Science.gov

Sample records for pd quasiparticle random

  1. Relativistic continuum quasiparticle random-phase approximation in spherical nuclei

    SciTech Connect

    Daoutidis, I.; Ring, P.

    2011-04-15

    We have calculated the strength distributions of the dipole response in spherical nuclei, ranging all over the periodic table. The calculations were performed within two microscopic models: the discretized quasiparticle random-phase approximation and the continuum quasiparticle random-phase approximation, which takes into account the coupling of the single-particle continuum in an exact way. Pairing correlations are treated with the BCS model. In the calculations, two density functionals were used, namely, the PC-F1 and the DD-PC1. Both are based on relativistic point-coupling Lagrangians. It is explicitly shown that this model is capable of reproducing the giant- as well as the pygmy-dipole resonance for open-shell nuclei in a high level of quantitative agreement with the available experimental observations.

  2. Finite amplitude method for the quasiparticle random-phase approximation

    SciTech Connect

    Avogadro, Paolo; Nakatsukasa, Takashi

    2011-07-15

    We present the finite amplitude method (FAM), originally proposed in Ref. [17], for superfluid systems. A Hartree-Fock-Bogoliubov code may be transformed into a code of the quasiparticle-random-phase approximation (QRPA) with simple modifications. This technique has advantages over the conventional QRPA calculations, such as coding feasibility and computational cost. We perform the fully self-consistent linear-response calculation for the spherical neutron-rich nucleus {sup 174}Sn, modifying the hfbrad code, to demonstrate the accuracy, feasibility, and usefulness of the FAM.

  3. Calculating beta decay in the deformed self-consistent quasiparticle random phase approximation

    SciTech Connect

    Engel, Jonathan; Mustonen, M. T.

    2016-06-21

    We discuss a recent global calculation of beta-decay rates in the self-consistent Skyrme quasiparticle random phase approximation (QRPA), with axially symmetric nuclear deformation treated explicitly. The calculation makes makes use of the finite-amplitude method, first proposed by Nakatsukasa and collaborators, to reduce computation time. The results are comparable in quality to those of several other global QRPA calculations. The QRPA may have reached the limit of its accuracy.

  4. Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Montani, F.; Reboiro, M.

    1999-08-01

    The proton-neutron quasiparticle random phase approximation (pn-QRPA) is extended to include next to leading order terms of the QRPA harmonic expansion. The procedure is tested for the case of a separable Hamiltonian in the SO(5) symmetry representation. The pn-QRPA equation of motion is solved by using a boson expansion technique adapted to the treatment of proton-neutron correlations. The resulting wave functions are used to calculate the matrix elements of double-Fermi transitions.

  5. Relativistic quasiparticle random-phase approximation calculation of total muon capture rates

    SciTech Connect

    Marketin, T.; Paar, N.; Niksic, T.; Vretenar, D.

    2009-05-15

    The relativistic proton-neutron quasiparticle random phase approximation (pn-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from {sup 12}C to {sup 244}Pu, for which experimental values are available. The microscopic theoretical framework is based on the relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the pn-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the pn-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value g{sub A}=1.262 by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.

  6. QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation

    NASA Astrophysics Data System (ADS)

    Samana, A. R.; Krmpotić, F.; Bertulani, C. A.

    2010-06-01

    A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.

  7. Deformed quasiparticle random phase approximation formalism for single- and two-neutrino double {beta} decay

    SciTech Connect

    Alvarez-Rodriguez, R.; Sarriguren, P.; Moya de Guerra, E.; Pacearescu, L.; Faessler, Amand; Simkovic, F.

    2004-12-01

    We use a deformed quasiparticle random phase approximation formalism to describe simultaneously the energy distributions of the single {beta} Gamow-Teller strength and the two-neutrino double {beta} decay matrix elements. Calculations are performed in a series of double {beta} decay partners with A=48, 76, 82, 96, 100, 116, 128, 130, 136, and 150, using deformed Woods-Saxon potentials and deformed Skyrme Hartree-Fock mean fields. The formalism includes a quasiparticle deformed basis and residual spin-isospin forces in the particle-hole and particle-particle channels. We discuss the sensitivity of the parent and daughter Gamow-Teller strength distributions in single {beta} decay, as well as the sensitivity of the double {beta} decay matrix elements to the deformed mean field and to the residual interactions. Nuclear deformation is found to be a mechanism of suppression of the two-neutrino double {beta} decay. The double {beta} decay matrix elements are found to have maximum values for about equal deformations of parent and daughter nuclei. They decrease rapidly when differences in deformations increase. We remark on the importance of a proper simultaneous description of both double {beta} decay and single Gamow-Teller strength distributions. Finally, we conclude that for further progress in the field, it would be useful to improve and complete the experimental information on the studied Gamow-Teller strengths and nuclear deformations.

  8. Linear response of light deformed nuclei investigated by self-consistent quasiparticle random-phase approximation

    SciTech Connect

    Losa, C.; Doessing, T.; Pastore, A.; Vigezzi, E.; Broglia, R. A.

    2010-06-15

    We present a calculation of the properties of vibrational states in deformed, axially-symmetric even-even nuclei, within the framework of a fully self-consistent quasiparticle random phase approximation (QRPA). The same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the case of spherical nuclei against fully self-consistent calculations published in the literature, finding excellent agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of spurious modes. Isoscalar and isovector responses in the deformed {sup 24-26}Mg, {sup 34}Mg isotopes are presented and compared to experimental findings.

  9. Pairing in spherical nuclei: Quasiparticle random-phase approximation calculations with the Gogny interaction

    NASA Astrophysics Data System (ADS)

    De Donno, V.; Co', G.; Anguiano, M.; Lallena, A. M.

    2017-05-01

    We investigate the effects of the pairing in spherical nuclei. We use the same finite-range interaction of Gogny type in the three steps of our approach, Hartree-Fock, Bardeen, Cooper, and Schrieffer, and quasiparticle random-phase-approximation calculations. We study electric- and magnetic-dipole and quadrupole and octupole excitations in oxygen and calcium isotopes and also in isotones with 20 neutrons. We investigate the pairing effects on single-particle energies and occupation probabilities, on the excitation energies, B values, and collectivity of low-lying states including the isoscalar electric-dipole and magnetic-dipole excitations, and also the giant resonances. The inclusion of the pairing increases the values of the excitation energies in all the cases that we have studied. In general, the effects of the pairing are too small to noticeably improve the agreement with the available experimental data.

  10. Self-consistent quasiparticle random-phase approximation for a multilevel pairing model

    SciTech Connect

    Hung, N. Quang; Dang, N. Dinh

    2007-11-15

    Particle-number projection within the Lipkin-Nogami (LN) method is applied to the self-consistent quasiparticle random-phase approximation (SCQRPA), which is tested in an exactly solvable multilevel pairing model. The SCQRPA equations are numerically solved to find the energies of the ground and excited states at various numbers {omega} of doubly degenerate equidistant levels. The use of the LN method allows one to avoid the collapse of the BCS (QRPA) to obtain the energies of the ground and excited states as smooth functions of the interaction parameter G. The comparison between results given by different approximations such as the SCRPA, QRPA, LNQRPA, SCQRPA, and LNSCQRPA is carried out. Although the use of the LN method significantly improves the agreement with the exact results in the intermediate coupling region, we found that in the strong coupling region the SCQRPA results are closest to the exact ones.

  11. Quasiparticle random phase approximation predictions of the gamma-ray strength functions using the Gogny force

    NASA Astrophysics Data System (ADS)

    Hilaire, Stéphane; Goriely, Stéphane; Péru, Sophie; Lechaftois, François; Deloncle, Isabelle; Martini, Marco

    2017-09-01

    Dipole excitations of nuclei are crucial since they play an important role in nuclear reaction modeling in connection with the photoabsorption and the radiative capture processes. We present here results for the gamma-ray strength function obtained in large-scale axially-symmetric deformed quasiparticle (qp) random phase approximations approach using the finite-range Gogny force, with a particular emphasis on the E1 mode. The convergence with respect to the number of harmonic oscillator shells adopted and the cut-off introduced in the 2-quasiparticle excitation energy space is analyzed. The microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA (HFB+QRPA) calculation has unfortunately to be broken, some phenomenological corrections being needed to take into account effects beyond the standard 2-qp QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. The corresponding phenomenological parameters are adjusted on experimental photoabsorption data. In such a procedure, a rather satisfactory description of experimental data is obtained. To study the sensitivity of these phenomenological corrections on the extrapolation, both at low energies and towards exotic neutron-rich nuclei, three different prescriptions are considered. They are shown to lead to rather similar predictions of the E1 strength at low energies as well as for exotic neutron-rich nuclei. The Gogny-HFB+QRPA strength is finally applied to the calculation of radiative neutron capture cross sections and the predictions compared with those obtained with more traditional Lorentzian-type approaches.

  12. Particle-particle and quasiparticle random phase approximations: Connections to coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Scuseria, Gustavo E.; Henderson, Thomas M.; Bulik, Ireneusz W.

    2013-09-01

    We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a "correct bosonization" in the sense that the wavefunction and Hilbert space are exactly fermionic, yet the amplitude equations can be interpreted as adding different quasibosonic RPA channels together. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA and qp-RPA equations are textbook material in nuclear structure physics but are largely unknown in quantum chemistry, where particle number fluctuations and Bogoliubov determinants are rarely used. We believe that the ideas and connections discussed in this paper may help design improved ways of incorporating RPA correlation into density functionals based on a CC perspective.

  13. Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group

    SciTech Connect

    Hergert, H.; Papakonstantinou, P.; Roth, R.

    2011-06-15

    We have developed a fully consistent framework for calculations in the quasiparticle random-phase approximation (QRPA) with NN interactions from the Similarity Renormalization Group (SRG) and other unitary transformations of realistic interactions. The consistency of our calculations, which use the same Hamiltonian to determine the Hartree-Fock-Bogoliubov ground states and the residual interaction for QRPA, guarantees an excellent decoupling of spurious strength, without the need for empirical corrections. While work is under way to include SRG-evolved 3N interactions, we presently account for some 3N effects by means of a linearly density-dependent interaction, whose strength is adjusted to reproduce the charge radii of closed-shell nuclei across the whole nuclear chart. As a first application, we perform a survey of the monopole, dipole, and quadrupole response of the calcium isotopic chain and of the underlying single-particle spectra, focusing on how their properties depend on the SRG parameter {lambda}. Unrealistic spin-orbit splittings suggest that spin-orbit terms from the 3N interaction are called for. Nevertheless, our general findings are comparable to results from phenomenological QRPA calculations using Skyrme or Gogny energy density functionals. Potentially interesting phenomena related to low-lying strength warrant more systematic investigations in the future.

  14. Particle-particle and quasiparticle random phase approximations: connections to coupled cluster theory.

    PubMed

    Scuseria, Gustavo E; Henderson, Thomas M; Bulik, Ireneusz W

    2013-09-14

    We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a "correct bosonization" in the sense that the wavefunction and Hilbert space are exactly fermionic, yet the amplitude equations can be interpreted as adding different quasibosonic RPA channels together. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA and qp-RPA equations are textbook material in nuclear structure physics but are largely unknown in quantum chemistry, where particle number fluctuations and Bogoliubov determinants are rarely used. We believe that the ideas and connections discussed in this paper may help design improved ways of incorporating RPA correlation into density functionals based on a CC perspective.

  15. Multipole excitations in hot nuclei within the finite temperature quasiparticle random phase approximation framework

    NASA Astrophysics Data System (ADS)

    Yüksel, E.; Colò, G.; Khan, E.; Niu, Y. F.; Bozkurt, K.

    2017-08-01

    The effect of temperature on the evolution of the isovector dipole and isoscalar quadrupole excitations in 68Ni and 120Sn nuclei is studied within the fully self-consistent finite temperature quasiparticle random phase approximation framework, based on the Skyrme-type SLy5 energy density functional. The new low-energy excitations emerge due to the transitions from thermally occupied states to the discretized continuum at finite temperatures, whereas the isovector giant dipole resonance is not strongly impacted by the increase of temperature. The radiative dipole strength at low energies is also investigated for the 122Sn nucleus, becoming compatible with the available experimental data when the temperature is included. In addition, both the isoscalar giant quadrupole resonance and low-energy quadrupole states are sensitive to the temperature effect: while the centroid energies decrease in the case of the isoscalar giant quadrupole resonance, the collectivity of the first 2+ state is quenched and the opening of new excitation channels fragments the low-energy strength at finite temperatures.

  16. Giant resonances in {sup 238}U within the quasiparticle random-phase approximation with the Gogny force

    SciTech Connect

    Peru, S.; Gosselin, G.; Martini, M.; Dupuis, M.; Hilaire, S.

    2011-01-15

    Fully consistent axially-symmetric deformed quasiparticle random-phase approximation (QRPA) calculations have been performed, using the same Gogny D1S effective force for both the Hartree-Fock-Bogolyubov mean field and QRPA matrix. New implementation of this approach leads to the applicability of QRPA to heavy deformed nuclei. Giant resonances and low-energy collective states for monopole, dipole, quadrupole, and octupole modes are predicted for the heavy deformed nucleus {sup 238}U and compared with experimental data.

  17. Quasiparticle random phase approximation uncertainties and their correlations in the analysis of 0{nu}{beta}{beta} decay

    SciTech Connect

    Faessler, Amand; Rodin, V.; Fogli, G. L.; Rotunno, A. M.; Lisi, E.; Simkovic, F.

    2009-03-01

    The variances and covariances associated to the nuclear matrix elements of neutrinoless double beta decay (0{nu}{beta}{beta}) are estimated within the quasiparticle random phase approximation. It is shown that correlated nuclear matrix elements uncertainties play an important role in the comparison of 0{nu}{beta}{beta} decay rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana neutrino mass.

  18. Role of deformation on giant resonances within the quasiparticle random-phase approximation and the Gogny force

    SciTech Connect

    Peru, S.; Goutte, H.

    2008-04-15

    Fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed {sup 26-28}Si and {sup 22-24}Mg nuclei as well as in the spherical {sup 30}Si and {sup 28}Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.

  19. Neutrinoless double-{beta} decay of deformed nuclei within quasiparticle random-phase approximation with a realistic interaction

    SciTech Connect

    Fang Dongliang; Faessler, Amand; Rodin, Vadim; Simkovic, Fedor

    2011-03-15

    In this paper a microscopic approach to calculation of the nuclear matrix element M{sup 0{nu}} for neutrinoless double-{beta} decay with an account for nuclear deformation is presented in length and applied for {sup 76}Ge, {sup 150}Nd, and {sup 160}Gd. The proton-neutron quasiparticle random-phase approximation with a realistic residual interaction (the Brueckner G matrix derived from the charge-depending Bonn nucleon-nucleon potential) is used as the underlying nuclear structure model. The effects of the short-range correlations and the quenching of the axial vector coupling constant g{sub A} are analyzed. The results suggest that neutrinoless double-{beta} decay of {sup 150}Nd, to be measured soon by the SNO+ Collaboration, may provide one of the best probes of the Majorana neutrino mass. This confirms our preliminary conclusion in Fang et al. [Phys. Rev. C 82, 051301(R) (2010)].

  20. Low-lying dipole modes in 26,28Ne in the quasiparticle relativistic random phase approximation

    NASA Astrophysics Data System (ADS)

    Cao, Li-Gang; Ma, Zhong-Yu

    2005-03-01

    The low-lying isovector dipole strengths in the neutron-rich nuclei 26Ne and 28Ne are investigated in the quasiparticle relativistic random phase approximation. Nuclear ground-state properties are calculated in an extended relativistic mean field theory plus Bardeen-Cooper-Schrieffer (BCS) method where the contribution of the resonant continuum to pairing correlations is properly treated. Numerical calculations are tested in the case of isovector dipole and isoscalar quadrupole modes in the neutron-rich nucleus 22O. It is found that in the present calculation, low-lying isovector dipole strengths at Ex<10MeV in nuclei 26Ne and 26Ne exhaust about 4.9% and 5.8% of the Thomas-Reiche-Kuhn dipole sum rule, respectively. The centroid energy of the low-lying dipole excitation is located at 8.3 MeV in 26Ne and 7.9 MeV in 28Ne.

  1. Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations

    NASA Astrophysics Data System (ADS)

    Niu, Z. M.; Niu, Y. F.; Liang, H. Z.; Long, W. H.; Meng, J.

    2017-04-01

    The self-consistent quasiparticle random-phase approximation (QRPA) approach is formulated in the canonical single-nucleon basis of the relativistic Hatree-Fock-Bogoliubov (RHFB) theory. This approach is applied to study the isobaric analog states (IASs) and Gamow-Teller resonances (GTRs) by taking Sn isotopes as examples. It is found that self-consistent treatment of the particle-particle residual interaction is essential to concentrate the IAS in a single peak for open-shell nuclei and the Coulomb exchange term is very important to predict the IAS energies. For the GTR, the isovector pairing can increase the calculated GTR energy, while the isoscalar pairing has an important influence on the low-lying tail of the Gamow-Teller transition.

  2. Continuum quasiparticle random-phase approximation for astrophysical direct neutron capture reactions on neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Matsuo, Masayuki

    2015-03-01

    I formulate a many-body theory to calculate the cross section of direct radiative neutron capture reaction by means of the Hartree-Fock-Bogoliubov mean-field model and the continuum quasiparticle random-phase approximation (QRPA). A focus is put on very-neutron-rich nuclei and low-energy neutron kinetic energy in the range from 1 keV to several MeV, which is relevant to the rapid neutron capture process of nucleosynthesis. I begin with the photoabsorption cross section and the E 1 strength function. Next, in order to apply the reciprocity theorem, I decompose the cross section into partial cross sections corresponding to different channels of one- and two-neutron emission decays of photo-excited states. A numerical example is shown for the photo-absorption of 142Sn and the neutron capture of 141Sn .

  3. Large-scale deformed quasiparticle random-phase approximation calculations of the γ -ray strength function using the Gogny force

    NASA Astrophysics Data System (ADS)

    Martini, M.; Péru, S.; Hilaire, S.; Goriely, S.; Lechaftois, F.

    2016-07-01

    Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the E 1 γ -ray strength function obtained in the framework of the axially symmetric deformed quasiparticle random-phase approximation based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cutoff energy introduced in the 2-quasiparticle (2 -q p ) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the E 1 strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically ˜2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation, some phenomenological corrections need to be included to take into account the effects beyond the standard 2 -q p QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce experimental photoabsorption data at best. All of them are shown to lead to somewhat similar predictions of the E 1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ -ray strength functions and Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with previous theoretical calculations.

  4. Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities.

    PubMed

    Yuan, Qiang; Zhou, Zhiyou; Zhuang, Jing; Wang, Xun

    2010-03-07

    Monodisperse, highly-selective sub-10 nm Pd-Pt random alloy nanocubes have been successfully synthesized in aqueous solution, and the electrocatalytic activity of these Pd-Pt alloys towards formic acid oxidation was investigated and compared with the activity of Pd sub-10 nm nanocubes, and the commercial Pd and Pt black.

  5. Statistical analysis of β decays and the effective value of gA in the proton-neutron quasiparticle random-phase approximation framework

    NASA Astrophysics Data System (ADS)

    Deppisch, Frank F.; Suhonen, Jouni

    2016-11-01

    We perform a Markov chain Monte Carlo (MCMC) statistical analysis of a number of measured ground-state-to-ground-state single β+/electron-capture and β- decays in the nuclear mass range of A =62 -142 . The corresponding experimental comparative half-lives (logf t values) are compared with the theoretical ones obtained by the use of the proton-neutron quasiparticle random-phase approximation (p n QRPA ) with G -matrix-based effective interactions. The MCMC analysis is performed separately for 47 isobaric triplets and 28 more extended isobaric chains of nuclei to extract values and uncertainties for the effective axial-vector coupling constant gA in nuclear-structure calculations performed in the p n QRPA framework. As far as available, measured half-lives for two-neutrino β β- decays occurring in the studied isobaric chains are analyzed as well.

  6. Gogny-Hartree-Fock-Bogolyubov plus quasiparticle random-phase approximation predictions of the M 1 strength function and its impact on radiative neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Hilaire, S.; Péru, S.; Martini, M.; Deloncle, I.; Lechaftois, F.

    2016-10-01

    Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we extend our large-scale calculations of the E 1 γ -ray strength function, obtained in the framework of the axially- symmetric-deformed quasiparticle random phase approximation (QRPA) based on the finite-range D1M Gogny force, to the calculation of the M 1 strength function. We compare our QRPA prediction of the M 1 strength with available experimental data and show that a relatively good agreement is obtained provided the strength is shifted globally by about 2 MeV and increased by an empirical factor of 2. Predictions of the M 1 strength function for spherical and deformed nuclei within the valley of β stability as well as in the neutron-rich region are discussed. Its impact on the radiative neutron capture cross section is also analyzed.

  7. Lowest lying 2{sup +} and 3{sup -} vibrational states in Pb, Sn, and Ni isotopes in relativistic quasiparticle random-phase approximation

    SciTech Connect

    Ansari, A.; Ring, P.

    2006-11-15

    The excitation energies and electric multipole decay rates of the lowest lying 2{sup +} and 3{sup -} vibrational states in Pb, Sn, and Ni nuclei are calculated following relativistic quasiparticle random-phase approximation formalism based on the relativistic Hartree-Bogoliubov mean field. Two sets of Lagrangian parameters, NL1 and NL3, are used to investigate the effect of the nuclear force. Overall there is good agreement with the available experimental data for a wide range of mass numbers considered here, and the NL3 set seems to be a better choice. However, strictly speaking, these studies point toward the need of a new set of force parameters that could produce more realistic single-particle levels, at least in vicinity of the Fermi surface, of a wide range of nuclear masses.

  8. Description of the 2ννββ decay within a fully renormalized proton-neutron quasiparticle random-phase approximation approach with a restored gauge symmetry

    NASA Astrophysics Data System (ADS)

    Raduta, C. M.; Raduta, A. A.

    2010-12-01

    A many-body Hamiltonian involving the mean field for a projected spherical single-particle basis, the pairing interactions for alike nucleons, and the dipole-dipole proton-neutron interactions in the particle-hole (ph) channel and the ph dipole pairing potential is treated by the projected gauge fully renormalized proton-neutron quasiparticle random phase approximation approach. The resulting wave functions and energies for the mother and daughter nuclei are used to calculate the 2νββ decay rate and the process half-life. For illustration, the formalism is applied for the decay 100Mo→100Ru. The calculated half-life is in agreement with the corresponding experimental data. The Ikeda sum rule is obeyed.

  9. Quasiparticle random phase approximation analysis of the double beta decay of [sup 100]Mo to the ground state and excited states of [sup 100]Ru

    SciTech Connect

    Suhonen, J. ); Civitarese, O. )

    1994-06-01

    The beta decay rate of the 1[sup +] ground state of [sup 100]Tc to the ground and excited states of [sup 100]Mo and [sup 100]Ru has been calculated using a combination of the charge-conserving and charge-nonconserving modes of the quasiparticle random phase approximation theory. These results, as well as the calculated [ital E]2 decay properties of [sup 100]Mo and [sup 100]Ru, are compared with data. In addition, the two-neutrino double beta decay rates of [sup 100]Mo to the ground state and excited states of [sup 100]Ru are evaluated and analyzed using available experimental data. For completeness, the neutrinoless double beta decay rate of [sup 100]Mo is calculated and used to extract the value of the effective neutrino mass and the parameters of a general weak-interaction Hamiltonian.

  10. Effect of the Pauli principle on the deformed quasiparticle random-phase approximation calculations and its consequence for β -decay calculations of deformed even-even nuclei

    NASA Astrophysics Data System (ADS)

    Fang, Dong-Liang

    2016-03-01

    In this work, I take into consideration the Pauli exclusion principle (PEP) in the quasiparticle random-phase approximation (QRPA) calculations for the deformed systems by replacing the traditional quasiboson approximation (QBA) with the renormalized one. With this new formalism, the parametrization of QRPA calculations has been changed and the collapse of QRPA solutions could be avoid for realistic gp p values. I further find that the necessity of the renormalization parameter of particle-particle residual interaction gp p in QRPA calculations is due to the exclusion of PEP. So with the inclusion of PEP, I could easily extend the deformed QRPA calculations to the less-explored region where lack of experimental data prevent effective parametrization of gp p for QRPA methods. With this theoretical improvement, I give predictions of weak decay rates for even-even isotopes in the rare-earth region and compare the results with existing calculations.

  11. Description of the 2{nu}{nu}{beta}{beta} decay within a fully renormalized proton-neutron quasiparticle random-phase approximation approach with a restored gauge symmetry

    SciTech Connect

    Raduta, C. M.; Raduta, A. A.

    2010-12-15

    A many-body Hamiltonian involving the mean field for a projected spherical single-particle basis, the pairing interactions for alike nucleons, and the dipole-dipole proton-neutron interactions in the particle-hole (ph) channel and the ph dipole pairing potential is treated by the projected gauge fully renormalized proton-neutron quasiparticle random phase approximation approach. The resulting wave functions and energies for the mother and daughter nuclei are used to calculate the 2{nu}{beta}{beta} decay rate and the process half-life. For illustration, the formalism is applied for the decay {sup 100}Mo{yields}{sup 100}Ru. The calculated half-life is in agreement with the corresponding experimental data. The Ikeda sum rule is obeyed.

  12. Effects of deformation and neutron-proton pairing on the Gamow-Teller transitions for Mg,2624 in a deformed quasiparticle random-phase approximation

    NASA Astrophysics Data System (ADS)

    Ha, Eunja; Cheoun, Myung-Ki

    2016-11-01

    We investigate effects of neutron-proton (n p ) pairing correlations on the Gamow-Teller (GT) transition of Mg,2624 by explicitly taking into account deformation effects. Our calculation is performed by a deformed quasiparticle random phase approximation (DQRPA) which includes the deformation at the Bardeen-Cooper-Schrieffer and RPA stage. In this paper, we include the n p pairing as well as neutron-neutron (n n ) and proton-proton (p p ) paring correlations to the DQRPA. Our new formalism is applied to the GT transition of well-known deformed Mg isotopes. The n p pairing effect is found to affect more or less the GT distribution of 24Mg and 26Mg. But the deformation effect turns out to be much larger than the n p paring effect because the Fermi surfaces smear more widely by the deformation rather than the n p pairing correlations. Correlations between the deformation and the n p pairing effects and their ambiguities are also discussed with the comparison to experimental GT strength data by triton and 3He beams.

  13. Low-energy dipole excitations in neon isotopes and N=16 isotones within the quasiparticle random-phase approximation and the Gogny force

    SciTech Connect

    Martini, M.; Peru, S.; Dupuis, M.

    2011-03-15

    Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones {sup 24}O, {sup 26}Ne, {sup 28}Mg, and {sup 30}Si are characterized by a similar behavior. The occupation of the 2s{sub 1/2} neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of {sup 28}Ne and {sup 30}Ne, characterized by transitions involving the {nu}1d{sub 3/2} state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is identified in the {sup 18}Ne nucleus.

  14. Spin-multipole nuclear matrix elements in the p n quasiparticle random-phase approximation: Implications for β and β β half-lives

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Suhonen, Jouni

    2017-01-01

    Half-lives for 148 potentially measurable 2nd-, 3rd-, 4th-, 5th-, 6th-, and 7th-forbidden unique beta transitions are predicted. To achieve this, the ratio of the nuclear matrix elements (NMEs), calculated by the proton-neutron quasiparticle random-phase approximation (pnQRPA), MpnQRPA, and a two-quasiparticle (two-qp) model, Mqp, is studied and compared with earlier calculations for the allowed Gamow-Teller (GT) 1+ and first-forbidden spin-dipole (SD) 2- transitions. The present calculations are done using realistic single-particle model spaces and G -matrix based microscopic two-body interactions. In terms of the ratio k =MpnQRPA/Mqp the studied decays fall into two groups: for GROUP 1, which consists of transitions involving non-magic nuclei, the ratio turns out to be k =0.29 ±0.15 . For GROUP 2, consisting of transitions involving semimagic nuclei, the ratio is 0.5-0.8 for half of the decays and less than 5 ×10-3 for the other half. The magnitudes of the NMEs for several nuclei of GROUP 2 depend sensitively on the size of the used single-particle space and the energies of few key single-particle orbitals used in the pnQRPA calculation, while no such dependence is found for the transitions involving nuclei of GROUP 1. Comparing the NME ratios k of GROUP 1 with those of the earlier GT and SD calculations, where also experimental data are available, the expected "experimental" half-lives for the decays between the 0+ ground state of the even-even reference nuclei and the Jπ=3+,4-,5+,6-,7+,8- states of the neighboring odd-odd nuclei are derived for possible experimental verification. The present results could also shed light to the magnitudes of the NMEs corresponding to the high-forbidden unique 0+→Jπ=3+,4-,5+,6-,7+,8- virtual transitions taking part in the neutrinoless double beta decays.

