Science.gov

Sample records for pcr anidada para

  1. Mix-infection of S. Typhi and ParaTyphi A in Typhoid Fever and Chronic Typhoid Carriers: A Nested PCR Based Study in North India

    PubMed Central

    Pratap, Chandra Bhan; Kumar, Gopal; Patel, Saurabh Kumar; Shukla, Vijay K; Kumar, Kailash; Singh, Tej Bali

    2014-01-01

    Introduction: Enteric fever is a systemic disease caused by Salmonella organism such as serotypes Typhi and ParaTyphi A, B, C. Salmonella ParaTyphi A contributes more than 50% of all the enteric fever cases and it has recently been projected as an emerging pathogen. Materials and Methods: The present study was aimed to detect Salmonella Typhi and ParaTyphi A in urine, blood and stool specimens collected from cases of enteric fever (110), chronic typhoid carriers (46) and healthy controls (75) to explore the possibility of mixed infection by nested PCR. A new nested PCR primer was designed targeting putative fimbrial protein (stkG) gene which is one of the fimbrial gene families to Salmonella ParaTyphi A and for S. Typhi already reported primers targeting flagellin (fliC) gene. Results: Large volume of urine specimens (15 ml) was found to be the best for detection of Salmonella serotypes. The urine sample was found to have mixed-infection by both the serotypes in 40.9% of the cases but lower in blood (27.3%) and stool (13.6%). Conclusion: The present study concludes that occurrence of mixed infection may be quite frequent in typhoid and chronic typhoid carriers’ individuals, although the reported recent rise in ParaTyphi A incidence may not be real. PMID:25584217

  2. Mix-infection of S. Typhi and ParaTyphi A in Typhoid Fever and Chronic Typhoid Carriers: A Nested PCR Based Study in North India.

    PubMed

    Pratap, Chandra Bhan; Kumar, Gopal; Patel, Saurabh Kumar; Shukla, Vijay K; Kumar, Kailash; Singh, Tej Bali; Nath, Gopal

    2014-11-01

    Enteric fever is a systemic disease caused by Salmonella organism such as serotypes Typhi and ParaTyphi A, B, C. Salmonella ParaTyphi A contributes more than 50% of all the enteric fever cases and it has recently been projected as an emerging pathogen. The present study was aimed to detect Salmonella Typhi and ParaTyphi A in urine, blood and stool specimens collected from cases of enteric fever (110), chronic typhoid carriers (46) and healthy controls (75) to explore the possibility of mixed infection by nested PCR. A new nested PCR primer was designed targeting putative fimbrial protein (stkG) gene which is one of the fimbrial gene families to Salmonella ParaTyphi A and for S. Typhi already reported primers targeting flagellin (fliC) gene. Large volume of urine specimens (15 ml) was found to be the best for detection of Salmonella serotypes. The urine sample was found to have mixed-infection by both the serotypes in 40.9% of the cases but lower in blood (27.3%) and stool (13.6%). The present study concludes that occurrence of mixed infection may be quite frequent in typhoid and chronic typhoid carriers' individuals, although the reported recent rise in ParaTyphi A incidence may not be real.

  3. Virtual PCR

    SciTech Connect

    Gardner, S N; Clague, D S; Vandersall, J A; Hon, G; Williams, P L

    2006-02-23

    The polymerase chain reaction (PCR) stands among the keystone technologies for analysis of biological sequence data. PCR is used to amplify DNA, to generate many copies from as little as a single template. This is essential, for example, in processing forensic DNA samples, pathogen detection in clinical or biothreat surveillance applications, and medical genotyping for diagnosis and treatment of disease. It is used in virtually every laboratory doing molecular, cellular, genetic, ecologic, forensic, or medical research. Despite its ubiquity, we lack the precise predictive capability that would enable detailed optimization of PCR reaction dynamics. In this LDRD, we proposed to develop Virtual PCR (VPCR) software, a computational method to model the kinetic, thermodynamic, and biological processes of PCR reactions. Given a successful completion, these tools will allow us to predict both the sequences and concentrations of all species that are amplified during PCR. The ability to answer the following questions will allow us both to optimize the PCR process and interpret the PCR results: What products are amplified when sequence mixtures are present, containing multiple, closely related targets and multiplexed primers, which may hybridize with sequence mismatches? What are the effects of time, temperature, and DNA concentrations on the concentrations of products? A better understanding of these issues will improve the design and interpretation of PCR reactions. The status of the VPCR project after 1.5 years of funding is consistent with the goals of the overall project which was scoped for 3 years of funding. At half way through the projected timeline of the project we have an early beta version of the VPCR code. We have begun investigating means to improve the robustness of the code, performed preliminary experiments to test the code and begun drafting manuscripts for publication. Although an experimental protocol for testing the code was developed, the preliminary

  4. PCR thermocycler

    DOEpatents

    Benett, William J.; Richards, James B.

    2003-01-01

    A sleeve-type silicon polymerase chain reaction (PCR) chamber or thermocycler having improved thermal performance. The silicon sleeve reaction chamber is improved in thermal performance by etched features therein that reduce thermal mass and increase the surface area of the sleeve for cooling. This improved thermal performance of the thermocycler enables an increase in speed and efficiency of the reaction chamber. The improvement is accomplished by providing grooves in the faces of the sleeve and a series of grooves on the interior surfaces that connect with grooves on the faces of the sleeve. The grooves can be anisotropically etched in the silicon sleeve simultaneously with formation of the chamber.

  5. PCR thermocycler

    DOEpatents

    Benett, William J.; Richards, James B.

    2005-05-17

    A sleeve-type silicon polymerase chain reaction (PCR) chamber or thermocycler having improved thermal performance. The silicon sleeve reaction chamber is improved in thermal performance by etched features therein that reduce thermal mass and increase the surface area of the sleeve for cooling. This improved thermal performance of the thermocycler enables an increase in speed and efficiency of the reaction chamber. The improvement is accomplished by providing grooves in the faces of the sleeve and a series of grooves on the interior surfaces that connect with grooves on the faces of the sleeve. The grooves can be anisotropically etched in the silicon sleeve simultaneously with formation of the chamber.

  6. Sex Determination Using PCR

    ERIC Educational Resources Information Center

    Kima, Peter E.; Rasche, Madeline E.

    2004-01-01

    PCR has revolutionized many aspects of biochemistry and molecular biology research. In the following exercise, students learn PCR by isolating their own DNA, amplifying specific segments of the X and Y chromosomes, and estimating the sizes of the PCR products using agarose gel electrophoresis. Based on the pattern of PCR products, students can…

  7. Sex Determination Using PCR

    ERIC Educational Resources Information Center

    Kima, Peter E.; Rasche, Madeline E.

    2004-01-01

    PCR has revolutionized many aspects of biochemistry and molecular biology research. In the following exercise, students learn PCR by isolating their own DNA, amplifying specific segments of the X and Y chromosomes, and estimating the sizes of the PCR products using agarose gel electrophoresis. Based on the pattern of PCR products, students can…

  8. CODEHOP PCR and CODEHOP PCR primer design.

    PubMed

    Staheli, Jeannette P; Boyce, Richard; Kovarik, Dina; Rose, Timothy M

    2011-01-01

    While PCR primer design for the amplification of known sequences is usually quite straightforward, the design, and successful application of primers aimed at the detection of as yet unknown genes is often not. The search for genes that are presumed to be distantly related to a known gene sequence, such as homologous genes in different species, paralogs in the same genome, or novel pathogens in diverse hosts, often turns into the proverbial search for the needle in the haystack. PCR-based methods commonly used to address this issue involve the use of either consensus primers or degenerate primers, both of which have significant shortcomings regarding sensitivity and specificity. We have developed a novel primer design approach that diminishes these shortcomings and instead takes advantage of the strengths of both consensus and degenerate primer designs, by combining the two concepts into a Consensus-Degenerate Hybrid Oligonucleotide Primer (CODEHOP) approach. CODEHOP PCR primers contain a relatively short degenerate 3' core and a 5' nondegenerate clamp. The 3' degenerate core consists of a pool of primers containing all possible codons for a 3-4 aminoacid motif that is highly conserved in multiply aligned sequences from known members of a protein family. Each primer in the pool also contains a single 5' nondegenerate nucleotide sequence derived from a codon consensus across the aligned aminoacid sequences flanking the conserved motif. During the initial PCR amplification cycles, the degenerate core is responsible for specific binding to sequences encoding the conserved aminoacid motif. The longer consensus clamp region serves to stabilize the primer and allows the participation of all primers in the pool in the efficient amplification of products during later PCR cycles. We have developed an interactive web site and algorithm (iCODEHOP) for designing CODEHOP PCR primers from multiply aligned protein sequences, which is freely available online. Here, we describe the

  9. PCR und Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Konrad, Regina; Busch, Ulrich

    Die vielfältigen Anwendungsmöglichkeiten der Polymerasekettenreaktion (polymerase chain reaction, PCR) machen sie zu einer der wichtigsten und am häufigsten eingesetzten Methoden in der molekularbiologischen Forschung und Diagnostik. Für diese Technologie wurde der Erfinder der Methode, Kary Mullis, 1993 mit dem Nobelpreis ausgezeichnet. Die PCR erlaubt einen hochsensitiven und spezifischen in-vitro-Nachweis von Desoxyribonukleinsäuren (DNA), da im Zuge der Reaktion Sequenzabschnitte gezielt vermehrt werden. Innerhalb weniger Stunden können aus einem einzigen Zielmolekül 1012 identische Moleküle entstehen [1].

  10. Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Evrard, A.; Boulle, N.; Lutfalla, G. S.

    Over the past few years there has been a considerable development of DNA amplification by polymerase chain reaction (PCR), and real-time PCR has now superseded conventional PCR techniques in many areas, e.g., the quantification of nucleic acids and genotyping. This new approach is based on the detection and quantification of a fluorescent signal proportional to the amount of amplicons generated by PCR. Real-time detection is achieved by coupling a thermocycler with a fluorimeter. This chapter discusses the general principles of quantitative real-time PCR, the different steps involved in implementing the technique, and some examples of applications in medicine. The polymerase chain reaction (PCR) provides a way of obtaining a large number of copies of a double-stranded DNA fragment of known sequence. This DNA amplification technique, developed in 1985 by K. Mullis (Cetus Corporation), saw a spectacular development over the space of a few years, revolutionising the methods used up to then in molecular biology. Indeed, PCR has many applications, such as the detection of small amounts of DNA, cloning, and quantitative analysis (assaying), each of which will be discussed further below.

  11. QUALITY CONTROLS FOR PCR

    EPA Science Inventory

    The purpose of this presentation is to present an overview of the quality control (QC) sections of a draft EPA document entitled, "Quality Assurance/Quality Control Guidance for Laboratories Performing PCR Analyses on Environmental Samples." This document has been prepared by th...

  12. QUALITY ASSURANCE FOR PCR

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) held a workshop in January 2003 on the detection of viruses in water using polymerase chain reaction (PCR)-based methods. Speakers were asked to address a series of specific questions, including whether a single standard method coul...

  13. QUALITY CONTROLS FOR PCR

    EPA Science Inventory

    The purpose of this presentation is to present an overview of the quality control (QC) sections of a draft EPA document entitled, "Quality Assurance/Quality Control Guidance for Laboratories Performing PCR Analyses on Environmental Samples." This document has been prepared by th...

  14. QUALITY ASSURANCE FOR PCR

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) held a workshop in January 2003 on the detection of viruses in water using polymerase chain reaction (PCR)-based methods. Speakers were asked to address a series of specific questions, including whether a single standard method coul...

  15. Explanatory chapter: PCR primer design.

    PubMed

    Álvarez-Fernández, Rubén

    2013-01-01

    This chapter is intended as a guide on polymerase chain reaction (PCR) primer design (for information on PCR, see General PCR and Explanatory Chapter: Troubleshooting PCR). In the next section, general guidelines will be provided, followed by a discussion on primer design for specific applications. A list of recommended software tools is shown at the end. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Pcr by Thermal Convection

    NASA Astrophysics Data System (ADS)

    Braun, Dieter

    The Polymerase Chain Reaction (PCR) allows for highly sensitive and specific amplification of DNA. It is the backbone of many genetic experiments and tests. Recently, three labs independently uncovered a novel and simple way to perform a PCR reaction. Instead of repetitive heating and cooling, a temperature gradient across the reaction vessel drives thermal convection. By convection, the reaction liquid circulates between hot and cold regions of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates into twice the amount in the cold region. The amplification progresses exponentially as the convection moves on. We review the characteristics of the different approaches and show the benefits and prospects of the method.

  17. PCR in forensic genetics.

    PubMed

    Morling, Niels

    2009-04-01

    Since the introduction in the mid-1980s of analyses of minisatellites for DNA analyses, a revolution has taken place in forensic genetics. The subsequent invention of the PCR made it possible to develop forensic genetics tools that allow both very informative routine investigations and still more and more advanced, special investigations in cases concerning crime, paternity, relationship, disaster victim identification etc. The present review gives an update on the use of DNA investigations in forensic genetics.

  18. [PCR: basics and new developments].

    PubMed

    Berchtold, M W; Hübscher, U

    1996-01-01

    Since its discovery 10 years ago PCR has been introduced for a variety of practical applications. PCR has opened new dimensions particularly in laboratory diagnostics because of its sensitivity, accuracy and speed. In spite of the availability of user friendly kits, basic knowledge is of great importance for the user especially if PCR has to be optimized for special needs or when specific problems arise. The general mechanism of the reaction and the significance of the reaction components and the PCR conditions are discussed initially. Several recent developments in PCR (new enzymes, RNA-PCR, improvements of the specificity, prevention of contamination and development of new equipment) that are critical for the user are shortly introduced. Finally, "long PCR" is discussed in order to demonstrate that even 10 years after the invention of PCR significant new breakthroughs in the PCR technology are still possible.

  19. MAMMALIAN DNA IN PCR REAGENTS

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high- cycle PCR amplification t...

  20. MAMMALIAN DNA IN PCR REAGENTS

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high- cycle PCR amplification t...

  1. [Rapid PCR authentication Lonicera japanica].

    PubMed

    Jiang, Chao; Hou, Jing-Yi; Huang, Lu-Qi; Yuan, Yuan; Chen, Min; Jin, Yan

    2014-10-01

    To simply and rapid authenticate Lonicera japanica. Rapid allele-specific PCR primer was designed base on trnL-trnF 625 G/T Single nucleotide polymorphism and the PCR reaction systems including annealing temperature was optimized; optimized results were performed to authenticate L. japanica and its 9 adulterants. When 100 x SYBR Green I was added in the PCR product of 87 degrees C initial denatured 1 min; 87 degrees C denatured 5 s, 68 degrees C annealing 5 s, 30 cycle; L. japanica visualize strong green fluorescence under 365 nm UV lamp whereas adulterants without. The results indicate rapid allele-specific PCR could authenticate L. japanica and its adulterants rapidly and simply.

  2. Neurocryptococcosis: diagnosis by PCR method.

    PubMed

    Paschoal, Regina Célia; Hirata, Mário Hiroyuki; Hirata, Rosário Crespo; Melhem, Márcia de Souza Carvalho; Dias, Amanda Latercia Tranches; Paula, Claudete Rodrigues

    2004-01-01

    Cryptococcus neoformans detection was optimized using PCR technique with the objective of application in the clinical laboratory diagnosis. The amplification area was ITS and 5,6S which encodes the ribosomal RNA (rRNA). A total of 72 cerebrospinal fluid (CSF) samples were used, obtained from cases with and without AIDS. The patients had cryptococcal meningitis (n = 56) and meningitis caused by other agents (n = 16). The results demonstrated that PCR test had the highest sensitivity rates, superior to culture (85.7%) and to India ink test (76.8%). PCR was found to be sensitive in detecting 1 cell/mL and highly specific since it did not amplify other fungal DNA. The comparative analysis of the methods showed that PCR is more sensitive and specific and is applicable as an important laboratorial resource for neurocryptococcosis diagnosis.

  3. A study of PCR inhibition mechanisms using real time PCR.

    PubMed

    Opel, Kerry L; Chung, Denise; McCord, Bruce R

    2010-01-01

    In this project, real time polymerase chain reaction (PCR) was utilized to study the mechanism of PCR inhibition through examination of the effect of amplicon length, melting temperature, and sequence. Specifically designed primers with three different amplicon lengths and three different melting temperatures were used to target a single homozygous allele in the HUMTH01 locus. The effect on amplification efficiency for each primer pair was determined by adding different concentrations of various PCR inhibitors to the reaction mixture. The results show that a variety of inhibition mechanisms can occur during the PCR process depending on the type of co-extracted inhibitor. These include Taq inhibition, DNA template binding, and effects on reaction efficiency. In addition, some inhibitors appear to affect the reaction in more than one manner. Overall we find that amplicon size and melting temperature are important in some inhibition mechanisms and not in others and the key issue in understanding PCR inhibition is determining the identity of the interfering substance.

  4. Primer design versus PCR bias in methylation independent PCR amplifications.

    PubMed

    Wojdacz, Tomasz K; Borgbo, Tanni; Hansen, Lise Lotte

    2009-05-16

    Many protocols in methylation studies utilize one primer set to generate a PCR product from bisulfite modified template regardless of its methylation status (methylation independent amplification MIP). However, proportional amplification of methylated and unmethylated alleles is hard to achieve due to PCR bias favoring amplification of unmethylated relatively GC poor sequence. Two primer design systems have been proposed to overcome PCR bias in methylation independent amplifications. The first advises against including any CpG dinucleoteides into the primer sequence (CpG-free primers) and the second, recently published by us, is based on inclusion of a limited number of CpG sites into the primer sequence. Here we used the Methylation Sensitive High Resolution Melting (MS-HRM) technology to investigate the ability of primers designed according to both of the above mentioned primer design systems to proportionally amplify methylated and unmethylated templates. Ten "CpG-free" primer pairs and twenty primers containing limited number of CpGs were tested. In reconstruction experiments the "CpG-free" primers showed primer specific sensitivity and allowed us to detect methylation levels in the range from 5 to 50%. Whereas while using primers containing limited number of CpG sites we were able to consistently detect 1-0.1% methylation levels and effectively control PCR amplification bias. In conclusion, the primers with limited number of CpG sites are able to effectively reverse PCR bias and therefore detect methylated templates with significantly higher sensitivity than CpG free primers.

  5. Applications of Digital PCR for Clinical Microbiology.

    PubMed

    Kuypers, Jane; Jerome, Keith R

    2017-03-15

    Digital PCR (dPCR) is an important new tool for use in the clinical microbiology laboratory. Its advantages over quantitative PCR (qPCR), including absolute quantification without a standard curve, improved precision, improved accuracy in the presence of inhibitors, and more accurate quantitation when amplification efficiency is low, make dPCR the assay of choice for several specimen testing applications. This mini-review will discuss the advantages and disadvantages of dPCR compared to qPCR, its applications in clinical microbiology and the considerations for implementation of the method in a clinical laboratory.

  6. PCR hot-start using duplex primers.

    PubMed

    Kong, Deming; Shen, Hanxi; Huang, Yanping; Mi, Huaifeng

    2004-02-01

    A new technique of PCR hot-start using duplex primers has been developed which can decrease the undesirable products arising throughout PCR amplification thereby giving better results than a manual hot-start method.

  7. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  8. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  9. Real-time PCR in Food Science: PCR Diagnostics.

    PubMed

    Rodriguez-Lazaro, David; Cook, Nigel; Hernandez, Marta

    2013-01-01

    A principal consumer demand is a guarantee of the safety and quality of food. The presence of foodborne pathogens and their potential hazard, the use of genetically modified organisms (GMOs) in food production, and the correct labelling in foods suitable for vegetarians are among the subjects where society demands total transparency. The application of controls within the quality assessment programmes of the food industry is a way to satisfy these demands, and is necessary to ensure efficient analytical methodologies are possessed and correctly applied by the Food Sector. The use of real-time PCR has become a promising alternative approach in food diagnostics. It possesses a number of advantages over conventional culturing approaches, including rapidity, excellent analytical sensitivity and selectivity, and potential for quantification. However, the use of expensive equipment and reagents, the need for qualified personnel, and the lack of standardized protocols are impairing its practical implementation for food monitoring and control.

  10. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples.

    PubMed

    Yang, Rongchang; Paparini, Andrea; Monis, Paul; Ryan, Una

    2014-12-01

    Clinical microbiology laboratories rely on quantitative PCR for its speed, sensitivity, specificity and ease-of-use. However, quantitative PCR quantitation requires the use of a standard curve or normalisation to reference genes. Droplet digital PCR provides absolute quantitation without the need for calibration curves. A comparison between droplet digital PCR and quantitative PCR-based analyses was conducted for the enteric parasite Cryptosporidium, which is an important cause of gastritis in both humans and animals. Two loci were analysed (18S rRNA and actin) using a range of Cryptosporidium DNA templates, including recombinant plasmids, purified haemocytometer-counted oocysts, commercial flow cytometry-counted oocysts and faecal DNA samples from sheep, cattle and humans. Each method was evaluated for linearity, precision, limit of detection and cost. Across the same range of detection, both methods showed a high degree of linearity and positive correlation for standards (R(2)⩾0.999) and faecal samples (R(2)⩾0.9750). The precision of droplet digital PCR, as measured by mean Relative Standard Deviation (RSD;%), was consistently better compared with quantitative PCR, particularly for the 18S rRNA locus, but was poorer as DNA concentration decreased. The quantitative detection of quantitative PCR was unaffected by DNA concentration, but droplet digital PCR quantitative PCR was less affected by the presence of inhibitors, compared with quantitative PCR. For most templates analysed including Cryptosporidium-positive faecal DNA, the template copy numbers, as determined by droplet digital PCR, were consistently lower than by quantitative PCR. However, the quantitations obtained by quantitative PCR are dependent on the accuracy of the standard curve and when the quantitative PCR data were corrected for pipetting and DNA losses (as determined by droplet digital PCR), then the sensitivity of both methods was comparable. A cost analysis based on 96 samples revealed that

  11. [Progress in digital PCR technology and application].

    PubMed

    Lin, Jiaqi; Su, Guocheng; Su, Wenjin; Zhou, Changyi

    2017-02-25

    Digital PCR is an emerging analysis technology for absolute quantification after realtime-PCR. Through digital PCR, single DNA molecules are distributed into isolated reactions, and the product with fluorescence signal can be detected and analyzed after amplification. With the advantages of higher sensitivity and accuracy, digital PCR, independent of a standard curve, is developing rapidly and applied widely to the next generation sequencing and detection fields, such as gene mutation, copy number variation, microorganism, and genetically modified food. In this article, we reviewed the quantitative method and research progress of digital PCR technology in the main application fields.

  12. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  13. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  14. Direct in situ rt-PCR.

    PubMed

    Lossi, Laura; Gambino, Graziana; Salio, Chiara; Merighi, Adalberto

    2011-01-01

    In situ polymerase chain reaction (PCR) is a histological technique that exploits the advantages of PCR for detection of mRNA directly in tissue sections. It somehow conjugates together PCR and in situ hybridization that is more traditionally employed for mRNA localization in cell organelles, intact cells, or tissue sections. This chapter describes the application of in situ PCR for neuropeptide mRNA localization. We provide here a detailed protocol for direct in situ reverse transcription (RT) PCR (RT-PCR) with nonradioactive probes after fixation and paraffin embedding or cryosectioning. Digoxigenin-labeled nucleotides (digoxigenin-11-dUTP) are incorporated in the PCR product after RT and subsequently detected with an anti-digoxigenin antibody conjugated with alkaline phosphatase. The procedure can be modified for use with fluorescent probes and employed in combination with enzyme/fluorescence immunocytochemical labeling.

  15. Multiplexed Primer Prediction for PCR

    SciTech Connect

    2007-07-23

    MPP predicts sets of multiplex-compatible primers for Polymerase Chain Reaction (PCR), finding a near minimal set of primers such that at least one amplicon will be generated from every target sequence in the input file. The code finds highly conserved oligos that are suitable as primers, according to user-specified desired primer characteristics such as length, melting temperature, and amplicon length. The primers are predicted not to form unwanted dimer or hairpin structures. The target sequences used as input can be diverse, since no multiple sequence alighment is required. The code is scalable, taking up to tens of thousands of sequences as input, and works, for example, to find a "universal primer set" for all viral genomes provided as a single input file. The code generates a periodic check-point file, thus in the event of premature execution termination, the application can be restarted from the last check-point file.

  16. Study of the bacterial diversity of foods: PCR-DGGE versus LH-PCR.

    PubMed

    Garofalo, Cristiana; Bancalari, Elena; Milanović, Vesna; Cardinali, Federica; Osimani, Andrea; Sardaro, Maria Luisa Savo; Bottari, Benedetta; Bernini, Valentina; Aquilanti, Lucia; Clementi, Francesca; Neviani, Erasmo; Gatti, Monica

    2017-02-02

    The present study compared two culture-independent methods, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and length-heterogeneity polymerase chain reaction (LH-PCR), for their ability to reveal food bacterial microbiota. Total microbial DNA and RNA were extracted directly from fourteen fermented and unfermented foods, and domain A of the variable regions V1 and V2 of the 16S rRNA gene was analyzed through LH-PCR and PCR-DGGE. Finally, the outline of these analyses was compared with bacterial viable counts obtained after bacterial growth on suitable selective media. For the majority of the samples, RNA-based PCR-DGGE revealed species that the DNA-based PCR-DGGE was not able to highlight. When analyzing either DNA or RNA, LH-PCR identified several lactic acid bacteria (LAB) and coagulase negative cocci (CCN) species that were not identified by PCR-DGGE. This phenomenon was particularly evident in food samples with viable loads<5.0 Logcfug(-1). Furthermore, LH-PCR was able to detect a higher number of peaks in the analyzed food matrices relative to species identified by PCR-DGGE. In light of these findings, it may be suggested that LH-PCR shows greater sensitivity than PCR-DGGE. However, PCR-DGGE detected some other species (LAB included) that were not detected by LH-PCR. Therefore, certain LH-PCR peaks not attributed to known species within the LH-PCR database could be solved by comparing them with species identified by PCR-DGGE. Overall, this study also showed that LH-PCR is a promising method for use in the food microbiology field, indicating the necessity to expand the LH-PCR database, which is based, up to now, mainly on LAB isolates from dairy products. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Real-time PCR in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Hansen-Hagge, Thomas; Gärtner, Claudia

    2014-03-01

    A central method in a standard biochemical laboratory is represented by the polymerase chain reaction (PCR), therefore many attempts have been performed so far to implement this technique in lab-on-a-chip (LOC) devices. PCR is an ideal candidate for miniaturization because of a reduction of assay time and decreased costs for expensive bio-chemicals. In case of the "classical" PCR, detection is done by identification of DNA fragments electrophoretically separated in agarose gels. This method is meanwhile frequently replaced by the so-called Real-Time-PCR because here the exponential increase of amplificates can be observed directly by measurement of DNA interacting fluorescent dyes. Two main methods for on-chip PCRs are available: traditional "batch" PCR in chambers on a chip using thermal cycling, requiring about 30 minutes for a typical PCR protocol and continuous-flow PCR, where the liquid is guided over stationary temperature zones. In the latter case, the PCR protocol can be as fast as 5 minutes. In the presented work, a proof of concept is demonstrated for a real-time-detection of PCR products in microfluidic systems.

  18. Pitfalls in PCR troubleshooting: Expect the unexpected?

    PubMed Central

    Schrick, Livia; Nitsche, Andreas

    2015-01-01

    PCR is a well-understood and established laboratory technique often used in molecular diagnostics. Huge experience has been accumulated over the last years regarding the design of PCR assays and their set-up, including in-depth troubleshooting to obtain the optimal PCR assay for each purpose. Here we report a PCR troubleshooting that came up with a surprising result never observed before. With this report we hope to sensitize the reader to this peculiar problem and to save troubleshooting efforts in similar situations, especially in time-critical and ambitious diagnostic settings. PMID:27077041

  19. Absolute quantification by droplet digital PCR versus analog real-time PCR

    PubMed Central

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  20. [Detection of cytomegalovirus by real-time PCR in HIV-positive plasm].

    PubMed

    Ruiz-Tachiquín, Martha Eugenia; Gómez-Delgado, Alejandro; Valdez-Salazar, Hilda Alicia; Aguilera, Penélope

    2014-01-01

    INTRODUCCIÓN: el citomegalovirus es responsable de infecciones persistentes, generalmente asintomáticas en personas sanas pero que en ausencia de una respuesta inmune efectiva puede causar enfermedad severa, por ello es muy importante su detección temprana en los individuos con trastornos de la inmunidad. El objetivo de esta investigación fue hacer un análisis del límite de detección, sensibilidad y concordancia de la reacción en cadena de la polimerasa (PCR) en punto final con los obtenidos con la PCR en tiempo real. MÉTODOS: se realizó un estudio transversal con 43 muestras de plasma humano positivas al virus de la inmunodeficiencia humano, provenientes de individuos de 18 o más años de edad, de uno u otro sexo. Todas las muestras tuvieron una carga viral-VIH mayor a 100 000 copias/mL. Para la PCR en punto final se empleó un método comercial para identificar UL54 (gen viral blanco) y para la PCR en tiempo real se amplificaron fragmentos de los genes UL54 (gen temprano) y UL83 (gen tardío) del citomegalovirus humano.

  1. Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR.

    PubMed

    Farrell, D J

    1999-02-01

    Certain strains of Neisseria subflava and Neisseria cinerea are known to produce false-positive results with the AMPLICOR Neisseria gonorrhoeae PCR (Roche Diagnostic Systems, Branchburg, N.J.). The analytical sensitivity and analytical specificity of three PCR tests were assessed with 3 geographically diverse N. gonorrhoeae strains and 30 non-N. gonorrhoeae Neisseria spp. The sensitivities of the in-house nested cppB gene and the 16S rRNA PCR methods were greater than that of the AMPLICOR N. gonorrhoeae PCR with purified DNA from all 3 N. gonorrhoeae strains. Six of 14 clinical strains of N. subflava (1 from a vaginal swab, 5 from respiratory sites) produced false-positive AMPLICOR N. gonorrhoeae PCR results and were negative by the two other PCR methods. When applied to 207 clinical specimens selected from a population with a high prevalence ( approximately 9%) of infection, the results for 15 of 96 (15.6%) AMPLICOR-positive specimens and 14 of 17 (82.3%) AMPLICOR-equivocal specimens were not confirmed by the more sensitive nested cppB PCR method. Only 2 of 94 (2.1%) of AMPLICOR N. gonorrhoeae PCR-negative specimens from the same population tested positive by the nested cppB method. These results suggest that for this population the AMPLICOR N. gonorrhoeae PCR test is suitable as a screening test only and all positive results should be confirmed by a PCR method that is more specific and at least as sensitive. This study also illustrates that caution should be used when introducing commercially available nucleic acid amplification-based diagnostic tests into the regimens of tests used for populations not previously tested with these products.

  2. Testing for Genetically Modified Foods Using PCR

    ERIC Educational Resources Information Center

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  3. Rapid Diagnosis of Leptospirosis by Multiplex PCR

    PubMed Central

    Ahmed, Siti Aminah; Sandai, Doblin Anak; Musa, Suzana; Hoe, Chee Hock; Riadzi, Mehdi; Lau, Kwok Leong; Tang, Thean Hock

    2012-01-01

    Background: Traditionally, the most common diagnostic approach used for diagnosing leptospirosis was the demonstration of immune-seroconversion in acute and convalescent patient serum samples. Recently, a variety of molecular techniques, including conventional and real-time polymerase chain reaction (PCR), have been developed for the specific detection of pathogenic bacteria from the genus Leptospira. PCR is a sensitive, specific, and rapid technique that has been successfully used to detect several microorganisms; including those of clinical significance. Methods: In this study, we developed a multiplex PCR (mPCR) assay for detecting Leptospira’s DNA. The mPCR assay detects both the 16S rRNA gene and the major outer membrane lipoprotein gene, which is known as LipL32. Representative serovars were tested from 10 species of Leptospira and 23 other species of bacteria. Results: A positive result was obtained from all leptospiral serovars. The amplification sensitivity for the multiplex assay was 21.8 pg and 1 × 103 leptospires/ml. This mPCR assay has the potential to facilitate a rapid and sensitive diagnosis for acute leptospirosis. Conclusion: The mPCR assay developed in this study can be used for the early detection of leptospirosis. The LipL32 gene could also serve as another target to aid in the efficient detection of leptospiral infection because using 2 sets of primers in mPCR increases the sensitivity and specificity of the test. PMID:23610544

  4. Digital PCR for detection of citrus pathogens

    USDA-ARS?s Scientific Manuscript database

    Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...

  5. Testing for Genetically Modified Foods Using PCR

    ERIC Educational Resources Information Center

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  6. Comparison of Droplet Digital PCR to Real-Time PCR for Quantitative Detection of Cytomegalovirus

    PubMed Central

    Gu, Z.; Ingersoll, J.; Abdul-Ali, D.; Shi, L.; Pounds, S.; Caliendo, A. M.

    2013-01-01

    Quantitative real-time PCR (QRT-PCR) has been widely implemented for clinical viral load testing, but a lack of standardization and relatively poor precision have hindered its usefulness. Digital PCR offers highly precise, direct quantification without requiring a calibration curve. Performance characteristics of real-time PCR were compared to those of droplet digital PCR (ddPCR) for cytomegalovirus (CMV) load testing. Tenfold serial dilutions of the World Health Organization (WHO) and the National Institute of Standards and Technology (NIST) CMV quantitative standards were tested, together with the AcroMetrix CMV tc panel (Life Technologies, Carlsbad, CA) and 50 human plasma specimens. Each method was evaluated using all three standards for quantitative linearity, lower limit of detection (LOD), and accuracy. Quantitative correlation, mean viral load, and variability were compared. Real-time PCR showed somewhat higher sensitivity than ddPCR (LODs, 3 log10 versus 4 log10 copies/ml and IU/ml for NIST and WHO standards, respectively). Both methods showed a high degree of linearity and quantitative correlation for standards (R2 ≥ 0.98 in each of 6 regression models) and clinical samples (R2 = 0.93) across their detectable ranges. For higher concentrations, ddPCR showed less variability than QRT-PCR for the WHO standards and AcroMetrix standards (P < 0.05). QRT-PCR showed less variability and greater sensitivity than did ddPCR in clinical samples. Both digital and real-time PCR provide accurate CMV load data over a wide linear dynamic range. Digital PCR may provide an opportunity to reduce the quantitative variability currently seen using real-time PCR, but methods need to be further optimized to match the sensitivity of real-time PCR. PMID:23224089

  7. Real-time PCR and PCR-tandem Mass Spectrometry for Biodetection

    DTIC Science & Technology

    2005-10-01

    Real - time PCR and PCR- tandem mass spectrometry for biodetection Alvin Fox, University of South Carolina, School of Medicine Report Documentation...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real - time PCR and PCRtandem mass spectrometry for biodetection 5a. CONTRACT NUMBER 5b...interspace region Bacillus subtilis W23 standard Blank Barn dust House dust Cycle Real - time PCR (16s rRNA) - environmental samples Real - time

  8. Pre-PCR processing: strategies to generate PCR-compatible samples.

    PubMed

    Rådström, Peter; Knutsson, Rickard; Wolffs, Petra; Lövenklev, Maria; Löfström, Charlotta

    2004-02-01

    Polymerase chain reaction (PCR) is recognized as a rapid, sensitive, and specific molecular diagnostic tool for the analysis of nucleic acids. However, the sensitivity and kinetics of diagnostic PCR may be dramatically reduced when applied directly to biological samples, such as blood and feces, owing to PCR-inhibitory components. As a result, pre-PCR processing procedures have been developed to remove or reduce the effects of PCR inhibitors. Pre-PCR processing comprises all steps prior to the detection of PCR products, that is, sampling, sample preparation, and deoxyribonucleic acid (DNA) amplification. The aim of pre-PCR processing is to convert a complex biological sample with its target nucleic acids/cells into PCR-amplifiable samples by combining sample preparation and amplification conditions. Several different pre-PCR processing strategies are used: (1) optimization of the DNA amplification conditions by the use of alternative DNA polymerases and/or amplification facilitators, (2) optimization of the sample preparation method, (3) optimization of the sampling method, and (4) combinations of the different strategies. This review describes different pre-PCR processing strategies to circumvent PCR inhibition to allow accurate and precise DNA amplification.

  9. A new PCR method: one primer amplification of PCR-CTPP products.

    PubMed

    Yin, Guang; Mitsuda, Yoko; Ezaki, Takayuki; Hamajima, Nobuyuki

    2012-10-01

    Polymerase chain reaction with confronting two-pair primers (PCR-CTPP) is a convenient method for genotyping single nucleotide polymorphisms, saving time, and costs. It uses four primers for PCR; F1 and R1 for one allele, and F2 and R2 for the other allele, by which three different sizes of DNA are amplified; between F1 and R1, between F2 and R2, and between F1 and R2. To date, we have applied PCR-CTPP successfully for genotyping more than 60 polymorphisms. However, it is not rare that PCR does not produce balanced amplification of allele specific bands. Accordingly, the method was modified by attaching a common sequence at the 5' end of two-pair primers and adding another primer with the common sequence in PCR, in total five different primers in a tube for PCR. The modification allowed one primer amplification for the products of initial PCR with confronting two-pair primers, named as one primer amplification of PCR-CTPP products (OPA-CTPP). This article demonstrates an example for an A/G polymorphism of paraoxonase 1 (PON1) Gln192Arg (rs662). PCR-CTPP failed clear genotyping for the polymorphism, while OPA-CTPP successfully produced PCR products corresponding to the allele. The present example indicated that the OPA-CTPP would be useful in the case that PCR-CTPP failed to produce balanced PCR products specific to each allele.

  10. ParaDIS_lib

    SciTech Connect

    Cook, Richard D.

    2016-05-25

    The ParaDIS_lib software is a project that is funded by the DOE ASC Program. Its purpose is to provide visualization and analysis capabilities for the existing ParaDIS parallel dislocation dynamics simulation code.

  11. Quantitative real-time PCR eliminates false-positives in colony screening PCR.

    PubMed

    Skarratt, Kristen K; Fuller, Stephen J

    2014-01-01

    We report an alternative approach to colony screening using real-time PCR (qPCR) which can be used instead of the traditional end-point PCR to eliminate false-positives and reduce processing times. False-positive transformants can easily be distinguished from true-positives by comparing Ct values derived from qPCR amplification curves. In addition, the use of qPCR allows for more efficient processing since a gel electrophoresis step is not required and the screening process is no longer limited by the capacity of the gel apparatus.

  12. Real-Time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei

    DTIC Science & Technology

    2005-10-01

    1 Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei Vipin K. Rastogi1, Tu-chen Cheng1, Lisa Collins1 and Jennifer Bagley2 1...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B.pseudomallei 5a. CONTRACT NUMBER 5b...risk. There is currently no real - time PCR assay for detection of both of these pathogens. Primers and probes corresponding to specific genomic regions

  13. PCR for capsular typing of Haemophilus influenzae.

    PubMed Central

    Falla, T J; Crook, D W; Brophy, L N; Maskell, D; Kroll, J S; Moxon, E R

    1994-01-01

    A PCR method for the unequivocal assignment of Haemophilus influenzae capsular type (types a to f) was developed. PCR primers were designed from capsule type-specific DNA sequences cloned from the capsular gene cluster of each of the six capsular types. PCR product was amplified only from the capsular type for which the primers were designed. Product was confirmed by using either an internal oligonucleotide or restriction endonuclease digestion. A total of 172 H. influenzae strains of known capsular type (determined genetically) comprising all capsular types and noncapsulate strains were tested by PCR capsular typing. In all cases the PCR capsular type corresponded to the capsular genotype determined by restriction fragment length polymorphism analysis of the cap region. When used in conjunction with PCR primers derived from the capsular gene bexA, capsulate, noncapsulate, and capsule-deficient type b mutant strains could be differentiated. PCR capsular typing overcomes the problems of cross-reaction and autoagglutination associated with the serotyping of H. influenzae strains. The rapid and unequivocal capsular typing method that is described will be particularly important for typing invasive H. influenzae strains isolated from recipients of H. influenzae type b vaccine. Images PMID:7814470

  14. Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR.

    PubMed Central

    Shoffner, M A; Cheng, J; Hvichia, G E; Kricka, L J; Wilding, P

    1996-01-01

    The microreaction volumes of PCR chips (a microfabricated silicon chip bonded to a piece of flat glass to form a PCR reaction chamber) create a relatively high surface to volume ratio that increases the significance of the surface chemistry in the polymerase chain reaction (PCR). We investigated several surface passivations in an attempt to identify 'PCR friendly' surfaces and used those surfaces to obtain amplifications comparable with those obtained in conventional PCR amplification systems using polyethylene tubes. Surface passivations by a silanization procedure followed by a coating of a selected protein or polynucleotide and the deposition of a nitride or oxide layer onto the silicon surface were investigated. Native silicon was found to be an inhibitor of PCR and amplification in an untreated PCR chip (i.e. native slicon) had a high failure rate. A silicon nitride (Si(3)N(4) reaction surface also resulted in consistent inhibition of PCR. Passivating the PCR chip using a silanizing agent followed by a polymer treatment resulted in good amplification. However, amplification yields were inconsistent and were not always comparable with PCR in a conventional tube. An oxidized silicon (SiO(2) surface gave consistent amplifications comparable with reactions performed in a conventional PCR tube. PMID:8628665

  15. Quantitative DNA Analysis Using Droplet Digital PCR.

    PubMed

    Vossen, Rolf H A M; White, Stefan J

    2017-01-01

    Droplet digital PCR (ddPCR) is based on the isolated amplification of thousands of individual DNA molecules simultaneously, with each molecule compartmentalized in a droplet. The presence of amplified product in each droplet is indicated by a fluorescent signal, and the proportion of positive droplets allows the precise quantification of a given sequence. In this chapter we briefly outline the basis of ddPCR, and describe two different applications using the Bio-Rad QX200 system: genotyping copy number variation and quantification of Illumina sequencing libraries.

  16. Fundamentals of multiplexing with digital PCR.

    PubMed

    Whale, Alexandra S; Huggett, Jim F; Tzonev, Svilen

    2016-12-01

    Over the past decade numerous publications have demonstrated how digital PCR (dPCR) enables precise and sensitive quantification of nucleic acids in a wide range of applications in both healthcare and environmental analysis. This has occurred in parallel with the advances in partitioning fluidics that enable a reaction to be subdivided into an increasing number of partitions. As the majority of dPCR systems are based on detection in two discrete optical channels, most research to date has focused on quantification of one or two targets within a single reaction. Here we describe 'higher order multiplexing' that is the unique ability of dPCR to precisely measure more than two targets in the same reaction. Using examples, we describe the different types of duplex and multiplex reactions that can be achieved. We also describe essential experimental considerations to ensure accurate quantification of multiple targets.

  17. The potential advantages of digital PCR for clinical virology diagnostics.

    PubMed

    Hall Sedlak, Ruth; Jerome, Keith R

    2014-05-01

    Digital PCR (dPCR), a new nucleic acid amplification technology, offers several potential advantages over real-time or quantitative PCR (qPCR), the current workhorse of clinical molecular virology diagnostics. Several studies have demonstrated dPCR assays for human cytomegalovirus or HIV, which give more precise and reproducible results than qPCR assays without sacrificing sensitivity. Here we review the literature comparing dPCR and qPCR performance in viral molecular diagnostic assays and offer perspective on the future of dPCR in clinical virology diagnostics.

  18. Transgene detection by digital droplet PCR.

    PubMed

    Moser, Dirk A; Braga, Luca; Raso, Andrea; Zacchigna, Serena; Giacca, Mauro; Simon, Perikles

    2014-01-01

    Somatic gene therapy is a promising tool for the treatment of severe diseases. Because of its abuse potential for performance enhancement in sports, the World Anti-Doping Agency (WADA) included the term 'gene doping' in the official list of banned substances and methods in 2004. Several nested PCR or qPCR-based strategies have been proposed that aim at detecting long-term presence of transgene in blood, but these strategies are hampered by technical limitations. We developed a digital droplet PCR (ddPCR) protocol for Insulin-Like Growth Factor 1 (IGF1) detection and demonstrated its applicability monitoring 6 mice injected into skeletal muscle with AAV9-IGF1 elements and 2 controls over a 33-day period. A duplex ddPCR protocol for simultaneous detection of Insulin-Like Growth Factor 1 (IGF1) and Erythropoietin (EPO) transgenic elements was created. A new DNA extraction procedure with target-orientated usage of restriction enzymes including on-column DNA-digestion was established. In vivo data revealed that IGF1 transgenic elements could be reliably detected for a 33-day period in DNA extracted from whole blood. In vitro data indicated feasibility of IGF1 and EPO detection by duplex ddPCR with high reliability and sensitivity. On-column DNA-digestion allowed for significantly improved target detection in downstream PCR-based approaches. As ddPCR provides absolute quantification, it ensures excellent day-to-day reproducibility. Therefore, we expect this technique to be used in diagnosing and monitoring of viral and bacterial infection, in detecting mutated DNA sequences as well as profiling for the presence of foreign genetic material in elite athletes in the future.

  19. Recent advances in quantitative PCR (qPCR) applications in food microbiology.

    PubMed

    Postollec, Florence; Falentin, Hélène; Pavan, Sonia; Combrisson, Jérôme; Sohier, Danièle

    2011-08-01

    Molecular methods are being increasingly applied to detect, quantify and study microbial populations in food or during food processes. Among these methods, PCR-based techniques have been the subject of considerable focus and ISO guidelines have been established for the detection of food-borne pathogens. More particularly, real-time quantitative PCR (qPCR) is considered as a method of choice for the detection and quantification of microorganisms. One of its major advantages is to be faster than conventional culture-based methods. It is also highly sensitive, specific and enables simultaneous detection of different microorganisms. Application of reverse-transcription-qPCR (RT-qPCR) to study population dynamics and activities through quantification of gene expression in food, by contrast with the use of qPCR, is just beginning. Provided that appropriate controls are included in the analyses, qPCR and RT-qPCR appear to be highly accurate and reliable for quantification of genes and gene expression. This review addresses some important technical aspects to be considered when using these techniques. Recent applications of qPCR and RT-qPCR in food microbiology are given. Some interesting applications such as risk analysis or studying the influence of industrial processes on gene expression and microbial activity are reported.

  20. Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR)

    PubMed Central

    Koepfli, Cristian; Nguitragool, Wang; Hofmann, Natalie E.; Robinson, Leanne J.; Ome-Kaius, Maria; Sattabongkot, Jetsumon; Felger, Ingrid; Mueller, Ivo

    2016-01-01

    Accurate quantification of parasite density in the human host is essential for understanding the biology and pathology of malaria. Semi-quantitative molecular methods are widely applied, but the need for an external standard curve makes it difficult to compare parasite density estimates across studies. Droplet digital PCR (ddPCR) allows direct quantification without the need for a standard curve. ddPCR was used to diagnose and quantify P. falciparum and P. vivax in clinical patients as well as in asymptomatic samples. ddPCR yielded highly reproducible measurements across the range of parasite densities observed in humans, and showed higher sensitivity than qPCR to diagnose P. falciparum, and equal sensitivity for P. vivax. Correspondence in quantification was very high (>0.95) between qPCR and ddPCR. Quantification between technical replicates by ddPCR differed 1.5–1.7-fold, compared to 2.4–6.2-fold by qPCR. ddPCR facilitates parasite quantification for studies where absolute densities are required, and will increase comparability of results reported from different laboratories. PMID:27982132

  1. A naked-eye colorimetric "PCR developer"

    NASA Astrophysics Data System (ADS)

    Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Despite several advances in molecular biology and diagnostics, Polymerase Chain Reaction (PCR) is currently the gold standard for nucleic acids amplification and detection, due to its versatility, low-cost and universality, with estimated <10 billion reactions per year and a worldwide market of several billion dollars/year. Nevertheless, PCR still relies on the laborious, time-consuming, and multi-step gel electrophoresis-based detection, which includes gel casting, electrophoretic run, gel staining, and gel visualization. In this work, we propose a "PCR developer", namely a universal one-step, one-tube method, based on controlled aggregation of gold nanoparticles (AuNPs), to detect PCR products by naked eye in few minutes, with no need for any instrumentation. We demonstrated the specificity and sensitivity of the PCR developer on different model targets, suitable for a qualitative detection in real-world diagnostics (i.e., gene rearrangements, genetically modified organisms, and pathogens). The PCR developer proved to be highly specific and ultra-sensitive, discriminating down to few copies of HIV viral DNA, diluted in an excess of interfering human genomic DNA, which is a clinically relevant viral load. Hence, it could be a valuable tool for both academic research and clinical applications.

  2. A systematic analysis of PCR contamination.

    PubMed

    Scherczinger, C A; Ladd, C; Bourke, M T; Adamowicz, M S; Johannes, P M; Scherczinger, R; Beesley, T; Lee, H C

    1999-09-01

    In light of the strict legal scrutiny surrounding DNA typing at this time, it has become necessary to systematically address the issue of PCR contamination. To precisely define the parameters affecting PCR contamination under casework analysis conditions, PCR amplification reactions were intentionally compromised by employing sub-standard laboratory technique and by introducing secondary sources of DNA. The PCR parameters considered for potential sources of contamination include amplification set-up, amplification product handling, aerosol DNA and storage. In addition, analyst technique was evaluated by modifying or eliminating standard safeguards. Under the circumstances normally encountered during casework analysis, PCR contamination was never noted. Significantly, using the dot blot detection method, contamination was never observed when nanogram quantities of genomic DNA were mishandled or aerosolized. Contamination occurred only when amplification product was carelessly manipulated or purposefully sprayed near or directly into open tubes containing water or genomic DNA. Although standard precautions should be employed during PCR-based DNA typing, our data indicates that contamination during amplification procedures is not prevalent when detected by dot blot analysis.

  3. [Identification of Mycobacterium avium-intracellulare complex by PCR of AIDS and disseminated mycobacteriosis].

    PubMed

    García-Elorriaga, Guadalupe; Degollado-Estrada, Edgar; Villagómez-Ruiz, Alfredo; Cortés-Torres, Nancy; Arreguín-Reséndiz, Lilián; Del Rey-Pineda, Guillermo; González-Bonilla, César

    2016-01-01

    Introducción: el objetivo de este artículo es Identificar y diferenciar el complejo MAC por PCR en pacientes con SIDA y micobacteriosis diseminada. Métodos: se llevó a cabo un estudio transversal para identificar MAC por biología molecular. Se sintetizaron dos conjuntos de iniciadores: MAV y MIN, para M. avium y M. intracellulare, respectivamente. El ADN total de células obtenidas de 29 aislados clínicos y muestras de suero de otros 24 pacientes con SIDA e infección micobacteriana diseminada fue extraído y se amplificó por PCR con los iniciadores MAV y MIN. Cada uno de los iniciadores MAV y MIN amplificó un segmento altamente específico de 1.3 kb del ADN homólogo, respectivamente. Resultados: veintinueve ADN de los aislados clínicos de MAC identificadas por Gen-Probe AccuProbes se amplificaron con los iniciadores MAV (M. avium). De las 24 muestras clínicas, 3 fueron positivas para M. avium y 6 para M. tuberculosis. Conclusiones: nuestros resultados demostraron que la técnica de PCR se puede aplicar para la diferenciación de M. avium y M. intracellulare por iniciadores específicos 16S rRNA. En pacientes con estadio avanzado de SIDA y en quienes se sospecha micobacteriosis diseminada, la presencia de anemia (incluso con cultivos negativos) fosfatasa alcalina elevada y una mediana de CD4 de 15.9/ml, se debe considerar seriamente el diagnóstico de infección por MAC; sugerimos que, de acuerdo con nuestros resultados, se justifica una estratificación más precisa de los pacientes en términos de sus recuentos de células T CD4.

  4. A method for amplification of unknown flanking sequences based on touchdown PCR and suppression-PCR.

    PubMed

    Gao, Song; He, Dan; Li, Guangquan; Zhang, Yanhua; Lv, Huiying; Wang, Li

    2016-09-15

    Thermal asymmetric staggered PCR is the most widely used technique to obtain the flanking sequences. However, it has some limitations, including a low rate of positivity, and complex operation. In this study, a improved method of it was made based on suppression-PCR and touchdown PCR. The PCR fragment obtained by the amplification was used directly for sequencing after gel purification. Using this improved method, the positive rate of amplified flanking sequences of the ATMT mutants reached 99%. In addition, the time from DNA extraction to flanking sequence analysis was shortened to 2 days with about 6 dollars each sample.

  5. SASqPCR: Robust and Rapid Analysis of RT-qPCR Data in SAS

    PubMed Central

    Ling, Daijun

    2012-01-01

    Reverse transcription quantitative real-time PCR (RT-qPCR) is a key method for measurement of relative gene expression. Analysis of RT-qPCR data requires many iterative computations for data normalization and analytical optimization. Currently no computer program for RT-qPCR data analysis is suitable for analytical optimization and user-controllable customization based on data quality, experimental design as well as specific research aims. Here I introduce an all-in-one computer program, SASqPCR, for robust and rapid analysis of RT-qPCR data in SAS. This program has multiple macros for assessment of PCR efficiencies, validation of reference genes, optimization of data normalizers, normalization of confounding variations across samples, and statistical comparison of target gene expression in parallel samples. Users can simply change the macro variables to test various analytical strategies, optimize results and customize the analytical processes. In addition, it is highly automatic and functionally extendable. Thus users are the actual decision-makers controlling RT-qPCR data analyses. SASqPCR and its tutorial are freely available at http://code.google.com/p/sasqpcr/downloads/list. PMID:22238653

  6. Evaluation of Altona Diagnostics RealStar Zika Virus RT-PCR Test Kit for Zika virus PCR testing.

    PubMed

    L'Huillier, Arnaud G; Lombos, Ernesto; Tang, Elaine; Perusini, Stephen; Eshaghi, Alireza; Nagra, Sandeep; Frantz, Christine; Olsha, Romy; Kristjanson, Erik; Dimitrova, Kristina; Safronetz, David; Drebot, Mike; Gubbay, Jonathan B

    2017-03-15

    Background: With the emerging ZIKA virus (ZIKV) epidemic, accessible real-time reverse-transcription PCR (rRT-PCR) assays are needed to streamline testing. The commercial Altona Diagnostics RealStar ZIKV rRT-PCR Test Kit has been approved for Emergency Use Authorization by the FDA. Our aim was to verify Altona-PCR, by comparing it to the CDC-designed dual target ZIKV virus rRT-PCR reference assay (Reference-PCR), and describe demographics of patients tested for ZIKV by rRT-PCR in Ontario, Canada.Methods: A large set of clinical specimens were tested for ZIKV by Altona-PCR and Reference-PCR. Positive or equivocal specimens underwent PCR and Sanger sequencing targeting ZIKV NS5 gene.Results: 671 serum specimens were tested by Reference-PCR: 58 (8.6%) were positive, 193 (28.8%) equivocal and 420 (62.6%) negative. Ninety percent of Reference-PCR positive patients were tested in the first 5 days after symptom onset. Altona-PCR was performed on 284/671 tested specimens by Reference-PCR. Altona-PCR was positive in 53/58 (91%) Reference-PCR positive and 16/193 (8%) Reference-PCR equivocal specimens; ZIKV NS5 PCR was positive in all 68 Altona-PCR positive specimens, and negative in all 181 Altona-PCR negative specimens that underwent NS5 PCR.Conclusion: Most ZIKV PCR positive cases are detected in the first five days of illness. Altona-PCR has very good sensitivity (91%) and specificity (97%) compared to Reference-PCR. Altona-PCR can be used for ZIKV diagnostic testing, with less extensive verification requirements compared to a laboratory developed test.

  7. PCR+ In Diesel Fuels and Emissions Research

    SciTech Connect

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  8. Direct Chromatin PCR (DC-PCR): Hypotonic Conditions Allow Differentiation of Chromatin States during Thermal Cycling

    PubMed Central

    Vatolin, Sergei; Khan, Shahper N.; Reu, Frederic J.

    2012-01-01

    Current methods to study chromatin configuration are not well suited for high throughput drug screening since they require large cell numbers and multiple experimental steps that include centrifugation for isolation of nuclei or DNA. Here we show that site specific chromatin analysis can be achieved in one step by simply performing direct chromatin PCR (DC-PCR) on cells. The basic underlying observation was that standard hypotonic PCR buffers prevent global cellular chromatin solubilization during thermal cycling while more loosely organized chromatin can be amplified. Despite repeated heating to >90°C, 41 of 61 tested 5′ sequences of silenced genes (CDKN2A, PU.1, IRF4, FOSB, CD34) were not amplifiable while 47 could be amplified from expressing cells. Two gene regions (IRF4, FOSB) even required pre-heating of cells in isotonic media to allow this differentiation; otherwise none of 19 assayed sequences yielded PCR products. Cells with baseline expression or epigenetic reactivation gave similar DC-PCR results. Silencing during differentiation of CD34 positive cord blood cells closed respective chromatin while treatment of myeloma cells with an IRF4 transcriptional inhibitor opened a site to DC-PCR that was occupied by RNA polymerase II and NFκB as determined by ChIP. Translation into real-time PCR can not be achieved with commercial real-time PCR buffers which potently open chromatin, but even with simple ethidium bromide addition to standard PCR mastermix we were able to identify hits in small molecules screens that suppressed IRF4 expression or reactivated CDKN2A in myeloma cells using densitometry or visual inspection of PCR plates under UV light. While need in drug development inspired this work, application to genome-wide analysis appears feasible using phi29 for selective amplification of open cellular chromatin followed by library construction from supernatants since such supernatants yielded similar results as gene specific DC-PCR. PMID:22984542

  9. pcrEfficiency: a Web tool for PCR amplification efficiency prediction

    PubMed Central

    2011-01-01

    Background Relative calculation of differential gene expression in quantitative PCR reactions requires comparison between amplification experiments that include reference genes and genes under study. Ignoring the differences between their efficiencies may lead to miscalculation of gene expression even with the same starting amount of template. Although there are several tools performing PCR primer design, there is no tool available that predicts PCR efficiency for a given amplicon and primer pair. Results We have used a statistical approach based on 90 primer pair combinations amplifying templates from bacteria, yeast, plants and humans, ranging in size between 74 and 907 bp to identify the parameters that affect PCR efficiency. We developed a generalized additive model fitting the data and constructed an open source Web interface that allows the obtention of oligonucleotides optimized for PCR with predicted amplification efficiencies starting from a given sequence. Conclusions pcrEfficiency provides an easy-to-use web interface allowing the prediction of PCR efficiencies prior to web lab experiments thus easing quantitative real-time PCR set-up. A web-based service as well the source code are provided freely at http://srvgen.upct.es/efficiency.html under the GPL v2 license. PMID:22014212

  10. Propidium monoazide reverse transcription PCR and RT-qPCR for detecting infectious enterovirus and norovirus

    EPA Science Inventory

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the publ...

  11. Detection of Leishmania infantum in animals and their ectoparasites by conventional PCR and real time PCR.

    PubMed

    de Morais, Rayana Carla Silva; Gonçalves, Suênia da Cunha; Costa, Pietra Lemos; da Silva, Kamila Gaudêncio; da Silva, Fernando José; Silva, Rômulo Pessoa E; de Brito, Maria Edileuza Felinto; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Paiva-Cavalcanti, Milena

    2013-04-01

    Visceral leishmaniosis (VL) is a parasitic disease caused by Leishmania infantum, which is primarily transmitted by phlebotomine sandflies. However, there has been much speculation on the role of other arthropods in the transmission of VL. Thus, the aim of this study was to assess the presence of L. infantum in cats, dogs and their ectoparasites in a VL-endemic area in northeastern Brazil. DNA was extracted from blood samples and ectoparasites, tested by conventional PCR (cPCR) and quantitative real time PCR (qPCR) targeting the L. infantum kinetoplast DNA. A total of 280 blood samples (from five cats and 275 dogs) and 117 ectoparasites from dogs were collected. Animals were apparently healthy and not previously tested by serological or molecular diagnostic methods. Overall, 213 (76.1 %) animals and 51 (43.6 %) ectoparasites were positive to L. infantum, with mean parasite loads of 795.2, 31.9 and 9.1 fg in dogs, cats and ectoparasites, respectively. Concerning the positivity between dogs and their ectoparasites, 32 (15.3 %) positive dogs were parasitized by positive ectoparasites. The overall concordance between the PCR protocols used was 59.2 %, with qPCR being more efficient than cPCR; 34.1 % of all positive samples were exclusively positive by qPCR. The high number of positive animals and ectoparasites also indicates that they could serve as sentinels or indicators of the circulation of L. infantum in risk areas.

  12. Molecular Subtyping of Salmonella Typhimurium with Multiplex Oligonucleotide Ligation-PCR (MOL-PCR).

    PubMed

    Wuyts, Véronique; Mattheus, Wesley; Roosens, Nancy H C; Marchal, Kathleen; Bertrand, Sophie; De Keersmaecker, Sigrid C J

    2017-01-01

    A multiplex oligonucleotide ligation-PCR (MOL-PCR) assay is a valuable high-throughput technique for the detection of bacteria and viruses, for characterization of pathogens and for diagnosis of genetic diseases, as it allows one to combine different types of molecular markers in a high-throughput multiplex assay. A MOL-PCR assay starts with a multiplex oligonucleotide ligation reaction for detection of the molecular marker, followed by a singleplex PCR for signal amplification and analysis of the MOL-PCR products on a Luminex platform. This last step occurs through a liquid bead suspension array in which the MOL-PCR products are hybridized to MagPlex-TAG beads.In this chapter, we describe the complete procedure for a MOL-PCR assay for subtyping of Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) and its monophasic variant S. 1,4[5],12:i:- from DNA isolation through heat lysis up to data interpretation through a Gödel Prime Product. The subtyping assay consists of 50 discriminative molecular markers and two internal positive control markers divided over three MOL-PCR assays.

  13. Propidium monoazide reverse transcription PCR and RT-qPCR for detecting infectious enterovirus and norovirus

    EPA Science Inventory

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the publ...

  14. Enhancing the efficiency of a PCR using gold nanoparticles

    PubMed Central

    Li, Min; Lin, Yu-Cheng; Wu, Chao-Chin; Liu, Hsiao-Sheng

    2005-01-01

    We found that the PCR could be dramatically enhanced by Au nanoparticles. With the addition of 0.7 nM of 13 nm Au nanoparticles into the PCR reagent, the PCR efficiency was increased. Especially when maintaining the same or higher amplification yields, the reaction time could be shortened, and the heating/cooling rates could be increased. The excellent heat transfer property of the nanoparticles should be the major factor in improving the PCR efficiency. Different PCR systems, DNA polymerases, DNA sizes and complex samples were compared in this study. Our results demonstrated that Au nanoparticles increase the sensitivity of PCR detection 5- to 10-fold in a slower PCR system (i.e. conventional PCR) and at least 104-fold in a quicker PCR system (i.e. real-time PCR). After the PCR time was shortened by half, the 100 copies/µl DNA were detectable in real-time PCR with gold colloid added, however, at least 106 copies/µl of DNA were needed to reach a detectable signal level using the PCR reagent without gold colloid. This innovation could improve the PCR efficiency using non-expensive polymerases, and general PCR reagent. It is a new viewpoint in PCR, that nanoparticles can be used to enhance PCR efficiency and shorten reaction times. PMID:16314298

  15. PCR test for Microsporum canis identification.

    PubMed

    Brillowska-Dabrowska, Anna; Michałek, Ewelina; Saunte, Ditte Marie Lindhardt; Nielsen, Sanne Søgaard; Arendrup, Maiken Cavling

    2013-08-01

    Microsporum canis, for which the natural hosts are cats and dogs, is the most prevalent zoophilic agent causing tinea capitis and tinea corporis in humans. We present here a diagnostic PCR test for M. canis, since its detection and species identification is relevant to the choice of treatment and to the understanding of a probable source of infection. An M. canis-specific PCR was evaluated using 130 clinical isolates of dermatophytes (including M. canis [n = 15] and 13 other species), 10 yeast or mold isolates, 12 hair and skin samples from animals with or without experimental M. canis infection, and 35 patient specimens, including seven specimens positive for M. canis and 15 dermatophyte negative samples. All pure cultures, animal specimens and clinical samples with M. canis were detected by the PCR test, whereas none of the other fungal isolates or samples without M. canis was negative. This study indicates that the PCR test for M. canis identification applied directly to patient specimens or animal hair, as well as to clinical isolates had 100% specificity and sensitivity.

