challenge in soil ecotoxicology is the use of natural soils as test substrates to increase ecological relevance of data. Despite the existence of six natural reference soils (the Euro-soils), some parallel projects showed that these soils do not accurately represent the diversity of European soils. Particularly, Mediterranean soils are not properly represented. To fill this gap, 12 natural soils from the Mediterranean regions of Alentejo, Portugal; Cataluña, Spain; and Liguria, Italy, were selected and used in reproduction and avoidance tests to evaluate the soil habitat function for earthworms (Eisenia andrei) and enchytraeids (Enchytraeus crypticus). Predictive models on the influence of soil properties on the responses of these organisms were developed using generalized linear models. Results indicate that the selected soils can impact reproduction and avoidance behavior of both Oligochaete species. Reproduction of enchytraeids was affected by different soil properties, but the test validity criteria were fulfilled. The avoidance response of enchytraeids was highly variable, but significant effects of texture and pH were found. Earthworms were more sensitive to soil properties. They did not reproduce successfully in three of the 10 soils, and a positive influence of moisture, fine sand, pH, and organic matter and a negative influence of clay were found. Moreover, they strongly avoided soils with extreme textures. Despite these limitations, most of the selected soils are suitable substrates for ecotoxicological evaluations.

  8. Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil.

    PubMed

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Leigh, Mary Beth

    2016-02-26

    Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing (13)C-biphenyl (unchlorinated analogue of PCBs) and/or (13)C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community.

  9. Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Leigh, Mary Beth

    2016-02-01

    Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing 13C-biphenyl (unchlorinated analogue of PCBs) and/or 13C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community.

  10. Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil

    PubMed Central

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Leigh, Mary Beth

    2016-01-01

    Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing 13C-biphenyl (unchlorinated analogue of PCBs) and/or 13C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community. PMID:26915282

  11. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    PubMed

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and soil sampling stations, the exposure to ∑PAH16 was >ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health.

  12. Heavy metals and organic compounds contamination in soil from an e-waste region in South China.

    PubMed

    Liu, Ming; Huang, Bo; Bi, Xinhui; Ren, Zhaofang; Sheng, Guoying; Fu, Jiamo

    2013-05-01

    Heavy metals and persistent organic pollutants polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were analyzed in 34 surface soil samples collected from farmland and 7 soil or dust samples collected from the workshops in South China, where e-waste was dismantled using primitive techniques. The results show that Cd, Cu and Hg were the most abundant metals, in particular Cd pollution was serious in farmland soils, and the median concentrations in farmland soils were beyond the environmental quality standard for soils (China Grade II). A correlation between Cd, Cu, Zn, Pb and PCBs or PBDEs was significant indicating similar sources. Among the PCB congeners, high relative similarity was observed between the e-waste dump site soil (EW1) and Aroclor 1254, implying that the technical product Aroclor 1254 was one of the major sources of PCB contamination. High concentrations of PCBs in workshop dusts (D2 and D3) (1958 and 1675 μg kg(-1)) demonstrated that the workshops dismantling electrical wires and cables, electrical motors, compressors and aluminum apparatus containing PCBs in lubricants represent strong PCB emission sources to this area. Principal component analysis (PCA) and PBDE homologue patterns verify that farmland soils surrounding the e-waste recycling sites were enriched with lower brominated congeners, and the major source of PBDEs in dust samples might potentially be associated with the extensive use of deca-mix technical products as a flame retardant. The difference between e-waste soils, dusts and farmland soils can be observed in the PCA score plot of PCBs and PBDEs, and E-waste soils and dusts exhibited more diversity than farmland soils. Furthermore, a prediction of the particular kinds of pollution from different recycling activities through the analysis of each contamination and the connections between them was investigated.

  13. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River.

    PubMed

    Haregeweyn, Nigussie; Tsunekawa, Atsushi; Poesen, Jean; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Fenta, Ayele Almaw; Nyssen, Jan; Adgo, Enyew

    2017-01-01

    In the drought-prone Upper Blue Nile River (UBNR) basin of Ethiopia, soil erosion by water results in significant consequences that also affect downstream countries. However, there have been limited comprehensive studies of this and other basins with diverse agroecologies. We analyzed the variability of gross soil loss and sediment yield rates under present and expected future conditions using a newly devised methodological framework. The results showed that the basin generates an average soil loss rate of 27.5tha(-1)yr(-1) and a gross soil loss of ca. 473Mtyr(-1), of which, at least 10% comes from gully erosion and 26.7% leaves Ethiopia. In a factor analysis, variation in agroecology (average factor score=1.32) and slope (1.28) were the two factors most responsible for this high spatial variability. About 39% of the basin area is experiencing severe to very severe (>30tha(-1)yr(-1)) soil erosion risk, which is strongly linked to population density. Severe or very severe soil erosion affects the largest proportion of land in three subbasins of the UBNR basin: Blue Nile 4 (53.9%), Blue Nile 3 (45.1%), and Jema Shet (42.5%). If appropriate soil and water conservation practices targeted ca. 77.3% of the area with moderate to severe erosion (>15tha(-1)yr(-1)), the total soil loss from the basin could be reduced by ca. 52%. Our methodological framework identified the potential risk for soil erosion in large-scale zones, and with a more sophisticated model and input data of higher spatial and temporal resolution, results could be specified locally within these risk zones. Accurate assessment of soil erosion in the UBNR basin would support sustainable use of the basin's land resources and possibly open up prospects for cooperation in the Eastern Nile region.