  15. The quasiparticle zoo

    NASA Astrophysics Data System (ADS)

    Venema, Liesbeth; Verberck, Bart; Georgescu, Iulia; Prando, Giacomo; Couderc, Elsa; Milana, Silvia; Maragkou, Maria; Persechini, Lina; Pacchioni, Giulia; Fleet, Luke

    2016-12-01

    Quasiparticles are an extremely useful concept that provides a more intuitive understanding of complex phenomena in many-body physics. As such, they appear in various contexts, linking ideas across different fields and supplying a common language.

  16. Quasiparticle properties in graphene

    NASA Astrophysics Data System (ADS)

    Hwang, Euyheon

    2012-02-01

    The quasiparticle properties in both single layer and bilayer graphene are presented. We study the electron self-energy as well as the quasiparticle spectral function in graphene, taking into account electron-electron interaction in the leading order dynamically screened Coulomb coupling and electron-impurity interaction associated with quenched disorder. Our calculation of the self-energy provides the basis for calculating all one-electron properties of graphene. We provide analytical and numerical results for quasiparticle renormalization in graphene. Comparison with existing angle-resolved photoemission spectroscopy measurements shows broad qualitative and semiquantitative agreement between theory and experiment, for both the momentum-distribution and energy-distribution curves in the measured spectra. We also present the inelastic quasiparticle scattering rate and the carrier mean free path for energetic hot electrons as a function of carrier energy, density, and temperature, including both electron-electron and electron-phonon interactions. Our results are directly applicable to device structures where ballistic transport is relevant with inelastic scattering dominating over elastic scattering.[4pt] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011). [0pt] E. H. Hwang, Ben Yu-Kuang Hu, and S. Das Sarma Phys. Rev. B 76, 115434 (2007). [0pt] E. H. Hwang and S. Das Sarma Phys. Rev. B 77, 081412 (2008). [0pt] Rajdeep Sensarma, E. H. Hwang, and S. Das Sarma, Phys. Rev. B 84, 041408(R) (2011).

  17. Quasiparticle relaxation in superconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Savich, Yahor; Glazman, Leonid; Kamenev, Alex

    2017-09-01

    We examine energy relaxation of nonequilibrium quasiparticles in "dirty" superconductors with the electron mean free path much shorter than the superconducting coherence length. Relaxation of low-energy nonequilibrium quasiparticles is dominated by phonon emission. We derive the corresponding collision integral and find the quasiparticle relaxation rate. The latter is sensitive to the breaking of time reversal symmetry (TRS) by a magnetic field (or magnetic impurities). As a concrete application of the developed theory, we address quasiparticle trapping by a vortex and a current-biased constriction. We show that trapping of hot quasiparticles may predominantly occur at distances from the vortex core, or the constriction, significantly exceeding the superconducting coherence length.

  18. Weak Interaction Rates of sd-SHELL Nuclei in Stellar Environments Calculated in the Proton-Neutron Quasiparticle Random-Phase Approximation

    NASA Astrophysics Data System (ADS)

    Nabi, J.-U.; Klapdor-Kleingrothaus, H. V.

    1999-03-01

    Allowed weak interaction rates for sd-shell nuclei in stellar environment are calculated using a generalized form of proton-neutron quasi-particle RPA model with separable Gamow-Teller forces. The calculated capture and decay rates take into consideration the latest experimental energy levels and ft-value compilations. Weak rates calculated are tabulated at the same points of density and temperature as those of Oda et al. [Atomic Data and Nuclear Data Tables 56, 231 (1994)]. The results are also compared with earlier works. Particle emission processes from excited states, previously ignored, are taken into account and are found to significantly affect some β decay rates.

  19. Magnetic and quasiparticle excitations in cuprates

    NASA Astrophysics Data System (ADS)

    Bennemann, K.-H.

    2005-09-01

    [Dedicated to Bernhard Mühlschlegel on the occasion ofhis 80th birthday]Assuming for simplicity that the electrons or the holes in cuprate superconductors interact predominantly with spin-fluctuations, we determine within the random phase approximation (RPA)the dynamical susceptibility, in particular the resonance peak resulting as feedback from superconductivity, as well as the elementary quasiparticle excitations in hole-doped systems.

  20. Holographic maps of quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Dalla Torre, Emanuele G.; He, Yang; Demler, Eugene

    2016-11-01

    The analysis of Fourier-transformed scanning tunnelling microscopy images with subatomic resolution is a common tool for studying the properties of quasiparticle excitations in strongly correlated materials. Although Fourier amplitudes are generally complex valued, earlier analysis primarily focused on their absolute values. Their complex phases were often deemed random, and thus irrelevant, due to the unknown positions of the impurities in the sample. Here we show how to factor out these random phases by analysing overlaps between Fourier amplitudes that differ by reciprocal lattice vectors. The resulting holographic maps provide important and previously unknown information about the electronic structures. When applied to superconducting cuprates, our method solves a long-standing puzzle of the dichotomy between equivalent wavevectors. We show that d-wave Wannier functions of the conduction band provide a natural explanation for experimental results that were interpreted as evidence for competing unconventional charge modulations. Our work opens a new pathway to identify the nature of electronic states in scanning tunnelling microscopy.

  1. Quasiparticle dynamics in graphene

    NASA Astrophysics Data System (ADS)

    Bostwick, Aaron; Ohta, Taisuke; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-01-01

    The effectively massless, relativistic behaviour of graphene's charge carriers-known as Dirac fermions-is a result of its unique electronic structure, characterized by conical valence and conduction bands that meet at a single point in momentum space (at the Dirac crossing energy). The study of many-body interactions amongst the charge carriers in graphene and related systems such as carbon nanotubes, fullerenes and graphite is of interest owing to their contribution to superconductivity and other exotic ground states in these systems. Here we show, using angle-resolved photoemission spectroscopy, that electron-plasmon coupling plays an unusually strong role in renormalizing the bands around the Dirac crossing energy-analogous to mass renormalization by electron-boson coupling in ordinary metals. Our results show that electron-electron, electron-plasmon and electron-phonon coupling must be considered on an equal footing in attempts to understand the dynamics of quasiparticles in graphene and related systems.

  2. EFFECTS OF CONVERSION TO A BICARBONATE/LACTATE-BUFFERED, NEUTRAL-PH, LOW-GDP PD REGIMEN IN PREVALENT PD: A 2-YEAR RANDOMIZED CLINICAL TRIAL.

    PubMed

    Farhat, Karima; Douma, Caroline; Ferrantelli, Evelina; Ter Wee, Pieter M; Beelen, Robert H; van Ittersum, Frans J

    2017-03-27

    ♦ Background: The use of pH-neutral peritoneal dialysis (PD) fluids low in glucose degradation products (GDP) may better preserve the peritoneal membrane and have fewer systemic effects. The effects of conversion from conventional to neutral-pH, low-GDP PD fluids in prevalent patients are unclear. Few studies on the role of neutral-pH, low-GDP PD have studied residual renal function, ultrafiltration, peritonitis incidence and technique failure, transport characteristics, and local and systemic markers of inflammation in prevalent PD patients. ♦ Methods: In a multi-center open-label randomized clinical trial (RCT), we randomly assigned 40 of 78 stable continuous ambulatory PD (CAPD) and automated PD (APD) patients to treatment with bicarbonate/lactate, neutral-pH, low-GDP PD fluid (Physioneal; Baxter Healthcare Corporation, Deerfield, IL, USA) and compared them with 38 patients continuing their current standard lactate-buffered PD fluid (PDF) (Dianeal; Baxter Healthcare Corporation, Deerfield, IL, USA) during 2 years. Primary outcome was residual renal function (RRF) and ultrafiltration (UF) during peritoneal equilibration test (PET); peritonitis incidence was a secondary outcome. Furthermore, clinical parameters as well as several biomarkers in effluents and serum were measured. ♦ Results: During follow-up, RRF did not differ between the groups. In the Physioneal group ultrafiltration (UF) during PET remained more or less stable (-20 mL [confidence interval (CI):-163.5 - 123.5 mL]; p = 0.7 over 24 months), whereas it declined in the Dianeal group (-243 mL [CI: -376.6 to -109.4mL]; p < 0.0001 over 24 months), resulting in a difference of 233.7mL [95% CI 41.0 - 425.5 mL]; p = 0.017 between the groups at 24months. The peritonitis rate was lower in the Physioneal group: adjusted odds ratio (OR) 0.38 (0.15 - 0.97) p = 0.043. No differences were observed between the 2 groups in peritoneal adequacy or transport characteristics nor effluent markers of local

  3. A Randomized Controlled Trial to Determine the Appropriate Time to Initiate Peritoneal Dialysis after Insertion of Catheter (Timely PD Study).

    PubMed

    Ranganathan, Dwarakanathan; John, George T; Yeoh, Edward; Williams, Nicola; O'Loughlin, Barry; Han, Thin; Jeyaseelan, Lakshmanan; Ramanathan, Kavitha; Healy, Helen

    2017-01-01

    The optimal time for the commencement of peritoneal dialysis (PD) after PD catheter insertion is unclear. If dialysis is started too soon after insertion, dialysate leaks and infection could occur. However, by starting PD earlier, morbidity and costs can be reduced through lesser hemodialysis requirements. This is the first randomized controlled trial to determine the safest and shortest interval to commence PD after catheter insertion. All consecutive patients undergoing PD catheter insertion at the Royal Brisbane and Women's Hospital and Rockhampton Hospital from 1 March 2008 to 31 May 2013 who met the inclusion and exclusion criteria were invited to participate in the trial. Participants were randomized to 1 of 3 groups. Group 1 (G1) commenced PD at 1 week, group 2 (G2) at 2 weeks and group 3 (G3) at 4 weeks after PD catheter insertion. These groups were stratified by hospital and the presence of diabetes. Primary outcomes were the incidence of peritoneal fluid leaks or PD-related infection during the 4 weeks after commencement of PD. In total 122 participants were recruited, 39, 42, and 41 randomized to G1, G2, and G3, respectively. The primary outcome catheter leak was significantly higher in G1 (28.2%) compared with G3 (2.4%, p = 0.001) but not compared with G2 (9.5%, p = 0.044), based on intention to treat analysis. These differences were even more marked when analyzed with per protocol method: G1 had a significantly higher percentage (32.4 %) compared with G3 (3.3%, p = 0.003) but not compared with G2 (10.5%, p = 0.040). Event percentages of leak were statistically higher in G1 and occurred significantly earlier compared with other groups (p = 0.002). Amongst diabetics, technique failure was significantly higher (28.6%) in G3 compared with 0% in G1 and 7.1% in G2 (p = 0.036) and earlier in G3 at 163.2 days vs 176.8 and 175.8 (p = 0.037) for G1 and G2, respectively. Leaks were higher in participants commencing PD at 1 week after catheter insertion compared

  4. Clinical Impact and Cost-Effectiveness of an Education Program for PD Patients: A Randomized Controlled Trial

    PubMed Central

    Ory-Magne, Fabienne; Arcari, Céline; Mohara, Christine; Pourcel, Laure; Derumeaux, Hélène; Bérard, Emilie; Bourrel, Robert; Molinier, Laurent; Brefel-Courbon, Christine

    2016-01-01

    Background Parkinson’s disease (PD) is characterized by its impact on quality of life, constituting a substantial economic burden on society. Education programs implicating patients more in the management of their illness and complementing medical treatment may be a beneficial adjunct in PD. This study assessed the impact of an education program on quality of life and its cost-effectiveness in PD patients. Methods This single-center, prospective, randomized study assessed an education program consisting of individual and group sessions over a 12-month period. A total of 120 PD patients were assigned to either the Treated by Behavioral Intervention group (TTBI) or the no TTBI group. The primary outcome criterion was quality of life assessed using PDQ39. The Unified Parkinson’s Disease Rating Scale (UPDRS) and psychological status were collected. An economic evaluation was performed, including calculations of incremental cost-effectiveness ratios (ICERs). Results After 12 months of follow-up, changes recorded in the PDQ39 between the groups were not significantly different but better changes were observed in each dimension in the TTBI group compared to the no TTBI group. UPDRS I, II and total score were significantly improved in TTBI group compared to the no TTBI group. Mean annual costs did not differ significantly between the two groups. Conclusion This study suggested that the education program positively impacts the perceived health of PD patients without increasing medical costs. PMID:27685455

  5. Clinical Impact and Cost-Effectiveness of an Education Program for PD Patients: A Randomized Controlled Trial.

    PubMed

    Canivet, Cindy; Costa, Nadège; Ory-Magne, Fabienne; Arcari, Céline; Mohara, Christine; Pourcel, Laure; Derumeaux, Hélène; Bérard, Emilie; Bourrel, Robert; Molinier, Laurent; Brefel-Courbon, Christine

    Parkinson's disease (PD) is characterized by its impact on quality of life, constituting a substantial economic burden on society. Education programs implicating patients more in the management of their illness and complementing medical treatment may be a beneficial adjunct in PD. This study assessed the impact of an education program on quality of life and its cost-effectiveness in PD patients. This single-center, prospective, randomized study assessed an education program consisting of individual and group sessions over a 12-month period. A total of 120 PD patients were assigned to either the Treated by Behavioral Intervention group (TTBI) or the no TTBI group. The primary outcome criterion was quality of life assessed using PDQ39. The Unified Parkinson's Disease Rating Scale (UPDRS) and psychological status were collected. An economic evaluation was performed, including calculations of incremental cost-effectiveness ratios (ICERs). After 12 months of follow-up, changes recorded in the PDQ39 between the groups were not significantly different but better changes were observed in each dimension in the TTBI group compared to the no TTBI group. UPDRS I, II and total score were significantly improved in TTBI group compared to the no TTBI group. Mean annual costs did not differ significantly between the two groups. This study suggested that the education program positively impacts the perceived health of PD patients without increasing medical costs.

  6. Quasi-particles at finite chemical potential

    SciTech Connect

    Gardim, F. G.; Steffens, F. M.

    2010-07-27

    We present in this work the thermodynamic consistent quasi-particle model at finite chemical potential, to describe the Quark Gluon Plasma composed of two light quarks and gluons. The quasi-particle general solution will be discussed, and comparison with perturbative QCD and lattice data will be shown.

  7. Majorana quasiparticles of an inhomogeneous Rashba chain

    NASA Astrophysics Data System (ADS)

    Maśka, Maciej M.; Gorczyca-Goraj, Anna; Tworzydło, Jakub; Domański, Tadeusz

    2017-01-01

    We investigate the inhomogeneous Rashba chain coupled to a superconducting substrate, hosting the Majorana quasiparticles near its edges. We discuss its subgap spectrum and study how robust the zero-energy quasiparticles are against the diagonal and off-diagonal disorder. Studying the Z2 topological invariant we show that disorder-induced transition from the topologically nontrivial to trivial phases is manifested by characteristic features in the spatially resolved quasiparticle spectrum at zero energy. We provide evidence for the nonlocal nature of the zero-energy Majorana quasiparticles that are well preserved upon partitioning the chain into separate pieces. Even though the Majorana quasiparticles are not completely immune to inhomogeneity, we show that they can spread onto other (normal) nanoscopic objects via the proximity effect.

  8. Influence of quasiparticle damping on magnetic stability

    NASA Astrophysics Data System (ADS)

    Herrmann, T.; Nolting, W.

    1996-04-01

    We propose a modified alloy analogy for the single-band Hubbard model, by which we investigate the possibility of spontaneous ferromagnetism in narrow energy bands. It is shown that a proper definition of the fictitious alloy enables self-consistent magnetic solutions to be found. The existence of spontaneous magnetism is mainly influenced by the lattice structure, the effective Coulomb coupling, and the band occupation. In accordance with the simple Stoner criterion, ferromagnetism appears in strongly correlated electron systems for band occupations, which locate the chemical potential μ in regions of high quasiparticle density of states. Rather realistic Curie temperatures are found. The macroscopic magnetic properties explain themselves via temperature-dependent quasiparticle densities of states, quasiparticle band structures, and respective spectral densities. It is shown how quasiparticle damping may depress quite substantially the stability of magnetic states by broadening corresponding spectral density peaks. Correlation effects lead to the expected splitting into two quasiparticle subbands (``Hubbard bands''), and under certain conditions to an additional exchange splitting of each of these quasiparticle subbands, as well as to a spin-dependent band narrowing, the combination of which gives rise to an unconventional ``inverse'' exchange shift at certain positions of the Brillouin zone.

  9. Quasiparticle calculations for solids and molecules

    NASA Astrophysics Data System (ADS)

    Kioupakis, Emmanouil Stylianos

    Advances in modern materials research have a direct impact in technological innovation. Devices such as transistors, light emitting diodes, photovoltaic cells and thermoelectric modules are only possible due to the nature of the underlying materials. One challenge for theorists is the understanding and prediction of the properties of these materials. With the advent of density functional theory, highly accurate ab initio electronic structure calculations for the electronic ground state became a routine and valuable research tool[1, 2, 3, 4]. Fundamental properties such as the atomic structure, chemical bonding, total energy and vibrational frequencies can be determined, and issues like the surface reconstruction, interface geometry, atomic diffusion and the energetics of reactions can be addressed. However, not all relevant material properties are determined by the ground state. For those that involve excited states, such as the band structure and electronic band gap, the optical absorption spectrum and optical gap, the electron transport properties, the effective mass tensor and the alignment of the bands at the interface of two materials, we need an understanding of the excited quasiparticles of the system. While density functional theory gives accurate values for the ground state properties, the Kohn-Sham eigenvalues do not have a direct physical meaning and cannot be identified with quasiparticle energies. For these, we need to use methods that correctly provide excited state properties. One method that can provide accurate quasiparticle energies and wave functions is the GW method, where G is the one-particle Green's function and W the screened Coulomb interaction. Today, GW quasiparticle calculations can routinely be performed for a wide array of solids, molecules and nanosystems with a quasiparticle energy accuracy of ˜0.1 eV. Moreover, one can employ the Bethe-Salpeter equation formalism to take into account the electron-hole interaction and determine the

  10. Quasiparticle anisotropic hydrodynamics for central collisions

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mubarak; Nopoush, Mohammad; Strickland, Michael

    2017-03-01

    We use quasiparticle anisotropic hydrodynamics to study an azimuthally symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state (EoS). We compare results obtained by using the quasiparticle method with the standard method of imposing the EoS in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio η /s . We find that the three methods agree well for small shear viscosity to entropy density ratio η /s , but differ at large η /s , with the standard anisotropic EoS method showing suppressed production at low transverse-momentum compared with the other two methods considered. Finally, we demonstrate explicitly that, when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative at large pT. Such behavior is not seen in either anisotropic hydrodynamics approach, irrespective of the value of η /s .

  11. Using Quasiparticle Poisoning To Detect Photons

    NASA Technical Reports Server (NTRS)

    Echternach, Pierre; Day, Peter

    2006-01-01

    According to a proposal, a phenomenon associated with excitation of quasiparticles in certain superconducting quantum devices would be exploited as a means of detecting photons with exquisite sensitivity. The phenomenon could also be exploited to perform medium-resolution spectroscopy. The proposal was inspired by the observation that Coulomb blockade devices upon which some quantum logic gates are based are extremely sensitive to quasiparticles excited above the superconducting gaps in their leads. The presence of quasiparticles in the leads can be easily detected via the charge states. If quasiparticles could be generated in the leads by absorption of photons, then the devices could be used as very sensitive detectors of electromagnetic radiation over the spectral range from x-rays to submillimeter waves. The devices in question are single-Cooper-pair boxes (SCBs), which are mesoscopic superconducting devices developed for quantum computing. An SCB consists of a small superconducting island connected to a reservoir via a small tunnel junction and connected to a voltage source through a gate capacitor. An SCB is an artificial two-level quantum system, the Hamiltonian of which can be controlled by the gate voltage. One measures the expected value of the charge of the eigenvectors of this quantum system by use of a radio-frequency single-electron transistor. A plot of this expected value of charge as a function of gate voltage resembles a staircase that, in the ideal case, consists of steps of height 2 e (where e is the charge of one electron). Experiments have shown that depending on the parameters of the device, quasiparticles in the form of "broken" Cooper pairs present in the reservoir can tunnel to the island, giving rise to steps of 1 e. This effect is sometimes called "poisoning." Simulations have shown that an extremely small average number of quasiparticles can generate a 1-e periodic signal. In a device according to the proposal, this poisoning would be

  12. Quasiparticle bandstructure of antiferromagnetic EuTe

    NASA Astrophysics Data System (ADS)

    Mathi Jaya, S.; Nolting, W.

    1997-11-01

    The temperature-dependent electronic quasiparticle spectrum of the antiferromagnetic semiconductor EuTe is derived by use of a combination of a many-body model procedure with a tight-binding - `linear muffin tin orbital' (TB - LMTO) band structure calculation. The central part is the d - f model for a single band electron (`test electron') being exchange coupled to the antiferromagnetically ordered localized moments of the Eu ions. The single-electron Bloch energies of the d - f model are taken from a TB - LMTO calculation for paramagnetic EuTe. The d - f model is evaluated by a recently proposed moment conserving Green function technique to get the temperature-dependent sublattice - quasiparticle bandstructure (S - QBS) and sublattice - quasiparticle density of states (S - QDOS) of the unoccupied 5d - 6s energy bands. Unconventional correlation effects and the appearance of characteristic quasiparticles (`magnetic polarons') are worked out in detail. The temperature dependence of the S - QDOS and S - QBS is mainly provoked by the spectral weights of the energy dispersions. Minority- and majority-spin spectra coincide for all temperatures but with different densities of states. Upon cooling from 0953-8984/9/47/012/img1 to T = 0 K the lower conduction band edge exhibits a small blue shift of -0.025 eV in accordance with the experiment. Quasiparticle damping manifesting itself in a temperature-dependent broadening of the spectral density peaks arises from spin exchange processes between (5d - 6s) conduction band electrons and localized 4f moments.

  13. Quasiparticle-continuum level repulsion in a quantum magnet

    SciTech Connect

    Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; Harriger, Leland W.; Granroth, G.  E.; Kolesnikov, Alexander I.; Shu, G. J.; Chou, F. C.; Rüegg, Ch.; Kim, Yong Baek; Kim, Young-June

    2015-11-30

    When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here, we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu2PO6.

  14. Quasiparticle-continuum level repulsion in a quantum magnet

    DOE PAGES

    Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; ...

    2015-11-30

    When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here,more » we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu2PO6.« less

  15. Toxicity profile of approved anti-PD-1 monoclonal antibodies in solid tumors: a systematic review and meta-analysis of randomized clinical trials

    PubMed Central

    Costa, Ricardo; Carneiro, Benedito A.; Agulnik, Mark; Rademaker, Alfred W.; Pai, Sachin G.; Villaflor, Victoria M.; Cristofanilli, Massimo; Sosman, Jeffrey A.; Giles, Francis J

    2017-01-01

    Purpose Nivolumab and pembrolizumab are antibodies against the programmed-death-receptor- 1 (PD-1) which are associated with distinct immune related adverse effects (AEs). This meta-analysis of randomized clinical trials aims to summarize current knowledge regarding the toxicity profile of these agents. Methods PubMed search was conducted in February of 2016. The randomized trials needed to have at least one of the study arms consisting of nivolumab or pembrolizumab monotherapy and a control arm containing no anti-PD-1 therapy. Data were analyzed using random effects meta-analysis for risk ratios. Heterogeneity across studies was analyzed using Q and I2 statistics. Results Nine randomized trials and 5,353 patients were included in our meta-analysis. There was evidence of significant heterogeneity between studies. The pooled relative risk (RR) for treatment-related all grade AEs and grade 3/4 AEs was 0.88 (95% CI 0.81-0.95;P=0.002) and 0.39 (95% CI 0.29-0.53; P<0.001) respectively favoring anti-PD-1 therapy versus standard of care approach. The RR of treatment-related death was 0.45 (95% CI 0.19-1.09; P=0.076). Patients treated with PD-1 inhibitors had an increased risk of hyperthyroidism [RR of 3.44 (95% CI 1.98-5.99; P<0.001)] and hypothyroidism [RR of 6.79 (95% CI 3.10-14.84; P<0.001)]. All grade pruritus and vitiligo were also more common among these patients. The pooled absolute risks of pneumonitis and hypophysitis were 2.65% and 0.47% respectively. Conclusion Approved PD-1 inhibitors are well tolerated, associated with significant low risk of severe treatment-related AEs and increased risk of thyroid dysfunction, pruritus, and vitiligo. PMID:27852042

  16. Quasiparticle renormalization in ABC graphene trilayers

    NASA Astrophysics Data System (ADS)

    Dou, Xu; Jaefari, Akbar; Barlas, Yafis; Uchoa, Bruno

    2015-03-01

    We investigate the effect of electron-electron interactions in ABC stacked graphene trilayers. In the gapless regime, we show that the self-energy corrections lead to the renormalization of the dynamical exponent z = 3 +α1 / N , with α1 ~ 0 . 52 and N is the number of fermionic species. Although the quasiparticle residue is suppressed near the neutrality point, the lifetime has a sublinear scaling with the energy and the quasiparticles are well defined even at zero energy. We calculate the renormalization of a variety of physical observables, which can be directly measured in experiments. X.D., A.J., and B.U. acknowledge University of Oklahoma for support. B.U. acknowledges NSF Career Grant No. DMR-1352604 for partial support.

  17. Investigation of Quantum Computing With Laughlin Quasiparticles

    DTIC Science & Technology

    2007-12-31

    Review B 72, 075342, 1-8 (2005) F.E.Camino, W.Zhou, and V.J.Goldman Aharonov - Bohm electron interferometer in the integer quantum Hall regime Physical...Review B 72, 155313, 1-6 (2005) F.E.Camino, W.Zhou, and V.J.Goldman Aharonov - Bohm Superperiod in a Laughlin Quasiparticle Interferometer Physical...is the number of particles being encircled. This quantization condition explicitly adds the Aharonov - Bohm and the statistical contributions to the

  18. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces

    NASA Astrophysics Data System (ADS)

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-01

    We report the observation of coherent surface states on cubic perovskite oxide SrVO3(001 ) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a dx y -derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO2 plane play a critical role in controlling the coherent surface state via modulating orbital state.

  19. Quasiparticle properties of Ge(111)-2 times 1 surface

    SciTech Connect

    Zhu, X.; Louie, S.G.

    1992-08-01

    We have studied from first principles the quasiparticle properties of the 2 {times} 1 reconstructed (111) surface of Ge. Quasiparticle energies are calculated using the GW expansion of the electron self energy operator. The calculations explain a spectrum of experimental results obtained from photoemission, inverse photoemission, optical absorption, scanning tunneling microscopy, etc., for this surface. We also present a quasiparticle theory for the photoelectric threshold and examine the effects of many body corrections for this quantity.

  20. Theoretical Model to Explain Excess of Quasiparticles in Superconductors.

    PubMed

    Bespalov, Anton; Houzet, Manuel; Meyer, Julia S; Nazarov, Yuli V

    2016-09-09

    Experimentally, the concentration of quasiparticles in gapped superconductors always largely exceeds the equilibrium one at low temperatures. Since these quasiparticles are detrimental for many applications, it is important to understand theoretically the origin of the excess. We demonstrate in detail that the dynamics of quasiparticles localized at spatial fluctuations of the gap edge becomes exponentially slow. This gives rise to the observed excess in the presence of a vanishingly weak nonequilibrium agent.

  1. Number Fluctuations of Sparse Quasiparticles in a Superconductor

    NASA Astrophysics Data System (ADS)

    de Visser, P. J.; Baselmans, J. J. A.; Diener, P.; Yates, S. J. C.; Endo, A.; Klapwijk, T. M.

    2011-04-01

    We have directly measured quasiparticle number fluctuations in a thin film superconducting Al resonator in thermal equilibrium. The spectrum of these fluctuations provides a measure of both the density and the lifetime of the quasiparticles. We observe that the quasiparticle density decreases exponentially with decreasing temperature, as theoretically predicted, but saturates below 160 mK to 25-55/μm3. We show that this saturation is consistent with the measured saturation in the quasiparticle lifetime, which also explains similar observations in qubit decoherence times.