  16. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  17. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  18. PCR Techniques in Next-Generation Sequencing.

    PubMed

    Goswami, Rashmi S

    2016-01-01

    With the advent of next-generation sequencing and its prolific use in the clinical realm, it would appear that techniques such as PCR would not be in high demand. This is not the case however, as PCR techniques play an important role in the success of NGS technology. Although NGS has rapidly become an important part of clinical molecular diagnostics, whole genome sequencing is still difficult to implement in a clinical laboratory due to high costs of sequencing, as well as issues surrounding data processing, analysis, and data storage, which can reduce efficiency and increase turnaround times. As a result, targeted sequencing is often used in clinical diagnostics, due to its increased efficiency. PCR techniques play an integral role in targeted NGS sequencing, allowing for the generation of multiple NGS libraries and the sequencing of multiple targeted regions simultaneously. We will outline the methods we employ in PCR amplification of targeted genomic regions for cancer mutation hotspots using the Ampliseq Cancer Hotspot v2 panel (Life Technologies, Carlsbad, CA).

  19. [Quantitative PCR in the diagnosis of Leishmania].

    PubMed

    Mortarino, M; Franceschi, A; Mancianti, F; Bazzocchi, C; Genchi, C; Bandi, C

    2004-06-01

    Polymerase chain reaction (PCR) is a sensitive and rapid method for the diagnosis of canine Leishmania infection and can be performed on a variety of biological samples, including peripheral blood, lymph node, bone marrow and skin. Standard PCR requires electrophoretic analysis of the amplification products and is usually not suitable for quantification of the template DNA (unless competitor-based or other methods are developed), being of reduced usefulness when accurate monitoring of target DNA is required. Quantitative real-time PCR allows the continuous monitoring of the accumulation of PCR products during the amplification reaction. This allows the identification of the cycle of near-logarithmic PCR product generation (threshold cycle) and, by inference, the relative quantification of the template DNA present at the start of the reaction. Since the amplification product are monitored in "real-time" as they form cycle-by-cycle, no post-amplification handling is required. The absolute quantification is performed according either to an internal standard co-amplified with the sample DNA, or to an external standard curve obtained by parallel amplification of serial known concentrations of a reference DNA sequence. From the quantification of the template DNA, an estimation of the relative load of parasites in the different samples can be obtained. The advantages compared to standard and semi-quantitative PCR techniques are reduction of the assay's time and contamination risks, and improved sensitivity. As for standard PCR, the minimal components of the quantitative PCR reaction mixture are the DNA target of the amplification, an oligonucleotide primer pair flanking the target sequence, a suitable DNA polymerase, deoxynucleotides, buffer and salts. Different technologies have been set up for the monitoring of amplification products, generally based on the use of fluorescent probes. For instance, SYBR Green technology is a non-specific detection system based on a

  20. PCR Assay Specific for Chicken Feces

    PubMed Central

    Cisar, Cindy R.; Akiyama, Tatsuya; Hatley, Jonathan; Arney, Lori; Kezunovic, Nebojsa; Owen, Daniel

    2011-01-01

    Bacteroidales are fecal anaerobic bacteria that are common in the digestive systems and feces of warm-blooded animals. Some strains of Bacteroidales have been reported to be host-specific. In this study, Bacteroidales strains from chicken feces were examined for their potential use as indicators of chicken fecal contamination. Bacteroidales 16S rRNA gene sequences from chicken feces were amplified, cloned and sequenced. Phylogenetic analysis was performed using these sequences and published Bacteroidales 16S rRNA gene sequences from human and bovine feces. Primers were designed based on putative chicken feces-specific 16S rRNA gene sequences and the primer pairs were tested for specificity in PCR assays. One set of primers, chBact F1 and chBact R16, specifically amplified DNA from chicken feces in a PCR assay, but did not amplify wild turkey, cat, bovine, or deer fecal DNAs. In addition, DNA from feces contaminated straw-based chicken litter produced a product in the PCR assay. However, DNA from feces contaminated wood shavings-based chicken litter was not amplified. The PCR assay described here may prove a useful tool for the detection of chicken feces and for source tracking in watersheds with fecal contamination. PMID:24839330

  1. PCR Assay Specific for Chicken Feces.

    PubMed

    Cisar, Cindy R; Akiyama, Tatsuya; Hatley, Jonathan; Arney, Lori; Kezunovic, Nebojsa; Owen, Daniel

    2010-01-01

    Bacteroidales are fecal anaerobic bacteria that are common in the digestive systems and feces of warm-blooded animals. Some strains of Bacteroidales have been reported to be host-specific. In this study, Bacteroidales strains from chicken feces were examined for their potential use as indicators of chicken fecal contamination. Bacteroidales 16S rRNA gene sequences from chicken feces were amplified, cloned and sequenced. Phylogenetic analysis was performed using these sequences and published Bacteroidales 16S rRNA gene sequences from human and bovine feces. Primers were designed based on putative chicken feces-specific 16S rRNA gene sequences and the primer pairs were tested for specificity in PCR assays. One set of primers, chBact F1 and chBact R16, specifically amplified DNA from chicken feces in a PCR assay, but did not amplify wild turkey, cat, bovine, or deer fecal DNAs. In addition, DNA from feces contaminated straw-based chicken litter produced a product in the PCR assay. However, DNA from feces contaminated wood shavings-based chicken litter was not amplified. The PCR assay described here may prove a useful tool for the detection of chicken feces and for source tracking in watersheds with fecal contamination.

  2. Inverse PCR for Point Mutation Introduction.

    PubMed

    Silva, Diogo; Santos, Gustavo; Barroca, Mário; Collins, Tony

    2017-01-01

    Inverse PCR is a powerful tool for the rapid introduction of desired mutations at desired positions in a circular double-stranded DNA sequence. Here, custom-designed mutant primers oriented in the inverse direction are used to amplify the entire circular template with incorporation of the required mutation(s). By careful primer design it can be used to perform such diverse modifications as the introduction of point mutations and multiple mutations, the insertion of new sequences, and even sequence deletions. Three primer formats are commonly used; nonoverlapping, partially overlapping and fully overlapping primers, and here we describe the use of nonoverlapping primers for introduction of a point mutation. Use of such a primer setup in the PCR reaction, with one of the primers containing the desired mismatch mutation, results in the amplification of a linear, double-stranded, mutated product. Methylated template DNA is removed from the nonmethylated PCR product by DpnI digestion and the PCR product is then phosphorylated by polynucleotide kinase treatment before being recircularized by ligation, and transformed to E. coli. This relatively simple site-directed mutagenesis procedure is of major importance in biology and biotechnology today where it is commonly employed for the study and engineering of DNA, RNA, and proteins.

  3. Handheld Real-Time PCR Device

    PubMed Central

    Ahrberg, Christian D.; Ilic, Bojan Robert; Manz, Andreas; Neužil, Pavel

    2016-01-01

    Here we report one of the smallest real-time polymerase chain reaction (PCR) system up to date with approximate size of 100 mm × 60 mm × 33 mm. The system is an autonomous unit requiring an external 12 V power supply. Four simultaneous reactions are performed in form of virtual reaction chambers (VRC) where a ≈ 200 nL sample is covered with mineral oil and placed on a glass cover slip. Fast, 40 cycle amplification of an amplicon from the H7N9 gene was used to demonstrate PCR performance. The standard curve slope was (−3.02 ± 0.16) cycles at threshold per decade (mean ± standard deviation) corresponding to an amplification efficiency of (0.91 ± 0.05) per cycle (mean ± standard deviation). The PCR device was capable of detecting a single deoxyribonucleic acid (DNA) copy. These results further suggest that our handheld PCR device may have broad, technologically-relevant applications extending to rapid detection of infectious diseases in small clinics. PMID:26753557

  4. Manufacturing DNA microarrays from unpurified PCR products

    PubMed Central

    Diehl, Frank; Beckmann, Boris; Kellner, Nadine; Hauser, Nicole C.; Diehl, Susanne; Hoheisel, Jörg D.

    2002-01-01

    For the production of DNA microarrays from PCR products, purification of the the DNA fragments prior to spotting is a major expense in cost and time. Also, a considerable amount of material is lost during this process and contamination might occur. Here, a protocol is presented that permits the manufacture of microarrays from unpurified PCR products on aminated surfaces such as glass slides coated with the widely used poly(l-lysine) or aminosilane. The presence of primer molecules in the PCR sample does not increase the non-specific signal upon hybridisation. Overall, signal intensity on arrays made of unpurified PCR products is 94% of the intensity obtained with the respective purified molecules. This slight loss in signal, however, is offset by a reduced variation in the amount of DNA present at the individual spot positions across an array, apart from the considerable savings in time and cost. In addition, a larger number of arrays can be made from one batch of amplification products. PMID:12177307

  5. Real-time PCR: Advanced technologies and applications

    USDA-ARS?s Scientific Manuscript database

    This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...

  6. New PCR systems to confirm real-time PCR detection of Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Herthnek, David; Bölske, Göran

    2006-01-01

    Background Johne's disease, a serious chronic form of enteritis in ruminants, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). As the organism is very slow-growing and fastidious, several PCR-based methods for detection have been developed, based mainly on the MAP-specific gene IS900. However, because this gene is similar to genes in other mycobacteria, there is a need for sensitive and reliable methods to confirm the presence of MAP. As described here, two new real-time PCR systems on the IS900 gene and one on the F57 gene were developed and carefully validated on 267 strains and 56 positive clinical faecal samples. Results Our confirmatory PCR systems on IS900 were found sensitive and specific, only yielding weak false positive reactions in one strain for each system. The PCR system on F57 did not elicit any false positives and was only slightly less sensitive than our primary IS900-system. DNA from both naturally infected and spiked faeces that tested positive with our primary system could be confirmed with all new systems, except one low-level infected sample that tested negative with the F57 system. Conclusion We recommend using the newly constructed DH3 PCR system on the F57 gene as the primary confirmatory test for PCR positives, but should it fail due to its lower sensitivity, the DH1 and DH2 PCR systems should be used. PMID:17020599

  7. Quantitative PCR and Digital PCR for Detection of Ascaris lumbricoides Eggs in Reclaimed Water.

    PubMed

    Acosta Soto, Lucrecia; Santísima-Trinidad, Ana Belén; Bornay-Llinares, Fernando Jorge; Martín González, Marcos; Pascual Valero, José Antonio; Ros Muñoz, Margarita

    2017-01-01

    The reuse of reclaimed water from wastewater depuration is a widespread and necessary practice in many areas around the world and must be accompanied by adequate and continuous quality control. Ascaris lumbricoides is one of the soil-transmitted helminths (STH) with risk for humans due to its high infectivity and an important determinant of transmission is the inadequacy of water supplies and sanitation. The World Health Organization (WHO) recommends a limit equal to or lower than one parasitic helminth egg per liter, to reuse reclaimed water for unrestricted irrigation. We present two new protocols of DNA extraction from large volumes of reclaimed water. Quantitative PCR (qPCR) and digital PCR (dPCR) were able to detect low amounts of A. lumbricoides eggs. By using the first extraction protocol, which processes 500 mL of reclaimed water, qPCR can detect DNA concentrations as low as one A. lumbricoides egg equivalent, while dPCR can detect DNA concentrations as low as five A. lumbricoides egg equivalents. By using the second protocol, which processes 10 L of reclaimed water, qPCR was able to detect DNA concentrations equivalent to 20 A. lumbricoides eggs. This fact indicated the importance of developing new methodologies to detect helminth eggs with higher sensitivity and precision avoiding possible human infection risks.

  8. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases.

    PubMed

    Mock, Ulrike; Hauber, Ilona; Fehse, Boris

    2016-03-01

    Genome editing using designer nucleases such as transcription activator-like effector nucleases (TALENs) or clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 nucleases is an emerging technology in basic and applied research. Whereas the application of editing tools, namely CRISPR-Cas9, has recently become very straightforward, quantification of resulting gene knockout rates still remains a bottleneck. This is particularly true if the product of a targeted gene is not easily detectable. To address this problem, we devised a novel gene-editing frequency digital PCR (GEF-dPCR) technique. GEF-dPCR exploits two differently labeled probes that are placed within one amplicon at the gene-editing target site to simultaneously detect wild-type and nonhomologous end-joining (NHEJ)-affected alleles. Taking advantage of the principle of dPCR, this enables concurrent quantification of edited and wild-type alleles in a given sample. We propose that our method is optimal for the monitoring of gene-edited cells in vivo, e.g., in clinical settings. Here we describe preparation, design of primers and probes, and setup and analysis of GEF-dPCR. The setup of GEF-dPCR requires up to 2 weeks (depending on the starting point); once the dPCR has been established, the protocol for sample analysis takes <1 d.

  9. Real-time PCR (qPCR) primer design using free online software.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  10. A survey of tools for the analysis of quantitative PCR (qPCR) data.

    PubMed

    Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas

    2014-09-01

    Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  11. How Many Microorganisms Are Present? Quantitative Reverse Transcription PCR (qRT-PCR)

    NASA Astrophysics Data System (ADS)

    Price, Andy; Álvarez, Laura Acuña; Whitby, Corinne; Larsen, Jan

    Quantitative reverse transcription PCR (qRT-PCR) is a variation of conventional quantitative or real-time PCR, whereby mRNA is first converted into the complementary DNA (cDNA) by reverse transcription, the cDNA is then subsequently quantified by qPCR. The use of mRNA as the initial template allows the quantification of gene transcripts, rather than gene copy numbers. mRNA is only produced by actively metabolising cells and is produced by its corresponding gene to provide a 'blueprint' in order for a cell to manufacture a specific protein. Conventional qPCR detects not only DNA present in actively metabolising cells but also inactive and dead cells. qRT-PCR has the advantage that only actively metabolising cells are detected, hence provides a more reliable measure of microbial activity in oilfield samples. When qRT-PCR is combined with primers and probes for specific genes, the activity of microbial processes important in the oilfield, such as sulphate reduction, methanogenesis and nitrate reduction can be monitored.

  12. Quantitative PCR and Digital PCR for Detection of Ascaris lumbricoides Eggs in Reclaimed Water

    PubMed Central

    Santísima-Trinidad, Ana Belén; Bornay-Llinares, Fernando Jorge; Martín González, Marcos; Pascual Valero, José Antonio; Ros Muñoz, Margarita

    2017-01-01

    The reuse of reclaimed water from wastewater depuration is a widespread and necessary practice in many areas around the world and must be accompanied by adequate and continuous quality control. Ascaris lumbricoides is one of the soil-transmitted helminths (STH) with risk for humans due to its high infectivity and an important determinant of transmission is the inadequacy of water supplies and sanitation. The World Health Organization (WHO) recommends a limit equal to or lower than one parasitic helminth egg per liter, to reuse reclaimed water for unrestricted irrigation. We present two new protocols of DNA extraction from large volumes of reclaimed water. Quantitative PCR (qPCR) and digital PCR (dPCR) were able to detect low amounts of A. lumbricoides eggs. By using the first extraction protocol, which processes 500 mL of reclaimed water, qPCR can detect DNA concentrations as low as one A. lumbricoides egg equivalent, while dPCR can detect DNA concentrations as low as five A. lumbricoides egg equivalents. By using the second protocol, which processes 10 L of reclaimed water, qPCR was able to detect DNA concentrations equivalent to 20 A. lumbricoides eggs. This fact indicated the importance of developing new methodologies to detect helminth eggs with higher sensitivity and precision avoiding possible human infection risks. PMID:28377928

  13. Identification of bacterial plant pathogens using multilocus PCR and electrospray ionization-mass spectrometry (PCR/ESI-MS)

    USDA-ARS?s Scientific Manuscript database

    PCR/electrospray ionization-mass spectrometry (PCR/ESI-MS, previously known as “TIGER”) utilizes PCR with broad range primers to amplify products from wide array of organisms within a taxonomic group, followed by analysis of PCR amplicons using mass spectrometry. Computer analysis of precise masses ...

  14. Rapid PCR thermocycling using microscale thermal convection.

    PubMed

    Muddu, Radha; Hassan, Yassin A; Ugaz, Victor M

    2011-03-05

    Many molecular biology assays depend in some way on the polymerase chain reaction (PCR) to amplify an initially dilute target DNA sample to a detectable concentration level. But the design of conventional PCR thermocycling hardware, predominantly based on massive metal heating blocks whose temperature is regulated by thermoelectric heaters, severely limits the achievable reaction speed(1). Considerable electrical power is also required to repeatedly heat and cool the reagent mixture, limiting the ability to deploy these instruments in a portable format. Thermal convection has emerged as a promising alternative thermocycling approach that has the potential to overcome these limitations(2-9). Convective flows are an everyday occurrence in a diverse array of settings ranging from the Earth's atmosphere, oceans, and interior, to decorative and colorful lava lamps. Fluid motion is initiated in the same way in each case: a buoyancy driven instability arises when a confined volume of fluid is subjected to a spatial temperature gradient. These same phenomena offer an attractive way to perform PCR thermocycling. By applying a static temperature gradient across an appropriately designed reactor geometry, a continuous circulatory flow can be established that will repeatedly transport PCR reagents through temperature zones associated with the denaturing, annealing, and extension stages of the reaction (Figure 1). Thermocycling can therefore be actuated in a pseudo-isothermal manner by simply holding two opposing surfaces at fixed temperatures, completely eliminating the need to repeatedly heat and cool the instrument. One of the main challenges facing design of convective thermocyclers is the need to precisely control the spatial velocity and temperature distributions within the reactor to ensure that the reagents sequentially occupy the correct temperature zones for a sufficient period of time(10,11). Here we describe results of our efforts to probe the full 3-D velocity and

  15. A quadruplex PCR (qxPCR) assay for adulteration in dairy products.

    PubMed

    Agrimonti, Caterina; Pirondini, Andrea; Marmiroli, Marta; Marmiroli, Nelson

    2015-11-15

    This study describes the development of a quadruplex quantitative Real Time PCR (qxPCR) based on SYBR®GreenER chemistry, for rapid identification of DNA of cow, goat, sheep and buffalo in dairy products, and for quantification of cow DNA in these products. The platform was applied to: (i) mixes of milks at fixed percentages; (ii) cheeses prepared with the same mixes; (iii) commercial dairy products. The methodology enabled the detection of DNA from cow in mixes of milk and cheeses with a limit of detection (LOD) of 0.1%. When applied to commercial dairy products the qxPCR gave results comparable with each single-plex Real Time PCR. A good correlation (R(2)>0.9) between peaks' area of derivative of melting curves of amplicons and percentages of cow milk in milk mixes and cheeses, allows for an estimation of cow DNA in a dynamic range varying from 0.1-5% to 1-25%.

  16. Multiplex-PCR and PCR-RFLP assays to monitor water quality against pathogenic bacteria.

    PubMed

    Abd-El-Haleem, Desouky; Kheiralla, Zeinab H; Zaki, Sahar; Rushdy, Abeer A; Abd-El-Rahiem, Walaa

    2003-12-01

    In this work we developed and optimized two molecular-based approaches to monitor rapidly, sensitively and specifically bacterial pathogens from three different genera, Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp., directly in waters. To achieve this aim, firstly a multiplex-PCR assay (M-PCR) was optimized using a primer pair specific for each pathogen. Secondly, as a molecular confirmatory test after isolation of the pathogens by classical microbiological methods, PCR-RFLP of their amplified 16S rDNA genes was performed. It was observed from the results that the developed M-PCR assay has significant impact on the ability to detect sensitively, rapidly and specifically the three pathogens directly in water within a short time (5 h from sampling to obtain final results), therefore it represents a considerable advancement over other known more time-consuming and less-sensitive methods for identification and characterization of these kinds of pathogens.

  17. Replaceable Microfluidic Cartridges for a PCR Biosensor

    NASA Technical Reports Server (NTRS)

    Francis, Kevin; Sullivan, Ron

    2005-01-01

    The figure depicts a replaceable microfluidic cartridge that is a component of a miniature biosensor that detects target deoxyribonucleic acid (DNA) sequences. The biosensor utilizes (1) polymerase chain reactions (PCRs) to multiply the amount of DNA to be detected, (2) fluorogenic polynucleotide probe chemicals for labeling the target DNA sequences, and (3) a high-sensitivity epifluorescence-detection optoelectronic subsystem. Microfluidics is a relatively new field of device development in which one applies techniques for fabricating microelectromechanical systems (MEMS) to miniature systems for containing and/or moving fluids. Typically, microfluidic devices are microfabricated, variously, from silicon or polymers. The development of microfluidic devices for applications that involve PCR and fluorescence-based detection of PCR products poses special challenges

  18. Experimental PCR data on soil DNA extracts

    USGS Publications Warehouse

    Griffin, Dale W.

    2016-01-01

    Bacillus species and B. anthracis presence/absence data were determined in 4,770 soil samples collected across the contiguous United States in collaboration with the USEPA. PCR data for Bacillus species and B. anthracis rpoB gene PCR amplicon detection was reported as non-detect (n), low (l), medium (m), and high (h). Results for both pag and lef genes of the pX01 plasmid were reported by the University of South Florida's Center for Biological Defense. This data was recorded as negative or positive for each of the genes and included the following combinations: neg/neg, pos/neg, neg/pos, and pos/pos. Data for the pX02 plasmid were recorded as negative (blank) or positive (Y).

  19. A nanofluidic system for massively parallel PCR

    NASA Astrophysics Data System (ADS)

    Brenan, Colin; Morrison, Tom; Roberts, Douglas; Hurley, James

    2008-02-01

    Massively parallel nanofluidic systems are lab-on-a-chip devices where solution phase biochemical and biological analyses are implemented in high density arrays of nanoliter holes micro-machined in a thin platen. Polymer coatings make the interior surfaces of the holes hydrophilic and the exterior surface of the platen hydrophobic for precise and accurate self-metered loading of liquids into each hole without cross-contamination. We have created a "nanoplate" based on this concept, equivalent in performance to standard microtiter plates, having 3072 thirty-three nanoliter holes in a stainless steel platen the dimensions of a microscope slide. We report on the performance of this device for PCR-based single nucleotide polymorphism (SNP) genotyping or quantitative measurement of gene expression by real-time PCR in applications ranging from plant and animal diagnostics, agricultural genetics and human disease research.

  20. Miniature PCR based portable bioaerosol monitor development.

    PubMed

    Agranovski, I E; Usachev, E V; Agranovski, E; Usacheva, O V

    2017-01-01

    A portable bioaerosol monitor is greatly demanded technology in many areas including air quality control, occupational exposure assessment and health risk evaluation, environmental studies and, especially, in defence and bio-terrorism applications. Our recent groundwork allowed us to formulate the concept of a portable bioaerosol monitor, which needs to be light, user friendly, reliable and capable of detecting airborne pathogens within 1-1·5 h on the spot. Conceptually, the event of a bioaerosol concentration burst is determined by triggers to commence the representative air sampling with sequential real-time polymerase chain reaction (PCR) confirmation of the targeted micro-organism present in the air. To minimize reagent consumption and idle running of the technology, an event of a bioaerosol burst is confirmed by three parameters: aerosol particle size, concentration and composition. Only particle sizes above 200 nm attract interest in the bioaerosol. Only an elevated aerosol concentration above the threshold (background aerosol concentration) is a signal to commence the analytical procedure. The combination of our previously developed personal bioaerosol sampler, aerosol particle counter based trigger and portable real-time PCR device formed the basis of the bioaerosol monitoring technology. The portable real-time PCR device was advanced to provide internally controlled detection, significantly reducing false-positive alarms. The technique is capable of detecting selected airborne micro-organisms on the spot within 30-80 min, depending on the genome organization of the particular strain. Due to recent outbreaks of infectious airborne diseases and the continuing threat of intentionally released bioaerosol attacks, investigations into the possibility of the early and reliable detection of pathogenic micro-organisms in the air is becoming increasingly important. The proposed technology consisting of a bioaerosol sampler, technology trigger and PCR device is

  1. Digital PCR analysis of circulating nucleic acids.

    PubMed

    Hudecova, Irena

    2015-10-01

    Detection of plasma circulating nucleic acids (CNAs) requires the use of extremely sensitive and precise methods. The commonly used quantitative real-time polymerase chain reaction (PCR) poses certain technical limitations in relation to the precise measurement of CNAs whereas the costs of massively parallel sequencing are still relatively high. Digital PCR (dPCR) now represents an affordable and powerful single molecule counting strategy to detect minute amounts of genetic material with performance surpassing many quantitative methods. Microfluidic (chip) and emulsion (droplet)-based technologies have already been integrated into platforms offering hundreds to millions of nanoliter- or even picoliter-scale reaction partitions. The compelling observations reported in the field of cancer research, prenatal testing, transplantation medicine and virology support translation of this technology into routine use. Extremely sensitive plasma detection of rare mutations originating from tumor or placental cells among a large background of homologous sequences facilitates unraveling of the early stages of cancer or the detection of fetal mutations. Digital measurement of quantitative changes in plasma CNAs associated with cancer or graft rejection provides valuable information on the monitoring of disease burden or the recipient's immune response and subsequent therapy treatment. Furthermore, careful quantitative assessment of the viral load offers great value for effective monitoring of antiviral therapy for immunosuppressed or transplant patients. The present review describes the inherent features of dPCR that make it exceptionally robust in precise and sensitive quantification of CNAs. Moreover, I provide an insight into the types of potential clinical applications that have been developed by researchers to date.

  2. A Disposable, Self-Contained PCR Chip

    PubMed Central

    Kim, Jitae; Byun, Doyoung; Mauk, Michael G.; Bau, Haim H.

    2009-01-01

    A disposable, self-contained polymerase chain reaction (PCR) chip with on-board stored, just on time releasable, paraffin-passivated, dry reagents is described. During both storage and sample preparation, the paraffin immobilizes and protects the stored reagents. Fluid flow through the reactor leaves the reagents undisturbed. Prior to the amplification step, the chamber is filled with target analyte suspended in water. Upon heating the PCR chamber to the DNA’s denaturation temperature, the paraffin melts and moves out of the way, and the reagents are released and hydrated. To better understand the reagent release process, a scaled up model of the reactor was constructed and the paraffin migration was visualized. Experiments were carried out with a 30 μl reactor demonstrating detectable amplification (with agarose gel electrophoresis) of 10 fg (~200 copies) of lambda DNA template. The in-reactor storage and on-time release of the PCR reagents reduce the number of needed operations and significantly simplify the flow control that would, otherwise, be needed in lab-on-chip devices. PMID:19190797

  3. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR.

    PubMed

    Maheshwari, Yogita; Selvaraj, Vijayanandraj; Hajeri, Subhas; Yokomi, Raymond

    2017-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD) in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative) PCR (qPCR) for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR.

  4. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri

    PubMed Central

    Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  5. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR

    PubMed Central

    Hajeri, Subhas

    2017-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD) in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative) PCR (qPCR) for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR. PMID:28910375

  6. Triplet Repeat Primed PCR (TP-PCR) in Molecular Diagnostic Testing for Spinocerebellar Ataxia Type 3 (SCA3).

    PubMed

    Melo, Ana Rosa Vieira; Ramos, Amanda; Kazachkova, Nadiya; Raposo, Mafalda; Bettencourt, Bruno Filipe; Rendeiro, Ana Rita; Kay, Teresa; Vasconcelos, João; Bruges-Armas, Jácome; Lima, Manuela

    2016-12-01

    Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder for which the routine molecular testing is based on PCR and automated capillary electrophoresis. When only a normal allele is detected by standard PCR, the hypothesis of a failed amplification of the expanded allele must be raised. In such cases, complementary techniques such as Southern Blot or triplet repeat primed PCR (TP-PCR) have to be applied. For SCA3, TP-PCR is implemented in some diagnostic laboratories, but a tested protocol has yet to be published. The purpose of this study was to develop and test a TP-PCR protocol for SCA3. Sixty-five blood samples previously genotyped by standard PCR were used in the TP-PCR assay. Fourteen buccal swab samples were also analyzed to confirm the robustness of the technique. The reproducibility of the TP-PCR was evaluated by analyzing all samples in a second laboratory. The results obtained by TP-PCR confirmed the previous PCR results for 64 blood samples; in one sample an expanded allele, previously undetected by PCR, was identified. The results obtained for the buccal swab samples were totally concordant with those obtained for blood. Furthermore, the results obtained in the alternative laboratory were in full agreement with the results obtained in our study. The present TP-PCR protocol developed for SCA3 should constitute a reliable complementary technique to overcome the limitations of standard PCR.

  7. Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification.

    PubMed

    Zhang, Chunsun; Xing, Da

    2010-02-01

    This study develops a new microfluidic DNA amplification strategy for executing parallel DNA amplification in the microfluidic gradient polymerase chain reaction (MG-PCR) device. The developed temperature gradient microfluidic system is generated by using an innovative fin design. The device mainly consists of modular thermally conductive copper flake which is attached onto a finned aluminum heat sink with a small fan. In our microfluidic temperature gradient prototype, a non-linear temperature gradient is produced along the gradient direction. On the copper flake of length 45 mm, width 40 mm and thickness 4 mm, the temperature gradient easily spans the range from 97 to 52 degrees Celsius. By making full use of the hot (90-97 degrees Celsius) and cold (60-70 degrees Celsius) regions on the temperature gradient device, the parallel, two-temperature MG-PCR amplification is feasible. As a demonstration, the MG-PCR from three parallel reactions of 112-bp Escherichia coli DNA fragment is performed in a continuous-flow format, in which the flow of the PCR reagent in the closed loop is induced by the buoyancy-driven nature convection. Although the prototype is not optimized, the MG-PCR amplification can be completed in less than 45 min. However, the MG-PCR thermocycler presented herein can be further scaled-down, and thus the amplification times and reagent consumption can be further reduced. In addition, the currently developed temperature gradient technology can be applied onto other continuous-flow MG-PCR systems or used for other analytical purposes such as parallel and combination measurements, and fluorescent melting curve analysis.

  8. Overcoming inhibition in real-time diagnostic PCR.

    PubMed

    Hedman, Johannes; Rådström, Peter

    2013-01-01

    PCR is an important and powerful tool in several fields, including clinical diagnostics, food analysis, and forensic analysis. In theory, PCR enables the detection of one single cell or DNA molecule. However, the presence of PCR inhibitors in the sample affects the amplification efficiency of PCR, thus lowering the detection limit, as well as the precision of sequence-specific nucleic acid quantification in real-time PCR. In order to overcome the problems caused by PCR inhibitors, all the steps leading up to DNA amplification must be optimized for the sample type in question. Sampling and sample treatment are key steps, but most of the methods currently in use were developed for conventional diagnostic methods and not for PCR. Therefore, there is a need for fast, simple, and robust sample preparation methods that take advantage of the accuracy of PCR. In addition, the thermostable DNA polymerases and buffer systems used in PCR are affected differently by inhibitors. During recent years, real-time PCR has developed considerably and is now widely used as a diagnostic tool. This technique has greatly improved the degree of automation and reduced the analysis time, but has also introduced a new set of PCR inhibitors, namely those affecting the fluorescence signal. The purpose of this chapter is to view the complexity of PCR inhibition from different angles, presenting both molecular explanations and practical ways of dealing with the problem. Although diagnostic PCR brings together scientists from different diagnostic fields, end-users have not fully exploited the potential of learning from each other. Here, we have collected knowledge from archeological analysis, clinical diagnostics, environmental analysis, food analysis, and forensic analysis. The concept of integrating sampling, sample treatment, and the chemistry of PCR, i.e., pre-PCR processing, will be addressed as a general approach to overcoming real-time PCR inhibition and producing samples optimal for PCR

  9. TqPCR: A Touchdown qPCR Assay with Significantly Improved Detection Sensitivity and Amplification Efficiency of SYBR Green qPCR

    PubMed Central

    Zhang, Qian; Wang, Jing; Deng, Fang; Yan, Zhengjian; Xia, Yinglin; Wang, Zhongliang; Ye, Jixing; Deng, Youlin; Zhang, Zhonglin; Qiao, Min; Li, Ruifang; Denduluri, Sahitya K.; Wei, Qiang; Zhao, Lianggong; Lu, Shun; Wang, Xin; Tang, Shengli; Liu, Hao; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan; Jiang, Li

    2015-01-01

    The advent of fluorescence-based quantitative real-time PCR (qPCR) has revolutionized the quantification of gene expression analysis in many fields, including life sciences, agriculture, forensic science, molecular diagnostics, and medicine. While SYBR Green-based qPCR is the most commonly-used platform due to its inexpensive nature and robust chemistry, quantifying the expression of genes with low abundance or RNA samples extracted from highly restricted or limited sources can be challenging because the detection sensitivity of SYBR Green-based qPCR is limited. Here, we develop a novel and effective touchdown qPCR (TqPCR) protocol by incorporating a 4-cycle touchdown stage prior to the quantification amplification stage. Using the same cDNA templates, we find that TqPCR can reduce the average Cq values for Gapdh, Rps13, and Hprt1 reference genes by 4.45, 5.47, and 4.94 cycles, respectively, when compared with conventional qPCR; the overall average Cq value reduction for the three reference genes together is 4.95. We further find that TqPCR can improve PCR amplification efficiency and thus increase detection sensitivity. When the quantification of Wnt3A-induced target gene expression in mesenchymal stem cells is analyzed, we find that, while both conventional qPCR and TqPCR can detect the up-regulation of the relatively abundant target Axin2, only TqPCR can detect the up-regulation of the lowly-expressed targets Oct4 and Gbx2. Finally, we demonstrate that the MRQ2 and MRQ3 primer pairs derived from mouse reference gene Tbp can be used to validate the RNA/cDNA integrity of qPCR samples. Taken together, our results strongly suggest that TqPCR may increase detection sensitivity and PCR amplification efficiency. Overall, TqPCR should be advantageous over conventional qPCR in expression quantification, especially when the transcripts of interest are lowly expressed, and/or the availability of total RNA is highly restricted or limited. PMID:26172450

  10. TqPCR: A Touchdown qPCR Assay with Significantly Improved Detection Sensitivity and Amplification Efficiency of SYBR Green qPCR.

    PubMed

    Zhang, Qian; Wang, Jing; Deng, Fang; Yan, Zhengjian; Xia, Yinglin; Wang, Zhongliang; Ye, Jixing; Deng, Youlin; Zhang, Zhonglin; Qiao, Min; Li, Ruifang; Denduluri, Sahitya K; Wei, Qiang; Zhao, Lianggong; Lu, Shun; Wang, Xin; Tang, Shengli; Liu, Hao; Luu, Hue H; Haydon, Rex C; He, Tong-Chuan; Jiang, Li

    2015-01-01

    The advent of fluorescence-based quantitative real-time PCR (qPCR) has revolutionized the quantification of gene expression analysis in many fields, including life sciences, agriculture, forensic science, molecular diagnostics, and medicine. While SYBR Green-based qPCR is the most commonly-used platform due to its inexpensive nature and robust chemistry, quantifying the expression of genes with low abundance or RNA samples extracted from highly restricted or limited sources can be challenging because the detection sensitivity of SYBR Green-based qPCR is limited. Here, we develop a novel and effective touchdown qPCR (TqPCR) protocol by incorporating a 4-cycle touchdown stage prior to the quantification amplification stage. Using the same cDNA templates, we find that TqPCR can reduce the average Cq values for Gapdh, Rps13, and Hprt1 reference genes by 4.45, 5.47, and 4.94 cycles, respectively, when compared with conventional qPCR; the overall average Cq value reduction for the three reference genes together is 4.95. We further find that TqPCR can improve PCR amplification efficiency and thus increase detection sensitivity. When the quantification of Wnt3A-induced target gene expression in mesenchymal stem cells is analyzed, we find that, while both conventional qPCR and TqPCR can detect the up-regulation of the relatively abundant target Axin2, only TqPCR can detect the up-regulation of the lowly-expressed targets Oct4 and Gbx2. Finally, we demonstrate that the MRQ2 and MRQ3 primer pairs derived from mouse reference gene Tbp can be used to validate the RNA/cDNA integrity of qPCR samples. Taken together, our results strongly suggest that TqPCR may increase detection sensitivity and PCR amplification efficiency. Overall, TqPCR should be advantageous over conventional qPCR in expression quantification, especially when the transcripts of interest are lowly expressed, and/or the availability of total RNA is highly restricted or limited.

  11. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    PubMed

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-10-29

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally.

  12. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    PubMed

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-12-01

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally.

  13. Lab-on-a-chip PCR: real time PCR in miniaturized format for HLA diagnostics

    NASA Astrophysics Data System (ADS)

    Gaertner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Sewart, René; Frank, Rainer; Willems, Andreas

    2014-05-01

    In case of transplantation or the identification of special metabolic diseases like coeliac disease, HLA typing has to be done fast and reliably with easy-to-handle devices by using limited amount of sample. Against this background a lab-on-a-chip device was realized enabling a fast HLA typing via miniaturized Real-time PCR. Hereby, two main process steps were combined, namely the extraction of DNA from whole blood and the amplification of the target DNA by Real-time PCR giving rise-to a semi-quantitative analysis. For the implementation of both processes on chip, a sample preparation and a real-time module were used. Sample preparation was carried out by using magnetic beads that were stored directly on chip as dry powder, together with all lysis reagents. After purification of the DNA by applying a special buffer regime, the sample DNA was transferred into the PCR module for amplification and detection. Coping with a massively increased surface-to-volume ratio, which results in a higher amount of unspecific binding on the chip surface, special additives needed to be integrated to compensate for this effect. Finally the overall procedure showed a sensitivity comparable to standard Real-time PCR but reduced the duration of analysis to significantly less than one hour. The presented work demonstrates that the combination of lab-on-a-chip PCR with direct optical read-out in a real-time fashion is an extremely promising tool for molecular diagnostics.

  14. Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR).

    PubMed

    Tiirola, Marja A; Suvilampi, Juhani E; Kulomaa, Markku S; Rintala, Jukka A

    2003-05-01

    A two-stage pilot-scale thermophilic aerobic suspended carrier biofilm process (SCBP) was set up for the on-site treatment of pulp and paper mill whitewater lining. The microbial diversity in this process was analyzed by length heterogeneity analysis of PCR-amplified 16S ribosomal DNA. The primer pair selected for PCR amplification was first evaluated by a computational analysis of fragment lengths in ten main phylogenetical eubacterial groups. The fragment contained the first third of the 16S rRNA gene, which was shown to vary naturally between 465 and 563 bp in length. The length heterogeneity analysis of polymerase chain reaction (LH-PCR) profile of the biomass attached to carrier elements was found to be diverse in both stages of the SCBP. During normal operating conditions, sequences belonging to beta-Proteobacteria, Cytophaga/Flexibacter/Bacteroides group and gamma-Proteobacteria were assigned to the most prominent LH-PCR peak. Samples from the suspended biomass consisted of completely different bacterial populations, which were, however, similar in the serial reactors. The pilot process experienced alkaline shocks, after which Bacillus-like sequences were detected in both the biofilm and suspended biomass. However, when the conditions were reversed, the normal microbial population in the biofilm recovered rapidly without further biomass inoculations. This study shows that LH-PCR is a valuable method for profiling microbial diversity and dynamics in industrial wastewater processes.

  15. Viral diagnostics in the era of digital PCR

    PubMed Central

    Sedlak, Ruth Hall; Jerome, Keith R.

    2012-01-01

    Unlike quantitative PCR (qPCR), digital PCR (dPCR) achieves sensitive and accurate absolute quantitation of a DNA sample without the need for a standard curve. A single PCR reaction is divided into many separate reactions that each have a positive or negative signal. By applying Poisson statistics, the number of DNA molecules in the original sample is directly calculated from the number of positive and negative reactions. The recent availability of multiple commercial dPCR platforms has led to increased interest in clinical diagnostic applications, such as low viral load detection and low abundance mutant detection, where dPCR could be superior to traditional qPCR.Here we review current literature that demonstrates dPCR’s potential utility in viral diagnostics, particularly through absolute quantification of target DNA sequences and rare mutant allele detection. PMID:23182074

  16. Tiempo para un cambio

    NASA Astrophysics Data System (ADS)

    Woltjer, L.

    1987-06-01

    En la reunion celebrada en diciembre dei ano pasado informe al Consejo de mi deseo de terminar mi contrato como Director General de la ESO una vez que fuera aprobado el proyecto dei VLT, que se espera sucedera hacia fines de este aAo. Cuando fue renovada mi designacion hace tres aAos, el Consejo conocia mi intencion de no completar los cinco aAos dei contrato debido a mi deseo de disponer de mas tiempo para otras actividades. Ahora, una vez terminada la fase preparatoria para el VLT, Y habiendose presentado el proyecto formalmente al Consejo el dia 31 de marzo, y esperando su muy probable aprobacion antes dei termino de este ano, me parece que el 10 de enero de 1988 presenta una excelente fecha para que se produzca un cambio en la administracion de la ESO.

  17. Miniaturized detection system for handheld PCR assays

    NASA Astrophysics Data System (ADS)

    Richards, James B.; Benett, William J.; Stratton, Paul; Hadley, Dean R.; Nasarabadi, Shanavaz L.; Milanovich, Fred P.

    2000-12-01

    We have developed and delivered a four chamber, battery powered, handheld instrument referred to as the HANAA which monitors the polymerase chain reaction (PCR) process using a TaqMan based fluorescence assay. The detection system differs form standard configurations in two essential ways. First, the size is miniaturized, with a combined cycling and optics plug-in module for a duplex assay begin about the size of a small box of matches. Second, the detection/analysis system is designed to call a positive sample in real time.

  18. Optimized PCR-based detection of mycoplasma.

    PubMed

    Dobrovolny, Paige L; Bess, Dan

    2011-06-20

    The maintenance of contamination-free cell lines is essential to cell-based research. Among the biggest contaminant concerns are mycoplasma contamination. Although mycoplasma do not usually kill contaminated cells, they are difficult to detect and can cause a variety of effects on cultured cells, including altered metabolism, slowed proliferation and chromosomal aberrations. In short, mycoplasma contamination compromises the value of those cell lines in providing accurate data for life science research. The sources of mycoplasma contamination in the laboratory are very challenging to completely control. As certain mycoplasma species are found on human skin, they can be introduced through poor aseptic technique. Additionally, they can come from contaminated supplements such as fetal bovine serum, and most importantly from other contaminated cell cultures. Once mycoplasma contaminates a culture, it can quickly spread to contaminate other areas of the lab. Strict adherence to good laboratory practices such as good aseptic technique are key, and routine testing for mycoplasma is highly recommended for successful control of mycoplasma contamination. PCR-based detection of mycoplasma has become a very popular method for routine cell line maintenance. PCR-based detection methods are highly sensitive and can provide rapid results, which allows researchers to respond quickly to isolate and eliminate contamination once it is detected in comparison to the time required using microbiological techniques. The LookOut Mycoplasma PCR Detection Kit is highly sensitive, with a detection limit of only 2 genomes per μl. Taking advantage of the highly specific JumpStart Taq DNA Polymerase and a proprietary primer design, false positives are greatly reduced. The convenient 8-tube format, strips pre-coated with dNTPs, and associated primers helps increase the throughput to meet the needs of customers with larger collections of cell lines. Given the extreme sensitivity of the kit, great

  19. Chip PCR. II. Investigation of different PCR amplification systems in microbabricated silicon-glass chips.

    PubMed Central

    Cheng, J; Shoffner, M A; Hvichia, G E; Kricka, L J; Wilding, P

    1996-01-01

    We examined PCR in silicon dioxide-coated silicon-glass chips (12 microl in volume with a surface to volume ratio of approximately 17.5 mm(2)/microl) using two PCR reagent systems: (i) the conventional reagent system using Taq DNA polymerase; (ii) the hot-start reagent system based on a mixture of TaqStart antibody and Taq DNA polymerase. Quantitative results obtained from capillary electrophoresis for the expected amplification products showed that amplification in microchips was reproducible (between batch coefficient of variation 7.71%) and provided excellent yields. We also used the chip for PCR directly from isolated intact human lymphocytes. The amplification results were comparable with those obtained using extracted human genomic DNA. This investigation is fundamental to the integration of sample preparation, polynucleotide amplification and amplicate detection on a microchip. PMID:8628666

  20. Determining Fungi rRNA Copy Number by PCR

    EPA Science Inventory

    The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within ...

  1. Determining Fungi rRNA Copy Number by PCR

    EPA Science Inventory

    The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within ...

  2. Automated PCR setup for forensic casework samples using the Normalization Wizard and PCR Setup robotic methods.

    PubMed

    Greenspoon, S A; Sykes, K L V; Ban, J D; Pollard, A; Baisden, M; Farr, M; Graham, N; Collins, B L; Green, M M; Christenson, C C

    2006-12-20

    Human genome, pharmaceutical and research laboratories have long enjoyed the application of robotics to performing repetitive laboratory tasks. However, the utilization of robotics in forensic laboratories for processing casework samples is relatively new and poses particular challenges. Since the quantity and quality (a mixture versus a single source sample, the level of degradation, the presence of PCR inhibitors) of the DNA contained within a casework sample is unknown, particular attention must be paid to procedural susceptibility to contamination, as well as DNA yield, especially as it pertains to samples with little biological material. The Virginia Department of Forensic Science (VDFS) has successfully automated forensic casework DNA extraction utilizing the DNA IQ(trade mark) System in conjunction with the Biomek 2000 Automation Workstation. Human DNA quantitation is also performed in a near complete automated fashion utilizing the AluQuant Human DNA Quantitation System and the Biomek 2000 Automation Workstation. Recently, the PCR setup for casework samples has been automated, employing the Biomek 2000 Automation Workstation and Normalization Wizard, Genetic Identity version, which utilizes the quantitation data, imported into the software, to create a customized automated method for DNA dilution, unique to that plate of DNA samples. The PCR Setup software method, used in conjunction with the Normalization Wizard method and written for the Biomek 2000, functions to mix the diluted DNA samples, transfer the PCR master mix, and transfer the diluted DNA samples to PCR amplification tubes. Once the process is complete, the DNA extracts, still on the deck of the robot in PCR amplification strip tubes, are transferred to pre-labeled 1.5 mL tubes for long-term storage using an automated method. The automation of these steps in the process of forensic DNA casework analysis has been accomplished by performing extensive optimization, validation and testing of the

  3. An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications.

    PubMed

    Champlot, Sophie; Berthelot, Camille; Pruvost, Mélanie; Bennett, E Andrew; Grange, Thierry; Geigl, Eva-Maria

    2010-09-28

    PCR amplification of minute quantities of degraded DNA for ancient DNA research, forensic analyses, wildlife studies and ultrasensitive diagnostics is often hampered by contamination problems. The extent of these problems is inversely related to DNA concentration and target fragment size and concern (i) sample contamination, (ii) laboratory surface contamination, (iii) carry-over contamination, and (iv) contamination of reagents. Here we performed a quantitative evaluation of current decontamination methods for these last three sources of contamination, and developed a new procedure to eliminate contaminating DNA contained in PCR reagents. We observed that most current decontamination methods are either not efficient enough to degrade short contaminating DNA molecules, rendered inefficient by the reagents themselves, or interfere with the PCR when used at doses high enough to eliminate these molecules. We also show that efficient reagent decontamination can be achieved by using a combination of treatments adapted to different reagent categories. Our procedure involves γ- and UV-irradiation and treatment with a mutant recombinant heat-labile double-strand specific DNase from the Antarctic shrimp Pandalus borealis. Optimal performance of these treatments is achieved in narrow experimental conditions that have been precisely analyzed and defined herein. There is not a single decontamination method valid for all possible contamination sources occurring in PCR reagents and in the molecular biology laboratory and most common decontamination methods are not efficient enough to decontaminate short DNA fragments of low concentration. We developed a versatile multistrategy decontamination procedure for PCR reagents. We demonstrate that this procedure allows efficient reagent decontamination while preserving the efficiency of PCR amplification of minute quantities of DNA.

  4. An Efficient Multistrategy DNA Decontamination Procedure of PCR Reagents for Hypersensitive PCR Applications

    PubMed Central

    Pruvost, Mélanie; Bennett, E. Andrew; Grange, Thierry; Geigl, Eva-Maria

    2010-01-01

    Background PCR amplification of minute quantities of degraded DNA for ancient DNA research, forensic analyses, wildlife studies and ultrasensitive diagnostics is often hampered by contamination problems. The extent of these problems is inversely related to DNA concentration and target fragment size and concern (i) sample contamination, (ii) laboratory surface contamination, (iii) carry-over contamination, and (iv) contamination of reagents. Methodology/Principal Findings Here we performed a quantitative evaluation of current decontamination methods for these last three sources of contamination, and developed a new procedure to eliminate contaminating DNA contained in PCR reagents. We observed that most current decontamination methods are either not efficient enough to degrade short contaminating DNA molecules, rendered inefficient by the reagents themselves, or interfere with the PCR when used at doses high enough to eliminate these molecules. We also show that efficient reagent decontamination can be achieved by using a combination of treatments adapted to different reagent categories. Our procedure involves γ- and UV-irradiation and treatment with a mutant recombinant heat-labile double-strand specific DNase from the Antarctic shrimp Pandalus borealis. Optimal performance of these treatments is achieved in narrow experimental conditions that have been precisely analyzed and defined herein. Conclusions/Significance There is not a single decontamination method valid for all possible contamination sources occurring in PCR reagents and in the molecular biology laboratory and most common decontamination methods are not efficient enough to decontaminate short DNA fragments of low concentration. We developed a versatile multistrategy decontamination procedure for PCR reagents. We demonstrate that this procedure allows efficient reagent decontamination while preserving the efficiency of PCR amplification of minute quantities of DNA. PMID:20927390

  5. Rapid direct PCR for ABO blood typing.

    PubMed

    Lee, Hwan Young; Park, Myung Jin; Kim, Na Young; Yang, Woo Ick; Shin, Kyoung-Jin

    2011-01-01

    Many different molecular typing methods have been reported to complement routine serological ABO blood typing in forensics. However, these ABO genotyping methods are often time-consuming and call for an initial DNA isolation step that requires the use of expensive kits or reagents. We report here a rapid direct ABO genotyping method that eliminates the need for DNA extraction from fresh blood, hair, and body fluid stains before PCR. Using a fast PCR instrument and an optimized polymerase, the genotyping method-which employs a multiplex allele-specific primer set for the simultaneous detection of three single-nucleotide polymorphism (SNP) sites (nucleotides 261, 526, and 803)-identifies A, B, O01/O02, O03, and cis-AB01 alleles in around 70 min from sample collection to electropherogram. Not only will this ABO genotyping method be efficiently used in forensic practice for rapid screening of samples before full-blown multilocus short tandem repeat profiling, but it will also demonstrate an example of rapid direct genotyping of SNPs that offers the advantages of time- and cost-efficiency, convenience, and reduced contamination during DNA analysis.

  6. An evaluation of direct PCR amplification

    PubMed Central

    Hall, Daniel E.; Roy, Reena

    2014-01-01

    Aim To generate complete DNA profiles from blood and saliva samples deposited on FTA® and non-FTA® paper substrates following a direct amplification protocol. Methods Saliva samples from living donors and blood samples from deceased individuals were deposited on ten different FTA® and non-FTA® substrates. These ten paper substrates containing body fluids were kept at room temperature for varying lengths of time ranging from one day to approximately one year. For all assays in this research, 1.2 mm punches were collected from each substrate containing one type of body fluid and amplified with reagents provided in the nine commercial polymerase chain reaction (PCR) amplification kits. The substrates were not subjected to purification reagent or extraction buffer prior to amplification. Results Success rates were calculated for all nine amplification kits and all ten substrates based on their ability to yield complete DNA profiles following a direct amplification protocol. Six out of the nine amplification kits, and four out of the ten paper substrates had the highest success rates overall. Conclusion The data show that it is possible to generate complete DNA profiles following a direct amplification protocol using both standard (non-direct) and direct PCR amplification kits. The generation of complete DNA profiles appears to depend more on the success of the amplification kit rather than the than the FTA®- or non-FTA®-based substrates. PMID:25559837

  7. In silico PCR primer designing and validation.

    PubMed

    Kumar, Anil; Chordia, Nikita

    2015-01-01

    Polymerase chain reaction (PCR) is an enzymatic reaction whose efficiency and sensitivity largely depend on the efficiency of the primers that are used for the amplification of a concerned gene/DNA fragment. Selective amplification of nucleic acid molecules initially present in minute quantities provides a powerful tool for analyzing nucleic acids. In silico method helps in designing primers. There are various programs available for PCR primer design. Here we described designing of primers using web-based tools like "Primer3" and "Web Primer". For designing the primer, DNA template sequence is required that can be taken from any of the available sequence databases, e.g., RefSeq database. The in silico validation can be carried out using BLAST tool and Gene Runner software, which check their efficiency and specificity. Thereafter, the primers designed in silico can be validated in the wet lab. After that, these validated primers can be synthesized for use in the amplification of concerned gene/DNA fragment.

  8. Radial Velocities with PARAS

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Mahadevan, S.; Chakraborty, A.; Pathan, F. M.; Anandarao, B. G.

    2010-01-01

    The Physical Research Laboratory Advanced Radial-velocity All-sky Search (PARAS) is an efficient fiber-fed cross-dispersed high-resolution echelle spectrograph that will see first light in early 2010. This instrument is being built at the Physical Research laboratory (PRL) and will be attached to the 1.2m telescope at Gurushikhar Observatory at Mt. Abu, India. PARAS has a single-shot wavelength coverage of 370nm to 850nm at a spectral resolution of R 70000 and will be housed in a vacuum chamber (at 1x10-2 mbar pressure) in a highly temperature controlled environment. This renders the spectrograph extremely suitable for exoplanet searches with high velocity precision using the simultaneous Thorium-Argon wavelength calibration method. We are in the process of developing an automated data analysis pipeline for echelle data reduction and precise radial velocity extraction based on the REDUCE package of Piskunov & Valenti (2002), which is especially careful in dealing with CCD defects, extraneous noise, and cosmic ray spikes. Here we discuss the current status of the PARAS project and details and tests of the data analysis procedure, as well as results from ongoing PARAS commissioning activities.

  9. A Guide to Using STITCHER for Overlapping Assembly PCR Applications.

    PubMed

    O'Halloran, Damien M

    2017-01-01

    Overlapping PCR is commonly used in many molecular applications that include stitching PCR fragments together, generating fluorescent transcriptional and translational fusions, inserting mutations, making deletions, and PCR cloning. Overlapping PCR is also used for genotyping and in detection experiments using techniques such as loop-mediated isothermal amplification (LAMP). STITCHER is a web tool providing a central resource for researchers conducting all types of overlapping assembly PCR experiments with an intuitive interface for automated primer design that's fast, easy to use, and freely available online.

  10. A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer.

    PubMed

    Campomenosi, Paola; Gini, Elisabetta; Noonan, Douglas M; Poli, Albino; D'Antona, Paola; Rotolo, Nicola; Dominioni, Lorenzo; Imperatori, Andrea

    2016-08-18

    Selected microRNAs (miRNAs) that are abnormally expressed in the serum of patients with lung cancer have recently been proposed as biomarkers of this disease. The measurement of circulating miRNAs, however, requires a highly reliable quantification method. Quantitative real-time PCR (qPCR) is the most commonly used method, but it lacks reliable endogenous reference miRNAs for normalization of results in biofluids. When used in absolute quantification, it must rely on the use of external calibrators. Droplet digital PCR (ddPCR) is a recently introduced technology that overcomes the normalization issue and may facilitate miRNA measurement. Here we compared the performance of absolute qPCR and ddPCR techniques for quantifying selected miRNAs in the serum. In the first experiment, three miRNAs, proposed in the literature as lung cancer biomarkers (miR-21, miR-126 and let-7a), were analyzed in a set of 15 human serum samples. Four independent qPCR and four independent ddPCR amplifications were done on the same samples and used to estimate the precision and correlation of miRNA measurements obtained with the two techniques. The precision of the two methods was evaluated by calculating the Coefficient of Variation (CV) of the four independent measurements obtained with each technique. The CV was similar or smaller in ddPCR than in qPCR for all miRNAs tested, and was significantly smaller for let-7a (p = 0.028). Linear regression analysis of the miRNA values obtained with qPCR and ddPCR showed strong correlation (p < 0.001). To validate the correlation obtained with the two techniques in the first experiment, in a second experiment the same miRNAs were measured in a larger cohort (70 human serum samples) by both qPCR and ddPCR. The correlation of miRNA analyses with the two methods was significant for all three miRNAs. Moreover, in our experiments the ddPCR technique had higher throughput than qPCR, at a similar cost-per-sample. Analyses of serum miRNAs performed

  11. cDNA amplification by SMART-PCR and suppression subtractive hybridization (SSH)-PCR.

    PubMed

    Hillmann, Andrew; Dunne, Eimear; Kenny, Dermot

    2009-01-01

    The comparison of two RNA populations that differ from the effects of a single-independent variable, such as a drug treatment or a specific genetic defect, can identify differences in the abundance of specific transcripts that vary in a population-dependent manner. There are a variety of methods for identifying differentially expressed genes, including microarray, SAGE, qRT-PCR, and DDGE. This protocol describes a potentially less sensitive yet relatively easy and cost-effective alternative that does not require prior knowledge of the transcriptomes under investigation and is particularly applicable when minimal levels of starting material, RNA, are available. RNA input can often be a limiting factor when analyzing RNA from, for example, rigorously purified blood cells. This protocol describes the use of SMART-PCR to amplify cDNA from sub-microgram levels of RNA. The amplified cDNA populations under comparison are then subjected to suppression subtractive hybridization (SSH-PCR), a technique that couples subtractive hybridization with suppression PCR to selectively amplify fragments of differentially expressed genes. The final products are cDNA populations enriched for significantly over-represented transcripts in either of the two input RNA preparations. These cDNA populations may then be cloned to make subtracted cDNA libraries and/or used as probes to screen subtracted cDNA, global cDNA, or genomic DNA libraries.

  12. Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR).

    PubMed

    Felder, Eva; Mossbrugger, Ilona; Lange, Mirko; Wölfel, Roman

    2012-09-01

    Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR) assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5'-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.

  13. Accurate quantification of supercoiled DNA by digital PCR.

    PubMed

    Dong, Lianhua; Yoo, Hee-Bong; Wang, Jing; Park, Sang-Ryoul

    2016-04-11

    Digital PCR (dPCR) as an enumeration-based quantification method is capable of quantifying the DNA copy number without the help of standards. However, it can generate false results when the PCR conditions are not optimized. A recent international comparison (CCQM P154) showed that most laboratories significantly underestimated the concentration of supercoiled plasmid DNA by dPCR. Mostly, supercoiled DNAs are linearized before dPCR to avoid such underestimations. The present study was conducted to overcome this problem. In the bilateral comparison, the National Institute of Metrology, China (NIM) optimized and applied dPCR for supercoiled DNA determination, whereas Korea Research Institute of Standards and Science (KRISS) prepared the unknown samples and quantified them by flow cytometry. In this study, several factors like selection of the PCR master mix, the fluorescent label, and the position of the primers were evaluated for quantifying supercoiled DNA by dPCR. This work confirmed that a 16S PCR master mix avoided poor amplification of the supercoiled DNA, whereas HEX labels on dPCR probe resulted in robust amplification curves. Optimizing the dPCR assay based on these two observations resulted in accurate quantification of supercoiled DNA without preanalytical linearization. This result was validated in close agreement (101~113%) with the result from flow cytometry.

  14. Accurate quantification of supercoiled DNA by digital PCR

    PubMed Central

    Dong, Lianhua; Yoo, Hee-Bong; Wang, Jing; Park, Sang-Ryoul

    2016-01-01

    Digital PCR (dPCR) as an enumeration-based quantification method is capable of quantifying the DNA copy number without the help of standards. However, it can generate false results when the PCR conditions are not optimized. A recent international comparison (CCQM P154) showed that most laboratories significantly underestimated the concentration of supercoiled plasmid DNA by dPCR. Mostly, supercoiled DNAs are linearized before dPCR to avoid such underestimations. The present study was conducted to overcome this problem. In the bilateral comparison, the National Institute of Metrology, China (NIM) optimized and applied dPCR for supercoiled DNA determination, whereas Korea Research Institute of Standards and Science (KRISS) prepared the unknown samples and quantified them by flow cytometry. In this study, several factors like selection of the PCR master mix, the fluorescent label, and the position of the primers were evaluated for quantifying supercoiled DNA by dPCR. This work confirmed that a 16S PCR master mix avoided poor amplification of the supercoiled DNA, whereas HEX labels on dPCR probe resulted in robust amplification curves. Optimizing the dPCR assay based on these two observations resulted in accurate quantification of supercoiled DNA without preanalytical linearization. This result was validated in close agreement (101~113%) with the result from flow cytometry. PMID:27063649

  15. Droplet digital PCR for absolute quantification of pathogens.

    PubMed

    Gutiérrez-Aguirre, Ion; Rački, Nejc; Dreo, Tanja; Ravnikar, Maja

    2015-01-01

    The recent advent of different digital PCR (dPCR) platforms is enabling the expansion of this technology for research and diagnostic applications worldwide. The main principle of dPCR, as in other PCR-based methods including quantitative PCR (qPCR), is the specific amplification of a nucleic acid target. The distinctive feature of dPCR is the separation of the reaction mixture into thousands to millions of partitions which is followed by a real time or end point detection of the amplification. The distribution of target sequences into partitions is described by the Poisson distribution, thus allowing accurate and absolute quantification of the target from the ratio of positive against all partitions at the end of the reaction. This omits the need to use reference materials with known target concentrations and increases the accuracy of quantification at low target concentrations compared to qPCR. dPCR has also shown higher resilience to inhibitors in a number of different types of samples. In this chapter we describe the droplet digital PCR (ddPCR) workflow for the detection and quantification of pathogens using the droplet digital Bio-Rad platform QX100. We present as an example the quantification of the quarantine plant pathogenic bacterium, Erwinia amylovora.

  16. Application of real time PCR for diagnosis of Swine Dysentery.

    PubMed

    Akase, Satoru; Uchitani, Yumi; Sohmura, Yoshiko; Tatsuta, Keikichi; Sadamasu, Kenji; Adachi, Yoshikazu

    2009-03-01

    Evaluation of a genetic diagnostic technique using real time PCR of Swine Dysentery (SD) was performed using nox primers. Culture, ordinary PCR and real time PCR were compared in this experiment. Sixty-seven specimens from pigs with clinical signs of SD brought to a slaughterhouse in Shibaura, Tokyo, were used. B. hyodysenteriae was isolated from 49 of the pigs, was detected by ordinary PCR in 49 of the pigs and was detected by real time PCR in 54 of the pigs. Furthermore, we were able to determine the numbers of B. hyodysenteriae cells in all positive specimens by real time PCR. The rapid diagnostic technique established in this experiment was useful for detection of B. hyodysenteriae because it was more effective than ordinary PCR and culture.

  17. DNA polymerase preference determines PCR priming efficiency

    PubMed Central

    2014-01-01

    Background Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3’ hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Results Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3’ end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. Conclusions DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification

  18. Comparative detection of rabies RNA by NASBA, real-time PCR and conventional PCR.

    PubMed

    Wacharapluesadee, Supaporn; Phumesin, Patta; Supavonwong, Pornpun; Khawplod, Pakamatz; Intarut, Nirun; Hemachudha, Thiravat

    2011-08-01

    Five methods for the RNA detection of rabies virus were directly compared in this study. These included conventional nucleic acid sequence-based amplification with electrochemiluminescence (NASBA-ECL) assay, reverse transcription (RT)-heminested (hn) polymerase chain reaction (PCR) and TaqMan real-time RT-PCR using protocols as described previously. The first two methods have been routinely utilised for ante-mortem diagnosis of human rabies in Thailand and other rabies-endemic Asian and African countries. In addition, two real-time NASBA assays based on the use of a NucliSens EasyQ analyser (NASBA-Beacon-EQ) and LightCycler real-time PCR machine (NASBA-Beacon-LC) were studied in parallel. All methods target the N gene, whereas the L gene is used for RT-hnPCR. Using serial dilutions of purified RNA from rabies-infected dog brain tissue to assess sensitivity, all five methods had comparable degrees of sensitivities of detection. However, both real-time NASBA assays had slightly lower sensitivities by 10-fold than the other three assays. This finding was also true (except for TaqMan real-time RT-PCR due to a mismatch between the target and probe sequences) when laboratory-adapted (challenge virus standard-11) virus was used in the assays. Testing on previously NASBA-ECL positive clinical samples from 10 rabies patients (saliva [6] and brain [4]) and 10 rabies-infected dog brain tissues, similar results were obtained among the five methods; real-time NASBA assays yielded false-negative results on 2 saliva samples. None of the assays showed positive results on cerebrospinal fluid specimens of 10 patients without rabies encephalitis. Due to the unavailability of the NASBA-ECL assay, the results show that TaqMan real-time RT-PCR and RT-hnPCR can be useful for ante- and post-mortem diagnosis of rabies. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Improved PCR performance using template DNA from formalin-fixed and paraffin-embedded tissues by overcoming PCR inhibition.