  14. An exploration of spatial human health risk assessment of soil toxic metals under different land uses using sequential indicator simulation.

    PubMed

    Huang, Jin-Hui; Liu, Wen-Chu; Zeng, Guang-Ming; Li, Fei; Huang, Xiao-Long; Gu, Yan-Ling; Shi, Li-Xiu; Shi, Ya-Hui; Wan, Jia

    2016-07-01

    A modified method was proposed which integrates the spatial patterns of toxic metals simulated by sequential indicator simulation, different exposure models and local current land uses extracted by remote-sensing software into a dose-response model for human health risk assessment of toxic metals. A total of 156 soil samples with a various land uses containing farm land (F1-F25), forest land (W1-W12) and residential land (U1-U15) were collected in a grid pattern throughout Xiandao District (XDD), Hunan Province, China. The total Cr and Pb in topsoil were analyzed. Compared with Hunan soil background values, the elevated concentrations of Cr were mainly located in the east of XDD, and the elevated concentrations of Pb were scattered in the areas around F1, F6, F8, F13, F14, U5, U14, W2 and W11. For non-carcinogenic effects, the hazard index (HI) of Cr and Pb overall the XDD did not exceed the accepted level to adults. While to children, Cr and Pb exhibited HI higher than the accepted level around some areas. The assessment results indicated Cr and Pb should be regarded as the priority pollutants of concern in XDD. The first priority areas of concern were identified in region A with a high probability (>0.95) of risk in excess of the accepted level for Cr and Pb. The areas with probability of risk between 0.85 and 0.95 in region A were identified to be the secondary priority areas for Cr and Pb. The modified method was proved useful due to its improvement on previous studies and calculating a more realistic human health risk, thus reducing the probability of excessive environmental management.

  15. [Risk Assessment of Heavy Metal Contamination in Farmland Soil in Du'an Autonomous County of Guangxi Zhuang Autonomous Region, China].

    PubMed

    Wu, Yang; Yang, Jun; Zhou, Xiao-yong; Lei, Mei; Gao, Ding; Qiao, Peng-wei; Du, Guo-dong

    2015-08-01

    For a comprehensive understanding of the pollution characteristics and ecological risk of heavy metals of farmland soil in Du'an Autonomous County of Guangxi Zhuang Autonomous Region, China, this study evaluated the cadmium (Cd), arsenic (As), nickel (Ni), zinc (Zn), chromium (Cr), antimony (Sb), copper (Cu) and lead ( Pb) pollution situation using the single factor index, the Nemerow pollution index and the Hakanson ecological risk index. The results showed that heavy-metal pollution of farmland soil in Du'an County was serious. 74.6% of the soil samples had heavy metals concentrations higher than the Grade II of National Soil Environmental Quality Standard (GB 15618-1995). The over standard rates of Cd, As, Ni, Zn, Cr, Sb, Cu, Pb were 70.6%, 42.9%, 34.9%, 19.8%, 19.6%, 2.94%, 1.59%, 0.79%, respectively. Cd and As were the main contaminants in Du'an County, the pollution was far more serious than those of the national and Guangxi Zhuang Autonomous Region. In terms of the ecological risk, heavy metals of farmland soil in Du'an County showed a "middle" ecological risk, with Cd accounting for 88% of the total ecological risk. The north-west of Jiudu Town and the zone between Bao'an Town and Dongmiao Town were two areas with high ecological risk in Du'an County. The contamination of farmland soils in Du'an County was caused by two main sources, whereas the pollution of As and Sb of farmland soils near Diaojiang River was mainly caused by the upstream mining industry.

  16. Identifying and managing risk factors for salt-affected soils: a case study in a semi-arid region in China.

    PubMed

    Zhou, De; Xu, Jianchun; Wang, Li; Lin, Zhulu; Liu, Liming

    2015-07-01

    Soil salinization and desalinization are complex processes caused by natural conditions and human-induced risk factors. Conventional salinity risk identification and management methods have limitations in spatial data analysis and often provide an inadequate description of the problem. The objectives of this study were to identify controllable risk factors, to provide response measures, and to design management strategies for salt-affected soils. We proposed to integrate spatial autoregressive (SAR) model, multi-attribute decision making (MADM), and analytic hierarchy process (AHP) for these purposes. Our proposed method was demonstrated through a case study of managing soil salinization in a semi-arid region in China. The results clearly indicated that the SAR model is superior to the OLS model in terms of risk factor identification. These factors include groundwater salinity, paddy area, corn area, aquaculture (i.e., ponds and lakes) area, distance to drainage ditches and irrigation channels, organic fertilizer input, and cropping index, among which the factors related to human land use activities are dominant risk factors that drive the soil salinization processes. We also showed that ecological irrigation and sustainable land use are acceptable strategies for soil salinity management.