  2. Aharonov-Bohm superperiod in a Laughlin quasiparticle interferometer.

    PubMed

    Camino, F E; Zhou, Wei; Goldman, V J

    2005-12-09

    We report an Aharonov-Bohm superperiod of five magnetic flux quanta (5h/e) observed in a Laughlin quasiparticle interferometer, where an edge channel of the 1/3 fractional quantum Hall fluid encircles an island of the 2/5 fluid. This result does not violate the gauge invariance argument of the Byers-Yang theorem because the magnetic flux, in addition to affecting the Aharonov-Bohm phase of the encircling 1/3 quasiparticles, creates the 2/5 quasiparticles in the island. The superperiod is accordingly understood as imposed by the anyonic statistical interaction of Laughlin quasiparticles.

  3. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  4. Irreducible tensor description. II. A quasiparticle gas

    NASA Astrophysics Data System (ADS)

    Banach, Zbigniew; Piekarski, Slawomir

    1989-08-01

    Let E be a three-dimensional Euclidean vector space and assume that ℏΩ(k) is a quasiparticle energy in the mode k∈E; thus k is a wave vector. Within the framework of the Boltzmann-Peierls equation and a broad class of isotropic dispersion relations [Ω(k)⇒Ω(k), k: =||k||], the exact system of irreducible equations of transfer for the symmetric traceless moments of the distribution function f is derived and the range of validity of Grad's moment procedure is extended to the case of quasiparticle gases. Thus not without reason, an expansion with respect to k of the one-particle density f around the local Bose-Einstein occupation probability f0 in terms of the appropriately chosen Tchebychef functions Aβ(z;Θ) and Ikenberry's harmonics Yα(g) is carefully recognized. Also, the importance of the Tchebychef basis {Aβ; β=0,1,...}, both in any serious analysis of equilibrium fluctuations and in exploiting the Chapman-Enskog procedure, is clearly established.

  5. Charge of a quasiparticle in a superconductor

    PubMed Central

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-01-01

    Nonlinear charge transport in superconductor–insulator–superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e=n, with n = 1–4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD∼2Δ, we found a reproducible and clear dip in the extracted charge to q ∼0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071

  6. Thermal Dephasing in the Laughlin Quasiparticle Interferometer

    NASA Astrophysics Data System (ADS)

    Camino, F. E.; Zhou, Wei; Goldman, V. J.

    2006-03-01

    We report experiments on thermal dephasing of the Aharonov-Bohm oscillations in the novel Laughlin quasiparticle (LQP) interferometer, [1] where quasiparticles of the 1/3 FQH fluid execute a closed path around an island of the 2/5 fluid. In the 10.2 <=T <=141 mK temperature range, qualitatively, the experimental results follow a thermal dephasing dependence expected for an electron interferometer, and show clear distinction from the activated behavior observed in resonant tunneling and Coulomb blockade devices, both in the chiral Luttinger liquid (χLL) and the Fermi liquid regimes. The data fit very well the χLL dependence predicted for a g=1/3 two point-contact LQP interferometer. [2] The fit yields a value of the chiral edge excitation velocity, u=1.4x10^4 m/s obtained for the first time for a continuous FQH edge excitation spectrum. The small deviation from the zero-bias theory seen below 20 mK indicates yet unrecognized source of experimental decoherence, not included in theory. [1] F. E. Camino et al., Phys. Rev. B 72, 075342 (2005). [2] C. de C. Chamon et al., Phys. Rev. B 55, 2331 (1997).

  7. Charge of a quasiparticle in a superconductor.

    PubMed

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  8. Effective mass of quasiparticles from thermodynamics

    NASA Astrophysics Data System (ADS)

    Eich, F. G.; Holzmann, Markus; Vignale, G.

    2017-07-01

    We discuss the potential advantages of calculating the effective mass of quasiparticles in the interacting electron liquid from the low-temperature free energy vis-a-vis the conventional approach, in which the effective mass is obtained from approximate calculations of the self-energy, or from a quantum Monte Carlo evaluation of the energy of a variational "quasiparticle wave function". While raw quantum Monte Carlo data are presently too sparse to allow for an accurate determination of the effective mass, the values estimated by this method are numerically close to the ones obtained in previous calculations using diagrammatic many-body theory. In contrast to this, a recently published parametrization of quantum Monte Carlo data for the free energy of the homogeneous electron liquid yields effective masses that considerably deviate from previous calculations and even change sign for low densities, reflecting an unphysical negative entropy. We suggest that this anomaly is related to the treatment of the exchange energy at finite temperature.

  9. Translational Symmetry Breaking in the Superconducting Stateøf the Cuprates: Analysis of the Quasiparticle Density of States

    NASA Astrophysics Data System (ADS)

    Podolsky, Daniel; Demler, Eugene; Damle, Kedar; Halperin, B. I.

    2003-03-01

    Motivated by recent STM experiments on Bi_2Sr_2CaCu_2O_8+δ (Hoffman et.al., Howald et.al.), we study the effects of weak translational symmetry breaking on the quasiparticle spectrum of a d-wave superconductor. We develop a general formalism to discuss periodic charge order, as well as quasiparticle scattering off localized defects. We argue that the STM experiments in BSCCO cannot be explained using a simple charge density wave order parameter, but are consistent with the presence of a periodic modulation in the electron hopping or pairing amplitude. We review the effects of randomness and pinning of the charge order and compare it to the impurity scattering of quasiparticles. We also discuss implications of weak translational symmetry breaking for ARPES experiments. (cond-mat/0204011)

  10. Quasiparticle Aggregation in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-10-10

    Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like electrons confined to the lowest landau level, and can do everything electrons can do, including condense into second generation Fractional Quantum Hall ground states. I review in this paper the reasoning leading to variational wavefunctions for ground state and quasiparticles in the 1/3 effect. I then show how two-quasiparticle eigenstates are uniquely determined from symmetry, and how this leads in a natural way to variational wavefunctions for composite states which have the correct densities (2/5, 2/7, ...). I show in the process that the boson, anyon and fermion representations for the quasiparticles used by Haldane, Halperin, and me are all equivalent. I demonstrate a simple way to derive Halperin`s multiple-valued quasiparticle wavefunction from the correct single-valued electron wavefunction. (auth)

  11. Finite quasiparticle lifetime in disordered superconductors.

    SciTech Connect

    Zemlicka, M.; Neilinger, P.; Trgala, M; Rehak, M; Manca, D.; Grajcar, M.; Szabo, P.; Samuely, P.; Gazi, S.; Hubner, U.; Vinokur, V. M.; Il'ichev, E.

    2015-12-08

    We investigate the complex conductivity of a highly disordered MoC superconducting film with k(F)l approximate to 1, where k(F) is the Fermi wave number and l is the mean free path, derived from experimental transmission characteristics of coplanar waveguide resonators in a wide temperature range below the superconducting transition temperature T-c. We find that the original Mattis-Bardeen model with a finite quasiparticle lifetime, tau, offers a perfect description of the experimentally observed complex conductivity. We show that iota is appreciably reduced by scattering effects. Characteristics of the scattering centers are independently found by scanning tunneling spectroscopy and agree with those determined from the complex conductivity.

  12. From quantum jumps to quasiparticle population

    NASA Astrophysics Data System (ADS)

    Vool, U.; Pop, I. M.; Sliwa, K.; Abdo, B.; Wang, C.; Gao, Y. Y.; Kou, A.; Smith, W. C.; Brecht, T.; Shankar, S.; Hatridge, M.; Catelani, G.; Frunzio, L.; Schoelkopf, R. J.; Glazman, L.; Mirrahimi, M.; Devoret, M. H.

    2015-03-01

    Superconducting quasiparticles (QP) play a dominant role in the relaxation of the fluxonium qubit in the vicinity of the half-flux-quantum bias point. Recent experiments integrating the fluxonium with a quantum-limited amplifier have measured quantum jump trajectories between the ground state and the first excited state. These trajectories show a change in the characteristic lifetime of the fluxonium qubit as a function of time, arising from a change in the number of QP's in the sample. Using a simple model of QP dynamics and their effect on the fluxonium qubit, we can access the QP population with temporal resolution better than a 100 microsecond. Such rapid monitoring of QP dynamics is essential for understanding the sources of QP's and ultimately suppressing them. Work supported by: IARPA, ARO, and ONR.

  13. Quasiparticles in the pseudogap Phase of Underdoped Cuprate

    SciTech Connect

    Yang, K.; Yang, H; Johnson, P; Rice, T; Zhang, F

    2009-01-01

    Recent angle-resolved photoemission (Yang H.-B. et al., Nature, 456 (2008) 77) and scanning tunneling microscopy (Kohsaka Y. et al., Nature, 454 (2008) 1072) measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima in the energy dispersion, and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang et al. for the single-particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.

  14. On the coherent quasiparticle weight in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Zheng, Yong; Zhang, Xiaowei; Zhou, Wulei; Liu, Xiaochun; Zhao, Hua

    2017-09-01

    The anomalous temperature dependence of the coherent quasiparticle weight below the superconducting transition temperature Tc in high-Tc cuprates, as has been extensively revealed by angle-resolved photoemission measurements, has been addressed theoretically. We find that this puzzling phenomenon universally appears along the whole Fermi surface, from the nodal to antinodal regions, in momentum space, and can be well comprehended in a mean-field slave-boson picture. The ordinary deduction that the coherent quasiparticle peak is a superconducting one, just from such temperature dependence of the coherent quasiparticle weight below Tc, is found to be questionable, and it could correspond to a competing order, especially in the antinodal region.

  15. Electric dipole response of neutron-rich calcium isotopes in relativistic quasiparticle time blocking approximation

    NASA Astrophysics Data System (ADS)

    Egorova, Irina A.; Litvinova, Elena

    2016-09-01

    New results for electric dipole strength in the chain of even-even calcium isotopes with the mass numbers A =40 -54 are presented. Starting from the covariant Lagrangian of quantum hadrodynamics, spectra of collective vibrations (phonons) and phonon-nucleon coupling vertices for J ≤6 and natural parity were computed in a self-consistent relativistic quasiparticle random-phase approximation (RQRPA). These vibrations coupled to Bogoliubov two-quasiparticle configurations (2 q ⊗phonon ) formed the model space for the calculations of the dipole response function in the relativistic quasiparticle time blocking approximation. The calculations in the latter approach were performed for the giant dipole resonance (GDR) and compared to those obtained with the RQRPA and to available data. The evolution of the dipole strength with the neutron number is investigated for both high-frequency GDRs and low-lying strengths. The development of a pygmy resonant structure on the low-energy shoulder of the GDR is traced and analyzed in terms of transition densities. A dependence of the pygmy dipole strength on the isospin asymmetry parameter is extracted.

  16. The interacting quasiparticle-phonon picture and odd-even nuclei. Overview and perspectives

    NASA Astrophysics Data System (ADS)

    Mishev, S.; Voronov, V. V.

    2016-11-01

    The role of the nucleon correlations in the ground states of even-even nuclei on the properties of low-lying states in odd-even spherical and transitional nuclei is studied. We reason about this subject using the language of the quasiparticle-phonon model which we extend to take account of the existence of quasiparticle⊗phonon configurations in the wave functions of the ground states of the even-even cores. Of paramount importance to the structure of the low-lying states happens to be the quasiparticle-phonon interaction in the ground states which we evaluated using both the standard and the extended random phase approximations. Numerical calculations for nuclei in the barium and cadmium regions are performed using pairing and quadrupole-quadrupole interaction modes which have the dominant impact on the lowest-lying states' structure. It is found that states with same angular momentum and parity become closer in energy as compared to the predictions of models disregarding the backward amplitudes, which turns out to be in accord with the experimental data. In addition we found that the interaction between the last quasiparticle and the ground-state phonon admixtures produces configurations which contribute significantly to the magnetic dipolemoment of odd- A nuclei. It also reveals a potential for reproducing their experimental values which proves impossible if this interaction is neglected.

  17. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    NASA Astrophysics Data System (ADS)

    Robin, Caroline; Litvinova, Elena

    2016-07-01

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.

  18. Spatiotemporal binary interaction and designer quasi-particle condensates

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Radha; Pattu Sakthi, Vinayagam; Hyun Jong, Shin; Kuppuswamy, Porsezian

    2014-03-01

    We introduce a new integrable model to investigate the dynamics of two component quasi-particle condensates with spatiotemporal interaction strengths. We derive the associated Lax pair of the coupled Gross—Pitaevskii (GP) equation and construct matter wave solitons. We show that the spatiotemporal binary interaction strengths not only facilitate the stabilization of the condensates, but also enables one to fabricate condensates with desirable densities, geometries, and properties, leading to the so-called “designer quasi-particle condensates”.

  19. One-quasiparticle states in odd-Z heavy nuclei

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.

    2010-11-15

    The isotopic dependencies of one-quasiparticle states in Es and Md are treated. In {sup 253,255}Lr, the energies of the lowest one-quasiproton states are calculated. The one-quasiparticle isomer states are revealed in the nuclei of an {alpha}-decay chain starting from {sup 269}Rg. The {alpha} decays from some isomer states are predicted. The population of isomer states in the complete fusion reactions is discussed.

  20. Beliaev damping of quasiparticles in a Bose-Einstein condensate.

    PubMed

    Katz, N; Steinhauer, J; Ozeri, R; Davidson, N

    2002-11-25

    We report a measurement of the suppression of collisions of quasiparticles with ground state atoms within a Bose-Einstein condensate at low momentum. These collisions correspond to Beliaev damping of the excitations, in the previously unexplored regime of the continuous quasiparticle energy spectrum. We use a hydrodynamic simulation of the expansion dynamics, with the Beliaev damping cross section, in order to confirm the assumptions of our analysis.

  1. Quasiparticle energy studies of bulk semiconductors, surfaces and nanotubes

    SciTech Connect

    Blase, Xavier Francois

    1994-12-01

    Effects of many-body effects on electronic excitation energies (quasiparticle band structure) of these materials are explored. GW approximation, including local field effects, for self-energy operator is used to calculate quasi-particle energies. The newly discovered carbon nanotubes are studied; structural stability and band structures are calculated. BN nanotubes are also studied, and their stability is predicted. Unexpected electronic features are predicted for both systems. Filling of carbon nanotubes with metal atoms and the doping of BN nanotubes by carbon and other impurites is also studied. The occupied surface states at H/Si(111)-(1x1) surface are studied; it is shown that the electronic structure requires a full quasiparticle calculation even for this simple chemisorption system. The core level shift of the Si 2p levels for atoms near the H/Si(111)-(1x1) surface is calculated; a simple first order perturbation theory using pseudopotential and the local density approximation gives good results for the photoemission spectra of the core electrons. The quasiparticle energies of bulk hexagonal BN and those of an isolated BN sheet are studied; this provides an understanding of the quasiparticle band structure of BN nanotubes. A nearly free electron state with a wavefunction in the interlayer or vacuum region composes the bottom of the conduction bands. A mixed-space formalism is presented for calculating the dynamical screening effects and electron self-energy operator in solids; this provides an efficient algorithm to calculate quasiparticle energies for large systems.

  2. Shooting quasiparticles from Andreev bound states in a superconducting constriction

    SciTech Connect

    Riwar, R.-P.; Houzet, M.; Meyer, J. S.; Nazarov, Y. V.

    2014-12-15

    A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.

  3. Quantum logic gates from Dirac quasiparticles

    NASA Astrophysics Data System (ADS)

    Marino, E. C.; Brozeguini, J. C.

    2015-03-01

    We show that one of the fundamental operations of topological quantum computation, namely the non-Abelian braiding of identical particles, can be physically realized in a general system of Dirac quasiparticles in 1 + 1D. Our method is based on the study of the analytic structure of the different Euclidean correlation functions of Dirac fields, which are conveniently expressed as functions of a complex variable. When the Dirac field is an (Abelian) anyon with statistics parameter s (2s not an integer), we show that the associated Majorana states of such a field present non-Abelian statistics. The explicit form of the unitary, non-commuting (monodromy) matrices generated upon braiding is derived as a function of s and is shown to satisfy the Yang-Baxter algebra. For the special case of s = 1/4, we show that the braiding matrices become the logic gates NOT, CNOT,… required in the algorithms of universal quantum computation. We suggest that maybe polyacetylene, alternately doped with alkali and halogen atoms, is a potential candidate for a physical material realization of the system studied here.

  4. Quasiparticle Level Alignment for Photocatalytic Interfaces

    SciTech Connect

    Migani, Annapaola; Mowbray, Duncan J.; Zhao, Jin; Petek, Hrvoje; Rubio, Angel

    2014-05-13

    Electronic level alignment at the interface between an adsorbed molecular layer and a semiconducting substrate determines the activity and efficiency of many photocatalytic materials. Standard density functional theory (DFT)-based methods have proven unable to provide a quantitative description of this level alignment. This requires a proper treatment of the anisotropic screening, necessitating the use of quasiparticle (QP) techniques. However, the computational complexity of QP algorithms has meant a quantitative description of interfacial levels has remained elusive. We provide a systematic study of a prototypical interface, bare and methanol-covered rutile TiO2(110) surfaces, to determine the type of many-body theory required to obtain an accurate description of the level alignment. This is accomplished via a direct comparison with metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), and two-photon photoemission (2PP) spectroscopy. We consider GGA DFT, hybrid DFT, and G0W0, scQPGW1, scQPGW0, and scQPGW QP calculations. Our results demonstrate that G0W0, or our recently introduced scQPGW1 approach, are required to obtain the correct alignment of both the highest occupied and lowest unoccupied interfacial molecular levels (HOMO/LUMO). These calculations set a new standard in the interpretation of electronic structure probe experiments of complex organic molecule/semiconductor interfaces.

  5. Signatures of Weyl semimetals in quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Mitchell, Andrew K.; Fritz, Lars

    2016-01-01

    Impurities act as in situ probes of nontrivial electronic structure, causing real-space modulations in the density of states detected by scanning tunneling spectroscopy on the sample surface. We show that distinctive topological features of Weyl semimetals can be revealed in the Fourier transform of this map, interpreted in terms of quasiparticle interference (QPI). We develop an exact Green's function formalism and apply it to generalized models of Weyl semimetals with an explicit surface. The type of perturbation lifting the Dirac node degeneracy to produce the three-dimensional bulk Weyl phase determines the specific QPI signatures appearing on the surface. QPI Fermi arcs may or may not appear, depending on the relative surface orientation and quantum interference effects. Line nodes give rise to tube projections of width controlled by the bias voltage. We consider the effect of crystal warping, distinguishing dispersive arclike features from true Fermi arcs. Finally, we demonstrate that the commonly used joint-density-of-states approach fails qualitatively, and cannot describe QPI extinction.

  6. Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites

    SciTech Connect

    Mannella, N.

    2010-06-02

    A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.

  7. Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices

    SciTech Connect

    Gramich, J. Baumgartner, A.; Schönenberger, C.

    2016-04-25

    We report thermally activated transport resonances for biases below the superconducting energy gap in a carbon nanotube quantum dot (QD) device with a superconducting Pb and a normal metal contact. These resonances are due to the superconductor's finite quasi-particle population at elevated temperatures and can only be observed when the QD life-time broadening is considerably smaller than the gap. This condition is fulfilled in our QD devices with optimized Pd/Pb/In multi-layer contacts, which result in reproducibly large and “clean” superconducting transport gaps with a strong conductance suppression for subgap biases. We show that these gaps close monotonically with increasing magnetic field and temperature. The accurate description of the subgap resonances by a simple resonant tunneling model illustrates the ideal characteristics of the reported Pb contacts and gives an alternative access to the tunnel coupling strengths in a QD.

  8. Band structures in 101Pd

    NASA Astrophysics Data System (ADS)

    Singh, V.; Sihotra, S.; Bhat, G. H.; Sheikh, J. A.; Kaur, M.; Kumar, S.; Singh, K.; Goswamy, J.; Saha, S.; Sethi, J.; Palit, R.; Malik, S. S.; Singh, N.; Garg, U.; Mehta, D.

    2017-06-01

    Excited states in the 101Pd nucleus were investigated through the 75As(31P,2 p 3 n ) fusion-evaporation reaction at Elab=125 MeV by using the Indian National Gamma Array spectrometer equipped with 21 clover Ge detectors. The level scheme is considerably extended for medium spin values. New positive-parity band structures in 101Pd have been studied within the framework of the projected shell model and are found to undergo transition from single quasiparticle to high-K three quasiparticle configuration after band crossing, i.e., from principal-axis rotation to tilted-axis rotation. The negative-parity band structures are discussed in the framework of the hybrid version of tilted-axis cranking shell model calculations. The observed alignment gain in the lowest excited ν h11 /2 negative-parity band results from successive (νg7 /2) 2 and (πg9 /2) 2 pair alignments. The higher excited negative-parity bands are reproduced for the ν [h11 /2(g7/2/d5 /2) 2] and (πg9 /2) -2⊗ν h11 /2 configurations.

  9. Lee Silverman voice treatment versus standard NHS speech and language therapy versus control in Parkinson's disease (PD COMM pilot): study protocol for a randomized controlled trial.

    PubMed

    Sackley, Catherine M; Smith, Christina H; Rick, Caroline; Brady, Marian C; Ives, Natalie; Patel, Ramilla; Roberts, Helen; Dowling, Francis; Jowett, Sue; Wheatley, Keith; Patel, Smitaa; Kelly, Debbie; Sands, Gina; Clarke, Carl

    2014-06-07

    Parkinson's disease is a common movement disorder affecting approximately 127,000 people in the UK, with an estimated two thirds having speech-related problems. Currently there is no preferred approach to speech and language therapy within the NHS and there is little evidence for the effectiveness of standard NHS therapy or Lee Silverman voice treatment. This trial aims to investigate the feasibility and acceptability of randomizing people with Parkinson's disease-related speech or voice problems to Lee Silverman voice treatment or standard speech and language therapy compared to a no-intervention control. The PD COMM pilot is a three arm, assessor-blinded, randomized controlled trial. Randomization will be computer-generated with participants randomized at a ratio of 1:1:1. Participants randomized to intervention arms will be immediately referred to the appropriate speech and language therapist. The target population are patients with a confirmed diagnosis of idiopathic Parkinson's disease who have problems with their speech or voice. The Lee Silverman voice treatment intervention group will receive the standard regime of 16 sessions between 50 and 60 minutes in length over four weeks, with extra home practice. The standard speech and language therapy intervention group will receive a dose determined by patients' individual needs, but not exceeding eight weeks of treatment. The control group will receive standard care with no speech and language therapy input for at least six months post-randomization. Outcomes will be assessed at baseline (pre-randomization) and post- randomization at three, six, and 12 months. The outcome measures include patient-reported voice measures, quality of life, resource use, and assessor-rated speech recordings. The recruitment aim is at least 60 participants over 21 months from 11 sites, equating to at least 20 participants in each arm of the trial. This trial is ongoing and recruitment commenced in May 2012. This study will

  10. Recombination and propagation of quasiparticles in cuprate superconductors

    SciTech Connect

    Gedik, Nuh

    2004-05-01

    Rapid developments in time-resolved optical spectroscopy have led to renewed interest in the nonequilibrium state of superconductors and other highly correlated electron materials. In these experiments, the nonequilibrium state is prepared by the absorption of short (less than 100 fs) laser pulses, typically in the near-infrared, that perturb the density and energy distribution of quasiparticles. The evolution of the nonequilibrium state is probed by time resolving the changes in the optical response functions of the medium that take place after photoexcitation. Ultimately, the goal of such experiments is to understand not only the nonequilibrium state, but to shed light on the still poorly understood equilibrium properties of these materials. We report nonequilibrium experiments that have revealed aspects of the cup rates that have been inaccessible by other techniques. Namely, the diffusion and recombination coefficients of quasiparticles have been measured in both YBa2Cu3O6.5 and Bi2Sr2CaCu2O8+x using time-resolved optical spectroscopy. Dependence of these measurements on doping, temperature and laser intensity is also obtained. To study the recombination of quasiparticles, we measure the change in reflectivity ΔR which is directly proportional to the nonequilibrium quasiparticle density created by the laser. From the intensity dependence, we estimate β, the inelastic scattering coefficient and γth thermal equilibrium quasiparticle decay rate. We also present the dependence of recombination measurements on doping in Bi2Sr2CaCu2O8+x. Going from underdoped to overdoped regime, the sign of ΔR changes from positive to negative right at the optimal doping. This is accompanied by a change in dynamics. The decay of ΔR stops being intensity dependent exactly at the optimal doping. We provide possible interpretations of these two

  11. Quasiparticle Fock-space coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Stolarczyk, Leszek Z.; Monkhorst, Hendrik J.

    2010-11-01

    The quasiparticle Fock-space coupled-cluster (QFSCC) theory, introduced by us in 1985, is described. This is a theory of many-electron systems which uses the second-quantisation formalism based on the algebraic approximation: one chooses a finite spin-orbital basis, and builds a fermionic Fock space to represent all possible antisymmetric electronic states of a given system. The algebraic machinery is provided by the algebra of linear operators acting in the Fock space, generated by the fermion (creation and annihilation) operators. The Fock-space Hamiltonian operator then determines the system's stationary states and their energies. Within the QFSCC theory, the Fock space and its operator algebra are subject to a unitary transformation which effectively changes electrons into some fermionic quasiparticles. A generalisation of the coupled-cluster method is achieved by enforcing the principle of quasiparticle-number conservation. The emerging quasiparticle model of many-electron systems offers useful physical insights and computational effectiveness. The QFSCC theory requires a substantial reformulation of the traditional second-quantisation language, by making full use of the algebraic properties of the Fock space and its operator algebra. In particular, the role of operators not conserving the number of electrons (or quasiparticles) is identified.

  12. Resonant quasiparticle-ion scattering in anisotropic superfluid 3He

    NASA Astrophysics Data System (ADS)

    Salmelin, R. H.; Salomaa, M. M.

    1990-03-01

    Low-energy excitations in quantum fluids are most directly encountered by ions. In the superfluid phases of 3He the relevant elementary excitations are Bogoliubov quasiparticles, which undergo repeated scattering off an ion in the presence of a divergent density of states. We present a quantum-mechanical calculation of the resonant 3He quasiparticle-scattering-limited mobility for negative ions in the anisotropic bulk 3A (A phase) and 3P (polar phase) that is exact when the quasiparticles scatter elastically. We develop a numerical scheme to solve the singular equations for quasiparticle-ion scattering in the A and P phases. Both of these superfluid phases feature a uniaxially symmetric order parameter but distinct topology for the magnitude of the energy gap on the Fermi sphere, i.e., points versus lines of nodes. In particular, the perpetual orbital circulation of Cooper pairs in 3A results in a novel, purely quantum-mechanical intrinsic Magnus effect, which is absent in the polar phase, where Cooper pairs possess no spontaneous orbital angular momentum. This is of interest also for transport properties of heavy-fermion superconductors. We discuss the 3He quasiparticle-ion cross sections, which allow one to account for the mobility data with essentially no free parameters. The calculated mobility thus facilitates an introduction of ``ion spectroscopy'' to extract useful information on fundamental properties of the superfluid state, such as the temperature dependence of the energy gap in 3A.

  13. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles.

    PubMed

    Pop, Ioan M; Geerlings, Kurtis; Catelani, Gianluigi; Schoelkopf, Robert J; Glazman, Leonid I; Devoret, Michel H

    2014-04-17

    Owing to the low-loss propagation of electromagnetic signals in superconductors, Josephson junctions constitute ideal building blocks for quantum memories, amplifiers, detectors and high-speed processing units, operating over a wide band of microwave frequencies. Nevertheless, although transport in superconducting wires is perfectly lossless for direct current, transport of radio-frequency signals can be dissipative in the presence of quasiparticle excitations above the superconducting gap. Moreover, the exact mechanism of this dissipation in Josephson junctions has never been fully resolved experimentally. In particular, Josephson's key theoretical prediction that quasiparticle dissipation should vanish in transport through a junction when the phase difference across the junction is π (ref. 2) has never been observed. This subtle effect can be understood as resulting from the destructive interference of two separate dissipative channels involving electron-like and hole-like quasiparticles. Here we report the experimental observation of this quantum coherent suppression of quasiparticle dissipation across a Josephson junction. As the average phase bias across the junction is swept through π, we measure an increase of more than one order of magnitude in the energy relaxation time of a superconducting artificial atom. This striking suppression of dissipation, despite the presence of lossy quasiparticle excitations above the superconducting gap, provides a powerful tool for minimizing decoherence in quantum electronic systems and could be directly exploited in quantum information experiments with superconducting quantum bits.