    PubMed

    Dietrich, Dimo; Uhl, Barbara; Sailer, Verena; Holmes, Emily Eva; Jung, Maria; Meller, Sebastian; Kristiansen, Glen

    2013-01-01

    Formalin-fixed and paraffin-embedded (FFPE) tissues represent a valuable source for biomarker studies and clinical routine diagnostics. However, they suffer from degradation of nucleic acids due to the fixation process. Since genetic and epigenetic studies usually require PCR amplification, this degradation hampers its use significantly, impairing PCR robustness or necessitating short amplicons. In routine laboratory medicine a highly robust PCR performance is mandatory for the clinical utility of genetic and epigenetic biomarkers. Therefore, methods to improve PCR performance using DNA from FFPE tissue are highly desired and of wider interest. The effect of template DNA derived from FFPE tissues on PCR performance was investigated by means of qPCR and conventional PCR using PCR fragments of different sizes. DNA fragmentation was analyzed via agarose gel electrophoresis. This study showed that poor PCR amplification was partly caused by inhibition of the DNA polymerase by fragmented DNA from FFPE tissue and not only due to the absence of intact template molecules of sufficient integrity. This PCR inhibition was successfully minimized by increasing the polymerase concentration, dNTP concentration and PCR elongation time thereby allowing for the robust amplification of larger amplicons. This was shown for genomic template DNA as well as for bisulfite-converted template DNA required for DNA methylation analyses. In conclusion, PCR using DNA from FFPE tissue suffers from inhibition which can be alleviated by adaptation of the PCR conditions, therefore allowing for a significant improvement of PCR performance with regard to variability and the generation of larger amplicons. The presented solutions to overcome this PCR inhibition are of tremendous value for clinical chemistry and laboratory medicine.

  20. Rapid micro-PCR system for hepatitis C virus amplification

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Cheng; Huang, Ming-Yuan; Young, Kung-Chia; Chang, Ting-Tsung; Wu, Ching-Yi

    2000-08-01

    A rapid micro-polymerase chain reaction ((mu) -PCR) system was integrated to amplify the complementary DNA (cDNA) molecules of hepatitis C virus (HCV). This system consists of a rapid thermal cycling system and a (mu) PCR chip fabricated by MEMS fabrication techniques. This rapid (mu) PCR system is verified by using serum samples from patients with chronic hepatitis C. The HCV amplicon of the rapid (mu) PCR system was analyzed by slab gel electrophoresis with separation of DNA marker in parallel. The (mu) PCR chip was fabricated on silicon wafer and Pyrex glass using photolithography, wet etching, and anodic bonding methods. Using silicon material to fabricate the raction well improves the temperature uniformity of sample and helps to reach the desired temperature faster. The rapid close loop thermal cycling system comprises power supplies, a thermal generator, a computer control PID controller, and a data acquisition subsystem. The thermoelectric (T.E.) cooler is used to work as the thermal generator and a heat sink by controlling the polarity of supplied power. The (mu) PCR system was verified with traditional PCR equipment by loading the same PCR mixture with HCV cDNA and running the same cycle numbers, then comparing both HCV amplicon slab gel electrophoresis. The HCV amplicon from the (mu) PCR system shows a DNA fragment with an expected size of 145 base pairs. The background is lower with the (mu) PCR system than that with the tradional PCR equipment. Comparing the traditional PCR equipment which spends 5.5 hours for 30 cycles to gain the detectable amount of HCV amplicon in slab gel separation, this (mu) PCR system takes 30 minutes to finish the 30 thermal cycles. This work has demonstrated that this rapid (mu) PCR system can provide rapid heat generation and dissipation, improved temperature uniformity in DNA amplification.

  1. STS-102 MPLM Leonardo moves into PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the payload changeout room on the Rotating Service Structure, Launch Pad 39B, workers move the Multi-Purpose Logistics Module Leonardo out of the payload canister. From the PCR Leonardo then will be transferred into Space Shuttle Discovery'''s payload bay. One of Italy'''s major contributions to the International Space Station program, Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  2. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq) data.

    PubMed

    Perkins, James R; Dawes, John M; McMahon, Steve B; Bennett, David L H; Orengo, Christine; Kohl, Matthias

    2012-07-02

    Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR) technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s). We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things) read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples.

  3. Comparison of droplet digital PCR to real-time PCR for quantification of hepatitis B virus DNA.

    PubMed

    Tang, Hui; Cai, Qingchun; Li, Hu; Hu, Peng

    2016-06-16

    Quantitative real-time PCR (qPCR) has been widely implemented for clinical hepatitis B viral load testing, but a lack of standardization and relatively poor precision hinder its usefulness. Droplet digital PCR (ddPCR) is a promising tool that offers high precision and direct quantification. In this study, we compared the ddPCR QX100 platform by Bio-Rad with the CFX384 Touch Real-Time PCR Detection System (Bio-Rad, USA) to detect serial plasmid DNA dilutions of known concentrations as well as HBV DNA extracted from patient serum samples. Both methods showed a high degree of linearity and quantitative correlation. However, ddPCR assays generated more reproducible results and detected lower copy numbers than qPCR assays. Patient sample quantifications by ddPCR and qPCR were highly agreeable based on the Bland-Altman analysis. Collectively, our findings demonstrate that ddPCR offers improved analytical sensitivity and specificity for HBV measurements and is suitable for clinical HBV detection.

  4. Sensitivity of PCR and real-time PCR for the diagnosis of human visceral leishmaniasis using peripheral blood

    PubMed Central

    da Costa Lima, Manoel Sebastião; Zorzenon, Denielly Christina Rodrigues; Dorval, Maria Elizabeth Cavalheiros; Pontes, Elenir Rose Jardim Cury; Oshiro, Elisa Teruya; Cunha, Rodrigo; Andreotti, Renato; Matos, Maria de Fatima Cepa

    2013-01-01

    Objective To evaluate the effectiveness of PCR and real-time PCR for the diagnosis of human visceral leishmaniasis using peripheral blood samples. Methods DNA extraction was performed using Promega Wizard® Genomic kits. PCR employing RV1/RV2 primers yielded 145-bp amplicons. Real-time PCR was performed with the same primers and SYBR Green ROX Plus mix. These techniques were used to analyze 100 peripheral blood samples from patients with clinical signs of the disease. Results The sensitivity and specificity levels were 91,3%% and 29,6%, respectively, for real-time PCR and 97.78% and 61.82%, respectively, for PCR. Conclusions Real-time PCR proved to be a satisfactory method for the diagnosis of human visceral leishmaniasis.

  5. Detection of Salmonella in chicken meat by insulated isothermal PCR.

    PubMed

    Tsen, Hau-Yang; Shih, Chia-Ming; Teng, Ping-Hua; Chen, Hsin-Yen; Lin, Chia-Wei; Chiou, Chien-Shun; Wang, Hwa-Tang Thomas; Chang, Hsiao-Fen Grace; Chung, Te-Yu; Lee, Pei-Yu; Chiang, Yu-Cheng

    2013-08-01

    Consumption of Salmonella-contaminated foods, such as poultry and fresh eggs, is known to be one of the main causes of salmonellosis. Conventional PCR methods, including real-time PCR for rapid detection of Salmonella, in general require skilled technicians and costly instruments. A recently developed novel convective PCR, insulated isothermal PCR (iiPCR), is carried out in polycarbonate capillary tubes. In this study, we designed TaqMan probes and PCR primers based on the yrfH gene encoding a heat shock protein for the iiPCR detection of Salmonella in chicken meat samples. The TaqMan probe was labeled with 6-carboxyfluorescein and 6-carboxytetramethylrhodamine at the 5' and 3' ends, respectively. The PCR amplicon was 133 bp. A typical run of this iiPCR assay was completed within 1 h. Specific PCR products were obtained for 148 strains representing 49 serotypes of Salmonella tested. Under the same conditions, false-positive results were not obtained for 98 non-Salmonella strains tested, including strains of Enterobacteriaceae closely related to Salmonella. For chicken meat samples, with a 5-h enrichment step Salmonella at as low as 10⁰ CFU/g of poultry meat could be detected. Because the amplification signals from the probes are detectable at 520 nm, identification of the PCR products by gel electrophoresis is not required. Compared with conventional PCR, the iiPCR system requires less expertise and provides an economical, reliable, and rapid tool for result interpretation. Detection results can be obtained within 8 h, including the enrichment and DNA extraction steps.

  6. COMPARISON OF 16S rRNA-PCR-RFLP, LipL32-PCR AND OmpL1-PCR METHODS IN THE DIAGNOSIS OF LEPTOSPIROSIS

    PubMed Central

    GÖKMEN, Tülin GÜVEN; SOYAL, Ayben; KALAYCI, Yıldız; ÖNLEN, Cansu; KÖKSAL, Fatih

    2016-01-01

    SUMMARY Leptospirosis is still one of the most important health problems in developing countries located in humid tropical and subtropical regions. Human infections are generally caused by exposure to water, soil or food contaminated with the urine of infected wild and domestic animals such as rodents and dogs. The clinical course of leptospirosis is variable and may be difficult to distinguish from many other infectious diseases. The dark-field microscopy (DFM), serology and nucleic acid amplification techniques are used to diagnose leptospirosis, however, a distinctive standard reference method is still lacking. Therefore, in this study, we aimed to determine the presence of Leptospira spp., to differentiate the pathogenic L. interrogans and the non-pathogenic L. biflexa, and also to determine the sensitivity and specificity values of molecular methods as an alternative to conventional ones. A total of 133 serum samples, from 47 humans and 86 cattle were evaluated by two conventional tests: the Microagglutination Test (MAT) and the DFM, as well as three molecular methods, the 16S rRNA-PCR followed by Restriction Fragment Lenght Polymorphism (RFLP) of the amplification products 16S rRNA-PCR-RFLP, LipL32-PCR and OmpL1-PCR. In this study, for L. interrogans, the specificity and sensitivity rates of the 16S rRNA-PCR and the LipL32-PCR were considered similar (100% versus 98.25% and 100% versus 98.68%, respectively). The OmpL1-PCR was able to classify L. interrogans into two intergroups, but this PCR was less sensitive (87.01%) than the other two PCR methods. The 16S rRNA-PCR-RFLP could detect L. biflexa DNA, but LipL32-PCR and OmpL1-PCR could not. The 16S rRNA-PCR-RFLP provided an early and accurate diagnosis and was able to distinguish pathogenic and non-pathogenic Leptospira species, hence it may be used as an alternative method to the conventional gold standard techniques for the rapid disgnosis of leptospirosis. PMID:27680169

  7. [Genetic analysis of an individual with para-Bombay phenotype].

    PubMed

    Lin, Jia-jin; Huang, Ying; Zhu, Sui-yong

    2013-04-01

    To study genetic characteristics of an individual with para-Bombay phenotype and her family members. ABO and H antigens were detected with routine serological techniques.The entire coding region of FUT1 gene was amplified by polymerase chain reaction (PCR). PCR products was purified with enzymes digestion and directly sequenced. The RBCs of the proband did not agglutinate with H antibody. The proband therefore has a para-Bombay phenotype (Bmh). Direct sequencing indicated the FUT1 sequence of the proband contained a homozygous 547-552 del AG and heterozygous 814A>G mutation, which gave rise to two haplotypes of 547-552delAG, 547-552delAG and 814A>G. The ABO blood type of the proband' s mother and sisters were all B.Sequencing of the FUT1 gene has found heterozygous 547-552 del AG, 814A>G mutations in the mother and elder sister, and heterozygous 547-552 del AG mutation in her younger sister. The FUT1 547-552 del AG and 814 A>G mutations of the proband were inherited from her mother. A complex mutation of the FUT1 gene consisting of 547-55 del AG and 814 A>G has been identified in an individual with para-Bombay phenotype.

  8. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  9. Specific detection of chikungunya virus using a RT-PCR/nested PCR combination.

    PubMed

    Pfeffer, M; Linssen, B; Parke, M D; Kinney, R M

    2002-02-01

    Chikungunya (CHIK) virus is enzootic in many countries in Asia and throughout tropical Africa. In Asia the virus is transmitted from primates to humans almost exclusively by Aedes aegypti, while various aedine mosquito species are responsible for human infections in Africa. The clinical picture is characterized by a sudden onset of fever, rash and severe pain in the joints which may persist in a small proportion of cases. Although not listed as a haemorrhagic fever virus, illness caused by CHIK virus can be confused with diseases such as dengue or yellow fever, based on the similarity of the symptoms. Thus, laboratory confirmation of suspected cases is required to launch control measures during an epidemic. CHIK virus diagnosis based on virus isolation is very sensitive, yet requires at least a week in conjunction with virus identification using monovalent sera. We developed a reverse transcription-polymerase chain reaction (RT-PCR) assay which amplifies a 427-bp fragment of the E2 gene. Specificity was confirmed by testing representative strains of all known alphavirus species. To verify further the viral origin of the amplicon and to enhance sensitivity, a nested PCR was performed subsequently. This RT-PCR/nested PCR combination was able to amplify a CHIK virus-specific 172-bp amplicon from a sample containing as few as 10 genome equivalents. This assay was successfully applied to four CHIK virus isolates from Asia and Africa as well as to a vaccine strain developed by USAMRIID. Our method can be completed in less than two working days and may serve as a sensitive alternative in CHIK virus diagnosis.

  10. Forensic implications of PCR inhibition--A review.

    PubMed

    Alaeddini, Reza

    2012-05-01

    Polymerase chain reaction (PCR) is currently the method of choice for the identification of human remains in forensic coursework. DNA samples from crime scenes often contain co-purified impurities which inhibit PCR. PCR inhibition is the most common cause of PCR failure when adequate copies of DNA are present. Inhibitors have been routinely reported in forensic investigations of DNA extracted from a variety of templates. Humic compounds, a series of substances produced during decay process have been considered as the materials contaminating DNA in soil, natural waters and recent sediments. Those compounds have been frequently assigned as PCR inhibitors. The current report reviews the characteristics of PCR inhibition, including the proposed mechanisms of inhibition, detection methods and the available technologies to remove or overcome the inhibitory activities.

  11. Microfluidics-Based PCR for Fusion Transcript Detection.

    PubMed

    Chen, Hui

    2016-01-01

    The microfluidic technology allows the production of network of submillimeter-size fluidic channels and reservoirs in a variety of material systems. The microfluidic-based polymerase chain reaction (PCR) allows automated multiplexing of multiple samples and multiple assays simultaneously within a network of microfluidic channels and chambers that are co-ordinated in controlled fashion by the valves. The individual PCR reaction is performed in nanoliter volume, which allows testing on samples with limited DNA and RNA. The microfluidics devices are used in various types of PCR such as digital PCR and single molecular emulsion PCR for genotyping, gene expression, and miRNA expression. In this chapter, the use of a microfluidics-based PCR for simultaneous screening of 14 known fusion transcripts in patients with leukemia is described.

  12. Combined Overlap Extension PCR Method for Improved Site Directed Mutagenesis

    PubMed Central

    Chong, Nikson Fatt-Ming

    2016-01-01

    The combined overlap extension PCR (COE-PCR) method developed in this work combines the strengths of the overlap extension PCR (OE-PCR) method with the speed and ease of the asymmetrical overlap extension (AOE-PCR) method. This combined method allows up to 6 base pairs to be mutated at a time and requires a total of 40–45 PCR cycles. A total of eight mutagenesis experiments were successfully carried out, with each experiment mutating between two to six base pairs. Up to four adjacent codons were changed in a single experiment. This method is especially useful for codon optimization, where doublet or triplet rare codons can be changed using a single mutagenic primer set, in a single experiment. PMID:27995143

  13. Optimized MOL-PCR for Characterization of Microbial Pathogens.

    PubMed

    Wuyts, Véronique; Roosens, Nancy H C; Bertrand, Sophie; Marchal, Kathleen; De Keersmaecker, Sigrid C J

    2016-01-06

    Characterization of microbial pathogens is necessary for surveillance, outbreak detection, and tracing of outbreak sources. This unit describes a multiplex oligonucleotide ligation-PCR (MOL-PCR) optimized for characterization of microbial pathogens. With MOL-PCR, different types of markers, like unique sequences, single-nucleotide polymorphisms (SNPs) and indels, can be simultaneously analyzed in one assay. This assay consists of a multiplex ligation for detection of the markers, a singleplex PCR for signal amplification, and hybridization to MagPlex-TAG beads for readout on a Luminex platform after fluorescent staining. The current protocol describes the MOL-PCR, as well as methods for DNA isolation, probe design, and data interpretation and it is based on an optimized MOL-PCR assay for subtyping of Salmonella Typhimurium.

  14. Misuse of PCR assay for diagnosis of mollusc protistan infections.

    PubMed

    Burreson, Eugene M

    2008-06-19

    Polymerase chain reaction (PCR) assays are useful tools for pathogen surveillance, but they are only proxy indications of pathogen presence in that they detect a DNA sequence. To be useful for detection of actual infections, PCR assays must be thoroughly tested for sensitivity and specificity, and ultimately validated against a technique, typically histology, which allows visualization of the parasite in host tissues. There is growing use of PCR assays for pathogen surveillance, but too often the assumption is made that a positive PCR result verifies an infection in a tested host. This assumption is valid only if the assay has been properly validated for the geographic area and for the hosts examined. Researchers should interpret unvalidated PCR assay results with caution, and editors and reviewers should insist that robust validations support all assertions that PCR results confirm infections.

  15. Posttreatment Follow-Up of Brucellosis by PCR Assay

    PubMed Central

    Morata, Pilar; Queipo-Ortuño, María Isabel; Reguera, José María; García-Ordoñez, Miguel Angel; Pichardo, Cristina; Colmenero, Juan de Dios

    1999-01-01

    In order to evaluate the usefulness of a peripheral blood PCR assay in the posttreatment follow-up of brucellosis, a cohort of 30 patients was studied by means of blood cultures, rose Bengal, seroagglutination, Coombs' antibrucella tests, and PCR assay at the time of diagnosis, at the end of treatment, and 2, 4, and 6 months later. Of the 29 patients whose PCR assays were initially positive, 28 (96.5%) were negative at the conclusion of the treatment. PCR was positive for the two patients who had relapses and negative for another four who had suspected but unconfirmed relapses. PCR was negative for 98.3% of the follow-up samples from those patients who had a favorable evolution. In conclusion, PCR appears to be a very useful technique, not only for the initial diagnosis of the disease, but also for posttreatment follow-up and the early detection of relapses. PMID:10565954

  16. Direct PCR Improves the Recovery of DNA from Various Substrates.

    PubMed

    Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Skuza, Pawel; Linacre, Adrian

    2015-11-01

    This study reports on the comparison of a standard extraction process with the direct PCR approach of processing low-level DNA swabs typical in forensic investigations. Varying concentrations of control DNA were deposited onto three commonly encountered substrates, brass, plastic, and glass, left to dry, and swabbed using premoistened DNA-free nylon FLOQswabs(™) . Swabs (n = 90) were either processed using the DNA IQ(™) kit or, for direct PCR, swab fibers (~2 mm(2) ) were added directly to the PCR with no prior extraction. A significant increase in the height of the alleles (p < 0.005) was observed when using the direct PCR approach over the extraction methodology when controlling for surface type and mass of DNA deposited. The findings indicate the potential use of direct PCR for increasing the PCR product obtained from low-template DNA samples in addition to minimizing contamination and saving resources.

  17. Blood grouping based on PCR methods and agarose gel electrophoresis.

    PubMed

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  18. Comparison of droplet digital PCR and quantitative real-time PCR in mcrA-based methanogen community analysis.

    PubMed

    Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk

    2014-12-01

    Two different quantitative PCR platforms, droplet digital PCR (dd-PCR) and quantitative real-time PCR (qPCR), were compared in a mcrA-based methanogen community assay that quantifies ten methanogen sub-groups. Both technologies exhibited similar PCR efficiencies over at least four orders of magnitude and the same lower limits of detection (8 copies μL-DNA extract(-1)). The mcrA-based methanogen communities in three full-scale anaerobic digesters were examined using the two technologies. dd-PCR detected seven groups from the digesters, while qPCR did five groups, indicating that dd-PCR is more sensitive for DNA quantification. Linear regression showed quantitative agreements between both of the technologies (R(2) = 0.59-0.98) in the five groups that were concurrently detected. Principal component analysis from the two datasets consistently indicated a substantial difference in the community composition among the digesters and revealed similar levels of differentiation among the communities. The combined results suggest that dd-PCR is more promising for examining methanogenic archaeal communities in biotechnological processes.

  19. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing.

    PubMed

    Li, Jin; Wang, Lilin; Mamon, Harvey; Kulke, Matthew H; Berbeco, Ross; Makrigiorgos, G Mike

    2008-05-01

    PCR is widely employed as the initial DNA amplification step for genetic testing. However, a key limitation of PCR-based methods is the inability to selectively amplify low levels of mutations in a wild-type background. As a result, downstream assays are limited in their ability to identify subtle genetic changes that can have a profound impact in clinical decision-making and outcome. Here we describe co-amplification at lower denaturation temperature PCR (COLD-PCR), a novel form of PCR that amplifies minority alleles selectively from mixtures of wild-type and mutation-containing sequences irrespective of the mutation type or position on the sequence. We replaced regular PCR with COLD-PCR before sequencing or genotyping assays to improve mutation detection sensitivity by up to 100-fold and identified new mutations in the genes encoding p53, KRAS and epidermal growth factor in heterogeneous cancer samples that had been missed by the currently used methods. For clinically relevant microdeletions, COLD-PCR enabled exclusive amplification and isolation of the mutants. COLD-PCR will transform the capabilities of PCR-based genetic testing, including applications in cancer, infectious diseases and prenatal identification of fetal alleles in maternal blood.

  20. Comparison of the immunofluorescence assay with RT-PCR and nested PCR in the diagnosis of canine distemper.

    PubMed

    Jóźwik, A; Frymus, T

    2005-05-01

    Two pairs of primers were prepared, both localized within the sequences of the nucleoprotein gene (NP) of canine distemper virus (CDV). A number of experiments were done to optimize the conditions of RT-PCR and nested PCR methods. The nucleic acids of the Onderstepoort, Rockborn, Snyder Hill and Lederle strains of CDV could be detected with these primers. However, they did not react with the sequences of the Edmonston strain of the measles virus. The detection limit for RT-PCR was 10 TCID50 and for nested PCR 0.1 TCID50 of CDV. The RT-PCR was able to demonstrate the nucleic acid of CDV in the blood of all seven puppies vaccinated with a modified live virus. Blood samples of 23 dogs clinically suspected of distemper were examined by RT-PCR combined with nested PCR, and the results were compared with the detection of the CDV antigen in the smears from the mucous membranes by the direct immunofluorescence (IF) test. Of the 23 dogs, 12 were positive in nested PCR, six in the IF assay, and only two in single RT-PCR. It is concluded that nested PCR seems to be the most sensitive method for ante-mortem diagnosis of canine distemper, especially in its subacute or chronic forms.

  1. Reconstruction of the original mycoflora in pelleted feed by PCR-SSCP and qPCR.

    PubMed

    Dorn-In, Samart; Fahn, Carmen; Hölzel, Christina S; Wenz, Sebastian; Hartwig, Isabella; Schwaiger, Karin; Bauer, Johann

    2014-10-01

    Ground feeds for pigs were investigated for fungal contamination before and after pelleting (subsamples in total n = 24) by cultural and molecular biological methods. A fungal-specific primer pair ITS1/ITS5.8R was used to amplify fungal DNA; PCR products were processed for the PCR-SSCP method. In the resulting acrylamide gel, more than 85% of DNA bands of ground feeds were preserved after pelleting. Twenty-two DNA bands were sequenced; all represented fungal DNA. The level of fungal DNA in ground feed samples was equivalent to 4.77-5.69 log10  CFU g(-1) , calculated by qPCR using a standard curve of Aspergillus flavus. In pelleted feed, the level of fungal DNA was in average ± 0.07 log10 different from ground feed. Quantified by cultural methods, the fresh ground feeds contained up to 4.51 log10  CFU g(-1) culturable fungi, while there was < 2.83 log10  CFU g(-1) detected in pelleted feeds. This result shows that, while the process of pelleting reduced the amount of living fungi dramatically, it did not affect the total fungal DNA in feed. Thus, the described methodology was able to reconstruct the fungal microbiota in feeds and reflected a considerable fungal contamination of raw materials such as grains.

  2. Loop-linker PCR: an advanced PCR technique for genome walking.

    PubMed

    Trinh, Quoclinh; Shi, Hui; Xu, Wentao; Hao, Junran; Luo, Yunbo; Huang, Kunlun

    2012-10-01

    In this article, we developed a novel PCR method, termed loop-linker PCR, to isolate flanking sequences in transgenic crops. The novelty of this approach is its use of a stem-loop structure to design a loop-linker adapter. The adapter is designed to form a nick site when ligated with restricted DNA. This modification not only can prevent the self-ligation of adapters but also promotes the elongation of the 3' end of the loop-linker adapter to generate a stem-loop structure in the ligation products. Moreover, the suppressive effect of the stem-loop structure decreases nonspecific amplification and increases the success rate of the approach; all extension products will suppress exponential amplification except from the ligation product that contains the specific primer binding site. Using this method, 442, 1830, 107, and 512 bp left border flanking sequences were obtained from the transgenic maizes LY038, DAS-59122-7, Event 3272, and the transgenic soybean MON89788, respectively. The experimental results demonstrated that loop-linker PCR is an efficient, reliable, and cost-effective method for identifying flanking sequences in transgenic crops and could be applied for other genome walking applications.

  3. [PCR-ELISA technology and its application in biomedical fields].

    PubMed

    Yan, Lin; Wang, Xiaoying; Guo, Yunchang

    2011-01-01

    Polymerase chain reaction-enzyme-linked immunosorbent assay (PCR- ELISA) technology is created by the use of the high sensitivity of PCR, nucleic acid probes of the specificity, microplate reader of objectivity; since its establishment, it has received wide attention. In this paper, a basic description of the technology was introduced, and the application of PCR-ELISA in biomedical field in recent years were reviewed.

  4. Diagnosis of Oropouche virus infection by RT-nested-PCR.

    PubMed

    Moreli, Marcos Lázaro; Aquino, Victor Hugo; Cruz, Ana Cecília R; Figueiredo, Luiz Tadeu M

    2002-01-01

    Using the RT-PCR with primers that anneal to the 5' and the 3' extremities of the genome segments of bunyaviruses and internal primers that anneal to the S segment of Simbu serogroup viruses in a nested PCR it was possible to amplify the Oropouche virus (ORO) genome from the sera of three patients. These results show that this RT-nested-PCR is a useful tool for rapid diagnosis of Oropouche fever infections. Copyright 2002 Wiley-Liss, Inc.

  5. An efficient method to prepare PCR cloning vectors.

    PubMed

    Hong, Soon Gyu; Choi, Ji Young; Pryor, Barry M; Lee, Hong Kum

    2009-09-01

    An improved procedure for preparing PCR cloning vectors was developed. This procedure includes the incorporation of adapters to create XcmI restriction enzyme sites in pBluescript II SK(+) vectors, digestion with XcmI followed by further digestion of the small fragment produced by XcmI digestion with additional enzymes, and purification with PCR purification kits. Using this procedure, PCR cloning vectors with high ligation efficiencies and low blue or false-positive colonies were obtained.

  6. A comparison of DNA methylation specific droplet digital PCR (ddPCR) and real time qPCR with flow cytometry in characterizing human T cells in peripheral blood

    PubMed Central

    Wiencke, John K; Bracci, Paige M; Hsuang, George; Zheng, Shichun; Hansen, Helen; Wrensch, Margaret R; Rice, Terri; Eliot, Melissa; Kelsey, Karl T

    2014-01-01

    Quantitating the copy number of demethylated CpG promoter sites of the CD3Z gene can be used to estimate the numbers and proportions of T cells in human blood and tissue. Quantitative methylation specific PCR (qPCR) is useful for studying T cells but requires extensive calibration and is imprecise at low copy numbers. Here we compared the performance of a new digital PCR platform (droplet digital PCR or ddPCR) to qPCR using bisulfite converted DNA from 157 blood specimens obtained from ambulatory care controls and patients with primary glioma. We compared both ddPCR and qPCR with conventional flow cytometry (FACS) evaluation of CD3 positive T cells. Repeated measures on the same blood sample revealed ddPCR to be less variable than qPCR. Both qPCR and ddPCR correlated significantly with FACS evaluation of peripheral blood CD3 counts and CD3/total leukocyte values. However, statistical measures of agreement showed that linear concordance was stronger for ddPCR than for qPCR and the absolute values were closer to FACS for ddPCR. Both qPCR and ddPCR could distinguish clinically significant differences in T cell proportions and performed similarly to FACS. Given the higher precision, greater accuracy, and technical simplicity of ddPCR, this approach appears to be a superior DNA methylation based method than conventional qPCR for the assessment of T cells. PMID:25437051

  7. A comparison of DNA methylation specific droplet digital PCR (ddPCR) and real time qPCR with flow cytometry in characterizing human T cells in peripheral blood.

    PubMed

    Wiencke, John K; Bracci, Paige M; Hsuang, George; Zheng, Shichun; Hansen, Helen; Wrensch, Margaret R; Rice, Terri; Eliot, Melissa; Kelsey, Karl T

    2014-10-01

    Quantitating the copy number of demethylated CpG promoter sites of the CD3Z gene can be used to estimate the numbers and proportions of T cells in human blood and tissue. Quantitative methylation specific PCR (qPCR) is useful for studying T cells but requires extensive calibration and is imprecise at low copy numbers. Here we compared the performance of a new digital PCR platform (droplet digital PCR or ddPCR) to qPCR using bisulfite converted DNA from 157 blood specimens obtained from ambulatory care controls and patients with primary glioma. We compared both ddPCR and qPCR with conventional flow cytometry (FACS) evaluation of CD3 positive T cells. Repeated measures on the same blood sample revealed ddPCR to be less variable than qPCR. Both qPCR and ddPCR correlated significantly with FACS evaluation of peripheral blood CD3 counts and CD3/total leukocyte values. However, statistical measures of agreement showed that linear concordance was stronger for ddPCR than for qPCR and the absolute values were closer to FACS for ddPCR. Both qPCR and ddPCR could distinguish clinically significant differences in T cell proportions and performed similarly to FACS. Given the higher precision, greater accuracy, and technical simplicity of ddPCR, this approach appears to be a superior DNA methylation based method than conventional qPCR for the assessment of T cells.

  8. A thermodynamic approach to PCR primer design.

    PubMed

    Mann, Tobias; Humbert, Richard; Dorschner, Michael; Stamatoyannopoulos, John; Noble, William Stafford

    2009-07-01

    We developed a primer design method, Pythia, in which state of the art DNA binding affinity computations are directly integrated into the primer design process. We use chemical reaction equilibrium analysis to integrate multiple binding energy calculations into a conservative measure of polymerase chain reaction (PCR) efficiency, and a precomputed index on genomic sequences to evaluate primer specificity. We show that Pythia can design primers with success rates comparable with those of current methods, but yields much higher coverage in difficult genomic regions. For example, in RepeatMasked sequences in the human genome, Pythia achieved a median coverage of 89% as compared with a median coverage of 51% for Primer3. For parameter settings yielding sensitivities of 81%, our method has a recall of 97%, compared with the Primer3 recall of 48%. Because our primer design approach is based on the chemistry of DNA interactions, it has fewer and more physically meaningful parameters than current methods, and is therefore easier to adjust to specific experimental requirements. Our software is freely available at http://pythia.sourceforge.net.

  9. Buoyancy-Driven Polymerase Chain Reaction (PCR) Devices

    SciTech Connect

    Ness, K D; Wheeler, E K; Benett, W; Stratton, P; Christian, A; Chen, A; Ortega, J; Weisgraber, T H; Goodson, K E

    2004-09-28

    Polymerase chain reaction (PCR) facilitates DNA detection by significantly increasing the concentration of specific DNA segments. A new class of PCR instruments uses a buoyancy-driven re-circulating flow to thermally cycle the DNA sample and benefits from reduced cycle times, low sample volumes, a miniaturized format, and low power consumption. This paper analyzes a specific buoyancy PCR device in a micro-channel ''race-track'' geometry to determine key parameters about PCR cycle times and other figures of merit as functions of device dimensions. The 1-D model balances the buoyancy driving force with frictional losses. A hydrostatic pressure imbalance concept is used between the left and right sides of the fluid loop to calculate the buoyancy driving force. Velocity and temperature distributions within the channels are determined from two-dimensional analysis of the channel section, with developing region effects included empirically through scaled values of the local Nusselt number. Good agreement between four independent verification steps validate the 1-D simulation approach: (1) analytical expressions for the thermal entrance length are compared against, (2) comparison with a full 3-D finite element simulation, (3) comparison with an experimental flow field characterization, and (4) calculation of the minimum PCR runtime required to get a positive PCR signal from the buoyancy-driven PCR device. The 1-D approach closely models an actual buoyancy-driven PCR device and can further be used as a rapid design tool to simulate buoyancy PCR flows and perform detailed design optimizations studies.

  10. A trio of human molecular genetics PCR assays.

    PubMed

    Reinking, Jeffrey L; Waldo, Jennifer T; Dinsmore, Jannett

    2013-01-01

    This laboratory exercise demonstrates three different analytical forms of the polymerase chain reaction (PCR) that allow students to genotype themselves at four different loci. Here, we present protocols to allow students to a) genotype a non-coding polymorphic Variable Number of Tandem Repeat (VNTR) locus on human chromosome 5 using conventional PCR, b) perform PCR - Restriction Fragment Polymorphism (PCR-RFLP) analysis to genotype a Single Nucleotide Polymorphism (SNP) of the TAS2R38 gene on human chromosome 7 and c) perform duplex Allele Specific Primer-PCR (ASP-PCR) to genotype SNPs of two enzyme-encoding genes in a single biochemical pathway on human chromosomes 4 and 12. All PCR reactions have been optimized to use a single easily purified sample of the students' own DNA and run under a single thermal cycler program using inexpensive reagents to produce robust and clearly interpretable results on a single agarose gel. As presented here, the lab occupies two lab periods of 2 h, 40 min each: DNA purification followed by PCR reactions set-up on Day 1 and enzyme digestion of the PCR-RFLP and agarose gel analysis on Day 2. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  11. The inhibitory effect of pentobarbitone on reverse transcription-PCR.

    PubMed

    Hyun, Changbaig; Filippich, Lucio John; Hughes, Ian

    2005-01-31

    Pentobarbitone sodium (Sodium 5-ethyl-5[1-methylbutyl]-pentobarbitone) is a short-acting barbiturate that is commonly used to euthanase animals. As part of our studies into the molecular genetics of copper toxicosis in Bedlington terrier dogs, reverse-transcription (RT)-PCR was noted to always fail on RNA samples collected from livers of dogs sacrificed by pentobarbitone injection. When samples were collected without pentobarbitone, however, RT-PCR was always successful. We suspected the possible inhibition by pentobarbitone sodium of either reverse transcriptase or Taq polymerase. In vitro studies showed that pentobarbitone interference of PCR occurred at >4 microg/microl. To identify if pentobarbitone produced competitive inhibition, each components (Taq polymerase, MgCl(2), dNTP, etc.) of the PCR was individually altered. However, inhibition still persisted, suggesting that multiple PCR components may be affected. Also it was shown that pentobarbitone interference was not dependent on the PCR product size. Simple dilution of pentobarbitone contaminated DNA solutions, and the addition of bovine serum albumin (BSA) to the PCR mix overcame pentobarbitone interference. In vivo, PCR by pentobarbitone was found to be compounded by high DNA concentration and pentobarbitone contamination. In addition, both high DNA concentration and pentobarbitone contamination could be overcome through dilution and the addition of BSA. Further work is required to quantify pentobarbitone concentration in the liver-extracted DNA and RNA samples before this inhibition effect on PCR can be fully elucidated.

  12. Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing.

    PubMed

    Zhang, Rui; Li, Xin; Ramaswami, Gokul; Smith, Kevin S; Turecki, Gustavo; Montgomery, Stephen B; Li, Jin Billy

    2014-01-01

    We developed a targeted RNA sequencing method that couples microfluidics-based multiplex PCR and deep sequencing (mmPCR-seq) to uniformly and simultaneously amplify up to 960 loci in 48 samples independently of their gene expression levels and to accurately and cost-effectively measure allelic ratios even for low-quantity or low-quality RNA samples. We applied mmPCR-seq to RNA editing and allele-specific expression studies. mmPCR-seq complements RNA-seq for studying allelic variations in the transcriptome.

  13. Real-time PCR using mycobacteriophage DNA for rapid phenotypic drug susceptibility results for Mycobacterium tuberculosis.

    PubMed

    Pholwat, Suporn; Ehdaie, Beeta; Foongladda, Suporn; Kelly, Kimberly; Houpt, Eric

    2012-03-01

    Managing drug-resistant Mycobacterium tuberculosis requires drug susceptibility testing, yet conventional drug susceptibility testing is slow, and molecular testing does not yield results for all antituberculous drugs. We addressed these challenges by utilizing real-time PCR of mycobacteriophage D29 DNA to evaluate the drug resistance of clinical M. tuberculosis isolates. Mycobacteriophages infect and replicate in viable bacterial cells faster than bacterial cells replicate and have been used for detection and drug resistance testing for M. tuberculosis either by using reporter cells or phages with engineered reporter constructs. Our primary protocol involved culturing M. tuberculosis isolates for 48 h with and without drugs at critical concentrations, followed by incubation with 10(3) PFU/ml of D29 mycobacteriophage for 24 h and then real-time PCR. Many drugs could be incubated instantly with M. tuberculosis and phage for 24 h alone. The change in phage DNA real-time PCR cycle threshold (C(T)) between control M. tuberculosis and M. tuberculosis treated with drugs was calculated and correlated with conventional agar proportion drug susceptibility results. Specifically, 9 susceptible clinical isolates, 22 multidrug-resistant (MDR), and 1 extensively drug-resistant (XDR) M. tuberculosis strains were used and C(T) control-C(T) drug cutoffs of between +0.3 and -6.0 yielded 422/429 (98%) accurate results for isoniazid, rifampin, streptomycin, ethambutol, amikacin, kanamycin, capreomycin, ofloxacin, moxifloxacin, ethionamide, para-aminosalicylic acid, cycloserine, and linezolid. Moreover, the ΔC(T) values correlated with isolate MIC for most agents. This D29 quantitative PCR assay offers a rapid, accurate, 1- to 3-day phenotypic drug susceptibility test for first- and second-line drugs and may suggest an approximate MIC.

  14. Real-Time PCR Using Mycobacteriophage DNA for Rapid Phenotypic Drug Susceptibility Results for Mycobacterium tuberculosis

    PubMed Central

    Pholwat, Suporn; Ehdaie, Beeta; Foongladda, Suporn; Kelly, Kimberly

    2012-01-01

    Managing drug-resistant Mycobacterium tuberculosis requires drug susceptibility testing, yet conventional drug susceptibility testing is slow, and molecular testing does not yield results for all antituberculous drugs. We addressed these challenges by utilizing real-time PCR of mycobacteriophage D29 DNA to evaluate the drug resistance of clinical M. tuberculosis isolates. Mycobacteriophages infect and replicate in viable bacterial cells faster than bacterial cells replicate and have been used for detection and drug resistance testing for M. tuberculosis either by using reporter cells or phages with engineered reporter constructs. Our primary protocol involved culturing M. tuberculosis isolates for 48 h with and without drugs at critical concentrations, followed by incubation with 103 PFU/ml of D29 mycobacteriophage for 24 h and then real-time PCR. Many drugs could be incubated instantly with M. tuberculosis and phage for 24 h alone. The change in phage DNA real-time PCR cycle threshold (CT) between control M. tuberculosis and M. tuberculosis treated with drugs was calculated and correlated with conventional agar proportion drug susceptibility results. Specifically, 9 susceptible clinical isolates, 22 multidrug-resistant (MDR), and 1 extensively drug-resistant (XDR) M. tuberculosis strains were used and CT control-CT drug cutoffs of between +0.3 and −6.0 yielded 422/429 (98%) accurate results for isoniazid, rifampin, streptomycin, ethambutol, amikacin, kanamycin, capreomycin, ofloxacin, moxifloxacin, ethionamide, para-aminosalicylic acid, cycloserine, and linezolid. Moreover, the ΔCT values correlated with isolate MIC for most agents. This D29 quantitative PCR assay offers a rapid, accurate, 1- to 3-day phenotypic drug susceptibility test for first- and second-line drugs and may suggest an approximate MIC. PMID:22170929

  15. Variation in copy number of the 28S rDNA of Aspergillus fumigatus measured by droplet digital PCR and analog quantitative real-time PCR.

    PubMed

    Alanio, Alexandre; Sturny-Leclère, Aude; Benabou, Marion; Guigue, Nicolas; Bretagne, Stéphane

    2016-08-01

    Droplet digital PCR (ddPCR) after DNA digestion yielded a 28S rDNA copy number of 61 to 86 copies/genome when testing 10 unrelated Aspergillus fumigatus isolates, higher than with quantitative PCR. Unfortunately, ddPCR after DNA digestion did not improve the sensitivity of our PCR assay when testing serum patients with invasive aspergillosis.

  16. Hypervariable spacer regions are good sites for developing specific PCR-RFLP markers and PCR primers for screening actinorhizal symbionts.

    PubMed

    Varehese, Rajani; Chauhan, Vineeta S; Misra, Arvind K

    2003-06-01

    While the ribosomal RNA like highly conserved genes are good molecular chronometers for establishing phylogenetic relationships, they can also be useful in securing the amplification of adjoining hyper-variable regions. These regions can then be used for developing specific PCR primers or PCR-RFL profiles to be used as molecular markers. We report here the use of ITS region of rrn operon of Frankia for developing PCR-RFL profiles capable of discriminating between closely related frankiae. We have also made use of the ITS1 region of the nuclear rrn operon of Alnus nepalensis (D Don) for designing a PCR primer for specific amplification of nuclear DNA of this tree.

  17. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  18. Comparison of PCR-RFLP with allele-specific PCR in genetic testing for spinal muscular atrophy.

    PubMed

    Xu, Ruliang; Ogino, Shuji; Lip, Va; Fang, Hong; Wu, Bai-Lin

    2003-01-01

    PCR-based methods for the detection of homozygous deletion of exon 7 of the SMN1 gene have been widely used in genetic testing for spinal muscular atrophy (SMA). We compared the most commonly used PCRrestriction fragment length polymorphism (PCR-RFLP) assay with an allele-specific PCR method, evaluating their potential application in direct testing, prenatal prediction, and preimplantation diagnosis, in terms of a range of DNA amounts used in such testing. We showed that PCR-RFLP could identify the SMN1 exon 7 by amplifying 10 pg of genomic DNA, and could differentiate SMN1 from SMN2 at the 100-pg DNA level (DraIdigested SMN2 fragments served as an internal control for PCR efficiency). In contrast, allele-specific PCR for SMN1, despite some advantages in a rapid preimplantation diagnosis, quickly lost its specificity when 100 pg of genomic DNA was used. In addition, the absence of a SMN1 fragment at the 10-pg DNA level may be due to a PCR amplification failure, and, thus, it is difficult to interpret without a proper internal control. Our data indicate that PCR-RFLP can be used for most diagnostic purposes, whereas the use of allelespecific PCR may be considered with caution under certain circumstances.

  19. Real-time PCR for the detection of Salmonella spp. in food: An alternative approach to a conventional PCR system suggested by the FOOD-PCR project.

    PubMed

    Hein, Ingeborg; Flekna, Gabriele; Krassnig, Martina; Wagner, Martin

    2006-09-01

    A real-time PCR assay using non-patented primers and a TaqMan probe for the detection and quantification of Salmonella spp. is presented. The assay is based on an internationally validated conventional PCR system, which was suggested as a standard method for the detection of Salmonella spp. in the FOOD-PCR project. The assay was sensitive and specific. Consistent detection of 9.5 genome equivalents per PCR reaction was achieved, whereas samples containing an average of 0.95 genome equivalents per reaction were inconsistently positive. The assay performed equally well as a commercially available real-time PCR assay and allowed sensitive detection of Salmonella spp. in artificially contaminated food. After enrichment for 16 h in buffered peptone water (BPW) or universal pre-enrichment broth (UPB) 2.5 CFU/25 g salmon and minced meat, and 5 CFU/25 g chicken meat and 25 ml raw milk were detected. Enrichment in BPW yielded higher numbers of CFU/ml than UPB for all matrices tested. However, the productivity of UPB was sufficient, as all samples were positive with both real-time PCR methods, including those containing less than 300 CFU/ml enrichment broth (enrichment of 5 CFU/25 ml raw milk in UPB).

  20. Comparison between ICT and PCR for diagnosis of Chlamydia trachomatis.

    PubMed

    Khan, E R; Hossain, M A; Paul, S K; Mahmud, C; Hasan, M M; Rahman, M M; Nahar, K; Kubayashi, N

    2012-04-01

    Chlamydia trachomatis is an obligate intracellular gram-negative bacterium which is the most prevalent cause of bacterial sexually transmitted infections (STI). The present study was carried to diagnose genital Chlamydia trachomatis infection among women of reproductive age, attending Mymensingh Medical College Hospital, during July 2009 to June 2010 by Immunochromatographic test (ICT) and Polymerase chain reaction (PCR). A total of 70 females were included in this study. Out of 70 cases 56 were symptomatic and 14 asymptomatic. Endocervical swabs were collected from each of the cases and examined by Immunochromatographic test (ICT) for antigen detection and Polymerase chain reaction (PCR) for detection of endogenous plasmid-based nucleic acid. A total 29(41.4%) of the cases were found positive for C. trachomatis either by ICT or PCR. Of the 56 symptomatic cases, 19(33.9%) were found ICT positive and 17(30.4%) were PCR positive. Among 14 asymptomatic females, 2(14.3%) were ICT positive and none were PCR positive. Though PCR is highly sensitive but a total of twelve cases were found ICT positive but PCR negative. It may be due to presence of plasmid deficient strain of C trachomatis which could be amplified by ompA based (Chromosomal gene) multiplex PCR.

  1. ANIMAL DNA IN PCR REAGENTS PLAGUES ANCIENT DNA RESEARCH

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high-cycle PCR amplification targ...

  2. Interlaboratory Comparison of Quantitative PCR Test Results for Dehalococcoides

    EPA Science Inventory

    Quantitative PCR (qPCR) techniques have been widely used to measure Dehalococcoides (Dhc) DNA in the groundwater at field sites for several years. Interpretation of these data may be complicated when different laboratories using alternate methods conduct the analysis. An...

  3. Evaluation of Aspergillus PCR protocols for testing serum specimens.

    PubMed

    White, P Lewis; Mengoli, Carlo; Bretagne, Stéphane; Cuenca-Estrella, Manuel; Finnstrom, Niklas; Klingspor, Lena; Melchers, Willem J G; McCulloch, Elaine; Barnes, Rosemary A; Donnelly, J Peter; Loeffler, Juergen

    2011-11-01

    A panel of human serum samples spiked with various amounts of Aspergillus fumigatus genomic DNA was distributed to 23 centers within the European Aspergillus PCR Initiative to determine analytical performance of PCR. Information regarding specific methodological components and PCR performance was requested. The information provided was made anonymous, and meta-regression analysis was performed to determine any procedural factors that significantly altered PCR performance. Ninety-seven percent of protocols were able to detect a threshold of 10 genomes/ml on at least one occasion, with 83% of protocols reproducibly detecting this concentration. Sensitivity and specificity were 86.1% and 93.6%, respectively. Positive associations between sensitivity and the use of larger sample volumes, an internal control PCR, and PCR targeting the internal transcribed spacer (ITS) region were shown. Negative associations between sensitivity and the use of larger elution volumes (≥100 μl) and PCR targeting the mitochondrial genes were demonstrated. Most Aspergillus PCR protocols used to test serum generate satisfactory analytical performance. Testing serum requires less standardization, and the specific recommendations shown in this article will only improve performance.

  4. Interlaboratory Comparison of Quantitative PCR Test Results for Dehalococcoides

    EPA Science Inventory

    Quantitative PCR (qPCR) techniques have been widely used to measure Dehalococcoides (Dhc) DNA in the groundwater at field sites for several years. Interpretation of these data may be complicated when different laboratories using alternate methods conduct the analysis. An...

  5. Detection of Salmonella spp. in oysters by PCR.

    PubMed Central

    Bej, A K; Mahbubani, M H; Boyce, M J; Atlas, R M

    1994-01-01

    PCR DNA amplification of a region of the himA gene of Salmonella typhimurium specifically detected Salmonella spp. In oysters, 1 to 10 cells of Salmonella spp. were rapidly detected by the PCR following a pre-enrichment step to increase sensitivity and to ensure that detection was based on the presence of viable Salmonella spp. Images PMID:8117091

  6. DNA probes and PCR for diagnosis of parasitic infections.

    PubMed Central

    Weiss, J B

    1995-01-01

    DNA probe and PCR-based assays to identify and detect parasites are technically complex; however, they have high sensitivity, directly detect parasites independent of the immunocompetence or previous clinical history of the patient, and can distinguish between organisms that are morphologically similar. Diagnosis of parasites is often based on direct detection by microscopy, which is insensitive and laborious and can lack specificity. Most PCR-based assays were more sensitive than DNA probe assays. The development of PCR-based diagnostic assays requires multiple steps following the initial selection of oligonucleotide primers and reporter probe. Generally, the ability to detect the DNA of one parasite was attained by PCR; however, advances in the preparation of samples for PCR (extraction of DNA while removing PCR inhibitors) will be required to achieve that sensitivity with human specimens. Preliminary PCR systems have been developed for many different parasites, yet few have been evaluated with a large number of clinical specimens and/or under field conditions. Those evaluations are essential for determination of clinical and field utility and performance and of the most appropriate application of the assay. Several situations in which PCR-based diagnosis will result in epidemiologic, medical, or public health advances have been identified. PMID:7704890

  7. ANIMAL DNA IN PCR REAGENTS PLAGUES ANCIENT DNA RESEARCH

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high-cycle PCR amplification targ...

  8. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates.

    PubMed

    Baums, Christoph G; Schotte, Ulrich; Amtsberg, Gunter; Goethe, Ralph

    2004-05-20

    In this study we provide a protocol for genotyping Clostridium perfringens with a new multiplex PCR. This PCR enables reliable and specific detection of the toxin genes cpa, cpb, etx, iap, cpe and cpb2 from heat lysed bacterial suspensions. The efficiency of the protocol was demonstrated by typing C. perfringens reference strains and isolates from veterinary bacteriological routine diagnostic specimens.

  9. Applications of competitor RNA in diagnostic reverse transcription-PCR.

    PubMed

    Kleiboeker, Steven B

    2003-05-01

    Detection of RNA viruses by reverse transcription (RT)-PCR has proven to be a useful approach for the diagnosis of infections caused by many viral pathogens. However, adequate controls are required for each step of the RT-PCR protocol to ensure the accuracies of diagnostic test results. Heterologous competitor RNA can be used as a control for a number of different aspects of diagnostic RT-PCR. Competitor RNA can be applied to assessments of the efficiency of RNA recovery during extraction procedures, detection of endogenous RT-PCR inhibitors that could lead to false-negative results, and quantification of viral template in samples used for diagnosis; competitor RNA can also be used as a positive control for the RT-PCR. In the present study, heterologous competitor RNA was synthesized by a method that uses two long oligonucleotide primers containing primer binding sites for RT-PCR amplification of porcine reproductive and respiratory syndrome virus or West Nile virus. Amplification of the competitor RNA by RT-PCR resulted in a product that was easily distinguished from the amplification product of viral RNA by agarose gel electrophoresis. Assessment of a variety of RNA samples prepared from routine submissions to a veterinary diagnostic laboratory found that either partial or complete inhibition of the RT-PCR could be demonstrated for approximately 20% of the samples. When inhibition was detected, either dilution of the sample or RNA extraction by an alternative protocol proved successful in eliminating the source of inhibition.

  10. Identification of Mycobacterium bovis Isolates by a multiplex PCR

    PubMed Central

    de Souza Figueiredo, Eduardo Eustáquio; Silvestre, Flávia Galindo; Campos, Wilma Neres; Furlanetto, Leone Vinícius; Medeiros, Luciana; Lilenbaum, Walter; Fonseca, Leila Sousa; Silva, Joab Trajano; Paschoalin, Vânia Margaret Flosi

    2009-01-01

    Isolates from suggestive bovine tuberculosis lesions were tested by a multiplex polymerase chain reaction (m-PCR) targeting for RvD1Rv2031c and IS6110 sequences, specific for M. bovis and Mycobacterium tuberculosis complex respectively. The m-PCR successfully identified as M. bovis 88.24% of the isolates. PMID:24031349

  11. Quantitative PCR Method for Diagnosis of Citrus Bacterial Canker†

    PubMed Central

    Cubero, J.; Graham, J. H.; Gottwald, T. R.

    2001-01-01

    For diagnosis of citrus bacterial canker by PCR, an internal standard is employed to ensure the quality of the DNA extraction and that proper requisites exist for the amplification reaction. The ratio of PCR products from the internal standard and bacterial target is used to estimate the initial bacterial concentration in citrus tissues with lesions. PMID:11375206

  12. Advanced multiplex PCR assay for differentiation of Brucella species.

    PubMed

    Kang, Sung-Il; Her, Moon; Kim, Jong Wan; Kim, Ji-Yeon; Ko, Kyung Yuk; Ha, Yun-Mi; Jung, Suk Chan

    2011-09-01

    Two new primer sets of a 766- and a 344-bp fragment were introduced into the conventional Bruce-ladder PCR assay. This novel multiplex PCR assay rapidly and concisely discriminates Brucella canis and Brucella microti from Brucella suis strains and also may differentiate all of the 10 Brucella species.

  13. Comparison of two DNA extractions and nested PCR, real-time PCR, a new commercial PCR assay, and bacterial culture for detection of Mycobacterium avium subsp. paratuberculosis in bovine feces.

    PubMed

    Christopher-Hennings, Jane; Dammen, Matthew A; Weeks, Shelleen R; Epperson, William B; Singh, Shri N; Steinlicht, Gina L; Fang, Ying; Skaare, Jessica L; Larsen, Jill L; Payeur, Janet B; Nelson, Eric A

    2003-03-01

    In this study, 5 combinations of 2 DNA extractions and 3 polymerase chain reaction (PCR) techniques were compared with culture for the detection of Mycobacterium paratuberculosis directly from bovine feces. These combinations included a new commercial extraction technique combined with a commercial PCR/Southern blot technique, nested PCR (nPCR), or real-time PCR, and a university-developed extraction combined with nPCR or real-time PCR. Four of the 5 combinations had statistically similar sensitivities between 93% and 100% and specificity between 95% and 100%, when compared with culture results from 63 bovine fecal samples. These results indicated that using a commercial extraction with a commercial PCR/Southern blot, nPCR, or real-time PCR, or a university-developed extraction with real-time PCR would result in similar sensitivities to culture for the identification of M. paratuberculosis from bovine feces and are valid alternatives to culture.

  14. A thermally baffled device for highly stabilized convective PCR

    PubMed Central

    Chang, Hsiao-Fen Grace; Tsai, Yun-Long; Tsai, Chuan-Fu; Lin, Ching-Ko; Lee, Pei-Yu; Teng, Ping-Hua; Su, Chen; Jeng, Chien-Chung

    2012-01-01

    Rayleigh-Bénard convective PCR is a simple and effective design for amplification of DNA. Convective PCR is, however, extremely sensitive to environmental temperature fluctuations, especially when using small- diameter test tubes. Therefore, this method is inherently unstable with limited applications. Here, we present a convective PCR device that has been modified by adding thermal baffles. With this thermally baffled device the influence from fluctuations in environmental temperature were significantly reduced, even in a wind tunnel (1 m/s). The thermally baffled PCR instrument described here has the potential to be used as a low-cost, point-of-care device for PCR-based molecular diagnostics in the field. PMID:22241586

  15. [Detection of influenza virus (RT-PCR assay and others)].

    PubMed

    Matsuzaki, Yoko

    2003-11-01

    Viral isolation is the conventional method for influenza virus diagnosis but it is less useful for immediate patient management. RT-PCR is the sensitive and rapid assay for the detection of respiratory viruses. Single step and multiplex RT-PCR is able to detect several viruses simultaneously in a single reaction. Real time PCR(TaqMan method) is able to detect the amplicon directly by release of a fluorescent reporter of the probe during the amplification reactions. This procedure can save time since it eliminates post-PCR processing steps. These RT-PCR methods should be useful for the accurate and rapid diagnosis of influenza virus infection, especially severe cases such as pneumonia and encephalopathy.

  16. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    PubMed

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  17. Rapid diagnosis of poliovirus infection by PCR amplification.

    PubMed Central

    Chezzi, C

    1996-01-01

    A single-tube, single-primer-set reverse transcription-PCR assay was developed for the rapid detection of polioviruses in infected tissue culture fluids and clinical materials. The poliovirus-specific PCR primers are located in the VP1-2A region of the poliovirus genome. They generate a 290-bp product and can be used in duplex reactions with general enterovirus primers. The primers span the region used for genotype determination, so that genotype analysis of wild-type polioviruses can be performed by direct sequencing of the PCR products. Of 125 virus isolates typed as polioviruses by neutralization assays, 125 (100%) were also positive by PCR, and of 38 isolates typed as non-polio enteroviruses by conventional techniques, 38 (100%) were also negative by PCR. The assay described here is rapid, highly sensitive, and specific and has clinical applicability in the diagnosis of poliovirus infections. PMID:8784577

  18. Teaching PCR Through Inquiry in an Undergraduate Biology Laboratory Course

    NASA Astrophysics Data System (ADS)

    Dorighi, K. M.; Betancourt, J.; Sapp, J.; Quan, T. K.; Lee, J.

    2010-12-01

    In this paper, we describe the design and implementation of an inquiry-based laboratory unit on the Polymerase Chain Reaction (PCR). This unit was designed and taught for the undergraduate Eukaryotic Genetics Laboratory class (Bio105L) at the University of California, Santa Cruz. Our activity utilizes an authentic molecular biology research question to teach the underlying molecular mechanisms and experimental technique of PCR, as well as fundamental scientific process skills such as planning experiments, making predictions and interpreting data. In particular, the activity prompts students to use PCR to determine which gene has been deleted in a region of the Drosophila genome. During this activity, students also gained technical experience in common molecular biology techniques, learned about additional applications of PCR and used a hands-on approach to model each step of PCR.

  19. Engineered DNA polymerase improves PCR results for plastid DNA1

    PubMed Central

    Schori, Melanie; Appel, Maryke; Kitko, AlexaRae; Showalter, Allan M.

    2013-01-01

    • Premise of the study: Secondary metabolites often inhibit PCR and sequencing reactions in extractions from plant material, especially from silica-dried and herbarium material. A DNA polymerase that is tolerant to inhibitors improves PCR results. • Methods and Results: A novel DNA amplification system, including a DNA polymerase engineered via directed evolution for improved tolerance to common plant-derived PCR inhibitors, was evaluated and PCR parameters optimized for three species. An additional 31 species were then tested with the engineered enzyme and optimized protocol, as well as with regular Taq polymerase. • Conclusions: PCR products and high-quality sequence data were obtained for 96% of samples for rbcL and 79% for matK, compared to 29% and 21% with regular Taq polymerase. PMID:25202519

  20. Transcript quantitation in total yeast cellular RNA using kinetic PCR

    PubMed Central

    Kang, John J.; Watson, Robert M.; Fisher, Mary E.; Higuchi, Russell; Gelfand, David H.; Holland, Michael J.

    2000-01-01

    Kinetically monitored, reverse transcriptase-initiated PCR (kinetic RT–PCR, kRT–PCR) is a novel application of kinetic PCR for high throughput transcript quantitation in total cellular RNA. The assay offers the simplicity and flexibility of an enzyme assay with distinct advantages over DNA microarray hybridization and SAGE technologies for certain applications. The reproducibility, sensitivity and accuracy of the kRT–PCR were assessed for yeast transcripts previously quantitated by a variety of methods including SAGE analysis. Changes in transcript levels between different genetic or physiological cell states were reproducibly quantitated with an accuracy of ±20%. The assay was sufficiently sensitive to quantitate yeast transcripts over a range of more than five orders of magnitude, including low abundance transcripts encoding cell cycle and transcriptional regulators. PMID:10606670

  1. Detection of episomal banana streak badnavirus by IC-PCR.

    PubMed

    Harper, G; Dahal, G; Thottappilly, G; Hull, R

    1999-04-01

    A polymerase chain reaction (PCR) based strategy to detect episomal banana streak badnavirus (BSV) in banana and plantain plants that carry integrated BSV sequences was developed. Antisera used in immuno-capture polymerase chain reaction (IC-PCR) are capable of binding a large number of BSV serotypes. The primers used for PCR are capable of annealing to and amplifying across the aspartic protease-reverse transcriptase domain boundaries of both episomal and integrated BSV sequences and result in similar or identical sequence size fragments from either template. However, we show that under the conditions selected for IC-PCR, nuclear, mitochondrial or chloroplast genomic sequences are not amplified and thus only captured episomal BSV is amplified. IC-PCR is suitable for the large-scale screening of Musa for episomal BSV which is necessary for germplasm movement.

  2. Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy

    PubMed Central

    Fan, H. Christina; Blumenfeld, Yair J.; El-Sayed, Yasser Y.; Chueh, Jane; Quake, Stephen R.

    2014-01-01

    OBJECTIVE The purpose of this study was to demonstrate that digital polymerase chain reaction (PCR) enables rapid, allele independent molecular detection of fetal aneuploidy. STUDY DESIGN Twenty-four amniocentesis and 16 chorionic villus samples were used for microfluidic digital PCR analysis. Three thousand and sixty PCR reactions were performed for each of the target chromosomes (X, Y, 13, 18, and 21), and the number of single molecule amplifications was compared to a reference. The difference between target and reference chromosome counts was used to determine the ploidy of each of the target chromosomes. RESULTS Digital PCR accurately identified all cases of fetal trisomy (3 cases of trisomy 21, 3 cases of trisomy 18, and 2 cases of triosmy 13) in the 40 specimens analyzed. The remaining specimens were determined to have normal ploidy for the chromosomes tested. CONCLUSION Microfluidic digital PCR allows detection of fetal chromosomal aneuploidy utilizing uncultured amniocytes and chorionic villus tissue in less than 6 hours. PMID:19375573

  3. PCR thermal management in an integrated Lab on Chip

    NASA Astrophysics Data System (ADS)

    Singh, Janak; Ekaputri, Mayang

    2006-04-01

    Thermal management modelling and simulations of a polymerase chain reaction (PCR) device to be integrated on a lab on chip (LOC) have been carried out and presented. A typical MEMS PCR in symmetrical configuration is the base model for this study. When the PCR device is integrated on a fluidic chip with many other bio-analysis components such as DNA extraction, RNA extraction, electro-chemical sensor, flow through components and channels etc., thermal symmetry required for uniform temperature across the PCR chamber is normally lost. In this paper, ANSYS 8.0 simulations in varying conditions and corresponding physical basis have been investigated and presented. Model optimizations are carried out when PCR chamber is placed, one, in the centre (symmetry) and two, in the corner (asymmetry) of the integrated chip. In both cases, temperature uniformity within ±0.5 °C variation is obtained.