  17. An assessment and quantitative uncertainty analysis of the health risks to workers exposed to chromium contaminated soils.

    PubMed

    Paustenbach, D J; Meyer, D M; Sheehan, P J; Lau, V

    1991-05-01

    Millions of tons of chromite-ore processing residue have been used as fill in various locations in Northern New Jersey and elsewhere in the United States. The primary toxicants in the residue are trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)]. The hazard posed by Cr(III) is negligible due to its low acute and chronic toxicity. In contrast, Cr(VI) is considered a inhalation human carcinogen at high concentrations. Approximately 40 commercial and industrial properties in Northern New Jersey have been identified as containing chromite ore processing residue in the soil. One site, a partially-paved trucking terminal, was evaluated in this assessment. The arithmetic mean and geometric mean concentrations of total chromium in soil were 977 and 359 mg/kg, respectively. The data were log-normal distributed. The arithmetic mean and geometric mean concentrations of Cr(VI) in surface soil were 37.6 and 3.1 mg/kg, respectively. The data could not be fit to a standard distribution, likely due to the large number of samples with concentrations below the method detection limit (65%). Dose was calculated for each exposure route using a Monte Carlo statistical simulation. Probability distributions of most exposure parameters were incorporated into the analyses to predict the range and probability of uptake for persons in the exposed population. The exposure parameter distributions included in this assessment are: the concentrations of Cr(VI) and total chromium in air and soil, fraction of the year when suspension of airborne soil particulates is likely to occur due to weather conditions, fraction of Cr(VI) in air which is respirable (less than 10 microns), soil loading rate on skin, occupational tenure, and body weight. The techniques used in this assessment are applicable for evaluating the human health risks posed by most industrial sites having contaminated soil. The estimated average daily dose (ADD) via ingestion and dermal absorption for the individual exposed

  18. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China.

    PubMed

    Wang, Yanchun; Qiao, Min; Liu, Yunxia; Zhu, Yongguan

    2012-01-01

    The possible health risks of heavy metals contamination to local population through food chain were evaluated in Beijing and Tianjin city cluster, China, where have a long history of sewage irrigation. The transfer factors (TF) for heavy metals from soil to vegetables for six elements including Cu, Zn, Pb, Cr, As and Cd were calculated and the pollution load indexes (PLI) were also assessed. Results indicate that only Cd exceeded the maximum acceptable limit in these sites. So far, the heavy metal concentrations in soils and vegetables were all below the permissible limits set by the Ministry of Environmental Protection of China and World Health Organization. The transfer factors of six heavy metals showed the trend as Cd > Zn > Cu > Pb > As > Cr, which were dependent on the vegetable species. The estimated dietary intakes of Cu, Zn, Pb, Cr, As and Cd were far below the tolerable limits and the target hazard quotient (THQ) values were less than 1, which suggested that the health risks of heavy metals exposure through consuming vegetables were generally assumed to be safe.

  19. Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.

    PubMed

    Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S

    2016-11-01

    Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser

  20. Water, sanitation and hygiene related risk factors for soil-transmitted helminth and Giardia duodenalis infections in rural communities in Timor-Leste.

    PubMed

    Campbell, Suzy J; Nery, Susana V; D'Este, Catherine A; Gray, Darren J; McCarthy, James S; Traub, Rebecca J; Andrews, Ross M; Llewellyn, Stacey; Vallely, Andrew J; Williams, Gail M; Amaral, Salvador; Clements, Archie C A

    2016-11-01

    There is little evidence on prevalence or risk factors for soil transmitted helminth infections in Timor-Leste. This study describes the epidemiology, water, sanitation and hygiene, and socioeconomic risk factors of STH and intestinal protozoa amongst communities in Manufahi District, Timor-Leste. As part of a cluster randomised controlled trial, a baseline cross-sectional survey was conducted across 18 villages, with data from six additional villages. Stool samples were assessed for soil transmitted helminth and protozoal infections using quantitative PCR (qPCR) and questionnaires administered to collect water, sanitation and hygiene and socioeconomic data. Risk factors for infection were assessed using multivariable mixed-effects logistic regression, stratified by age group (preschool, school-aged and adult). Overall, soil transmitted helminth prevalence was 69% (95% Confidence Interval 67-71%), with Necator americanus being most common (60%; 95% Confidence Interval 58-62%) followed by Ascaris spp. (24%; 95% Confidence Interval 23-26%). Ascaris-N. americanus co-infection was common (17%; 95% Confidence Interval 15%-18%). Giardia duodenalis was the main protozoan identified (13%; 95% Confidence Interval 11-14%). Baseline water, sanitation and hygiene infrastructure and behaviours were poor. Although risk factors varied by age of participants and parasite species, risk factors for N. americanus infection included, generally, age in years, male sex, and socioeconomic quintile. Risk factors for Ascaris included age in years for children, and piped water to the yard for adults. In this first known assessment of community-based prevalence and associated risk factors in Timor-Leste, soil transmitted helminth infections were highly prevalent, indicating a need for soil transmitted helminth control. Few associations with water, sanitation and hygiene were evident, despite water, sanitation and hygiene being generally poor. In our water, sanitation and hygiene we will

  1. Toxicity of the pesticide alpha-cypermethrin to four soil nontarget invertebrates and implications for risk assessment.