  14. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles

    NASA Astrophysics Data System (ADS)

    Pop, Ioan M.; Geerlings, Kurtis; Catelani, Gianluigi; Schoelkopf, Robert J.; Glazman, Leonid I.; Devoret, Michel H.

    2014-04-01

    Owing to the low-loss propagation of electromagnetic signals in superconductors, Josephson junctions constitute ideal building blocks for quantum memories, amplifiers, detectors and high-speed processing units, operating over a wide band of microwave frequencies. Nevertheless, although transport in superconducting wires is perfectly lossless for direct current, transport of radio-frequency signals can be dissipative in the presence of quasiparticle excitations above the superconducting gap. Moreover, the exact mechanism of this dissipation in Josephson junctions has never been fully resolved experimentally. In particular, Josephson's key theoretical prediction that quasiparticle dissipation should vanish in transport through a junction when the phase difference across the junction is π (ref. 2) has never been observed. This subtle effect can be understood as resulting from the destructive interference of two separate dissipative channels involving electron-like and hole-like quasiparticles. Here we report the experimental observation of this quantum coherent suppression of quasiparticle dissipation across a Josephson junction. As the average phase bias across the junction is swept through π, we measure an increase of more than one order of magnitude in the energy relaxation time of a superconducting artificial atom. This striking suppression of dissipation, despite the presence of lossy quasiparticle excitations above the superconducting gap, provides a powerful tool for minimizing decoherence in quantum electronic systems and could be directly exploited in quantum information experiments with superconducting quantum bits.

  15. Global anharmonic vibrator behaviour of one-quasiparticle structures in odd- A nuclei and the IBFA model

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Mărginean, N.; Căta-Danil, I.; Ivaşcu, M.; Stroe, L.; Ur, C. A.

    1996-02-01

    We show that the anharmonic vibrator behaviour recently discovered both for the yrast states of the collective non-rotational even-even nuclei and for the unique parity orbital structures in their odd- A neighbours is also obeyed by all the other one-quasiparticle structures in the odd-mass nuclei. One-shell Interacting Boson-Fermion Model calculations with parameters randomly distributed within the model parameter space reproduce in a natural way the observed empirical anharmonic vibrator behaviour.

  16. Interplay of Dirac fermions and heavy quasiparticles in solids.

    PubMed

    Höppner, M; Seiro, S; Chikina, A; Fedorov, A; Güttler, M; Danzenbächer, S; Generalov, A; Kummer, K; Patil, S; Molodtsov, S L; Kucherenko, Y; Geibel, C; Strocov, V N; Shi, M; Radovic, M; Schmitt, T; Laubschat, C; Vyalikh, D V

    2013-01-01

    Many-body interactions in crystalline solids can be conveniently described in terms of quasiparticles with strongly renormalized masses as compared with those of non-interacting particles. Examples of extreme mass renormalization are on the one hand graphene, where the charge carriers obey the linear dispersion relation of massless Dirac fermions, and on the other hand heavy-fermion materials where the effective electron mass approaches the mass of a proton. Here we show that both extremes, Dirac fermions, like they are found in graphene and extremely heavy quasiparticles characteristic for Kondo materials, may not only coexist in a solid but can also undergo strong mutual interactions. Using the example of EuRh₂Si₂, we explicitly demonstrate that these interactions can take place at the surface and in the bulk. The presence of the linear dispersion is imposed solely by the crystal symmetry, whereas the existence of heavy quasiparticles is caused by the localized nature of the 4f states.

  17. Model for nodal quasiparticle scattering in a disordered vortex lattice

    NASA Astrophysics Data System (ADS)

    Maltseva, Marianna; Coleman, P.

    2009-10-01

    Recent scanning-tunneling experiments on Ca2-xNaxCuO2Cl2 by Hanaguri [Science 323, 923 (2009)] observe field-dependent quasiparticle interference effects which are sensitive to the sign of the d -wave order parameter. Their analysis of spatial fluctuations in the local density of states shows that there is a selective enhancement of quasiparticle scattering events that preserve the gap sign and a selective depression of the quasiparticle scattering events that reverse the gap sign. We introduce a model which accounts for this phenomenon as a consequence of vortex pinning to impurities. Each pinned vortex embeds several impurities in its core. The observations of recent experiments can be accounted for by assuming that the scattering potentials of the impurities inside the vortex cores acquire an additional resonant or Andreev scattering component, both of which induce gap sign preserving scattering events.

  18. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H–NbSe2

    DOE PAGES

    Arguello, C. J.; Rosenthal, E. P.; Andrade, E. F.; ...

    2015-01-21

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe₂ that we measure by scanning tunneling spectroscopic imaging. We show, from the momentum and energy dependence of the quasiparticle interference, that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe₂. We demonstrate that, by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wave vector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiologymore » and the interactions. In 2H-NbSe₂, we use this combination to confirm that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the charge density wave ordering wave vector.« less

  19. Annihilation of colliding Bogoliubov quasiparticles reveals their Majorana nature.

    PubMed

    Beenakker, C W J

    2014-02-21

    The single-particle excitations of a superconductor are coherent superpositions of electrons and holes near the Fermi level, called Bogoliubov quasiparticles. They are Majorana fermions, meaning that pairs of quasiparticles can annihilate. We calculate the annihilation probability at a beam splitter for chiral quantum Hall edge states, obtaining a 1±cosϕ dependence on the phase difference ϕ of the superconductors from which the excitations originated (with the ± sign distinguishing singlet and triplet pairing). This provides for a nonlocal measurement of the superconducting phase in the absence of any supercurrent.

  20. Annihilation of Colliding Bogoliubov Quasiparticles Reveals their Majorana Nature

    NASA Astrophysics Data System (ADS)

    Beenakker, C. W. J.

    2014-02-01

    The single-particle excitations of a superconductor are coherent superpositions of electrons and holes near the Fermi level, called Bogoliubov quasiparticles. They are Majorana fermions, meaning that pairs of quasiparticles can annihilate. We calculate the annihilation probability at a beam splitter for chiral quantum Hall edge states, obtaining a 1±cosϕ dependence on the phase difference ϕ of the superconductors from which the excitations originated (with the ± sign distinguishing singlet and triplet pairing). This provides for a nonlocal measurement of the superconducting phase in the absence of any supercurrent.

  1. Electronic Quasiparticle Renormalization on the Spin Wave Energy Scale

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Schrupp, D.; Rotenberg, Eli; Rossnagel, K.; Koh, H.; Blaha, P.; Claessen, R.

    2004-03-01

    High-resolution photoemission data of the (110) iron surface reveal the existence of well-defined metallic surface resonances in good correspondence to band calculations. Close to the Fermi level, their dispersion and momentum broadening display anomalies characteristic of quasiparticle renormalization due to coupling to bosonic excitations. Its energy scale exceeds that of phonons by far, and is in striking coincidence with that of the spin wave spectrum in iron. The self-energy behavior thus gives spectroscopic evidence of a quasiparticle mass enhancement due to electron-magnon coupling.

  2. Controlling quasiparticle excitations in a trapped Bose-Einstein condensate

    SciTech Connect

    Woo, S.J.; Choi, S.; Bigelow, N.P.

    2005-08-15

    We describe an approach to quantum control of the quasiparticle excitations in a trapped Bose-Einstein condensate based on adiabatic and diabatic changes in the trap anisotropy. We describe our approach in the context of the Landau-Zener transition at the avoided crossings in the quasiparticle excitation spectrum. We find also that there can be population oscillation between different modes at the specific aspect ratios of the trapping potential at which the mode energies are almost degenerate. These effects may have implications in the expansion of an excited condensate as well as the dynamics of a moving condensate in an atomic waveguide with a varying width.

  3. Electron Bubbles in Superfluid ^3 He-A: Exploring the Quasiparticle-Ion Interaction

    NASA Astrophysics Data System (ADS)

    Shevtsov, Oleksii; Sauls, J. A.

    2016-11-01

    When an electron is forced into liquid ^3 He, it forms an "electron bubble", a heavy ion with radius, R˜eq 1.5 nm, and mass, M˜eq 100 m_3 , where m_3 is the mass of a ^3 He atom. These negative ions have proven to be powerful local probes of the physical properties of the host quantum fluid, especially the excitation spectra of the superfluid phases. We recently developed a theory for Bogoliubov quasiparticles scattering off electron bubbles embedded in a chiral superfluid that provides a detailed understanding of the spectrum of Weyl Fermions bound to the negative ion, as well as a theory for the forces on moving electron bubbles in superfluid ^3 He-A (Shevtsov and Sauls in Phys Rev B 94:064511, 2016). This theory is shown to provide quantitative agreement with measurements reported by the RIKEN group (Ikegami et al. in Science 341(6141):59, 2013) for the drag force and anomalous Hall effect of moving electron bubbles in superfluid ^3 He-A. In this report, we discuss the sensitivity of the forces on the moving ion to the effective interaction between normal-state quasiparticles and the ion. We consider models for the quasiparticle-ion (QP-ion) interaction, including the hard-sphere potential, constrained random-phase-shifts, and interactions with short-range repulsion and intermediate-range attraction. Our results show that the transverse force responsible for the anomalous Hall effect is particularly sensitive to the structure of the QP-ion potential and that strong short-range repulsion, captured by the hard-sphere potential, provides an accurate model for computing the forces acting on the moving electron bubble in superfluid 3 He-A.

  4. Electron Bubbles in Superfluid (3) 3 He-A: Exploring the Quasiparticle-Ion Interaction

    NASA Astrophysics Data System (ADS)

    Shevtsov, Oleksii; Sauls, J. A.

    2017-06-01

    When an electron is forced into liquid ^3He, it forms an "electron bubble", a heavy ion with radius, R˜eq 1.5 nm, and mass, M˜eq 100 m_3, where m_3 is the mass of a ^3He atom. These negative ions have proven to be powerful local probes of the physical properties of the host quantum fluid, especially the excitation spectra of the superfluid phases. We recently developed a theory for Bogoliubov quasiparticles scattering off electron bubbles embedded in a chiral superfluid that provides a detailed understanding of the spectrum of Weyl Fermions bound to the negative ion, as well as a theory for the forces on moving electron bubbles in superfluid ^3He-A (Shevtsov and Sauls in Phys Rev B 94:064511, 2016). This theory is shown to provide quantitative agreement with measurements reported by the RIKEN group (Ikegami et al. in Science 341(6141):59, 2013) for the drag force and anomalous Hall effect of moving electron bubbles in superfluid ^3He-A. In this report, we discuss the sensitivity of the forces on the moving ion to the effective interaction between normal-state quasiparticles and the ion. We consider models for the quasiparticle-ion (QP-ion) interaction, including the hard-sphere potential, constrained random-phase-shifts, and interactions with short-range repulsion and intermediate-range attraction. Our results show that the transverse force responsible for the anomalous Hall effect is particularly sensitive to the structure of the QP-ion potential and that strong short-range repulsion, captured by the hard-sphere potential, provides an accurate model for computing the forces acting on the moving electron bubble in superfluid 3He-A.

  5. Temperature dependence of bag pressure from quasiparticle model

    NASA Astrophysics Data System (ADS)

    Prasad, N.; Singh, C. P.

    2001-03-01

    A quasiparticle model with effective thermal gluon and quark masses is used to derive a temperature /T- and baryon chemical potential /μ-dependent bag constant /B(μ,T). Consequences of such a bag constant are obtained on the equation of state (EOS) for a deconfined quark-gluon plasma (QGP).

  6. Critical relaxation with overdamped quasiparticles in open quantum systems

    NASA Astrophysics Data System (ADS)

    Lang, Johannes; Piazza, Francesco

    2016-09-01

    We study the late-time relaxation following a quench in an open quantum many-body system. We consider the open Dicke model, describing the infinite-range interactions between N atoms and a single, lossy electromagnetic mode. We show that the dynamical phase transition at a critical atom-light coupling is characterized by the interplay between reservoir-driven and intrinsic relaxation processes in the absence of number conservation. Above the critical coupling, small fluctuations in the occupation of the dominant quasiparticle mode start to grow in time, while the quasiparticle lifetime remains finite due to losses. Near the critical interaction strength, we observe a crossover between exponential and power-law 1 /τ relaxation, the latter driven by collisions between quasiparticles. For a quench exactly to the critical coupling, the power-law relaxation extends to infinite times, but the finite lifetime of quasiparticles prevents aging from appearing in two-times response and correlation functions. We predict our results to be accessible to quench experiments with ultracold bosons in optical resonators.

  7. Kondo physics from quasiparticle poisoning in Majorana devices

    DOE PAGES

    Plugge, S.; Tsvelik, A. M.; Zazunov, A.; ...

    2016-03-24

    Here, we present a theoretical analysis of quasiparticle poisoning in Coulomb-blockaded Majorana fermion systems tunnel-coupled to normal-conducting leads. Taking into account finite-energy quasiparticles, we derive the effective low-energy theory and present a renormalization group analysis. We find qualitatively new effects when a quasiparticle state with very low energy is localized near a tunnel contact. For M = 2 attached leads, such “dangerous” quasiparticle poisoning processes cause a spin S = 1/2 single-channel Kondo effect, which can be detected through a characteristic zero-bias anomaly conductance peak in all Coulomb blockade valleys. For more than two attached leads, the topological Kondo effectmore » of the unpoisoned system becomes unstable. A strong-coupling bosonization analysis indicates that at low energy the poisoned lead is effectively decoupled and hence, for M > 3, the topological Kondo fixed point re-emerges, though now it involves only M–1 leads. As a consequence, for M = 3, the low-energy fixed point becomes trivial corresponding to decoupled leads.« less

  8. Kondo physics from quasiparticle poisoning in Majorana devices

    NASA Astrophysics Data System (ADS)

    Plugge, S.; Zazunov, A.; Eriksson, E.; Tsvelik, A. M.; Egger, R.

    2016-03-01

    We present a theoretical analysis of quasiparticle poisoning in Coulomb-blockaded Majorana fermion systems tunnel-coupled to normal-conducting leads. Taking into account finite-energy quasiparticles, we derive the effective low-energy theory and present a renormalization group analysis. We find qualitatively new effects when a quasiparticle state with very low energy is localized near a tunnel contact. For M =2 attached leads, such "dangerous" quasiparticle poisoning processes cause a spin S =1 /2 single-channel Kondo effect, which can be detected through a characteristic zero-bias anomaly conductance peak in all Coulomb blockade valleys. For more than two attached leads, the topological Kondo effect of the unpoisoned system becomes unstable. A strong-coupling bosonization analysis indicates that at low energy the poisoned lead is effectively decoupled and hence, for M >3 , the topological Kondo fixed point re-emerges, though now it involves only M -1 leads. As a consequence, for M =3 , the low-energy fixed point becomes trivial corresponding to decoupled leads.

  9. Are Quasiparticles and Phonons Identical in Bose-Einstein Condensates?

    NASA Astrophysics Data System (ADS)

    Tsutsui, Kazumasa; Kato, Yusuke; Kita, Takafumi

    2016-12-01

    We study an interacting spinless Bose-Einstein condensate to clarify theoretically whether the spectra of its quasiparticles (one-particle excitations) and collective modes (two-particle excitations) are identical, as concluded by Gavoret and Nozières [Ann. Phys. (N.Y.) 28, 349 (1964)]. We derive analytic expressions for their first and second moments so as to extend the Bijl-Feynman formula for the peak of the collective-mode spectrum to its width (inverse lifetime) and also to the one-particle channel. The obtained formulas indicate that the width of the collective-mode spectrum manifestly vanishes in the long-wavelength limit, whereas that of the quasiparticle spectrum apparently remains finite. We also evaluate the peaks and widths of the two spectra numerically for a model interaction potential in terms of the Jastrow wave function optimized by a variational method. It is thereby found that the width of the quasiparticle spectrum increases towards a constant as the wavenumber decreases. This marked difference in the spectral widths implies that the two spectra are distinct. In particular, the lifetime of the quasiparticles remains finite even in the long-wavelength limit.

  10. Kondo physics from quasiparticle poisoning in Majorana devices

    SciTech Connect

    Plugge, S.; Tsvelik, A. M.; Zazunov, A.; Eriksson, E.; Egger, R.

    2016-03-24

    Here, we present a theoretical analysis of quasiparticle poisoning in Coulomb-blockaded Majorana fermion systems tunnel-coupled to normal-conducting leads. Taking into account finite-energy quasiparticles, we derive the effective low-energy theory and present a renormalization group analysis. We find qualitatively new effects when a quasiparticle state with very low energy is localized near a tunnel contact. For M = 2 attached leads, such “dangerous” quasiparticle poisoning processes cause a spin S = 1/2 single-channel Kondo effect, which can be detected through a characteristic zero-bias anomaly conductance peak in all Coulomb blockade valleys. For more than two attached leads, the topological Kondo effect of the unpoisoned system becomes unstable. A strong-coupling bosonization analysis indicates that at low energy the poisoned lead is effectively decoupled and hence, for M > 3, the topological Kondo fixed point re-emerges, though now it involves only M–1 leads. As a consequence, for M = 3, the low-energy fixed point becomes trivial corresponding to decoupled leads.

  11. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Qiu, Y.; Matsumoto, M.; Tennant, D. A.; Coester, K.; Schmidt, K. P.; Awwadi, F. F.; Turnbull, M. M.; Agrawal, H.; Chernyshev, A. L.

    2017-05-01

    The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.

  12. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet

    DOE PAGES

    Hong, Tao; Qiu, Y.; Matsumoto, M.; ...

    2017-05-05

    The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Finally, compared with the non-interacting linear spin–wave theory, our results demonstrate a variety of phenomena including field-induced renormalizationmore » of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.« less

  13. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet

    PubMed Central

    Hong, Tao; Qiu, Y.; Matsumoto, M.; Tennant, D. A.; Coester, K.; Schmidt, K. P.; Awwadi, F. F.; Turnbull, M. M.; Agrawal, H.; Chernyshev, A. L.

    2017-01-01

    The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Compared with the non-interacting linear spin–wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum. PMID:28474679

  14. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet.

    PubMed

    Hong, Tao; Qiu, Y; Matsumoto, M; Tennant, D A; Coester, K; Schmidt, K P; Awwadi, F F; Turnbull, M M; Agrawal, H; Chernyshev, A L

    2017-05-05

    The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.

  15. Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations.

    PubMed

    Vool, U; Pop, I M; Sliwa, K; Abdo, B; Wang, C; Brecht, T; Gao, Y Y; Shankar, S; Hatridge, M; Catelani, G; Mirrahimi, M; Frunzio, L; Schoelkopf, R J; Glazman, L I; Devoret, M H

    2014-12-12

    As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T₁, using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.

  16. Translational symmetry breaking in the superconducting state of the cuprates: Analysis of the quasiparticle density of states

    NASA Astrophysics Data System (ADS)

    Podolsky, Daniel; Demler, Eugene; Damle, Kedar; Halperin, B. I.

    2003-03-01

    Motivated by recent scanning tuneling microscopy (STM) experiments on Bi2Sr2CaCu2O8+δ [J. E. Hoffman et al., Science 295, 466 (2002); C. Howald et al., cond-mat/0201546 (unpublished); J. E. Hoffman et al., Science 297, 1149 (2002): K. McElroy et al. (unpublished); C. Howald et al., cond-mat/0208442 (unpublished)], we study the effects of weak translational symmetry breaking on the quasiparticle spectrum of a d-wave superconductor. We develop a general formalism to discuss periodic charge order, as well as quasiparticle scattering off localized defects. We argue that the STM experiments in Bi2Sr2CaCu2O8+δ cannot be explained using a simple charge density wave order parameter, but are consistent with the presence of a periodic modulation in the electron hopping or pairing amplitude. We review the effects of randomness and pinning of the charge order and compare it to the impurity scattering of quasiparticles. We also discuss implications of weak translational symmetry breaking for angle resolved photoemission spectroscopy experiments.

  17. Heavy Pentaquarks and Doubly Heavy Baryons in Quasiparticle Approach

    NASA Astrophysics Data System (ADS)

    Chandra, A.; Bhattacharya, A.; Chakrabarti, B.

    In the framework of the quasiparticle approach, the ground state mass of heavy pentaquarks have been investigated in diquark-diquark-antiquark picture and the higher states are investigated in the mass loaded flux tube model where two light diquarks are supposed to be linked by a flux tube to the heavy quark. The Regge trajectories for heavy pentaquarks have been studied. The Regge slope (α) of these particles have been obtained as ≈1 GeV2 which indicates that the Regge trajectory follows the linearity conditions with universal value of α ( 1 GeV2). The ground state mass of doubly charm and doubly bottom baryons like Ξ cc++, Ξ bb0, Ω cc+, Ω bb- have also been investigated in quasiparticle approach. The results are found to be in reasonably good agreement with the experimental and other theoretical estimates.

  18. Quasiparticle spin resonance and coherence in superconducting aluminium

    NASA Astrophysics Data System (ADS)

    Quay, C. H. L.; Weideneder, M.; Chiffaudel, Y.; Strunk, C.; Aprili, M.

    2015-10-01

    Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (~100 ps), and its dependence on the sample thickness are consistent with Elliott-Yafet spin-orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (~10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.

  19. Quasiparticle Approach to Molecules Interacting with Quantum Solvents

    NASA Astrophysics Data System (ADS)

    Lemeshko, Mikhail

    2017-03-01

    Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here, we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015), 10.1103/PhysRevLett.114.203001]. Most important, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.

  20. Correspondence between entanglement growth and probability distribution of quasiparticles

    NASA Astrophysics Data System (ADS)

    Nozaki, Masahiro; Watamura, Naoki

    2017-07-01

    We study the excess of (Renyi) entanglement entropy in various free field theories for the locally excited states defined by acting with local operators on the ground state. It is defined by subtracting the entropy for the ground state from the one for the excited state. Here the spacetime dimension is greater than or equal to 4. We find a correspondence between entanglement and a probability. The probability with which a quasiparticle exists in a subregion gives the excess of the entropy. We also propose a toy model which reproduces the excess in the replica method. In this model, a quasiparticle created by a local operator propagates freely and its probability distribution gives the excess.

  1. Suppressing relaxation in superconducting qubits by quasiparticle pumping

    NASA Astrophysics Data System (ADS)

    Gustavsson, Simon; Yan, Fei; Catelani, Gianluigi; Bylander, Jonas; Kamal, Archana; Birenbaum, Jeffrey; Hover, David; Rosenberg, Danna; Samach, Gabriel; Sears, Adam P.; Weber, Steven J.; Yoder, Jonilyn L.; Clarke, John; Kerman, Andrew J.; Yoshihara, Fumiki; Nakamura, Yasunobu; Orlando, Terry P.; Oliver, William D.

    2016-12-01

    Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability.

  2. Quasiparticle second-order viscous hydrodynamics from kinetic theory

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo; Jaiswal, Amaresh; Ryblewski, Radoslaw

    2017-03-01

    We present the derivation of second-order relativistic viscous hydrodynamics from an effective Boltzmann equation for a system consisting of quasiparticles of a single species. We consider temperature-dependent masses of the quasiparticles and devise a thermodynamically consistent framework to formulate second-order evolution equations for shear and bulk viscous pressure corrections. The main advantage of this formulation is that one can consistently implement a realistic equation of state of the medium within the framework of kinetic theory. Specializing to the case of a one-dimensional purely longitudinal boost-invariant expansion, we study the effect of this new formulation on the viscous hydrodynamic evolution of strongly interacting matter formed in relativistic heavy-ion collisions.

  3. Physical dynamics of quasi-particles in nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Christov, Ivan; Christov, C. I.

    2008-02-01

    By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field.

  4. Quasiparticle Approach to Molecules Interacting with Quantum Solvents.

    PubMed

    Lemeshko, Mikhail

    2017-03-03

    Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here, we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.203001]. Most important, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.

  5. Decays of 110Rh and 112Rh to the near neutron midshell isotopes 110Pd and 112Pd

    NASA Astrophysics Data System (ADS)

    Lhersonneau, G.; Wang, J. C.; Hankonen, S.; Dendooven, P.; Jones, P.; Julin, R.; Äystö, J.

    1999-07-01

    The decays 110Rh and 112Rh have been investigated using on-line mass separation with the ion-guide technique. Extended decay schemes have been constructed for both the low- and high-spin states in 112Rh. Mixing ratios for the collective transitions from the 2+2 and 3+1 states in 112Pd have been measured by γ-γ angular correlation. The presence of two sets of 0+ and 2+ states in the 1.1-1.4 MeV range suggests the existence of an intruder band, the energy of which is the lowest in 110Pd with two neutrons fewer than the midshell. The quasiparticle levels at 2195 and 2755 keV are assigned I=4 and I=5, respectively. The corresponding levels in 110Pd are a new level at 2261 keV and the 2805 keV level. Systematics of logft values and excitation energies of these quasiparticle levels is remarkably smooth. The strong β feeding to the I=5 quasiparticle state can be regarded as similar to the main branch in the decay of odd Rh isotopes, while a neutron is a spectator.

  6. Dirac-graphene quasiparticles in strong slow-light pulse

    NASA Astrophysics Data System (ADS)

    Golovinski, P. A.; Astapenko, V. A.; Yakovets, A. V.

    2017-02-01

    An analytical Volkov's solution of the massless Dirac equation for graphene in the field of slow-light pulse with arbitrary time dependence is obtained. Exact solutions are presented for special cases of monochromatic field and a single-cycle pulse. Following the Fock-Schwinger proper time method, the Green's function for quasiparticles is derived with the account of the influence an external classical electromagnetic wave field.

  7. Realization of a primary-filling e/3 quasiparticle interferometer

    NASA Astrophysics Data System (ADS)

    Camino, F. E.; Zhou, W.; Goldman, V. J.

    2007-03-01

    We report experiments on a quasiparticle interferometer where the entire system is on the f=1/3 primary fractional quantum Hall plateau. Electron-beam lithography is used to define an electron island separated from the 2D bulk by two wide constrictions, much less depleted than in our prior work [1]. This results in the entire electron island being at filling f=1/3 under quantum-coherent tunneling conditions. For the first time in such devices we report interferometric Aharonov-Bohm-like conductance oscillations. The flux and charge periods of the interferometer device are calibrated with electrons in the integer regime. In the fractional regime, we observe magnetic flux and charge periods h/e and e/3, respectively, corresponding to creation of one quasielectron in the island. These periods are the same as in quantum antidots, but the quasiparticle path encloses no electron vacuum in the interferometer. Quantum theory predicts a 3h/e flux period for charge e/3, integer statistics particles. Accordingly, the observed periods demonstrate anyonic statistics of Laughlin quasiparticles. [1] F. E. Camino et al., PRL 95, 246802 (2005); PRB 72, 075342 (2005).

  8. Topological strings linking with quasiparticle exchange in superconducting Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei

    2017-06-01

    We demonstrate a topological classification of vortices in three-dimensional time-reversal invariant topological superconductors based on superconducting Dirac semimetals with an s -wave superconducting order parameter by means of a pair of numbers (NΦ,N ) , accounting how many units NΦ of magnetic fluxes h c /4 e and how many N chiral Majorana modes the vortex carries. From these quantities, we introduce a topological invariant, which further classifies the properties of such vortices under linking processes. While such processes are known to be related to instanton processes in a field theoretic description, we demonstrate here that they are, in fact, also equivalent to the fractional Josephson effect on junctions based at the edges of quantum spin Hall systems. This allows one to consider microscopically the effects of interactions in the linking problem. We therefore demonstrate that associated to links between vortices, one has the exchange of quasiparticles, either Majorana zero modes, or e /2 quasiparticles, which allows for a topological classification of vortices in these systems, seen to be Z8 classified. While NΦ and N are shown to be both even or odd in the weakly interacting limit, in the strongly interacting scenario one loosens this constraint. In this case, one may have further fractionalization possibilities for the vortices, whose excitations are described by SO(3) 3 -like conformal field theories with quasiparticle exchanges of more exotic types.

  9. Lightwave-driven quasiparticle collisions on a subcycle timescale

    NASA Astrophysics Data System (ADS)

    Langer, F.; Hohenleutner, M.; Schmid, C. P.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.

    2016-05-01

    Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.