  4. PCR detection of Babesia ovata from questing ticks in Japan.

    PubMed

    Sivakumar, Thillaiampalam; Tattiyapong, Muncharee; Okubo, Kazuhiro; Suganuma, Keisuke; Hayashida, Kyoko; Igarashi, Ikuo; Zakimi, Satoshi; Matsumoto, Kotaro; Inokuma, Hisashi; Yokoyama, Naoaki

    2014-04-01

    Babesia ovata is a tick-transmitted hemoprotozoan parasite of cattle. In the present study, we analyzed tick DNA samples (n=1459) prepared from questing ticks collected from various cattle pastures in Hokkaido (Shibecha, Taiki, Otofuke, Memuro, and Shin-Hidaka districts) and Okinawa (Yonaguni Island) prefectures of Japan for B. ovata. When all the tick DNA samples were screened by a previously described B. ovata-specific apical membrane antigen-1 (AMA-1) gene-based polymerase chain reaction (PCR) assay, none of the DNA samples was positive. Therefore, we developed a PCR assay based on the protozoan beta-tubulin (β-tubulin) gene to detect B. ovata from ticks in Japan. In the specificity test, the PCR assay amplified the expected 444-bp target gene fragment from B. ovata DNA. No PCR products were amplified from DNA samples from other blood pathogens, bovine blood, or ticks. In addition, the PCR assay detected 100 fg of B. ovata-genomic DNA extracted from an in vitro culture of the parasites. Subsequently, when all the tick DNA samples were screened by this new PCR assay, 18 were positive for B. ovata. Positive samples were found only in the Yonaguni and Memuro areas. In Okinawa, where all the ticks were identified as Haemaphysalis longicornis, 9.7% of the samples were PCR-positive, while a single tick (Ixodes ovatus) from Memuro was infected with B. ovata. When the nucleotide sequences of the PCR amplicons were phylogenetically analyzed, they formed a separate clade containing a previously described β-tubulin gene sequence from B. ovata (Miyake strain), confirming that the PCR assay had detected only B. ovata from the tick DNA samples. This is the first report that describes the PCR detection of B. ovata in ticks. The findings warrant transmission experiments to evaluate I. ovatus as a potential vector of B. ovata. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Field effect sensors for PCR applications

    NASA Astrophysics Data System (ADS)

    Taing, Meng-Houit; Sweatman, Denis R.

    2004-03-01

    The use of field effect sensors for biological and chemical sensing is widely employed due to its ability to make detections based on charge and surface potential. Because proteins and DNA almost always carry a charge [1], silicon can be used to micro fabricate such a sensor. The EIS structure (Electrolyte on Insulator on Silicon) provides a novel, label-free and simple to fabricate way to make a field effect DNA detection sensor. The sensor responds to fluctuating capacitance caused by a depletion layer thickness change at the surface of the silicon substrate through DNA adsorption onto the dielectric oxide/PLL (Poly-L-Lysine) surface. As DNA molecules diffuse to the sensor surface, they are bound to their complimentary capture probes deposited on the surface. The negative charge exhibited by the DNA forces negative charge carriers in the substrate to move away from the surface. This causes an n-type depletion layer substrate to thicken and a p-type to thin. The depletion layer thickness can be measured by its capacitance using an LCR meter. This experiment is conducted using the ConVolt (constant voltage) approach. Nucleic acids are amplified by an on chip PCR (Polymerase Chain Reaction) system and then fed into the sensor. The low ionic solution strength will ensure that counter-ions do not affect the sensor measurements. The sensor surface contains capture probes that bind to the pathogen. The types of pathogens we"ll be detecting include salmonella, campylobacter and E.Coli DNA. They are held onto the sensor surface by the positively charged Poly-L-Lysine layer. The electrolyte is biased through a pseudo-reference electrode. Pseudo reference electrodes are usually made from metals such as Platinum or Silver. The problem associated with "floating" biasing electrodes is they cannot provide stable biasing potentials [2]. They drift due to surface charging effects and trapped charges on the surface. To eliminate this, a differential system consisting of 2 sensors

  6. An investigation of PCR inhibition using Plexor(®) -based quantitative PCR and short tandem repeat amplification.

    PubMed

    Thompson, Robyn E; Duncan, George; McCord, Bruce R

    2014-11-01

    A common problem in forensic DNA typing is PCR inhibition resulting in allele dropout and peak imbalance. In this paper, we have utilized the Plexor(®) real-time PCR quantification kit to evaluate PCR inhibition. This is performed by adding increasing concentrations of various inhibitors and evaluating changes in melt curves and PCR amplification efficiencies. Inhibitors examined included calcium, humic acid, collagen, phenol, tannic acid, hematin, melanin, urea, bile salts, EDTA, and guanidinium thiocyanate. Results were plotted and modeled using mathematical simulations. In general, we found that PCR inhibitors that bind DNA affect melt curves and CT takeoff points while those that affect the Taq polymerase tend to affect the slope of the amplification curve. Mixed mode effects were also visible. Quantitative PCR results were then compared with subsequent STR amplification using the PowerPlex(®) 16 HS System. The overall results demonstrate that real-time PCR can be an effective method to evaluate PCR inhibition and predict its effects on subsequent STR amplifications.

  7. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers

    PubMed Central

    2011-01-01

    Background The polymerase chain reaction (PCR) is commonly used to detect the presence of nucleic acid sequences both in research and diagnostic settings. While high specificity is often achieved, biological requirements sometimes necessitate that primers are placed in suboptimal locations which lead to problems with the formation of primer dimers and/or misamplification of homologous sequences. Results Pyrococcus abyssi (P.a.) RNase H2 was used to enable PCR to be performed using blocked primers containing a single ribonucleotide residue which are activated via cleavage by the enzyme (rhPCR). Cleavage occurs 5'-to the RNA base following primer hybridization to the target DNA. The requirement of the primer to first hybridize with the target sequence to gain activity eliminates the formation of primer-dimers and greatly reduces misamplification of closely related sequences. Mismatches near the scissile linkage decrease the efficiency of cleavage by RNase H2, further increasing the specificity of the assay. When applied to the detection of single nucleotide polymorphisms (SNPs), rhPCR was found to be far more sensitive than standard allele-specific PCR. In general, the best discrimination occurs when the mismatch is placed at the RNA:DNA base pair. Conclusion rhPCR eliminates the formation of primer dimers and markedly improves the specificity of PCR with respect to off-target amplification. These advantages of the assay should find utility in challenging qPCR applications such as genotyping, high level multiplex assays and rare allele detection. PMID:21831278

  8. Use of Repetitive Element Palindromic-PCR (rep-PCR) for the Epidemiologic Discrimination of Food-Borne Pathogens

    USDA-ARS?s Scientific Manuscript database

    The use of defined primers for polymerase chain reactions (PCR) amplicifcations of interspersed repetitive DNA elements present at distinct locations in prokaryotic genomes is referred to as Repetitive Element Palindromic Sequences Based-Polymerase Chain Reactions, rep-PCR. The initial discovery of...

  9. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments.

    PubMed

    Svec, David; Tichopad, Ales; Novosadova, Vendula; Pfaffl, Michael W; Kubista, Mikael

    2015-03-01

    We have examined the imprecision in the estimation of PCR efficiency by means of standard curves based on strategic experimental design with large number of technical replicates. In particular, how robust this estimation is in terms of a commonly varying factors: the instrument used, the number of technical replicates performed and the effect of the volume transferred throughout the dilution series. We used six different qPCR instruments, we performed 1-16 qPCR replicates per concentration and we tested 2-10 μl volume of analyte transferred, respectively. We find that the estimated PCR efficiency varies significantly across different instruments. Using a Monte Carlo approach, we find the uncertainty in the PCR efficiency estimation may be as large as 42.5% (95% CI) if standard curve with only one qPCR replicate is used in 16 different plates. Based on our investigation we propose recommendations for the precise estimation of PCR efficiency: (1) one robust standard curve with at least 3-4 qPCR replicates at each concentration shall be generated, (2) the efficiency is instrument dependent, but reproducibly stable on one platform, and (3) using a larger volume when constructing serial dilution series reduces sampling error and enables calibration across a wider dynamic range.

  10. Is real-time PCR-based diagnosis similar in performance to routine parasitological examination for the identification of Giardia intestinalis, Cryptosporidium parvum/Cryptosporidium hominis and Entamoeba histolytica from stool samples? Evaluation of a new commercial multiplex PCR assay and literature review.

    PubMed

    Laude, A; Valot, S; Desoubeaux, G; Argy, N; Nourrisson, C; Pomares, C; Machouart, M; Le Govic, Y; Dalle, F; Botterel, F; Bourgeois, N; Cateau, E; Leterrier, M; Le Pape, P; Morio, F

    2016-02-01

    Microscopy is the reference standard for routine laboratory diagnosis in faecal parasitology but there is growing interest in alternative methods to overcome the limitations of microscopic examination, which is time-consuming and highly dependent on an operator's skills and expertise. Compared with microscopy, DNA detection by PCR is simple and can offer a better turnaround time. However, PCR performances remain difficult to assess as most studies have been conducted on a limited number of positive clinical samples and used in-house PCR methods. Our aim was to evaluate a new multiplex PCR assay (G-DiaParaTrio; Diagenode Diagnostics), targeting Giardia intestinalis, Cryptosporidium parvum/Cryptosporidium hominis and Entamoeba histolytica. To minimize the turnaround time, PCR was coupled with automated DNA extraction (QiaSymphony; Qiagen). The PCR assay was evaluated using a reference panel of 185 samples established by routine microscopic examination using a standardized protocol including Ziehl-Neelsen staining and adhesin detection by ELISA (E. histolytica II; TechLab). This panel, collected from 12 French parasitology laboratories, included 135 positive samples for G. intestinalis (n = 38), C. parvum/C. hominis (n = 26), E. histolytica (n = 5), 21 other gastrointestinal parasites, together with 50 negative samples. In all, the G-DiaParaTrio multiplex PCR assay identified 38 G. intestinalis, 25 C. parvum/C. hominis and five E. histolytica leading to sensitivity/specificity of 92%/100%, 96%/100% and 100%/100% for G. intestinalis, C. parvum/C. hominis and E. histolytica, respectively. This new multiplex PCR assay offers fast and reliable results, similar to microscopy-driven diagnosis for the detection of these gastrointestinal protozoa, allowing its implementation in routine clinical practice.

  11. [Fut1 gene mutation for para-bombay blood type individual in Fujian Province of China].

    PubMed

    Huang, Hao-Bou; Fan, Li-Ping; Wai, Shi-Jin; Zeng, Feng; Lin, Hai-Yan; Zhang, Rong

    2010-10-01

    This study was aimed to investigate the molecular mechanisms for para-Bombay blood type individual in Fujian Province of China. The para-Bombay blood type of this individual was identified by routine serological techniques. The full coding region of alpha (1,2) fucosyltransferase (FUT1) gene of this individual was amplified by polymerase chain reaction (PCR), then the PCR product was cloned into T vector. The mutation in coding region of fut1 gene was identified by TA cloning, so as to explore the molecular mechanisms for para-Bombay blood type individual. The results indicated that the full coding region of fut1 gene was successfully amplified by PCR. AG deletion at position 547-552 on 2 homologous chromosomes was detected by TA cloning method, leading to a reading frame shift and a premature stop codon. It is concluded that genetic mutation of fut1 gene in this para-bombay blood type individual was h1h1 homozygotic type.

  12. Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples.

    PubMed

    Rački, Nejc; Dreo, Tanja; Gutierrez-Aguirre, Ion; Blejec, Andrej; Ravnikar, Maja

    2014-01-01

    Detection and quantification of plant pathogens in the presence of inhibitory substances can be a challenge especially with plant and environmental samples. Real-time quantitative PCR has enabled high-throughput detection and quantification of pathogens; however, its quantitative use is linked to standardized reference materials, and its sensitivity to inhibitors can lead to lower quantification accuracy. Droplet digital PCR has been proposed as a method to overcome these drawbacks. Its absolute quantification does not rely on standards and its tolerance to inhibitors has been demonstrated mostly in clinical samples. Such features would be of great use in agricultural and environmental fields, therefore our study compared the performance of droplet digital PCR method when challenged with inhibitors common to plant and environmental samples and compared it with quantitative PCR. Transfer of an existing Pepper mild mottle virus assay from reverse transcription real-time quantitative PCR to reverse transcription droplet digital PCR was straight forward. When challenged with complex matrices (seeds, plants, soil, wastewater) and selected purified inhibitors droplet digital PCR showed higher resilience to inhibition for the quantification of an RNA virus (Pepper mild mottle virus), compared to reverse transcription real-time quantitative PCR. This study confirms the improved detection and quantification of the PMMoV RT-ddPCR in the presence of inhibitors that are commonly found in samples of seeds, plant material, soil, and wastewater. Together with absolute quantification, independent of standard reference materials, this makes droplet digital PCR a valuable tool for detection and quantification of pathogens in inhibition prone samples.

  13. Large-scale survey of Campylobacter species in human gastroenteritis by PCR and PCR-enzyme-linked immunosorbent assay.

    PubMed

    Lawson, A J; Logan, J M; O'neill, G L; Desai, M; Stanley, J

    1999-12-01

    A PCR-based study of the incidence of enteropathogenic campylobacter infection in humans was done on the basis of a detection and identification algorithm consisting of screening PCRs and species identification by PCR-enzyme-linked immunosorbent assay. This was applied to DNA extracted from 3,738 fecal samples from patients with sporadic cases of acute gastroenteritis, submitted by seven regional Public Health Laboratories in England and Wales over a 2-year period. The sending laboratories had cultured "Campylobacter spp." from 464 samples. The PCR methodologies detected 492 Campylobacter-positive samples, and the combination of culture and PCR yielded 543 Campylobacter-positive samples. There was identity (overlap) for 413 samples, but 79 PCR-positive samples were culture negative, and 51 culture-positive samples were PCR negative. While there was no statistically significant difference between PCR and culture in detection of C. jejuni-C. coli (PCR, 478 samples; culture, 461 samples), PCR provided unique data about mixed infections and non-C. jejuni and non- C. coli campylobacters. Mixed infections with C. jejuni and C. coli were found in 19 samples, and mixed infection with C. jejuni and C. upsaliensis was found in one sample; this was not apparent from culture. Eleven cases of gastroenteritis were attributed to C. upsaliensis by PCR, three cases were attributed to C. hyointestinalis, and one case was attributed to C. lari. This represents the highest incidence of C. hyointestinalis yet reported from human gastroenteritis, while the low incidence of C. lari suggests that it is less important in this context.

  14. A comparison of four methods for PCR inhibitor removal.

    PubMed

    Hu, Qingqing; Liu, Yuxuan; Yi, Shaohua; Huang, Daixin

    2015-05-01

    Biological samples collected from the crime scenes often contain some compounds that can inhibit the polymerase chain reaction (PCR). The removal of PCR inhibitors from the extracts prior to the PCR amplification is vital for successful forensic DNA typing. This paper aimed to evaluate the ability of four different methods (PowerClean® DNA Clean-Up kit, DNA IQ™ System, Phenol-Chloroform extraction and Chelex®-100 methods) to remove eight commonly encountered PCR inhibitors including: melanin, humic acid, collagen, bile salt, hematin, calcium ions, indigo and urea. Each of these PCR inhibitors was effectively removed by the PowerClean® DNA Clean-Up kit and DNA IQ™ System as demonstrated by generating more complete short tandem repeat (STR) profiles from the cleaned up inhibitor samples than from the raw inhibitor samples. The Phenol-Chloroform extraction and Chelex®-100 methods, however, could only remove some of eight PCR inhibitors. Our results demonstrated that the PowerClean® DNA Clean-Up kit and DNA IQ™ System were very effective for the removal of known PCR inhibitors that are routinely found in DNA extracts from forensic samples.

  15. PCR in laboratory diagnosis of human Borrelia burgdorferi infections.

    PubMed Central

    Schmidt, B L

    1997-01-01

    The laboratory diagnosis of Lyme borreliosis, the most prevalent vector-borne disease in the United States and endemic in parts of Europe and Asia, is currently based on serology with known limitations. Direct demonstration of Borrelia burgdorferi by culture may require weeks, while enzyme-linked immunosorbent assays for antigen detection often lack sensitivity. The development of the PCR has offered a new dimension in the diagnosis. Capable of amplifying minute amounts of DNA into billions of copies in just a few hours, PCR facilitates the sensitive and specific detection of DNA or RNA of pathogenic organisms. This review is restricted to applications of PCR methods in the diagnosis of human B. burgdorferi infections. In the first section, methodological aspects, e.g., sample preparation, target selection, primers and PCR methods, and detection and control of inhibition and contamination, are highlighted. In the second part, emphasis is placed on diagnostic aspects, where PCR results in patients with dermatological, neurological, joint, and ocular manifestations of the disease are discussed. Here, special attention is given to monitoring treatment efficacy by PCR tests. Last, specific guidelines on how to interpret PCR results, together with the advantages and limitations of these new techniques, are presented. PMID:8993863

  16. Real time PCR in childhood tuberculosis: a valuable diagnostic tool.

    PubMed

    Dayal, Rajeshwar; Kashyap, Haripal; Pounikar, Gajanand; Kamal, Raj; Yadav, Neeraj Kumar; Singh, Manoj Kumar; Chauhan, Devendra Singh; Goyal, Ankur

    2015-02-01

    The present study was conducted to detect and quantitate Mycobacterium tuberculosis from various body fluid specimens of cases of tuberculosis by real time PCR technique and compare results with conventional PCR technique and culture. One hundred fifteen children (<18 y) with tuberculosis (diagnosed as per IAP guidelines) and 32 disease matched controls from the Department of Pediatrics, S.N. Medical College, Agra, were included in the study. Different body fluids (CSF, gastric aspirate, pleural fluid, ascitic fluid and lymph node aspirate) were subjected to culture, conventional PCR targeting insertion sequence 1S6110 and Real time PCR targeting 16srRNA of Mycobacterium tuberculosis. Real time PCR showed significantly better results than culture in all body fluids (p < 0.05). It was superior to conventional PCR in CSF (p < 0.05) but showed comparable results in gastric aspirate, pleural fluid, ascitic fluid and lymph node aspirate (p > 0.05). Hence, real time PCR is a promising diagnostic tool for childhood tuberculosis, particularly tubercular meningitis.

  17. PCR assays for detection of Baylisascaris procyonis eggs and larvae.

    PubMed

    Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Kazacos, Kevin R

    2009-06-01

    The objective of this study was to develop polymerase chain reaction (PCR) assays for detection of Baylisascaris procyonis eggs and larvae in fecal, environmental, and tissue samples. We have optimized conventional and real-time PCR assays for B. procyonis using the mitochondrial cytochrome oxidase 2 gene as the target for amplification. The lower limit of detection of the parasite genomic DNA was 10 pg in the conventional PCR and 100 fg in the real-time PCR. In both PCR assays, specific amplification of a 146 bp product was achieved with DNA extracted from a single in vitro hatched B. procyonis larva and also from canine fecal samples spiked with as few as 20 unembryonated B. procyonis eggs per gram of feces. The PCR assays were successfully used for detection of B. procyonis eggs and larvae in fecal, environmental, and tissue samples. No DNA amplification was seen when the genomic DNA of related ascarids (including B. transfuga) and a hookworm was used as template in the PCR; however, amplification was seen with the very closely related B. columnaris.

  18. Rapid and simple method of qPCR primer design.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2015-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is a powerful tool for analysis and quantification of gene expression. It is advantageous compared to traditional gel-based method of PCR, as gene expression can be visualized "real-time" using a computer. In qPCR, a reporter dye system is used which intercalates with DNA's region of interest and detects DNA amplification. Some of the popular reporter systems used in qPCR are the following: Molecular Beacon(®), SYBR Green(®), and Taqman(®). However, success of qPCR depends on the optimal primers used. Some of the considerations for primer design are the following: GC content, primer self-dimer, or secondary structure formation. Freely available software could be used for ideal qPCR primer design. Here we have shown how to use some freely available web-based software programs (such as Primerquest(®), Unafold(®), and Beacon designer(®)) to design qPCR primers.

  19. Multiplex PCR to detect four different tomato-infecting pathogens.

    PubMed

    Quintero-Vásquez, Gabriela Alejandra; Bazán-Tejeda, María Luisa; Martínez-Peñafiel, Eva; Kameyama-Kawabe, Luis; Bermúdez-Cruz, Rosa María

    2013-07-01

    This work was aimed to develop a multiplex PCR assay to detect infectious agents such as Clavibacter michiganensis subsp. michiganensis, Fusarium sp, Leveillula taurica, and begomoviruses in tomato (Solanum lycopersicum) plants. Specific primer sets of each pathogen were designed based on intergenic ribosomal RNA sequences for the first three, whereas for begomoviruses, primers were designed based on conserved regions. The design also considered that the length (200-800 bp) of the PCR products was resolvable by electrophoresis; thus 296, 380, 457, and 731 bp fragments for Clavibacter, Fusarium, Leveillula, and begomoviruses, respectively, were considered. PCR conditions were optimized to amplify all the products in a single tube from genomic DNA and circumvent PCR inhibitors from infected plants. Finally, when the multiplex PCR assay was tested with tomato plants infected with any of the four pathogens, specific PCR products confirmed the presence of the pathogens. Optimized PCR multiplex allowed for the accurate and simultaneous detection of Clavibacter, Fusarium, Leveillula, and begomoviruses in infected plants or seeds from tomato.

  20. Planar Para Algebras, Reflection Positivity

    NASA Astrophysics Data System (ADS)

    Jaffe, Arthur; Liu, Zhengwei

    2017-05-01

    We define a planar para algebra, which arises naturally from combining planar algebras with the idea of ZN para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects that are invariant under para isotopy. For each ZN, we construct a family of subfactor planar para algebras that play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra (PAPPA). Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras, which one can use in the study of quantum information. An important ingredient in planar para algebra theory is the string Fourier transform (SFT), which we use on the matrix algebra generated by the Pauli matrices. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivity by relating the two reflections through the string Fourier transform.

  1. Molecular characterization of Corynebacterium pseudotuberculosis isolates using ERIC-PCR.

    PubMed

    Guimarães, Alessandro de Sá; Dorneles, Elaine Maria Seles; Andrade, Giovanna Ivo; Lage, Andrey Pereira; Miyoshi, Anderson; Azevedo, Vasco; Gouveia, Aurora Maria Guimarães; Heinemann, Marcos Bryan

    2011-12-15

    Caseous lymphadenitis is an infectious sheep and goats disease caused by Corynebacterium pseudotuberculosis and characterized by abscesses in superficial and visceral lymph nodes. C. pseudotuberculosis strains isolated from these hosts have been shown to be very difficult to type by the existing methods. The aim of this study is evaluating the potential of the Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR) as a tool for molecular typing of C. pseudotuberculosis strains isolated in sheep. One hundred and twenty seven isolates of C. pseudotuberculosis were isolated from lesions suspected to have had caseous lymphadenitis collected from sheep at the slaughterhouse. Animals were from 24 flocks in 13 municipalities of the Minas Gerais State, Brazil. Species identification of the isolates was performed by routine biochemical tests and mPCR. Fingerprint was performed by RAPD using ERIC-1R, ERIC-2 and ERIC-1R+ERIC-2 primers. Seventeen different genotypes were generated by ERIC 1-PCR, 21 genotypes by ERIC 2-PCR and 21 genotypes by ERIC 1+2-PCR. Hunter-Gaston Discrimination Index (HGDI) found for ERIC 1, ERIC 2, ERIC 1+2 PCR were 0.69, 0.87, and 0.84, respectively. For most herds evaluated observed at most three different genotypes among isolates from animals of these property, in all ERIC-PCR assays. However a few flocks observed between four and nine genotypes per flock. The W Kendall value found for correlation among the three techniques of ERIC-PCR was 0.91 (P<5.0 x 10(-6)). The results show that ERIC-PCR has good discriminatory power and advantages over other DNA-based typing methods, making it a useful tool to discriminate C. pseudotuberculosis isolates.

  2. Development of a PCR test to diagnose Haemophilus parasuis infections.

    PubMed

    Oliveira, S; Galina, L; Pijoan, C

    2001-11-01

    A polymerase chain reaction (PCR) test was developed in order to improve the accuracy and speed of diagnosis of Haemophilus parasuis, an economically important respiratory pathogen that affects swine. The gene sequence of the 16S small subunit ribosomal RNA of H. parasuis (GenBank M75065) was compared with 56 16S sequences of related bacteria, including those frequently isolated from pig tissues. Two species-specific primers were designed: HPS forward and HPS reverse. The predicted size of the amplified PCR product was 821 bp. The PCR test could detect a minimum of 102 bacteria and 0.69 pg of DNA. Thirty-one H. parasuis isolates, including 12 different serovars and 19 field isolates, were positive using the PCR test. No amplification was observed when the test was run using DNA from 15 other bacterial species commonly isolated from swine tissues. A weak band was observed when the PCR test was performed using Actinobacillus indolicus DNA as template. Clinical samples tested by PCR included tissues and swabs from 5 animals naturally infected with H. parasuis and 1 experimentally infected animal. The PCR was positive in 26 of 30 clinical samples. Four samples showed weak bands, and these results were not considered positive. Haemophilus parasuis was isolated from 18 of 30 of these samples. Tissues from specific pathogen-free (SPF) pigs and from unrelated species were negative for H. parasuis isolation and PCR. The developed PCR was successfully used in the diagnosis of H. parasuis infection, especially when compared with traditional microbiology techniques.

  3. A multiplex PCR for detection of six viruses in ducks.

    PubMed

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10(2) copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  4. Identification and quantification of ice nucleation active microorganisms by digital droplet PCR (ddPCR)

    NASA Astrophysics Data System (ADS)

    Linden, Martin; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Several bioaerosol types, including bacteria, fungi, pollen and lichen, have been identified as sources of biological ice nucleators (IN) which induce ice formation already at temperatures as high as -10 °C or above. Accordingly, they potentially contribute widely to environmental ice nucleation in the atmosphere and are of great interest in the study of natural heterogenous ice nucleation processes. Ice nucleation active microorganisms have been found and studied among bacteria (Proteobacteria) and fungi (phyla Basidiomycota and Ascomycota). The mechanisms enabling the microorganisms to ice nucleation are subject to ongoing research. While it has been demonstrated that whole cells can act as ice nucleators in the case of bacteria due to the presence of specific membrane proteins, cell-free ice nucleation active particles seem to be responsible for this phenomenon in fungi and lichen. The identification and quantification of these ice nucleation active microorganisms and their IN in atmospheric samples is crucial to understand their contribution to the pool of atmospheric IN. This is not a trivial task since the respective microorganisms are often prevalent in lowest concentrations and a variety of states, be it viable cells, spores or cell debris from dead cells. Molecular biology provides tools to identify and quantify ice nucleation active microorganisms independent of their state by detecting genetic markers specific for the organism of interest. Those methods are not without their drawbacks in terms of sample material concentration required or reliable standardization. Digital Droplet Polymerase Chain Reaction (ddPCR) was chosen for our demands as a more elegant, quick and specific method in the investigation of ice nucleation active microorganisms in atmospheric samples. The advantages of ddPCR lie in the simultaneous detection and quantification of genetic markers and their original copy numbers in a sample. This is facilitated by the fractionation of the

  5. PCR diagnosis of Pneumocystis pneumonia: a bivariate meta-analysis.

    PubMed

    Lu, Yuan; Ling, Guoya; Qiang, Chenyi; Ming, Qinshou; Wu, Cong; Wang, Ke; Ying, Zouxiao

    2011-12-01

    We undertook a bivariate meta-analysis to assess the overall accuracy of respiratory specimen PCR assays for diagnosing Pneumocystis pneumonia. The summary sensitivity and specificity were 0.99 (95% confidence interval, 0.96 to 1.00) and 0.90 (0.87 to 0.93). Subgroup analyses showed that quantitative PCR analysis and the major surface glycoprotein gene target had the highest specificity value (0.93). Respiratory specimen PCR results are sufficient to confirm or exclude the disease for at-risk patients suspected of having Pneumocystis pneumonia.

  6. PCR amplification on microarrays of gel immobilized oligonucleotides

    DOEpatents

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  7. Preparation of DNA-containing extract for PCR amplification

    DOEpatents

    Dunbar, John M.; Kuske, Cheryl R.

    2006-07-11

    Environmental samples typically include impurities that interfere with PCR amplification and DNA quantitation. Samples of soil, river water, and aerosol were taken from the environment and added to an aqueous buffer (with or without detergent). Cells from the sample are lysed, releasing their DNA into the buffer. After removing insoluble cell components, the remaining soluble DNA-containing extract is treated with N-phenacylthiazolium bromide, which causes rapid precipitation of impurities. Centrifugation provides a supernatant that can be used or diluted for PCR amplification of DNA, or further purified. The method may provide a DNA-containing extract sufficiently pure for PCR amplification within 5–10 minutes.

  8. Predicting Gene Structures from Multiple RT-PCR Tests

    NASA Astrophysics Data System (ADS)

    Kováč, Jakub; Vinař, Tomáš; Brejová, Broňa

    It has been demonstrated that the use of additional information such as ESTs and protein homology can significantly improve accuracy of gene prediction. However, many sources of external information are still being omitted from consideration. Here, we investigate the use of product lengths from RT-PCR experiments in gene finding. We present hardness results and practical algorithms for several variants of the problem and apply our methods to a real RT-PCR data set in the Drosophila genome. We conclude that the use of RT-PCR data can improve the sensitivity of gene prediction and locate novel splicing variants.

  9. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species.

    PubMed

    Doi, Hideyuki; Takahara, Teruhiko; Minamoto, Toshifumi; Matsuhashi, Saeko; Uchii, Kimiko; Yamanaka, Hiroki

    2015-05-05

    Environmental DNA (eDNA) has been used to investigate species distributions in aquatic ecosystems. Most of these studies use real-time polymerase chain reaction (PCR) to detect eDNA in water; however, PCR amplification is often inhibited by the presence of organic and inorganic matter. In droplet digital PCR (ddPCR), the sample is partitioned into thousands of nanoliter droplets, and PCR inhibition may be reduced by the detection of the end-point of PCR amplification in each droplet, independent of the amplification efficiency. In addition, real-time PCR reagents can affect PCR amplification and consequently alter detection rates. We compared the effectiveness of ddPCR and real-time PCR using two different PCR reagents for the detection of the eDNA from invasive bluegill sunfish, Lepomis macrochirus, in ponds. We found that ddPCR had higher detection rates of bluegill eDNA in pond water than real-time PCR with either of the PCR reagents, especially at low DNA concentrations. Limits of DNA detection, which were tested by spiking the bluegill DNA to DNA extracts from the ponds containing natural inhibitors, found that ddPCR had higher detection rate than real-time PCR. Our results suggest that ddPCR is more resistant to the presence of PCR inhibitors in field samples than real-time PCR. Thus, ddPCR outperforms real-time PCR methods for detecting eDNA to document species distributions in natural habitats, especially in habitats with high concentrations of PCR inhibitors.

  10. Oligoribonucleotide (ORN) interference-PCR (ORNi-PCR): a simple method for suppressing PCR amplification of specific DNA sequences using ORNs.

    PubMed

    Tanigawa, Naoki; Fujita, Toshitsugu; Fujii, Hodaka

    2014-01-01

    Polymerase chain reaction (PCR) amplification of multiple templates using common primers is used in a wide variety of molecular biological techniques. However, abundant templates sometimes obscure the amplification of minor species containing the same primer sequences. To overcome this challenge, we used oligoribonucleotides (ORNs) to inhibit amplification of undesired template sequences without affecting amplification of control sequences lacking complementarity to the ORNs. ORNs were effective at very low concentrations, with IC50 values for ORN-mediated suppression on the order of 10 nM. DNA polymerases that retain 3'-5' exonuclease activity, such as KOD and Pfu polymerases, but not those that retain 5'-3' exonuclease activity, such as Taq polymerase, could be used for ORN-mediated suppression. ORN interference-PCR (ORNi-PCR) technology should be a useful tool for both molecular biology research and clinical diagnosis.

  11. Sensitive simultaneous detection of seven sexually transmitted agents in semen by multiplex-PCR and of HPV by single PCR.

    PubMed

    Gimenes, Fabrícia; Medina, Fabiana Soares; Abreu, André Luelsdorf Pimenta de; Irie, Mary Mayumi Taguti; Esquiçati, Isis Baroni; Malagutti, Natália; Vasconcellos, Vinícius Rodrigo Bulla; Discacciati, Michele Garcia; Bonini, Marcelo Gialluisi; Maria-Engler, Silvya Stuchi; Consolaro, Marcia Edilaine Lopes

    2014-01-01

    Sexually transmitted diseases (STDs) may impair sperm parameters and functions thereby promoting male infertility. To date limited molecular studies were conducted to evaluate the frequency and type of such infections in semen Thus, we aimed at conceiving and validating a multiplex PCR (M-PCR) assay for the simultaneous detection of the following STD pathogens in semen: Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis, Herpes virus simplex (HSV) -1 and -2, and Treponema pallidum; We also investigated the potential usefulness of this M-PCR assay in screening programs for semen pathogens. In addition, we aimed: to detect human Papillomavirus (HPV) and genotypes by single PCR (sPCR) in the same semen samples; to determine the prevalence of the seven STDs, HPV and co-infections; to assess the possibility that these infections affect semen parameters and thus fertility. The overall validation parameters of M-PCR were extremely high including agreement (99.2%), sensitivity (100.00%), specificity (99.70%), positive (96.40%) and negative predictive values (100.00%) and accuracy (99.80%). The prevalence of STDs was very high (55.3%). Furthermore, associations were observed between STDs and changes in semen parameters, highlighting the importance of STD detection in semen. Thus, this M-PCR assay has great potential for application in semen screening programs for pathogens in infertility and STD clinics and in sperm banks.

  12. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis.

    PubMed

    Lu, Sha; Li, Xiqing; Calderone, Richard; Zhang, Jing; Ma, Jianchi; Cai, Wenying; Xi, Liyan

    2016-02-01

    Talaromyces marneffei is a dimorphic pathogenic fungus, which is a life-threatening invasive mycosis in the immunocompromised host. Prompt diagnosis of T. marneffei infection remains difficult although there has been progress in attempts to expedite the diagnosis of this infection. We previously demonstrated the value of nested polymerase chain reaction (PCR) to detect T. marneffei in paraffin embedded tissue samples with high sensitivity and specificity. In this study, this assay was used to detect the DNA of T. marneffei in whole blood samples. Real-time PCR assay was also evaluated to identify T. marneffei in the same samples. Twenty out of 30 whole blood samples (67%) collected from 23 patients were found positive by using the nested PCR assay, while 23/30 (77%) samples were found positive by using the real-time PCR assay. In order to express accurately the fungal loads, we used a normalized linearized plasmid as an internal control for real-time PCR. The assay results were correlated as the initial quantity (copies/μl) with fungal burden. These data indicate that combination of nested PCR and real-time PCR assay provides an attractive alternative for identification of T. marneffei DNA in whole blood samples of HIV-infected patients.

  13. COMplementary Primer ASymmetric PCR (COMPAS-PCR) Applied to the Identification of Salmo salar, Salmo trutta and Their Hybrids

    PubMed Central

    2016-01-01

    Avoiding complementarity between primers when designing a PCR assay constitutes a central rule strongly anchored in the mind of the molecular scientist. 3’-complementarity will extend the primers during PCR elongation using one another as template, consequently disabling further possible involvement in traditional target amplification. However, a 5’-complementarity will leave the primers unchanged during PCR cycles, albeit sequestered to one another, therefore also suppressing target amplification. We show that 5’-complementarity between primers may be exploited in a new PCR method called COMplementary-Primer-Asymmetric (COMPAS)-PCR, using asymmetric primer concentrations to achieve target PCR amplification. Moreover, such a design may paradoxically reduce spurious non-target amplification by actively sequestering the limiting primer. The general principles were demonstrated using 5S rDNA direct repeats as target sequences to design a species-specific assay for identifying Salmo salar and Salmo trutta using almost fully complementary primers overlapping the same target sequence. Specificity was enhanced by using 3’-penultimate point mutations and the assay was further developed to enable identification of S. salar x S. trutta hybrids by High Resolution Melt analysis in a 35 min one-tube assay. This small paradigm shift, using highly complementary primers for PCR, should help develop robust assays that previously would not be considered. PMID:27783658

  14. COMplementary Primer ASymmetric PCR (COMPAS-PCR) Applied to the Identification of Salmo salar, Salmo trutta and Their Hybrids.

    PubMed

    Anglès d'Auriac, Marc B

    2016-01-01

    Avoiding complementarity between primers when designing a PCR assay constitutes a central rule strongly anchored in the mind of the molecular scientist. 3'-complementarity will extend the primers during PCR elongation using one another as template, consequently disabling further possible involvement in traditional target amplification. However, a 5'-complementarity will leave the primers unchanged during PCR cycles, albeit sequestered to one another, therefore also suppressing target amplification. We show that 5'-complementarity between primers may be exploited in a new PCR method called COMplementary-Primer-Asymmetric (COMPAS)-PCR, using asymmetric primer concentrations to achieve target PCR amplification. Moreover, such a design may paradoxically reduce spurious non-target amplification by actively sequestering the limiting primer. The general principles were demonstrated using 5S rDNA direct repeats as target sequences to design a species-specific assay for identifying Salmo salar and Salmo trutta using almost fully complementary primers overlapping the same target sequence. Specificity was enhanced by using 3'-penultimate point mutations and the assay was further developed to enable identification of S. salar x S. trutta hybrids by High Resolution Melt analysis in a 35 min one-tube assay. This small paradigm shift, using highly complementary primers for PCR, should help develop robust assays that previously would not be considered.

  15. Specific detection of viable Legionella cells by combined use of photoactivated ethidium monoazide and PCR/real-time PCR.

    PubMed

    Chang, Bin; Sugiyama, Kanji; Taguri, Toshitsugu; Amemura-Maekawa, Junko; Kura, Fumiaki; Watanabe, Haruo

    2009-01-01

    Legionella organisms are prevalent in manmade water systems and cause legionellosis in humans. A rapid detection method for viable Legionella cells combining ethidium monoazide (EMA) and PCR/real-time PCR was assessed. EMA could specifically intercalate and cleave the genomic DNA of heat- and chlorine-treated dead Legionella cells. The EMA-PCR assay clearly showed an amplified fragment specific for Legionella DNA from viable cells, but it could not do so for DNA from dead cells. The number of EMA-treated dead Legionella cells estimated by real-time PCR exhibited a 10(4)- to 10(5)-fold decrease compared to the number of dead Legionella cells without EMA treatment. Conversely, no significant difference in the numbers of EMA-treated and untreated viable Legionella cells was detected by the real-time PCR assay. The combined assay was also confirmed to be useful for specific detection of culturable Legionella cells from water samples obtained from spas. Therefore, the combined use of EMA and PCR/real-time PCR detects viable Legionella cells rapidly and specifically and may be useful in environmental surveillance for Legionella.

  16. Sensitive Simultaneous Detection of Seven Sexually Transmitted Agents in Semen by Multiplex-PCR and of HPV by Single PCR

    PubMed Central

    de Abreu, André Luelsdorf Pimenta; Irie, Mary Mayumi Taguti; Esquiçati, Isis Baroni; Malagutti, Natália; Vasconcellos, Vinícius Rodrigo Bulla; Discacciati, Michele Garcia; Bonini, Marcelo Gialluisi; Maria-Engler, Silvya Stuchi; Consolaro, Marcia Edilaine Lopes

    2014-01-01

    Sexually transmitted diseases (STDs) may impair sperm parameters and functions thereby promoting male infertility. To date limited molecular studies were conducted to evaluate the frequency and type of such infections in semen Thus, we aimed at conceiving and validating a multiplex PCR (M-PCR) assay for the simultaneous detection of the following STD pathogens in semen: Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis, Herpes virus simplex (HSV) −1 and −2, and Treponema pallidum; We also investigated the potential usefulness of this M-PCR assay in screening programs for semen pathogens. In addition, we aimed: to detect human Papillomavirus (HPV) and genotypes by single PCR (sPCR) in the same semen samples; to determine the prevalence of the seven STDs, HPV and co-infections; to assess the possibility that these infections affect semen parameters and thus fertility. The overall validation parameters of M-PCR were extremely high including agreement (99.2%), sensitivity (100.00%), specificity (99.70%), positive (96.40%) and negative predictive values (100.00%) and accuracy (99.80%). The prevalence of STDs was very high (55.3%). Furthermore, associations were observed between STDs and changes in semen parameters, highlighting the importance of STD detection in semen. Thus, this M-PCR assay has great potential for application in semen screening programs for pathogens in infertility and STD clinics and in sperm banks. PMID:24921247

  17. Clinical Performance of Aspergillus PCR for Testing Serum and Plasma: a Study by the European Aspergillus PCR Initiative.

    PubMed

    White, P Lewis; Barnes, Rosemary A; Springer, Jan; Klingspor, Lena; Cuenca-Estrella, Manuel; Morton, C Oliver; Lagrou, Katrien; Bretagne, Stéphane; Melchers, Willem J G; Mengoli, Carlo; Donnelly, J Peter; Heinz, Werner J; Loeffler, Juergen

    2015-09-01

    Aspergillus PCR testing of serum provides technical simplicity but with potentially reduced sensitivity compared to whole-blood testing. With diseases for which screening to exclude disease represents an optimal strategy, sensitivity is paramount. The associated analytical study confirmed that DNA concentrations were greater in plasma than those in serum. The aim of the current investigation was to confirm analytical findings by comparing the performance of Aspergillus PCR testing of plasma and serum in the clinical setting. Standardized Aspergillus PCR was performed on plasma and serum samples concurrently obtained from hematology patients in a multicenter retrospective anonymous case-control study, with cases diagnosed according to European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) consensus definitions (19 proven/probable cases and 42 controls). Clinical performance and clinical utility (time to positivity) were calculated for both kinds of samples. The sensitivity and specificity for Aspergillus PCR when testing serum were 68.4% and 76.2%, respectively, and for plasma, they were 94.7% and 83.3%, respectively. Eighty-five percent of serum and plasma PCR results were concordant. On average, plasma PCR was positive 16.8 days before diagnosis and was the earliest indicator of infection in 13 cases, combined with other biomarkers in five cases. On average, serum PCR was positive 10.8 days before diagnosis and was the earliest indicator of infection in six cases, combined with other biomarkers in three cases. These results confirm the analytical finding that the sensitivity of Aspergillus PCR using plasma is superior to that using serum. PCR positivity occurs earlier when testing plasma and provides sufficient sensitivity for the screening of invasive aspergillosis while maintaining methodological simplicity.

  18. A PCR assay and PCR-restriction fragment length polymorphism combination identifying the 3 primary Mycoplasma species causing mastitis.

    PubMed

    Boonyayatra, S; Fox, L K; Besser, T E; Sawant, A; Gay, J M; Raviv, Z

    2012-01-01

    The focus of the current research was to develop real-time PCR assays with improved sensitivity and the capacity to simultaneously speciate the 3 most common mycoplasma mastitis agents: Mycoplasma bovis, Mycoplasma californicum, and Mycoplasma bovigenitalium. Real-time PCR was chosen because it provides rapid results. Partial 16S rRNA gene sequencing was used as the gold standard for evaluating candidate real-time PCR assays. To ascertain the real-time PCR assay specificity, reference strains of Mycoplasma species, Acholeplasma axanthum, and common gram-positive and gram-negative mastitis pathogens were tested. No cross-reactions were observed. Mycoplasma spp. isolated from bovine milk samples (n=228) and other organ sites (n=40) were tested by the real-time PCR assays and the partial 16S rRNA gene sequencing assay. Overall accuracy of this novel real-time PCR was 98.51%; 4 of 228 isolates identified as M. bovis by the partial 16S rRNA gene sequencing assay were identified as both M. bovis and M. californicum by real-time PCR. Subsequent amplicon sequencing suggested the presence of both M. bovis and M. californicum in these 4 samples. Using a cycle threshold of 37, the detection limits for real-time PCR were 10 copies of DNA template for both M. bovis and M. bovigenitalium, and 1 copy for M. californicum. This real-time PCR assay is a diagnostic technique that may be used as a screening tool or as a confirmation test for mycoplasma mastitis.

  19. Quantitative PCR for Genetic Markers of Human Fecal Pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...

  20. Quantitative PCR for Genetic Markers of Human Fecal Pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...

  1. Quantitative PCR for genetic markers of human fecal pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...

  2. Identification of Alocasia odora (Kuwazuimo in Japanese) Using PCR Method.

    PubMed

    Hagino, Kayo; Nakano, Hisako; Shimizu, Motomu; Terai, Akiko; Ogai, Mami; Aragane, Masako; Abe, Tomohiro; Sasamoto, Takeo

    2017-01-01

    Kuwazuimo (Alocasia odora) and shimakuwazuimo (Alocasia cucullata) are evergreen perennial plants that originated in East Asia. Although inedible, they are occasionally eaten by mistake because they resemble satoimo (Colocasia esculenta), and this has caused food poisoning in Japan. It is not easy to determine the cause of a food poisoning outbreak from the shape or chemical composition when the available sample is small. Therefore, we developed a new primer pair for PCR to identify kuwazuimo and shimakuwazuimo in small samples, based on the internal transcribed spacer (ITS) region of ribosomal DNA. Using PCR with the developed primer pair, we detected all samples of kuwazuimo obtained from the market, while excluding 17 other kinds of crops. The samples were identified as shimakuwazuimo by DNA sequencing of the PCR products. The present PCR method showed high specificity and was confirmed to be applicable to the identification of kuwazuimo and shimakuwazuimo from various crops.

  3. Conjunctival swab PCR to detect Leishmania spp. in cats.

    PubMed

    Oliveira, Trícia Maria Ferreira de Sousa; Pereira, Vanessa Figueredo; Benvenga, Graziella Ulbricht; Martin, Maria Fernanda Alves; Benassi, Julia Cristina; da Silva, Diogo Tiago; Starke-Buzetti, Wilma Aparecida

    2015-01-01

    The relevance of the dog as a source of visceral leishmaniasis infection is known, but the role of cats as reservoir hosts for leishmaniasis is not yet fully clear. This study assessed the efficacy of conjunctival swab PCR (CS-PCR) in the detection of cats infected by Leishmania spp. The results were seven (13.5%) cats positive for Leishmania spp. in the PCR, in 52 cats tested from Pirassunuga-SP and Ilha Solteira-SP. From the city of Pirassununga - SP 28.6% (2/7) were positive and from the city of Ilha Solteira - SP 11.1% (5/45) were positive. The results showed that CS-PCR was capable of detecting cats infected by this protozoan. Conjunctival swab samples proved easier to perform in cats, which might facilitate studies on the frequency and distribution of feline leishmaniasis.

  4. Quantitative PCR for genetic markers of human fecal pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...

  5. Single-molecule emulsion PCR in microfluidic droplets.

    PubMed

    Zhu, Zhi; Jenkins, Gareth; Zhang, Wenhua; Zhang, Mingxia; Guan, Zhichao; Yang, Chaoyong James

    2012-06-01

    The application of microfluidic droplet PCR for single-molecule amplification and analysis has recently been extensively studied. Microfluidic droplet technology has the advantages of compartmentalizing reactions into discrete volumes, performing highly parallel reactions in monodisperse droplets, reducing cross-contamination between droplets, eliminating PCR bias and nonspecific amplification, as well as enabling fast amplification with rapid thermocycling. Here, we have reviewed the important technical breakthroughs of microfluidic droplet PCR in the past five years and their applications to single-molecule amplification and analysis, such as high-throughput screening, next generation DNA sequencing, and quantitative detection of rare mutations. Although the utilization of microfluidic droplet single-molecule PCR is still in the early stages, its great potential has already been demonstrated and will provide novel solutions to today's biomedical engineering challenges in single-molecule amplification and analysis.

  6. Rapid PCR amplification of DNA utilizing Coriolis effects.

    PubMed

    Mårtensson, Gustaf; Skote, Martin; Malmqvist, Mats; Falk, Mats; Asp, Allan; Svanvik, Nicke; Johansson, Arne

    2006-08-01

    A novel polymerase chain reaction (PCR) method is presented that utilizes Coriolis and centrifugal effects, produced by rotation of the sample disc, in order to increase internal circulatory rates, and with them temperature homogenization and mixing speeds. A proof of concept has been presented by testing a rapid 45-cycle PCR DNA amplification protocol. During the repeated heating and cooling that constitutes a PCR process, the 100 microL samples were rotated at a speed equivalent to an effective acceleration of gravity of 7,000 g. A cycle time of 20.5 s gave a total process time of 15 min to complete the 45 cycles. A theoretical and numerical analysis of the resulting flow, which describes the increased mixing and temperature homogenization, is presented. The device gives excellent reaction speed efficiency, which is beneficial for rapid PCR.

  7. DNA Microarray-Based PCR Ribotyping of Clostridium difficile

    PubMed Central

    Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2014-01-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. PMID:25411174

  8. Identification of Phytophthora fragariae var. rubi by PCR.

    PubMed

    Schlenzig, Alexandra

    2009-01-01

    The following chapter describes a PCR method for the identification of the raspberry root rot pathogen Phytophthora fragariae var. rubi. Furthermore, a nested PCR suitable for the detection of the pathogen in infected raspberry roots and validated against the "Duncan bait test" (EPPO Bull 35:87-91, 2005) is explained. Protocols for different DNA extraction methods are given which can be transferred to other fungal pathogens.

  9. MPprimer: a program for reliable multiplex PCR primer design.

    PubMed

    Shen, Zhiyong; Qu, Wubin; Wang, Wen; Lu, Yiming; Wu, Yonghong; Li, Zhifeng; Hang, Xingyi; Wang, Xiaolei; Zhao, Dongsheng; Zhang, Chenggang

    2010-03-18

    Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer) in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility. A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs) for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2x to 5x plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy), which has 79 exons, for 20x, 20x, 20x, 14x, and 5x plex PCR reactions in five tubes to detect underlying exon deletions. MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.

  10. DNA microarray-based PCR ribotyping of Clostridium difficile.

    PubMed

    Schneeberg, Alexander; Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2015-02-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray.

  11. Detection of group a streptococcal pharyngitis by quantitative PCR.

    PubMed

    Dunne, Eileen M; Marshall, Julia L; Baker, Ciara A; Manning, Jayne; Gonis, Gena; Danchin, Margaret H; Smeesters, Pierre R; Satzke, Catherine; Steer, Andrew C

    2013-07-11

    Group A streptococcus (GAS) is the most common bacterial cause of sore throat. School-age children bear the highest burden of GAS pharyngitis. Accurate diagnosis is difficult: the majority of sore throats are viral in origin, culture-based identification of GAS requires 24-48 hours, and up to 15% of children are asymptomatic throat carriers of GAS. The aim of this study was to develop a quantitative polymerase chain reaction (qPCR) assay for detecting GAS pharyngitis and assess its suitability for clinical diagnosis. Pharyngeal swabs were collected from children aged 3-18 years (n = 91) and adults (n = 36) located in the Melbourne area who presented with sore throat. Six candidate PCR assays were screened using a panel of reference isolates, and two of these assays, targeting speB and spy1258, were developed into qPCR assays. The qPCR assays were compared to standard culture-based methods for their ability to detect GAS pharyngitis. GAS isolates from culture positive swabs underwent emm-typing. Clinical data were used to calculate McIsaac scores as an indicator of disease severity. Twenty-four of the 127 samples (18.9%) were culture-positive for GAS, and all were in children (26%). The speB qPCR had 100% sensitivity and 100% specificity compared with gold-standard culture, whereas the spy1258 qPCR had 87% sensitivity and 100% specificity. Nine different emm types were found, of which emm 89, 3, and 28 were most common. Bacterial load as measured by qPCR correlated with culture load. There were no associations between symptom severity as indicated by McIsaac scores and GAS bacterial load. The speB qPCR displayed high sensitivity and specificity and may be a useful tool for GAS pharyngitis diagnosis and research.

  12. Improved PCR Amplification of Broad Spectrum GC DNA Templates.

    PubMed

    Guido, Nicholas; Starostina, Elena; Leake, Devin; Saaem, Ishtiaq

    2016-01-01

    Many applications in molecular biology can benefit from improved PCR amplification of DNA segments containing a wide range of GC content. Conventional PCR amplification of DNA sequences with regions of GC less than 30%, or higher than 70%, is complex due to secondary structures that block the DNA polymerase as well as mispriming and mis-annealing of the DNA. This complexity will often generate incomplete or nonspecific products that hamper downstream applications. In this study, we address multiplexed PCR amplification of DNA segments containing a wide range of GC content. In order to mitigate amplification complications due to high or low GC regions, we tested a combination of different PCR cycling conditions and chemical additives. To assess the fate of specific oligonucleotide (oligo) species with varying GC content in a multiplexed PCR, we developed a novel method of sequence analysis. Here we show that subcycling during the amplification process significantly improved amplification of short template pools (~200 bp), particularly when the template contained a low percent of GC. Furthermore, the combination of subcycling and 7-deaza-dGTP achieved efficient amplification of short templates ranging from 10-90% GC composition. Moreover, we found that 7-deaza-dGTP improved the amplification of longer products (~1000 bp). These methods provide an updated approach for PCR amplification of DNA segments containing a broad range of GC content.

  13. PCR performance of a thermostable heterodimeric archaeal DNA polymerase.

    PubMed

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  14. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    PubMed Central

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  15. Rapid diagnosis of goose viral infections by multiplex PCR.

    PubMed

    Chen, Zongyan; Li, Chuanfeng; Li, Guoxin; Yu, Hai; Jiang, Yifeng; Yan, Liping; Meng, Chunchun; Zhou, Yanjun; Tong, Guangzhi; Liu, Guangqing

    2013-08-01

    Goose parvovirus (GPV), newcastle disease virus (NDV), goose herpesvirus (GHV) and goose adenovirus (GAV) are considered collectively to be four of the most important and widespread viruses of geese. Because all of these viruses cause similar pathological changes, histological differentiation among these viruses is difficult. A reliable, specific and sensitive multiplex PCR (mPCR) assay was developed for the combined detection of GPV, NDV, GHV and GAV in clinical samples of geese. Using the mPCR technique, single infections with GPV (28/76; 36.8%), NDV (9/76; 11.8%), GHV (3/76; 3.9%) and GAV (12/76; 15.8%) were identified in the samples; co-infections with GAV and either GPV or NDV (31.6%; 24/76) were also identified with this approach. The results for all of the samples tested were the same in both the uPCR and mPCR systems. The mPCR approach is considered to be useful for routine molecular diagnosis and epidemiological applications in geese.

  16. Improved PCR Amplification of Broad Spectrum GC DNA Templates

    PubMed Central

    Guido, Nicholas; Starostina, Elena; Leake, Devin; Saaem, Ishtiaq

    2016-01-01

    Many applications in molecular biology can benefit from improved PCR amplification of DNA segments containing a wide range of GC content. Conventional PCR amplification of DNA sequences with regions of GC less than 30%, or higher than 70%, is complex due to secondary structures that block the DNA polymerase as well as mispriming and mis-annealing of the DNA. This complexity will often generate incomplete or nonspecific products that hamper downstream applications. In this study, we address multiplexed PCR amplification of DNA segments containing a wide range of GC content. In order to mitigate amplification complications due to high or low GC regions, we tested a combination of different PCR cycling conditions and chemical additives. To assess the fate of specific oligonucleotide (oligo) species with varying GC content in a multiplexed PCR, we developed a novel method of sequence analysis. Here we show that subcycling during the amplification process significantly improved amplification of short template pools (~200 bp), particularly when the template contained a low percent of GC. Furthermore, the combination of subcycling and 7-deaza-dGTP achieved efficient amplification of short templates ranging from 10–90% GC composition. Moreover, we found that 7-deaza-dGTP improved the amplification of longer products (~1000 bp). These methods provide an updated approach for PCR amplification of DNA segments containing a broad range of GC content. PMID:27271574

  17. PCR test for detecting Taenia solium cysticercosis in pig carcasses.

    PubMed

    Sreedevi, Chennuru; Hafeez, Mohammad; Kumar, Putcha Anand; Rayulu, Vukka Chengalva; Subramanyam, Kothapalli Venkata; Sudhakar, Krovvidi

    2012-01-01

    Polymerase chain reaction (PCR) test was employed to detect Taenia solium DNA in muscle lesions for validation of the meat inspection results of slaughtered pigs. Two sets of oligonucleotide primers, one targeted against the large subunit rRNA gene (TBR primers) and the other targeted against cytochrome c oxidase subunit 1 gene (Cox1 primers) of T. solium were used in this study. On reactivity in PCR test, the TBR primers and the Cox1 primers yielded products of 286 and 984 bp, respectively, in cysticercosis positive cases. Both the sets of primers were found to be highly specific, since they did not yield any PCR product in negative controls. A total of 225 pig carcasses were screened for cysticercosis by meat inspection, out of which 25 carcasses with visible cysts (16 viable and 9 degenerated cysts) were also confirmed to be positive for cysticercosis in PCR test. However, out of the 35 carcasses with suspected lesions on meat inspection, only two were found to be positive for cysticercosis in PCR test. The detection limits for both the primer sets were analyzed. The TBR primer set could detect up to 10 pg of cysticercus DNA, whereas the Cox1 primer set could detect only up to 1 ng. It is evident from the study that PCR test is an efficient tool for validation of meat inspection results and also to rule out ambiguity in carcass judgment of suspected cases of porcine cysticercosis.

  18. Quantification of HEV RNA by Droplet Digital PCR

    PubMed Central

    Nicot, Florence; Cazabat, Michelle; Lhomme, Sébastien; Marion, Olivier; Sauné, Karine; Chiabrando, Julie; Dubois, Martine; Kamar, Nassim; Abravanel, Florence; Izopet, Jacques

    2016-01-01

    The sensitivity of real-time PCR for hepatitis E virus (HEV) RNA quantification differs greatly among techniques. Standardized tools that measure the real quantity of virus are needed. We assessed the performance of a reverse transcription droplet digital PCR (RT-ddPCR) assay that gives absolute quantities of HEV RNA. Analytical and clinical validation was done on HEV genotypes 1, 3 and 4, and was based on open reading frame (ORF)3 amplification. The within-run and between-run reproducibilities were very good, the analytical sensitivity was 80 HEV RNA international units (IU)/mL and linearities of HEV genotype 1, 3 and 4 were very similar. Clinical validation based on 45 samples of genotype 1, 3 or 4 gave results that correlated well with a validated reverse transcription quantitative PCR (RT-qPCR) assay (Spearman rs = 0.89, p < 0.0001). The RT-ddPCR assay is a sensitive method and could be a promising tool for standardizing HEV RNA quantification in various sample types. PMID:27548205

  19. COLD-PCR: improving the sensitivity of molecular diagnostics assays

    PubMed Central

    Milbury, Coren A; Li, Jin; Liu, Pingfang; Makrigiorgos, G Mike

    2011-01-01

    The detection of low-abundance DNA variants or mutations is of particular interest to medical diagnostics, individualized patient treatment and cancer prognosis; however, detection sensitivity for low-abundance variants is a pronounced limitation of most currently available molecular assays. We have recently developed coamplification at lower denaturation temperature-PCR (COLD-PCR) to resolve this limitation. This novel form of PCR selectively amplifies low-abundance DNA variants from mixtures of wild-type and mutant-containing (or variant-containing) sequences, irrespective of the mutation type or position on the amplicon, by using a critical denaturation temperature. The use of a lower denaturation temperature in COLD-PCR results in selective denaturation of amplicons with mutation-containing molecules within wild-type mutant heteroduplexes or with a lower melting temperature. COLD-PCR can be used in lieu of conventional PCR in several molecular applications, thus enriching the mutant fraction and improving the sensitivity of downstream mutation detection by up to 100-fold. PMID:21405967

  20. Specific PCR product primer design using memetic algorithm.

    PubMed

    Yang, Cheng-Hong; Cheng, Yu-Huei; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2009-01-01

    To provide feasible primer sets for performing a polymerase chain reaction (PCR) experiment, many primer design methods have been proposed. However, the majority of these methods require a relatively long time to obtain an optimal solution since large quantities of template DNA need to be analyzed. Furthermore, the designed primer sets usually do not provide a specific PCR product size. In recent years, evolutionary computation has been applied to PCR primer design and yielded promising results. In this article, a memetic algorithm (MA) is proposed to solve primer design problems associated with providing a specific product size for PCR experiments. The MA is compared with a genetic algorithm (GA) using an accuracy formula to estimate the quality of the primer design and test the running time. Overall, 50 accession nucleotide sequences were sampled for the comparison of the accuracy of the GA and MA for primer design. Five hundred runs of the GA and MA primer design were performed with PCR product lengths of 150-300 bps and 500-800 bps, and two different methods of calculating T(m) for each accession nucleotide sequence were tested. A comparison of the accuracy results for the GA and MA primer design showed that the MA primer design yielded better results than the GA primer design. The results further indicate that the proposed method finds optimal or near-optimal primer sets and effective PCR products in a dry dock experiment. Related materials are available online at http://bio.kuas.edu.tw/ma-pd/.

  1. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): Comparison of isolation and amplification methodologies.

    PubMed

    Scollo, Francesco; Egea, Leticia A; Gentile, Alessandra; La Malfa, Stefano; Dorado, Gabriel; Hernandez, Pilar

    2016-12-15

    Olive oil is considered a premium product for its nutritional value and health benefits, and the ability to define its origin and varietal composition is a key step towards ensuring the traceability of the product. However, isolating the DNA from such a matrix is a difficult task. In this study, the quality and quantity of olive oil DNA, isolated using four different DNA isolation protocols, was evaluated using the qRT-PCR and ddPCR techniques. The results indicate that CTAB-based extraction methods were the best for unfiltered oil, while Nucleo Spin-based extraction protocols showed greater overall reproducibility. The use of both qRT-PCR and ddPCR led to the absolute quantification of the DNA copy number. The results clearly demonstrate the importance of the choice of DNA-isolation protocol, which should take into consideration the qualitative aspects of DNA and the evaluation of the amplified DNA copy number.

  2. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR).

    PubMed

    Forootan, Amin; Sjöback, Robert; Björkman, Jens; Sjögreen, Björn; Linz, Lucas; Kubista, Mikael

    2017-06-01

    Quantitative Real-Time Polymerase Chain Reaction, better known as qPCR, is the most sensitive and specific technique we have for the detection of nucleic acids. Even though it has been around for more than 30 years and is preferred in research applications, it has yet to win broad acceptance in routine practice. This requires a means to unambiguously assess the performance of specific qPCR analyses. Here we present methods to determine the limit of detection (LoD) and the limit of quantification (LoQ) as applicable to qPCR. These are based on standard statistical methods as recommended by regulatory bodies adapted to qPCR and complemented with a novel approach to estimate the precision of LoD.

  3. Detection of Leishmania infantum in 4 different dog samples by real-time PCR and ITS-1 nested PCR.

    PubMed

    Carvalho Ferreira, Aline Leandra; Carregal, Virgínia Mendes; de Almeida Ferreira, Sidney; Leite, Rodrigo Souza; de Andrade, Antero Silva Ribeiro

    2014-04-01

    The canine visceral leishmaniasis (CVL) diagnosis is an important step of visceral leishmaniasis control program in Brazil, which involves the elimination of infected dogs, the main animal reservoir host of the disease. The aim of the present study was to evaluate a sensitive real-time PCR method for Leishmania infantum detection in 4 different clinical samples of dogs, including the noninvasive conjunctival swab (CS) sample. The results of real-time PCR were compared with those obtained using internal transcribed spacer 1 nested PCR. Animals were divided into 2 groups based on the absence or presence of CVL clinical sings. The CS associated with real-time PCR, using primers addressed to kinetoplast DNA minicircles, was able to detect L. infantum infection in 96.7% of dogs without clinical signs and in 100% of the symptomatic animals, demonstrating the importance of these procedures for diagnosing CVL.