    PubMed

    Hartnik, Thomas; Sverdrup, Line E; Jensen, John

    2008-06-01

    Alpha-cypermethrin, a synthetic pyrethroid, is used as an insecticide in agricultural settings and is increasingly replacing organophosphates and carbamates because of lower application rates and lower toxicity to mammals. Because very little is known about the acute and chronic toxicity of this compound for soil-living organisms, the present study investigated acute and sublethal toxicity of alpha-cypermethrin for four terrestrial invertebrate species in an agricultural soil from Norway. Bioassays with the earthworm Eisenia fetida, the potworm Enchytraeus crypticus, the springtail Folsomia candida, and the land snail Helix aspersa were performed according to slightly modified versions of Organization for Economic Cooperation and Development (Paris, France) or International Organization for Standardization (Geneva, Switzerland) guidelines and resulted in median lethal concentrations of greater than >1,000 to 31.4 mg/kg and sublethal no-observed-effect concentrations of 2.51 to 82 mg/kg. A high acute to chronic ratio was found, especially in the earthworms. Interspecies differences in sensitivity may be explained by differences in exposure and differences in metabolization rate. When based on measured pore-water concentrations, terrestrial species overall appear to be approximately one order of magnitude less sensitive than aquatic species. Effect assessments conducted according to European guideline for risk assessment of pesticides reveal that assessments based on acute toxicity tests are not always conservative enough to determine environmentally safe concentrations in soil. Mandatory incorporation of sublethal toxicity data will ensure that in regions with temperate climate, the effects of pesticides on populations of soil-living organisms are unlikely.

  2. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments

    SciTech Connect

    Walia, S.; Khan, A.; Rosenthal, N. )

    1990-01-01

    Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community.

  3. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests.

    PubMed

    Marchand, Charlotte; Hogland, William; Kaczala, Fabio; Jani, Yahya; Marchand, Lilian; Augustsson, Anna; Hijri, Mohamed

    2016-11-01

    Several Gentle Remediation Options (GRO), e.g., plant-based options (phytoremediation), singly and combined with soil amendments, can be simultaneously efficient for degrading organic pollutants and either stabilizing or extracting trace elements (TEs). Here, a 5-month greenhouse trial was performed to test the efficiency of Medicago sativa L., singly and combined with a compost addition (30% w/w), to treat soils contaminated by petroleum hydrocarbons (PHC), Co and Pb collected at an auto scrap yard. After 5 months, total soil Pb significantly decreased in the compost-amended soil planted with M. sativa, but not total soil Co. Compost incorporation into the soil promoted PHC degradation, M. sativa growth and survival, and shoot Pb concentrations [3.8 mg kg(-1) dry weight (DW)]. Residual risk assessment after the phytoremediation trial showed a positive effect of compost amendment on plant growth and earthworm development. The O2 uptake by soil microorganisms was lower in the compost-amended soil, suggesting a decrease in microbial activity. This study underlined the benefits of the phytoremediation option based on M. sativa cultivation and compost amendment for remediating PHC- and Pb-contaminated soils.

  4. Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano J.; Buschiazzo, Daniel E.

    2015-03-01

    The effectiveness of wind erosion control by soil surface conditions and crop and weed canopy has been well studied in wind tunnel experiments. The aim of this study is to assess the combined effects of these variables under field conditions. Soil surface conditions, crop and weed coverage, plant residue, and non-erodible aggregates (NEA) were measured in the field between the fallow start and the growth period of sunflower (Helianthus annuus) and corn (Zea mays). Both crops were planted on a sandy-loam Entic Haplustoll with conventional-(CT), vertical-(VT) and no-till (NT) tillage systems. Wind erosion was estimated by means of the spreadsheet version the Revised Wind Erosion Equation and the soil coverage was measured each 15 days. Results indicated that wind erosion was mostly negligible in NT, exceeding the tolerable levels (estimated between 300 and 1400 kg ha-1 year-1 by Verheijen et al. (2009)) only in an year with high climatic erosivity. Wind erosion exceeded the tolerable levels in most cases in CT and VT, reaching values of 17,400 kg ha-1. Wind erosion was 2-10 times higher after planting of both crops than during fallows. During the fallows, the soil was mostly well covered with plant residues and NEA in CT and VT and with residues and weeds in NT. High wind erosion amounts occurring 30 days after planting in all tillage systems were produced by the destruction of coarse aggregates and the burying of plant residues during planting operations and rains. Differences in soil protection after planting were given by residues of previous crops and growing weeds. The growth of weeds 2-4 weeks after crop planting contributed to reduce wind erosion without impacting in crops yields. An accurate weeds management in semiarid lands can contribute significantly to control wind erosion. More field studies are needed in order to develop management strategies to reduce wind erosion.