  10. GW and beyond approaches to quasiparticle properties in metals

    NASA Astrophysics Data System (ADS)

    Cazzaniga, Marco

    2012-07-01

    We perform a comparative study of the performances of some standard approaches within the many-body perturbation theory. We calculate quasiparticle dispersions, lifetimes, and spectral functions of aluminum and sodium. Calculations have been carried out in the GW approximation with a plasmon pole model (PPM) or with the contour deformation technique. We also accounted for vertex corrections either only in the screening (replacing the RPA dielectric function with the TDLDA or the Hubbard one) or both in the screening and in the self-energy (using the Del Sole local vertex). Results show the failure of the PPM to describe the corrections far from the Fermi energy, as well as its inability to describe quasiparticle lifetimes and spectral functions. Calculations with a more refined screened interaction decrease the bandwidths and the lifetime of the quasiparticles compared with the GW as well as inducing tiny modifications in the spectral functions. The inclusion of the vertex also in the self-energy cancels the effects arising from the screening by pushing the results back toward the GW ones or even enlarging the differences.

  11. Quark susceptibility in a generalized dynamical quasiparticle model

    NASA Astrophysics Data System (ADS)

    Berrehrah, H.; Cassing, W.; Bratkovskaya, E.; Steinert, Th.

    2016-04-01

    The quark susceptibility χq at zero and finite quark chemical potential provides a critical benchmark to determine the quark-gluon-plasma (QGP) degrees of freedom in relation to the results from lattice QCD (lQCD) in addition to the equation of state and transport coefficients. Here we extend the familiar dynamical quasiparticle model (DQPM) to partonic propagators that explicitly depend on the three-momentum with respect to the partonic medium at rest in order to match perturbative QCD (pQCD) at high momenta. Within the extended dynamical quasiparticle model (DQPM*) we reproduce simultaneously the lQCD results for the quark number density and susceptibility and the QGP pressure at zero and finite (but small) chemical potential μq. The shear viscosity η and the electric conductivity σe from the extended quasiparticle model (DQPM*) also turn out to be in close agreement with lattice results for μq=0 . The DQPM*, furthermore, allows one to evaluate the momentum p , temperature T , and chemical potential μq dependencies of the partonic degrees of freedom also for larger μq, which are mandatory for transport studies of heavy-ion collisions in the regime 5 <√{sN N}<10 GeV.

  12. Quasiparticle-phonon interaction in the theory of finite Fermi systems

    NASA Astrophysics Data System (ADS)

    Kamerdzhiev, S. P.; Avdeenkov, A. V.; Voitenkov, D. A.

    2011-10-01

    Within the Green's function method and on the basis of the method developed by V.A. Khodel for analyzing anharmonic effects, effects of quasiparticle-phonon interaction in the second order in the amplitude of phonon production are studied in two problems as a natural development of A.B. Migdal's theory of finite Fermi systems. Transitions between excited states and static moments of magic and nonmagic nuclei in excited states, each of which is described in the random-phase approximation, are considered. The results for this problem are found to differ considerably from those in the quasiparticle random-phase approximation. The inclusion of all second-order anharmonic effects in the extended theory of finite Fermi systems that extends the standard theory of finite Fermi systems to the case of taking into account quasiparticle-phonon interaction in order to describe excited states, but which does not take into account all such effects, is also considered. They are taken into account at a level that makes it possible to calculate static moments of odd nuclei—more precisely, the respective equation for the vertex function, which, in the theory of finite Fermi systems, is a basic ingredient that describes the interaction of a nucleus with an external field, is derived. Some numerical results obtained within the recently implemented self-consistent version of the extended theory of finite Fermi systems are also presented for 15 stable and unstable tin isotopes. These results give sufficient grounds to conclude that phenomenological systematics are inapplicable to giant dipole resonances in neutron-rich isotopes. The cross sections for radiative neutron capture that are calculated by usingmicroscopic strength functions for the neutron-rich isotopes 132Sn and 150Sn differ strongly from the cross sections calculated on the basis of a phenomenological description of giant dipole resonances. These results are of paramount importance for astrophysics and for the theory of

  13. Registration of PD 05064, PD 05069, PD 05070, and PD 05071 germplasm lines of cotton

    USDA-ARS?s Scientific Manuscript database

    PD 05064, PD 05069, PD 05070, and PD 05071 are noncommercial breeding lines of cotton jointly released by the Agricultural Research Service, United States Department of Agriculture, the Clemson University Experiment Station, and Cotton Incorporated in 2014. PD 05064, PD 05069, PD 05070, and PD 05071...

  14. Decay of 114Rh to 114Pd

    NASA Astrophysics Data System (ADS)

    Lhersonneau, G.; Wang, Y.; Capote, R.; Suhonen, J.; Dendooven, P.; Huikari, J.; Peräjärvi, K.; Wang, J. C.

    2003-02-01

    The decay of on-line mass-separated 114Rh has been studied by γ spectroscopy. A definite odd parity and a probable I=7 are deduced for the high-spin β-decaying level. The 1116 keV and 1392 keV levels in the 114Pd daughter nucleus are candidates for the bottom of the β band. There is no support for a previously reported very-low-lying 0+ level at 871 keV. A K=4 band built on the new level at 1639 keV is proposed. The lowest-lying two-quasiparticle levels in 114Pd are calculated in the framework of the quantum Monte Carlo pairing model using deformed shell model states. The lowest configurations are associated with an oblate minimum of the potential energy.

  15. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    NASA Astrophysics Data System (ADS)

    Higashi, Yoichi; Nagai, Yuki; Yoshida, Tomohiro; Kato, Masaru; Yanase, Youichi

    2015-11-01

    We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.

  16. Evidence of a Nonequilibrium Distribution of Quasiparticles in the Microwave Response of a Superconducting Aluminum Resonator

    NASA Astrophysics Data System (ADS)

    de Visser, P. J.; Goldie, D. J.; Diener, P.; Withington, S.; Baselmans, J. J. A.; Klapwijk, T. M.

    2014-01-01

    In a superconductor, absorption of photons with an energy below the superconducting gap leads to redistribution of quasiparticles over energy and thus induces a strong nonequilibrium quasiparticle energy distribution. We have measured the electrodynamic response, quality factor, and resonant frequency of a superconducting aluminium microwave resonator as a function of microwave power and temperature. Below 200 mK, both the quality factor and resonant frequency decrease with increasing microwave power, consistent with the creation of excess quasiparticles due to microwave absorption. Counterintuitively, above 200 mK, the quality factor and resonant frequency increase with increasing power. We demonstrate that the effect can only be understood by a nonthermal quasiparticle distribution.

  17. Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations

    NASA Astrophysics Data System (ADS)

    de Visser, P. J.; Baselmans, J. J. A.; Yates, S. J. C.; Diener, P.; Endo, A.; Klapwijk, T. M.

    2012-04-01

    We have measured the number of quasiparticles and their lifetime in aluminium superconducting microwave resonators. The number of excess quasiparticles below 160 mK decreases from 72 to 17 μm-3 with a 6 dB decrease of the microwave power. The quasiparticle lifetime increases accordingly from 1.4 to 3.5 ms. These properties of the superconductor were measured through the spectrum of correlated fluctuations in the quasiparticle system and condensate of the superconductor, which show up in the resonator amplitude and phase, respectively. Because uncorrelated noise sources vanish, fluctuations in the superconductor can be studied with a sensitivity close to the vacuum noise.

  18. Methods to measure the charge of the quasiparticles in the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Kivelson, S. A.; Pokrovsky, V. L.

    1989-07-01

    We propose various experimental circumstances in which the longitudinal resistance of a two-dimensional electron gas in a high transverse magnetic field depends in a simple and characteristic way on the charge of the quasiparticle excitations. We propose that experiments of this sort could be used to directly measure the charge of the quasiparticle excitations which carry the dissipative part of the current. While it has been persuasively argued by Laughlin that the Hall conductance itself measures the quasiparticle charge, the connection is indirect, since the Hall current is carried by the condensate, not by the quasiparticles.

  19. Vanishing quasiparticle density in a hybrid Al/Cu/Al single-electron transistor

    NASA Astrophysics Data System (ADS)

    Saira, O.-P.; Kemppinen, A.; Maisi, V. F.; Pekola, J. P.

    2012-01-01

    The achievable fidelity of many nanoelectronic devices based on superconducting aluminum is limited by either the density of residual nonequilibrium quasiparticles nqp or the density of quasiparticle states in the gap, characterized by Dynes parameter γ. We infer upper bounds nqp<0.033μm-3 and γ<1.6×10-7 from transport measurements performed on Al/Cu/Al single-electron transistors, improving previous results by an order of magnitude. Owing to efficient microwave shielding and quasiparticle relaxation, a typical number of quasiparticles in the superconducting leads is zero.

  20. Simultaneous quasiparticle and Josephson tunneling in BSCCO-2212 break junctions.

    SciTech Connect

    Ozyuzer, L.

    1998-10-27

    Tunneling measurements are reported for superconductor-insulator-superconductor (SIS) break junctions on underdoped, optimally-doped, and overdoped single crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212). The junction I-V characteristics exhibit well-defined quasiparticle current jumps at eV = 2A as well as hysteretic Josephson currents. The quasiparticle branch has been analyzed in the framework of d{sub x{sup 2}-y{sup 2}} (d-wave) superconductivity and indicates that there is preferential tunneling along the lobe directions of the d-wave gap. For overdoped Bi-2212 with T{sub c} = 62 K, the Josephson current is measured as a function of junction resistance, R{sub n}, which varied by two orders of magnitude (1 k{Omega} to 100 k{Omega}). I{sub c}R{sub n} product is proportional to the 0.47 power of I{sub c} and displays a maximum of 7.0 mV. When the hole doping is decreased from overdoped (T{sub c} = 62 K) to the underdoped regime (T{sub c} = 70 K), the average I{sub c}R{sub n} product increases as does the quasiparticle gap. The maximum I{sub c}R{sub n} is {approximately} 40% of the {Delta}/e at each doping level, with a value as high as 25 mV in underdoped Bi-2212.

  1. Electron Heating and Quasiparticle Tunnelling in Superconducting Charge Qubits

    NASA Technical Reports Server (NTRS)

    Shaw, M. D.; Bueno, J.; Delsing, P.; Echternach, P. M.

    2008-01-01

    We have directly measured non-equilibrium quasiparticle tunnelling in the time domain as a function of temperature and RF carrier power for a pair of charge qubits based on the single Cooper-pair box, where the readout is performed with a multiplexed quantum capacitance technique. We have extracted an effective electron temperature for each applied RF power, using the data taken at the lowest power as a reference curve. This data has been fit to a standard T? electron heating model, with a reasonable correspondence with established material parameters.

  2. Anomalous quasiparticle lifetime in graphite: band structure effects.

    PubMed

    Spataru, C D; Cazalilla, M A; Rubio, A; Benedict, L X; Echenique, P M; Louie, S G

    2001-12-10

    We report ab initio calculations of quasiparticle lifetimes in graphite, as determined from the imaginary part of the self-energy operator within the GW approximation. The inverse lifetime in the energy range from 0.5 to 3.5 eV above the Fermi level presents significant deviations from the quadratic behavior naively expected from Fermi liquid theory. The deviations are explained in terms of the unique features of the band structure of this material. We also discuss the experimental results from different groups and make some predictions for future experiments.

  3. Critical quasiparticles in single-impurity and lattice Kondo models

    NASA Astrophysics Data System (ADS)

    Vojta, M.; Bulla, R.; Wölfle, P.

    2015-07-01

    Quantum criticality in systems of local moments interacting with itinerant electrons has become an important and diverse field of research. Here we review recent results which concern (a) quantum phase transitions in single-impurity Kondo and Anderson models and (b) quantum phase transitions in heavy-fermion lattice models which involve critical quasiparticles. For (a) the focus will be on impurity models with a pseudogapped host density of states and their applications, e.g., in graphene and other Dirac materials, while (b) is devoted to strong-coupling behavior near antiferromagnetic quantum phase transitions, with potential applications in a variety of heavy-fermion metals.

  4. Single-quasiparticle trapping in aluminum nanobridge Josephson junctions.

    PubMed

    Levenson-Falk, E M; Kos, F; Vijay, R; Glazman, L; Siddiqi, I

    2014-01-31

    We present microwave measurements of a high quality factor superconducting resonator incorporating two aluminum nanobridge Josephson junctions in a loop shunted by an on-chip capacitor. Trapped quasiparticles (QPs) shift the resonant frequency, allowing us to probe the trapped QP number and energy distribution and to quantify their lifetimes. We find that the trapped QP population obeys a Gibbs distribution above 75 mK, with non-Poissonian trapping statistics. Our results are in quantitative agreement with the Andreev bound state model of transport, and demonstrate a practical means to quantify on-chip QP populations and validate mitigation strategies in a cryogenic environment.

  5. Formation of Pd/Au Nanostructures from Pd Nanowires via Galvanic Replacement Reaction

    SciTech Connect

    Teng,X.; Wang, Q.; Liu, P.; Han, W.; Frenkel, A.; Wen, W.; Marinkovic, N.; Hanson, J.; Rodriguez, J.

    2008-01-01

    Bimetallic nanostructures with non-random metal atoms distribution are very important for various applications. To synthesize such structures via benign wet chemistry approach remains challenging. This paper reports a synthesis of a Au/Pd alloy nanostructure through the galvanic replacement reaction between Pd ultrathin nanowires (2.4 {+-} 0.2 nm in width, over 30 nm in length) and AuCl3 in toluene. Both morphological and structural changes were monitored during the reaction up to 10 h. Continuous changes of chemical composition and crystalline structure from Pd nanowires to Pd68Au32 and Pd45Au55 alloys, and to Au nanoparticles were observed. More interestingly, by using combined techniques such as high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), UV-vis absorption, and extended X-ray absorption fine structure (EXAFS) spectroscopy, we found the formation of Pd68Au32 non-random alloy with Au-rich core and Pd-rich shell, and random Pd45Au55 alloy with uniformly mixed Pd and Au atom inside the nanoparticles, respectively. Density functional theory (DFT) calculations indicated that alkylamine will strongly stabilize Pd to the surface, resulting in diffusion of Au atoms into the core region to form a non-random alloy. We believe such benign synthetic techniques can also enable the large scale preparation of various types of non-random alloys for several technically important catalysis applications.

  6. Transverse thermoelectric response as a probe for existence of quasiparticles

    NASA Astrophysics Data System (ADS)

    Schattner, Yoni; Oganesyan, Vadim; Orgad, Dror

    2016-12-01

    The electrical Hall conductivities of any anisotropic interacting system with reflection symmetry obey σx y=-σy x . In contrast, we show that the analogous relation between the transverse thermoelectric Peltier coefficients, αx y=-αy x , does not generally hold in the same system. This fact may be traced to interaction contributions to the heat current operator and the mixed nature of the thermoelectric response functions. Remarkably, however, it appears that emergence of quasiparticles at low temperatures forces αx y=-αy x . This suggests that quasiparticle-free ground states (so-called non-Fermi liquids) may be detected by examining the relationship between αx y and αy x in the presence of reflection symmetry and microscopic anisotropy. These conclusions are based on the following results. (i) The relation between the Peltier coefficients is exact for elastically scattered noninteracting particles. (ii) It holds approximately within Boltzmann theory for interacting particles when elastic scattering dominates over inelastic processes. In a disordered Fermi liquid, the latter lead to deviations that vanish as T3. (iii) We calculate the thermoelectric response in a model of weakly coupled spin-gapped Luttinger liquids and obtain strong breakdown of antisymmetry between the off-diagonal components of α ̂. We also find that the Nernst signal in this model is enhanced by interactions and can change sign as function of magnetic field and temperature.

  7. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators.

    PubMed

    Miao, Lin; Wang, Z F; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y R; Zhu, Fengfeng; Fedorov, Alexei V; Sun, Z; Gao, C L; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng

    2013-02-19

    Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi(2)Te(3) substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi(2)Te(3) film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi(2)Se(3), where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi(2)Se(3) are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states.

  8. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators

    PubMed Central

    Miao, Lin; Wang, Z. F.; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y. R.; Zhu, Fengfeng; Fedorov, Alexei V.; Sun, Z.; Gao, C. L.; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng

    2013-01-01

    Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi2Te3 substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi2Te3 film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi2Se3, where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi2Se3 are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states. PMID:23382185

  9. Features of the Generalized Dynamics of Quasiparticles in Graphene

    NASA Astrophysics Data System (ADS)

    Suprun, Anatol D.; Shmeleva, Liudmyla V.

    2017-03-01

    The general dynamic properties of the electron, as quasiparticle in conduction band of graphene, were analyzed. It is shown that in graphene, these properties essentially differ from similar base properties for crystals with a simple lattice, despite insignificant, on the first sight, difference of dispersion law ɛ( p). Primarily, crystals with an elementary cell of arbitrary complexity of structure were considered. The obtained general relations were applied further to graphene. Herewith two-dimensional lattice of graphene has been considered as consisting of elementary cells with two atoms. Typically, graphene is considered as crystals consisting of two simple nested sublattices. It has been shown that both considerations lead to the analogous basic results. On the basis of obtained wave Hamiltonian, all the dynamic characteristics of the injected electron, considered as a quasiparticle, were found: speed, tensor of effective dynamic mass, and wave Lagrangian. Also, for some physically actual situations, the dynamic characteristics of an alternative description have been found: a mechanical momentum p m , mechanical Hamiltonian, and mechanical Lagrangian. For these situations, a generalized Louis de Broglie relationship between mechanical p m and wave p momenta was found also.

  10. Cubic scaling G W : Towards fast quasiparticle calculations

    NASA Astrophysics Data System (ADS)

    Liu, Peitao; Kaltak, Merzuk; Klimeš, Jiří; Kresse, Georg

    2016-10-01

    Within the framework of the full potential projector-augmented wave methodology, we present a promising low-scaling G W implementation. It allows for quasiparticle calculations with a scaling that is cubic in the system size and linear in the number of k points used to sample the Brillouin zone. This is achieved by calculating the polarizability and self-energy in the real-space and imaginary-time domains. The transformation from the imaginary time to the frequency domain is done by an efficient discrete Fourier transformation with only a few nonuniform grid points. Fast Fourier transformations are used to go from real space to reciprocal space and vice versa. The analytic continuation from the imaginary to the real frequency axis is performed by exploiting Thiele's reciprocal difference approach. Finally, the method is applied successfully to predict the quasiparticle energies and spectral functions of typical semiconductors (Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and LiF), and metals (Cu and SrVO3). The results are compared with conventional G W calculations. Good agreement is achieved, highlighting the strength of the present method.

  11. Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

    SciTech Connect

    Segre, Gino P.

    2001-01-01

    Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very low energies are visible to a high-energy probe. Also discussed are basic recombination processes which may play a role in the observed decay.

  12. Quasiparticle-mediated spin Hall effect in a superconductor

    NASA Astrophysics Data System (ADS)

    Wakamura, Taro

    Superconductivity often brings novel phenomena to spintronics. According to theoretical predictions, superconductivity may enhance the spin Hall effect (SHE) due to the increase in the resistance of superconducting quasiparticles which mediate spin transport in superconductors. In this work, we show a first experimental observation of quasiparticle-mediated SHE in a superconducting NbN, which exhibits an enormous enhancement below the superconducting critical temperature (TC = 10 K). We fabricated a lateral device structure composed of Py (NiFe) and NbN wires bridged by a nonmagnetic Cu wire. A pure spin current is generated in the Cu bridge by a spin injection current (I) between the Py and the Cu, and absorbed into the NbN wire. The absorbed spin currents are converted into charge currents via the inverse SHE, thereby generating the inverse SH voltage (VISHE) . When NbN is in the normal state at 20 K (>TC) , inverse SH signals ΔRISHE (RISHE ≡VISHE / I) are independent of I. However, at 3 K (

  13. ARPES Studies of Cuprate Fermiology: Superconductivity, Pseudogap and Quasiparticle Dynamics

    SciTech Connect

    Vishik, Inna

    2011-06-23

    We present angle-resolved photoemission spectroscopy (ARPES) studies of the cuprate high-temperature superconductors which elucidate the relation between superconductivity and the pseudogap and highlight low-energy quasiparticle dynamics in the superconducting state. Our experiments suggest that the pseudogap and superconducting gap represent distinct states, which coexist below T{sub c}. Studies on Bi-2212 demonstrate that the near-nodal and near-antinodal regions behave differently as a function of temperature and doping, implying that different orders dominate in different momentum-space regions. However, the ubiquity of sharp quasiparticles all around the Fermi surface in Bi-2212 indicates that superconductivity extends into the momentum-space region dominated by the pseudogap, revealing subtlety in this dichotomy. In Bi-2201, the temperature dependence of antinodal spectra reveals particle-hole asymmetry and anomalous spectral broadening, which may constrain the explanation for the pseudogap. Recognizing that electron-boson coupling is an important aspect of cuprate physics, we close with a discussion of the multiple 'kinks' in the nodal dispersion. Understanding these may be important to establishing which excitations are important to superconductivity.

  14. Model for nodal quasiparticle scattering in a disordered vortex lattice

    NASA Astrophysics Data System (ADS)

    Maltseva, Marianna; Coleman, Piers

    2008-03-01

    Recent experiments by T. Hanaguri et al. on underdoped Ca2-xNaxCuO2Cl2 [1] have observed quasiparticle interference effects [2], which are sensitive to the sign of the d-wave order parameter. In a magnetic field, they observe a sizable transfer of scattering spectral weight from scattering events between anti-nodes of opposite sign to scattering events between anti-nodes of the same sign. We interpret high momentum phase-coherent scattering in terms of the quasiparticle scattering off the vortex walls. The reduction of scattering at even-odd scattering points indicates that the vortices ``screen'' some of the underlying impurity scattering, as the impurities get trapped inside the vortex cores. [1] T. Hanaguri, Y. Kohsaka, J. C. Davis, C. Lupien, I. Yamada, M. Azuma, M. Takano, K. Ohishi, M. Ono, H. Takagi, cond-mat/07083728. [2] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J. C. Davis, Science 315, 1380-1385 (2007).

  15. The spectral function and quasiparticle dynamics of graphene thin films

    NASA Astrophysics Data System (ADS)

    Rotenberg, Eli

    2007-03-01

    Graphene, a single layer of carbon atoms arranged in a simple honeycomb lattice, is the building block of graphite, fullerenes, and carbon nanotubes and has fascinating electronic properties deriving from the effectively massless, relativistic behavior of its charge carriers. The study of many-body interactions among these carriers is of interest owing to their contribution to superconductivity in these systems. I will report synthesis of graphene thin films (1-4 layers) grown on SiC and the evolution of their band structure using angle-resolved photoemission spectroscopy (ARPES). We determined the spectral function for graphene as a function of doping, which encodes the many-body interactions among the quasiparticles in the system---namely the charge and vibrational excitations. Our measurements show that the bands around the Dirac crossing point are heavily renormalized by electron-electron, electron-plasmon, and electron-phonon coupling, showing that these interactions must be considered on an equal footing in attempts to understand the quasiparticle dynamics in graphene and related systems. At very high doping (comparable to graphite intercalation compounds (GICs)) renormalization of the carrier mass near EF becomes significant for electrons moving in certain directions, supporting the importance of electron-phonon coupling in superconductivity in GICs.

  16. Quasiparticle Self-Recombination in Double STJs Strip X-ray Detectors

    SciTech Connect

    Andrianov, V. A.; Gorkov, V. P.

    2009-12-16

    The quasiparticle self-recombination was considered in the frame of 2D diffusion model of the strip X-ray detectors. The detector consists of a long superconducting strip, which is ended by the trapping layers and superconducting tunnel junctions at each end. The model takes into account the 2D-diffusion of the excess quasiparticles, quasiparticle trapping at the tunnel junctions and quasiparticle losses in the volume of the strip and at the strip boundaries. Self-recombination was described by a quadratic term. As the analytical solution is absent, the numeric calculations were carried out. It has been shown that the self-recombination as well as quasiparticle losses at the strip boundaries caused the dependence of the signals on the photon absorption site in transverse direction. The latter worsens the energy resolution and transforms the spectral line of the detector to nongaussian shape.

  17. Measurements of Quasiparticle Tunneling Dynamics in a Band-Gap-Engineered Transmon Qubit

    NASA Astrophysics Data System (ADS)

    Sun, L.; DiCarlo, L.; Reed, M. D.; Catelani, G.; Bishop, Lev S.; Schuster, D. I.; Johnson, B. R.; Yang, Ge A.; Frunzio, L.; Glazman, L.; Devoret, M. H.; Schoelkopf, R. J.

    2012-06-01

    We have engineered the band gap profile of transmon qubits by combining oxygen-doped Al for tunnel junction electrodes and clean Al as quasiparticle traps to investigate energy relaxation due to quasiparticle tunneling. The relaxation time T1 of the qubits is shown to be insensitive to this band gap engineering. Operating at relatively low-EJ/EC makes the transmon transition frequency distinctly dependent on the charge parity, allowing us to detect the quasiparticles tunneling across the qubit junction. Quasiparticle kinetics have been studied by monitoring the frequency switching due to even-odd parity change in real time. It shows the switching time is faster than 10μs, indicating quasiparticle-induced relaxation has to be reduced to achieve T1 much longer than 100μs.

  18. Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit.

    PubMed

    Sun, L; DiCarlo, L; Reed, M D; Catelani, G; Bishop, Lev S; Schuster, D I; Johnson, B R; Yang, Ge A; Frunzio, L; Glazman, L; Devoret, M H; Schoelkopf, R J

    2012-06-08

    We have engineered the band gap profile of transmon qubits by combining oxygen-doped Al for tunnel junction electrodes and clean Al as quasiparticle traps to investigate energy relaxation due to quasiparticle tunneling. The relaxation time T1 of the qubits is shown to be insensitive to this band gap engineering. Operating at relatively low-E(J)/E(C) makes the transmon transition frequency distinctly dependent on the charge parity, allowing us to detect the quasiparticles tunneling across the qubit junction. Quasiparticle kinetics have been studied by monitoring the frequency switching due to even-odd parity change in real time. It shows the switching time is faster than 10  μs, indicating quasiparticle-induced relaxation has to be reduced to achieve T1 much longer than 100  μs.

  19. Charge separation at nanoscale interfaces: Energy-level alignment including two-quasiparticle interactions

    SciTech Connect

    Li, Huashan; Lin, Zhibin; Lusk, Mark T. Wu, Zhigang

    2014-10-21

    The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.

  20. Transport Signatures of Quasiparticle Poisoning in a Majorana Island.

    PubMed

    Albrecht, S M; Hansen, E B; Higginbotham, A P; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Danon, J; Flensberg, K; Marcus, C M

    2017-03-31

    We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (∼1  μs) and sets a bound for a weakly coupled island (>10  μs). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. When converted from gate voltage to energy units, fluctuations are consistent with previous measurements.

  1. Majorana Quasiparticles Protected by Z2 Angular Momentum Conservation

    NASA Astrophysics Data System (ADS)

    Iemini, F.; Mazza, L.; Fallani, L.; Zoller, P.; Fazio, R.; Dalmonte, M.

    2017-05-01

    We show how angular momentum conservation can stabilize a symmetry-protected quasitopological phase of matter supporting Majorana quasiparticles as edge modes in one-dimensional cold atom gases. We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling. The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs. The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by density-matrix-renormalization-group simulations. Our results pave the way toward the observation of Majorana edge modes with alkaline-earth-like fermions in optical lattices, where all basic ingredients for our recipe—spin-orbit coupling and strong interorbital interactions—have been experimentally realized over the last two years.

  2. Quasiparticle dynamics and phonon softening in FeSe superconductors.

    PubMed

    Luo, C W; Wu, I H; Cheng, P C; Lin, J-Y; Wu, K H; Uen, T M; Juang, J Y; Kobayashi, T; Chareev, D A; Volkova, O S; Vasiliev, A N

    2012-06-22

    Quasiparticle dynamics of FeSe single crystals revealed by dual-color transient reflectivity measurements (ΔR/R) provides unprecedented information on Fe-based superconductors. The amplitude of the fast component in ΔR/R clearly gives a competing scenario between spin fluctuations and superconductivity. Together with the transport measurements, the relaxation time analysis further exhibits anomalous changes at 90 and 230 K. The former manifests a structure phase transition as well as the associated phonon softening. The latter suggests a previously overlooked phase transition or crossover in FeSe. The electron-phonon coupling constant λ is found to be 0.16, identical to the value of theoretical calculations. Such a small λ demonstrates an unconventional origin of superconductivity in FeSe.