  4. Comparison of Droplet Digital PCR and qPCR for the Quantification of Shiga Toxin-Producing Escherichia coli in Bovine Feces

    PubMed Central

    Verhaegen, Bavo; De Reu, Koen; De Zutter, Lieven; Verstraete, Karen; Heyndrickx, Marc; Van Coillie, Els

    2016-01-01

    Cattle are considered to be the main reservoir for Shiga toxin-producing Escherichia coli (STEC) and are often the direct or indirect source of STEC outbreaks in humans. Accurate measurement of the concentration of shed STEC in cattle feces could be a key answer to questions concerning transmission of STEC, contamination sources and efficiency of treatments at farm level. Infected animals can be identified and the contamination level quantified by real-time quantitative PCR (qPCR), which has its specific limitations. Droplet digital PCR (ddPCR) has been proposed as a method to overcome many of the drawbacks of qPCR. This end-point amplification PCR is capable of absolute quantification independent from any reference material and is less prone to PCR inhibition than qPCR. In this study, the qPCR-based protocol described by Verstraete et al. (2014) for Shiga toxin genes stx1 and stx2 and the intimin gene eae quantification was optimized for ddPCR analysis. The properties of ddPCR and qPCR using two different mastermixes (EMM: TaqMan® Environmental Master Mix 2.0; UMM: TaqMan® Universal PCR Master Mix) were evaluated, using standard curves and both artificial and natural contaminated cattle fecal samples. In addition, the susceptibility of these assays to PCR-inhibitors was investigated. Evaluation of the standard curves and both artificial and natural contaminated cattle fecal samples suggested a very good agreement between qPCR using EMM and ddPCR. Furthermore, similar sensitivities and no PCR inhibition were recorded for both assays. On the other hand, qPCR using UMM was clearly prone to PCR inhibition. In conclusion, the ddPCR technique shows potential for the accurate absolute quantification of STEC on the farms, without relying on standardized reference material. PMID:27213452

  5. Comparison of Droplet Digital PCR and qPCR for the Quantification of Shiga Toxin-Producing Escherichia coli in Bovine Feces.

    PubMed

    Verhaegen, Bavo; De Reu, Koen; De Zutter, Lieven; Verstraete, Karen; Heyndrickx, Marc; Van Coillie, Els

    2016-05-18

    Cattle are considered to be the main reservoir for Shiga toxin-producing Escherichia coli (STEC) and are often the direct or indirect source of STEC outbreaks in humans. Accurate measurement of the concentration of shed STEC in cattle feces could be a key answer to questions concerning transmission of STEC, contamination sources and efficiency of treatments at farm level. Infected animals can be identified and the contamination level quantified by real-time quantitative PCR (qPCR), which has its specific limitations. Droplet digital PCR (ddPCR) has been proposed as a method to overcome many of the drawbacks of qPCR. This end-point amplification PCR is capable of absolute quantification independent from any reference material and is less prone to PCR inhibition than qPCR. In this study, the qPCR-based protocol described by Verstraete et al. (2014) for Shiga toxin genes stx1 and stx2 and the intimin gene eae quantification was optimized for ddPCR analysis. The properties of ddPCR and qPCR using two different mastermixes (EMM: TaqMan(®) Environmental Master Mix 2.0; UMM: TaqMan(®) Universal PCR Master Mix) were evaluated, using standard curves and both artificial and natural contaminated cattle fecal samples. In addition, the susceptibility of these assays to PCR-inhibitors was investigated. Evaluation of the standard curves and both artificial and natural contaminated cattle fecal samples suggested a very good agreement between qPCR using EMM and ddPCR. Furthermore, similar sensitivities and no PCR inhibition were recorded for both assays. On the other hand, qPCR using UMM was clearly prone to PCR inhibition. In conclusion, the ddPCR technique shows potential for the accurate absolute quantification of STEC on the farms, without relying on standardized reference material.

  6. RT-PCR detection of HIV in Republic of Macedonia.

    PubMed

    Bosevska, Golubinka; Panovski, Nikola; Dokić, Eleni; Grunevska, Violeta

    2008-11-01

    The aim of the study was to detect HIV RNA in seropositive patients using RT-PCR method and thus, to establish PCR methodology in the routine laboratory works. The total of 33 examined persons were divided in two groups: 1) 13 persons seropositive for HIV; and 2) 20 healthy persons - randomly selected blood donors that made the case control group. The subjects age was between 25 and 52 years (average 38,5). ELFA test for combined detection of HIV p24 antigen and anti HIV-1+2 IgG and ELISA test for detection of antibodies against HIV-1 and HIV-2, were performed for each examined person. RNA from the whole blood was extracted using a commercial kit based on salt precipitation. Detection of HIV RNA was performed using RT-PCR kit. Following nested PCR, the product was separated by electrophoresis in 1,5 % agarose gel. The result was scored positive if the band of 210bp was visible regardless of intensity. Measures of precaution were taken during all the steps of the work and HIV infected materials were disposed of accordingly. In the group of blood donors ELFA, ELISA and RT-PCR were negative. Assuming that prevalence of HIV infection is zero, the clinical specificity of RT-PCR is 100 %. The analytical specificity of RT-PCR method was tested against Hepatitis C and B, Human Papiloma Virus, Cytomegalovirus, Herpes Simplex Virus, Rubella Virus, Mycobacterium tuberculosis, Chlamydia trachomatis. None of these templates yielded amplicon. In the group of 13 seropositive persons, 33 samples were analyzed. HIV RNA was detected in 15 samples. ELISA and ELFA test were positive in all samples. Different aliquots of the samples were tested independently and showed the same results. After different periods of storing the RNA samples at -70 masculineC, RT-PCR reaction was identical to the one performed initially. The obtained amplicons were maintained frozen at -20 masculineC for a week and the subsequently performed electrophoresis was identical to the previous one. The reaction is

  7. Assessing UV Inactivation of Adenovirus 41 Using Integrated Cell Culture Real-Time qPCR/RT-qPCR.

    PubMed

    Ding, Ning; Craik, Stephen A; Pang, Xiaoli; Lee, Bonita; Neumann, Norman F

    2017-04-01

      Enteric adenoviruses are among most UV-resistant viruses in water. Cytopathic effects (CPE)-based cell culture TCID50 assay as a conventional virus assessment approach has major drawbacks for enteric adenovirus since it is selective on cell lines and takes longer time to show CPE. Integrated cell culture real-time quantitative PCR (ICC-qPCR) and reverse transcriptase (RT)-qPCR were applied in this study, in comparison with TCID50, to assess UV inactivation of adenovirus type 41 (Ad41) in water. Adenovirus type 41 was exposed to UV doses of 40, 80, 160, and 320 mJ/cm2 using a collimated beam apparatus. There was no significant difference of inactivation at conducted UV doses between measurements using TCID50 assay and ICC-RT-qPCR. Both assays fitted the Chick-Watson model at 95% confidence level. The inactivation measured by ICC-qPCR did not fit the Chick-Watson model. In summary, ICC-RT-qPCR is the most appropriate alternate to CPE-based assay for assessing UV inactivation of enteric adenoviruses.

  8. A survey of polymerase chain reaction (PCR) amplification studies of unicellular protists using single-cell PCR.

    PubMed

    Lynn, Denis H; Pinheiro, Marcel

    2009-01-01

    We surveyed a variety of studies that have used single-cell polymerase chain reaction (SC-PCR) to examine the gene sequences of a diversity of unicellular protists. Representatives of all the Super-Groups of eukaryotes have been subjected to SC-PCR with ciliates and dinoflagellates being most commonly examined. The SC-PCR was carried out either by directly amplifying a single lysed cell or by first extracting DNA and following this with amplification of the DNA extract. Cell lysis methods included heating, freezing, mechanical rupture, and enzyme digestion. Cells fixed or preserved with ethanol, methanol, and Lugol's have also been used successfully. Heminested or seminested PCR might follow the initial PCR, whose products were then directly sequenced or cloned and then sequenced. The methods are not complicated. This should encourage protistologists to use SC-PCR in the description of new or revised taxa, especially rare and unculturable forms, and it should also enable the probing of gene expression in relation to life history stages.

  9. The methylation status of plant genomic DNA influences PCR efficiency.

    PubMed

    Kiselev, K V; Dubrovina, A S; Tyunin, A P

    2015-03-01

    During the polymerase chain reaction (PCR), which is a versatile and widely used method, certain DNA sequences are rapidly amplified through thermocycling. Although there are numerous protocols of PCR optimization for different applications, little is known about the effect of DNA modifications, such as DNA methylation, on PCR efficiency. Recent studies show that cytosine methylation alters DNA mechanical properties and suggest that DNA methylation may directly or indirectly influence the effectiveness of DNA amplification during PCR. In the present study, using plant DNA, we found that highly methylated plant DNA genomic regions were amplified with lower efficiencies compared to that for the regions methylated at a lower level. The correlation was observed when amplifying stilbene synthase (STS1, STS10) genes of Vitis amurensis, the Actin2 gene of Arabidopsis thaliana, the internal transcribed spacer (AtITS), and tRNAPro of A. thaliana. The level of DNA methylation within the analyzed DNA regions has been analyzed with bisulfite sequencing. The obtained data show that efficient PCRs of highly methylated plant DNA regions can be hampered. Proteinase K treatment of the plant DNA prior to PCR and using HotTaq DNA polymerase improved amplification of the highly methylated plant DNA regions. We suggest that increased DNA denaturation temperatures of the highly methylated DNA and contamination with DNA-binding proteins contribute to the hampered PCR amplification of highly methylated DNA. The data show that it is necessary to use current DNA purification protocols and commercial kits with caution to ensure appropriate PCR product yield and prevent bias toward unmethylated DNA amplification in PCRs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Pneumocystis sp. in bats evaluated by qPCR.

    PubMed

    Cavallini Sanches, E M; Ferreiro, L; Andrade, C P; Pacheco, S M; Almeida, L L; Spanamberg, A; Wissmann, G

    2013-03-01

    Molecular techniques have revealed a high prevalence of Pneumocystis colonization in wild mammals. Accurate quantification of Pneumocystis sp. is essential for the correct interpretation of many research experiments investigating this organism. The objectives of this study were to detect the presence of Pneumocystis sp. in bats by qPCR, and to distinguish colonization from infection. Probes and primers for real time PCR (qPCR) were designed based on the gene of major surface glycoprotein (MSG) of Pneumocystis sp., in order to analyze 195 lung tissue samples from bats captured (2007-2009). All samples were also analyzed by nested PCR, using oligonucleotide primers designed for the gene encoding the mitochondrial small subunit rRNA (mtSSU rRNA) to confirm the results. The qPCR assay was standardized using a standard curve made with the DNA extracted from bronchoalveolar lavage positive for Pneumocystis jirovecii. The average Ct was found to be between 13 and 14 (calibration curve) for the detection of infection with Pneumocystis sp. and above these values for colonization. It was considered as negative samples the ones that had Ct values equal to 50. Out of the total 195 samples, 47 (24.1%) bat lung DNA samples were positive for Pneumocystis sp. by qPCR. The most common bat species found were: Tadarida brasiliensis (23.4%), Histiotus velatus (17.0%), Desmodus rotundus (14.9%) and Molossus molossus (8.5%). The average cycle threshold of the positive samples (bats) was 25.8 and standard deviation was 1.7. The DNA samples with Ct values greater than 14 suggest that these animals might be colonized by Pneumocystis sp. Results obtained in this study demonstrated the usefulness of the qPCR procedure for identification of Pneumocystis sp. and for distinction between its colonizing or infectious status in bats.

  11. Droplet-based micro oscillating-flow PCR chip

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhi-Xin; Luo, Rong; Lü, Shu-Hai; Xu, Ai-Dong; Yang, Yong-Jun

    2005-08-01

    Polymerase chain reactions (PCR), thermally activated chemical reactions which are widely used for nucleic acid amplification, have recently received much attention in microelectromechanical systems and micro total analysis systems because a wide variety of DNA/RNA molecules can be enriched by PCR for further analyses. In the present work, a droplet-based micro oscillating-flow PCR chip was designed and fabricated by the silicon microfabrication technique. Three different temperature zones, which were stable at denaturation, extension and annealing temperatures and isolated from each other by a thin-wall linkage, were integrated with a single, simple and straight microchannel to form the chip's basic functional structure. The PCR mixture was injected into the chip as a single droplet and flowed through the three temperature zones in the main microchannel in an oscillating manner to achieve the temperature maintenance and transitions. The chip's thermal performance was theoretically analyzed and numerically simulated. The results indicated that the time needed for the temperature of the droplet to change to the target value is less than 1 s, and the root mean square error of temperature is less than 0.2 °C. A droplet of 1 µl PCR mixture with standard HPV (Human Papilloma Virus)-DNA sample inside was amplified by the present chip and the results were analyzed by slab gel electrophoresis with separation of DNA markers in parallel. The electrophoresis results demonstrated that the micro oscillating-flow PCR chip successfully amplified the HPV-DNA, with a processing time of about 15 min which is significantly reduced compared to that for the conventional PCR instrument.

  12. Determining Fungi rRNA Copy Number by PCR

    PubMed Central

    Black, Jonathan; Dean, Timothy; Byfield, Grace; Foarde, Karin; Menetrez, Marc

    2013-01-01

    The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within a standard qPCR reaction. The first control developed was the internal standard control gene, benA. This gene encodes for β-tubulin and was selected based on its single-copy nature. The second control developed was the standard control plasmid, which contained a fragment of the ribosomal RNA (rRNA) gene and produced a specific PCR product. The results confirm the multicopy nature of the rRNA region in several filamentous fungi and show that we can quantify fungi of unknown genome size over a range of spore extractions by inclusion of these two standard controls. Advances in qPCR have led to extremely sensitive and quantitative methods for single-copy genes; however, it has not been well established that the rRNA can be used to quantitate fungal contamination. We report on the use of qPCR, combined with two controls, to identify and quantify indoor fungal contaminants with a greater degree of confidence than has been achieved previously. Advances in indoor environmental health have demonstrated that contamination of the built environment by the filamentous fungi has adverse impacts on the health of building occupants. This study meets the need for more accurate and reliable methods for fungal identification and quantitation in the indoor environment. PMID:23543828

  13. Inverse PCR for subtyping of Acinetobacter baumannii carrying ISAba1.

    PubMed

    Kim, Shukho; Park, Yun-Ju; Kim, Jungmin

    2016-05-01

    Acinetobacter baumannii has been prevalent in nosocomial infections, often causing outbreaks in intensive care units. ISAba1 is an insertion sequence that has been identified only in A. baumannii and its copy number varies among strains. It has been reported that ISAba1 provides a promoter for bla(OXA-51-like), bla(OXA-23-like), and bla(ampC), which are associated with the resistance of A. baumannii to carbapenems and cephalosporins. The main purpose of this study was to develop a novel inverse PCR method capable of typing A. baumannii strains. The method involves three major steps: cutting of genomic DNA with a restriction enzyme, ligation, and PCR. In the first step, bacterial genomic DNA was digested with DpnI. In the second step, the digested genomic DNAs were ligated to form intramolecular circular DNAs. In the last step, the ligated circular DNAs were amplified by PCR with primers specific for ISAba1 and the amplified PCR products were electrophoresed. Twenty-two clinical isolates of A. baumannii were used for the evaluation of the inverse PCR (iPCR) typing method. Dendrogram analysis revealed two major clusters, similar to pulsed-field gel electrophoresis (PFGE) results. Three ISAba1-associated genes--bla(ampC), bla(OXA-66-like), and csuD--were amplified and detected in the clinical isolates. This novel iPCR typing method is comparable to PFGE in its ability to discriminate A. baumannii strains, and is a promising molecular epidemiological tool for investigating A. baumannii carrying ISAba1.

  14. Early diagnosis of Lassa fever by reverse transcription-PCR.

    PubMed

    Demby, A H; Chamberlain, J; Brown, D W; Clegg, C S

    1994-12-01

    We developed a method based on a coupled reverse transcription-PCR (RT-PCR) for the detection of Lassa virus using primers specific for regions of the S RNA segment which are well conserved between isolates from Sierra Leone, Liberia, and Nigeria. The specificity of the assay was confirmed by Southern blotting with a chemiluminescent probe. The assay was able to detect 1 to 10 copies of a plasmid or an RNA transcript containing the target sequence. There was complete concordance between RT-PCR and virus culture for the detection of Lassa virus in a set of 29 positive and 32 negative serum samples obtained on admission to the hospital from patients suspected of having Lassa fever in Sierra Leone. Specificity was confirmed by the failure of amplification of specific products from serum samples collected from 129 healthy blood donors in Sierra Leone or from tissue culture supernatants from cells infected with related arenaviruses (Mopeia, lymphocytic choriomeningitis, Tacaribe, and Pichinde viruses). Sequential serum samples from 29 hospitalized patients confirmed to have Lassa fever were tested by RT-PCR and for Lassa virus-specific antibodies by indirect immunofluorescence (IF). RT-PCR detected virus RNA in 79% of the patients at the time of admission, comparing favorably with IF, which detected antibodies in only 21% of the patients. Lassa virus RNA was detected by RT-PCR in all 29 patients by the third day of admission, whereas antibody was detectable by IF in only 52% of the patients. These results point to an important role for RT-PCR in the management of suspected cases of Lassa fever.

  15. The ‘PREXCEL-Q Method’ for qPCR

    PubMed Central

    Gallup, Jack M.; Ackermann, Mark R.

    2008-01-01

    The purpose of this manuscript is to describe a reliable approach to quantitative real-time polymerase chain reaction (qPCR) assay development and project management, which is currently embodied in the Excel 2003-based software program named “PREXCEL-Q” (P-Q) (formerly known as “FocusField2-6Gallup-qPCRSet-upTool-001,” “FF2-6-001 qPCR set-up tool” or “Iowa State University Research Foundation [ISURF] project #03407”). Since its inception from 1997-2007, the program has been well-received and requested around the world and was recently unveiled by its inventor at the 2008 Cambridge Healthtech Institute’s Fourth Annual qPCR Conference in San Diego, CA. P-Q was subsequently mentioned in a review article by Stephen A. Bustin, an acknowledged leader in the qPCR field. Due to its success and growing popularity, and the fact that P-Q introduces a unique/defined approach to qPCR, a concise description of what the program is and what it does has become important. Sample-related inhibitory problems of the qPCR assay, sample concentration limitations, nuclease-treatment, reverse transcription (RT) and master mix formulations are all addressed by the program, enabling investigators to quickly, consistently and confidently design uninhibited, dynamically-sound, LOG-linear-amplification-capable, high-efficiency-of-amplification reactions for any type of qPCR. The current version of the program can handle an infinite number of samples. PMID:19759920

  16. [Formation of para-Bombay phenotype caused by homozygous or heterozygous mutation of FUT1 gene].

    PubMed

    Zhang, Jin-Ping; Zheng, Yan; Sun, Dong-Ni

    2014-02-01

    This study was aimed to explore the molecular mechanisms for para-Bombay phenotype formation. The H antigen of these individuals were identified by serological techniques. The full coding region of alpha (1, 2) fucosyltransferase (FUT1) gene of these individuals was amplified by high-fidelity polymerase chain reaction (PCR). PCR product was identified by TOPO cloning sequencing. Analysis and comparison were used to explore the mechanisms of para-bombay phenotype formation in individuals. The results indicated that the full coding region of FUT1 DNA was successfully amplified by PCR and gel electrophoresis. DNA sequencing and analysis found that h1 (547-552delAG) existed in one chromosome and h4 (35C > T) existed in the other chromosome of NO.1 individual. Meantime, h1 (547-552delAG) was found in two chromosomes of NO.2 and NO.3 individual. It also means that FUT1 gene of NO.1 individual was h1h4 heterozygote, FUT1 gene of NO.2 and NO.3 individuals were h1h1 homozygote. It is concluded that homozygous and heterozygous mutation of FUT1 gene can lead to the formation of para-Bombay phenotype.

  17. Optimizing methods for PCR-based analysis of predation.

    PubMed

    Sint, Daniela; Raso, Lorna; Kaufmann, Rüdiger; Traugott, Michael

    2011-09-01

    Molecular methods have become an important tool for studying feeding interactions under natural conditions. Despite their growing importance, many methodological aspects have not yet been evaluated but need to be considered to fully exploit the potential of this approach. Using feeding experiments with high alpine carabid beetles and lycosid spiders, we investigated how PCR annealing temperature affects prey DNA detection success and how post-PCR visualization methods differ in their sensitivity. Moreover, the replicability of prey DNA detection among individual PCR assays was tested using beetles and spiders that had digested their prey for extended times postfeeding. By screening all predators for three differently sized prey DNA fragments (range 116-612 bp), we found that only in the longest PCR product, a marked decrease in prey detection success occurred. Lowering maximum annealing temperatures by 4 °C resulted in significantly increased prey DNA detection rates in both predator taxa. Among the three post-PCR visualization methods, an eightfold difference in sensitivity was observed. Repeated screening of predators increased the total number of samples scoring positive, although the proportion of samples testing positive did not vary significantly between different PCRs. The present findings demonstrate that assay sensitivity, in combination with other methodological factors, plays a crucial role to obtain robust trophic interaction data. Future work employing molecular prey detection should thus consider and minimize the methodologically induced variation that would also allow for better cross-study comparisons.

  18. Multiplex PCR Tests for Detection of Pathogens Associated with Gastroenteritis

    PubMed Central

    Zhang, Hongwei; Morrison, Scott; Tang, Yi-Wei

    2016-01-01

    Synopsis A wide range of enteric pathogens can cause infectious gastroenteritis. Conventional diagnostic algorithms including culture, biochemical identification, immunoassay and microscopic examination are time consuming and often lack sensitivity and specificity. Advances in molecular technology have as allowed its use as clinical diagnostic tools. Multiplex PCR based testing has made its way to gastroenterology diagnostic arena in recent years. In this article we present a review of recent laboratory developed multiplex PCR tests and current commercial multiplex gastrointestinal pathogen tests. We will focus on two FDA cleared commercial syndromic multiplex tests: Luminex xTAG GPP and Biofire FimArray GI test. These multiplex tests can detect and identify multiple enteric pathogens in one test and provide results within hours. Multiplex PCR tests have shown superior sensitivity to conventional methods for detection of most pathogens. The high negative predictive value of these multiplex tests has led to the suggestion that they be used as screening tools especially in outbreaks. Although the clinical utility and benefit of multiplex PCR test are to be further investigated, implementing these multiplex PCR tests in gastroenterology diagnostic algorithm has the potential to improve diagnosis of infectious gastroenteritis. PMID:26004652

  19. Development of internal controls for PCR detection of Bacillus anthracis.

    PubMed

    Brightwell, G; Pearce, M; Leslie, D

    1998-12-01

    This work describes the development and evaluation of a multiplex polymerase chain reaction (PCR) for the detection of Bacillus anthracis strains harbouring plasmid pX02. The multiplex also incorporated an internal control (IC) to avoid false negative reactions. Internal controls consisted of plasmids containing modified PCR target sequences, corresponding to the capC and BA813 genes of B. anthracis, which were then co-amplified with the original target sequences using the same set of amplimers. The initial IC construct comprised of an internally deleted form of the genomic target sequence cloned into pUC19. A series of nested DNA fragments corresponding to the 23S rRNA sequences of Bacillus cereus were then subcloned into the point of deletion, producing a number of IC constructs with similar sequences but increasing product size on PCR amplification. Neither the presence of IC DNA template or IC PCR product size affected the specificity or non-specific cross-reactivity of the original PCR assay. The concentration of IC was critical, too much IC DNA template would out compete the genomic DNA template, thus giving a false negative result. However, when the concentration of IC was optimal assay sensitivity was not compromised.

  20. Design and optimization of reverse-transcription quantitative PCR experiments.

    PubMed

    Tichopad, Ales; Kitchen, Rob; Riedmaier, Irmgard; Becker, Christiane; Ståhlberg, Anders; Kubista, Mikael

    2009-10-01

    Quantitative PCR (qPCR) is a valuable technique for accurately and reliably profiling and quantifying gene expression. Typically, samples obtained from the organism of study have to be processed via several preparative steps before qPCR. We estimated the errors of sample withdrawal and extraction, reverse transcription (RT), and qPCR that are introduced into measurements of mRNA concentrations. We performed hierarchically arranged experiments with 3 animals, 3 samples, 3 RT reactions, and 3 qPCRs and quantified the expression of several genes in solid tissue, blood, cell culture, and single cells. A nested ANOVA design was used to model the experiments, and relative and absolute errors were calculated with this model for each processing level in the hierarchical design. We found that intersubject differences became easily confounded by sample heterogeneity for single cells and solid tissue. In cell cultures and blood, the noise from the RT and qPCR steps contributed substantially to the overall error because the sampling noise was less pronounced. We recommend the use of sample replicates preferentially to any other replicates when working with solid tissue, cell cultures, and single cells, and we recommend the use of RT replicates when working with blood. We show how an optimal sampling plan can be calculated for a limited budget. .

  1. Digital PCR using micropatterned superporous absorbent array chips.

    PubMed

    Wang, Yazhen; Southard, Kristopher M; Zeng, Yong

    2016-06-21

    Digital PCR (dPCR) is an emerging technology for genetic analysis and clinical diagnostics. To facilitate the widespread application of dPCR, here we developed a new micropatterned superporous absorbent array chip (μSAAC) which consists of an array of microwells packed with highly porous agarose microbeads. The packed beads construct a hierarchically porous microgel which confers superior water adsorption capacity to enable spontaneous filling of PDMS microwells for fluid compartmentalization without the need of sophisticated microfluidic equipment and operation expertise. Using large λ-DNA as the model template, we validated the μSAAC for stochastic partitioning and quantitative digital detection of DNA molecules. Furthermore, as a proof-of-concept, we conducted dPCR detection and single-molecule sequencing of a mutation prevalent in blood cancer, the chromosomal translocation t(14;18), demonstrating the feasibility of the μSAAC for analysis of disease-associated mutations. These experiments were carried out using the standard molecular biology techniques and instruments. Because of its low cost, ease of fabrication, and equipment-free liquid partitioning, the μSAAC is readily adaptable to general lab settings, which could significantly facilitate the widespread application of dPCR technology in basic research and clinical practice.

  2. High-throughput PCR in silicon based microchamber array.

    PubMed

    Nagai, H; Murakami, Y; Yokoyama, K; Tamiya, E

    2001-12-01

    Highly integrated hybridization assay and capillary electrophoresis have improved the throughput of DNA analysis. The shift to high throughput analysis requires a high speed DNA amplification system, and several rapid PCR systems have been developed. In these thermal cyclers, the temperature was controlled by effective methodology instead of a large heating/cooling block preventing rapid thermal cycling. In our research, high speed PCR was performed using a silicon-based microchamber array and three heat blocks. The highly integrated microchamber array was fabricated by semiconductor microfabrication techniques. The temperature of the PCR microchamber was controlled by alternating between three heat blocks of different temperature. In general, silicon has excellent thermal conductivity, and the heat capacity is small in the miniaturized sample volume. Hence, the heating/cooling rate was rapid, approximately 16 degrees C/s. The rapid PCR was therefore completed in 18 min for 40 cycles. The thermal cycle time was reduced to 1/10 of a commercial PCR instrument (Model 9600, PE Applied Biosystems-3 h).

  3. Multiplex PCR: Optimization and Application in Diagnostic Virology

    PubMed Central

    Elnifro, Elfath M.; Ashshi, Ahmed M.; Cooper, Robert J.; Klapper, Paul E.

    2000-01-01

    PCR has revolutionized the field of infectious disease diagnosis. To overcome the inherent disadvantage of cost and to improve the diagnostic capacity of the test, multiplex PCR, a variant of the test in which more than one target sequence is amplified using more than one pair of primers, has been developed. Multiplex PCRs to detect viral, bacterial, and/or other infectious agents in one reaction tube have been described. Early studies highlighted the obstacles that can jeopardize the production of sensitive and specific multiplex assays, but more recent studies have provided systematic protocols and technical improvements for simple test design. The most useful of these are the empirical choice of oligonucleotide primers and the use of hot start-based PCR methodology. These advances along with others to enhance sensitivity and specificity and to facilitate automation have resulted in the appearance of numerous publications regarding the application of multiplex PCR in the diagnosis of infectious agents, especially those which target viral nucleic acids. This article reviews the principles, optimization, and application of multiplex PCR for the detection of viruses of clinical and epidemiological importance. PMID:11023957

  4. Multicolor combinatorial probe coding for real-time PCR.

    PubMed

    Huang, Qiuying; Zheng, Linlin; Zhu, Yumei; Zhang, Jiafeng; Wen, Huixin; Huang, Jianwei; Niu, Jianjun; Zhao, Xilin; Li, Qingge

    2011-01-14

    The target volume of multiplex real-time PCR assays is limited by the number of fluorescent dyes available and the number of fluorescence acquisition channels present in the PCR instrument. We hereby explored a probe labeling strategy that significantly increased the target volume of real-time PCR detection in one reaction. The labeling paradigm, termed "Multicolor Combinatorial Probe Coding" (MCPC), uses a limited number (n) of differently colored fluorophores in various combinations to label each probe, enabling one of 2(n)-1 genetic targets to be detected in one reaction. The proof-of-principle of MCPC was validated by identification of one of each possible 15 human papillomavirus types, which is the maximum target number theoretically detectable by MCPC with a 4-color channel instrument, in one reaction. MCPC was then improved from a one-primer-pair setting to a multiple-primer-pair format through Homo-Tag Assisted Non-Dimer (HAND) system to allow multiple primer pairs to be included in one reaction. This improvement was demonstrated via identification of one of the possible 10 foodborne pathogen candidates with 10 pairs of primers included in one reaction, which had limit of detection equivalent to the uniplex PCR. MCPC was further explored in detecting combined genotypes of five β-globin gene mutations where multiple targets were co-amplified. MCPC strategy could expand the scope of real-time PCR assays in applications which are unachievable by current labeling strategy.

  5. Optimizing methods for PCR-based analysis of predation

    PubMed Central

    Sint, Daniela; Raso, Lorna; Kaufmann, Rüdiger; Traugott, Michael

    2011-01-01

    Molecular methods have become an important tool for studying feeding interactions under natural conditions. Despite their growing importance, many methodological aspects have not yet been evaluated but need to be considered to fully exploit the potential of this approach. Using feeding experiments with high alpine carabid beetles and lycosid spiders, we investigated how PCR annealing temperature affects prey DNA detection success and how post-PCR visualization methods differ in their sensitivity. Moreover, the replicability of prey DNA detection among individual PCR assays was tested using beetles and spiders that had digested their prey for extended times postfeeding. By screening all predators for three differently sized prey DNA fragments (range 116–612 bp), we found that only in the longest PCR product, a marked decrease in prey detection success occurred. Lowering maximum annealing temperatures by 4 °C resulted in significantly increased prey DNA detection rates in both predator taxa. Among the three post-PCR visualization methods, an eightfold difference in sensitivity was observed. Repeated screening of predators increased the total number of samples scoring positive, although the proportion of samples testing positive did not vary significantly between different PCRs. The present findings demonstrate that assay sensitivity, in combination with other methodological factors, plays a crucial role to obtain robust trophic interaction data. Future work employing molecular prey detection should thus consider and minimize the methodologically induced variation that would also allow for better cross-study comparisons. PMID:21507208

  6. Umbilical cord blood screening for cytomegalovirus DNA by quantitative PCR.

    PubMed

    Theiler, Regan N; Caliendo, Angela M; Pargman, Sabine; Raynor, B Denise; Berga, Sarah; McPheeters, Melissa; Jamieson, Denise J

    2006-12-01

    Cytomegalovirus (CMV) infection, which is the most common congenitally transmitted infection, affects approximately 1% of neonates worldwide. Despite its prevalence, no convenient screening test for neonatal CMV infection has been implemented. The purpose of this pilot study was to evaluate the feasibility and yield of screening umbilical cord blood for CMV DNA emiaby quantitative PCR. Umbilical cord blood was tested for CMV DNAemia using a commercial quantitative PCR assay. Maternal CMV serostatus at the time of delivery was assessed by testing for CMV IgG and IgM antibodies in serum. Screening for congenital CMV infection with PCR is easily incorporated into routine labor and delivery care using discarded cord blood specimens to identify neonates whose infection is otherwise undiagnosed. Among 433 infants tested, two (0.5%) had DNAemia detected in cord blood, one of whom was symptomatic, and both of whose mothers were CMV IgG positive and IgM negative. Viremic neonates identified by screening with PCR may be at high risk of developing long-term neurological complications of CMV infection and cannot reliably be identified using clinical presentation or maternal serology. Because of its convenience, cord blood CMV screening with PCR should be further investigated for incorporation into neonatal screening protocols.

  7. Electrochemistry-based real-time PCR on a microchip.

    PubMed

    Yeung, Stephen S W; Lee, Thomas M H; Hsing, I-Ming

    2008-01-15

    The development of handheld instruments for point-of-care DNA analysis can potentially contribute to the medical diagnostics and environmental monitoring for decentralized applications. In this work, we demonstrate the implementation of a recently developed electrochemical real-time polymerase chain reaction (ERT-PCR) technique on a silicon-glass microchip for simultaneous DNA amplification and detection. This on-chip ERT-PCR process requires the extension of an oligonucleotide in both solution and at solid phases and intermittent electrochemical signal measurement in the presence of all the PCR reagents. Several important parameters, related to the surface passivation and electrochemical scanning of working electrodes, were investigated. It was found that the ERT-PCR's onset thermal cycle ( approximately 3-5), where the analytical signal begins to be distinguishable from the background, is much lower than that of the fluorescence-based counterparts for high template DNA situations (3 x 10(6) copies/microL). By carefully controlling the concentrations of the immobilized probe and the enzyme polymerase, improvements have been made in obtaining a meaningful electrochemical signal using a lower initial template concentration. This ERT-PCR technique on a microchip platform holds significant promise for rapid DNA detection for point-of-care testing applications.

  8. Application of PCR and real-time PCR for monitoring cyanobacteria, Microcystis spp. and Cylindrospermopsis raciborskii in Macau freshwater reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Weiying; Lou, Inchio; Ung, Wai Kin; Kong, Yijun; Mok, Kai Meng

    2014-06-01

    Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level of cyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and cylindrospermopsin, respectively. Longtime exposure to these cyanotoxins may affect public health, thus reliable detection, quantification, and enumeration of these harmful algae species has become a priority in water quality management. Traditional manual enumeration of algal bloom cells primarily involves microscopic identification which limited by inaccuracy and time-consumption.With the development of molecular techniques and an increasing number of microbial sequences available in the Genbank database, the use of molecular methods can be used for more rapid, reliable, and accurate detection and quantification. In this study, multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) techniques were developed and applied for monitoring cyanobacteria Microcystis spp. and C. raciborskii in the Macau Storage Reservoir (MSR). The results showed that the techniques were successful for identifying and quantifying the species in pure cultures and mixed cultures, and proved to be a potential application for water sampling in MSR. When the target species were above 1 million cells/L, similar cell numbers estimated by microscopic enumeration and qPCR were obtained. Further quantification in water samples indicated that the ratio of the estimated number of cell by microscopy and qPCR was 0.4-12.9 for cyanobacteria and 0.2-3.9 for C. raciborskii. However, Microcystis spp. was not observed by manual enumeration, while it was detected at low levels by qPCR, suggesting that qPCR is more sensitive and accurate. Thus the molecular approaches provide an additional reliable monitoring option to traditional microscopic enumeration for the ecosystems monitoring program.

  9. Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR).

    PubMed

    Li, Dan; Tong, Tiezheng; Zeng, Siyu; Lin, Yiwen; Wu, Shuxu; He, Miao

    2014-02-01

    The detection of viable bacteria in wastewater treatment plants (WWTPs) is very important for public health, as WWTPs are a medium with a high potential for waterborne disease transmission. The aim of this study was to use propidium monoazide (PMA) combined with the quantitative polymerase chain reaction (PMA-qPCR) to selectively detect and quantify viable bacteria cells in full-scale WWTPs in China. PMA was added to the concentrated WWTP samples at a final concentration of 100 micromol/L and the samples were incubated in the dark for 5 min, and then lighted for 4 min prior to DNA extraction and qPCR with specific primers for Escherichia coli and Enterococci, respectively. The results showed that PMA treatment removed more than 99% of DNA from non-viable cells in all the WWTP samples, while matrices in sludge samples markedly reduced the effectiveness of PMA treatment. Compared to qPCR, PMA-qPCR results were similar and highly linearly correlated to those obtained by culture assay, indicating that DNA from non-viable cells present in WWTP samples can be eliminated by PMA treatment, and that PMA-qPCR is a reliable method for detection of viable bacteria in environmental samples. This study demonstrated that PMA-qPCR is a rapid and selective detection method for viable bacteria in WWTP samples, and that WWTPs have an obvious function in removing both viable and non-viable bacteria. The results proved that PMA-qPCR is a promising detection method that has a high potential for application as a complementary method to the standard culture-based method in the future.

  10. Differential identification of Sporothrix spp. and Leishmania spp. by conventional PCR and qPCR in multiplex format.

    PubMed

    Rodríguez-Brito, Sabrina; Camacho, Emma; Mendoza, Mireya; Niño-Vega, Gustavo A

    2015-01-01

    Sporotrichosis and cutaneous leishmaniasis are skin infections with similar clinical manifestations but different treatment methods. The present study aimed to evaluate qPCR and conventional PCR for differential detection of the etiological agents of both infections in multiplex format. Assays were designed using two sets of reported primers: SS1/SS2, designed on the 18S ribosomal RNA gene from Sporothrix spp., and JW11/JW12, designed on the kinetoplast DNA (kDNA) minicircles of Leishmania spp. qPCR detected 200 fg of DNA per reaction for both Sporothrix and Leishmania. Melting curve analysis revealed two distinctive Tm peaks for Sporothrix spp. (85.5°C), and Leishmania spp. (82.6°C). A detection limit of 20 pg was determined for the diagnosis of both with conventional PCR. No other clinically important organisms were detected by either PCR or qPCR. However, a Blast analysis on GenBank databases, using as query the sequence of the PCR fragment obtained with primers SS1/SS2, showed 100% identity to environmental fungi of the Ophiostomales order. Lower percentages of identity (≤80%), with mismatches at primers' sequence regions were obtained for other environmental or clinically important fungi. Proper handling of clinical samples is required to avoid false negatives due to contamination with environmental fungi of the Ophiostomales order. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Rapid detection and ruling out of neonatal sepsis by PCR coupled with Electrospray Ionization Mass Spectrometry (PCR/ESI-MS).

    PubMed

    Delcò, Cristina; Karam, Oliver; Pfister, Riccardo; Gervaix, Alain; Renzi, Gesuele; Emonet, Stéphane; Schrenzel, Jacques; Posfay-Barbe, Klara M

    2017-05-01

    Sepsis is an important cause of morbidity and mortality in neonates and clinicians are typically required to administer empiric antibiotics while waiting for blood culture results. However, prolonged and inappropriate use of antibiotics is associated with various complications and adverse events. Better tools to rapidly rule out bacterial infections are therefore needed. We aimed to assess the negative predictive value of PCR coupled with Electrospray Ionization Mass Spectrometry (PCR/ESI-MS) compared to conventional blood cultures in neonatal sepsis. Prospective observational study. All consecutive neonates (<28days old) with clinical suspicion of sepsis. Samples for PCR/ESI-MS analysis were collected at the same time as samples for the blood culture, before the initiation of antibiotics. Our primary objective was to evaluate the negative predictive value of PCR/ESI-MS for the detection of bacteria in the bloodstream of newborns with suspected sepsis. Our secondary objective was the evaluation of the sensitivity, specificity and positive predictive value of the PCR/ESI-MS in such a neonatal population. We analysed 114 samples over 14months. The median age and weight were 32weeks+3days and 1840g, respectively. Two patients had negative PCR/ESI-MS results, but positive blood cultures. Overall, the negative predictive value was 98% (95%CI: 92% to 100%). Based on these results, PCR/ESI-MS analysis of blood samples of neonates with suspected sepsis appears to have a very good negative predictive value when compared to blood cultures as gold standard. This novel test might allow for early reassessment of the need for antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Noncompetitive Phage Anti-Immunocomplex Real-Time PCR (PHAIA-PCR) for Sensitive Detection of Small Molecules

    PubMed Central

    Kim, Hee-Joo; McCoy, Mark; Gee, Shirley J.; González-Sapienza, Gualberto G.; Hammock, Bruce D.

    2010-01-01

    Immuno-PCR (IPCR) is an analytical technology based on the excellent affinity and specificity of antibodies combined with the powerful signal amplification of PCR, providing superior sensitivity to classical immunoassays. Here we present a novel type of immuno PCR (IPCR) termed phage anti-immunocomplex real time PCR (PHAIA-PCR) for the detection of small molecules. Our method utilizes a phage anti-immunocomplex assay (PHAIA) technology in which a short peptide loop displayed on the surface of the M13 bacteriophage binds specifically to the antibody-analyte complex allowing the non-competitive detection of small analytes. The phagemid DNA encoding this peptide can be amplified by PCR, and thus, this method eliminates hapten functionalization or bio-conjugation of a DNA template while providing improved sensitivity. As a proof of concept, two PHAIA-PCRs were developed for the detection of 3-PBA, a major urinary metabolite of pyrethroid insecticide and for molinate, a herbicide implicated in fish kills. Our results demonstrate that phage DNA can be a versatile material for IPCR development, enabling universal amplification when the common element of the phagemid is targeted, or specific amplification when the real time PCR probe is designed to anneal the DNA encoding the peptide. Using magnetic beads for rapid separation of reactants, the PHAIA-PCRs proved to be 10-fold more sensitive than conventional PHAIA and significantly faster. The assay was validated with both agricultural drain water and human urine samples showing its robustness for rapid monitoring of human exposure or environmental contamination. PMID:21141939

  13. Casting epPCR (cepPCR): A simple random mutagenesis method to generate high quality mutant libraries.

    PubMed

    Yang, Jianhua; Ruff, Anna J; Arlt, Marcus; Schwaneberg, Ulrich

    2017-09-01

    During the last decade, directed evolution has become a standard protein engineering strategy to reengineer proteins for industrial applications under high stress conditions (e.g., high temperature, extreme pH, ionic liquids, or organic solvents). The most commonly employed method for diversity generation to improve biocatalysts for these properties is random mutagenesis by error-prone polymerase chain reaction (epPCR). However, recent reports show that epPCR often fails to produce >70% of beneficial positions/amino acid exchanges which improve enzyme properties such as organic solvent or ionic liquid resistance. In this report, bsla (543 bp, small lipase gene from Bacillus subtilis) was divided into three fragments (147, 192, 204 bp). Each fragment was subjected to an epPCR with a high mutation load (22, 31, and 33 mutations per kb) in order to increase the number of identified beneficial positions while maintaining a fraction of active population which can efficiently be screened in agar plate or microtiter plate format. The use of this "casting epPCR" process termed as (cepPCR), doubles the number of identified beneficial positions (from 14% to 29%), when compared to standard epPCR for the BSLA enzyme model. A further increase to 39% of beneficial positions is obtainable through combination of cepPCR with the transversion biased sequence saturation mutagenesis (SeSaM) method. Furthermore, sequencing of up to 600 mutations per fragment provided valuable insights into the correlation of total throughput and number of identified beneficial positions as well as how an efficient balance of screening efforts to obtainable results can be achieved in directed evolution campaigns. Biotechnol. Bioeng. 2017;114: 1921-1927. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Design and evaluation of consensus PCR assays for henipaviruses.

    PubMed

    Feldman, K S; Foord, A; Heine, H G; Smith, I L; Boyd, V; Marsh, G A; Wood, J L N; Cunningham, A A; Wang, L-F

    2009-10-01

    Henipaviruses were first discovered in the 1990s, and their potential threat to public health is of increasing concern with increasing knowledge. Old-world fruit bats are the reservoir hosts for these viruses, and spill-over events cause lethal infections in a wide range of mammalian species, including humans. In anticipation of these spill-over events, and to investigate further the geographical range of these genetically diverse viruses, assays for detection of known and potentially novel strains of henipaviruses are required. The development of multiple consensus PCR assays for the detection of henipaviruses, including both SYBR Green and TaqMan real-time PCRs and a conventional heminested PCR is described. The assays are highly sensitive and have defined specificity. In addition to being useful tools for detection of known and novel henipaviruses, evaluation of assay efficiency and sensitivity across both biological and synthetic templates has provided valuable insight into consensus PCR design and use.

  15. Analyzing ligation mixtures using a PCR based method

    PubMed Central

    Wikel, Stephen K.

    2005-01-01

    We have developed a simple and effective method (Lig-PCR) for monitoring ligation reactions using PCR and primers that are common to many cloning vectors. Ligation mixtures can directly be used as templates and the results can be analyzed by conventional gel electrophoresis. The PCR products are representative of the recombinant molecules created during ligation and the corresponding transformants. Orientation of inserts can also be determined using an internal primer. The usefulness of this method has been demonstrated using ligation mixtures of two cDNA’s derived from the salivary glands of Aedes aegypti mosquitoes. The method described here is sensitive and easy to perform compared to currently available methods. PMID:16136227

  16. Arbitrarily Primed PCR To Type Vibrio spp. Pathogenic for Shrimp

    PubMed Central

    Goarant, Cyrille; Merien, Fabrice; Berthe, Franck; Mermoud, Isabelle; Perolat, Philippe

    1999-01-01

    A molecular typing study on Vibrio strains implicated in shrimp disease outbreaks in New Caledonia and Japan was conducted by using AP-PCR (arbitrarily primed PCR). It allowed rapid identification of isolates at the genospecies level and studies of infraspecific population structures of epidemiological interest. Clusters identified within the species Vibrio penaeicida were related to their area of origin, allowing discrimination between Japanese and New Caledonian isolates, as well as between those from two different bays in New Caledonia separated by only 50 km. Other subclusters of New Caledonian V. penaeicida isolates could be identified, but it was not possible to link those differences to accurate epidemiological features. This contribution of AP-PCR to the study of vibriosis in penaeid shrimps demonstrates its high discriminating power and the relevance of the epidemiological information provided. This approach would contribute to better knowledge of the ecology of Vibrio spp. and their implication in shrimp disease in aquaculture. PMID:10049875

  17. Multiplex PCR for identification of herpes virus infections in adolescents.

    PubMed

    Durzyńska, Julia; Pacholska-Bogalska, Joanna; Kaczmarek, Maria; Hanć, Tomasz; Durda, Magdalena; Skrzypczak, Magdalena; Goździcka-Józefiak, Anna

    2011-02-01

    The aim of the study was to develop a multiplex PCR (mPCR) for a rapid and simultaneous detection of herpes simplex 1 (HSV-1), herpes simplex 2 (HSV-2), and human cytomegalovirus (HCMV) DNA in squamous oral cells obtained from adolescents. Accuracy of the method was tested in a group of 513 adolescents, almost 11% of subjects were positive for infection with herpes viruses. Correlations with gender, age, and place of residence were sought. A similar incidence of HSV-2 and HCMV was found (4.3% and 5.4%, respectively) and the incidence of HSV-1 was the lowest (1%) in the study group. Conversely to HSV-2, HCMV was detected mostly in the youngest individuals. The same occurrence of all viruses was observed in boys and girls. The mPCR method described is suggested as a useful tool for epidemiologic studies of active herpes infections.

  18. Identification of neotropical felid faeces using RCP-PCR.

    PubMed

    Roques, S; Adrados, B; Chavez, C; Keller, C; Magnusson, W E; Palomares, F; Godoy, J A

    2011-01-01

    Faeces similarity among sympatric felid species has generally hampered their use in distributional, demographic and dietary studies. Here, we present a new and simple approach based on a set of species-specific primers, for the unambiguous identification of faeces from sympatric neotropical felids (i.e. puma, jaguar, jaguarundi and ocelot/ margay). This method, referred to as rapid classificatory protocol-PCR (RCP-PCR), consists of a single-tube multiplex PCR yielding species-specific banding patterns on agarose gel. The method was optimized with samples of known origin (14 blood and 15 fresh faeces) and validated in faecal samples of unknown origin (n = 138), for some of which (n = 40) we also obtained species identification based on mtDNA sequencing. This approach proved reliable and provides high identification success rates from faeces. Its simplicity and cost effectiveness should facilitate its application for routine surveys of presence and abundance of these species. © 2010 Blackwell Publishing Ltd.

  19. Detection of alcohol-tolerant hiochi bacteria by PCR.

    PubMed

    Nakagawa, T; Shimada, M; Mukai, H; Asada, K; Kato, I; Fujino, K; Sato, T

    1994-02-01

    We report a sensitive and rapid method for detection of hiochi bacteria by PCR. This method involves the electrophoresis of amplified DNA. Nucleotide sequences of the spacer region between 16S and 23S rRNA genes of 11 Lactobacillus strains were identified by analysis of PCR products. Five primers were designed by analysis of similarities among these sequences. A single cell of Lactobacillus casei subsp. casei could be detected when purified genomic DNA was used as the template. When various cell concentrations of L. casei subsp. casei were added to 50 ml of pasteurized sake and the cells were recovered, the detection limit was about one cell. No discrete band was observed in electrophoresis after PCR when human, Escherichia coli, mycoplasma, Acholeplasma, yeast, or mold DNA was used as the template.

  20. RHD PCR of D-Negative Blood Donors

    PubMed Central

    Wagner, Franz F.

    2013-01-01

    Summary RHD PCR of blood donors may be used to reveal weak D, partial D, DEL and chimeric D+/D− donors among presumed D-negative blood donors. Units donated by such donors pose a definite yet low risk for anti-D immunization of transfusion recipients. The frequency of DEL donors among D-negative donors is 1:350 to 1:2,000 in Europe and up to 1:5 in Asian countries. Different strategies for RHD PCR of blood donors have been used. Probably, the most cost-efficient implementation is replacement of sensitive D antigen testing with the indirect antiglobulin test by RHD PCR in pools which might even reduce total testing cost. PMID:23922542

  1. Noninvasive genotyping of common marmoset (Callithrix jacchus) by fingernail PCR.

    PubMed

    Takabayashi, Shuji; Katoh, Hideki

    2015-07-01

    The common marmoset (Callithrix jacchus) is a New World primate that is a useful model for medical studies. In this study, we report a convenient, reliable, and noninvasive procedure to genotype a living common marmoset by using fingernails. This method was used to successfully genotype DNA by restriction fragment length polymorphism (RFLP) PCR without prior purification, by using the KOD FX PCR enzyme kit. Additionally, there is no sample contamination from hematopoietic chimera derived from fused placenta in utero. We compared chimeric levels between various tissues in females with male littermates using quantitative fluorescent (QF)-PCR to prepare a reliable DNA source for genetic analyses, such as genotyping, gene mapping, or genomic sequencing. The chimerism detected appeared to be restricted to lymphatic tissues, such as bone marrow, thymus, spleen, lymph nodes and blood cells. As a result, DNA from fingernails with the quick is the best DNA source for genetic research in living marmosets.

  2. [Use of nested PCR in detection of the plague pathogen].

    PubMed

    Glukhov, A I; Gordeev, S A; Al'tshuler, M L; Zykova, I E; Severin, S E

    2003-07-01

    Causative agents of plague, i.e. bacterium Yersina pestis (in the subcutaneous tissues of rodents) and their cutaneous parasites need to be isolated to enable plague prevention. A comparatively new method of polymerase chain reaction (PCR) opens up new possibilities of determining Y. pestis just within several hours and without any cultivation. The article contains a description of the PCR-method, which makes it possible to distinguish the culture of Y. pestis from cultures of other microorganism, including speci of Yersina. The method is of the cluster-type, i.e. it is made up of subsequent PC reactions with the substrate for the second reaction being the product of the first one. The cluster nature of the method preconditions a higher sensitivity and specificity versus the ordinary PCR.

  3. DNA extraction protocol for rapid PCR detection of pathogenic bacteria.

    PubMed

    Brewster, Jeffrey D; Paoli, George C

    2013-11-01

    Twelve reagents were evaluated to develop a direct DNA extraction method suitable for PCR detection of foodborne bacterial pathogens. Many reagents exhibited strong PCR inhibition, requiring significant dilution of the extract with a corresponding reduction in sensitivity. Most reagents also exhibited much lower recovery of DNA from the gram-positive test organism (Listeria monocytogenes) than from the gram-negative organism (Escherichia coli O157:H7), preventing unbiased detection and quantitation of both organisms. The 5× HotSHOT+Tween reagent exhibited minimal inhibition and high extraction efficiency for both test organisms, providing a 15-min single-tube DNA-extraction protocol suitable for highly sensitive quantitative PCR assays. Published by Elsevier Inc.

  4. Heat properties of an integrated micro PCR vessel

    NASA Astrophysics Data System (ADS)

    Zhao, Zhan; Cui, Dafu; Yu, Zhongyao; Wang, Li; Xia, Shanhong; Cui, Zheng

    2001-09-01

    The PCR amplification is based on multiple temperature cycles of DNA synthesis; each includes denaturation of the template, annealing of the primers to complementary sites in the template and primer extension. The key technique of PCR amplification is the heating control in design and fabrication of its chip form. The specifications of the chip are heat properties. In this paper the heat properties of a micro PCR vessel integration heater and temperature sensor was introduced. The temperature distribution of the vessel was simulated with software tool IntelliSuite. The temperatures cycles were measured and the time response of the chip was discussed. It is found that the integrate micro vessel is a very useful tool not only for DNA synthesis but also as a biochemical reactor for many other biological and chemical analyses.

  5. Detection of alcohol-tolerant hiochi bacteria by PCR.

    PubMed Central

    Nakagawa, T; Shimada, M; Mukai, H; Asada, K; Kato, I; Fujino, K; Sato, T

    1994-01-01

    We report a sensitive and rapid method for detection of hiochi bacteria by PCR. This method involves the electrophoresis of amplified DNA. Nucleotide sequences of the spacer region between 16S and 23S rRNA genes of 11 Lactobacillus strains were identified by analysis of PCR products. Five primers were designed by analysis of similarities among these sequences. A single cell of Lactobacillus casei subsp. casei could be detected when purified genomic DNA was used as the template. When various cell concentrations of L. casei subsp. casei were added to 50 ml of pasteurized sake and the cells were recovered, the detection limit was about one cell. No discrete band was observed in electrophoresis after PCR when human, Escherichia coli, mycoplasma, Acholeplasma, yeast, or mold DNA was used as the template. Images PMID:7510942

  6. Using PCR to Target Misconceptions about Gene Expression †

    PubMed Central

    Wright, Leslie K.; Newman, Dina L.

    2013-01-01

    We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA) and gene expression (mRNA/protein) and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect) predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression. PMID:23858358

  7. Authentication of medicinal plants by SNP-based multiplex PCR.

    PubMed

    Lee, Ok Ran; Kim, Min-Kyeoung; Yang, Deok-Chun

    2012-01-01

    Highly variable intergenic spacer and intron regions from nuclear and cytoplasmic DNA have been used for species identification. Noncoding internal transcribed spacers (ITSs) located in 18S-5.8S-26S, and 5S ribosomal RNA genes (rDNAs) represent suitable region for medicinal plant authentication. Noncoding regions from two cytoplasmic DNA, chloroplast DNA (trnT-F intergenic spacer region), and mitochondrial DNA (fourth intron region of nad7 gene) are also successfully applied for the proper identification of medicinal plants. Single-nucleotide polymorphism (SNP) sites obtained from the amplification of intergenic spacer and intron regions are properly utilized for the verification of medicinal plants in species level using multiplex PCR. Multiplex PCR as a variant of PCR technique used to amplify more than two loci simultaneously.

  8. [Application of rapid PCR to authenticate medicinal snakes].

    PubMed

    Chen, Kang; Jiang, Chao; Yuan, Yuan; Huang, Lu-Qi; Li, Man

    2014-10-01

    To obtained an accurate, rapid and efficient method for authenticate medicinal snakes listed in Chinese Pharmacopoeia (Zaocysd humnades, Bungarus multicinctus, Agkistrodon acutus), a rapid PCR method for authenticate snakes and its adulterants was established based on the classic molecular authentication methods. DNA was extracted by alkaline lysis and the specific primers were amplified by two-steps PCR amplification method. The denatured and annealing temperature and cycle numbers were optimized. When 100 x SYBR Green I was added in the PCR product, strong green fluorescence was visualized under 365 nm UV whereas adulterants without. The whole process can complete in 30-45 minutes. The established method provides the technical support for authentication of the snakes on field.

  9. Monitoring of geosmin producing Anabaena circinalis using quantitative PCR.

    PubMed

    Tsao, Hsiang-Wei; Michinaka, Atsuko; Yen, Hung-Kai; Giglio, Steven; Hobson, Peter; Monis, Paul; Lin, Tsair-Fuh

    2014-02-01

    Geosmin is one of the most commonly detected off-flavor chemicals present in reservoirs and drinking water systems. Quantitative real-time PCR (qPCR) is useful for quantifying geosmin-producers by focusing on the gene encoding geosmin synthase, which is responsible for geosmin synthesis. In this study, several primers and probes were designed and evaluated to detect the geosmin synthase gene in cyanobacteria. The specificity of primer and probe sets was tested using 21 strains of laboratory cultured cyanobacteria isolated from surface waters in Australia (18) and Taiwan (2), including 6 strains with geosmin producing ability. The results showed that the primers designed in this study could successfully detect all geosmin producing strains tested. The selected primers were used in a qPCR assay, and the calibration curves were linear from 5 × 10(1) to 5 × 10(5) copies mL(-1), with a high correlation coefficient (R(2) = 0.999). This method was then applied to analyze samples taken from Myponga Reservoir, South Australia, during a cyanobacterial bloom event. The results showed good correlations between qPCR techniques and traditional methods, including cell counts determined by microscopy and geosmin concentration measured using gas chromatography (GC) coupled with a mass selective detector (MSD). Results demonstrate that qPCR could be used for tracking geosmin-producing cyanobacteria in drinking water reservoirs. The qPCR assay may provide water utilities with the ability to properly characterize a taste and odor episode and choose appropriate management and treatment options.

  10. Typing DNA profiles from previously enhanced fingerprints using direct PCR.

    PubMed

    Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Linacre, Adrian

    2017-07-01

    Fingermarks are a source of human identification both through the ridge patterns and DNA profiling. Typing nuclear STR DNA markers from previously enhanced fingermarks provides an alternative method of utilising the limited fingermark deposit that can be left behind during a criminal act. Dusting with fingerprint powders is a standard method used in classical fingermark enhancement and can affect DNA data. The ability to generate informative DNA profiles from powdered fingerprints using direct PCR swabs was investigated. Direct PCR was used as the opportunity to generate usable DNA profiles after performing any of the standard DNA extraction processes is minimal. Omitting the extraction step will, for many samples, be the key to success if there is limited sample DNA. DNA profiles were generated by direct PCR from 160 fingermarks after treatment with one of the following dactyloscopic fingerprint powders: white hadonite; silver aluminium; HiFi Volcano silk black; or black magnetic fingerprint powder. This was achieved by a combination of an optimised double-swabbing technique and swab media, omission of the extraction step to minimise loss of critical low-template DNA, and additional AmpliTaq Gold(®) DNA polymerase to boost the PCR. Ninety eight out of 160 samples (61%) were considered 'up-loadable' to the Australian National Criminal Investigation DNA Database (NCIDD). The method described required a minimum of working steps, equipment and reagents, and was completed within 4h. Direct PCR allows the generation of DNA profiles from enhanced prints without the need to increase PCR cycle numbers beyond manufacturer's recommendations. Particular emphasis was placed on preventing contamination by applying strict protocols and avoiding the use of previously used fingerprint brushes. Based on this extensive survey, the data provided indicate minimal effects of any of these four powders on the chance of obtaining DNA profiles from enhanced fingermarks. Copyright © 2017

  11. A visual multiplex PCR microchip with easy sample loading.

    PubMed

    Chen, Jian-Wei; Shao, Ning; Zhang, Yuchen; Zhu, Yuanshou; Yang, Litao; Tao, Sheng-Ce

    2017-06-20

    There is an urgent demand for affordable, rapid and easy-to-use technology to simultaneously detect many different DNA targets within one reaction. Conventional multiplex PCR is an effective methodology to simultaneously amplify different DNA targets. However, its multiplicity is limited due to the intrinsic interference and competition among primer pairs within one tube. Here, we present an easy multiplex PCR microchip system, which can simultaneously detect 54 targets. The design of the microchip is quite simple. There is a microchannel connected with multiple underlying parallel microwells. And every microchannel has an inlet/outlet for loading PCRmix. The surface of the microchannel is hydrophobic and the inner surface of the microwell is hydrophilic, which enables us to load and separate the PCRmix into different microwells simultaneously. Different primer pairs and low melting agarose are pre-fixed in different microwells, and the microchip is assembled with top glass. The PCRmix is loaded into inlets and then mineral oil is sequentially pipetted into channels to push the PCRmix into all microwells and subsequently mineral oil fills the channels to avoid cross contaminations. After the PCRmix is loaded, it would be placed on a plat thermal cycler for PCR. During PCR, the low melting gel in the well is liquid and after PCR it would be solidified due to temperature changes. When PCR is completed, a nucleic acid dye is introduced into channels and then results are visualized by a home-made, potable UV detector. In our platform we successfully detected seven frequently used targets of genetically modified (GM) organisms. The results demonstrate that our platform has high flexibility and specificity. Due to the excellent performance of this technology, we believe that it can be applied to multiple nucleic acid detection fields including GM organisms.

  12. Rapid PCR of STR markers: Applications to human identification.

    PubMed

    Romsos, Erica L; Vallone, Peter M

    2015-09-01

    Multiplex PCR with fluorescently labeled primers has been an essential method for the amplification of short tandem repeats used in human identify testing. Within the STR workflow of extraction, quantitation, amplification, separation, and detection, multiplex PCR is commonly identified as the bottleneck in the process. The time requirement of up to three hours to complete 28-30 cycles of multiplex PCR for STR genotyping is the greatest amount of time required for a single step within the process. The historical use of commercially available thermal cyclers and heat stable polymerases may have given the impression that large multiplex will always require long PCR cycling times to ensure that all of the varying sized targets (typically 100-400bp) can be amplified in a balanced manner throughout the multiplex. However, with the advent of improved polymerases and faster thermal cyclers the time required for the amplification of large STR multiplexes is no longer on the order of three hours, but as little as 14min. Faster amplification times can be performed while retaining the balance and integrity of large multiplex PCRs by implementation of alternate polymerases and thermal cyclers. With the reduction in PCR cycling times there has also been an impact on the development of integrated and microfluidics devices which employ the use of reduced or rapid thermal cycling protocols as part of their integration. Similarly, PCR inhibitor resistant polymerases can also reduce overall STR processing times for reference samples by eliminating the need for DNA extraction and purification that is additionally implemented within the development of integrated DNA typing devices.

  13. Detection of DNA double-strand breaks and chromosome translocations using ligation-mediated PCR and inverse PCR.

    PubMed

    Singh, Sheetal; Shih, Shyh-Jen; Vaughan, Andrew T M

    2014-01-01

    Current techniques for examining the global creation and repair of DNA double-strand breaks are restricted in their sensitivity, and such techniques mask any site-dependent variations in breakage and repair rate or fidelity. We present here a system for analyzing the fate of documented DNA breaks, using the MLL gene as an example, through application of ligation-mediated PCR. Here, a simple asymmetric double-stranded DNA adapter molecule is ligated to experimentally induced DNA breaks and subjected to seminested PCR using adapter- and gene-specific primers. The rate of appearance and loss of specific PCR products allows detection of both the break and its repair. Using the additional technique of inverse PCR, the presence of misrepaired products (translocations) can be detected at the same site, providing information on the fidelity of the ligation reaction in intact cells. Such techniques may be adapted for the analysis of DNA breaks and rearrangements introduced into any identifiable genomic location. We have also applied parallel sequencing for the high-throughput analysis of inverse PCR products to facilitate the unbiased recording of all rearrangements located at a specific genomic location.