  5. Assessment of Potential Risks of Dietary RNAi to a Soil Micro-arthropod, Sinella curviseta Brook (Collembola: Entomobryidae)

    PubMed Central

    Pan, Huipeng; Xu, Linghua; Noland, Jeffrey E.; Li, Hu; Siegfried, Blair D.; Zhou, Xuguo

    2016-01-01

    RNAi-based genetically engineered (GE) crops for the management of insect pests are likely to be commercialized by the end of this decade. Without a workable framework for conducting the ecological risk assessment (ERA) and a standardized ERA protocol, however, the utility of RNAi transgenic crops in pest management remains uncertain. The overall goal of this study is to assess the risks of RNAi-based GE crops on a non-target soil micro-arthropod, Sinella curviseta, which could be exposed to plant-protected dsRNAs deposited in crop residues. Based on the preliminary research, we hypothesized that insecticidal dsRNAs targeting at the western corn rootworm, Diabrotica virgifera virgifera, a billion-dollar insect pest, has no adverse impacts on S. curviseta, a soil decomposer. Following a tiered approach, we tested this risk hypothesis using a well-designed dietary RNAi toxicity assay. To create the worst-case scenario, the full-length cDNA of v-ATPase subunit A from S. curviseta were cloned and a 400 bp fragment representing the highest sequence similarity between target pest and non-target arthropods was selected as the template to synthesize insecticidal dsRNAs. Specifically, 10-days-old S. curviseta larvae were subjected to artificial diets containing v-ATPase A dsRNAs from both D. v. virgifera (dsDVV) and S. curviseta (dsSC), respectively, a dsRNA control, β-glucuronidase, from plant (dsGUS), and a vehicle control, H2O. The endpoint measurements included gene expression profiles, survival, and life history traits, such as developmental time, fecundity, hatching rate, and body length. Although, S. curviseta larvae developed significantly faster under the treatments of dsDVV and dsSC than the vehicle control, the combined results from both temporal RNAi effect study and dietary RNAi toxicity assay support the risk hypothesis, suggesting that the impacts of ingested arthropod-active dsRNAs on this representative soil decomposer are negligible. PMID:27471512

  6. Assessment of Potential Risks of Dietary RNAi to a Soil Micro-arthropod, Sinella curviseta Brook (Collembola: Entomobryidae).

    PubMed

    Pan, Huipeng; Xu, Linghua; Noland, Jeffrey E; Li, Hu; Siegfried, Blair D; Zhou, Xuguo

    2016-01-01

    RNAi-based genetically engineered (GE) crops for the management of insect pests are likely to be commercialized by the end of this decade. Without a workable framework for conducting the ecological risk assessment (ERA) and a standardized ERA protocol, however, the utility of RNAi transgenic crops in pest management remains uncertain. The overall goal of this study is to assess the risks of RNAi-based GE crops on a non-target soil micro-arthropod, Sinella curviseta, which could be exposed to plant-protected dsRNAs deposited in crop residues. Based on the preliminary research, we hypothesized that insecticidal dsRNAs targeting at the western corn rootworm, Diabrotica virgifera virgifera, a billion-dollar insect pest, has no adverse impacts on S. curviseta, a soil decomposer. Following a tiered approach, we tested this risk hypothesis using a well-designed dietary RNAi toxicity assay. To create the worst-case scenario, the full-length cDNA of v-ATPase subunit A from S. curviseta were cloned and a 400 bp fragment representing the highest sequence similarity between target pest and non-target arthropods was selected as the template to synthesize insecticidal dsRNAs. Specifically, 10-days-old S. curviseta larvae were subjected to artificial diets containing v-ATPase A dsRNAs from both D. v. virgifera (dsDVV) and S. curviseta (dsSC), respectively, a dsRNA control, β-glucuronidase, from plant (dsGUS), and a vehicle control, H2O. The endpoint measurements included gene expression profiles, survival, and life history traits, such as developmental time, fecundity, hatching rate, and body length. Although, S. curviseta larvae developed significantly faster under the treatments of dsDVV and dsSC than the vehicle control, the combined results from both temporal RNAi effect study and dietary RNAi toxicity assay support the risk hypothesis, suggesting that the impacts of ingested arthropod-active dsRNAs on this representative soil decomposer are negligible.

  7. Distribution and health risk assessment of organochlorine pesticides (OCPs) in industrial site soils: a case study of urban renewal in Beijing, China.

    PubMed

    Yang, Wenrui; Wang, Rusong; Zhou, Chuanbin; Li, Feng

    2009-01-01

    Abstract A field survey was conducted in a contaminated industrial site of southern Beijing, China to investigate the contents and distribution of the organochlorine pesticides (alpha-, beta-, gamma-, delta-HCH, p,p'-DDT, p,p'-DDE, p,p'-DDD and o,p'-DDT) in the profiles of soil, and a health risk assessment was carried out with CalTOX multimedia exposure model. Results showed that mean concentrations of total hexachlorocyclohexane isomers (HCHs) and total dichlorodiphenyltrichloroethane isomers (DDXs) in soils were in the range of 13.20-148.71 mg/kg, and 3.02-67.43 mg/kg, respectively. Organochlorine pesticides (OCPs) content peaked in the surface and declined in soil profile with depth. The amounts of HCHs in three profiles of soil were larger than DDXs. Composition analysis indicated that there was a trend of degradation of OCPs in the site, but the mean of HCHs and DDXs concentration were over the state warning standard limit (HCHs, 0.50 mg/kg; DDXs, 0.50 mg/kg). According to current land use development, health risk assessment with CalTOX and Monte Carlo analysis showed that health risks mainly came from two exposure pathways: dermal uptake and inhalation, and the total risk values all exceeded the general acceptable health risk value (10-6). The sensitivity analysis indicated that five parameters significantly contributed to total risk.