  3. Source conductance scaling for high frequency superconducting quasiparticle receivers

    NASA Technical Reports Server (NTRS)

    Ke, Qing; Feldman, M. J.

    1992-01-01

    It has been suggested that the optimum source conductance G(sub s) for the superconductor-insulator-superconductor (SIS) quasiparticle mixer should have a l/f dependence. This would imply that the critical current density of SIS junctions used for mixing should increase as frequency squared, a stringent constraint on the design of submillimeter SIS mixers, rather than in simple proportion to frequency as previously believed. We have used Tucker's quantum theory of mixing for extensive numerical calculations to determine G(sub s) for an optimized SIS receiver. We find that G(sub s) is very roughly independent of frequency (except for the best junctions at low frequency), and discuss the implications of our results for the design of submillimeter SIS mixers.

  4. Identical high- K three-quasiparticle rotational bands

    NASA Astrophysics Data System (ADS)

    Kaur, Harjeet; Singh, Pardeep

    2016-12-01

    A comprehensive study of high- K three-quasiparticle rotational bands in odd- A nuclei indicates the similarity in γ -ray energies and dynamic moment of inertia Im^{(2)} . The extent of the identicality between the rotational bands is evaluated by using the energy factor method. For nuclei pairs exhibiting identical bands, the average relative change in the dynamic moment of inertia Im^{(2)} is also determined. The identical behaviour shown by these bands is attributed to the interplay of nuclear structure parameters: deformation and the pairing correlations. Also, experimental trend of the I(hbar) vs. hbar ω (MeV) plot for these nuclei pairs is shown to be in agreement with Tilted-Axis Cranking (TAC) model calculations.

  5. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J; Ainsworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quasiparticle interaction in neutron matter is presented. Both-particle (pp) and particle-hole (ph) correlations are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for particle-hole interaction and the scattering amplitude of the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules for the scattering amplitude are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the (1)S(sub 0) gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  6. Unusual microwave response of dirac quasiparticles in graphene.

    PubMed

    Gusynin, V P; Sharapov, S G; Carbotte, J P

    2006-06-30

    Recent experiments have proven that the quasiparticles in graphene obey a Dirac equation. Here we show that microwaves are an excellent probe of their unusual dynamics. When the chemical potential is small, the intraband response can exhibit a cusp around zero frequency Omega and this unusual line shape changes to Drude-like by increasing the chemical potential |mu|, with width linear in mu. The interband contribution at T=0 is a constant independent of Omega with a lower cutoff at 2mu. Distinctly different behavior occurs if interaction-induced phenomena in graphene cause an opening of a gap Delta. At a large magnetic field B, the diagonal and Hall conductivities at small Omega become independent of B but remain nonzero and show a structure associated with the lowest Landau level. This occurs because in the Dirac theory the energy of this level, E0 = +/-Delta, is field independent in sharp contrast to the conventional case.

  7. Triaxial shape fluctuations and quasiparticle excitations in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Fang-Qi; Egido, J. Luis

    2017-02-01

    The deformation parameters (β ,γ ) together with two-quasiparticle excitations are taken into account, for the first time, as coordinates within a symmetry conserving (angular momentum and particle number) generator coordinate method. The simultaneous consideration of collective as well as single-particle degrees of freedom allows us to describe soft and rigid nuclei as well as the transition region in between. We apply the new theory to the study of the spectra and transition probabilities of the Er-172156 isotopes with a pairing-plus-quadrupole residual interaction. Good agreement with the experimental results is obtained for most of the observables studied and with the same quality for the very soft and the strongly deformed nuclei.

  8. Band structure mapping of bilayer graphene via quasiparticle scattering

    NASA Astrophysics Data System (ADS)

    Yankowitz, Matthew; Wang, Joel I.-Jan; Li, Suchun; Birdwell, A. Glen; Chen, Yu-An; Watanabe, Kenji; Taniguchi, Takashi; Quek, Su Ying; Jarillo-Herrero, Pablo; LeRoy, Brian J.

    2014-09-01

    A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as γ0 = 3.1 eV, γ1 = 0.39 eV, and γ4 = 0.22 eV.

  9. Friedel oscillations as a probe of fermionic quasiparticles

    NASA Astrophysics Data System (ADS)

    Dalla Torre, Emanuele G.; Benjamin, David; He, Yang; Dentelski, David; Demler, Eugene

    2016-05-01

    When immersed in a sea of electrons, local impurities give rise to density modulations known as Friedel oscillations. In spite of the generality of this phenomenon, the exact shape of these modulations is usually computed only for noninteracting electrons with a quadratic dispersion relation. In actual materials, Friedel oscillations are a viable way to access the properties of electronic quasiparticles, including their dispersion relation, lifetime, and pairing. In this work we analyze the signatures of Friedel oscillations in STM and x-ray scattering experiments, focusing on the concrete example of cuprate superconductors. We identify signatures of Friedel oscillations seeded by impurities and vortices, and explain experimental observations that have been previously attributed to a competing charge order.

  10. Majorana Quasiparticles Protected by Z_{2} Angular Momentum Conservation.

    PubMed

    Iemini, F; Mazza, L; Fallani, L; Zoller, P; Fazio, R; Dalmonte, M

    2017-05-19

    We show how angular momentum conservation can stabilize a symmetry-protected quasitopological phase of matter supporting Majorana quasiparticles as edge modes in one-dimensional cold atom gases. We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling. The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs. The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by density-matrix-renormalization-group simulations. Our results pave the way toward the observation of Majorana edge modes with alkaline-earth-like fermions in optical lattices, where all basic ingredients for our recipe-spin-orbit coupling and strong interorbital interactions-have been experimentally realized over the last two years.

  11. Transport Signatures of Quasiparticle Poisoning in a Majorana Island

    NASA Astrophysics Data System (ADS)

    Albrecht, S. M.; Hansen, E. B.; Higginbotham, A. P.; Kuemmeth, F.; Jespersen, T. S.; Nygârd, J.; Krogstrup, P.; Danon, J.; Flensberg, K.; Marcus, C. M.

    2017-03-01

    We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1 e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (˜1 μ s ) and sets a bound for a weakly coupled island (>10 μ s ). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. When converted from gate voltage to energy units, fluctuations are consistent with previous measurements.

  12. Spin-polarized quasiparticle control in a double spin-filter tunnel junction

    NASA Astrophysics Data System (ADS)

    Muduli, P. K.

    2017-07-01

    Spin-polarized quasiparticles can be easily created during spin-filtering through a ferromagnetic insulator (FI) in contact with a superconductor due to pair breaking effects at the interface. A combination FI-N-FI sandwiched between two superconductors can be used to create and analyze such spin-polarized quasiparticles through their nonequilibrium accumulation in the middle metallic (N) layer. We report spin-polarized quasiparticle regulation in a double spin-filter tunnel junction in the configuration NbN-GdN1-Ti-GdN2-NbN. The middle Ti layer provides magnetic decoupling between two ferromagnetic GdN and a place for nonequilibrium quasiparticle accumulation. The two GdN(1,2) layers were deposited under different conditions to introduce coercive contrast. The quasiparticle tunneling spectra has been measured at different temperatures to understand the tunneling mechanism in these double spin-filter junctions. The conductance spectra were found to be comparable to an asymmetric SINI'S-type tunnel junction. A hysteretic R-H loop with higher resistance for the antiparallel configuration compared to parallel state was observed, asserting the spin-polarized nature of quasiparticles. The hysteresis in the R-H loop was found to disappear for subgap bias current. This difference can be understood by considering modification of the interlayer coupling due to nonequilibrium spin-polarized quasiparticle accumulation in the Ti layer.

  13. Robustness of a quasiparticle interference test for sign-changing gaps in multiband superconductors

    NASA Astrophysics Data System (ADS)

    Martiny, Johannes H. J.; Kreisel, Andreas; Hirschfeld, P. J.; Andersen, Brian M.

    2017-05-01

    Recently, a test for a sign-changing gap function in a candidate multiband unconventional superconductor involving quasiparticle interference data was proposed. The test was based on the antisymmetric, Fourier transformed conductance integrated over a range of momenta q corresponding to interband processes, which was argued to display a particular resonant form, provided the gaps changed sign between the Fermi-surface sheets connected by q . The calculation was performed for a single impurity, raising the question of how robust this measure is as a test of sign-changing pairing in a realistic system with many impurities. Here we reproduce the results of the previous work within a model with two distinct Fermi-surface sheets, and we show explicitly that the previous result, while exact for a single nonmagnetic scatterer and also in the limit of a dense set of random impurities, can be difficult to implement for a few dilute impurities. In this case, however, appropriate isolation of a single impurity is sufficient to recover the expected result, allowing a robust statement about the gap signs to be made.

  14. Finite temperature inelastic mean free path and quasiparticle lifetime in graphene

    NASA Astrophysics Data System (ADS)

    Li, Qiuzi; Das Sarma, S.

    2013-02-01

    We adopt the GW and random phase approximations to study finite temperature effects on the inelastic mean free path and quasiparticle lifetime by directly calculating the imaginary part of the finite temperature self-energy induced by electron-electron interaction in extrinsic and intrinsic graphene. In particular, we provide the density-dependent leading order temperature correction to the inelastic scattering rate for both single-layer and double-layer graphene systems. We find that the inelastic mean free path is strongly influenced by finite-temperature effects. We present the similarity and the difference between graphene with linear chiral band dispersion and conventional two-dimensional electron systems with parabolic band dispersion. We also compare the calculated finite temperature inelastic scattering length with the elastic scattering length due to Coulomb disorder and comment on the prospects for quantum interference effects showing up in low-density graphene transport. We also carry out inelastic scattering calculation for electron-phonon interaction, which by itself gives rather long carrier mean free paths and lifetimes since the deformation potential coupling is weak in graphene, and therefore electron-phonon interaction contributes significantly to the inelastic scattering only at relatively high temperatures.

  15. Thermal Transport by Ballistic Quasiparticles in Superfluid 3He-B in the Low Temperature Limit

    SciTech Connect

    Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Martin, H.; Pickett, G. R.; Roberts, J. E.; Tsepelin, V.

    2006-09-07

    In the temperature range below 0.2Tc, the gas of thermal excitations from the superfluid 3He-B ground state is in the ultra-dilute ballistic regime. Here we discuss preliminary measurements of the transport properties of this quasiparticle gas in a cell of cylindrical geometry with dimensions much smaller than any mean free path. The vertical cylinder, constructed from epoxy-coated paper, has vibrating wire resonator (VWR) heaters and thermometers at the top and bottom, and a small aperture at the top which provides the only exit for quasiparticles. Using the thermometer VWRs, we measure the difference in quasiparticle density between the top and bottom of the tube when we excite the top or bottom VWR heater. This gives information about the transport of energy along the cylindrical 3He sample and hence about the scattering behaviour involved when a quasiparticle impinges on the cylinder wall.

  16. Low energy theory of a single vortex and electronic quasiparticles in a d-wave superconductor

    NASA Astrophysics Data System (ADS)

    Nikolić, Predrag; Sachdev, Subir

    2007-09-01

    We highlight the properties of a simple model (contained in our recent work) of the quantum dynamics of a single point vortex interacting with the nodal fermionic quasiparticles of a d-wave superconductor. We describe the renormalization of the vortex motion by the quasiparticles: at T = 0, the quasiparticles renormalize the vortex mass and introduce only a weak sub-ohmic damping. Ohmic (or 'Bardeen-Stephen' damping) appears at T > 0, with the damping co-efficient vanishing ∼T2 with a universal prefactor. Conversely, quantum fluctuations of the vortex renormalize the quasiparticle spectrum. A point vortex oscillating in a harmonic pinning potential has no zero-bias peak in the electronic local density of states (LDOS), but has small satellite features at an energy determined by the pinning potential. These are proposed as the origin of sub-gap LDOS peaks observed in scanning tunneling microscopic studies of the LDOS near a vortex.

  17. Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors

    PubMed Central

    Taupin, M.; Khaymovich, I. M.; Meschke, M.; Mel'nikov, A. S.; Pekola, J. P.

    2016-01-01

    Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data. PMID:26980225

  18. Nonequilibrium superconducting states with temporal periodic structures under high quasiparticle injection

    SciTech Connect

    CHEN Shi-gang; CHEN Xiao-lan; WANG You-qin

    1984-07-01

    Based on the Scalapino-Huberman ..mu..* model, the possibility of temporally oscillating structures appearing in a superconducting film under high quasiparticle injection is discussed. The range of parameters in which these structures may occur is also given.

  19. Normal State Spectral Lineshapes of Nodal Quasiparticles in Single Layer Bi2201 Superconductor

    SciTech Connect

    Lanzara, A.

    2010-04-30

    A detailed study of the normal state photoemission lineshapes and quasiparticle dispersion for the single layer Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}}(Bi2201) superconductor is presented. We report the first experimental evidence of a double peak structure and a dip of spectral intensity in the energy distribution curves (EDCs) along the nodal direction. The double peak structure is well identified in the normal state, up to ten times the critical temperature. As a result of the same self-energy effect, a strong mass renormalization of the quasiparticle dispersion, i.e. kink, and an increase of the quasiparticle lifetime in the normal state are also observed. Our results provide unambiguous evidence on the existence of bosonic excitation in the normal state, and support a picture where nodal quasiparticles are strongly coupled to the lattice.

  20. Development of a Spatially Resolved ^3He Quasi-Particle Detector

    NASA Astrophysics Data System (ADS)

    Barquist, C. S.; Zheng, P.; Jiang, W. G.; Lee, Y.; Yoon, Y. K.; Schumann, T.; Nogan, J.; Lilly, M.

    2016-05-01

    Andreev surface bound sates are known to exist on the boundaries of superfluid ^3He-B. However, the detailed nature of their interaction with bulk quasi-particles is not well known. In a manner similar to angle-resolved photo-emission spectroscopy, surface states can be probed by measuring the change in momentum of bulk quasi-particles scattered from the surface. In order to make such a measurement, we have designed a spatially resolved quasi-particle detector. The detector consists of an array of micro-machined resonators, which are sensitive to quasi-particle flux. The detector is based on previously developed micro-machined resonators, which have been successfully used to study superfluid ^3He-B and ^4He. Presented here is the design of the detector and the fabrication procedure.

  1. Quasiparticle Coherence, Collective Modes, and Competing Order in Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Hinton, James Patrick

    In recent years, the study of cuprate superconductors has been dominated by the investigation of normal state properties. Of particular interest is the nature of interactions between superconductivity and other incipient orders which emerge above the superconducting transition temperature, Tc. The discovery of charge density wave (CDW) correlations in YBa2Cu3O6+x (YBCO) and HgBa2CuO 4+d (Hg-1201) has established that some form of charge order is ubiquitous in the cuprates. In this work, we explore the non-equilibrium dynamics of systems which sit near the boundary between superconductivity and competing orders. Ultrafast pump-probe spectroscopy is ideally suited to the study of competing order. Exciting the sample with an optical pulse perturbs the system from equilibrium, altering the balance between the co-existing orders. The return to equilibrium is then monitored by a time-delayed probe pulse, revealing multiple decay processes as well as collective excitations. We first apply this technique to Hg-1201, conducting a detailed study of the phase diagram. At temperatures near Tc, the pump pulse induces a non-equilibrium quasiparticle population. At Tc we observe a doping-dependent peak in the relaxation time of these quasiparticles which we associate with a divergence in the coherence time of the fluctuating CDW. Using heterodyne probing in the transient grating geometry, we are able to disentangle the transient reflectivity components associated with superconductivity and the pseudogap, domonstrating competition across the phase diagram. We also discuss the observation of a sharp transition in the nature of the pseudogap signal at ˜ 11% doping. In YBCO, we explore the temperature and doping dependence of coherent oscillations excited by the pump pulse. We associate these oscillations with the excitation of the CDW amplitude mode, and model their temperature dependence within the framework of a Landau model of competing orders. We conclude with an investigation

  2. Energy Decay in Superconducting Josephson-Junction Qubits from Nonequilibrium Quasiparticle Excitations

    DTIC Science & Technology

    2009-08-26

    Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS superconducting qubits, quasiparticles, coherence John ...ARO 8. PERFORMING ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER John Martinis 805-893-3910 3. DATES...Junction Qubits from Nonequilibrium Quasiparticle Excitations John M. Martinis,1 M. Ansmann,1 and J. Aumentado2 1Department of Physics, University of

  3. Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors.

    PubMed

    Aumentado, J; Keller, Mark W; Martinis, John M; Devoret, M H

    2004-02-13

    We have fabricated single-Cooper-pair transistors in which the spatial profile of the superconducting gap energy was controlled by oxygen doping. The profile dramatically affects the switching current vs gate voltage curve of the transistor, changing its period from 1e to 2e. A model based on nonequilibrium quasiparticles in the leads explains our results, including the observation that even devices with a clean 2e period are "poisoned" by small numbers of these quasiparticles.

  4. Detecting stray microwaves and nonequilibrium quasiparticles in thin films by single-electron tunneling

    NASA Astrophysics Data System (ADS)

    Saira, Olli-Pentti; Maisi, Ville; Kemppinen, Antti; Möttönen, Mikko; Pekola, Jukka

    2013-03-01

    Superconducting thin films and tunnel junctions are the building blocks of many state-of-the-art technologies related to quantum information processing, microwave detection, and electronic amplification. These devices operate at millikelvin temperatures, and - in a naive picture - their fidelity metrics are expected to improve as the temperature is lowered. However, very often one finds in the experiment that the device performance levels off around 100-150 mK. In my presentation, I will address three common physical mechanisms that can cause such saturation: stray microwaves, nonequilibrium quasiparticles, and sub-gap quasiparticle states. The new experimental data I will present is based on a series of studies on quasiparticle transport in Coulomb-blockaded normal-insulator-superconductor tunnel junction devices. We have used a capacitively coupled SET electrometer to detect individual quasiparticle tunneling events in real time. We demonstrate the following record-low values for thin film aluminum: quasiparticle density nqp < 0 . 033 / μm3 , normalized density of sub-gap quasiparticle states (Dynes parameter) γ < 1 . 6 ×10-7 . I will also discuss some sample stage and chip designs that improve microwave shielding.

  5. Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions

    SciTech Connect

    Rashid, H. Desmaris, V.; Pavolotsky, A.; Belitsky, V.

    2016-04-15

    In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction. The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.

  6. Electron-phonon coupling and pairing mechanism in β -Bi2Pd centrosymmetric superconductor

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-Jing; Margine, E. R.

    2017-01-01

    We report first-principles calculations of the superconducting properties of β -Bi2Pd within the fully anisotropic Migdal-Eliashberg formalism. We find a single anisotropic superconducting gap of s -wave symmetry which varies in magnitude on the different regions of the Fermi surface. The calculated superconducting energy gap on the Fermi surface, the superconducting transition temperature, the specific heat, and the quasiparticle density of states are in good agreement with the corresponding experimental results and support the view that β -Bi2Pd is a phonon-mediated single-anisotropic-gap superconductor.

  7. Quasiparticle density of states by inversion with maximum entropy method

    NASA Astrophysics Data System (ADS)

    Sui, Xiao-Hong; Wang, Han-Ting; Tang, Hui; Su, Zhao-Bin

    2016-10-01

    We propose to extract the quasiparticle density of states (DOS) of the superconductor directly from the experimentally measured superconductor-insulator-superconductor junction tunneling data by applying the maximum entropy method to the nonlinear systems. It merits the advantage of model independence with minimum a priori assumptions. Various components of the proposed method have been carefully investigated, including the meaning of the targeting function, the mock function, as well as the role and the designation of the input parameters. The validity of the developed scheme is shown by two kinds of tests for systems with known DOS. As a preliminary application to a Bi2Sr2CaCu2O8 +δ sample with its critical temperature Tc=89 K , we extract the DOS from the measured intrinsic Josephson junction current data at temperatures of T =4.2 K , 45 K , 55 K , 95 K , and 130 K . The energy gap decreases with increasing temperature below Tc, while above Tc, a kind of energy gap survives, which provides an angle to investigate the pseudogap phenomenon in high-Tc superconductors. The developed method itself might be a useful tool for future applications in various fields.

  8. High-K multi-quasiparticle states in 254No

    NASA Astrophysics Data System (ADS)

    Clark, R. M.; Gregorich, K. E.; Berryman, J. S.; Ali, M. N.; Allmond, J. M.; Beausang, C. W.; Cromaz, M.; Deleplanque, M. A.; Dragojević, I.; Dvorak, J.; Ellison, P. A.; Fallon, P.; Garcia, M. A.; Gates, J. M.; Gros, S.; Jeppesen, H. B.; Kaji, D.; Lee, I. Y.; Macchiavelli, A. O.; Morimoto, K.; Nitsche, H.; Paschalis, S.; Petri, M.; Stavsetra, L.; Stephens, F. S.; Watanabe, H.; Wiedeking, M.

    2010-06-01

    We report results from an experiment on the decay of the high-K isomers in 254No. We have been able to establish the decay from the known high-lying four-quasiparticle isomer, which we assign as a K=16 state at an excitation energy of Ex=2.928(3) MeV. The decay of this state passes through a rotational band based on a previously unobserved state at Ex=2.012(2) MeV, which we suggest is based on a two-quasineutron configuration with K=10. This state in turn decays to a rotational band based on the known K=8 isomer, which we infer must also have a two quasineutron configuration. We are able to assign many new gamma-rays associated with the decay of the K=8 isomer, including the identification of a highly K-forbidden ΔK=8 E1 transition to the ground-state band. These results provide valuable new information on the orbitals close to the Fermi surface, pairing correlations, deformation and rotational response, and K-conservation in nuclei of the deformed trans-fermium region.

  9. Quasiparticle band structures and optical properties of magnesium fluoride.

    PubMed

    Yi, Zhijun; Jia, Ran

    2012-02-29

    The quasiparticle and optical properties of magnesium fluoride (MgF(2)) are computed within the GW approximation based on many-body perturbation theory (MBPT). The many-body effects appearing in self-energy and electron-hole interactions have an important influence on the electronic and optical properties. The DFT-LDA calculation shows a 6.78 eV band gap. Two methods are employed to evaluate the self-energy within the GW approximation in the present work. The generalized plasmon pole model (GPP) provides a band gap of 12.17 eV, which agrees well with the experimental value of 12.4 eV (Thomas et al 1973 Phys. Status Solidi b 56 163). Another band gap value of 11.30 eV is obtained by using a full frequency-dependent self-energy, which is also not far from the experimental value and is much better than the result from the LDA calculation. The calculated optical spectrum within DFT is significantly different from the experiment. Although the calculated optical absorption threshold within the GW method is close to the experiment, the overall shape of the spectrum is still similar to the case of DFT. However, the overall shape of the spectrum via the Bethe-Salpeter equation (BSE) method agrees well with the experiment.

  10. Quasi-particle structure of proton-hole cobalt isotopes

    NASA Astrophysics Data System (ADS)

    Gupta, Anuradha; Verma, Preeti; Singh, Suram; Bharti, Arun; Khosa, S. K.; Bhat, G. H.; Sheikh, J. A.

    2015-09-01

    Projected Shell Model calculations have been employed for the description of the ground band in odd mass 57-67Co isotopes. In the present work, quadrupole and monopole pairing interactions as well as quadrupole-quadrupole interactions are effectively included in the Hamiltonian for obtaining various nuclear structure properties using the angular momentum projection technique. The yrast spectra of these isotopes are described as interplay between the angular momentum projected states around the Fermi level. The quasi-particle structure of these nuclei is found to be comprised of different intrinsic K-quantum numbers. Rotational alignments in terms of kinetic moment of inertia (ℑ (1)) have also been discussed. The electromagnetic transition probabilities [ B (E2) and B (M1)] are also obtained in the present work and are found to be in good agreement with the available experimental as well as the other theoretical data, which tests the consistency of the applied projected shell model. The present PSM calculations also report the existence of low lying deformed structure along with the spherical structure at N = 40.

  11. Self-Consistent Calculations of Quasiparticle States in Crystals

    NASA Astrophysics Data System (ADS)

    Schöne, W.-D.; Eguiluz, A. G.; Gaspar, J. A.

    1998-03-01

    We report self-consistent evaluations of the electron self-energy and quasiparticle (QP) states in crystals within the (fully-conserving) shielded-interaction approximation. Our method starts from the knowledge of the one-electron states within the LDA. These states are renormalized via the self-consistent solution of the Dyson equation for the one-particle Green's function. All the degrees of freedom of the many-electron system are allowed to ``relax'' as the propagators are dressed. Special care is placed in obtaining cutoff-independent dynamical polarizabilities. We present results for the spectral function, the density of states, the QP renormalization factor, and the QP band structure, for bcc K (the LDA states are obtained with the fhi96md code). The finite lifetime of the QP states blurs the (reduced-zone-) excited-state band structure for relatively low energies. We also discuss the impact of self-consistency on the calculated value of the band gap in Si.

  12. Excitonic quasiparticles in a spin–orbit Mott insulator

    DOE PAGES

    Kim, Jungho; Daghofer, M.; Said, A. H.; ...

    2014-07-17

    In condensed matter systems, out of a large number of interacting degrees of freedom emerge weakly coupled quasiparticles (QPs), in terms of which most physical properties are described. The lack of identification of such QPs is a major barrier for understanding myriad exotic properties of correlated electrons, such as unconventional superconductivity and non-Fermi liquid behaviours. In this paper, we report the observation of a composite particle in a quasi-two-dimensional spin–1/2 antiferromagnet Sr2IrO4—an exciton dressed with magnons—that propagates with the canonical characteristics of a QP: a finite QP residue and a lifetime longer than the hopping time scale. Finally, the dynamicsmore » of this charge-neutral excitation mirrors the fundamental process of the analogous one-hole propagation in the background of spins–1/2, and reveals the same intrinsic dynamics that is obscured for a single, charged-hole doped into two-dimensional cuprates.« less

  13. Quasiparticle Representation of Coherent Nonlinear Optical Signals of Multiexcitons

    NASA Astrophysics Data System (ADS)

    Fingerhut, Benjamin; Bennet, Kochise; Roslyak, Oleksiy; Mukamel, Shaul

    2013-03-01

    Elementary excitations of many-Fermion systems can be described within the quasiparticle approach which is widely used in the calculation of transport and optical properties of metals, semiconductors, molecular aggregates and strongly correlated quantum materials. The excitations are then viewed as independent harmonic oscillators where the many-body interactions between the oscillators are mapped into anharmonicities. We present a Green's function approach based on coboson algebra for calculating nonlinear optical signals and apply it onwards the study of two and three exciton states. The method only requires the diagonalization of the single exciton manifold and avoids equations of motion of multi-exciton manifolds. Using coboson algebra many body effects are recast in terms of tetradic exciton-exciton interactions: Coulomb scattering and Pauli exchange. The physical space of Fermions is recovered by singular-value decomposition of the over-complete coboson basis set. The approach is used to calculate third and fifth order quantum coherence optical signals that directly probe correlations in two- and three exciton states and their projections on the two and single exciton manifold.

  14. Quasiparticle energies for cubic BN, BP, and BAs

    SciTech Connect

    Surh, M.P.; Louie, S.G.; Cohen, M.L. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720)

    1991-04-15

    Electronic excitation energies at the high-symmetry points {Gamma}, {ital X}, and {ital L} are obtained for zinc-blende-structure BN, BP, and BAs in the {ital GW} approximation using a model dielectric function. A model for the static screening matrix makes use of the {ital ab} {ital initio} ground-state charge density and either experimental values or empirical estimates for {epsilon}{sub {infinity}}, the electronic contribution to the macroscopic dielectric constant. Wave functions from an {ital ab} {ital initio} local-density-approximation calculation with norm-conserving pseudopotentials are employed along with the self-consistent quasiparticle spectrum to obtain the energy-dependent one-particle Green function {ital G}. The minimum band gaps are found to be 6.3, 1.9, and 1.6 eV for BN, BP, and BAs, respectively, in close agreement with existing measurements of 6.1 and 2.0 eV for BN and BP, respectively. The BN direct band gap is predicted to be 11.4 eV versus the experimental value of 14.5 eV, and the BP direct band gap is predicted to be 4.4 eV versus 5.0 eV from experiment.