  14. Detection and Quantification of Wallemia sebi in Aerosols by Real-Time PCR, Conventional PCR, and Cultivation

    PubMed Central

    Zeng, Qing-Yin; Westermark, Sven-Olof; Rasmuson-Lestander, Åsa; Wang, Xiao-Ru

    2004-01-01

    Wallemia sebi is a deuteromycete fungus commonly found in agricultural environments in many parts of the world and is suspected to be a causative agent of farmer's lung disease. The fungus grows slowly on commonly used culture media and is often obscured by the fast-growing fungi. Thus, its occurrence in different environments has often been underestimated. In this study, we developed two sets of PCR primers specific to W. sebi that can be applied in either conventional PCR or real-time PCR for rapid detection and quantification of the fungus in environmental samples. Both PCR systems proved to be highly specific and sensitive for W. sebi detection even in a high background of other fungal DNAs. These methods were employed to investigate the presence of W. sebi in the aerosols of a farm. The results revealed a high concentration of W. sebi spores, 107 m−3 by real-time PCR and 106 m−3 by cultivation, which indicates the prevalence of W. sebi in farms handling hay and grain and in cow barns. The methods developed in this study could serve as rapid, specific, and sensitive means of detecting W. sebi in aerosol and surface samples and could thus facilitate investigations of its distribution, ecology, clinical diagnosis, and exposure risk assessment. PMID:15574929

  15. Revealing the Diversity and Quantity of Peritrich Ciliates in Environmental Samples Using Specific Primer-based PCR and Quantitative PCR

    PubMed Central

    Liu, Xihan; Gong, Jun

    2012-01-01

    Peritrichs are a diverse, ecologically important ciliate group usually with a complex life cycle. To date, the community of the peritrichs has been investigated by using morphology-based methods such as living observation and silver staining. Here we show a molecular approach for characterizing the diversity and quantity of free-living peritrichs in environmental samples. We newly designed four peritrich-specific primers targeting 18S rRNA genes that allow clone library construction, screening and analysis. A quantitative real-time PCR (qPCR) assay was developed to quantify peritrichs in environmental samples by using rDNA copy number as an indicator. DNA extracted from four water samples of contrasting environmental gradients was analysed. The results showed that the peritrich community was differentiated among these samples, and that the diversity decreased with the increase of water salinity. The qPCR results are consistent with the library sequence analysis in terms of quantity variations from sample to sample. The development of peritrich-specific primers, for the first time, for conventional PCR and qPCR assays, provides useful molecular tools for revealing the diversity and quantity of peritrich ciliates in environmental samples. Also, our study illustrates the potential of these molecular tools to ecological studies of other ciliate groups in diverse environments. PMID:23100023

  16. Novel PCR assay for determining the genetic sex of mice.

    PubMed

    McFarlane, L; Truong, V; Palmer, J S; Wilhelm, D

    2013-01-01

    A number of studies require the determination of the genetic sex of mouse embryos before sexual differentiation and/or of mutant mice that display partial or complete sex reversal. The majority of current methods for sexing by PCR involve multiplexing of 2 primer pairs. We have developed a novel sexing PCR using a single primer pair that amplifies fragments from the X and the Y chromosome with a clear size difference between the respective amplicons. This assay provides a rapid and reliable method to identify the genetic sex of mice across different mouse strains.

  17. PCR Amplicon Prediction from Multiplex Degenerate Primer and Probe Sets

    SciTech Connect

    Gardner, S. N.

    2013-08-08

    Assessing primer specificity and predicting both desired and off-target amplification products is an essential step for robust PCR assay design. Code is described to predict potential polymerase chain reaction (PCR) amplicons in a large sequence database such as NCBI nt from either singleplex or a large multiplexed set of primers, allowing degenerate primer and probe bases, with target mismatch annotates amplicons with gene information automatically downloaded from NCBI, and optionally it can predict whether there are also TaqMan/Luminex probe matches within predicted amplicons.

  18. [Basics of PCR and related techniques applied in veterinary parasitology].

    PubMed

    Ben Abderrazak, S

    2004-01-01

    We attempte through the following overall review pertaining to the basics of PCR techniques (Polymerase Chain Reaction), to introduce the main applications used in veterinary parasitology. A major problem restricting the application possibilities of molecular biology techniques is of quantitative nature. Amplification techniques represent a real revolution, for it makes possible the production of tens, even hundreds of nanogrammes of sequences when starting from very small quantities. The PCR technique has dramatically transformed the strategies used so far in molecular biology and subsequently research and medical diagnosis.

  19. Sheep poxvirus identification by PCR in cell cultures.

    PubMed

    Mangana-Vougiouka, O; Markoulatos, P; Koptopoulos, G; Nomikou, K; Bakandritsos, N; Papadopoulos, O

    1999-01-01

    A simple, rapid and specific diagnostic polymerase chain reaction (PCR) method was developed for sheep poxvirus identification. The primers used were from the sequenced genomes of the capripox viruses KS-1 and InS-1. Six different sheep pox isolates were tested against two orf (parapox) and three animal herpesviruses as controls. Material from uninfected cell cultures was also used as control. The sensitivity of the PCR was approximately equivalent with each of the two primers and for the six sheep pox isolates. All the negative control virus DNAs were negative and differed clearly from those of the sheep pox strains.

  20. [Do Multiplex PCR techniques displace classical cultures in microbiology?].

    PubMed

    Auckenthaler, Raymond; Risch, Martin

    2015-02-01

    Multiplex PCR technologies progressively find their way in clinical microbiology. This technique allows the simultaneous amplification of multiple DNA targets in a single test run for the identification of pathogens up to the species level. Various pathogens of infectious diseases can be detected by a symptom-oriented approach clearly and quickly with high reliability. Essentially multiplex PCR panels are available for clarification of gastrointestinal, respiratory, sexually transmitted infections and meningitis. Today's offer from industry, university hospitals and large private laboratories of Switzerland is tabulated and commented.

  1. [Allele-specific PCR and its application in forensic science].

    PubMed

    Nie, Yan-chai; Wang, Bin; Zhao, Zi-qin; Zhou, Huai-gu

    2014-08-01

    Allele-specific polymerase chain reaction (AS-PCR) is a technique based on allele-specific primers, which can be used to analyze single nucleotide polymorphism (SNP) effectively including the transition, transversion and insertion/deletion polymorphism and has been exploited in the study of diseases research, molecular diagnosis, and forensic biological evidence. The article systematically reviews the principle, the detection methods, improvement of AS-PCR, and its research updates in the fields of autosome, Y chromosome and mitochondrial SNP, as well as its application in forensic science.

  2. Real-time PCR in Food Science: Introduction.

    PubMed

    Rodriguez-Lazaro, David; Hernandez, Marta

    2013-01-01

    Food safety and quality control programmes are increasingly applied throughout the production food chain in order to guarantee added value products as well as to minimize the risk of infection for the consumer. The development of real-time PCR has represented one of the most significant advances in food diagnostics as it provides rapid, reliable and quantitative results. These aspects become increasingly important for the agricultural and food industry. Different strategies for real-time PCR diagnostics have been developed including unspecific detection independent of the target sequence using fluorescent dyes such as SYBR Green, or by sequence-specific fluorescent oligonucleotide probes such as TaqMan probes or molecular beacons.

  3. Entamoeba histolytica encephalitis diagnosed by PCR of cerebrospinal fluid.

    PubMed

    Solaymani-Mohammadi, Shahram; Lam, Maggie M; Zunt, Joseph R; Petri, William A

    2007-03-01

    Extra-intestinal amebiasis is secondary to invasive intestinal infections and usually results in an amebic liver abscess. Other organs, including lungs, brain, skin, spleen and kidneys, may be involved. Diagnosis of the cerebral infection is of the utmost importance and is most often made by detection of the organism at the time of brain biopsy or at autopsy. We report the first case of Entamoeba histolytica encephalitis diagnosed by PCR of the cerebrospinal fluid. The patient was treated successfully with metronidazole. PCR is an increasingly useful tool for the diagnosis of central nervous system infection and can provide rapid diagnosis.

  4. Multiplex PCR for Detection and Typing of Porcine Circoviruses

    PubMed Central

    Ouardani, M.; Wilson, L.; Jetté, R.; Montpetit, C.; Dea, S.

    1999-01-01

    Sets of oligonucleotide primers were designed according to the sequences of the open reading frames (ORFs) ORF1 and ORF2 of the prototype nonpathogenic PK-15 strain of porcine circovirus (PCV) type 1 (PCV-1). By the PCR performed with the various primer sets, genomic DNA or RNA from other bacterial or viral pathogens of the respiratory tracts of pigs could not be amplified. A positive amplification reaction could be visualized with DNA extracted from a viral suspension containing as few as 10 viral particles per ml. No DNA fragment could be amplified from lysates of continuous porcine cell lines (PT, ST, and PFT cells) known to be negative for PCV. When tested with clinical samples from pigs, the results of the single PCR method showed nearly 93% (13 of 14 samples) correlation with histopathological and immunohistochemical findings. Interestingly, subclinical PCV infections could be detected by single PCR with clinical samples that have been submitted from animals with irrelevant cases of respiratory and/or enteric problems. On the basis of the nucleotide sequences of PCV strains (PCV-2) recently associated with outbreaks of postweaning multisystemic wasting syndrome (PWMS) in Quebec, Canada, pig farms, other primers were designed from the PCV-1 genome, and these primers failed to amplify genomic fragments specific to the ORF1 or ORF2 genes of clinical isolates associated with PWMS but amplified DNA from the PCV-1 strain. Two rapid multiplex PCR (mPCR) methods have been developed to distinguish between both genotypes of PCV. By those two mPCR methods, (i) species-specific primer pairs were used to amplify a DNA fragment of 488 bp specific for the ORF2 genes of both genotypes, whereas a 375-bp fragment was amplified from the ORF1 gene of the PCV-1 strain only, or (ii) species-specific primer pairs were used to amplify a DNA fragment of 646 bp specific for the ORF1 genes of both genotypes, whereas a 425-bp fragment was amplified from the ORF2 gene of the PCV-1 strain

  5. PCR for Detection of Shigella spp. in Mayonnaise

    PubMed Central

    Villalobo, Eduardo; Torres, Antonio

    1998-01-01

    The use of PCR to amplify a specific virA gene fragment serves as a highly specific and sensitive method to detect virulent bacteria of the genus Shigella and enteroinvasive Escherichia coli. Amplification of a 215-bp DNA band was obtained by using isolated genomic DNA of Shigella, individual cells of Shigella dysenteriae, and mayonnaise contaminated with S. dysenteriae. Moreover, a multiplex PCR with specific (virA) and bacterium-restricted (16S ribosomal DNA) primers generated an amplification product of approximately 755 bp for all bacteria tested and an additional 215-bp product for Shigella and enteroinvasive E. coli. PMID:9546158

  6. PCR for detection of Shigella spp. in mayonnaise.

    PubMed

    Villalobo, E; Torres, A

    1998-04-01

    The use of PCR to amplify a specific virA gene fragment serves as a highly specific and sensitive method to detect virulent bacteria of the genus Shigella and enteroinvasive Escherichia coli. Amplification of a 215-bp DNA band was obtained by using isolated genomic DNA of Shigella, individual cells of Shigella dysenteriae, and mayonnaise contaminated with S. dysenteriae. Moreover, a multiplex PCR with specific (virA) and bacterium-restricted (16S ribosomal DNA) primers generated an amplification product of approximately 755 bp for all bacteria tested and an additional 215-bp product for Shigella and enteroinvasive E. coli.

  7. Microsatellite amplification in plants: optimization procedure of major PCR components.

    PubMed

    Ghaffari, Sana; Hasnaoui, Nejib

    2013-01-01

    Microsatellites (SSRs) are the most informative and popular class of molecular markers used for diverse purposes, particularly in plants: genetic diversity study, marker assisted selection, breeding, mapping, phylogenetics and phylogeography, systematics, etc. They have become a routine technique practically in each laboratory for studying molecular plant genetics. Despite their wide utilization, however, setup and optimization of various conditions involved in PCR amplification is a prerequisite for reliable inference of results. In this chapter, we describe optimization of SSR-PCR conditions and give ranges of concentrations for different parameters. The protocol provided here is inspired from bench work on the use of microsatellite to study diversity of Vitis vinifera germplasm.

  8. High-throughput quantitative real-time PCR.

    PubMed

    Arany, Zoltan P

    2008-07-01

    Recent technical advances in quantitative real-time PCR (qRT-PCR) have allowed for extensive miniaturization, thereby rendering the technique amenable to high-throughput assays. Large numbers of different nucleic acids can now rapidly be measured quantitatively. Many investigations can benefit from this approach, including determination of gene expression in hundreds of samples, determination of hundreds of genes in a few samples, or even quantification of nucleic acids other than mRNA. A simple technique is described here to quantify 1880 transcripts of choice from any number of starting RNA samples.

  9. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  10. Effect of Source of DNA on the Quantitative Analysis of Genetically Engineered Traits Using Digital PCR and Real-Time PCR.

    PubMed

    Demeke, Tigst; Malabanan, Jemima; Holigroski, Michelle; Eng, Monika

    2017-03-01

    Seven commercially available DNA extraction kits were compared with a cetyltrimethylammonium bromide (CTAB) method to determine the suitability of the extracted DNA for RainDrop digital PCR (dPCR) and real-time PCR (RT-PCR) quantification of OXY235 canola, FP967 flax, and DP305423 soybean (spiked at the 0.1% level). For the kits, the highest amount of DNA extracted from a 0.2 g sample was obtained using OmniPrep for Plant for flax and DNeasy mericon Food for canola and soybean. For canola, DNA extracted with the Fast ID Genomic DNA Extraction Kit, FastDNA Spin Kit, GM Quicker 2, NucleoSpin Food, and DNeasy mericon Food was suitable for dPCR and RT-PCR. For flax, DNA extracted with Fast ID, FastDNA Spin Kit, OmniPrep for Plant, and NucleoSpin Food was suitable for RT-PCR. However, only Fast ID yielded DNA suitable for dPCR. For soybean, DNA extracted with five and six of the seven DNA extraction kits was suitable for dPCR and RT-PCR, respectively. Overall, Fast ID provided reliable results regardless of species or analysis method used. Canola, flax, and soybean DNA extracted with the CTAB method and then purified were suitable for both dPCR and RT-PCR. This is the first report showing the effect of different DNA extraction methods on the absolute quantification of genetically engineered traits using dPCR.

  11. Critical appraisal of quantitative PCR results in colorectal cancer research: can we rely on published qPCR results?

    PubMed

    Dijkstra, J R; van Kempen, L C; Nagtegaal, I D; Bustin, S A

    2014-06-01

    The use of real-time quantitative polymerase chain reaction (qPCR) in cancer research has become ubiquitous. The relative simplicity of qPCR experiments, which deliver fast and cost-effective results, means that each year an increasing number of papers utilizing this technique are being published. But how reliable are the published results? Since the validity of gene expression data is greatly dependent on appropriate normalisation to compensate for sample-to-sample and run-to-run variation, we have evaluated the adequacy of normalisation procedures in qPCR-based experiments. Consequently, we assessed all colorectal cancer publications that made use of qPCR from 2006 until August 2013 for the number of reference genes used and whether they had been validated. Using even these minimal evaluation criteria, the validity of only three percent (6/179) of the publications can be adequately assessed. We describe common errors, and conclude that the current state of reporting on qPCR in colorectal cancer research is disquieting. Extrapolated to the study of cancer in general, it is clear that the majority of studies using qPCR cannot be reliably assessed and that at best, the results of these studies may or may not be valid and at worst, pervasive incorrect normalisation is resulting in the wholesale publication of incorrect conclusions. This survey demonstrates that the existence of guidelines, such as MIQE, is necessary but not sufficient to address this problem and suggests that the scientific community should examine its responsibility and be aware of the implications of these findings for current and future research.

  12. Designing multiplex PCR system of Campylobacter jejuni for efficient typing by improving monoplex PCR binary typing method.

    PubMed

    Yamada, Kazuhiro; Ibata, Ami; Suzuki, Masahiro; Matsumoto, Masakado; Yamashita, Teruo; Minagawa, Hiroko; Kurane, Ryuichiro

    2015-01-01

    Campylobacter jejuni is responsible for the majority of Campylobacter infections. As the molecular epidemiological study of outbreaks, pulsed-field gel electrophoresis (PFGE) is performed in general. But PFGE has several problems. PCR binary typing (P-BIT) method is a typing method for Campylobacter spp. that was recently developed, and was reported to have a similar discriminatory power and stability to those of PFGE. We modified the P-BIT method from 18 monoplex PCRs to two multiplex PCR systems (mP-BIT). The same results were obtained from monoplex PCRs using original primers and multiplex PCR in the representative isolates. The mP-BIT can analyze 48 strains at a time by using 96-well PCR systems and can identify C. jejuni because mP-BIT includes C. jejuni marker. The typing of the isolates by the mP-BIT and PFGE demonstrated generally concordant results and the mP-BIT method (D = 0.980) has a similar discriminatory power to that of PFGE with SmaI digest (D = 0.975) or KpnI digest (D = 0.987) as with original article. The mP-BIT method is quick, simple and easy, and comes to be able to perform it at low cost by having become a multiplex PCR system. Therefore, the mP-BIT method with two multiplex PCR systems has high potential for a rapid first-line surveillance typing assay of C. jejuni and can be used for routine surveillance and outbreak investigations of C. jejuni in the future. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Deletion-targeted multiplex PCR (DTM-PCR) for identification of Beijing/W genotypes of Mycobacterium tuberculosis.

    PubMed

    Chen, Jing; Tsolaki, Anthony G; Shen, Xin; Jiang, Xi; Mei, Jian; Gao, Qian

    2007-09-01

    Beijing/W strains of Mycobacterium tuberculosis cause the vast majority of tuberculosis cases in Shanghai, China. Such highly prevalent strains are considered as hypervirulent and are often associated with multi-drug resistance, treatment failure and HIV status. We present a reliable and fast detection method to identify these Beijing/W strains, which can be applied to screening large numbers of samples at low cost. Using this Deletion-Targeted Multiplex PCR (DTM-PCR) method for detecting these strains, we obtained 100% sensitivity and specificity.

  14. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation.

    PubMed

    Kerman, Kagan; Vestergaard, Mun'delanji; Nagatani, Naoki; Takamura, Yuzuru; Tamiya, Eiichi

    2006-04-01

    The unique structure of peptide nucleic acids (PNAs), linking the N-(2-aminoethyl)glycine units that create a neutral backbone, and prevent it from acting as a primer for DNA polymerase, has been utilized in an electrochemical biosensor scheme for simple and sensitive detection of hybridization. When the PNA is targeted against a single-nucleotide polymorphism (SNP) or wild-type site on the gene, PNA-mediated polymerase chain reaction (PCR) clamping method effectively blocks the formation of a PCR product. In our report, PNA probe for PCR clamping was targeted against the wild-type site of alcohol dehydrogenase. The electrostatic interactions between the negatively charged DNA and neutral PNA molecules with redox-active metal cation cobalt(III)hexamine ([Co(NH3)6]3+) were monitored using differential pulse voltammetry. The electrostatic binding of [Co(NH3)6]3+ to DNA provided the basis for the discrimination against PNA/PNA, PNA/DNA, and DNA/DNA hybrid molecules. We have optimized the experimental conditions, such as probe concentration, [Co(NH3)6]3+ concentration, accumulation time for [Co(NH3)6]3+, and target concentration. A new pretreatment method has also been employed to allow fast and simple detection of hybridization reaction between the PCR amplicon and the probe on glassy carbon electrode (GCE) surface. This method was based on the application of a high-temperature treatment (95 degrees C, 5 min), followed by a 1-min incubation in the presence of DNA primers. The excess concentration of DNA primers prevented the rehybridization of the denatured strands, while enabling the target gene sequence to bind with the immobilized probe. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism in standard Roundup Ready soybean samples. The amplicons of asymmetric PCR, which were predominantly single-stranded DNA as a result of unequal primer concentration, hybridized with the DNA probe on the sensor surface efficiently. The

  15. A novel multiplex quantitative DNA array based PCR (MQDA-PCR) for quantification of transgenic maize in food and feed.

    PubMed

    Rudi, Knut; Rud, Ida; Holck, Askild

    2003-06-01

    We have developed a novel multiplex quantitative DNA array based PCR method (MQDA-PCR). The MQDA-PCR is general and may be used in all areas of biological science where simultaneous quantification of multiple gene targets is desired. We used quantification of transgenic maize in food and feed as a model system to show the applicability of the method. The method is based on a two-step PCR. In the first few cycles bipartite primers containing a universal 5' 'HEAD' region and a 3' region specific to each genetically modified (GM) construct are employed. The unused primers are then degraded with a single-strand DNA-specific exonuclease. The second step of the PCR is run containing only primers consisting of the universal HEAD region. The removal of the primers is essential to create a competitive, and thus quantitative PCR. Oligo nucleotides hybridising to internal segments of the PCR products are then sequence specifically labelled in a cyclic linear signal amplification reaction. This is done both to increase the sensitivity and the specificity of the assay. Hybridisation of the labelled oligonucleotides to their complementary sequences in a DNA array enables multiplex detection. Quantitative information was obtained in the range 0.1-2% for the different GM constructs tested. Seventeen different food and feed samples were screened using a twelve-plex system for simultaneous detection of seven different GM maize events (Bt176, Bt11, Mon810, T25, GA21, CBH351 and DBT418). Ten samples were GM positive containing mainly mixtures of Mon810, Bt11 and Bt176 DNA. One sample contained appreciable amounts of GA21. An eight-plex MQDA-PCR system for detection of Mon810, Bt11 and Bt176 was evaluated by comparison with simplex 5' nuclease PCRs. There were no significant differences in the quantifications using the two approaches. The samples could, by both methods, be quantified as containing >2%, between 1 and 2%, between 0.1 and 1%, or <0.1% in 43 out of 47 determinations. The

  16. Quantitative PCR Method to Measure the Fungal Endopyte in Locoweeds

    USDA-ARS?s Scientific Manuscript database

    A fungal endophyte (Undifilum oxytropis) has been implicated in the synthesis of swainsonine in Oxytropis and Astragalus species, commonly known as locoweeds. Described is a quantitative PCR method developed to measure the amount of endophyte in Oxytropis and Astragalus species. The limit of quant...

  17. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  18. QUANTITATIVE PCR OF SELECTED ASPERGILLUS, PENICILLIUM AND PAECILOMYCES SPECIES

    EPA Science Inventory

    A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan®) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of Aspergillus, Penicillium and ...

  19. DNA extraction protocol for rapid PCR detection of pathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    Virtually all current assays for foodborne pathogens, including PCR assays, are conducted after lengthy cultural enrichment of the sample to increase the concentration of the target organism. This delays detection by many hours, prevents quantitation, and limits the ability to detect multiple organ...

  20. Screening ancient tuberculosis with qPCR: challenges and opportunities

    PubMed Central

    Harkins, Kelly M.; Buikstra, Jane E.; Campbell, Tessa; Bos, Kirsten I.; Johnson, Eric D.; Krause, Johannes; Stone, Anne C.

    2015-01-01

    The field of ancient DNA (aDNA) has rapidly accelerated in recent years as a result of new methods in next-generation sequencing, library preparation and targeted enrichment. Such research is restricted, however, by the highly variable DNA preservation within different tissues, especially when isolating ancient pathogens from human remains. Identifying positive candidate samples via quantitative PCR (qPCR) for downstream procedures can reduce reagent costs, increase capture efficiency and maximize the number of sequencing reads of the target. This study uses four qPCR assays designed to target regions within the Mycobacterium tuberculosis complex (MTBC) to examine 133 human skeletal samples from a wide geographical and temporal range, identified by the presence of skeletal lesions typical of chronic disseminated tuberculosis. Given the inherent challenges working with ancient mycobacteria, strict criteria must be used and primer/probe design continually re-evaluated as new data from bacteria become available. Seven samples tested positive for multiple MTBC loci, supporting them as strong candidates for downstream analyses. Using strict and conservative criteria, qPCR remains a fast and effective screening tool when compared with screening by more expensive sequencing and enrichment technologies. PMID:25487341

  1. Detection of Carbapenemases in Enterobacteriaceae by a Commercial Multiplex PCR

    PubMed Central

    Szabados, Florian; Wassill, Lars; Gatermann, Sören G.

    2012-01-01

    A commercial multiplex PCR (hyplex SuperBug ID) was tested with a collection of 132 clinical Enterobacteriaceae strains producing different carbapenemases. The sensitivity for the detection of KPC-, VIM-, NDM-, and OXA-48-encoding genes was 100%, whereas two IMP variants were missed. PMID:22785190

  2. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  3. Real-time PCR for Strongyloides stercoralis-associated meningitis.

    PubMed

    Nadir, Eyal; Grossman, Tamar; Ciobotaro, Pnina; Attali, Malka; Barkan, Daniel; Bardenstein, Rita; Zimhony, Oren

    2016-03-01

    Four immunocompromised patients, immigrants from Ethiopia, presented with diverse clinical manifestations of meningitis associated with Strongyloides stercoralis dissemination as determined by identification of intestinal larvae. The cerebrospinal fluid of 3 patients was tested by a validated (for stool) real-time PCR for S. stercoralis and was found positive, establishing this association. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Absolute measurement of gene transcripts with Selfie-digital PCR.

    PubMed

    Podlesniy, Petar; Trullas, Ramon

    2017-08-21

    Absolute measurement of the number of RNA transcripts per gene is necessary to compare gene transcription among different tissues or experimental conditions and to assess transcription of genes that have a variable copy number per cell such as mitochondrial DNA. Here, we present a method called Selfie-digital PCR that measures the absolute amount of an RNA transcript produced by its own coding DNA at a particular moment. Overcoming the limitations of previous approaches, Selfie-digital PCR allows for the quantification of nuclear and mitochondrial gene transcription in a strand-specific manner that is comparable among tissues and cell types that differ in gene copy number or metabolic state. Using Selfie-digital PCR, we found that, with the exception of the liver, different organs exhibit marked variations in mitochondrial DNA copy number but similar transcription of mitochondrial DNA heavy and light chains, thus suggesting a preferential role of mitochondrial DNA abundance over its transcription in organ function. Moreover, the strand-specific analysis of mitochondrial transcription afforded by Selfie-digital PCR showed that transcription of the heavy strand was significantly higher than that of the light strand in all the tissues studied.

  5. QUANTITATIVE PCR OF SELECTED ASPERGILLUS, PENICILLIUM AND PAECILOMYCES SPECIES

    EPA Science Inventory

    A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan®) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of Aspergillus, Penicillium and ...

  6. Mitochondrial DNA deletion analysis: a comparison of PCR quantitative methods.

    PubMed

    Hamblet, N S; Castora, F J

    1995-02-15

    The role of mitochondrial DNA (mtDNA) deletions in aging and in neurodegenerative diseases is often determined by measuring the amount of deleted mtDNA in the affected tissue. Upon examining brain autopsy tissue from a 59 year old individual with lung cancer we determined by serial dilution PCR and kinetic PCR that a greater ratio of deleted mtDNA was present in the caudate than in the parietal cortex. However, the magnitude difference for these two brain regions appeared to be technique dependent; by serial dilution PCR the caudate had 10 times more deleted mtDNA than the parietal cortex (0.0141 vs 0.0014) whereas kinetic PCR yielded a 4-fold difference (0.1258 vs 0.0316). These results indicate that although it is valid to compare the amount of deleted mtDNA in normal and diseased tissue and draw conclusions based on relative comparisons within one study, greater caution should be exercised when comparing absolute values from studies using different measurement techniques.

  7. PCR Detection of Helicobacter pylori in Clinical Samples

    PubMed Central

    Rimbara, Emiko; Sasatsu, Masanori; Graham, David Y.

    2014-01-01

    Helicobacter pylori is an important pathogen whose primary niche is the human stomach. H. pylori is etio-logically associated with gastric inflammation (gastritis), peptic ulcer disease, and gastric cancer. Both noninvasive (e.g., urea breath and stool antigen tests) and invasive (gastric biopsy for histology, culture, or PCR) tests are used for diagnosis. PCR detection of H. pylori has been reported using a variety of clinical samples including gastric biopsy, gastric juice, saliva, dental plaque, and stools as well as environmental samples. Whenever possibly, noninvasive tests are preferred over invasive tests. H. pylori are excreted in the stool. Culture from stool is variable whereas stool antigen testing is widely used. Stool consists of a complicated mixture of commensal bacteria and chemicals and often includes inhibitors of PCR. Nevertheless, simple extraction methods are available to efficiently extract DNA from human stools and nested-PCR targeting the 23S rRNA gene have proven to be highly sensitive for the detection of H. pylori. Detection of clarithromycin susceptibility/resistance is important clinically and the mutation of the 23S rRNA gene responsible for resistance can also be detected using stool. This described method can be modified for other clinical samples such as gastric juice or biopsy material. PMID:23104297

  8. A Trio of Human Molecular Genetics PCR Assays

    ERIC Educational Resources Information Center

    Reinking, Jeffrey L.; Waldo, Jennifer T.; Dinsmore, Jannett

    2013-01-01

    This laboratory exercise demonstrates three different analytical forms of the polymerase chain reaction (PCR) that allow students to genotype themselves at four different loci. Here, we present protocols to allow students to a) genotype a non-coding polymorphic Variable Number of Tandem Repeat (VNTR) locus on human chromosome 5 using conventional…

  9. Citrus stubborn disease incidence determined by quantitative real time PCR

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time (q) PCR was developed for detection of Spiroplasma citri, the causal agent of citrus stubborn disease (CSD), using the DNA binding fluorophore SYBR Green I. The primer pair, P58-3f/4r, developed based on sequences from the P58 putative adhesin multigene of the pathogen result...

  10. Enumeration of Mycobacterium leprae Using Real-Time PCR

    PubMed Central

    Truman, Richard W.; Andrews, P. Kyle; Robbins, Naoko Y.; Adams, Linda B.; Krahenbuhl, James L.; Gillis, Thomas P.

    2008-01-01

    Mycobacterium leprae is not cultivable in axenic media, and direct microscopic enumeration of the bacilli is complex, labor intensive, and suffers from limited sensitivity and specificity. We have developed a real-time PCR assay for quantifying M. leprae DNA in biological samples. Primers were identified to amplify a shared region of the multicopy repeat sequence (RLEP) specific to M. leprae and tested for sensitivity and specificity in the TaqMan format. The assay was specific for M. leprae and able to detect 10 fg of purified M. leprae DNA, or approximately 300 bacteria in infected tissues. We used the RLEP TaqMan PCR to assess the short and long-term growth results of M. leprae in foot pad tissues obtained from conventional mice, a gene knock-out mouse strain, athymic nude mice, as well as from reticuloendothelial tissues of M. leprae–infected nine-banded armadillos. We found excellent correlative results between estimates from RLEP TaqMan PCR and direct microscopic counting (combined r = 0.98). The RLEP TaqMan PCR permitted rapid analysis of batch samples with high reproducibility and is especially valuable for detection of low numbers of bacilli. Molecular enumeration is a rapid, objective and highly reproducible means to estimate the numbers of M. leprae in tissues, and application of the technique can facilitate work with this agent in many laboratories. PMID:18982056

  11. Internally controlled PCR system for detection of airborne microorganisms.

    PubMed

    Usachev, Evgeny V; Agranovski, Igor E

    2012-05-01

    Recently, we reported the outcomes of feasibility studies of a technological approach allowing rapid detection of a wide range of bioaerosols by combining a personal bioaerosol sampler with a real-time PCR technology. The protocol was found suitable for detection of targeted microorganisms within relatively short time periods. Considering the crucial importance of the PCR procedure quality control, the current paper reports the results of the development of an internally controlled PCR system for utilization by the above technology. The suggested strategy is based on utilization of only two fluorescent dyes, which are used respectively for target and internal amplification control (IAC) DNA amplification. A bacteriophage T4 and recombinant phage fd (M13) were used in this research as target and IAC, respectively. The constructed IAC was added directly to the collection liquid of the personal bioaerosol sampler enabling quality control to be present throughout the entire sampling-analysis procedures. For performance evaluation, serial ten-fold dilutions of T4 phage were aerosolized and sampled over a 10 minutes time period. The results showed that T4 phage could be reliably detected at the concentration of around 200 PFU per litre of air over the 10 minutes sampling period. The developed PCR assay demonstrated high specificity and no cross reaction. It is concluded that the recombinant phage fd is suitable for utilization as an internal control enabling to significantly minimize false negative results for bioaerosol detection procedures.

  12. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  13. Using qPCR for Water Microbial Risk Assessments

    EPA Science Inventory

    Microbial risk assessment (MRA) has traditionally utilized microbiological data that was obtained by culture-based techniques that are expensive and time consuming. With the advent of PCR methods there is a realistic opportunity to conduct MRA studies economically, in less time,...

  14. A Trio of Human Molecular Genetics PCR Assays

    ERIC Educational Resources Information Center

    Reinking, Jeffrey L.; Waldo, Jennifer T.; Dinsmore, Jannett

    2013-01-01

    This laboratory exercise demonstrates three different analytical forms of the polymerase chain reaction (PCR) that allow students to genotype themselves at four different loci. Here, we present protocols to allow students to a) genotype a non-coding polymorphic Variable Number of Tandem Repeat (VNTR) locus on human chromosome 5 using conventional…

  15. Identification of Staphylococcus spp. using (GTG)₅-PCR fingerprinting.

    PubMed

    Svec, Pavel; Pantůček, Roman; Petráš, Petr; Sedláček, Ivo; Nováková, Dana

    2010-12-01

    A group of 212 type and reference strains deposited in the Czech Collection of Microorganisms (Brno, Czech Republic) and covering 41 Staphylococcus species comprising 21 subspecies was characterised using rep-PCR fingerprinting with the (GTG)₅ primer in order to evaluate this method for identification of staphylococci. All strains were typeable using the (GTG)₅ primer and generated PCR products ranging from 200 to 4500 bp. Numerical analysis of the obtained fingerprints revealed (sub)species-specific clustering corresponding with the taxonomic position of analysed strains. Taxonomic position of selected strains representing the (sub)species that were distributed over multiple rep-PCR clusters was verified and confirmed by the partial rpoB gene sequencing. Staphylococcus caprae, Staphylococcus equorum, Staphylococcus sciuri, Staphylococcus piscifermentans, Staphylococcus xylosus, and Staphylococcus saprophyticus revealed heterogeneous fingerprints and each (sub)species was distributed over several clusters. However, representatives of the remaining Staphylococcus spp. were clearly separated in single (sub)species-specific clusters. These results showed rep-PCR with the (GTG)₅ primer as a fast and reliable method applicable for differentiation and straightforward identification of majority of Staphylococcus spp.

  16. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  17. Novel real-time PCR detection assay for Brucella suis

    PubMed Central

    Hänsel, C.; Mertens, K.; Elschner, M. C.; Melzer, F.

    2015-01-01

    Introduction Brucella suis is the causative agent of brucellosis in suidae and is differentiated into five biovars (bv). Biovars 1 and 3 possess zoonotic potential and can infect humans, whereas biovar 2 represents the main source of brucellosis in feral and domestic pigs in Europe. Both aspects, the zoonotic threat and the economic loss, emphasize the necessity to monitor feral and domestic pig populations. Available serological or PCR based methods lack sensitivity and specificity. Results Here a bioinformatics approach was used to identify a B. suis specific 17 bp repeat on chromosome II (BS1330_II0657 locus). This repeat is common for B. suis bv 1 to 4 and was used to develop a TaqMan probe assay. The average PCR efficiency was determined as 95% and the limit of detection as 12,5 fg/µl of DNA, equally to 3.7 bacterial genomes. This assay has the highest sensitivity of all previously described B. suis specific PCR assays, making it possible to detect 3-4 bacterial genomes per 1 µl of sample. The assay was tested 100% specific for B. suis and negative for other Brucella spp. and closely related non-Brucella species. Conclusions This novel qPCR assay could become a rapid, inexpensive and reliable screening method for large sample pools of B. suis 1 to 4. This method will be applicable for field samples after validation. PMID:26392898

  18. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  19. Real-Time PCR Quantification of Methanobrevibacter oralis in Periodontitis

    PubMed Central

    Bringuier, Amélie; Khelaifia, Saber; Richet, Hervé; Aboudharam, Gérard

    2013-01-01

    A real-time PCR assay developed to quantify Methanobrevibacter oralis indicated that its inoculum significantly correlated with periodontitis severity (P = 0.003), despite a nonsignificant difference in prevalence between controls (3/10) and patients (12/22) (P = 0.2, Fisher test). The M. oralis load can be used as a biomarker for periodontitis. PMID:23254133

  20. Fuel utilization in a progressive conversion reactor (PCR)

    SciTech Connect

    Leyse, C.F.; Judd, J.L.

    1981-05-01

    Preliminary studies indicate that for once-through fuel cycles, the PCR offers potential improvements over current LWRs in the following major areas: improved uranium utilization (reduced uranium demand), degraded plutonium product in spent fuel, reduced plutonium content of spent fuel, reduced amount of spent fuel, reduced fissile content of spent fuel, and reduced separative work.

  1. Qualitative PCR method for Roundup Ready soybean: interlaboratory study.

    PubMed

    Kodama, Takashi; Kasahara, Masaki; Minegishi, Yasutaka; Futo, Satoshi; Sawada, Chihiro; Watai, Masatoshi; Akiyama, Hiroshi; Teshima, Reiko; Kurosawa, Yasunori; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2011-01-01

    Quantitative and qualitative methods based on PCR have been developed for genetically modified organisms (GMO). Interlaboratory studies were previously conducted for GMO quantitative methods; in this study, an interlaboratory study was conducted for a qualitative method for a GM soybean, Roundup Ready soy (RR soy), with primer pairs designed for the quantitative method of RR soy studied previously. Fourteen laboratories in Japan participated. Each participant extracted DNA from 1.0 g each of the soy samples containing 0, 0.05, and 0.10% of RR soy, and performed PCR with primer pairs for an internal control gene (Le1) and RR soy followed by agarose gel electrophoresis. The PCR product amplified in this PCR system for Le1 was detected from all samples. The sensitivity, specificity, and false-negative and false-positive rates of the method were obtained from the results of RR soy detection. False-negative rates at the level of 0.05 and 0.10% of the RR soy samples were 6.0 and 2.3%, respectively, revealing that the LOD of the method was somewhat below 0.10%. The current study demonstrated that the qualitative method would be practical for monitoring the labeling system of GM soy in kernel lots.

  2. Facilitated Molecular Typing of Shigella Isolates Using ERIC-PCR

    PubMed Central

    Kosek, Margaret; Yori, Pablo Peñataro; Gilman, Robert H.; Vela, Henry; Olortegui, Maribel Paredes; Chavez, Cesar Banda; Calderon, Maritza; Bao, Juan Perez; Hall, Eric; Maves, Ryan; Burga, Rosa; Sanchez, Graciela Meza

    2012-01-01

    To evaluate the performance of enterobacterial repetitive intergenic sequence-based polymerase chain reaction (ERIC-PCR) typing versus the current standard for the typing of Shigella pulsed gel electrophoresis (PFGE), we typed 116 Shigella isolates from a village in an endemic setting over a 20-month period using both methods. PFGE identified 37 pulse types and had a discrimination index of 0.925 (95% confidence interval = 0.830–1.00), whereas ERIC-PCR identified 42 types and had a discrimination index of 0.961 (95% confidence interval = 0.886–1.00). PFGE and ERIC-PCR showed a 90.4% correlation in the designation of isolates as clonal or non-clonal in pairwise comparisons. Both systems were highly reproducible and provided highly similar and supplementary data compared with serotyping regarding the transmission dynamics of shigellosis in this community. ERIC-PCR is considerably more rapid and inexpensive than PFGE and may have a complementary role to PFGE for initial investigations of hypothesized outbreaks in resource-limited settings. PMID:22665611

  3. Halal authenticity of gelatin using species-specific PCR.

    PubMed

    Shabani, Hessam; Mehdizadeh, Mehrangiz; Mousavi, Seyed Mohammad; Dezfouli, Ehsan Ansari; Solgi, Tara; Khodaverdi, Mahdi; Rabiei, Maryam; Rastegar, Hossein; Alebouyeh, Mahmoud

    2015-10-01

    Consumption of food products derived from porcine sources is strictly prohibited in Islam. Gelatin, mostly derived from bovine and porcine sources, has many applications in the food and pharmaceutical industries. To ensure that food products comply with halal regulations, development of valid and reliable analytical methods is very much required. In this study, a species-specific polymerase chain reaction (PCR) assay using conserved regions of mitochondrial DNA (cytochrome b gene) was performed to evaluate the halal authenticity of gelatin. After isolation of DNA from gelatin powders with known origin, conventional PCR using species-specific primers was carried out on the extracted DNA. The amplified expected PCR products of 212 and 271 bp were observed for porcine and bovine gelatin, respectively. The sensitivity of the method was tested on binary gelatin mixtures containing 0.1%, 1%, 10%, and 100% (w/w) of porcine gelatin within bovine gelatin and vice versa. Although most of the DNA is degraded due to the severe processing steps of gelatin production, the minimum level of 0.1% w/w of both porcine and bovine gelatin was detected. Moreover, eight food products labeled as containing bovine gelatin and eight capsule shells were subjected to PCR examination. The results showed that all samples contained bovine gelatin, and the absence of porcine gelatin was verified. This method of species authenticity is very useful to verify whether gelatin and gelatin-containing food products are derived from halal ingredients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Primer design for PCR reactions in forensic biology.

    PubMed

    Elkins, Kelly M

    2015-01-01

    The polymerase chain reaction (PCR) is a popular method to copy DNA in vitro. Its invention revolutionized fields ranging from clinical medicine to anthropology, molecular biology, and forensic biology. The method employs one of many available heat-stable DNA polymerases in a reaction that is repeated many times in situ. The DNA polymerase reads a template DNA strand and using the components of the reaction mix, catalyzes the addition of free 2'-deoxynucleotide triphosphate nitrogenous bases to short segment of DNA that forms a complement with the template via Watson-Crick base pairing. This short segment of DNA is referred to as a PCR primer and it is essential to the success of the reaction. The most widely used application of PCR in forensic labs is the amplification of short tandem repeat (STR) loci used in DNA typing. The STRs are routinely evaluated in concert with 16 or more reactions, a multiplex, run in one test tube simultaneously. In a multiplex, it is essential that the primers work specifically and accurately on the intended reactions without hindering the other reactions. The primers, which are very specific, also can be used to probe single nucleotide polymorphisms (SNPs) in a DNA sequence of interest by single base extension. Primers are often designed using one of many available automated software packages. Here the process of manually designing PCR primers for forensic biology using no-cost software is described.

  5. A PCR test for avian malaria in Hawaiian birds.

    PubMed

    Feldman, R A; Freed, L A; Cann, R L

    1995-12-01

    The decline of native Hawaiian forest birds since European contact is attributed to factors ranging from habitat destruction to interactions with introduced species. Remaining populations of Hawaiian honeycreepers (Fringillidae: Drepanidinae) are most abundant and diverse in high elevation refuges above the normal range of disease-carrying mosquitoes. Challenge experiments suggest that honeycreepers are highly susceptible to avian malaria (Plasmodium sp.) but resistance exists in some species. In order to detect low levels of malarial infection and quantify prevalence of Plasmodium in high elevation natural populations of Hawaiian birds, a polymerase chain reaction (PCR) based diagnostic test was developed that identifies rRNA genes of Plasmodium in avian blood samples. Quantitative competitive PCR (QC-PCR) experiments indicate that the detection limit of our test is an order of magnitude greater than that reported for human malaria DNA blot tests. Compared with standard histological methods, the PCR test detected a higher prevalence of diseased birds at mid-elevations. Malaria was detected in three species of native birds living in a high elevation wildlife refuge on the island of Hawaii and in four species from Maui. Our results show that avian malaria is more widespread in Hawaiian forests than previously thought, a finding that has important conservation implications for these threatened species.

  6. Genus identification of toxic plant by real-time PCR.

    PubMed

    Matsuyama, Shuji; Nishi, Katsuji

    2011-03-01

    Some plants have toxicities that are dangerous for humans. In the case of poisoning by toxic plants, a rapid and easy screening test is required for accurate medical treatment or forensic investigation. In this study, we designed specific primer pairs for identification of toxic plants, such as subgenus Aconitum, genus Ricinus, genus Illicium, and genus Scopolia, by internal transcribed spacer sequences of nuclear ribosomal DNA. Allied species of target plants, foods, and human DNA were not detected, but each primer pair provided a specific PCR product from the target plant using real-time PCR. This method can detect the subgenus Aconitum, genus Ricinus, and genus Scopolia with template DNA of 10 pg, respectively, and genus Illicium with 1 pg. Furthermore, each primer pair provided the exact PCR product from digested target plants in artificial gastric fluid. When a trace unknown plant sample in forensic investigation is collected from stomach contents, this PCR assay may be useful for screening toxic plants.

  7. Application of nested PCR for diagnosis of histoplasmosis.

    PubMed

    Ohno, Hideaki; Tanabe, Koichi; Umeyama, Takashi; Kaneko, Yukihiro; Yamagoe, Satoshi; Miyazaki, Yoshitsugu

    2013-10-01

    Histoplasmosis is a fungal infection that, although not endemic in Japan, has seen a rise in the number of Japanese cases since the mid-1980s. Diagnosis of the disease is not straightforward, and the main method of detection, fungal culture (which has biosafety-related issues), is of low sensitivity in general. Alternative methods that depend on antibody or antigen detection have had limited use. We have developed a histoplasmosis detection method based on PCR amplification of the Histoplasma capsulatum M antigen gene. We compared this method with fungal culture and serological diagnostic techniques. Among five cases that were finally diagnosed as histoplasmosis, the fungal culture method was only successful in identifying one such case. Although the presence of anti-H. capsulatum antibodies was confirmed in three cases, our PCR method identified four of five cases of histoplasmosis. The performance of our PCR method could not be compared with the antigen detection method, which is used in the United States but is not routinely used in Japan. However, the PCR method was shown to have high sensitivity and specificity for H. capsulatum. Although the number of histoplasmosis cases examined in this study was small, our data suggest that the molecular diagnosis technique has potential for increasing the reliability of histoplasmosis diagnosis when used in combination with established methods.

  8. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  9. qPCR assays to quantify genes and gene expression associated with microbial perchlorate reduction.

    PubMed

    De Long, Susan K; Kinney, Kerry A; Kirisits, Mary Jo

    2010-11-01

    Quantitative PCR (qPCR) assays targeting cld (developed in this work) and pcrA (previously described) were used to quantify these perchlorate-related genes in a perchlorate-reducing enrichment culture. Transcript copies were quantified in perchlorate-reducing Rhodocyclaceae strain JDS4. Oxygen and nitrate inhibited expression of cld and pcrA.

  10. Use of Droplet Digital PCR for Estimation of Fish Abundance and Biomass in Environmental DNA Surveys

    PubMed Central

    Doi, Hideyuki; Uchii, Kimiko; Takahara, Teruhiko; Matsuhashi, Saeko; Yamanaka, Hiroki; Minamoto, Toshifumi

    2015-01-01

    An environmental DNA (eDNA) analysis method has been recently developed to estimate the distribution of aquatic animals by quantifying the number of target DNA copies with quantitative real-time PCR (qPCR). A new quantitative PCR technology, droplet digital PCR (ddPCR), partitions PCR reactions into thousands of droplets and detects the amplification in each droplet, thereby allowing direct quantification of target DNA. We evaluated the quantification accuracy of qPCR and ddPCR to estimate species abundance and biomass by using eDNA in mesocosm experiments involving different numbers of common carp. We found that ddPCR quantified the concentration of carp eDNA along with carp abundance and biomass more accurately than qPCR, especially at low eDNA concentrations. In addition, errors in the analysis were smaller in ddPCR than in qPCR. Thus, ddPCR is better suited to measure eDNA concentration in water, and it provides more accurate results for the abundance and biomass of the target species than qPCR. We also found that the relationship between carp abundance and eDNA concentration was stronger than that between biomass and eDNA by using both ddPCR and qPCR; this suggests that abundance can be better estimated by the analysis of eDNA for species with fewer variations in body mass. PMID:25799582

  11. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys.

    PubMed

    Doi, Hideyuki; Uchii, Kimiko; Takahara, Teruhiko; Matsuhashi, Saeko; Yamanaka, Hiroki; Minamoto, Toshifumi

    2015-01-01

    An environmental DNA (eDNA) analysis method has been recently developed to estimate the distribution of aquatic animals by quantifying the number of target DNA copies with quantitative real-time PCR (qPCR). A new quantitative PCR technology, droplet digital PCR (ddPCR), partitions PCR reactions into thousands of droplets and detects the amplification in each droplet, thereby allowing direct quantification of target DNA. We evaluated the quantification accuracy of qPCR and ddPCR to estimate species abundance and biomass by using eDNA in mesocosm experiments involving different numbers of common carp. We found that ddPCR quantified the concentration of carp eDNA along with carp abundance and biomass more accurately than qPCR, especially at low eDNA concentrations. In addition, errors in the analysis were smaller in ddPCR than in qPCR. Thus, ddPCR is better suited to measure eDNA concentration in water, and it provides more accurate results for the abundance and biomass of the target species than qPCR. We also found that the relationship between carp abundance and eDNA concentration was stronger than that between biomass and eDNA by using both ddPCR and qPCR; this suggests that abundance can be better estimated by the analysis of eDNA for species with fewer variations in body mass.

  12. Use of Treponema pallidum PCR in Testing of Ulcers for Diagnosis of Primary Syphilis1

    PubMed Central

    Sednaoui, Patrice; Lautenschlager, Stephan; Ferry, Tristan; Toutous-Trellu, Laurence; Cavassini, Matthias; Yassir, Fatima; Martinez de Tejada, Begoña; Emonet, Stéphane; Combescure, Christophe; Schrenzel, Jacques; Perneger, Thomas

    2015-01-01

    Treponema pallidum PCR (Tp-PCR) has been noted as a valid method for diagnosing syphilis. We compared Tp-PCR to a combination of darkfield microscopy (DFM), the reference method, and serologic testing in a cohort of 273 patients from France and Switzerland and found the diagnostic accuracy of Tp-PCR was higher than that for DFM. PMID:25531672

  13. Two-temperature LATE-PCR endpoint genotyping

    PubMed Central

    Sanchez, J Aquiles; Abramowitz, Jessica D; Salk, Jesse J; Reis, Arthur H; Rice, John E; Pierce, Kenneth E; Wangh, Lawrence J

    2006-01-01

    Background In conventional PCR, total amplicon yield becomes independent of starting template number as amplification reaches plateau and varies significantly among replicate reactions. This paper describes a strategy for reconfiguring PCR so that the signal intensity of a single fluorescent detection probe after PCR thermal cycling reflects genomic composition. The resulting method corrects for product yield variations among replicate amplification reactions, permits resolution of homozygous and heterozygous genotypes based on endpoint fluorescence signal intensities, and readily identifies imbalanced allele ratios equivalent to those arising from gene/chromosomal duplications. Furthermore, the use of only a single colored probe for genotyping enhances the multiplex detection capacity of the assay. Results Two-Temperature LATE-PCR endpoint genotyping combines Linear-After-The-Exponential (LATE)-PCR (an advanced form of asymmetric PCR that efficiently generates single-stranded DNA) and mismatch-tolerant probes capable of detecting allele-specific targets at high temperature and total single-stranded amplicons at a lower temperature in the same reaction. The method is demonstrated here for genotyping single-nucleotide alleles of the human HEXA gene responsible for Tay-Sachs disease and for genotyping SNP alleles near the human p53 tumor suppressor gene. In each case, the final probe signals were normalized against total single-stranded DNA generated in the same reaction. Normalization reduces the coefficient of variation among replicates from 17.22% to as little as 2.78% and permits endpoint genotyping with >99.7% accuracy. These assays are robust because they are consistent over a wide range of input DNA concentrations and give the same results regardless of how many cycles of linear amplification have elapsed. The method is also sufficiently powerful to distinguish between samples with a 1:1 ratio of two alleles from samples comprised of 2:1 and 1:2 ratios of the

  14. A comparative study of digital RT-PCR and RT-qPCR for quantification of Hepatitis A virus and Norovirus in lettuce and water samples.

    PubMed

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Guillier, Laurent; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2015-05-18

    Sensitive and quantitative detection of foodborne enteric viruses is classically achieved by quantitative RT-PCR (RT-qPCR). Recently, digital PCR (dPCR) was described as a novel approach to genome quantification without need for a standard curve. The performance of microfluidic digital RT-PCR (RT-dPCR) was compared to RT-qPCR for detecting the main viruses responsible for foodborne outbreaks (human Noroviruses (NoV) and Hepatitis A virus (HAV)) in spiked lettuce and bottled water. Two process controls (Mengovirus and Murine Norovirus) were used and external amplification controls (EAC) were added to examine inhibition of RT-qPCR and RT-dPCR. For detecting viral RNA and cDNA, the sensitivity of the RT-dPCR assays was either comparable to that of RT-qPCR (RNA of HAV, NoV GI, Mengovirus) or slightly (around 1 log10) decreased (NoV GII and MNV-1 RNA and of HAV, NoV GI, NoV GII cDNA). The number of genomic copies determined by dPCR was always from 0.4 to 1.7 log10 lower than the expected numbers of copies calculated by using the standard qPCR curve. Viral recoveries calculated by RT-dPCR were found to be significantly higher than by RT-qPCR for NoV GI, HAV and Mengovirus in water, and for NoV GII and HAV in lettuce samples. The RT-dPCR assay proved to be more tolerant to inhibitory substances present in lettuce samples. This absolute quantitation approach may be useful to standardize quantification of enteric viruses in bottled water and lettuce samples and may be extended to quantifying other human pathogens in food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays.

    PubMed

    Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun

    2017-08-29

    A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.

  16. A novel nested PCR for the diagnosis of calicivirus infections in the cat.

    PubMed

    Marsilio, Fulvio; Di Martino, Barbara; Decaro, Nicola; Buonavoglia, Canio

    2005-01-05

    A novel nested PCR (nPCR) assay is reported on the diagnosis of the feline calicivirus (FCV) infection. The test was performed on 47 ocular and 40 pharyngeal swabs collected from 47 cats with respiratory syndrome; among the 87 samples examined, 18 ocular and 23 pharyngeal swabs were positive in nPCR. The nPCR sensitivity was compared to other diagnostic techniques such as virus isolation on cell culture and reverse transcriptase-polymerase chain reaction (RT-PCR). The nPCR was more sensitive than the virus isolation and RT-PCR; therefore, it can be used for calicivirosis diagnosis in cats.

  17. A Ribeiroia spp. (Class: Trematoda) - Specific PCR-based diagnostic

    USGS Publications Warehouse

    Reinitz, D.M.; Yoshino, T.P.; Cole, R.A.

    2007-01-01

    Increased reporting of amphibian malformations in North America has been noted with concern in light of reports that amphibian numbers and species are declining worldwide. Ribeiroia ondatrae has been shown to cause a variety of types of malformations in amphibians. However, little is known about the prevalence of R. ondatrae in North America. To aid in conducting field studies of Ribeiroia spp., we have developed a polymerase chain reaction (PCR)-based diagnostic. Herein, we describe the development of an accurate, rapid, simple, and cost-effective diagnostic for detection of Ribeiroia spp. infection in snails (Planorbella trivolvis). Candidate oligonucleotide primers for PCR were designed via DNA sequence analyses of multiple ribosomal internal transcribed spacer-2 regions from Ribeiroia spp. and Echinostoma spp. Comparison of consensus sequences determined from both genera identified areas of sequence potentially unique to Ribeiroia spp. The PCR reliably produced a diagnostic 290-base pair (bp) product in the presence of a wide concentration range of snail or frog DNA. Sensitivity was examined with DNA extracted from single R. ondatrae cercaria. The single-tube PCR could routinely detect less than 1 cercariae equivalent, because DNA isolated from a single cercaria could be diluted at least 1:50 and still yield a positive result via gel electrophoresis. An even more sensitive nested PCR also was developed that routinely detected 100 fg of the 290-bp fragment. The assay did not detect furcocercous cercariae of certain Schistosomatidae, Echinostoma sp., or Sphaeridiotrema globulus nor adults of Clinostomum sp. or Cyathocotyle bushiensis. Field testing of 137 P. trivolvis identified 3 positives with no overt environmental cross-reactivity, and results concurred with microscopic examinations in all cases. ?? American Society of Parasitologists 2007.

  18. A novel method for whole blood PCR without pretreatment.

    PubMed

    Sharma, Ritu; Virdi, Amardeep Singh; Singh, Prabhjeet

    2012-06-10

    PCR is usually performed on purified DNA. However, the extraction of DNA from whole blood is time consuming and involves the risk of contamination at every step. Hence, it is desirable to amplify DNA directly from whole blood. Earlier, investigators tried to achieve this target by either pretreatment of whole blood samples with different agents or by altering the conventional thermal cyclic conditions. This would make the technique cumbersome and time consuming. Here, we describe a simple protocol to amplify DNA directly from whole blood without the need of pretreatment. PCR buffer system was optimized in the laboratory and Apolipoprotein B gene was used as a model for this experiment. 480 bp was the target site for amplification. Fresh whole blood samples were used both from healthy and diseased individuals (coronary artery disease patients). Successful amplification was achieved with 1 μl volume of whole blood and it was comparable to that of genomic DNA. No pretreatment of whole blood samples was required with the optimized buffer system. 3mM concentration of MgCl(2) was observed to be optimal and hence used in the reaction mixture. Amplification was relatively better with this buffer system as compared to that of commercially available PCR buffer. With the present technique, amplicon detection did not require the centrifugation/dilution of the PCR products which further saves time. Successful amplification was achieved in both the healthy and diseased blood samples, indicating the robustness of the technique as changed blood composition and presence of increased inhibitory molecules in the diseased state did not seem to affect the efficacy of the present technique. In conclusion, as compared to the existing protocols for whole blood PCR, the present technique is relatively novel, simple, requires minimal steps and eliminates the need for additional standardizations. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Detection of glycopeptide resistance genes in enterococci by multiplex PCR

    PubMed Central

    Bhatt, Puneet; Sahni, A.K.; Praharaj, A.K.; Grover, Naveen; Kumar, Mahadevan; Chaudhari, C.N.; Khajuria, Atul

    2014-01-01

    Background Vancomycin Resistant Enterococci (VRE) are a major cause of nosocomial infections. There are various phenotypic and genotypic methods of detection of glycopeptide resistance in enterococci. This study utilizes multiplex PCR for reliable detection of various glycopeptides resistance genes in VRE. Method This study was conducted to detect and to assess the prevalence of vancomycin resistance among enterococci isolates. From October 2011 to June 2013, a total of 96 non-repetitive isolates of enterococci from various clinical samples were analyzed. VRE were identified by Kirby Bauer disc diffusion method with Clinical and Laboratory Standards Institute (CLSI) guidelines. Minimum inhibitory concentration (MIC) of all isolates for vancomycin and teicoplanin was determined by E-test. Multiplex PCR was carried out for all enterococci isolates using six sets of primers. Results Out of 96 isolates, 14 (14.6%) were found to be resistant to vancomycin by vancomycin E-test method (MIC ≥32 μg/ml). Out of these 14 isolates, 13 were also resistant to teicoplanin (MIC ≥16 μg/ml). VanA gene was detected in all the 14 isolates by Multiplex PCR. One of the PCR amplicons was sent for sequencing and the sequence received was submitted in the GenBank (GenBank accession no. KF181100). Conclusion Prevalence of VRE in this study was 14.6%. Multiplex PCR is a robust, sensitive and specific technique, which can be used for rapid detection of various glycopeptide resistance genes. Rapid identification of patients infected or colonized with VRE is essential for implementation of appropriate control measures to prevent their spread. PMID:25609863

  20. Methods for producing partially digested restriction DNA fragments and for producing a partially modified PCR product

    DOEpatents

    Wong, Kwong-Kwok

    2000-01-01

    The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.

  1. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything

    PubMed Central

    Kralik, Petr; Ricchi, Matteo

    2017-01-01

    Real time PCR (quantitative PCR, qPCR) is now a well-established method for the detection, quantification, and typing of different microbial agents in the areas of clinical and veterinary diagnostics and food safety. Although the concept of PCR is relatively simple, there are specific issues in qPCR that developers and users of this technology must bear in mind. These include the use of correct terminology and definitions, understanding of the principle of PCR, difficulties with interpretation and presentation of data, the limitations of qPCR in different areas of microbial diagnostics and parameters important for the description of qPCR performance. It is not our intention in this review to describe every single aspect of qPCR design, optimization, and validation; however, it is our hope that this basic guide will help to orient beginners and users of qPCR in the use of this powerful technique. PMID:28210243

  2. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications.

    PubMed

    Cao, Lei; Cui, Xingye; Hu, Jie; Li, Zedong; Choi, Jane Ru; Yang, Qingzhen; Lin, Min; Ying Hui, Li; Xu, Feng

    2017-04-15

    Since the invention of polymerase chain reaction (PCR) in 1985, PCR has played a significant role in molecular diagnostics for genetic diseases, pathogens, oncogenes and forensic identification. In the past three decades, PCR has evolved from end-point PCR, through real-time PCR, to its current version, which is the absolute quantitive digital PCR (dPCR). In this review, we first discuss the principles of all key steps of dPCR, i.e., sample dispersion, amplification, and quantification, covering commercialized apparatuses and other devices still under lab development. We highlight the advantages and disadvantages of different technologies based on these steps, and discuss the emerging biomedical applications of dPCR. Finally, we provide a glimpse of the existing challenges and future perspectives for dPCR.

  3. STITCHER: A web resource for high-throughput design of primers for overlapping PCR applications.

    PubMed

    O'Halloran, Damien M

    2015-06-01

    Overlapping PCR is routinely used in a wide number of molecular applications. These include stitching PCR fragments together, generating fluorescent transcriptional and translational fusions, inserting mutations, making deletions, and PCR cloning. Overlapping PCR is also used for genotyping by traditional PCR techniques and in detection experiments using techniques such as loop-mediated isothermal amplification (LAMP). STITCHER is a web tool providing a central resource for researchers conducting all types of overlapping PCR experiments with an intuitive interface for automated primer design that's fast, easy to use, and freely available online (http://ohalloranlab.net/STITCHER.html). STITCHER can handle both single sequence and multi-sequence input, and specific features facilitate numerous other PCR applications, including assembly PCR, adapter PCR, and primer walking. Field PCR, and in particular, LAMP, offers promise as an on site tool for pathogen detection in underdeveloped areas, and STITCHER includes off-target detection features for pathogens commonly targeted using LAMP technology.

  4. Use of Multiplex PCR and PCR Restriction Enzyme Analysis for Detection and Exploration of the Variability in the Free-Living Amoeba Naegleria in the Environment

    PubMed Central

    Pélandakis, Michel; Pernin, Pierre

    2002-01-01

    A multiplex PCR was developed to simultaneously detect Naegleria fowleri and other Naegleria species in the environment. Multiplex PCR was also capable of identifying N. fowleri isolates with internal transcribed spacers of different sizes. In addition, restriction fragment length polymorphism analysis of the PCR product distinguished the main thermophilic Naegleria species from the sampling sites. PMID:11916734

  5. Mensaje para alumnos y padres

    NASA Image and Video Library

    El astronauta de la NASA José Hernández alienta a los estudiantes a que sigan sus sueños. Hernández también habla acerca del papel que juegan los padres para ayudar a que sus hijos hagan realidad s...

  6. Discrimination between Mycoplasma mycoides subsp. capri and Mycoplasma capricolum subsp. capricolum using PCR-RFLP and PCR.

    PubMed

    Cillara, Grazia; Manca, Maria Giovanna; Longheu, Carla; Tola, Sebastiana

    2015-09-01

    In this study, the dihydrolipoyl dehydrogenase (lpdA) gene was used to distinguish Mycoplasma mycoides subsp. capri (Mmc) from Mycoplasma capricolum subsp. capricolum (Mcc), two of four Mycoplasma species that cause contagious agalactia in sheep and goats. After alignment of nucleotide sequences of both species, specific primer sets were designed from unchanging and variable gene segments. The first primer set LPD-C1-F/LPD-C1-R was used to amplify a 911 bp fragment that was subsequently co-digested with FastDigest PstI, SspI, EcoRI and ClaI enzymes. The PCR-RFLP profiles differentiated the two mycoplasma species. The second primer set was used to distinguish Mmc from Mcc by single tube PCR. Both methods were further applied to identify 54 isolates collected from dairy herds from different provinces in Sardinia. The results of this study showed that PCR-RFLP and PCR could be used in routine diagnosis for rapid and specific simultaneous discrimination of Mmc and Mcc.