  8. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China.

    PubMed

    Zhang, Haidong; Huang, Biao; Dong, Linlin; Hu, Wenyou; Akhtar, Mohammad Saleem; Qu, Mingkai

    2017-03-01

    Greenhouse vegetable cultivation with substantive manure and fertilizer input on soils with an elevated geochemical background can accumulate trace metals in soils and plants leading to human health risks. Studies on trace metal accumulation over a land use shift duration in an elevated geochemical background scenario are lacking. Accumulation characteristics of seven trace metals in greenhouse soil and edible plants were evaluated along with an assessment of the health risk to the consumers. A total of 118 greenhouse surface soils (0-20cm) and 30 vegetables were collected from Kunming City, Yunnan Province, southwestern China, and analyzed for total Cd, Pb, Cu, Zn, As, Hg, and Cr content by ICP-MS and AFS. The trace metals were ordered Cu>Cd>Hg>Zn>Pb>As>Cr in greenhouse soils accumulation level, and the geo-accumulation index suggested the soil more severely polluted with Cd, Cu, Hg and Zn. The greenhouse and open-field soils had significant difference in Cd, Cr and Zn. The duration of shift from paddy to greenhouse land-use significantly influenced trace metal accumulation with a dramatic change during five to ten year greenhouse land-use, and continuous increase of Cd and Hg. A spatial pattern from north to south for Cd and Hg and a zonal pattern for Cu and Zn were found. An anthropogenic source primarily caused trace metal accumulation, where the principal component analysis/multiple linear regression indicated a contribution 61.2%. While the assessment showed no potential risk for children and adults, the hazard health risks index was greater than one for adolescents. The extended duration of land use as greenhouses caused the trace metal accumulation, rotation in land use should be promoted to reduce the health risks.

  9. Evaluation of soil contamination risk under climate change scenarios using Pantanal model in a Mediterranean area

    NASA Astrophysics Data System (ADS)

    Kotb Abd-Elmabod, Sameh; Anaya-Romero, María; Jordán, Antonio; Muñoz-Rojas, Miriam; de la Rosa, Diego

    2013-04-01

    In this research, contamination vulnerability of Mediterranean soils was evaluated, using Andalusia (southern Spain; 87,600 km2) as a pilot area. The following components of the agro-ecological decision support system MicroLEIS DSS have been used: 1) SDBm, soil profile database, 2) CDBm, agroclimate database 3) MDBm, database of agricultural management, and 4) Pantanal model, specific assessment model for the vulnerability of soil contamination focus on nitrogen, phosphorous, heavy metals and pesticides. After the application of the model, results may be grouped into five vulnerability classes: V1-none, V2-low, V3-moderate, V4-high and V5-extreme for each specific contaminant. Physical and chemical data, and morphological description of 62 selected soil profiles from the study area were used in this study. Soil profiles were classified at sub-group level of USDA Soil Taxonomy, resulting in 37 units included in orders Inceptisols (26,9%), Entisols (21.2%), Alfisols (19.8%), Vertisols (17.9%), Mollisols (7.2%), Ultisols (4.3%) and Aridisols (2.8%). The CDBm database contains monthly average values of climate variables: mean temperature, maximum and minimum monthly rainfall, number of days of rain and humidity, collected during a consecutive period of 30 years that represent current climate scenario, and future climate scenarios (2040, 2070 and 2100). These scenarios have been calculated using climate change variation values from the State Meteorological Agency (AEMET, 2011). The MDBm contains information about agricultural use and management of wheat crop. The Pantanal expert model was applied to each soil-unit. Results showed that 9.0%, 11.6%, 29.5% and 50.8% of the total studied area was classified as V1, V2, V3, and V4, respectively, for pesticide contamination under the current climatic scenario. Under the future climate change scenario, 7.7%, 10.0%, 17.7% and 64.6% of the total studied area was classified as V1, V2, V3 and V4, respectively, for pesticide

  10. Assessing the risk of phosphorus transfer to high ecological status rivers: Integration of nutrient management with soil geochemical and hydrological conditions.