  15. QuasiParticle Self-Consistent, GW Theory

    NASA Astrophysics Data System (ADS)

    Kotani, Takao; van Schilfgaarde, Mark; Faleev, Sergey

    2005-03-01

    A formal justification for a new kind self-consistent GW approximation is developed. In this Landau-Silin picture the GW approximation is based on the ansatz of the existence of bare quasiparticles generated from a noninteracting Hamiltonian H0 and corresponding Green's function G0. In this picture, electrons and holes should have real meaning; W is computed from the time-dependent Hartree approximation; σ=iG0W means ``exchange effect'' + electrons and holes interacting. A key issue is how to construct the optimum H0. The true Green's function G should have corresponding one-particle excitations, and H0 should approximate the corresponding energies and eigenfunctions as well as possible. We present a prescription for H0 that approximately minimizes the difference between G-1 and G0-1. The theory is applied to sp bonded materials, simple and transition metals, transition-metal oxides, some magnetic compounds such as MnAs and some f systems (e.g. CeO2, and Gd). We compare to a variety of experimental data for these different materials classes. The errors are quite small and highly systematic in sp systems, they are somewhat larger but still systematic in transition-metal oxides, and are largest for Gd. Some analysis of the origin of the errors will be presented.

  16. Spin-orbit scattering visualized in quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Kohsaka, Y.; Machida, T.; Iwaya, K.; Kanou, M.; Hanaguri, T.; Sasagawa, T.

    2017-03-01

    In the presence of spin-orbit coupling, electron scattering off impurities depends on both spin and orbital angular momentum of electrons—spin-orbit scattering. Although some transport properties are subject to spin-orbit scattering, experimental techniques directly accessible to this effect are limited. Here we show that a signature of spin-orbit scattering manifests itself in quasiparticle interference (QPI) imaged by spectroscopic-imaging scanning tunneling microscopy. The experimental data of a polar semiconductor BiTeI are well reproduced by numerical simulations with the T -matrix formalism that include not only scalar scattering normally adopted but also spin-orbit scattering stronger than scalar scattering. To accelerate the simulations, we extend the standard efficient method of QPI calculation for momentum-independent scattering to be applicable even for spin-orbit scattering. We further identify a selection rule that makes spin-orbit scattering visible in the QPI pattern. These results demonstrate that spin-orbit scattering can exert predominant influence on QPI patterns and thus suggest that QPI measurement is available to detect spin-orbit scattering.

  17. Excitonic quasiparticles in a spin–orbit Mott insulator

    SciTech Connect

    Kim, Jungho; Daghofer, M.; Said, A. H.; Gog, T.; van den Brink, J.; Khaliullin, G.; Kim, B. J.

    2014-07-17

    In condensed matter systems, out of a large number of interacting degrees of freedom emerge weakly coupled quasiparticles (QPs), in terms of which most physical properties are described. The lack of identification of such QPs is a major barrier for understanding myriad exotic properties of correlated electrons, such as unconventional superconductivity and non-Fermi liquid behaviours. In this paper, we report the observation of a composite particle in a quasi-two-dimensional spin–1/2 antiferromagnet Sr2IrO4—an exciton dressed with magnons—that propagates with the canonical characteristics of a QP: a finite QP residue and a lifetime longer than the hopping time scale. Finally, the dynamics of this charge-neutral excitation mirrors the fundamental process of the analogous one-hole propagation in the background of spins–1/2, and reveals the same intrinsic dynamics that is obscured for a single, charged-hole doped into two-dimensional cuprates.

  18. Non-perturbative renormalization group calculation of the quasi-particle velocity and the dielectric function of graphene

    NASA Astrophysics Data System (ADS)

    Sharma, Anand; Bauer, Carsten; Rueckriegel, Andreas; Kopietz, Peter

    We use a nonperturbative functional renormalization group approach to calculate the renormalized quasiparticle velocity v (k) and the static dielectric function ɛ (k) of suspended graphene as function of an external momentum k. We fit our numerical result for v (k) to v (k) /vF = A + Bln (Λ0 / k) , where vF is the bare Fermi velocity, Λ0 is an ultraviolet cutoff, and A = 1 . 37 , B = 0 . 51 for the physically relevant value (e2 /vF = 2 . 2) of the coupling constant. In stark contrast to calculations based on the static random-phase approximation, we find that ɛ (k) approaches unity for k --> 0 . Our result for v (k) agrees very well with a recent measurement by Elias etal. [Nat. Phys. 7, 701 (2011)]. With in the same approximation, we also explore an alternative scheme in order to understand the true nature of the low energy (momentum) behavior in graphene.

  19. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory

    NASA Astrophysics Data System (ADS)

    Ismail-Beigi, Sohrab

    2017-09-01

    The question of which non-interacting Green’s function ‘best’ describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green’s function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green’s functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

  20. Multiscale theory of collective and quasiparticle modes in quantum nanosystems.

    PubMed

    Ortoleva, P; Iyengar, S S

    2008-04-28

    A quantum nanosystem (such as a quantum dot, nanowire, superconducting nanoparticle, or superfluid nanodroplet) involves widely separated characteristic lengths. These lengths range from the average nearest-neighbor distance between the constituent fermions or bosons, or the lattice spacing for a conducting metal, to the overall size of the quantum nanosystem (QN). This suggests the wave function has related distinct dependencies on the positions of the constituent fermions and bosons. We show how the separation of scales can be used to generate a multiscale perturbation scheme for solving the wave equation. Results for electrons or other fermions show that, to lowest order, the wave function factorizes into an antisymmetric (fermion) part and a symmetric (bosonlike) part. The former manifests the short-range/exclusion-principle behavior, while the latter corresponds to collective behaviors, such as plasmons, which have a boson character. When the constituents are bosons, multiscale analysis shows that, to lowest order, the wave function can also factorize into short- and long-scale parts. However, to ensure that the product wave function has overall symmetric particle label exchange behavior, there could, in principle, be states of the boson nanosystem where both the short- and long-scale factors are either boson- or fermionlike; the latter "dual fermion" states are, due to their exclusion-principle-like character, of high energy (i.e., single particle states cannot be multiply occupied). The multiscale perturbation analysis is used to argue for the existence of a coarse-grained wave equation for bosonlike collective behaviors. Quasiparticles, with effective mass and interactions, emerge naturally as consequences of the long-scale dynamics of the constituent particles. The multiscale framework holds promise for facilitating QN computer simulations and novel approximation schemes.

  1. Quasiparticle resonant states near defects near the BSCCO surface

    NASA Astrophysics Data System (ADS)

    Flatté, Michael E.

    2000-03-01

    Over the past few years several authors have emphasized the wealth of information available from local probes of impurity properties in correlated electron systems, and particularly in superconductors with order parameters which are anisotropic in momentum.[1] A parallel improvement in scanning tunneling microscopy has allowed this vision to become a reality, first in the superconductor niobium[2] (which has an isotropic order parameter) and this year in high-temperature superconductors.[3] The recently observed properties of quasiparticle resonant states near various impurities within the surface of superconducting Bi_2Sr_2CaCu_2O_8+δ indicate that in-plane Andreév processes are either absent or phase-incoherent. The spectral and spatial details of the electronic structure near a Zn impurity provide a direct probe of both the local spin polarization and of the influence of collective effects on local conductivity. Further experiments are proposed to clarify whether the local spin polarization is correlated as local spin density wave order. [1] See M. E. Flatté and J. M. Byers, in Solid State Physics Vol. 52, ed. H. Ehrenreich and F. Spaepen, (Academic Press, New York, 1999), and references therein. [2] A. Yazdani, B.A. Jones, C. P. Lutz, M.F. Crommie, and D. M. Eigler, Science, 275, 1767 (1997). [3] E. W. Hudson, S. H. Pan, A. K. Gupta, K.-W. Ng, and J. C. Davis, Science 285, 88 (1999); A. Yazdani, C. M. Howald, C. P. Lutz, A. Kapitulnik, and D. M. Eigler, Phys. Rev. Lett. 83, 176 (1999); S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, to be published (cond-mat/9909365).

  2. The application of the fractional exclusion statistics to the BCS theory-A redefinition of the quasiparticle energies

    NASA Astrophysics Data System (ADS)

    Anghel, Dragoş-Victor; Nemnes, George Alexandru

    2016-09-01

    The effective energy of a superconductor Eeff(T) at temperature T is defined as the difference between the total energy at temperature T and the total energy at 0 K. We call the energy of the condensate, Ec, the difference between Eeff and the sum of the quasiparticle energies Eqp. Ec, Eqp, as well as the BCS quasiparticle energy ɛ are positive and depend on the gap energy Δ, which, in turn, depends on the populations of the quasiparticle states (equivalently, they depend on T). So, from the energetic point of view, the superconductor is a Fermi liquid of interacting quasiparticles. We show that the choice of quasiparticles is not unique, but there is an infinite range of possibilities. Some of these possibilities have been explored in the context of the fractional exclusion statistics (FES), which is a general method of describing interacting particle systems as ideal gases. We apply FES here and transform the Fermi liquid of BCS excitations into an ideal gas by redefining the quasiparticle energies. The new FES quasiparticles exhibit the same energy gap as the BCS quasiparticles, but a different DOS, which is finite at any quasiparticle energy. We also discuss the effect of the remnant electron-electron interaction (electron-electron interaction beyond the BCS pairing model) and show that this can stabilize the BCS condensate, increasing the critical temperature.

  3. Understanding Pd-Pd bond length variation in (PNP)Pd-Pd(PNP) dimers.

    PubMed

    Walensky, Justin R; Fafard, Claudia M; Guo, Chengyun; Brammell, Christina M; Foxman, Bruce M; Hall, Michael B; Ozerov, Oleg V

    2013-03-04

    Analysis of the structures of three (PNP)Pd-Pd(PNP) dimers [where PNP stands for anionic diarylamido/bis(phosphine) pincer ligands] has been carried out with the help of single-crystal X-ray diffractometry and density functional theory (DFT) calculations on isolated molecules. The three dimers under study possess analogous ancillary ligands; two of them differ only by an F versus Me substituent in a remote (five bonds away from Pd) position of the pincer ligand. Despite these close similarities, X-ray structural determinations revealed two distinct structural motifs: a highly symmetric molecule with a long Pd-Pd bond or a highly distorted molecule with Pd-Pd bonds ca. 0.14 Å shorter. DFT calculations on a series of (PNP)Pd-Pd(PNP) dimers (as molecules in the gas phase) confirmed the existence of these distinct minima for dimers carrying large isopropyl substituents on the P-donor atoms (as in the experimental structure). These minima are nearly isoergic conformers. Evidently, the electronically preferred symmetric structure for the dimer (with a square-planar environment about Pd and a linear N-Pd-Pd-N vector) is not sterically possible with the preferred Pd-Pd distance. Thus, the minima correspond to either a symmetric structure with a long Pd-Pd bond distance or a structure with a short Pd-Pd distance but with substantial distortions in the Pd coordination environment to alleviate steric conflict. This notion is supported by finding only a single minimum (symmetric and with short Pd-Pd bonds) for each of the dimers carrying smaller substituents (H or Me) on the P atoms, regardless of the remote substitution.

  4. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Shaginyan, V. R.

    2011-08-01

    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.

  5. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    SciTech Connect

    Shaginyan, V. R.

    2011-08-15

    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.

  6. Lightwave-driven quasiparticle collisions on a sub-cycle timescale

    PubMed Central

    Langer, F.; Hohenleutner, M.; Schmid, C.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.

    2016-01-01

    Ever since Ernest Rutherford first scattered α-particles from gold foils1, collision experiments have revealed unique insights into atoms, nuclei, and elementary particles2. In solids, many-body correlations also lead to characteristic resonances3, called quasiparticles, such as excitons, dropletons4, polarons, or Cooper pairs. Their structure and dynamics define spectacular macroscopic phenomena, ranging from Mott insulating states via spontaneous spin and charge order to high-temperature superconductivity5. Fundamental research would immensely benefit from quasiparticle colliders, but the notoriously short lifetimes of quasiparticles6 have challenged practical solutions. Here we exploit lightwave-driven charge transport7–24, the backbone of attosecond science9–13, to explore ultrafast quasiparticle collisions directly in the time domain: A femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying wave packet dynamics, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands17–19 of the optical excitation. A full quantum theory explains our observations microscopically. This approach opens the door to collision experiments with a broad variety of complex quasiparticles and suggests a promising new way of sub-femtosecond pulse generation. PMID:27172045

  7. Favored configurations for four-quasiparticle K isomerism in the heaviest nuclei

    NASA Astrophysics Data System (ADS)

    Liu, H. L.; Walker, P. M.; Xu, F. R.

    2014-04-01

    Configuration-constrained potential-energy-surface calculations are performed including β6 deformation to investigate high-K isomeric states in nuclei around 254No and 270Ds, the heaviest nuclei where there have been some observations of two-quasiparticle isomers, while data for four-quasiparticle isomers are scarce. We predict the prevalent occurrence of four-quasiparticle isomeric states in these nuclei, together with their favored configurations. The most notable examples, among others, are Kπ=20+ states in 266,268Ds and 268,270Cn having very high K value, relatively low excitation energy, and well-deformed axially symmetric shape. The predicted isomeric states, with hindered spontaneous fission and α decay, could play a significant role in the future study of superheavy nuclei.

  8. Spin-polaron nature of fermion quasiparticles and their d-wave pairing in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.

    2016-11-01

    In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong electron correlations, it is shown that the fermion quasiparticles in cuprate high- T c superconductors (HTSCs) arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the normal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi surface with the changes in the doping level x observed in experiment for La2-xSrxCuO4. The calculated T-x phase diagram correlates well with the available experimental data for cuprate HTSCs.

  9. Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet.

    PubMed

    Šmejkal, L; Železný, J; Sinova, J; Jungwirth, T

    2017-03-10

    Spin orbitronics and Dirac quasiparticles are two fields of condensed matter physics initiated independently about a decade ago. Here we predict that Dirac quasiparticles can be controlled by the spin-orbit torque reorientation of the Néel vector in an antiferromagnet. Using CuMnAs as an example, we formulate symmetry criteria allowing for the coexistence of topological Dirac quasiparticles and Néel spin-orbit torques. We identify the nonsymmorphic crystal symmetry protection of Dirac band crossings whose on and off switching is mediated by the Néel vector reorientation. We predict that this concept verified by minimal model and density functional calculations in the CuMnAs semimetal antiferromagnet can lead to a topological metal-insulator transition driven by the Néel vector and to the topological anisotropic magnetoresistance.

  10. Modulation of the penetration depth of Nb and NbN films by quasiparticle injection

    NASA Astrophysics Data System (ADS)

    Track, E. K.; Radparvar, M.; Faris, S. M.

    1989-03-01

    A novel approach to modulating the inductance of a superconducting microstrip is described. This approach could be the basis for numerous practical applications, such as phase-shifters and high-frequency tuning elements. The physical mechanisms involved are quasiparticle injection, gap suppression, and penetration-depth modulation. The authors have investigated the modulation of the penetration depth of niobium and niobium nitride films by excess quasiparticle injection. To this effect, all niobium and all-niobium-nitride SQUID (superconducting quantum interference device) circuits were designed and fabricated. These circuits allow quasiparticle injection into the inductive element of the SQUID. This injection is achieved by optical irradiation through an opening in a Nb reflective layer which partially masks the rest of the circuit or electronic current injection through a tunnel junction overlaid on the microstrip inductance. Penetration-depth modulation is achieved with both methods. The magnitude of the effect varies from 10 percent to over 200 percent change in inductance.

  11. Quasiparticle parity lifetime of bound states in a hybrid superconductor-semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Higginbotham, Andrew; Albrecht, Sven; Kirsanskas, Gediminas; Chang, Willy; Kuemmeth, Ferdinand; Krogstrup, Peter; Jespersen, Thomas; Nygård, Jesper; Flensberg, Karsten; Marcus, Charles

    2015-03-01

    We measure quasiparticle transport in an InAs nanowire that is half-covered with epitaxial superconducting aluminum, then locally gated to form a quantum dot. We observe negative differential conductance at finite source-drain bias, and temperature dependent even-odd alternations in the Coulomb blockade peak spacings at zero bias. These observations can be understood in terms of a mid-gap semiconductor discrete state and a continuum of BCS quasiparticle states. Comparing with simple models, we bound the discrete state's parity lifetime and the quasiparticle temperature. These results indicate that parity fluctuations are slow, and imply Majorana qubit poisoning times on the order of a millisecond. Additional results indicate that the bound states move to zero energy in a magnetic field, qualitatively consistent with expectations for Majorana fermions in a finite system. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation, and the European Commission.

  12. Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Šmejkal, L.; Železný, J.; Sinova, J.; Jungwirth, T.

    2017-03-01

    Spin orbitronics and Dirac quasiparticles are two fields of condensed matter physics initiated independently about a decade ago. Here we predict that Dirac quasiparticles can be controlled by the spin-orbit torque reorientation of the Néel vector in an antiferromagnet. Using CuMnAs as an example, we formulate symmetry criteria allowing for the coexistence of topological Dirac quasiparticles and Néel spin-orbit torques. We identify the nonsymmorphic crystal symmetry protection of Dirac band crossings whose on and off switching is mediated by the Néel vector reorientation. We predict that this concept verified by minimal model and density functional calculations in the CuMnAs semimetal antiferromagnet can lead to a topological metal-insulator transition driven by the Néel vector and to the topological anisotropic magnetoresistance.

  13. Quasi-particle spectrum in trilayer graphene: Role of onsite coulomb interaction and interlayer coupling

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Ajay

    2015-01-01

    Stacking dependent quasi-particle spectrum and density of states (DOS) in trilayer (ABC-, ABA- and AAA-stacked) graphene are analyzed using mean-field Green's function equations of motion method. Interlayer coupling (t1) is found to be responsible for the splitting of quasi-particle peaks in each stacking order. Coulomb interaction suppresses the trilayer splitting and generates a finite gap at Fermi level in ABC- while a tiny gap in ABA-stacked trilayer graphene. Influence of t⊥ is prominent for AAA-stacking as compared to ABC- and ABA-stacking orders. The theoretically obtained quasi-particle energies and DOS has been viewed in terms of recent angle resolved photoemission spectroscopic (ARPES) and scanning tunneling microscopic (STM) data available on these systems.

  14. Microscopic model of quasiparticle wave packets in superfluids, superconductors, and paired Hall states.

    PubMed

    Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z

    2012-12-07

    We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.

  15. Shot-Noise Evidence of Fractional Quasiparticle Creation in a Local Fractional Quantum Hall State

    NASA Astrophysics Data System (ADS)

    Hashisaka, Masayuki; Ota, Tomoaki; Muraki, Koji; Fujisawa, Toshimasa

    2015-02-01

    We experimentally identify fractional quasiparticle creation in a tunneling process through a local fractional quantum Hall (FQH) state. The local FQH state is prepared in a low-density region near a quantum point contact in an integer quantum Hall (IQH) system. Shot-noise measurements reveal a clear transition from elementary-charge tunneling at low bias to fractional-charge tunneling at high bias. The fractional shot noise is proportional to T1(1 -T1) over a wide range of T1 , where T1 is the transmission probability of the IQH edge channel. This binomial distribution indicates that fractional quasiparticles emerge from the IQH state to be transmitted through the local FQH state. The study of this tunneling process enables us to elucidate the dynamics of Laughlin quasiparticles in FQH systems.

  16. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212

    PubMed Central

    2013-01-01

    The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening. PMID:24314035

  17. Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states

    SciTech Connect

    Fendley, Paul; Fisher, Matthew P.A.; Nayak, Chetan

    2009-07-15

    We explain how (perturbed) boundary conformal field theory allows us to understand the tunneling of edge quasiparticles in non-Abelian topological states. The coupling between a bulk non-Abelian quasiparticle and the edge is due to resonant tunneling to a zero mode on the quasiparticle, which causes the zero mode to hybridize with the edge. This can be reformulated as the flow from one conformally invariant boundary condition to another in an associated critical statistical mechanical model. Tunneling from one edge to another at a point contact can split the system in two, either partially or completely. This can be reformulated in the critical statistical mechanical model as the flow from one type of defect line to another. We illustrate these two phenomena in detail in the context of the {nu}=5/2 quantum Hall state and the critical Ising model. We briefly discuss the case of Fibonacci anyons and conclude by explaining the general formulation and its physical interpretation.

  18. Proposal to measure the quasiparticle poisoning time of Majorana bound states

    NASA Astrophysics Data System (ADS)

    Colbert, Jacob R.; Lee, Patrick A.

    2014-04-01

    We propose a method of measuring the fermion parity lifetime of Majorana fermion modes due to quasiparticle poisoning. We model quasiparticle poisoning by coupling the Majorana modes to electron reservoirs, explicitly breaking parity conservation in the system. This poisoning broadens and shortens the resonance peak associated with Majorana modes. In a two-lead geometry, the poisoning decreases the correlation in current noise between the two leads from the maximal value characteristic of crossed Andreev reflection. The latter measurement allows for calculation of the poisoning rate even if the temperature is much higher than the resonance width.

  19. Emergent exclusion statistics of quasiparticles in two-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Hu, Yuting; Stirling, Spencer D.; Wu, Yong-Shi

    2014-03-01

    We demonstrate how the generalized Pauli exclusion principle emerges for quasiparticle excitations in 2D topological phases. As an example, we examine the Levin-Wen model with the Fibonacci data (specified in the text), and construct the number operator for fluxons living on plaquettes. By numerically counting the many-body states with fluxon number fixed, the matrix of exclusion statistics parameters is identified and is shown to depend on the spatial topology (sphere or torus) of the system. Our work reveals the structure of the (many-body) Hilbert space and some general features of thermodynamics for quasiparticle excitations in topological matter.

  20. Energy-resolving superconducting x-ray detectors with charge amplification due to multiple quasiparticle tunneling

    SciTech Connect

    Mears, C.A.; Labov, S.E. ); Barfknecht, A.T. )

    1993-11-22

    Superconducting tunnel junctions coupled to superconducting absorbers may be used as high-resolution, high-efficiency x-ray spectrometers. We have tested devices with niobium x-ray absorbing layers coupled to aluminum layers that serve as quasiparticle traps. The energy resolution at 6 keV was 49 eV full width at half-maximum. We estimate that each quasiparticle tunnels an average of 19 times before recombining, increasing the total charge transferred and therefore decreasing the effects of electronic noise.

  1. Roles of anisotropic and unequal gaps in the quasiparticle interference of superconducting iron pnictides

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj Kumar

    2017-09-01

    We investigate the role of gap characteristics such as anisotropy or inequality of the gaps in the quasiparticle interferences of iron pnictides using a five-orbital tight-binding model. We examine how the difference in the sensitivities exhibited by the sign-changing and -preserving s-wave superconductivity in an annular region around (π , 0), which can be used to determine the sign change of the superconducting gap, gets affected when the gaps are unequal on the electron and hole pockets. In addition, we also discuss how robust these differentiating features are on changing the quasiparticle energy or when the gap is anisotropic.

  2. Parametrization of light nuclei quasiparticle energy shifts and composition of warm and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Röpke, G.

    2011-10-01

    Correlations and the formation of bound states (nuclei) are essential for the properties of nuclear matter in equilibrium as well as in nonequilibrium. In a quantum statistical approach, quasiparticle energies are obtained for the light elements that reflect the influence of the medium. We present analytical fits for the quasiparticle energy shifts of light nuclei that can be used in various applications. This is a prerequisite for the investigation of warm and dense matter that reproduces the nuclear statistical equilibrium and virial expansions in the low-density limit as well as relativistic mean field and Brueckner Hartree-Fock approaches near saturation density.

  3. Measurement of quasiparticle transport in aluminum films using tungsten transition-edge sensors

    SciTech Connect

    Yen, J. J. Shank, B.; Cabrera, B.; Moffatt, R.; Redl, P.; Young, B. A.; Tortorici, E. C.; Brink, P. L.; Cherry, M.; Tomada, A.; Kreikebaum, J. M.

    2014-10-20

    We report on experimental studies of phonon sensors which utilize quasiparticle diffusion in thin aluminum films connected to tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic TES physics and a simple physical model of the overlap region between the W and Al films in our devices enables us to accurately reproduce the experimentally observed pulse shapes from x-rays absorbed in the Al films. We further estimate quasiparticle loss in Al films using a simple diffusion equation approach. These studies allow the design of phonon sensors with improved performance.

  4. Quasiparticle interaction function in a two-dimensional Fermi liquid near an antiferromagnetic critical point

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Wölfle, Peter

    2014-01-01

    We present the expression for the quasiparticle vertex function Γω(KF,PF) (proportional to the Landau interaction function) in a 2D Fermi liquid (FL) near an instability towards antiferromagnetism. This function is relevant in many ways in the context of metallic quantum criticality. Previous studies have found that near a quantum critical point, the system enters into a regime in which the fermionic self-energy is large near hot spots on the Fermi surface [points on the Fermi surface connected by the antiferromagnetic ordering vector qπ=(π,π)] and has much stronger dependence on frequency than on momentum. We show that in this regime, which we termed a critical FL, the conventional random-phase-approximation- (RPA) type approach breaks down, and to properly calculate the vertex function one has to sum up an infinite series of terms which were explicitly excluded in the conventional treatment. Besides, we show that, to properly describe the spin component of Γω(KF,PF) even in an ordinary FL, one has to add Aslamazov-Larkin (AL) terms to the RPA vertex. We show that the total Γω(KF,PF) is larger in a critical FL than in an ordinary FL, roughly by an extra power of magnetic correlation length ξ, which diverges at the quantum critical point. However, the enhancement of Γω(KF,PF) is highly nonuniform: It holds only when, for one of the two momentum variables, the distance from a hot spot along the Fermi surface is much larger than for the other one. This fact renders our case different from quantum criticality at small momentum, where the enhancement of Γω(KF,PF) was found to be homogeneous. We show that the charge and spin components of the total vertex function satisfy the universal relations following from the Ward identities related to the conservation of the particle number and the total spin. We show that in a critical FL, the Ward identity involves Γω(KF,PF) taken between particles on the FS. We find that the charge and spin components of

  5. Anti-PD-1/PD-L1 antibody therapy for pretreated advanced nonsmall-cell lung cancer

    PubMed Central

    Zhou, Guo-Wu; Xiong, Ye; Chen, Si; Xia, Fan; Li, Qiang; Hu, Jia

    2016-01-01

    Abstract Background: Anti-PD-1/PD-L1 antibody therapy is a promising clinical treatment for nonsmall-cell lung cancer (NSCLC). However, whether anti-PD-1/PD-L1 antibody therapy can provide added benefits for heavily pretreated patients with advanced NSCLC and whether the efficacy of anti-PD-1/PD-L1 antibody therapy relates to the tumor PD-L1 expression level remain controversial. Thus, this meta-analysis evaluated the efficacy and safety of anti-PD-1/PD-L1 antibody therapy for pretreated patients with advanced NSCLC. Methods: Randomized clinical trials were retrieved by searching the PubMed, EMBASE, ASCO meeting abstract, clinicaltrial.gov, and Cochrane library databases. The pooled hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS), and odds ratios for the overall response rate and adverse events (AEs) were calculated by STATA software. Results: Three randomized clinical trials involving 1141 pretreated patients with advanced NSCLC were included. These trials all compared the efficacy and safety of anti-PD-1/PD-L1 antibodies (nivolumab and MPDL3280A) with docetaxel. The results suggested that, for all patients, anti-PD-1/PD-L1 therapy could acquire a greater overall response (odds ratio = 1.50, 95% CI: 1.08–2.07, P = 0.015, P for heterogeneity [Ph] = 0.620) and longer OS (HR = 0.71, 95% CI: 0.61–0.81, P < 0.001, Ph = 0.361) than docetaxel, but not PFS (HR = 0.83, 95% CI: 0.65–1.06, P = 0.134; Ph = 0.031). Subgroup analyses according to the tumor PD-L1 expression level showed that anti-PD-1/PD-L1 therapy could significantly improve both OS and PFS in patients with high expressions of PD-L1, but not in those with low expressions. Generally, the rates of grade 3 or 4 AEs of anti-PD-1/PD-L1 therapy were significantly lower than that of docetaxel. However, the risks of pneumonitis and hypothyroidism were significantly higher. Conclusion: Anti-PD-1/PD-L1 antibody therapy may significantly improve

  6. Experimental Realization of Type-II Dirac Fermions in a PdTe2 Superconductor

    NASA Astrophysics Data System (ADS)

    Noh, Han-Jin; Jeong, Jinwon; Cho, En-Jin; Kim, Kyoo; Min, B. I.; Park, Byeong-Gyu

    2017-07-01

    A Dirac fermion in a topological Dirac semimetal is a quadruple-degenerate quasiparticle state with a relativistic linear dispersion. Breaking either time-reversal or inversion symmetry turns this system into a Weyl semimetal that hosts double-degenerate Weyl fermion states with opposite chiralities. These two kinds of quasiparticles, although described by a relativistic Dirac equation, do not necessarily obey Lorentz invariance, allowing the existence of so-called type-II fermions. The recent theoretical discovery of type-II Weyl fermions evokes the prediction of type-II Dirac fermions in PtSe2 -type transition metal dichalcogenides, expecting experimental confirmation. Here, we report an experimental realization of type-II Dirac fermions in PdTe2 by angle-resolved photoemission spectroscopy combined with ab initio band calculations. Our experimental finding shows the first example that has both superconductivity and type-II Dirac fermions, which turns the topological material research into a new phase.