  7. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR

    USDA-ARS?s Scientific Manuscript database

    Droplet digital Polymerase chain reaction (ddPCR) is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. It is a promising DNA quantification technology for medical diagnostics but there are only a few reports of its use for plant pat...

  8. Repetitive extragenic palindromic PCR (REP-PCR) as a method used for bulking process detection in activated sludge.

    PubMed

    Sołtysik, Dagna; Bednarek, Ilona; Loch, Tomasz; Gałka, Sabina; Sypniewski, Daniel

    2011-05-01

    Bulking of activated sludge is a world-widely prevalent problem and can lead to loss of bio-oxidation, further deterioration of effluent quality, and even to a complete breakdown of the entire treatment process. Most common reasons of bulking are bacterial community changes, especially excessive growth of filamentous bacteria or excess of biopolymers on surface of non-filamentous microbes. Because of complex nature of the bulking phenomenon, the successful bulking control strategy finding is still a very important need awaiting new options and advices. The repetitive extragenic palindromic PCR (REP-PCR) fingerprinting method has been applied to distinguish bacterial community in non-bulking and bulking activated sludge. The characteristic REP-PCR fingerprinting patterns, using the Ward's clustering method, have been analyzed to determine homology/similarity relation between particular non-bulking and bulking sludge sampling. The received clustering results were in high concordance with activated sludge typing done based on physicochemical sludge analysis. The choice and application of molecular typing method in sludge analysis will depend upon the needs, skill level, and resources of the laboratory. The proposed REP-PCR method and statistical analysis of fingerprinting patterns seems to be simple, rapid, and effective methods to show differences between population in non-bulking and bulking activated sludge. It is easy to implement, and it may be useful for routinely activated sludge monitoring as well as may be helpful in early detection of bulking process.

  9. [Primers design and optimization of PCR and nested-PCR assays for the specific detection of Tritrichomonas foetus].

    PubMed

    Fernandes, Paula Rogério; Da Silva, Andréa Caetano; Gambarini, Maria Lúcia; Linhares, Guido Fontgalland C

    2008-01-01

    Tritrichomonas foetus is a pathogenic protozoan that causes a venereal disease in cattle known as bovine genital tricomonosis. In spite of the efficacy to recognize the target genomic DNA, the protocols so far developed for the diagnosis of this organism by PCR promote some inespecific amplifications or they are unable to discriminate T. foetus against other species within the genus. The objective of this study was to assess and optimize PCR and nested-PCR assays for the specific diagnosis of T. foetus, using novel primers selected from the alignment of sequences of the genes 18S rRNA, 5.8S rRNA, 28S rRNA and of the internal transcribed spacers of the rDNA (ITS1 and ITS2). A pair of primers was constructed for the genus-specific amplification of a 648 bp fragment and two others to amplify T. foetus species-specific fragments of 343 and 429 bp. No cross amplification was observed against Bos taurus genomic DNA neither against the DNA of usual bovine genital pathogens. Both, single and nested-PCR assays, presented analytical sensitivity to detect at least two T. foetus organisms.

  10. Nested-PCR and TaqMan real-time quantitative PCR assays for human adenoviruses in environmental waters.

    PubMed

    Huang, Wen-Chien; Chou, Yi-Pen; Kao, Po-Min; Hsu, Tsui-Kang; Su, Hung-Chang; Ho, Ying-Ning; Yang, Yi-Chun; Hsu, Bing-Mu

    2016-01-01

    Human adenovirus (HAdV) infections can occur throughout the year. Cases of HAdV-associated respiratory disease have been more common in the late winter, spring, and early summer. In this study, to provide viral pollution data for further epidemiological studies and governmental actions, the presence of HAdV in the aquatic environment was quantitatively surveyed in the summer. This study was conducted to compare the efficiencies of nested-PCR (polymerase chain reaction) and qPCR (quantitative PCR) for detecting HAdV in environmental waters. A total of 73 water samples were collected from Puzi River in Taiwan and subjected to virus concentration methods. In the results, qPCR had much better efficiency for specifying the pathogen in river sample. HAdV41 was detected most frequently in the river water sample (10.9%). The estimated HAdV concentrations ranged between 6.75 × 10(2) and 2.04 × 10(9) genome copies/L. Significant difference was also found in heterotrophic plate counts, conductivity, water temperature, and water turbidity between presence/absence of HAdV. HAdV in the Puzi River may pose a significant health risk.

  11. Application of multiplex PCR, pulsed-field gel electrophoresis (PFGE), and BOX-PCR for molecular analysis of enterococci

    USDA-ARS?s Scientific Manuscript database

    The objective of the study was to use band-based molecular methods including BOX-PCR (Polymerase Chain Reaction) and Pulsed-Field Gel Electrophoresis (PFGE) to determine if genetically related enterococci were found among different stores, food types, or years. Enterococci were also characterized f...

  12. Quantitative real-time PCR (qPCR) for Eimeria tenella replication — Implications for experimental refinement and animal welfare

    PubMed Central

    Nolan, Matthew J.; Tomley, Fiona M.; Kaiser, Pete; Blake, Damer P.

    2015-01-01

    The Eimeria species are highly pathogenic parasites of chickens. Research aimed at reducing their impact is hindered by a lack of non-subjective, quantitative, tools to measure parasite replication in the host. The time-consuming, and often time-sensitive, nature of existing approaches precludes their use in large-scale genetic, epidemiological, and evolutionary analyses. We have used quantitative real-time PCR (qPCR) to accurately quantify Eimeria tenella in chicken tissue and shown this to be more efficient and sensitive than traditional methodologies. We tested four chicken-specific reference qPCR assays and found beta-actin (actb) to be optimal for sample normalisation. In an experimental setting, chickens were inoculated with 500, 1500, or 4500 E. tenella oocysts and parasite replication and the impact of infection measured by i) qPCR analysis of DNA extracted from caecal tissues collected at five and eight days post-infection (dpi), ii) faecal oocyst counts (FOCs) on samples taken from six to eight dpi, and iii) lesion scoring on caeca collected post-mortem at five and eight dpi. Quantitative real-time PCR test results indicated a significant dose-dependent increase in parasite numbers among study groups for samples collected five dpi (i.e., prior to gametogony) (R2 = 0.994) (p < 0.002) but not in those from day eight (after most oocyst shedding) (R2 = 0.006) (p > 0.379). A strong dose-dependent increase in parasite replication and severity of infection was also revealed by FOC (R2 = 0.997) and lesion scoring. Importantly, qPCR offers substantial improvements for animal welfare via improved statistical power and reduced group sizes in experimental studies. The described qPCR method overcomes subjective limitations of coproscopic quantification, allows reproducible medium- to high-throughput examination of tissues, faeces, and oocysts, and is a valuable tool for determining the impact of Eimeria infections in both experimental and field settings

  13. Quantitative real-time PCR (qPCR) for Eimeria tenella replication--Implications for experimental refinement and animal welfare.

    PubMed

    Nolan, Matthew J; Tomley, Fiona M; Kaiser, Pete; Blake, Damer P

    2015-10-01

    The Eimeria species are highly pathogenic parasites of chickens. Research aimed at reducing their impact is hindered by a lack of non-subjective, quantitative, tools to measure parasite replication in the host. The time-consuming, and often time-sensitive, nature of existing approaches precludes their use in large-scale genetic, epidemiological, and evolutionary analyses. We have used quantitative real-time PCR (qPCR) to accurately quantify Eimeria tenella in chicken tissue and shown this to be more efficient and sensitive than traditional methodologies. We tested four chicken-specific reference qPCR assays and found beta-actin (actb) to be optimal for sample normalisation. In an experimental setting, chickens were inoculated with 500, 1500, or 4500 E. tenella oocysts and parasite replication and the impact of infection measured by i) qPCR analysis of DNA extracted from caecal tissues collected at five and eight days post-infection (dpi), ii) faecal oocyst counts (FOCs) on samples taken from six to eight dpi, and iii) lesion scoring on caeca collected post-mortem at five and eight dpi. Quantitative real-time PCR test results indicated a significant dose-dependent increase in parasite numbers among study groups for samples collected five dpi (i.e., prior to gametogony) (R(2)=0.994) (p<0.002) but not in those from day eight (after most oocyst shedding) (R(2)=0.006) (p>0.379). A strong dose-dependent increase in parasite replication and severity of infection was also revealed by FOC (R(2)=0.997) and lesion scoring. Importantly, qPCR offers substantial improvements for animal welfare via improved statistical power and reduced group sizes in experimental studies. The described qPCR method overcomes subjective limitations of coproscopic quantification, allows reproducible medium- to high-throughput examination of tissues, faeces, and oocysts, and is a valuable tool for determining the impact of Eimeria infections in both experimental and field settings.

  14. Computational tradeoffs in multiplex PCR assay design for SNP genotyping

    PubMed Central

    Rachlin, John; Ding, Chunming; Cantor, Charles; Kasif, Simon

    2005-01-01

    Background Multiplex PCR is a key technology for detecting infectious microorganisms, whole-genome sequencing, forensic analysis, and for enabling flexible yet low-cost genotyping. However, the design of a multiplex PCR assays requires the consideration of multiple competing objectives and physical constraints, and extensive computational analysis must be performed in order to identify the possible formation of primer-dimers that can negatively impact product yield. Results This paper examines the computational design limits of multiplex PCR in the context of SNP genotyping and examines tradeoffs associated with several key design factors including multiplexing level (the number of primer pairs per tube), coverage (the % of SNP whose associated primers are actually assigned to one of several available tube), and tube-size uniformity. We also examine how design performance depends on the total number of available SNPs from which to choose, and primer stringency criterial. We show that finding high-multiplexing/high-coverage designs is subject to a computational phase transition, becoming dramatically more difficult when the probability of primer pair interaction exceeds a critical threshold. The precise location of this critical transition point depends on the number of available SNPs and the level of multiplexing required. We also demonstrate how coverage performance is impacted by the number of available snps, primer selection criteria, and target multiplexing levels. Conclusion The presence of a phase transition suggests limits to scaling Multiplex PCR performance for high-throughput genomics applications. Achieving broad SNP coverage rapidly transitions from being very easy to very hard as the target multiplexing level (# of primer pairs per tube) increases. The onset of a phase transition can be "delayed" by having a larger pool of SNPs, or loosening primer selection constraints so as to increase the number of candidate primer pairs per SNP, though the latter

  15. PCR detection and characterization of type-2 porcine circovirus.

    PubMed Central

    Hamel, A L; Lin, L L; Sachvie, C; Grudeski, E; Nayar, G P

    2000-01-01

    A polymerase chain reaction (PCR) assay was developed for detecting porcine circovirus (PCV). The assay readily detected type-2 PCV (PCV-2) and type-1 PCV (PCV-1). The PCR primers were designed based on DNA sequences conserved in all reported PCV genomes. Type 1 PCV and type 2 PCV both produced 438 bp amplification products, which were easily identified and differentiated from one another by restriction fragment length polymorphism (RFLP) analysis. Porcine circovirus was detected in 55% (931/1693) of randomly tested pigs with various clinical signs and lesions, most of which were difficult to differentiate from those associated with porcine reproductive and respiratory syndrome (PRRS). The PCR products from all positive clinical samples were identified by RFLP to be only PCV-2; DNA tested by PCR was extracted directly from one or more of lung, mesenteric or mediastinal lymph nodes, and tonsil. Type 2 PCV was also detected in 6% (2/34) of DNA extracted directly from semen of randomly chosen healthy boars. Positive PCR reactions from 554 diseased pigs were characterized by RFLP and categorized into 5 different profiles (A-E), of which 82.8% were PCV-2A (456/554), 3.0% were PCV-2B (17/554), 9.9% were PCV-2C (55/554), 1.1% were PCV-2D (6/554), and 3.2% were PCV-2E (18/554). The complete genomic nucleotide sequences of PCV-2A, B, C, D, and E were determined and found to have at least 95% homology compared with one another and with all other PCV-2 found in the GenBank database. All PCV-2 had less than 76% homology with PCV-1. This PCR assay will hopefully be useful to veterinary diagnostic laboratories for routine testing and surveillance of infection with PCV-2. The RFLP profiling system might be useful for preliminary characterization and identification of PCV isolates and might also benefit studies on the molecular epidemiology of PCV. Images Figure 1. PMID:10680656

  16. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.

  17. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  18. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples.

    PubMed

    Blaya, Josefa; Lloret, Eva; Santísima-Trinidad, Ana B; Ros, Margarita; Pascual, Jose A

    2016-04-01

    Currently, real-time polymerase chain reaction (qPCR) is the technique most often used to quantify pathogen presence. Digital PCR (dPCR) is a new technique with the potential to have a substantial impact on plant pathology research owing to its reproducibility, sensitivity and low susceptibility to inhibitors. In this study, we evaluated the feasibility of using dPCR and qPCR to quantify Phytophthora nicotianae in several background matrices, including host tissues (stems and roots) and soil samples. In spite of the low dynamic range of dPCR (3 logs compared with 7 logs for qPCR), this technique proved to have very high precision applicable at very low copy numbers. The dPCR was able to detect accurately the pathogen in all type of samples in a broad concentration range. Moreover, dPCR seems to be less susceptible to inhibitors than qPCR in plant samples. Linear regression analysis showed a high correlation between the results obtained with the two techniques in soil, stem and root samples, with R(2) = 0.873, 0.999 and 0.995 respectively. These results suggest that dPCR is a promising alternative for quantifying soil-borne pathogens in environmental samples, even in early stages of the disease. © 2015 Society of Chemical Industry.

  19. [Study of a case with homozygous 35C>T and 658C>T mutations of FUT1 gene leading to a para-Bombay phenotype].

    PubMed

    Lin, Fengqiu; Sun, Changping; Wang, Hui; Zhang, Xu; Li, Jianping

    2015-12-01

    To explore the molecular mechanism for a case with para-Bombay phenotype caused by α-1,2-fucosyltransferase (FUT1) gene mutations. Blood phenotype of the propositus was determined by standard serological testing. Polymerase chain reaction-sequence specific primer (PCR-SSP) and direct sequencing of PCR product were used to analyze its ABO genotype. The PCR product of FUT1 gene was sequenced and analyzed. The phenotype of the propositus was initially detected as para-Bombay A type. Direct sequencing of ABO gene showed that the genotype of the proband was A101/O01 (261G/del), which was consistent with the result of PCR-SSP. Two homo-mutations, 35C>T and 658C>T, were detected in the FUT1 gene by sequencing, and the genotype was determined as h(35T+658T)/h(35T+658T). h(35T+658T)/h(35T+658T) is responsible for the para-Bombay phenotype of the propositus. The genotype is rare even in para-Bombay populations.

  20. Targeted resequencing and variant validation using pxlence PCR assays.

    PubMed

    Coppieters, Frauke; Verniers, Kimberly; De Leeneer, Kim; Vandesompele, Jo; Lefever, Steve

    2016-01-01

    The advent of next-generation sequencing technologies had a profound impact on molecular diagnostics. PCR is a popular method for target enrichment of disease gene panels. Using our proprietary primer-design pipeline, primerXL, we have created almost one million assays covering over 98% of the human exome. Here we describe the assay specification and both in silico and wet-lab validation of a selected set of 2294 assays using both next-generation sequencing and Sanger sequencing. Using a universal PCR protocol without optimization, these assays result in high coverage uniformity and limited non-specific coverage. In addition, data indicates a positive correlation between the predictive in silico specificity score and the amount of assay non-specific coverage.

  1. Targeted resequencing and variant validation using pxlence PCR assays

    PubMed Central

    Coppieters, Frauke; Verniers, Kimberly; De Leeneer, Kim; Vandesompele, Jo; Lefever, Steve

    2015-01-01

    The advent of next-generation sequencing technologies had a profound impact on molecular diagnostics. PCR is a popular method for target enrichment of disease gene panels. Using our proprietary primer-design pipeline, primerXL, we have created almost one million assays covering over 98% of the human exome. Here we describe the assay specification and both in silico and wet-lab validation of a selected set of 2294 assays using both next-generation sequencing and Sanger sequencing. Using a universal PCR protocol without optimization, these assays result in high coverage uniformity and limited non-specific coverage. In addition, data indicates a positive correlation between the predictive in silico specificity score and the amount of assay non-specific coverage. PMID:27077044

  2. DPPrimer – A Degenerate PCR Primer Design Tool

    PubMed Central

    Gahoi, Shachi; Arya, L; Anil, Rai; Marla, ss

    2013-01-01

    Designed degenerate primers unlike conventional primers are superior in matching and amplification of large number of genes, from related gene families. DPPrimer tool was designed to predict primers for PCR amplification of homologous gene from related or diverse plant species. The key features of this tool include platform independence and user friendliness in primer design. Embedded features such as search for functional domains, similarity score selection and phylogebetic tree further enhance the user friendliness of DPPrimer tool. Performance of DPPrimer tool was evaluated by successful PCR amplification of ADP-glucose phosphorylase genes from wheat, barley and rice. Availability DPPrimer is freely accessible at http://202.141.12.147/DGEN_tool/index.html PMID:24307773

  3. Chemical surface management for micro PCR in silicon chip thermocyclers

    NASA Astrophysics Data System (ADS)

    Felbel, Jana; Bieber, Ivonne; Koehler, Johann M.

    2002-11-01

    Silicon, silicon dioxide, glass and other key materials of micro system technology show an inhibiting effect on PCR. This negative influence becomes seriously, if devices are miniaturized, particularly in case of flow-through devices due to their high surface to volume ratio. In contrast, alkyl-substituted surfaces do not inhibit the reaction. Although the silanization improves the compatibility, the suppression of inhibition by wall surface treatment was not stable over longer time intervals. Therefore, the stability of chemical surface modifications was studied in dependence of silanization, material, pH, temperature and buffer composition. The efficiency of surface covering by molecular substitution was characterized by wetting experiments as well as by PCR test runs. The results show that the surface treatment can be optimized by the choice of silanization agents and the concentration of surface active additives.

  4. Measuring Digital PCR Quality: Performance Parameters and Their Optimization

    PubMed Central

    Lievens, A.; Jacchia, S.; Kagkli, D.; Savini, C.; Querci, M.

    2016-01-01

    Digital PCR is rapidly being adopted in the field of DNA-based food analysis. The direct, absolute quantification it offers makes it an attractive technology for routine analysis of food and feed samples for their composition, possible GMO content, and compliance with labelling requirements. However, assessing the performance of dPCR assays is not yet well established. This article introduces three straightforward parameters based on statistical principles that allow users to evaluate if their assays are robust. In addition, we present post-run evaluation criteria to check if quantification was accurate. Finally, we evaluate the usefulness of Poisson confidence intervals and present an alternative strategy to better capture the variability in the analytical chain. PMID:27149415

  5. SNP genotyping using single-tube fluorescent bidirectional PCR.

    PubMed

    Waterfall, Christy M; Cobb, Benjamin D

    2002-07-01

    SNP genotyping is a well-populatedfield with a large number of assay formats offering accurate allelic discrimination. However, there remains a discord between the ultimate goal of rapid, inexpensive assays that do not require complex design considerations and involved optimization strategies. We describe the first integration of bidirectional allele-specific amplification, SYBR Green I, and rapid-cycle PCR to provide a homogeneous SNP-typing assay. Wild-type, mutant, and heterozygous alleles were easily discriminated in a single tube using melt curve profiling of PCR products alone. We demonstrate the effectiveness and reliability of this assay with a blinded trial using clinical samples from individuals with sickle cell anemia, sickle cell trait, or unaffected individuals. The tests were completed in less than 30 min without expensive fluorogenic probes, prohibiting design rules, or lengthy downstream processing for product analysis.

  6. Development of a PCR for identification of Bordetella hinzii.

    PubMed

    Register, Karen B

    2013-06-01

    Bordetella hinzii infects primarily poultry and immunocompromised humans. It is closely related to the etiologic agent of turkey coryza, Bordetella avium. Distinguishing between B. avium and B. hinzii is difficult, and there is no method for identification of B. hinzii suitable for use by diagnostic laboratories. This report details the development of a B. hinzii-specific PCR targeting the ompA gene. Assay sensitivity is 100% based on analysis of 48 B. hinzii isolates from diverse geographic locations representing all known ribotypes. Evaluation of 71 isolates of B. avium and 20 other bacterial isolates from poultry, comprising gram-negative and gram-positive commensals and pathogens of nine genera, demonstrated an assay specificity of 100%. The ompA PCR is a rapid, reliable, and accurate method for identification of B. hinzii and provides a valuable new tool for veterinary diagnostic laboratories investigating poultry respiratory disease outbreaks.

  7. Thermosiphon-based PCR reactor: experiment and modeling.

    PubMed

    Chen, Zongyuan; Qian, Shizhi; Abrams, William R; Malamud, Daniel; Bau, Haim H

    2004-07-01

    A self-actuated, flow-cycling polymerase chain reaction (PCR) reactor that takes advantage of buoyancy forces to continuously circulate reagents in a closed loop through various thermal zones has been constructed, tested, and modeled. The heating required for the PCR is advantageously used to induce fluid motion without the need for a pump. Flow velocities on the order of millimeters per second are readily attainable. In our preliminary prototype, we measured a cross-sectionally averaged velocity of 2.5 mm/s and a cycle time of 104 s. The flow velocity is nearly independent of the loop's length, making the device readily scalable. Successful amplifications of 700- and 305-bp fragments of Bacillus cereus genomic DNA have been demonstrated. Since the device does not require any moving parts, it is particularly suitable for miniature systems.

  8. MultiPLX: automatic grouping and evaluation of PCR primers.

    PubMed

    Kaplinski, Lauris; Remm, Maido

    2007-01-01

    In this chapter, we describe MultiPLX-a tool for automatic grouping of PCR primers for multiplexed PCR. Both generic working principle and step-by-step practical procedures with examples are presented. MultiPLX performs grouping by calculating many important interaction levels between the different primer pairs and then distributes primer pairs to groups, so that the strength of unwanted interactions is kept below user-defined compatibility level. In addition, it can be used to select optimal primer pairs for multiplexing from list of candidates. MultiPLX can be downloaded from http://bioinfo.ut.ee/download/. Graphical Web-based interface to most functions of MultiPLX is available at http://bioinfo.ut.ee/multiplx/.

  9. MultiPLX: automatic grouping and evaluation of PCR primers.

    PubMed

    Kaplinski, Lauris; Remm, Maido

    2015-01-01

    In this chapter we describe MultiPLX-a tool for automatic grouping of PCR primers for multiplexed PCR. Both generic working principle and step-by-step practical procedures with examples are presented. MultiPLX performs grouping by calculating many important interaction levels between the different primer pairs and then distributes primer pairs to groups so that the strength of unwanted interactions is kept below user-defined compatibility level. In addition it can be used to select optimal primer pairs for multiplexing from list of candidates. MultiPLX can be downloaded from http://bioinfo.ut.ee/?page_id=167. Graphical web-based interface to most functions of MultiPLX is available at http://bioinfo.ut.ee/multiplx/.

  10. Culture independent PCR: an alternative enzyme discovery strategy.

    PubMed

    Jacobsen, Jonas; Lydolph, Magnus; Lange, Lene

    2005-01-01

    Degenerate primers were designed for use in a culture-independent PCR screening of DNA from composite fungal communities, inhabiting residues of corn stovers and leaves. According to similarity searches and alignments amplified clone sequences affiliated with glycosyl hydrolase family 7 and glycosyl hydrolase family 45 though significant sequence divergence was observed. Glycosyl hydrolases from families 7 and 45 play a crucial role in biomass conversion to fuel ethanol. Research in this renewable energy source has two objectives: (i) To contribute to development of a renewable alternative to world's limited crude fossil oil reserves and (ii) to reduce air pollution. Amplification with 18S rDNA-specific primers revealed species within the ascomycetous orders Sordariales and Hypocreales as well as basidiomycetous order Agaricales to be present in these communities. Our study documents the value of culture-independent PCR in microbial diversity studies and could add to development of a new enzyme screening technology.

  11. False-Positive Viability PCR Results: An Association with Microtubes.

    PubMed

    Agustí, Gemma; Fittipaldi, Mariana; Codony, Francesc

    2017-03-01

    Currently, one of the most challenged points to expand the use of viability PCR technique is achieving the complete exclusion of dead cells amplification signals, thus avoiding the overestimation of live cells population. Considering that, and based on the hypothesis that DNA may be retained by microtube walls, the impact of the microtube was addressed on signals from live and heat-killed cells. A double-dye reagent, PEMAX™, which comprises a mix of photo-reactive azide forms of phenanthridium, was used in this work. We found that if both the incubation and the photoactivation steps are carried out in different microtubes, the dead cell signal is greatly reduced than when those steps are done in the same tube. Therefore, the strategy depicted in this study presents a simple and efficient step in minimizing false-positive signal when employing viability PCR.

  12. Zip nucleic acids are potent hydrolysis probes for quantitative PCR

    PubMed Central

    Paris, Clément; Moreau, Valérie; Deglane, Gaëlle; Voirin, Emilie; Erbacher, Patrick; Lenne-Samuel, Nathalie

    2010-01-01

    Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3′ end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes. PMID:20071749

  13. An improved PCR method for gender identification of eagles.

    PubMed

    Chang, Hsueh-Wei; Chou, Ta-Ching; Gu, De-Leung; Cheng, Chun-An; Chang, Chia-Che; Yao, Cheng-Te; Chuang, Li-Yeh; Wen, Cheng-Hao; Chou, Yii-Cheng; Tan, Kock-Yee; Cheng, Chien-Chung

    2008-06-01

    Eagles are sexually monomorphic and therefore it is difficult to determine their gender, which is a crucial need for management purposes. In this study, we have developed an improved gender identification method by exploiting length differences between the Chromo-Helicase-DNA binding protein (CHD)-Z and CHD-W genes of Spilornis cheela hoya. By comparing DNA sequences for CHD-W and CHD-Z from 10 species of Falconiformes eagles we designed universal gender identification PCR primers that exploit differences in product size. Standard agarose gels were shown to easily distinguish between the 148-bp CHD-ZW and the 258-bp CHD-W PCR products. When used with 28 samples of S. cheela hoya, our improved universal primers provided a fast and precise gender identification assay.

  14. Actuation method and apparatus, micropump, and PCR enhancement method

    DOEpatents

    Ullakko, Kari; Mullner, Peter; Hampikian, Greg; Smith, Aaron

    2015-07-28

    An actuation apparatus includes at least one magnetic shape memory (MSM) element containing a material configured to expand and/or contract in response to exposure to a magnetic field. Among other things, the MSM element may be configured to pump fluid through a micropump by expanding and/or contracting in response to the magnetic field. The magnetic field may rotate about an axis of rotation and exhibit a distribution having a component substantially perpendicular to the axis of rotation. Further, the magnetic field distribution may include at least two components substantially orthogonal to one another lying in one or more planes perpendicular to the axis of rotation. The at least one MSM element may contain nickel, manganese, and gallium. A polymerase chain reaction (PCR) may be enhanced by contacting a PCR reagent and DNA material with the MSM element.

  15. A study on PCR for detecting infection with M. leprae.

    PubMed

    Qinxue, W; Xinyu, L; Wei, H; Tao, L; Yaoping, Y; Jinping, Z; Xiuling, C; Ganyun, Y

    1999-12-01

    So far, it has not been established a satisfactory method for early diagnosis and studying on epidemiology for leprosy, we want to develop a molecular biological method for solving this point. Based on the M. leprae gene coding groEL, 65 kD and 16S rRNA, three polymerase chain reactions were developed by using Plikaytis', Woods' and Pattyn's procedures. It was optimized that the experimental parameters for each PCR, and a comparative study on practivity among three PCRs was also conducted for practical purpose. For detecting infection with M. leprae, all of PCRs established by us were highly sensitive and specific, but for practical purpose, the Woods' PCR optimized by us ought to be chosen firstly.

  16. DNA probe and PCR-specific reaction for Lactobacillus plantarum.

    PubMed

    Quere, F; Deschamps, A; Urdaci, M C

    1997-06-01

    A 300 bp DNA fragment of Lactobacillus plantarum isolated by randomly amplified polymorphic DNA (RAPD) analysis was cloned and sequenced. This fragment was tested using a dot-blot DNA hybridization to technique for its ability to identify Lact. plantarum strains. This probe hybridized with all Lact. plantarum strains tested and with some strains of Lact. pentosus, albeit more weakly. Two internal primers of this probe were selected (LbP11 and LbP12) and polymerase chain reaction (PCR) was carried out. All Lact. plantarum strains tested amplified a 250 bp fragment contrary to the other LAB species tested. This specific PCR for Lact. plantarum was also performed from colonies grown on MRS medium with similar results. These methods enabled the rapid and specific detection and identification of Lact. plantarum.

  17. Tuberculosis diagnosed by PCR analysis of synovial fluid.

    PubMed

    Fujimoto, Nobukazu; Gemba, Kenichi; Yao, Atsushi; Ozaki, Shinji; Ono, Katsuichiro; Wada, Sae; Fujii, Yasuhiro; Namba, Yoshifumi; Kishimoto, Takumi

    2010-02-01

    Tuberculosis is a leading cause of mortality due to an infectious agent worldwide. It often affects multiple organs by hematogenous spread of Mycobacterium tuberculosis, but knee-joint involvement is extremely rare, comprising approximately 0.1% of all forms of tuberculosis. We present a case of tuberculous pleuritis with knee-joint involvement. Cytological and biochemical analysis of the pleural fluid and a biopsy specimen of the cervical lymph node indicated tuberculosis, but a definitive diagnosis was not given. A confirmed diagnosis was finally obtained through PCR analysis of the synovial fluid. Tuberculosis should be included in the differential diagnosis in patients with persistent pain and swelling of the knee. PCR analysis of the synovial fluid is a quick and useful method for the diagnosis.

  18. Specific detection by PCR of Streptococcus agalactiae in milk.

    PubMed

    Martinez, G; Harel, J; Gottschalk, M

    2001-01-01

    The aim of this study was to develop a simple and specific method for direct detection of Streptococcus agalactiae from cow's milk. The method was based on polymerase chain reaction (PCR) using species-specific and universal primers derived from the 16S rRNA gene. The amplification product was verified by restriction endonuclease digest and sequencing. Specific identification was proven on a collection of 147 S. agalactiae isolates of bovine and human origin. In addition, 17 strains belonging to different bacterial species that potentially can be found in milk samples also tested negative. The PCR developed was used for direct detection of S. agalactiae in milk, using for the first time with gram-positive bacteria the nucleic acid-binding properties of diatomaceous earth. The test, which has high specificity, high sensitivity (100 cfu/mL), and can be carried out in less than 24 h, represents an innovative diagnostic tool for the detection of S. agalactiae in milk.

  19. Comparative analysis between RQ-PCR and digital droplet PCR of BCL2/IGH gene rearrangement in the peripheral blood and bone marrow of early stage follicular lymphoma.

    PubMed

    Cavalli, Marzia; De Novi, Lucia Anna; Della Starza, Irene; Cappelli, Luca Vincenzo; Nunes, Vittorio; Pulsoni, Alessandro; Del Giudice, Ilaria; Guarini, Anna; Foà, Robin

    2017-05-01

    BCL2/IGH rearrangements were analysed by polymerase chain reaction (PCR) at diagnosis in paired peripheral blood (PB) and bone marrow (BM) samples from 67 patients with stage I/II follicular lymphoma (FL). Real time quantitative PCR (RQ-PCR) and digital droplet PCR (ddPCR) were performed in cases with a major breakpoint region (MBR+) at diagnosis and after localized radiotherapy and rituximab administration in order to investigate the applicability of ddPCR. The overall ddPCR/RQ-PCR concordance was 81·9% (113/138 samples) and 97·5% in the 40/138 with quantifiable disease (RQ-PCR≥10(-5) ). At baseline, ddPCR allowed the recovery of a MBR+ marker in 8/18 (44·4%) samples that resulted MBR-negative/minor cluster region-negative/minor BCL2-negative by qualitative PCR. Moreover, the tumour burden at diagnosis significantly predicted progression-free survival (PSF) only when quantified by ddPCR. Paired PB and BM samples analysis demonstrated a high concordance in the detection of BCL2/IGH+ cells by qualitative and quantitative methods; in particular, 40/62 samples were positive by ddPCR (25 PB+/BM+; 9 PB+/BM-; 6 PB-/BM+), with 34/40 (85%) identified by the study of PB only. In conclusion, in localized FL, ddPCR is a promising tool for monitoring minimal residual disease (MRD) that is at least comparable to RQ-PCR and potentially more accurate. PB is a suitable source for serial BCL2/IGH MRD assessments, regardless of the methodology utilized. © 2017 John Wiley & Sons Ltd.

  20. Extraction of PCR-amplifiable genomic DNA from Bacillus anthracisspores

    SciTech Connect

    Torok, Tamas

    2003-05-19

    Bacterial endospore disruption and nucleic acid extractionresulting in DNA of PCR-amplifiable quality and quantity are not trivial.Responding to the needs of the Hazardous Materials Response Unit (HMRU),Laboratory Division, Federal Bureau of Investigation, protocols weredeveloped to close these gaps. Effectiveness and reproducibility of thetechniques were validated with laboratory grown pure spores of Bacillusanthracis and its close phylogenetic neighbors, and with spiked soils anddamaged samples.

  1. Underwater Application of Quantitative PCR on an Ocean Mooring

    PubMed Central

    Preston, Christina M.; Harris, Adeline; Ryan, John P.; Roman, Brent; Marin, Roman; Jensen, Scott; Everlove, Cheri; Birch, James; Dzenitis, John M.; Pargett, Douglas; Adachi, Masao; Turk, Kendra; Zehr, Jonathon P.; Scholin, Christopher A.

    2011-01-01

    The Environmental Sample Processor (ESP) is a device that allows for the underwater, autonomous application of DNA and protein probe array technologies as a means to remotely identify and quantify, in situ, marine microorganisms and substances they produce. Here, we added functionality to the ESP through the development and incorporation of a module capable of solid-phase nucleic acid extraction and quantitative PCR (qPCR). Samples collected by the instrument were homogenized in a chaotropic buffer compatible with direct detection of ribosomal RNA (rRNA) and nucleic acid purification. From a single sample, both an rRNA community profile and select gene abundances were ascertained. To illustrate this functionality, we focused on bacterioplankton commonly found along the central coast of California and that are known to vary in accordance with different oceanic conditions. DNA probe arrays targeting rRNA revealed the presence of 16S rRNA indicative of marine crenarchaea, SAR11 and marine cyanobacteria; in parallel, qPCR was used to detect 16S rRNA genes from the former two groups and the large subunit RuBisCo gene (rbcL) from Synecchococcus. The PCR-enabled ESP was deployed on a coastal mooring in Monterey Bay for 28 days during the spring-summer upwelling season. The distributions of the targeted bacterioplankon groups were as expected, with the exception of an increase in abundance of marine crenarchaea in anomalous nitrate-rich, low-salinity waters. The unexpected co-occurrence demonstrated the utility of the ESP in detecting novel events relative to previously described distributions of particular bacterioplankton groups. The ESP can easily be configured to detect and enumerate genes and gene products from a wide range of organisms. This study demonstrated for the first time that gene abundances could be assessed autonomously, underwater in near real-time and referenced against prevailing chemical, physical and bulk biological conditions. PMID:21829630

  2. PCR-based detection in a micro-fabricated platform.

    PubMed

    Bhattacharya, Shantanu; Salamat, Shuaib; Morisette, Dallas; Banada, Padmapriya; Akin, Demir; Liu, Yi-Shao; Bhunia, Arun K; Ladisch, Michael; Bashir, Rashid

    2008-07-01

    We present a novel, on-chip system for the electrokinetic capture of bacterial cells and their identification using the polymerase chain reaction (PCR). The system comprises a glass-silicon platform with a set of micro-channels, -chambers, and -electrodes. A platinum thin film resistor, placed in the proximity of the chambers, is used for temperature monitoring. The whole chip assembly is mounted on a Printed Circuit Board (PCB) and wire-bonded to it. The PCB has an embedded heater that is utilized for PCR thermal cycle and is controlled by a Lab-View program. Similar to our previous work, one set of electrodes on the chip inside the bigger chamber (0.6 microl volume) is used for diverting bacterial cells from a flowing stream into to a smaller chamber (0.4 nl volume). A second set of interdigitated electrodes (in smaller chamber) is used to actively trap and concentrate the bacterial cells using dielectrophoresis (DEP). In the presence of the DEP force, with the cells still entrapped in the micro-chamber, PCR mix is injected into the chamber. Subsequently, PCR amplification with SYBR Green detection is used for genetic identification of Listeria monocytogenes V7 cells. The increase in fluorescence is recorded with a photomultiplier tube module mounted over an epifluorescence microscope. This integrated micro-system is capable of genetic amplification and identification of as few as 60 cells of L. monocytogenes V7 in less than 90 min, in 600 nl volume collected from a sample of 10(4) cfu ml(-1). Specificity trials using various concentrations of L. monocytogenes V7, Listeria innocua F4248, and Escherichia coli O157:H7 were carried out successfully using two different primer sets specific for a regulatory gene of L. monocytogenes, prfA and 16S rRNA primer specific for the Listeria spp., and no cross-reactivity was observed.

  3. Operational Evaluation of the Rapid Viability PCR Method for ...

    EPA Pesticide Factsheets

    Journal Article This research work has a significant impact on the use of the RV-PCR method to analyze post-decontamination environmental samples during an anthrax event. The method has shown 98% agreement with the traditional culture based method. With such a success, this method, upon validation, will significantly increase the laboratory throughput/capacity to analyze a large number of anthrax event samples in a relatively short time.

  4. PCR-Based Detection of DNA Copy Number Variation.

    PubMed

    Mehrotra, Meenakshi

    2016-01-01

    Copy number variations are important polymorphisms that can influence gene expression within and close to the rearranged region, and results in phenotypic variation. Techniques that detect abnormalities in DNA copy number are therefore useful for studying the associations between DNA aberrations and disease phenotype and for locating critical genes. PCR-based detection of copy number of target gene using TaqMan copy number assay offers a reliable method to measure copy number variation in human genome.

  5. Evaluation of PCR Systems for Field Screening of Bacillus anthracis

    PubMed Central

    Ozanich, Richard M.; Colburn, Heather A.; Victry, Kristin D.; Bartholomew, Rachel A.; Arce, Jennifer S.; Heredia-Langner, Alejandro; Jarman, Kristin; Kreuzer, Helen W.

    2017-01-01

    There is little published data on the performance of hand-portable polymerase chain reaction (PCR) systems that can be used by first responders to determine if a suspicious powder contains a potential biothreat agent. We evaluated 5 commercially available hand-portable PCR instruments for detection of Bacillus anthracis. We used a cost-effective, statistically based test plan to evaluate systems at performance levels ranging from 0.85-0.95 lower confidence bound (LCB) of the probability of detection (POD) at confidence levels of 80% to 95%. We assessed specificity using purified genomic DNA from 13 B. anthracis strains and 18 Bacillus near neighbors, potential interference with 22 suspicious powders that are commonly encountered in the field by first responders during suspected biothreat incidents, and the potential for PCR inhibition when B. anthracis spores were spiked into these powders. Our results indicate that 3 of the 5 systems achieved 0.95 LCB of the probability of detection with 95% confidence levels at test concentrations of 2,000 genome equivalents/mL (GE/mL), which is comparable to 2,000 spores/mL. This is more than sufficient sensitivity for screening visible suspicious powders. These systems exhibited no false-positive results or PCR inhibition with common suspicious powders and reliably detected B. anthracis spores spiked into these powders, though some issues with assay controls were observed. Our testing approach enables efficient performance testing using a statistically rigorous and cost-effective test plan to generate performance data that allow users to make informed decisions regarding the purchase and use of field biodetection equipment. PMID:28192050

  6. Automated ribosomal DNA fingerprinting by capillary electrophoresis of PCR products.

    PubMed

    Martin, F; Vairelles, D; Henrion, B

    1993-10-01

    Capillary electrophoresis (CE) provides a rapid and automated technique for the analysis of subnanogram amounts of DNA fragments generated by the polymerase chain reaction (PCR). Here we describe the implementation of size-selective CE for DNA profiling and restriction fragment length polymorphism analysis of amplified polymorphic spacers of ribosomal DNA from fungi. Separations of unpurified and isopropanol-precipitated PCR-amplified DNA fragments in the size range of 20-1600 base pairs were achieved in less than 20 min with the use of hydroxypropyl methylcellulose as a sieving medium. The amplified internal transcribed spacer (ITS) and intergenic spacer (IGS) of RNA genes could be sized by coelectrophoresing a standard size ladder mixed with every sample, thereby eliminating errors in size estimation. This, together with the strictly controlled conditions of CE, permit the discrimination of amplified rDNA fragments differing only a few base pairs in length. Inter- and intraspecific variation in the size and number of restriction sites of the amplified rDNA spacers from the ectomycorrhizal basidiomycetes Laccaria laccata and Laccaria bicolor was observed and most strains could thus be reliably genotyped by PCR-CE. Multiple amplified IGS fragments of heterogeneous size were detected in several strains. This polymorphism is due to the occurrence of 5S rDNA subrepeats (i.e., multiple annealing of primer) within IGS. With CE, in contrast to slab gel electrophoresis, run times are short, the capillary can be reused, and full automation is feasible. Data acquisition and analysis are computer-controlled, which facilitates the locus identification and reduces error especially when large numbers of PCR products must be analyzed.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Sporulation properties and antimicrobial susceptibility in endemic and rare Clostridium difficile PCR ribotypes.

    PubMed

    Zidaric, Valerija; Rupnik, Maja

    2016-06-01

    Increased sporulation and antibiotic resistance have been proposed to be associated with certain Clostridium difficile epidemic strains such as PCR ribotype 027. In this study we examined these properties in another widespread PCR ribotype, 014/020, in comparison to prevalent PCR ribotype 002 and a group of rarely represented PCR ribotypes. Highest sporulation was observed in 014/020 strains at 24 h, while after 72 h PCR ribotype 002 and rare PCR ribotypes formed higher total number of spores. PCR ribotype 014/020 strains exhibited slightly higher resistance to tested antimicrobials, followed by group of rare PCR ribotypes and less common PCR ribotype 002. Neither sporulation properties nor antibiotic resistance clearly differed in endemic and rare strains.

  8. Ultrasensitive Antibody Detection by Agglutination-PCR (ADAP)

    PubMed Central

    2016-01-01

    Antibodies are widely used biomarkers for the diagnosis of many diseases. Assays based on solid-phase immobilization of antigens comprise the majority of clinical platforms for antibody detection, but can be undermined by antigen denaturation and epitope masking. These technological hurdles are especially troublesome in detecting antibodies that bind nonlinear or conformational epitopes, such as anti-insulin antibodies in type 1 diabetes patients and anti-thyroglobulin antibodies associated with thyroid cancers. Radioimmunoassay remains the gold standard for these challenging antibody biomarkers, but the limited multiplexability and reliance on hazardous radioactive reagents have prevented their use outside specialized testing facilities. Here we present an ultrasensitive solution-phase method for detecting antibodies, termed antibody detection by agglutination-PCR (ADAP). Antibodies bind to and agglutinate synthetic antigen–DNA conjugates, enabling ligation of the DNA strands and subsequent quantification by qPCR. ADAP detects zepto- to attomoles of antibodies in 2 μL of sample with a dynamic range spanning 5–6 orders of magnitude. Using ADAP, we detected anti-thyroglobulin autoantibodies from human patient plasma with a 1000-fold increased sensitivity over an FDA-approved radioimmunoassay. Finally, we demonstrate the multiplexability of ADAP by simultaneously detecting multiple antibodies in one experiment. ADAP’s combination of simplicity, sensitivity, broad dynamic range, multiplexability, and use of standard PCR protocols creates new opportunities for the discovery and detection of antibody biomarkers. PMID:27064772

  9. Improved purification and PCR amplification of DNA from environmental samples.

    PubMed

    Arbeli, Ziv; Fuentes, Cilia L

    2007-07-01

    Purification and PCR amplification procedures for DNA extracted from environmental samples (soil, compost, and river sediment) were improved by introducing three modifications: precipitation of DNA with 5% polyethylene glycol 8000 (PEG) and 0.6 M NaCl; filtration with a Sepharose 4B-polyvinylpolypyrrolidone (PVPP) spin column; and addition of skim milk (0.3% w/v) to the PCR reaction solution. Humic substances' concentration after precipitation with 5% PEG was 2.57-, 5.3-, and 78.9-fold lower than precipitation with 7.5% PEG, 10% PEG, and isopropanol, respectively. After PEG precipitation, Sepharose, PVPP and the combined (Sepharose-PVPP) column removed 92.3%, 89.5%, and 98%, respectively, of the remaining humic materials. Each of the above-mentioned modifications improved PCR amplification of the 16S rRNA gene. DNA extracted by the proposed protocol is cleaner than DNA extracted by a commercial kit. Nevertheless, the improvement of DNA purification did not improve the detection limit of atrazine degradation gene atzA.

  10. Colorimetric Integrated PCR Protocol for Rapid Detection of Vibrio parahaemolyticus

    PubMed Central

    Cheng, Kewen; Pan, Daodong; Teng, Jun; Yao, Li; Ye, Yingwang; Xue, Feng; Xia, Fan; Chen, Wei

    2016-01-01

    Rapid detection of pathogens is of great significance for food safety and disease diagnosis. A new colorimetric method for rapid and easy detection of Vibrio parahaemolyticus (V. parahaemolyticus or Vp) has been developed in this research. A specific sequence was designed and integrated with the forward primer for molecular detection of Vp. This specific sequence was tested and treated as the horseradish peroxidase (HRP)-mimicking DNAzyme and could be amplified during the polymerase chain reaction (PCR) process. The products of PCR including the sequence of HRP-mimicking DNAzyme could produce the distinguished color in the presence of catalysis substrates. The optical signal of the catalysis reaction, which is in a linear relationship with the initial template of Vp, could be determined with the naked eye or measured with Ultraviolet-visible (UV-vis) for qualitative and quantitative detections, respectively. Based on the optical signal intensity, rapid and easy detection of Vp was successfully achieved with satisfied sensitivity and specificity. Furthermore, the detection of tdh, trh, tlh and toxR virulence genes of two Vp species (Vp 33847 and Vp 17802) were all performed successfully with this developed colorimetric integrated PCR protocol, which demonstrated potential applicability for the rapid detection of other bacteria. PMID:27690041

  11. Improving the PCR protocol to amplify a repetitive DNA sequence.

    PubMed

    Riet, J; Ramos, L R V; Lewis, R V; Marins, L F

    2017-09-21

    Although PCR-based techniques have become an essential tool in the field of molecular and genetic research, the amplification of repetitive DNA sequences is limited. This is due to the truncated nature of the amplified sequences, which are also prone to errors during DNA polymerase-based amplification. The complex structure of repetitive DNA can form hairpin loops, which promote dissociation of the polymerase from the template, impairing complete amplification, and leading to the formation of incomplete fragments that serve as megaprimers. These megaprimers anneal with other sequences, generating unexpected fragments in each PCR cycle. Our gene model, MaSp1, is 1037-bp long, with 68% GC content, and its amino acid sequence is characterized by poly-alanine-glycine motifs, which represent the repetitive codon consensus. We describe the amplification of the MaSp1 gene through minor changes in the PCR program. The results show that a denaturation temperature of 98°C is the key determinant in the amplification of the MaSp1 partial gene sequence.

  12. Electrochemiluminescence-PCR detection of genetically modified organisms

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; Xing, Da; Shen, Xingyan; Zhu, Debin

    2005-01-01

    The detection methods for genetically modified (GM) components in foods have been developed recently. But many of them are complicated and time-consuming; some of them need to use the carcinogenic substance, and can"t avoid false-positive results. In this study, an electrochemiluminescence polymerase chain reaction (ECL-PCR) method for detection GM tobaccos is proposed. The Cauliflower mosaic virus 35S (CaMV35S) promoter was amplified by PCR, Then hybridized with a Ru(bpy)32+ (TBR)-labeled and a biotinylated probe. The hybridization products were captured onto streptavidin-coated paramagnetic beads, and detected by measuring the electrochemiluminescence (ECL) signal of the TBR label. Whether the tobaccos contain GM components was discriminated by detecting the ECL signal of CaMV35S promoter. The experiment results show that the detection limit for CaMV35S promoter is 100 fmol, and the GM components can be clearly identified in GM tobaccos. The ECL-PCR method provide a new means in GMOs detection due to its safety, simplicity and high efficiency.

  13. Detection of aflatoxigenic molds in grains by PCR.

    PubMed

    Shapira, R; Paster, N; Eyal, O; Menasherov, M; Mett, A; Salomon, R

    1996-09-01

    Aflatoxins are carcinogenic metabolites produced by several members of the Aspergillus flavus group in grains and floods. Three genes, ver-1, omt-1, and apa-2, coding for key enzymes and a regulatory factor in aflatoxin biosynthesis, respectively, have been identified, and their DNA sequences have been published. In the present study, three primer pairs, each complementing the coding portion of one of the genes, were generated. DNA extracted from mycelia of five Aspergillus species, four Penicillium species, and two Fusarium species was used as PCR template for each of the primer pairs. DNA extracted from peanut, corn, and three insect species commonly found in stored grains was also tested. Positive results (DNA amplification) were achieved only with DNA of the aflatoxigenic molds Aspergillus parasiticus and A. flavus in all three primer pairs. The detection limit of the PCR was determined by using the primer pairs complementing the omt-1 and ver-1 genes. Sterile corn flour was inoculated separately with six different molds, each at several spore concentrations. Positive results were obtained only after a 24-h incubation in enriched media, with extracts of corn inoculated with A. parasiticus or A. flavus, even at the lowest spore concentration applied (10(2) spores per g). No DNA spores per g). It is concluded that genes involved in the aflatoxin biosynthetic pathway may form the basis for an accurate, sensitive, and specific detection system, using PCR, for aflatoxigenic strains in grains and foods.

  14. Detection of aflatoxigenic molds in grains by PCR.

    PubMed Central

    Shapira, R; Paster, N; Eyal, O; Menasherov, M; Mett, A; Salomon, R

    1996-01-01

    Aflatoxins are carcinogenic metabolites produced by several members of the Aspergillus flavus group in grains and floods. Three genes, ver-1, omt-1, and apa-2, coding for key enzymes and a regulatory factor in aflatoxin biosynthesis, respectively, have been identified, and their DNA sequences have been published. In the present study, three primer pairs, each complementing the coding portion of one of the genes, were generated. DNA extracted from mycelia of five Aspergillus species, four Penicillium species, and two Fusarium species was used as PCR template for each of the primer pairs. DNA extracted from peanut, corn, and three insect species commonly found in stored grains was also tested. Positive results (DNA amplification) were achieved only with DNA of the aflatoxigenic molds Aspergillus parasiticus and A. flavus in all three primer pairs. The detection limit of the PCR was determined by using the primer pairs complementing the omt-1 and ver-1 genes. Sterile corn flour was inoculated separately with six different molds, each at several spore concentrations. Positive results were obtained only after a 24-h incubation in enriched media, with extracts of corn inoculated with A. parasiticus or A. flavus, even at the lowest spore concentration applied (10(2) spores per g). No DNA spores per g). It is concluded that genes involved in the aflatoxin biosynthetic pathway may form the basis for an accurate, sensitive, and specific detection system, using PCR, for aflatoxigenic strains in grains and foods. PMID:8795215

  15. Simultaneous multiplex PCR detection of seven cucurbit-infecting viruses.

    PubMed

    Kwon, Ji Yeon; Hong, Jin Sung; Kim, Min Jea; Choi, Sun Hee; Min, Byeong Eun; Song, Eun Gyeong; Kim, Hyun Hee; Ryu, Ki Hyun

    2014-09-01

    Two multiplex polymerase chain reaction (PCR) systems using dual priming oligonucleotide (DPO) primers were developed for the simultaneous detection of seven cucurbit-infecting viruses. One system allows for the detection of papaya ringspot virus, watermelon mosaic virus, and zucchini yellow mosaic virus, whereas the other permits the detection of cucumber green mottle mosaic virus, cucumber fruit mottle mosaic virus, kyuri green mottle mosaic virus, and zucchini green mottle mosaic virus. Viral species-specific DPO primers developed in this study detected as little as 10 fg/μl of viral RNA under monoplex conditions and 10 pg/μl of viral RNA under multiplex conditions. Multiplex PCR using the DPO primer sets was capable of amplifying viral genes at annealing temperatures ranging from 53 °C to 63 °C. Whereas the use of conventional primers gave rise to non-specific bands, the DPO primers detected target viral genes in the absence of non-specific amplification. When these DPO multiplex primer sets were applied to virus-infected cucurbit samples obtained in the field, multiple infection as well as single infection was accurately identified. This novel approach could also detect multiple viruses in infected seeds. The reliability of multiplex PCR systems using DPO primers for plant virus detection is discussed.

  16. Identification of Candida spp. by phenotypic tests and PCR

    PubMed Central

    Marinho, Sandra Aparecida; Teixeira, Alice Becker; Santos, Otávio Silveira; Cazanova, Ricardo Flores; Ferreira, Carlos Alexandre Sanchez; Cherubini, Karen; de Oliveira, Sílvia Dias

    2010-01-01

    The correct identification of Candida species is of great importance, as it presents prognostic and therapeutical significance, allowing an early and appropriate antifungical therapy. The purpose of this study was to identify isolates of Candida spp. from oral mucosa of 38 patients with oral candidosis evaluated in 2004 by phenotypic methods and PCR, discriminating C. albicans from the other Candida species. The tests used for phenotypic analysis were germ-tube and chlamydoconidia production, culture in CHROMAgar™ Candida, carbohydrate assimilation test, growth at 45ºC and culture in Tween 80 agar. Genotypic confirmation was performed by PCR. Phenotypic tests showed that 63.2% strains formed germ-tubes, 73.7% produced chlamydoconidia, and 63.2% showed green colonies in chromogenic medium, presumptively indicating C. albicans or C. dubliniensis. The carbohydrate assimilation test confirmed these results. A total of 21% strains were identified as C. krusei and 13.2% were indicative of C. tropicalis. Of these later strains, three produced chlamydoconidia. The association of other phenotypic tests with culture in Tween 80 agar identified 95.8% of strains as C. albicans and 4.2% as C. dubliniensis. All 24 strains indicative of C. albicans and C. dubliniensis were confirmed by PCR as C. albicans. PMID:24031493

  17. Nested PCR for detection of HSV-1 in oral mucosa

    PubMed Central

    Jalouli, Miranda-Masoumeh; Jalouli, Jamshid; Hasséus, Bengt; Öhman, Jenny; Hirsch, Jan-Michaél

    2015-01-01

    Background It has been estimated that 15%-20% of human tumours are driven by infection and inflammation, and viral infections play an important role in malignant transformation. The evidence that herpes simplex virus type 1 (HSV-1) could be involved in the aetiology of oral cancer varies from weak to persuasive. This study aimed to investigate by nested PCR (NPCR) the prevalence of HSV-1 in samples from normal oral mucosa, oral leukoplakia, and oral squamous cell carcinoma (OSCC). Material and Methods We investigated the prevalence of HSV-1 in biopsies obtained from 26 fresh, normal oral mucosa from healthy volunteers as well as 53 oral leukoplakia and 27 OSCC paraffin-embedded samples. DNA was extracted from the specimens and investigated for the presence of HSV-1 by nested polymerase chain reaction (NPCR) and DNA sequencing. Results HSV-1 was detected in 14 (54%) of the healthy samples, in 19 (36%) of the oral leukoplakia samples, and in 14 (52%) of the OSCC samples. The differences were not statistically significant. Conclusions We observed a high incidence of HSV-1 in healthy oral mucosa, oral leukoplakia, and OSCC tissues. Thus, no connection between OSCC development and presence of HSV-1 was detected. Key words:HSV-1, nested PCR, PCR. PMID:26449432

  18. Sex identification from exfoliated primary teeth--a PCR study.

    PubMed

    Kumar, Manju Gopa; Hegde, Amitha M

    2005-01-01

    Teeth endure postmortem degradation and extreme changes in ambient temperature and pressure better than most human tissues. In the present day scenario the growing number of crime against children in the form of battering, physical/sexual abuse, abduction and kidnapping, the use of exfoliated primary teeth, become many times the only evidence available at the crime scene. Despite exposure of the body to burial, mutilation, explosion or incineration, it is usually possible to extract DNA from pulp tissue of tooth with sufficient quality and quantity. Hence the present study was undertaken to find out the sex of a child from exfoliated/extracted deciduous teeth using a Polymerase Chain reaction (PCR) based analysis. Tooth samples were stored in room temperature after double coding for various periods. Dental pulp tissue was collected from each sample and DNA was isolated by proteinase-k digestion and phenol chloroform extraction methods. PCR amplification was done with two sets of oligonucleiotide primers. Amplification of X (131bp) and Y-specific sequences (172bp) in males and that of the X-specific sequence in females was observed and compared with the template DNA showing male and female controls. Determination of sexes of all freshly collected samples within 24 hours and after 1 month of extraction respectively gave 100% result. However, PCR was not found to be an effective method for sex determination after 6 months post extraction.

  19. Development of a multiplex PCR for identification of vineyard mealybugs.

    PubMed

    Daane, Kent M; Middleton, Mathew C; Sforza, René; Cooper, Monica L; Walton, Vaughn M; Walsh, Douglas B; Zaviezo, Tania; Almeida, Rodrigo P P

    2011-12-01

    A simple molecular tool was developed and tested to identify seven mealybug species found in North American vineyards: Pseudococcus maritimus Ehrhorn, Pseudococcus viburni (Signoret), Pseudococcus longispinus (Targioni-Tozzeti), Pseudococcus calceolariae (Maskell), Planococcus ficus (Signoret), Planococcus citri (Risso), and Ferrisia gilli Gullan. The developed multiplex PCR is based on the mitochondrial cytochrome c oxidase subunit one gene. In tests, this single-step multiplex PCR correctly identified 95 of 95 mealybug samples, representing all seven species and collected from diverse geographic regions. To test the sensitivity, single specimen samples with different Pl. ficus developmental stages (egg to adult female and adult male) were processed PCR and the resulting output provided consistent positive identification. To test the utility of this protocol for adult males caught in sex baited pheromone traps, Pl. ficus adult males were placed in pheromone traps, aged at a constant temperature of 26±2°C, and processed with the multiplex each day thereafter for 8 d. Results showed consistent positive identification for up to 6 d (range, 6-8 d). Results are discussed with respect to the usefulness of this molecular tool for the identification of mealybugs in pest management programs and biosecurity of invasive mealybugs.

  20. A PCR-based linkage map of human chromosome 1

    SciTech Connect

    Engelstein, M.; Hudson, T.J.; Lane, J.M.; Lee, M.K.; Dracopoli, C. ); Leverone, B.; Landes, G.M. ); Peltonen, L. ); Weber, J.L. )

    1993-02-01

    A genetic linkage map of human chromosome 1 based entirely on PCR-typable markers has been developed using 38 simple sequence repeat (SSR) polymorphisms. These SSRs include 36 dinucleotide repeats and 2 tetranucleotide repeats. The average heterozygosity at these markers was 0.73 and ranged form 0.52 to 0.95. Multipoint linkage analysis was used to develop a map of these 38 markers in which the relative placement of each locus is supported by likelihood odds > 1000:1. This PCR-based map was anchored at the centromere by the D1Z5 [alpha]-satellite polymorphism, and the ends of the map were defined by D1Z2 and D1S68, which are the most distal loci in the CEPH consortium map of chromosome 1. The sex-averaged, male, and female maps extend for 328, 273, and 409 cM, respectively. The average distance between markers on the sex-averaged map is 8 cM, and the largest interval is 32 cM. This map of highly informative PCR-based markers will provide a rapid means of screening human chromosome 1 for the presence of disease genes. 36 refs., 4 figs., 4 tabs.

  1. STITCHER 2.0: primer design for overlapping PCR applications

    PubMed Central

    O’Halloran, Damien M.; Uriagereka-Herburger, Isabel; Bode, Katrin

    2017-01-01

    Overlapping polymerase chain reaction (PCR) is a common technique used by researchers in very diverse fields that enables the user to ‘stitch’ individual pieces of DNA together. Previously, we have reported a web based tool called STITCHER that provides a platform for researchers to automate the design of primers for overlapping PCR applications. Here we present STITCHER 2.0, which represents a substantial update to STITCHER. STITCHER 2.0 is a newly designed web tool that automates the design of primers for overlapping PCR. Unlike STITCHER, STITCHER 2.0 considers diverse algorithmic parameters, and returns multiple result files that include a facility for the user to draw their own primers as well as comprehensive visual guides to the user’s input, output, and designed primers. These result files provide greater control and insight during experimental design and troubleshooting. STITCHER 2.0 is freely available to all users without signup or login requirements and can be accessed at the following webpage: www.ohalloranlab.net/STITCHER2.html. PMID:28358011

  2. De novo DNA synthesis using single-molecule PCR.

    PubMed

    Yehezkel, Tuval Ben; Linshiz, Gregory; Shapiro, Ehud

    2012-01-01

    The throughput of DNA reading (i.e., sequencing) has dramatically increased recently owing to the incorporation of in vitro clonal amplification. The throughput of DNA writing (i.e., synthesis) is trailing behind, with cloning and sequencing constituting the main bottleneck. To overcome this bottleneck, an in vitro alternative for in vivo DNA cloning needs to be integrated into DNA synthesis methods. Here, we show how a new single-molecule PCR (smPCR)-based procedure can be employed as a general substitute for in vivo cloning, thereby allowing for the first time in vitro DNA synthesis. We integrated this rapid and high fidelity in vitro procedure into our previously described recursive DNA synthesis and error correction procedure and used it to efficiently construct and error-correct a 1.8-kb DNA molecule from synthetic unpurified oligonucleotides, entirely in vitro. Although we demonstrate incorporating smPCR in a particular method, the approach is general and can be used, in principle, in conjunction with other DNA synthesis methods as well.

  3. STITCHER 2.0: primer design for overlapping PCR applications.

    PubMed

    O'Halloran, Damien M; Uriagereka-Herburger, Isabel; Bode, Katrin

    2017-03-30

    Overlapping polymerase chain reaction (PCR) is a common technique used by researchers in very diverse fields that enables the user to 'stitch' individual pieces of DNA together. Previously, we have reported a web based tool called STITCHER that provides a platform for researchers to automate the design of primers for overlapping PCR applications. Here we present STITCHER 2.0, which represents a substantial update to STITCHER. STITCHER 2.0 is a newly designed web tool that automates the design of primers for overlapping PCR. Unlike STITCHER, STITCHER 2.0 considers diverse algorithmic parameters, and returns multiple result files that include a facility for the user to draw their own primers as well as comprehensive visual guides to the user's input, output, and designed primers. These result files provide greater control and insight during experimental design and troubleshooting. STITCHER 2.0 is freely available to all users without signup or login requirements and can be accessed at the following webpage: www.ohalloranlab.net/STITCHER2.html.

  4. [PCR-based diagnosis of mucormycosis in tissue samples].

    PubMed

    Bialek, R; Zelck, U E

    2013-11-01

    Mucormycosis is characterized by a rapid, often fatal progression. Early diagnosis of invasive mucormycosis is the key for timely therapeutic intervention and improved survival. Contrary to the more prevalent aspergillosis, effective antifungal therapy of mucormycosis is mainly limited to amphotericin B. Given the importance to guide the timely initiation of amphotericin B and possible surgical intervention, rapid and specific identification of fungal hyphae is essential. Conventional histopathology depends on abundance and morphology of the fungi as well as on the skills of the personnel, and usually shows an accuracy of 80 %. PCR assays targeting fungal ribosomal genes to identify Mucorales at least at genus level increase sensitivity, allow a rapid identification as well as detection of double mold infections. Thus, PCR assays are beneficial to complement existing approaches. They are recommended to rapidly specify tissue diagnosis and accurate identification of fungi. This will help to guide effective therapy and thereby, survival will increase. Retrospective analyses of mucormycosis by PCR help to evaluate therapeutic interventions and will optimize treatment options.