    PubMed

    Roberts, William M; Gonzalez-Jimenez, Jose L; Doody, Donnacha G; Jordan, Philip; Daly, Karen

    2017-07-01

    Agriculture has been implicated in the loss of pristine conditions and ecology at river sites classified as at 'high ecological status' across Europe. Although the exact causes remain unclear, diffuse phosphorus (P) transfer warrants consideration because of its wider importance for the ecological quality of rivers. This study assessed the risk of P loss at field scale from farms under contrasting soil conditions within three case-study catchments upstream of near-pristine river sites. Data from 39 farms showed P surpluses were common on extensive farm enterprises despite a lower P requirement and level of intensity. At field scale, data from 520 fields showed that Histic topsoils with elevated organic matter contents had low P reserves due to poor sorption capacities, and received applications of P in excess of recommended rates. On this soil type 67% of fields recorded a field P surplus of between 1 and 31kgha(-1), accounting for 46% of fields surveyed across 10 farms in a pressured high status catchment. A P risk assessment combined nutrient management, soil biogeochemical and hydrological data at field scale, across 3 catchments and the relative risks of P transfer were highest when fertilizer quantities that exceeded current recommendations on soils with a high risk of mobilization and high risk of transport as indicated by topographic wetness index values. This situation occurred on 21% of fields surveyed in the least intensively managed catchment with no on-farm nutrient management planning and soil testing. In contrast, the two intensively managed catchments presented a risk of P transfer in only 3% and 1% of fields surveyed across 29 farms. Future agri-environmental measures should be administered at field scale, not farm scale, and based on soil analysis that is inclusive of OM values on a field-by-field basis.

  11. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk

    USGS Publications Warehouse

    Diawara, D.M.; Litt, J.S.; Unis, D.; Alfonso, N.; Martinez, L.A.; Crock, J.G.; Smith, D.B.; Carsella, J.

    2006-01-01

    Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo's communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo's residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities. ?? Springer 2006.

  12. A framework for assessing risk reduction due to DNAPL mass removal from low permeability soils

    SciTech Connect

    Freeze, R.A.; McWhorter, D.B.

    1996-08-01

    Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a framework for quantifying the degree to which risk is reduced as mass is removed from shallow, saturated, low-permeability, dual-porosity, DNAPL source zones. Risk is defined in terms of meeting an alternate concentration level (ACL) at a compliance well in an aquifer underlying the source zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downstream water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phases (dissolved, sorbed, free product). Due to the uncertainties in currently-available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making risk-reduction calculations for specific technologies. Despite the qualitative nature of the exercise, results imply that very high mass-removal efficiencies are required to achieve significant long-term risk reduction with technology, applications of finite duration. 17 refs., 7 figs., 6 tabs.

  13. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in the highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Molla, Tegegne; Sisheber, Biniam

    2017-01-01

    Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha-1 yr-1), greater than the maximum tolerable soil loss (18 t ha-1 yr-1). The highest soil loss (456 t ha-1 yr-1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga

  14. Terraced landscape: from an old best practice to a rising land abandoned-related soil erosion risk

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Preti, Federico; Romano, Nunzio

    2013-04-01

    Among the most evident landscape signatures of human fingerprint during the Holocene, the terraces related to agricultural activities deserve a great importance. Landscape terracing probably represents one of the oldest best practice primarily for crop production, but also for mitigating soil erosion and stabilizing hillslopes in landforms dominated by steep slopes. This technique is widely used in various parts of the world even under different environmental conditions. In some zones, terraced landscapes, because of their history and locations, can also be considered a historical heritage and a sort of "cultural landscape" to preserve, an absolutely value for tourism. To preserve their original role of soil erosion prevention, terraces should be properly designed built according to specific and sustainable engineering rules. Then, their maintenance is the most critical issue to deal with. It is well known from literature that terraced landscapes subject to abandonment would result in an increasing of terrace failure and related land degradation. If not maintained, a progressively increasing of gully erosion affects the structure of the walls. The results of this process is the increasing of connectivity and runoff. During the last few years and partly because of changing in the society perspective and migration toward metropolitan areas, some Countries have been affected by a serious and wider land abandonment with an increasing of soil erosion and derived landslide risk. Italy is one example. In this work, we consider three typical case studies of a terraced landscape where the lack of maintenance characterizing the last few years, increased the landslide risk with several problems to the population. The first case study is located along the renowed "Amalfi Coast" (a portion of land located near Salerno, southern Italy), the second is placed in the north of Toscana (a region located in Central Italy), and the third one along the so-called "Cinque Terre" (a region

  15. Selection of focal earthworm species as non-target soil organisms for environmental risk assessment of genetically modified plants.

    PubMed

    van Capelle, Christine; Schrader, Stefan; Arpaia, Salvatore

    2016-04-01

    By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and

  16. Concentrations, Source and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Soils from Midway Atoll, North Pacific Ocean

    PubMed Central

    Yang, Yuyi; Woodward, Lee Ann; Li, Qing X.; Wang, Jun

    2014-01-01

    This study was designed to determine concentrations of polycyclic aromatic hydrocarbons (PAHs) in soil samples collected from Midway Atoll and evaluate their potential risks to human health. The total concentrations of 16 PAHs ranged from 3.55 to 3200 µg kg−1 with a mean concentration of 198 µg kg−1. Higher molecular weight PAHs (4–6 ring PAHs) dominated the PAH profiles, accounting for 83.3% of total PAH mass. PAH diagnostic ratio analysis indicated that primary sources of PAHs in Midway Atoll could be combustion. The benzo[a]pyrene equivalent concentration (BaPeq) in most of the study area (86.5%) was less than 40 µg kg−1 BaPeq and total incremental lifetime cancer risks of PAHs ranged from 1.00×10−10 to 9.20×10−6 with a median value of 1.24×10−7, indicating a minor carcinogenic risk of PAHs in Midway Atoll. PMID:24466100

  17. Assessing the potential for intrinsic recovery in a Collembola two-generation study: possible implementation in a tiered soil risk assessment approach for plant protection products.

    PubMed

    Ernst, Gregor; Kabouw, Patrick; Barth, Markus; Marx, Michael T; Frommholz, Ursula; Royer, Stefanie; Friedrich, Sabine

    2016-01-01

    Collembola are soil dwelling organisms that provide important ecosystem services within soils. To increase realism in evaluating potential effects of plant protection products a Collembola two-generation study was developed. This test assesses the potential for recovery of Collembola when exposed to plant protection products. Juvenile individuals of Folsomia candida (Willem, Ann Soc Entomol Belg 46:275-283, 1902) which hatched under conditions of exposure to a test substance in a modified OECD 232 bioassay were introduced into a second consecutive bioassay containing the same test substance aged in soil. This test system determines whether a population which was initially impacted by a substance in a 1st bioassay shows normal reproduction or survival in a 2nd bioassay after aging of the test substance in soil. An intermediate period for juvenile growth is included between the 1st and 2nd bioassay in order to reduce the control treatment variability in reproduction and mortality to fulfill the validity criteria according to the OECD 232 guideline. The Collembola two-generation study is able to differentiate between substances showing either a potential long-term risk or comprising a low risk. Comparing the results of this two generation study with data from semi-field or field studies indicates a high degree of conservatism when this test is considered within a tiered risk assessment scheme. This approach represents a valuable tool which makes the risk assessment more efficient by providing an alternative refinement option for highly conservative tier 1 Collembola risk assessment.

  18. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China.

    PubMed

    Li, Ning; Kang, Yuan; Pan, Weijian; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen

    2015-07-15

    There is limited study focusing on the bioaccumulation of heavy metals in vegetables and human exposure to bioaccessible heavy metals in soil. In the present study, heavy metal concentrations (Cr, Ni, Cu, Pb and Cd) were measured in five types of vegetables, soil, root, and settled air particle samples from two sites (at a domestic waste incinerator and at 20km away from the incinerator) in Guangzhou, South China. Heavy metal concentrations in soil were greater than those in aerial parts of vegetables and roots, which indicated that vegetables bioaccumulated low amount of heavy metals from soil. The similar pattern of heavy metal (Cr, Cd) was found in the settled air particle samples and aerial parts of vegetables from two sites, which may suggest that foliar uptake may be an important pathway of heavy metal from the environment to vegetables. The highest levels of heavy metals were found in leaf lettuce (125.52μg/g, dry weight) and bitter lettuce (71.2μg/g) for sites A and B, respectively, followed by bitter lettuce and leaf lettuce for sites A and B, respectively. Swamp morning glory accumulated the lowest amount of heavy metals (81.02μg/g for site A and 53.2μg/g for site B) at both sites. The bioaccessibility of heavy metals in soil ranged from Cr (2%) to Cu (71.78%). Risk assessment showed that Cd and Pb in soil samples resulted in the highest non-cancer risk and Cd would result in unacceptable cancer risk for children and risk. The non-dietary intake of soil was the most important exposure pathway, when the bioaccessibility of heavy metals was taken into account.

  19. Hazard perception, risk perception, and the need for decontamination by residents exposed to soil pollution: the role of sustainability and the limits of expert knowledge.

    PubMed

    Vandermoere, Frédéric

    2008-04-01

    This case study examines the hazard and risk perception and the need for decontamination according to people exposed to soil pollution. Using an ecological-symbolic approach (ESA), a multidisciplinary model is developed that draws upon psychological and sociological perspectives on risk perception and includes ecological variables by using data from experts' risk assessments. The results show that hazard perception is best predicted by objective knowledge, subjective knowledge, estimated knowledge of experts, and the assessed risks. However, experts' risk assessments induce an increase in hazard perception only when residents know the urgency of decontamination. Risk perception is best predicted by trust in the risk management. Additionally, need for decontamination relates to hazard perception, risk perception, estimated knowledge of experts, and thoughts about sustainability. In contrast to the knowledge deficit model, objective and subjective knowledge did not significantly relate to risk perception and need for decontamination. The results suggest that residents can make a distinction between hazards in terms of the seriousness of contamination on the one hand, and human health risks on the other hand. Moreover, next to the importance of social determinants of environmental risk perception, this study shows that the output of experts' risk assessments-or the objective risks-can create a hazard awareness rather than an alarming risk consciousness, despite residents' distrust of scientific knowledge.

  20. Children's Blood Lead Seasonality in Flint, Michigan (USA), and Soil-Sourced Lead Hazard Risks.

    PubMed

    Laidlaw, Mark A S; Filippelli, Gabriel M; Sadler, Richard C; Gonzales, Christopher R; Ball, Andrew S; Mielke, Howard W

    2016-03-25

    In Flint; MI; USA; a public health crisis resulted from the switching of the water supply from Lake Huron to a more corrosive source from the Flint River in April 2014; which caused lead to leach from water lines. Between 2010 and 2015; Flint area children's average blood lead patterns display consistent peaks in the third quarter of the year. The third quarter bl