  5. Design of Two Multiplex PCR Assays for Serotyping Shigella flexneri.

    PubMed

    van der Ploeg, Claudia A; Rogé, Ariel D; Bordagorría, Ximena L; de Urquiza, Maria T; Celi Castillo, Ana B; Bruno, Susana B

    2017-10-10

    Shigella flexneri is a major health problem in developing countries. There are 19 serotypes recognized based on O-antigen structure and its typing is important for epidemiological purposes. However, the diversity of serotypes and the difficulties presented by phenotypic serotyping, for example, unavailable antisera for less common antigens, require the implementation of molecular techniques. In this study, we developed two multiplex PCR assays targeting the O-antigen synthesis genes and the O-antigen modification genes, for the rapid identification of S. flexneri serotypes 1/7, 2, 4, 5, and 6 (PCR A) and serotype 7 and group antigenic factors (3,4; 6; 7,8; E1037) (PCR B). A total of 73 S. flexneri strains representing 18 serotypes, except serotype 1d, were used in the study. Specific amplification patterns were obtained for each of the different serotypes. All strains tested had concordant results with phenotypic and genotypic serotyping; therefore, its implementation in the microbiology clinical laboratory will significantly improve S. flexneri serotyping.

  6. Detection and counting of Nitrobacter populations in soil by PCR.

    PubMed Central

    Degrange, V; Bardin, R

    1995-01-01

    Although the biological conversion of nitrite to nitrate is a well-known process, studies of Nitrobacter populations are hindered by their physiological characteristics. This report describes a new method for detecting and counting Nitrobacter populations in situ with the PCR. Two primers from the 16S rRNA gene were used to generate a 397-bp fragment by amplification of Nitrobacter species DNA. No signal was detected from their phylogenetic neighbors or the common soil bacteria tested. Extraction and purification steps were optimized for minimal loss and maximal purity of soil DNA. The detection threshold and accuracy of the molecular method were determined from soil inoculated with 10, 10(2), or 10(3) Nitrobacter hamburgensis cells per g of soil. Counts were also done by the most-probable-number (MPN)-Griess and fluorescent antibody methods. PCR had a lower detection threshold (10(2) Nitrobacter cells per g of soil) than did the MPN-Griess or fluorescent antibody method. When PCR amplification was coupled with the MPN method, the counting rate reached 65 to 72% of inoculated Nitrobacter cells. Tested on nonsterile soil, this rapid procedure was proved efficient. PMID:7793930

  7. Monitoring infection: from blood culture to polymerase chain reaction (PCR).

    PubMed

    Book, Malte; Lehmann, Lutz Eric; Zhang, XiangHong; Stüber, Frank

    2013-06-01

    In patients with sepsis, diagnosis of blood stream infection (BSI) is a key concern to the therapist. Direct verification of pathogens in the blood stream executed by blood cultures (BC) still is regarded as the gold standard up to date. The quickest possible initiation of an appropriate antimicrobial therapy is a cornerstone of an effective therapy. Moreover, in this view BC can also serve to identify antimicrobial agents to target the pathogen. However, when employing BC the time needed until microbiological results are available ranges from 24 up to 72 h. Moreover, infections caused by multiple pathogens often remain undetected and concurrent antibiotic therapy may lower the overall sensitivity. Alternative pathogen characterization can be performed by polymerase chain reaction (PCR) based amplification methods. Results using PCR can be obtained within 6-8 h. Therefore, the time delay until an appropriate therapy can be reduced enormously. Moreover, these methods have the potential to enhance the sensitivity in the diagnosis of blood stream infections. Therefore, PCR based methods might be a valuable adjunct to present procedures of diagnosing bacteraemia.

  8. Universal PCR primers for detection of phytopathogenic Agrobacterium strains.

    PubMed Central

    Haas, J H; Moore, L W; Ream, W; Manulis, S

    1995-01-01

    Two PCR primer pairs, based on the virD2 and ipt genes, detected a wide variety of pathogenic Agrobacterium strains. The endonuclease domain of VirD2 protein, which cleaves transferred DNA (T-DNA) border sequences, is highly conserved; primer oligonucleotides specific for the endonuclease portion of virD2 detected all pathogenic strains of Agrobacterium tested. PCR primers corresponding to conserved sequences in ipt, the T-DNA-borne cytokinin synthesis gene, detected only Agrobacterium tumefaciens and distinguished it from Agrobacterium rhizogenes. The virD2 and ipt primer pairs did not interfere with each other when included in the same PCR amplification, and this permitted simultaneous detection of both genes in a single reaction. One nonpathogenic Agrobacterium radiobacter strain contained virD2 but not ipt; we speculate that this strain arose from a pathogenic progenitor through a deletion in the T-DNA. The virD2 primer pair appears to be universal for all pathogenic Agrobacterium species; used together, the primer sets reported here should allow unambiguous identification of Ti plasmid DNA in bacteria isolated from soil and plants. PMID:7487020

  9. Species identification in meat products using real-time PCR.

    PubMed

    Jonker, K M; Tilburg, J J H C; Hagele, G H; de Boer, E

    2008-05-01

    One of the most convenient methods for the identification of animal species in processed meat products is the examination of DNA sequences. Real-time polymerase chain reaction (qPCR) techniques are particularly suitable because even small fragments of DNA formed during heat processing of the meat can be amplified and identified. A real-time PCR method has been developed and evaluated for the identification of processed meat products. In test mixtures containing beef, pork, horse, mutton, chicken and turkey, it was possible to identify these species down to a level of 0.05%. By adjusting the number of cycles, it was possible to detect levels as low as 0.01% of these species. Cross-reactivity between these species was not found, except for pure horsemeat (250 ng DNA) in the assay for turkey meat. Cross-reactivity of deer, roe, ostrich, kangaroo, goat, domestic duck, mallard, goose, pigeon, guinea fowl, quail and pheasant was also investigated and it was found that amounts as high as 250 ng DNA of these species in the reaction vial did not result in (false) positive signals except for amounts higher than 125 ng deer DNA and higher than 50 ng pigeon DNA in the determination of chicken and beef, respectively. More than 150 meat samples were examined using DNA hybridization and real-time PCR. A comparison of the results showed a better performance of the real-time procedure compared to DNA hybridization.

  10. Rapid diagnosis of Mycobacterium tuberculosis bacteremia by PCR.

    PubMed

    Folgueira, L; Delgado, R; Palenque, E; Aguado, J M; Noriega, A R

    1996-03-01

    A method based on DNA amplification and hybridization has been used for the rapid detection of Mycobacterium tuberculosis in blood samples from 38 hospitalized patients (15 human immunodeficiency virus [HIV] positive and 23 HIV negative) in whom localized or disseminated forms of tuberculosis were suspected. In 32 of these patients, the diagnosis of tuberculosis was eventually confirmed by conventional bacteriological or histological procedures. M. tuberculosis DNA was detected with the PCR technique in the peripheral blood mononuclear cells from 9 of 11 (82%) HIV-infected patients and in 7 of 21 (33%) HIV-negative patients (P < 0.01), while M. tuberculosis blood cultures were positive in 1 of 8 (12.5%) and 1 of 18 (5.5%) patients, respectively. PCR was positive in all cases with disseminated disease in both HIV-negative and HIV-positive patients and also in the HIV-positive patients with extrapulmonary tuberculosis. Seven samples from patients with documented illness other than tuberculosis and 12 specimens from healthy volunteers, including seven volunteers with a recent positive purified protein derivative test, were used as controls and had a negative PCR. These results suggest that detection of M. tuberculosis DNA in peripheral blood mononuclear cells may be a useful tool for rapid diagnosis of disseminated and extrapulmonary forms of tuberculosis, especially in an HIV-positive population.

  11. Rapid diagnosis of Mycobacterium tuberculosis bacteremia by PCR.

    PubMed Central

    Folgueira, L; Delgado, R; Palenque, E; Aguado, J M; Noriega, A R

    1996-01-01

    A method based on DNA amplification and hybridization has been used for the rapid detection of Mycobacterium tuberculosis in blood samples from 38 hospitalized patients (15 human immunodeficiency virus [HIV] positive and 23 HIV negative) in whom localized or disseminated forms of tuberculosis were suspected. In 32 of these patients, the diagnosis of tuberculosis was eventually confirmed by conventional bacteriological or histological procedures. M. tuberculosis DNA was detected with the PCR technique in the peripheral blood mononuclear cells from 9 of 11 (82%) HIV-infected patients and in 7 of 21 (33%) HIV-negative patients (P < 0.01), while M. tuberculosis blood cultures were positive in 1 of 8 (12.5%) and 1 of 18 (5.5%) patients, respectively. PCR was positive in all cases with disseminated disease in both HIV-negative and HIV-positive patients and also in the HIV-positive patients with extrapulmonary tuberculosis. Seven samples from patients with documented illness other than tuberculosis and 12 specimens from healthy volunteers, including seven volunteers with a recent positive purified protein derivative test, were used as controls and had a negative PCR. These results suggest that detection of M. tuberculosis DNA in peripheral blood mononuclear cells may be a useful tool for rapid diagnosis of disseminated and extrapulmonary forms of tuberculosis, especially in an HIV-positive population. PMID:8904404

  12. PCR detection of aflatoxin producing fungi and its limitations.

    PubMed

    Levin, Robert E

    2012-05-01

    Unlike bacterial toxins that are primarily peptides and are therefore encoded by a single gene, fungal toxins such as the aflatoxins are multi-ring structures and therefore require a sequence of structural genes for their biological synthesis. There is therefore no specific PCR for any one of the four biologically produced aflatoxins. Unfortunately, the structural genes presently in use for PCR detection of aflatoxin producing fungi are also involved in the synthesis of other fungal toxins such as sterigmatocystin by Aspergillus versicolor and Aspergillus nidulans and therefore lack absolute specificity for aflatoxin producing fungi (Table 1). In addition, the genomic presence of several structural genes involved in aflatoxin biosynthesis does not guarantee the production of aflatoxin by all isolates of Aspergillus flavus and Aspergillus parasiticus. The most widely used DNA target regions for discriminating Aspergillus species are those of the rDNA complex, mainly the internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) and the variable regions in the 5'-end of the 28S rRNA gene. Since these sequence regions are unrelated to the structural genes involved in aflatoxin biosynthesis there successful amplification can be used for species identification but do not confirm aflatoxin production. This review therefore presents the various approaches and limitations in the use of the PCR in attempting to detect aflatoxin producing fungi.

  13. Direct-to-PCR tissue preservation for DNA profiling.

    PubMed

    Sorensen, Amy; Berry, Clare; Bruce, David; Gahan, Michelle Elizabeth; Hughes-Stamm, Sheree; McNevin, Dennis

    2016-05-01

    Disaster victim identification (DVI) often occurs in remote locations with extremes of temperatures and humidities. Access to mortuary facilities and refrigeration are not always available. An effective and robust DNA sampling and preservation procedure would increase the probability of successful DNA profiling and allow faster repatriation of bodies and body parts. If the act of tissue preservation also released DNA into solution, ready for polymerase chain reaction (PCR), the DVI process could be further streamlined. In this study, we explored the possibility of obtaining DNA profiles without DNA extraction, by adding aliquots of preservative solutions surrounding fresh human muscle and decomposing human muscle and skin tissue samples directly to PCR. The preservatives consisted of two custom preparations and two proprietary solutions. The custom preparations were a salt-saturated solution of dimethyl sulfoxide (DMSO) with ethylenediaminetetraacetic (EDTA) and TENT buffer (Tris, EDTA, NaCl, Tween 20). The proprietary preservatives were DNAgard (Biomatrica(®)) and Tissue Stabilising Kit (DNA Genotek). We obtained full PowerPlex(®) 21 (Promega) and GlobalFiler(®) (Life Technologies) DNA profiles from fresh and decomposed tissue preserved at 35 °C for up to 28 days for all four preservatives. The preservative aliquots removed from the fresh muscle tissue samples had been stored at -80 °C for 4 years, indicating that long-term archival does not diminish the probability of successful DNA typing. Rather, storage at -80 °C seems to reduce PCR inhibition.

  14. Nuclear DNA PCR-RFLPs that distinguish African and European honey bee groups of subspecies. II: Conversion of long PCR markers to standard PCR.

    PubMed

    Suazo, Alonso; Hall, H Glenn

    2002-08-01

    Nuclear DNA PCR-RFLPs previously found in amplifications of three long (> 5 kbp) anonymous regions of DNA were made analyzable using standard PCR procedures. RFLP analyses were simplified by restricting the amplifications to sections, within each locus, that contained most of the informative polymorphic sites. AluI digests of locus L-1 section 2 (L-1S2) revealed three suballeles of which one was African-specific (Apis mellifera scutellata Lepeletier) and one was east European-predominant (A. m. ligustica Spinola, A. m. carnica Pollman, and A. m. caucasica Gorbachev). Alleles found originally at locus L-2 with AvaI were determined in RFLP analysis of two sections, L-2S1int and L-2S2, resulting in two African-specific and two east European-predominant suballeles. Suballele identity was determined by the combination of banding patterns from both fragments. Polymorphisms revealed by HaeIII in locus L-2 were analyzed in amplifications and digests of L-2SM1int. an 830 bpfragment within L-2S1. Seven suballeles were found of which two were African-specific and three were east European-specific or predominant, including one suballele specific to the east European subspecies A. m. caucasica. In locus L-5, RFLPs were detected with HaeIII, DdeI, and SpeI. HaeIII polymorphisms were analyzed by amplification and digestion offragments L-5S1xt and L-5S1ter: Five suballeles were found of which three were African-specific and one east European-predominant. For DdeI, all five alleles originally found with long PCR could be identified in RFLP analyses of three sections. Two African-specific, one east European-specific, and one west European-predominant (A. m. mellifera L. and A. m. iberica Goetze) suballeles were found. A west European-predominant suballele was also found in RFLP analysis of L-5S3 with SpeI. Allele frequency data from Old World and US. populations are presented.

  15. Evaluation of fliC-d based direct blood PCR assays for typhoid diagnosis.

    PubMed

    Das, Surojit; Ray, Ujjwayini; Akhter, Irfaan; Chattopadhyay, Arka; Paul, Dilip Kumar; Dutta, Shanta

    2016-06-13

    Typhoid cases need to be diagnosed accurately for early antibiotic therapy and reducing mortality. Identification of Salmonella Typhi (S. Typhi) in blood culture is conclusive, but has poor sensitivity. Detection of S. Typhi by PCR from blood sample has shown promise. Real-time quantitative PCR (Q-PCR) has been widely used in diagnostics for its rapidity and reliability. In the present study, the performance of molecular methods like conventional PCR (C-PCR), nested PCR (N-PCR) and Q-PCR were investigated and compared by targeting S. Typhi specific flagellar fliC-d gene directly in blood samples for typhoid diagnosis. Analytical sensitivities and specificities of the PCR assays were determined under laboratory condition followed by diagnostic performances were demonstrated in 110 clinically diagnosed typhoid fever (CDTF) cases included as study subjects. The DNA detection limit of C-PCR was observed 3 × 10(4) copies/reaction; those of N-PCR and Q-PCR (cutoff Ct value, ≤37) were 3 copies/reaction. The C-PCR was not further evaluated since it showed negative results with all clinical samples due to low sensitivity. Low isolation rate (21.8 %, 24/110) of S. Typhi by blood culture did not reflect the true burden of typhoid fever among the study subjects. Hence diagnostic performances of N-PCR and Q-PCR were determined considering CDTF cases positive by any of the diagnostic assay methods (n = 81) as true positives. Laboratory confirmed non-typhoidal cases (n = 29) were included as true negatives. On comparison, although both the assays were 100 % specific; sensitivity (91.4 % vs. 81.5 %) and efficiency (93.6 % vs. 86.4 %) of Q-PCR were better, but statistically not significant (p > 0.1) than N-PCR. The positive and negative likelihood ratios of Q-PCR were ∞ and 0.09 which indicated the potential clinical utility of Q-PCR for typhoid diagnosis. Q-PCR was more rapid than N-PCR (2 h vs. 6 h) in obtaining test results. This study demonstrates

  16. Enzymological considerations for a theoretical description of the quantitative competitive polymerase chain reaction (QC-PCR).

    PubMed

    Schnell, S; Mendoza, C

    1997-02-21

    The enzymological principles of the polymerase chain reaction (PCR) and of the quantitative competitive PCR (QC-PCR) are developed, proposing a theoretical framework that will facilitate quantification in experimental methodologies. It is demonstrated that the specificity of the QC-PCR, i.e. the ratio of the target initial velocity to that of the competitor template, remains constant not only during a particular amplification but also for increasing initial competitor concentrations. Linear fitting procedures are thus recommended that will enable a quantitative estimate of the initial target concentration. Finally, expressions for the efficiency of the PCR and QC-PCR are derived that are in agreement with previous experimental inferences.

  17. Mediator probe PCR: detection of real-time PCR by label-free probes and a universal fluorogenic reporter.

    PubMed

    Wadle, Simon; Rubenwolf, Stefanie; Lehnert, Michael; Faltin, Bernd; Weidmann, Manfred; Hufert, Frank; Zengerle, Roland; von Stetten, Felix

    2014-01-01

    Mediator probe PCR (MP PCR) is a novel detection format for real-time nucleic acid analysis. Label-free mediator probes (MP) and fluorogenic universal reporter (UR) oligonucleotides are combined to accomplish signal generation. Compared to conventional hydrolysis probe PCRs costs can thus be saved by using the same fluorogenic UR for signal generation in different assays. This tutorial provides a practical guideline to MP and UR design. MP design rules are very similar to those of hydrolysis probes. The major difference is in the replacement of the fluorophore and quencher by one UR-specific sequence tag, the mediator. Further protocols for the setup of reactions, to detect either DNA or RNA targets with clinical diagnostic target detection as models, are explained. Ready to use designs for URs are suggested and guidelines for their de novo design are provided as well, including a protocol for UR signal generation characterization.

  18. Biofunctionalization of Polyoxometalates with DNA Primers, Their Use in the Polymerase Chain Reaction (PCR) and Electrochemical Detection of PCR Products.

    PubMed

    Debela, Ahmed M; Ortiz, Mayreli; Beni, Valerio; Thorimbert, Serge; Lesage, Denis; Cole, Richard B; O'Sullivan, Ciara K; Hasenknopf, Bernold

    2015-12-01

    The bioconjugation of polyoxometalates (POMs), which are inorganic metal oxido clusters, to DNA strands to obtain functional labeled DNA primers and their potential use in electrochemical detection have been investigated. Activated monooxoacylated polyoxotungstates [SiW11 O39 {Sn(CH2 )2 CO}](8-) and [P2 W17 O61 {Sn(CH2 )2 CO}](6-) have been used to link to a 5'-NH2 terminated 21-mer DNA forward primer through amide coupling. The functionalized primer was characterized by using a battery of techniques, including electrophoresis, mass spectrometry, as well as IR and Raman spectroscopy. The functionality of the POM-labeled primers was demonstrated through hybridization with a surface-immobilized probe. Finally, the labeled primers were successfully used in the polymerase chain reaction (PCR) and the PCR products were characterized by using electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quantitative real-time PCR (qPCR) for the detection and quantification of dactylogyrid parasites infecting Lutjanus guttatus.

    PubMed

    Soler-Jiménez, L C; García-Gasca, A; Fajer-Ávila, E J

    2017-03-07

    Severe infections of the spotted rose snapper Lutjanus guttatus resulting from dactylogyrid monogeneans present a risk to aquaculture. Currently, the diagnosis of this infection requires the morphological identification and manual quantification of parasites. Based on the characterization of the 28S rRNA gene of dactylogyrid species present in L. guttatus, specific primers were designed for real-time polymerase chain reaction (qPCR) using EvaGreen® chemistry. The standard curve method estimated the number of dactylogyrids accurately. A total of 85 gill samples from cage-cultured fish infected with dactylogyrids were analysed. The estimated number of dactylogyrids using this molecular method was very similar to the manual count that was performed initially. The standardized qPCR approach will be helpful as a complementary method for the early routine monitoring of dactylogyrid infections and for epidemiological studies in which a high number of fish must be studied.

  20. Nucleic acid extraction from polluted estuarine water for detection of viruses and bacteria by PCR and RT-PCR analysis.

    PubMed

    Petit, F; Craquelin, S; Guespin-Michel, J; Buffet-Janvresse, C

    1999-03-01

    We describe an extraction protocol for genomic DNA and RNA of both viruses and bacteria from polluted estuary water. This procedure was adapted to the molecular study of microflora of estuarine water where bacteria and viruses are found free, forming low-density biofilms, or intimately associated with organo-mineral particles. The sensitivity of the method was determined with seeded samples for RT-PCR and PCR analysis of viruses (10 virions/mL), and bacteria (1 colony-forming unit mL). We report an example of molecular detection of both poliovirus and Salmonella in the Seine estuary (France) and an approach to studying their association with organo-mineral particles.

  1. [Two base deletion of the alpha (1,2) fucosyltransferase gene responsible for para-Bombay phenotype].

    PubMed

    Zhu, Fa-ming; Xu, Xian-guo; Hong, Xiao-zhen; Yan, Li-xing

    2004-06-01

    To probe into the molecular genetics basis for para-Bombay phenotype. Red blood cell phenotype of the proband was characterized by serological techniques. Exons 6 and 7 of ABO gene, the entire coding region of alpha(1,2) fucosyltransferase (FUT1) gene and FUT2 gene were amplified by polymerase chain reaction (PCR) from genomic DNA of the proband respectively. The PCR products were excised and purified from agarose gels and were directly sequenced. AG at 547-552 deletion homozygous allele was found in the proband, which caused a reading frame shift and a premature stop codon. Parents of proband were heterozygous carriers. Two base deletion at position 547-552 of alpha (1,2) fucosyltransferase gene may cause para-Bombay phenotype.

  2. A droplet digital PCR (ddPCR) assay to detect Helicoverpa armigera (Lepidoptera: Noctuidae) in bulk trap samples

    PubMed Central

    Tembrock, Luke R.; Timm, Alicia E.; Farris, Roxanne E.; Perera, Omaththage P.; Gilligan, Todd M.

    2017-01-01

    Moths in the genus Helicoverpa are some of the most important agricultural pests in the world. Two species, H. armigera (Hübner) and H. zea (Boddie), cause the majority of damage to crops and millions of dollars are spent annually on control of these pests. The recent introduction of H. armigera into the New World has prompted extensive survey efforts for this species in the United States. Surveys are conducted using bucket traps baited with H. armigera pheromone, and, because the same pheromone compounds attract both species, these traps often capture large numbers of the native H. zea. Adult H. armigera and H. zea are very similar and can only be separated morphologically by minor differences in the genitalia. Thus, a time consuming genitalic dissection by a trained specialist is necessary to reliably identify either species, and every specimen must be dissected. Several molecular methods are available for differentiating and identifying H. armigera and H. zea, including two recently developed rapid protocols using real-time PCR. However, none of the published methods are capable of screening specimens in large batches. Here we detail a droplet digital PCR (ddPCR) assay that is capable of detecting a single H. armigera in a background of up to 999 H. zea. The assay has been tested using bulk extractions of 1,000 legs from actual trap samples and is effective even when using poor quality samples. This study provides an efficient, rapid, reproducible, and scalable method for processing H. armigera survey trap samples in the U.S. and demonstrates the potential for applying ddPCR technology to screen and diagnose invasive species. PMID:28562660

  3. Simplified diagnosis of malaria infection: GFM/PCR/ELISA a simplified nucleic acid amplification technique by PCR/ELISA.

    PubMed

    Machado, R L; Garret, D O; Adagu, I S; Warhurst, D C; Póvoa, M M

    1998-01-01

    We report an adaptation of a technique for the blood sample collection (GFM) as well as for the extraction and amplification of Plasmodium DNA for the diagnosis of malaria infection by the PCR/ELISA. The method of blood sample collection requires less expertise and saves both time and money, thus reducing the cost by more than half. The material is also suitable for genetic analysis in either fresh or stored specimens prepared by this method.

  4. Detection of feline calicivirus, feline herpesvirus 1 and Chlamydia psittaci mucosal swabs by multiplex RT-PCR/PCR.

    PubMed

    Sykes, J E; Allen, J L; Studdert, V P; Browning, G F

    2001-07-26

    A single tube, multiplex reverse transcription (RT)-polymerase chain reaction (PCR)/PCR assay was developed for detection of feline herpesvirus 1 (FHV1), Chlamydia psittaci and feline calicivirus (FCV) in cats with upper respiratory tract disease (URTD), incorporating a simple, rapid extraction procedure capable of extracting both DNA and RNA. The assay was found to be as sensitive in vitro as simplex assays that have previously been shown to be as sensitive as, or more sensitive than, culture for each pathogen in experimentally infected cats. Conjunctival alone or both conjunctival and oropharyngeal swabs were collected from cats in 104 households with URTD. FHV1 was detected in 18 (17.3%) and C. psittaci was detected in 12 (11.5%) households. The prevalence of C. psittaci was not significantly different to that determined using a duplex PCR assay for C. psittaci and FHV1. The prevalence of FCV was affected by sample storage temperature. Of samples stored at -70 degrees C, 0/31 were positive for FCV but FCV was detected in 10/73 (13.7%) samples stored at 4 degrees C (P=0.006). Of the samples stored at 4 degrees C, 3/19 (15.8%) conjunctival swabs were positive for FCV and 6/32 (18.8%) oropharyngeal/conjunctival swabs were positive for FCV (P=0.79). The potential utility of restriction endonuclease analysis of RT-PCR products resulting from amplification of the hypervariable region of the capsid protein gene of FCV in field samples, without prior cultivation, was also examined. The assay may have considerable importance for diagnosis and epidemiological surveys of feline upper respiratory tract pathogens.

  5. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    PubMed Central

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  6. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    PubMed

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  7. Type A influenza virus detection from horses by real-time RT-PCR and insulated isothermal RT-PCR.

    PubMed

    Balasuriya, Udeni B R

    2014-01-01

    Equine influenza (EI) is a highly contagious disease of horses caused by the equine influenza virus (EIV) H3N8 subtype. EI is the most important respiratory virus infection of horses and can disrupt major equestrian events and cause significant economic losses to the equine industry worldwide. Influenza H3N8 virus spreads rapidly in susceptible horses and can result in very high morbidity within 24-48 h after exposure to the virus. Therefore, rapid and accurate diagnosis of EI is critical for implementation of prevention and control measures to avoid the spread of EIV and to reduce the economic impact of the disease. The probe-based real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays targeting various EIV genes are reported to be highly sensitive and specific compared to the Directigen Flu A(®) test and virus isolation in embryonated hens' eggs. Recently, a TaqMan(®) probe-based insulated isothermal RT-PCR (iiRT-PCR) assay for the detection of EIV H3N8 subtype has been described. These molecular based diagnostic assays provide a fast and reliable means of EIV detection and disease surveillance.

  8. Senior Thai fecal microbiota comparison between vegetarians and non-vegetarians using PCR-DGGE and real-time PCR.

    PubMed

    Ruengsomwong, Supatjaree; Korenori, Yuki; Sakamoto, Naoshige; Wannissorn, Bhusita; Nakayama, Jiro; Nitisinprasert, Sunee

    2014-08-01

    The fecal microbiotas were investigated in 13 healthy Thai subjects using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Among the 186 DNA bands detected on the polyacrylamide gel, 37 bands were identified as representing 11 species: Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides uniformis, Bacteroides vulgatus, Clostridium colicanis, Eubacterium eligenes, E. rectale, Faecalibacterium prausnitzii, Megamonas funiformis, Prevotella copri, and Roseburia intestinalis, belonging mainly to the groups of Bacteroides, Prevotella, Clostridium, and F. prausnitzii. A dendrogram of the PCR-DGGE divided the subjects; vegetarians and non-vegetarians. The fecal microbiotas were also analyzed using a quantitative real-time PCR focused on Bacteroides, Bifidobacterium, Enterobacteriaceae, Clostrium coccoides-Eubacterium rectale, C. leptum, Lactobacillus, and Prevotella. The nonvegetarian and vegetarian subjects were found to have significant differences in the high abundance of the Bacteroides and Prevotella genera, respectively. No significant differences were found in the counts of Bifidabacterium, Enterobacteriaceae, C. coccoides-E. rectale group, C. leptum group, and Lactobacillus. Therefore, these findings on the microbiota of healthy Thais consuming different diets could provide helpful data for predicting the health of South East Asians with similar diets.

  9. Identification of gene expression elements in Histomonas meleagridis using splinkerette PCR, a variation of ligated adaptor PCR.

    PubMed

    Lynn, Elizabeth C; Beckstead, Robert B

    2012-02-01

    Histomonas meleagridis is the causative agent of blackhead disease in gallinaceous birds. Limited genetic information exists for this organism, with the majority of sequence information coming from the coding regions of genes. No information is available for intergenic regions that contain DNA elements required for the regulation of gene expression. In this study, we demonstrate that splinkerette PCR, a variation of ligated adaptor PCR, can be used to identify regions of unknown sequence that lie upstream and downstream of known genomic sequences. Using this technique, we identified upstream sequences of 2 β-tubulin genes. Sequence analysis identified the 5' coding portions of the β-tubulin genes, the intergenic regions, and 2 different open reading frames encoding for a putative serine/threonine phosphatase and a putative ras-related protein, racG. We predict that these intergenic regions contain polyadenylation and cleavage signals for the 2 open reading frames and initiator elements for the β-tubulin genes. Our research demonstrates the use of splinkerette PCR as a valuable tool to identify unknown DNA sequences. In addition, the identification of the regulatory elements necessary for gene transcription in H. meleagridis will provide tools for future studies on its gene expression.

  10. Repetitive extragenic palindromic PCR (REP-PCR) as an alternative method for detection of bulking in activated sludge.

    PubMed

    Sołtysik, Dagna A; Bednarek, Ilona A; Loch, Tomasz M; Gałka, Sabina E; Sypniewski, Daniel J; Machnik, Grzegorz M; Błaszczyk, Daria K

    2010-01-01

    Bulking of activated sludge is a world-wide problem which negatively affects wastewater treatment efficiency. The most common reasons of bulking are bacterial community changes, especially excessive growth of filamentous bacteria (filamentous bulking) or excess of biopolymers on the surface of non-filamentous microbes (non-filamentous or Zoogleal bulking). Because of the complex nature of the bulking phenomenon finding a successful bulking control strategy remains a very important issue that awaits new options and advices. The REP-PCR fingerprinting method has been applied to distinguish a bacterial community in non-bulking and bulking activated sludge. The characteristic REP-PCR fingerprinting patterns were compared with each other in terms of the presence or absence of bands and in terms of measured integrated optical density (IOD) of the bands. The obtained fingerprinting patterns, using Ward's clustering method, have been analyzed to determine homology/similarity relations between specific non-bulking and bulking sludge sampling. The received clustering results were in high concordance with activated sludge typing which generally is done based on physicochemical sludge analysis. The proposed REP-PCR method and statistical analysis of fingerprinting patterns seems to be a simple, rapid and effective method revealing differences between populations in non-bulking and bulking activated sludge. It may be useful for routine activated sludge monitoring and may be helpful in the early detection of the bulking process.

  11. Validation of Reference Genes for Real-Time Quantitative PCR (qPCR) Analysis of Avibacterium paragallinarum.

    PubMed

    Wen, Shuxiang; Chen, Xiaoling; Xu, Fuzhou; Sun, Huiling

    2016-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels.

  12. Validation of Reference Genes for Real-Time Quantitative PCR (qPCR) Analysis of Avibacterium paragallinarum

    PubMed Central

    Wen, Shuxiang; Chen, Xiaoling; Xu, Fuzhou; Sun, Huiling

    2016-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels. PMID:27942007

  13. Development of an RNA extraction protocol for detection of waterborne viruses by reverse transcriptase quantitative PCR (RT-qPCR).

    PubMed

    Jothikumar, N; Sobsey, M D; Cromeans, T L

    2010-10-01

    RNA extraction from environmental samples yields frequently an RNA preparation containing inhibitors of molecular reactions. Commercial RNA extraction kits commonly permit extraction of only 0.1-0.2 ml sample volume. An RNA extraction buffer (RNAX buffer) was formulated for the extraction of viral RNA from 4.0 ml using a silica column based protocol. To evaluate the RNAX buffer based protocol, we used hepatitis A virus (HAV) and coxsackievirus B3 (CVB3) to monitor the RNA extraction efficiency from environmental samples. For evaluation of viral RNA recovery from water concentrates which were prepared from river and pond water by PEG concentration, serial ten fold dilutions of two waterborne viruses were added to the water concentrates for evaluation by quantitative detection. Quantitative recovery of HAV and CVB3 was determined by reverse transcriptase quantitative real-time PCR (RT-qPCR). The extracted RNA was compatible with RT-qPCR and sensitivity of detection of 0.8PFU per reaction was found with RNAX buffer and the developed protocol. This level of sensitivity was obtained using viral RNA extracted from 4.0 ml of an inoculated water sample concentrate. The RNAX buffer developed in this study could be applicable to the detection of other pathogens in water and food.

  14. Efficacy comparison of adjuvants in PcrV vaccine against Pseudomonas aeruginosa pneumonia.

    PubMed

    Hamaoka, Saeko; Naito, Yoshifumi; Katoh, Hideya; Shimizu, Masaru; Kinoshita, Mao; Akiyama, Koichi; Kainuma, Atsushi; Moriyama, Kiyoshi; Ishii, Ken J; Sawa, Teiji

    2017-02-01

    Vaccination against the type III secretion system of P. aeruginosa is a potential prophylactic strategy for reducing the incidence and improving the poor prognosis of P. aeruginosa pneumonia. In this study, the efficacies of three different adjuvants, Freund's adjuvant (FA), aluminum hydroxide (alum) and CpG oligodeoxynucleotide (ODN), were examined from the viewpoint of inducing PcrV-specific immunity against virulent P. aeruginosa. Mice that had been immunized intraperitoneally with recombinant PcrV formulated with one of the above adjuvants were challenged intratracheally with a lethal dose of P. aeruginosa. The PcrV-FA immunized group attained a survival rate of 91%, whereas the survival rates of the PcrV-alum and PcrV-CpG groups were 73% and 64%, respectively. In terms of hypothermia recovery after bacterial instillation, PcrV-alum was the most protective, followed by PcrV-FA and PcrV-CpG. The lung edema index was lower in the PcrV-CpG vaccination group than in the other groups. PcrV-alum immunization was associated with the greatest decrease in myeloperoxidase in infected lungs, and also decreased the number of lung bacteria to a similar number as in the PcrV-FA group. There was less neutrophil recruitment in the lungs of mice vaccinated with PcrV-alum or PcrV-CpG than in those of mice vaccinated with PcrV-FA or PcrV alone. Overall, in terms of mouse survival the PcrV-CpG vaccine, which could be a relatively safe next-generation vaccine, showed a comparable effect to the PcrV-alum vaccine.

  15. Comparison of standard, quantitative and digital PCR in the detection of enterotoxigenic Bacteroides fragilis.

    PubMed

    Purcell, Rachel V; Pearson, John; Frizelle, Frank A; Keenan, Jacqueline I

    2016-09-30

    Gut colonization with enterotoxigenic Bacteroides fragilis (ETBF) appears to be associated with the development of colorectal cancer. However, differences in carriage rates are seen with various testing methods and sampling sites. We compared standard PCR, SYBR green and TaqMan quantitative PCR (qPCR) and digital PCR (dPCR) in detecting the B. fragilis toxin (bft) gene from cultured ETBF, and from matched luminal and faecal stool samples from 19 colorectal cancer patients. Bland-Altman analysis found that all three quantitative methods performed comparably in detecting bft from purified bacterial DNA, with the same limits of detection (<1 copy/μl). However, SYBR qPCR under-performed compared to TaqMan qPCR and dPCR in detecting bft in clinical stool samples; 13/38 samples were reported positive by SYBR, compared to 35 and 36 samples by TaqMan and dPCR, respectively. TaqMan qPCR and dPCR gave bft copy numbers that were 48-fold and 75-fold higher for the same samples than SYBR qPCR, respectively (p < 0.001). For samples that were bft-positive in both fecal and luminal stools, there was no difference in relative abundance between the sites, by any method tested. From our findings, we recommend the use of TaqMan qPCR as the preferred method to detect ETBF from clinical stool samples.

  16. Broad-range real time PCR and DNA sequencing for the diagnosis of bacterial meningitis.

    PubMed

    Deutch, Susanna; Pedersen, Lisbeth N; Pødenphant, Lone; Olesen, Rikke; Schmidt, Michael B; Møller, Jens K; Ostergaard, Lars

    2006-01-01

    Rapid aetiological diagnosis of bacterial meningitis is crucial for the early targeting of antimicrobial and adjuvant therapy. Broad-range polymerase chain reaction (PCR) targeting the 16S rRNA gene allows aetiological diagnosis of bacterial meningitis when applied to cerebrospinal fluid (CSF). We assessed the additional diagnostic effect of applying a novel broad-range real time PCR and subsequent DNA sequencing to culture, microscopy, and broad-range conventional PCR on CSF in patients with suspected bacterial meningitis. Broad-range conventional PCR and broad-range real time PCR with subsequent DNA sequencing were applied to 206 CSF specimens collected consecutively from 203 patients aged 6 d to 86 y. Patients' charts were reviewed for clinical information. 17 pathogens were identified by PCR and DNA sequencing or culture. Three specimens were negative by culture but positive by broad-range real time PCR. Three specimens were positive by culture but negative by broad-range real time PCR. Compared with culture, the sensitivity of broad-range real time PCR was 86%, and the specificity 98%. Conventional PCR resulted in a sensitivity of 64% and specificity of 98%. Broad-range real time PCR was generally comparable to culture of CSF and may be a useful supplement, particularly when antimicrobial therapy has been administered. Broad-range real time PCR was more sensitive than broad-range conventional PCR and microscopy.

  17. Single-step PCR in molecular diagnosis of hepatitis C virus infection.

    PubMed Central

    Farma, E; Boeri, E; Bettini, P; Repetto, C M; McDermott, J; Lillo, F B; Varnier, O E

    1996-01-01

    The diagnostic utility of two PCR systems and three PCR detection methods for hepatitis C virus (HCV) RNA was evaluated in serum samples. A nested PCR was considered the reference assay and was compared with two single-step PCR methods: the first is based on the detection of PCR products by liquid hybridization with a 32P-end-labeled probe, and the second is the Roche Amplicor colorimetric assay using microwell plate hybridization with a specific nucleic acid probe. Using the Pelicheck HCV RNA Eurohep genotype 1 proficiency panel, our laboratory achieved medium-high levels of performance with all three methods. The highest sensitivity was, however, observed with the isotopic single-step PCR (ss-PCR) method. The analytical sensitivity of ss-PCR with isotopic detection and ss-PCR with colorimetric detection was identical to that of nested PCR, with a 100% result concordance. Comparison of ss-PCR with enzyme-linked immunosorbent and RIBA assays in the analysis of clinical samples showed a high concordance. ss-PCR methods appear more suitable for diagnostic application. Nevertheless, HCV RNA PCR cannot be considered a screening assay; it should be requested in the presence of reactive serology or specific clinical symptomatology with altered liver parameters, and it is a potential tool for the follow-up of patients with HCV infection. PMID:8940466

  18. Multiplex SYBR® green-real time PCR (qPCR) assay for the detection and differentiation of Bartonella henselae and Bartonella clarridgeiae in cats.

    PubMed

    Staggemeier, Rodrigo; Pilger, Diogo André; Spilki, Fernando Rosado; Cantarelli, Vlademir Vicente

    2014-01-01

    A novel SYBR® green-real time polymerase chain reaction (qPCR) was developed to detect two Bartonella species, B. henselae and B. clarridgeiae, directly from blood samples. The test was used in blood samples obtained from cats living in animal shelters in Southern Brazil. Results were compared with those obtained by conventional PCR targeting Bartonella spp. Among the 47 samples analyzed, eight were positive using the conventional PCR and 12 were positive using qPCR. Importantly, the new qPCR detected the presence of both B. henselae and B. clarridgeiae in two samples. The results show that the qPCR described here may be a reliable tool for the screening and differentiation of two important Bartonella species.

  19. A-T linker adapter polymerase chain reaction for determining flanking sequences by rescuing inverse PCR or thermal asymmetric interlaced PCR products.

    PubMed

    Trinh, Quoclinh; Zhu, Pengyu; Shi, Hui; Xu, Wentao; Hao, Junran; Luo, Yunbo; Huang, Kunlun

    2014-12-01

    The polymerase chain reaction (PCR)-based genome walking method has been extensively used to isolate unknown flanking sequences, whereas nonspecific products are always inevitable. To resolve these problems, we developed a new strategy to isolate the unknown flanking sequences by combining A-T linker adapter PCR with inverse PCR (I-PCR) or thermal asymmetric interlaced PCR (TAIL-PCR). The result showed that this method can be efficiently achieved with the flanking sequence from the Arabidopsis mutant and papain gene. Our study provides researchers with an additional method for determining genomic DNA flanking sequences to identify the target band from bulk of bands and to eliminate the cloning step for sequencing. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. [Frequency of intestinal microsporidian infections in HIV-positive patients, as diagnosis by quick hot Gram chromotrope staining and PCR].

    PubMed

    Botero, Jorge H; Montoya, Martha Nelly; Vanegas, Adriana Lucía; Díaz, Abel; Navarro-i-Martínez, Luis; Bornay, Fernando Jorge; Izquierdo, Fernando; del Aguila, Carmen; Agudelo, Sonia del Pilar

    2004-12-01

    Microsporidia are intracellular obligate parasites, today mainly associated with diarrhea in AIDS patients. Microsporidia prevalence ranges from 8% to 52% in different countries, as evaluated by several diagnostic methods, such as the stain test and PCR. In Medellín, Colombia, its frequency is unknown, and hence, a study was undertaken to determine the frequency of intestinal microsporidiosis in HIV patients, by means of the quick-hot Gram chromotrope test and the PCR. A prospective and descriptive study of an intentional population of all HIV-positive patients was sent to the Grupo Interdisciplinario para el Estudio de las Parasitosis Intestinales laboratory by institutions treating the HIV-positive patients of Medellín between August 2001 and September 2002. The clinical-epidemiological survey included a serial stool test with direct concentration and special stains for coccidiae and intestinal microsporidia. In addition, counts of lymphocytes TCD4+ and viral load were requested. One hundred and three patients with ages ranging from 2-74 years were evaluated. Seventy percent presented with diarrhea--mostly in men (83.5%). The overall frequency of intestinal microsporidiosis was 3.9% and that of other intestinal parasitic infections was 39.8%. Three of the four patients positive for microsporida were infected with Enterocytozoon bieneusi and one with Encephalitozoon intestinalis. The microsporidiosis frequency was relatively low with 3 of the 4 cases associated with protracted diarrhea, counts of LTCD4+ below 100 cel/microl and viral loads up to 100,000 copies.

  1. The PCR-GLOBWB global hydrological reanalysis product

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Wanders, N.; Sutanudjaja, E.; Van Beek, L. P.

    2013-12-01

    Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal land surface hydrological reanalysis with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we used PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB is basically a leaky bucket type of water balance model with a process-based simulation of moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid distributions of elevation, land cover and soil saturation distribution. The model thus includes detailed schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. . By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrated the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow module, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields due to local topographic and orographic effects. Results show that the model parameters can

  2. The PCR-GLOBWB global hydrological reanalysis product

    NASA Astrophysics Data System (ADS)

    Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens

    2014-05-01

    Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal "land surface hydrological reanalysis" dataset with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we use PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB simulates moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid variations of elevation, land cover and soil saturation distribution. The model includes improved schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. It also dynamically simulates water storage in reservoirs, water demand and the withdrawal, allocation and consumptive use of surface water and groundwater resources. By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrate the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow accumulation and melt, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation

  3. FUNGAL-SPECIFIC PCR PRIMERS DEVELOPED FOR ANALYSIS OF THE ITS REGION OF ENVIRONMENTAL DNA EXTRACTS

    EPA Science Inventory

    Background The Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) are highly variable sequences of great importance in distinguishing fungal species by PCR analysis. Previously published PCR primers available for amplifying these sequences from environmenta...

  4. Data Analysis of Transcriptomic Sequences and qPCR Validations for Microbial Communities during Algal Blooms

    EPA Pesticide Factsheets

    A training opportunity is open to a highly microbial-research-motivated student to conduct sequence analysis, explore novel genes and metabolic pathways, validate resultant findings using qPCR/RT-qPCR and summarize the findings

  5. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    PubMed Central

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  6. Comprehensive GMO detection using real-time PCR array: single-laboratory validation.

    PubMed

    Mano, Junichi; Harada, Mioko; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi; Nakamura, Kosuke; Akiyama, Hiroshi; Teshima, Reiko; Noritake, Hiromichi; Hatano, Shuko; Futo, Satoshi; Minegishi, Yasutaka; Iizuka, Tayoshi

    2012-01-01

    We have developed a real-time PCR array method to comprehensively detect genetically modified (GM) organisms. In the method, genomic DNA extracted from an agricultural product is analyzed using various qualitative real-time PCR assays on a 96-well PCR plate, targeting for individual GM events, recombinant DNA (r-DNA) segments, taxon-specific DNAs, and donor organisms of the respective r-DNAs. In this article, we report the single-laboratory validation of both DNA extraction methods and component PCR assays constituting the real-time PCR array. We selected some DNA extraction methods for specified plant matrixes, i.e., maize flour, soybean flour, and ground canola seeds, then evaluated the DNA quantity, DNA fragmentation, and PCR inhibition of the resultant DNA extracts. For the component PCR assays, we evaluated the specificity and LOD. All DNA extraction methods and component PCR assays satisfied the criteria set on the basis of previous reports.

  7. Rapid detection and biovar differentiation of Ureaplasma urealyticum in clinical specimens by PCR.

    PubMed

    Teng, L J; Ho, S W; Ho, H N; Liaw, S J; Lai, H C; Luh, K T

    1995-07-01

    On the basis of the nucleotide sequence of the multiple-banded (MB) antigen genes of Ureaplasma urealyticum, a polymerase chain reaction (PCR) technique was developed for rapid detection and biovar differentiation of U. urealyticum in a total of 100 urogenital specimens from 50 female patients. Positive PCR UM-1 amplification was found in 28 cervical swabs and 31 urine samples. Overall agreement between PCR and culture was 95%. Members of the two biovars of U. urealyticum could be distinguished by the size of the PCR UM-1 amplification products. Biovar differentiation was also demonstrated by two additional sets of PCRs: PCR UM-2 and UM-3. The PCR UM-2 was used to amplify biovar 1, while PCR UM-3 amplified biovar 2 specifically. The results indicated that use of the MB antigen gene as a target for PCR amplification could provide rapid and specific detection and biotyping of ureaplasma DNA in urogenital samples.

  8. Comparison of a PCR assay in whole blood and serum specimens for canine brucellosis diagnosis.

    PubMed

    Keid, L B; Soares, R M; Vasconcellos, S A; Salgado, V R; Megid, J; Richtzenhain, L J

    2010-07-17

    The performance of a serum PCR assay was compared with that of a blood PCR assay for the diagnosis of canine brucellosis caused by Brucella canis in 72 dogs. The dogs were classified into three groups (infected, non-infected and suspected brucellosis) according to the results of blood culture and serological tests. The sensitivities of blood PCR and serum PCR were, respectively, 97.14 per cent and 25.71 per cent. The specificities of both were 100 per cent. In the group of dogs with suspected brucellosis, three were positive by blood PCR and none was positive by serum PCR. Serum PCR showed little value for the direct diagnosis of canine brucellosis as the assay had low diagnostic sensitivity and fewer positive dogs were detected by this test than by blood culture, blood PCR, rapid slide agglutination test (RSAT) and RSAT with 2-mercaptoethanol.

  9. FUNGAL-SPECIFIC PCR PRIMERS DEVELOPED FOR ANALYSIS OF THE ITS REGION OF ENVIRONMENTAL DNA EXTRACTS

    EPA Science Inventory

    Background The Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) are highly variable sequences of great importance in distinguishing fungal species by PCR analysis. Previously published PCR primers available for amplifying these sequences from environmenta...

  10. Diagnosis of aerobic vaginitis by quantitative real-time PCR.

    PubMed

    Rumyantseva, T A; Bellen, G; Savochkina, Y A; Guschin, A E; Donders, G G G

    2016-07-01

    To evaluate a real-time PCR-based technique to quantify bacteria associated with aerobic vaginitis (AV) as a potential test. Vaginal samples from 100 women were tested by wet-mount microscopy, gram stain and quantitative real-time PCR targeting Enterobacteriacea, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Streptococcus agalactiae, S. aureus; Lactobacillus spp. AV diagnosis obtained by wet-mount microscopy was used as reference. Some level of AV was diagnosed in 23 (23.7 %) cases. Various concentrations of Enterobacteriacea, Staphylococcus spp., Streptococcus spp. were detected an all patients. Enterococcus spp. were detected in 76 (78.3 %) cases. Summarized concentrations of aerobes were tenfold higher in AV-positive compared to AV-negative cases [7.30lg vs 6.06lg (p = 0.02)]. Concentrations of aerobes in severe, moderate and light AV cases did not vary significantly (p = 0.14). Concentration of lactobacilli was 1000-fold lower in AV-positive cases compared to normal cases (5.3lg vs 8.3lg, p < 0.0001). Streptococcus spp. dominated in the majority of AV-positive cases [19/22 (86.4 %) samples]. The relation of high loads of aerobes to the low numbers of Lactobacilli are a reliable marker for the presence of AV and could substitute microscopy as a test. PCR may be a good standardized substitution for AV diagnosis in settings where well-trained microscopists are lacking.

  11. Multiplex PCR testing for nine different sexually transmitted infections.

    PubMed

    Kriesel, John D; Bhatia, Amiteshwar S; Barrus, Cammie; Vaughn, Mike; Gardner, Jordan; Crisp, Robert J

    2016-12-01

    Current sexually transmitted infection (STI) testing is not optimal due to delays in reporting or missed diagnoses due to a lack of comprehensive testing. The FilmArray® (BioFire Diagnostics, LLC, Salt Lake City, Utah) is a user-friendly, fully automated, multiplex PCR system that is being developed for rapid point-of-care use. A research-use-only STI panel including multiple PCR primer sets for each organism was designed to detect Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum, Trichomonas vaginalis, Mycoplasma genitalium, Ureaplasma urealyticum, Haemophilus ducreyi, and herpes simplex virus (HSV) types 1 and 2. Standard clinical testing included Gram stain, nucleic acid amplification, wet mount examination, herpes simplex virus culture, and syphilis IgG. Standard clinical tests were not available for all the organisms tested by the FilmArray STI panel. Two hundred and ninety-five clinical specimens from 190 subjects were directly compared to standard testing. Urine (n = 146), urethral/cervical swabs (31), oral swabs (60), rectal swabs (43), and ulcer swabs (15) were tested. Among the tested samples, FilmArray detected C. trachomatis in 39 (13%), N. gonorrhoeae in 20 (7%), T. vaginalis in nine (3%), HSV 1 in five (2%), HSV 2 in five (2%), U. urealyticum in 36 (12%), M. genitalium in eight (3%), and T. pallidum in 11 (4%). Concordance between the FilmArray STI panel and standard nucleic acid amplification testing for C. trachomatis was 98% and for N. gonorrhoeae was 97%. Multiplex PCR STI testing has the potential to improve public health by providing rapid, sensitive, and reliable results within the clinic or nearby laboratory.

  12. Detection and strain identification of Actinobacillus actinomycetemcomitans by nested PCR.

    PubMed Central

    Leys, E J; Griffen, A L; Strong, S J; Fuerst, P A

    1994-01-01

    By using PCR, Actinobacillus actinomycetemcomitans strains were identified directly from plaque samples without the need to isolate or culture bacteria. DNA fragments were generated by a nested, two-step PCR amplification of the ribosomal spacer region between the 16S and 23S rRNA genes. For the first amplification, primers homologous to sequences common to all bacterial species were used. This was followed by a second amplification with primers specific to A. actinomycetemcomitans. The ribosomal DNA spacer region was amplified from as few as 10 bacterial cells within a total population of 10(8) cells (0.00001%), and cross-reactivity between species was not observed. DNA fragments specific for Porphyromonas gingivalis were generated from the same samples by using a P. gingivalis-specific primer, and equivalent sensitivity and specificity were observed. A. actinomycetemcomitans was detected in 60% and P. gingivalis was detected in 79% of 52 subjects tested. Sequence analysis of the spacer region DNA fragment for A. actinomycetemcomitans gave precise strain identification, producing unique sequences for seven reference strains and identification of nine plaque-derived isolates. A phylogenetic tree based on quantitative sequence relationships was constructed. Two-step PCR amplification directly from plaque samples combined with sequence analysis of the ribosomal DNA spacer region provides a sensitive assay for detection and strain identification of multiple species directly from a single plaque sample. This simplified approach provides a practical method for large-scale studies on the transmission and pathogenicity of periodontitis-associated bacteria. Images PMID:8051258

  13. PCR and Genotyping for HPV in Cervical Cancer Patients

    PubMed Central

    Prakash, Pradyot; Patne, Shashikant C U; Singh, Ashish Kumar; Kumar, Mohan; Mishra, Mukti Nath; Gulati, Anil Kumar

    2016-01-01

    Aims: To devise nested multiplex polymerase chain reaction (NMPCR) protocol for detection of mucosal human papilloma viruses (HPVs) and typing of HPV-16 and -18 in formalin-fixed, paraffin-embedded (FFPE) tissues of carcinoma cervix (CaCx). Settings and Design: Cross-sectional observational study. Materials and Methods: NMPCR was done for simultaneous detection of HPV, targeting 134 bp L1 capsid gene employing GP+/mGP+ primers and typing of genotypes-16 and -18, targeting E6/E7 gene from 34 FFPE tissue blocks of CaCx and cervical intraepithelial neoplasia (CIN). Detection of 142 bp consensus sequence of L1 capsid gene was performed by nested PCR employing MY/GP+ primers. Sequencing of selected PCR amplicons of the later protocol obtained from control cell line DNA and 5 select samples were done for validation of the NMPCR protocol. Statistical Analysis Used: Calculation of percentage from the Microsoft Excel Software. Results: Of 26 FFPE samples of CaCx, 17 (65.3%) samples were found positive for HPV by NMPCR. Amplicons of 142 bp L1 capsid gene employing MY/GP+ primers were observed in 11 (42.3%) samples of CaCx. Nearly 25% samples of CIN were positive for HPV. On sequence analysis, it was observed that the sample typed as HPV-16 by NMPCR was found to be the same on sequencing of amplicons obtained after MY/GP+ nested PCR. Conclusions: This study indicates the usefulness of our NMPCR protocol for detection of mucosal HPVs and typing of HPV-16 and -18 from FFPE tissue samples of CaCx. The NMPCR protocol may be used to detect HPV and type common genotypes-16 and -18 in fresh tissue of cervical biopsy or scrape samples for screening of CaCx. PMID:27621560

  14. PCR-based polymorphisms in neurofibromatosis type 1 (NFI)

    SciTech Connect

    Lai, P.S.; Chee, S.; Low, P.S.

    1994-09-01

    Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders in humans with an incidence of 1 in 3,000. The NF1 gene is located on chromosome 17q 11.2 and encodes an ubiquitously expressed transcript of about 13kb. Direct mutation detection is difficult in this disorder due to the large gene size, high mutation rate and variety of mutations. We have studied the allele frequencies of seven PCR-based polymorphisms. Six of the probes used flank the NF1 gene, namely p11.3C4.2/Msp I (proximal), pEW206/Msp I (distal), p2.f9.8/Rsa I (distal), pEW207/Bgl II (distal), pEW207/Hind III (distal) and pHHH202/Rsa I (proximal). An intragenic RFLP, pEvi 2B-B/Eco R1 polymorphism in intron 27, was also analyzed by PCR. Allele frequencies for 48 normal unrelated individuals were obtained as follows: A1 = 0.40, A2 = 0.6 (p11.3C4.2/Msp I), A1 = 0.44, A2 = 0.56 (pEW206/Msp I), A1 = 0.17, A2 = 0.83 (p2.F9.8/Rsa I), A1 = 0.64, A2 = 0.36 (pEW207/Bgl I), A1 = 0.45, A2 = 0.55 (pEvi 2B-B/Eco RI). Heterozygosity rates of the alleles ranged from 20.8% to 51.7%. Using a combination of these markers, seven local families with NF1 were studied. Normal Mendelian segregation of alleles was observed in these families and no recombination was detected so far. These PCR-based markers were found to be useful for linkage analysis in our families.

  15. Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection.

    PubMed

    Tsai, Yun-Long; Wang, Hwa-Tang Thomas; Chang, Hsiao-Fen Grace; Tsai, Chuan-Fu; Lin, Ching-Ko; Teng, Ping-Hua; Su, Chen; Jeng, Chien-Chung; Lee, Pei-Yu

    2012-01-01

    Insulated isothermal PCR (iiPCR), established on the basis of Ralyeigh-Bénard convection, is a rapid and low-cost platform for nucleic acid amplification. However, the method used for signal detection, namely gel electrophoresis, has limited the application of iiPCR. In this study, TaqMan probe-based iiPCR system was developed to obviate the need of post-amplification processing. This system includes an optical detection module, which was designed and integrated into the iiPCR device to detect fluorescent signals generated by the probe. TaqMan probe-iiPCR assays targeting white spot syndrome virus (WSSV) and infectious myonecrosis virus were developed for preliminary evaluation of this system. Significant elevation of fluorescent signals was detected consistently among positive iiPCR reactions in both assays, correlating with amplicon detection by gel electrophoresis analysis. After condition optimization, a threshold value of S/N (fluorescent intensity(after)/fluorescent intensity(before)) for positive reactions was defined for WSSV TaqMan probe-iiPCR on the basis of 20 blank reactions. WSSV TaqMan probe-iiPCR generated positive S/Ns from as low as 10(1) copies of standard DNA and lightly infected Litopenaeus vannamei. Compared with an OIE-certified nested PCR, WSSV TaqMan probe-iiPCR showed a sensitivity of 100% and a specificity of 96.67% in 120 WSSV-free or lightly infected shrimp samples. Generating positive signals specifically and sensitively, TaqMan probe-iiPCR system has a potential as a low-cost and rapid on-site diagnostics method.

  16. Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat.

    PubMed

    Brusa, Victoria; Galli, Lucía; Linares, Luciano H; Ortega, Emanuel E; Lirón, Juan P; Leotta, Gerardo A

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) are recognized as food-borne pathogens. We developed and validated two SYBR green PCR (SYBR-PCR) and a real-time multiplex PCR (RT-PCR) to detect stx1 and stx2 genes in meat samples, and compared these techniques in ground beef samples from retail stores. One set of primers and one hydrolysis probe were designed for each stx gene. For RT-PCR, an internal amplification control (IAC) was used. All PCR intra-laboratory validations were performed using pure strains and artificially contaminated ground beef samples. A total of 50 STEC and 30 non-STEC strains were used. Naturally contaminated ground beef samples (n=103) were obtained from retail stores and screened with SYBR-PCR and RT-PCR, and stx-positive samples were processed for STEC isolation. In the intra-laboratory validation, each PCR obtained a 1×10(2) CFU mL(-1) limit of detection and 100% inclusivity and exclusivity. The same results were obtained when different laboratory analysts in alternate days performed the assay. The level of agreement obtained with SYBR-PCR and RT-PCR was kappa=0.758 and 0.801 (P<0.001) for stx1 and stx2 gene detection, respectively. Two PCR strategies were developed and validated, and excellent performance with artificially contaminated ground beef samples was obtained. However, the efforts made to isolate STEC from retail store samples were not enough. Only 11 STEC strains were isolated from 35 stx-positive ground beef samples identically detected by all PCRs. The combination of molecular approaches based on the identification of a virulence genotypic profile of STEC must be considered to improve isolation.

  17. Analytical validation of a reverse transcriptase droplet digital PCR (RT-ddPCR) for quantitative detection of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Jia, Peng; Purcell, Maureen; Pan, Guang; Wang, Jinjin; Kan, Shifu; Liu, Yin; Zheng, Xiaocong; SHi, Xiujie; He, Junqiang; Yu, Li; Hua, Qunyi; Lu, Tikang; Lan, Wensheng; Winton, James; Jin, Ningyi; Liu, Hong

    2017-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an important pathogen of salmonid fishes. A validated universal reverse transcriptase quantitative PCR (RT-qPCR) assay that can quantify levels of IHNV in fish tissues has been previously reported. In the present study, we adapted the published set of IHNV primers and probe for use in a reverse-transcriptase droplet digital PCR (RT-ddPCR) assay for quantification of the virus in fish tissue samples. The RT-ddPCR and RT-qPCR assays detected 13 phylogenetically diverse IHNV strains, but neither assay produced detectable amplification when RNA from other fish viruses was used. The RT-ddPCR assay had a limit of detection (LOD) equating to 2.2 plaque forming units (PFU)/μl while the LOD for the RT-qPCR was 0.2 PFU/μl. Good agreement (69.4–100%) between assays was observed when used to detect IHNV RNA in cell culture supernatant and tissues from IHNV infected rainbow trout (Oncorhynchus mykiss) and arctic char (Salvelinus alpinus). Estimates of RNA copy number produced by the two assays were significantly correlated but the RT-qPCR consistently produced higher estimates than the RT-ddPCR. The analytical properties of the N gene RT-ddPCR test indicated that this method may be useful to assess IHNV RNA copy number for research and diagnostic purposes. Future work is needed to establish the within and between laboratory diagnostic performance of the RT-ddPCR assay.

  18. Amelogenin sex determination by pyrosequencing of short PCR products.

    PubMed

    Tschentscher, Frank; Frey, Ulrich H; Bajanowski, Thomas

    2008-07-01

    We developed an assay, which allows the sex determination of human DNA samples by pyrosequencing of short PCR products. A 48/45-bp stretch including primers of the amelogenin gene with a 3-bp insertion on the Y chromosome was chosen for analysis. In an initial study, we correctly typed 50 male and 50 female DNA samples from unrelated donors. First experiments with forensic samples, which failed in conventional analyses, indicate that this approach might be an advantage when dealing with degraded DNA.

  19. PCR-based typing of IncC plasmids.

    PubMed

    Harmer, Christopher J; Hall, Ruth M

    IncC (A/C2) plasmids are known to play an important role in the spread of multiple antibiotic resistance determinants, including extended-spectrum β-lactamases and carbapenamases, amongst Gram negative bacterial populations. The ability to identify and track these plasmids is valuable in epidemiological and clinical studies. A recent comparative analysis of the backbones of sequenced IncC plasmids identified two distinct lineages, type 1 and type 2, with different evolutionary histories. Here, a simple PCR method to rapidly assign plasmids to one of these lineages by detecting variable regions in the backbone was developed. This PCR scheme uses two primer pairs to assign the plasmid to a lineage, and an additional two PCRs can be used to detect the i1 and i2 insertions, which are only found in type 2. PCRs were also developed to detect the presence or absence of the sul2-containing ARI-B island, which is found in some plasmids belonging to both type 1 and type 2, and the ARI-A island found in most type 1 plasmids. The PCR strategy was validated using sequenced type 1 plasmids pRMH760 and pDGO100, and the type 2 plasmid pSRC119-A/C, and a collection of non-IncC plasmids in Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae backgrounds. An IncC plasmid detected in an antibiotic susceptible commensal E. coli isolate was examined and found to be a type 1, lacking any antibiotic resistance islands and missing a large backbone segment. Examination of pIP40a, an IncC plasmid isolated in Paris in 1969, by PCR revealed that it belongs to type 1 but lacks ARI-A. However, it includes both ends of the integrative element GIsul2, whereas only remnants of one end of this element are found in more recently isolated IncC plasmids. The sequence of pIP40a was determined and confirmed the assignment to type 1 and revealed the presence of a complete copy of GIsul2.

  20. [Differentiation of geographic biovariants of smallpox virus by PCR].

    PubMed

    Babkin, I V; Babkina, I N

    2010-01-01

    Comparative analysis of amino acid and nucleotides sequences of ORFs located in extended segments of the terminal variable regions in variola virus genome detected a promising locus for viral genotyping according to the geographic origin. This is ORF O1L of VARV. The primers were calculated for synthesis of this ORF fragment by PCR, which makes it possible to distinguish South America-Western Africa genotype from other VARV strains. Subsequent RFLP analysis reliably differentiated Asian strains from African strains (except Western Africa isolates). This method has been tested using 16 VARV strains from various geographic regions. The developed approach is simple, fast and reliable.