  7. Spin-isospin transitions in chromium isotopes within the quasiparticle random phase approximation

    NASA Astrophysics Data System (ADS)

    Cakmak, Sadiye; Nabi, Jameel-Un; Babacan, Tahsin; Maras, Ismail

    2015-01-01

    Beta decay and electron capture on isotopes of chromium are advocated to play a key role in the stellar evolution process. In this paper we endeavor to study charge-changing transitions for 24 isotopes of chromium (42-65Cr). These include neutron-rich and neutron-deficient isotopes of chromium. Three different models from the QRPA genre, namely the pn-QRPA, the Pyatov method (PM) and the Schematic model (SM), were selected to calculate and study the Gamow-Teller (GT) transitions in chromium isotopes. The SM was employed separately in the particle-particle (pp) and pp + particle-hole (ph) channels. To study the effect of deformation, the SM was first used assuming the nuclei to be spherical and later to be deformed. The PM was used both in pp and pp + ph channels but only for the case of spherical nuclei. The pn-QRPA calculation was done by considering both pp and ph forces and taking deformation of nucleus into consideration. A recent study proved this version of pn-QRPA to be the best for calculation of GT strength distributions amongst the QRPA models. The pn-QRPA model calculated GT distributions had low-lying centroids and small widths as compared to other QRPA models. Our calculation results were also compared with other theoretical models and measurements wherever available. Our results are in decent agreement with previous measurements and shell model calculations.

  8. Quasi-particle Interference of Heavy Fermions in Resonant X-ray Scattering

    SciTech Connect

    Gyenis, Andras; da Silva Neto, Eduardo H.; Sutarto, Ronny; Schierle, Enrico; He, Feizhou; Weschke, Eugen; Kavai, Mariam; Baumbach, Ryan E.; Thompson, Joe D.; Bauer, Eric D.; Fisk, Zachary; Damascelli, Andrea; Yazdani, Ali; Aynajian, Pegor

    2016-10-14

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.

  9. Quasiparticle engineering and entanglement propagation in a quantum many-body system.

    PubMed

    Jurcevic, P; Lanyon, B P; Hauke, P; Hempel, C; Zoller, P; Blatt, R; Roos, C F

    2014-07-10

    The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply. Our results will enable experimental studies of a range of quantum phenomena, including transport, thermalization, localization and entanglement growth, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.

  10. Ab initio quasiparticle bandstructure of ABA and ABC-stacked graphene trilayers

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos; Capaz, Rodrigo; Louie, Steven

    2013-03-01

    We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the quasiparticle corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher energy bands, which is proportional to the nearest neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the quasiparticle corrections. Finally, other effects, such as trigonal warping, electron-hole assymetry and energy gaps are discussed in terms of the associated parameters. This work was supported by the Brazilian funding agencies: CAPES, CNPq, FAPERJ and INCT-Nanomateriais de Carbono. It was also supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231.

  11. Tunneling Spectroscopy Study of Spin-Polarized Quasiparticle Injection Effects in Cuparate/Manganite Heterostructures

    NASA Technical Reports Server (NTRS)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1998-01-01

    Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.

  12. Quasiparticle corrections for the calculation of optical properties: SiC and GaN

    NASA Astrophysics Data System (ADS)

    Aulbur, Wilfried G.; Wilkins, John W.

    1996-03-01

    We study quasiparticle corrections to linear and nonlinear optical response functions of SiC and GaN, two technologically important wide-band-gap semiconductors. In contrast to earlier work that included quasiparticle corrections via a constant shift Δ of the conduction band energies, we explicitly take into account the dispersion of the band gap correction throughout the Brillouin zone: Δ arrow Δ (k). We implemented a parallel version of a quasiparticle calculation in the so-called GW approximation which allows the determination of Δ (k). In this approximation, the self-energy of the quasiparticles is given by the product of the dressed propagator, G, and the screened interaction, W. The screened interaction is calculated via a plasmon pole model which can also be used to determine plasmon bands. We present plasmon bandstructures for SiC and GaN. Our code is coarse-grain parallel and runs on the 128-node CRAY-T3D of the Ohio Supercomputer Center. It is written in an object-oriented way using C++ and interfaces heavily and efficiently with existing Fortran codes. Supported by DOE, NSF, the Ohio Supercomputer Center, and the 0.3truecm Cornell Theory Center.

  13. Tunneling Spectroscopy Study of Spin-Polarized Quasiparticle Injection Effects in Cuparate/Manganite Heterostructures

    NASA Technical Reports Server (NTRS)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1998-01-01

    Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.

  14. Quasiparticle decay in a one-dimensional Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Reichert, Benjamin; Petković, Aleksandra; Ristivojevic, Zoran

    2017-01-01

    In a one-dimensional weakly interacting Bose-Fermi mixture, one branch of elementary excitations is well described by the Bogoliubov spectrum. Here we use the microscopic theory to study the decay of such quasiparticle excitations. The main scattering process which leads to their decay is the backscattering of a Bogoliubov quasiparticle off the Fermi sea, where a particle-hole pair is excited. For a low-momentum quasiparticle (phonon) of momentum q , we find that the decay rate scales as q3 provided q is smaller than the Fermi momentum kF, while in the opposite case the decay behaves as q2. If the ratio of the masses of fermions and bosons is equal to the ratio of the boson-fermion and the boson-boson interaction strengths, the decay rate changes dramatically. It scales as q7 for q kF . For a high-momentum Bogoliubov quasiparticle, we find a constant decay rate for q kF . We also find an analytic expression for the decay rate in the crossover region between low and high momenta. The decay rate is a continuous, but nonanalytic function of the momentum at q =kF . In the special case when the parameters of our system correspond to the integrable model, we observe that the decay rate vanishes.

  15. Quasi-particle interference of heavy fermions in resonant x-ray scattering

    PubMed Central

    Gyenis, András; da Silva Neto, Eduardo H.; Sutarto, Ronny; Schierle, Enrico; He, Feizhou; Weschke, Eugen; Kavai, Mariam; Baumbach, Ryan E.; Thompson, Joe D.; Bauer, Eric D.; Fisk, Zachary; Damascelli, Andrea; Yazdani, Ali; Aynajian, Pegor

    2016-01-01

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique. PMID:27757422

  16. Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Wang, Wen-Xiao; Zhang, Yu; Ou, Yang-Yang; Zhang, Hao-Ting; Shen, Cai-Yun; He, Lin

    2017-02-01

    Trilayer graphene (TLG) exhibits rich, alternative electronic properties and extraordinary quantum Hall phenomena owing to enhanced electronic interactions and tunable chirality of its quasiparticles. Here, we report direct observation of chirality transition of quasiparticles at stacking solitons of TLG via spatial-resolved Landau level spectroscopy. The one-dimensional stacking solitons with width of the order of 10 nm separate adjacent Bernal-stacked TLG and rhombohedral-stacked TLG. By using high-field tunneling spectra from scanning tunneling microscopy, we measured Landau quantization in both the Bernal-stacked TLG and the rhombohedral-stacked TLG and, importantly, we observed evolution of quasiparticles between the chiral degree l =1 and 2 and l =3 across the stacking domain-wall solitons. Our experiment indicates that such a chirality transition occurs smoothly, accompanying the transition of the stacking orders of TLG, around the domain-wall solitons. This result demonstrates the important relationship between the crystallographic stacking order and the chirality of quasiparticles in graphene systems.

  17. Optical properties of solids within the independent-quasiparticle approximation: Dynamical effects

    NASA Astrophysics Data System (ADS)

    del Sole, R.; Girlanda, Raffaello

    1996-11-01

    The independent-quasiparticle approximation to calculating the optical properties of solids is extended to account for dynamical effects, namely, the energy dependence of the GW self-energy. We use a simple but realistic model of such energy dependence. We find that the inclusion of dynamical effects reduces considerably the calculated absorption spectrum and makes the agreement with experiment worse.

  18. Quasi-particle Interference of Heavy Fermions in Resonant X-ray Scattering

    DOE PAGES

    Gyenis, Andras; da Silva Neto, Eduardo H.; Sutarto, Ronny; ...

    2016-10-14

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and elementmore » selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.« less

  19. Quasiparticle Tunneling in the Fractional Quantum Hall effect at filling fraction ν=5/2

    NASA Astrophysics Data System (ADS)

    Radu, Iuliana P.

    2009-03-01

    In a two-dimensional electron gas (2DEG), in the fractional quantum Hall regime, the quasiparticles are predicted to have fractional charge and statistics, as well as modified Coulomb interactions. The state at filling fraction ν=5/2 is predicted by some theories to have non-abelian statistics, a property that might be exploited for topological quantum computing. However, alternative models with abelian properties have been proposed as well. Weak quasiparticle tunneling between counter-propagating edges is one of the methods that can be used to learn about the properties of the state and potentially distinguish between models describing it. We employ an electrostatically defined quantum point contact (QPC) fabricated on a high mobility GaAs/AlGaAs 2DEG to create a constriction where quasiparticles can tunnel between counter-propagating edges. We study the temperature and dc bias dependence of the tunneling conductance, while preserving the same filling fraction in the constriction and the bulk of the sample. The data show scaling of the bias-dependent tunneling over a range of temperatures, in agreement with the theory of weak quasiparticle tunneling, and we extract values for the effective charge and interaction parameter of the quasiparticles. The ranges of values obtained are consistent with those predicted by certain models describing the 5/2 state, indicating as more probable a non-abelian state. This work was done in collaboration with J. B. Miller, C. M. Marcus, M. A. Kastner, L. N. Pfeiffer and K. W. West. This work was supported in part by the Army Research Office (W911NF-05-1-0062), the Nanoscale Science and Engineering Center program of NSF (PHY-0117795), NSF (DMR-0701386), the Center for Materials Science and Engineering program of NSF (DMR-0213282) at MIT, the Microsoft Corporation Project Q, and the Center for Nanoscale Systems at Harvard University.

  20. Ultrafast momentum-dependent quasiparticle dynamics in high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Bovensiepen, Uwe

    2013-03-01

    Femtosecond time- and angle-resolved photoelectron spectroscopy trARPES facilitates insight into electronic relaxation and electronic structure of non-equilibrium states of matter. Hot electrons and holes relax in metals on ultrafast time scales due to the screened Coulomb interaction. In superconductors the relaxation rates of quasiparticles at energies close to the superconducting gap edge are reduced because of the loss of quasiparticle states near EF. Since in the superconducting state the relaxation of optically excited carriers proceeds partly by Cooper pair reformation, the study of the quasiparticle dynamics bears the potential to analyze the interaction responsible for Cooper pair formation. Results of trARPES will be discussed for optimally doped Bi2Sr2CaCu2O8+δ in the superconducting state and on EuFe2As2 in the antiferromagnetic state. In the cuprate system we find a predominant excitation of quasiparticles at momenta near the antinode. We show furthermore, that at excitation densities of several 10 μJ/cm2 quasiparticle relaxation is dominated by Cooper pair reformation, which again proceeds near the antinode. In the Fe-pnictide material we monitor a difference in the relaxation rate for electrons and holes near the Fermi momentum, which disappears above the Neel temperature. We conclude that this anisotropic relaxation of electrons and holes is a consequence of the optical modification of the antiferromagnetic order. Analysis of energy transfer from electrons to phonons allows to determine the momentum averaged electron-phonon coupling constant λ. We find values below 0.25 for Bi2Sr2CaCu2O8+δ and below 0.15 for EuFe2As2. We acknowledge funding through the Deutsche Forschungsgemeinschaft through BO 1823/2, SPP 1458 and the Alexander von Humboldt foundation.

  1. Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshihiko; Matsuo, Masayuki

    2016-01-01

    We discuss the effects of pairing correlation on quasiparticle resonance. We analyze in detail how the width of the low-lying (Ex≲ 1 MeV) quasiparticle resonance is governed by the pairing correlation in the neutron drip-line nuclei. We consider the {}^{46}Si + n system to discuss the low-lying p-wave quasiparticle resonance. Solving the Hartree-Fock-Bogoliubov equation in coordinate space with the scattering boundary condition, we calculate the phase shift, the elastic cross section, the resonance width, and the resonance energy. We find that the pairing correlation has the effect of reducing the width of the quasiparticle resonance that originates from a particle-like orbit in weakly bound nuclei.

  2. Quasiparticle Scattering in the Rashba Semiconductor BiTeBr: The Roles of Spin and Defect Lattice Site.

    PubMed

    Butler, Christopher John; Yang, Po-Ya; Sankar, Raman; Lien, Yen-Neng; Lu, Chun-I; Chang, Luo-Yueh; Chen, Chia-Hao; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong

    2016-09-28

    Observations of quasiparticle interference have been used in recent years to examine exotic carrier behavior at the surfaces of emergent materials, connecting carrier dispersion and scattering dynamics to real-space features with atomic resolution. We observe quasiparticle interference in the strongly Rashba split 2DEG-like surface band found at the tellurium termination of BiTeBr and examine two mechanisms governing quasiparticle scattering: We confirm the suppression of spin-flip scattering by comparing measured quasiparticle interference with a spin-dependent elastic scattering model applied to the calculated spectral function. We also use atomically resolved STM maps to identify point defect lattice sites and spectro-microscopy imaging to discern their varying scattering strengths, which we understand in terms of the calculated orbital characteristics of the surface band. Defects on the Bi sublattice cause the strongest scattering of the predominantly Bi 6p derived surface band, with other defects causing nearly no scattering near the conduction band minimum.

  3. Dephasing due to quasiparticle tunneling in fluxonium qubits: a phenomenological approach

    NASA Astrophysics Data System (ADS)

    Spilla, Samuele; Hassler, Fabian; Napoli, Anna; Splettstoesser, Janine

    2015-06-01

    The fluxonium qubit has arisen as one of the most promising candidate devices for implementing quantum information in superconducting devices, since it is both insensitive to charge noise (like flux qubits) and insensitive to flux noise (like charge qubits). Here, we investigate the stability of the quantum information to quasiparticle tunneling through a Josephson junction. Microscopically, this dephasing is due to the dependence of the quasiparticle transmission probability on the qubit state. We argue that on a phenomenological level the dephasing mechanism can be understood as originating from heat currents, which are flowing in the device due to possible effective temperature gradients, and their sensitivity to the qubit state. The emerging dephasing time is found to be insensitive to the number of junctions with which the superinductance of the fluxonium qubit is realized. Furthermore, we find that the dephasing time increases quadratically with the shunt-inductance of the circuit which highlights the stability of the device to this dephasing mechanism.

  4. Structure of three-quasiparticle isomers in {sup 169}Ho and {sup 171}Tm

    SciTech Connect

    Dracoulis, G. D.; Lane, G. J.; Hughes, R. O.; Kondev, F. G.; Chiara, C. J.; Watanabe, H.; Seweryniak, D.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Stefanescu, I.; Chowdhury, P.

    2010-09-15

    A three-quasiparticle isomer with {tau}=170(8) {mu}s and K{sup {pi}=} (19/2{sup +}) has been identified in the neutron-rich isotope {sup 169}Ho. The isomer decays with K-forbidden transitions to members of a band associated with the 7/2{sup -}[523] proton configuration, whose structure is characterized through analysis of the in-band {gamma}-ray branching ratios. In the isotone {sup 171}Tm, the rotational band based on the known 19/2{sup +}, three-quasiparticle isomer has also been observed. Alternative one-proton two-neutron configurations for the isomer in {sup 169}Ho are discussed in terms of multiquasiparticle calculations and through a comparison with the structures observed in {sup 171}Tm.

  5. Quasiparticle-mediated spin Hall effect in a superconductor.

    PubMed

    Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y

    2015-07-01

    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.

  6. Structure of three-quasiparticle isomers in {sup 169}Ho and {sup 171}Tm.

    SciTech Connect

    Dracoulis, G. D.; Lane, G. J.; Hughes, R. O.; Kondev, F. G.; Watanabe, H.; Seweryniak, D.; Zhu, S.; Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Stefanescu, I.; Chowdhury, P.

    2010-09-17

    A three-quasiparticle isomer with {tau}=170(8) {micro}s and K{sup {pi}} = (19/2{sup +}) has been identified in the neutron-rich isotope {sup 169}Ho. The isomer decays with K-forbidden transitions to members of a band associated with the 7/2-[523] proton configuration, whose structure is characterized through analysis of the in-band {gamma}-ray branching ratios. In the isotone {sup 171}Tm, the rotational band based on the known 19/2{sup +}, three-quasiparticle isomer has also been observed. Alternative one-proton two-neutron configurations for the isomer in {sup 169}Ho are discussed in terms of multiquasiparticle calculations and through a comparison with the structures observed in {sup 171}Tm.

  7. Interband quasiparticle scattering in superconducting LiFeAs reconciles photoemission and tunneling measurements.

    PubMed

    Hess, Christian; Sykora, Steffen; Hänke, Torben; Schlegel, Ronny; Baumann, Danny; Zabolotnyy, Volodymyr B; Harnagea, Luminita; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd

    2013-01-04

    Several angle-resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within holelike bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the holelike bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.

  8. Interband Quasiparticle Scattering in Superconducting LiFeAs Reconciles Photoemission and Tunneling Measurements

    NASA Astrophysics Data System (ADS)

    Hess, Christian; Sykora, Steffen; Hänke, Torben; Schlegel, Ronny; Baumann, Danny; Zabolotnyy, Volodymyr B.; Harnagea, Luminita; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd

    2013-01-01

    Several angle-resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within holelike bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the holelike bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.

  9. Zn-VI quasiparticle gaps and optical spectra from many-body calculations

    NASA Astrophysics Data System (ADS)

    Riefer, A.; Weber, N.; Mund, J.; Yakovlev, D. R.; Bayer, M.; Schindlmayr, Arno; Meier, C.; Schmidt, W. G.

    2017-06-01

    The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the {{G}0}{{W}0} (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.

  10. Quasiparticles in transition metals with strong local correlations: band formation and collective effects

    NASA Astrophysics Data System (ADS)

    Grewe, N.

    2005-09-01

    [Dedicated to Bernhard Mühlschlegel on the occasion ofhis 80th birthday]We address the question, whether low lying one-particle excitations in the Fermi-liquid phase of highly correlated electron systems can form well defined bands of nearly stable quasiparticles, and comment on features of a universal band picture for these systems. We outline how to derive a description of instabilities to magnetic, charged ordered or superconducting phases, which bears a close analogy to Stoner theory and lends itself to an interpretation in terms of quasiparticle bands and residual interactions at low temperatures. Concepts and problems are illustrated via calculations for some standard models of solid-state theory using modern many-body techniques like NRG, NCA and DMFT. Differences to conventional band structure theory are pointed out. We shortly comment on the relevance of these questions to the physics of inhomogeneous systems and small particles.

  11. Orbital-dependent quasiparticle scattering interference in 3 R -NbS2

    NASA Astrophysics Data System (ADS)

    Machida, T.; Kohsaka, Y.; Iwaya, K.; Arita, R.; Hanaguri, T.; Suzuki, R.; Ochi, M.; Iwasa, Y.

    2017-08-01

    A valley degree of freedom (DOF) in transition-metal dichalcogenides with broken inversion symmetry can be controlled through spin and orbital DOFs owing to their valley-contrasting characters. Another important aspect of the spin and orbital DOFs is that they affect quasiparticle scattering processes that govern the valley lifetime. Here we combine quasiparticle-interference (QPI) imaging experiments and theoretical simulations to study the roles of the spin and orbital DOFs in 3 R -NbS2 . We find that the QPI signal arising from an intervalley scattering is noticeably weaker than that caused by an intravalley scattering. We show that this behavior is predominantly associated with the orbital DOF, signifying the different spin and orbital structures of spin-split bands at each valley. These findings provide important insights into understanding the valley-related transport properties.

  12. New concept for the pairing anti-halo effect as a localized wave packet of quasiparticles

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Sagawa, H.

    2017-02-01

    The pairing anti-halo effect is a phenomenon that a pairing correlation suppresses a divergence of nuclear radius, which happens for single-particle states with orbital angular momenta of l =0 and 1 in the limit of vanishing binding energy. While this effect has mainly been discussed in terms of Hartree-Fock-Bogoliubov (HFB) theory, we here use a three-body model and provide its new intuitive concept as a localized wave packet for a quasiparticle, that is, a coherent superposition of a weakly bound and continuum wave functions due to a pairing interaction. We show that the one-particle density in the three-body model can be directly expressed with such quasiparticle wave functions, which have a close analog to wave functions in the HFB approximation.

  13. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann

    2016-06-01

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

  14. Departure from equilibrium of the quasiparticle distribution functions in high-energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Chakraborty, P.; Kapusta, J. I.

    2017-01-01

    In simulations of high energy heavy ion collisions that employ viscous hydrodynamics, single particle distributions are distorted from their thermal equilibrium form due to gradients in the flow velocity. These are closely related to the formulas for the shear and bulk viscosities in the quasiparticle approximation. Distorted single particle distributions are now commonly used to calculate the emission of photons and dilepton pairs, and in the late stage to calculate the conversion of a continuous fluid to individual particles. We show how distortions of the single particle distribution functions due to both shear and bulk viscous effects can be done rigorously in the quasiparticle approximation and illustrate it with the linear σ model at finite temperature.

  15. Quantitative Analysis of Valence Photoemission Spectra and Quasiparticle Excitations at Chromophore-Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Patrick, Christopher E.; Giustino, Feliciano

    2012-09-01

    Investigating quasiparticle excitations of molecules on surfaces through photoemission spectroscopy forms a major part of nanotechnology research. Resolving spectral features at these interfaces requires a comprehensive theory of electron removal and addition processes in molecules and solids which captures the complex interplay of image charges, thermal effects, and configurational disorder. Here, we develop such a theory and calculate the quasiparticle energy-level alignment and the valence photoemission spectrum for the prototype biomimetic solar cell interface between anatase TiO2 and the N3 chromophore. By directly matching our calculated photoemission spectrum to experimental data, we clarify the atomistic origin of the chromophore peak at low binding energy. This case study sets a new standard in the interpretation of photoemission spectroscopy at complex chromophore-semiconductor interfaces.

  16. Large thermopower from dressed quasiparticles in the layered cobaltates and rhodates

    NASA Astrophysics Data System (ADS)

    Chen, Su-Di; He, Yu; Zong, Alfred; Zhang, Yan; Hashimoto, Makoto; Zhang, Bin-Bin; Yao, Shu-Hua; Chen, Yan-Bin; Zhou, Jian; Chen, Yan-Feng; Mo, Sung-Kwan; Hussain, Zahid; Lu, Donghui; Shen, Zhi-Xun

    2017-08-01

    The origin of the large thermopower in NaxCoO2 is complicated by correlation phenomena. To disentangle the effects from multiple interactions, we use angle-resolved photoemission to study KxRhO2 , an isostructural analogy of NaxCoO2 with large thermopower and weak electron correlation. Using the experimentally measured electronic structure, we demonstrate that the thermopower in KxRhO2 can be quantitatively explained within the quasiparticle framework after including an electron-phonon mass enhancement effect. Extending the analysis to the cobaltate, we find the doubling in thermopower is well accounted for by additional band renormalization from electron correlation. As such, the large thermopower emerges from the itinerant quasiparticles dressed by hierarchical electron-phonon and electron-electron interactions.

  17. Parity switching and decoherence by quasiparticles in single-junction transmons

    NASA Astrophysics Data System (ADS)

    Catelani, Gianluigi

    2014-03-01

    Transmons are at present among the most coherent superconducting qubits, reaching quality factors of order 106 both in 3D and 2D architectures. These high quality factors enable detailed investigations of decoherence mechanisms. An intrinsic decoherence process originates from the coupling between the qubit degree of freedom and the quasiparticles that tunnel across Josephson junctions. In a transmon, tunneling of a single quasiparticle is associated with a change in parity. I will discuss the theory of the parity switching rate in single-junction transmons, compare it with recent measurements, and consider the role of parity switching in limiting the coherence time. Partial support by the EU under REA grant agreement CIG-618258 is acknowledged.

  18. Two-quasiparticle states in {sup 250}Bk studied by decay scheme and transfer reaction spectroscopy

    SciTech Connect

    Ahmad, I.; Kondev, F. G.; Koenig, Z. M.; McHarris, Wm. C.; Yates, S. W.

    2008-05-15

    Two-quasiparticle states in {sup 250}Bk were investigated with decay scheme studies and the single-neutron transfer reaction {sup 249}Bk(d,p){sup 250}Bk. Mass-separated sources of {sup 254}Es were used for {alpha} singles and {alpha}-{gamma} coincidence measurements. These studies, plus previous studies of {sup 254}Es{sup m} {alpha} decay and the {sup 249}Bk(n,{gamma}) reaction, provide spins and parities of the observed levels. The transfer reaction {sup 249}Bk(d,p){sup 250}Bk was used to deduce neutron single-particle components of the observed bands. Six pairs of singlet and triplet states, formed by the coupling of proton and neutron one-quasiparticle states, were identified. The splitting energies between the triplet and singlet states were found to be in agreement with previous calculations.

  19. Efficient quasiparticle band-structure calculations for cubic and noncubic crystals

    SciTech Connect

    Wenzien, B.; Cappellini, G.; Bechstedt, F.

    1995-05-15

    An efficient method developed for the calculation of quasiparticle corrections to density-functional-theory--local-density-approximation (DFT-LDA) band structures of diamond and zinc-blende materials is generalized for crystals with other cubic, hexagonal, tetragonal, and orthorhombic Bravais lattices. Local-field effects are considered in the framework of a LDA-like approximation. The dynamical screening is treated by expanding the self-energy linearly in energy. The anisotropy of the inverse dielectric matrix is taken into account. The singularity of the Coulomb potential in the screened-exchange part of the electronic self-energy is treated using auxiliary functions of the appropriate symmetry. An application to the electronic quasiparticle band structure of wurtzite 2{ital H}-SiC is presented within the approach of norm-conserving, nonlocal, fully separable pseudopotentials and a plane-wave expansion of the wave functions for the underlying DFT-LDA.

  20. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates.

    PubMed

    Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann

    2016-06-03

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

  1. Cluster-virial expansion for nuclear matter within a quasiparticle statistical approach

    NASA Astrophysics Data System (ADS)

    Röpke, G.; Bastian, N.-U.; Blaschke, D.; Klähn, T.; Typel, S.; Wolter, H. H.

    2013-01-01

    Correlations in interacting many-particle systems can lead to the formation of clusters, in particular bound states and resonances. Systematic quantum statistical approaches allow to combine the nuclear statistical equilibrium description (law of mass action) with mean-field concepts. A chemical picture, which treats the clusters as distinct entities, serves as an intuitive concept to treat the low-density limit. Within a generalized Beth-Uhlenbeck approach, the quasiparticle-virial expansion is extended to include arbitrary clusters, where special attention must be paid to avoid inconsistencies such as double counting. Correlations are suppressed with increasing density due to Pauli blocking. The contribution of the continuum to the virial coefficients can be reduced by considering clusters explicitly and introducing quasiparticle energies. The cluster-virial expansion for nuclear matter joins known benchmarks at low densities with those near saturation density.

  2. Nonadiabatic quasiparticle approach for rotation-particle coupling in triaxial odd-A nuclei

    NASA Astrophysics Data System (ADS)

    Modi, Swati; Patial, M.; Arumugam, P.; Maglione, E.; Ferreira, L. S.

    2017-02-01

    We discuss the formulation of a nonadiabatic approach to study the rotational states in triaxially deformed odd-A nuclei. The rotation-particle coupling is treated microscopically by coupling the triaxial rotor states of the even-even core with the states of the valence particle in order to obtain the matrix elements of the odd-A system. We arrive at a nonadiabatic quasiparticle approach where the rotational states can have contributions from various quasiparticle states near the Fermi level. We bring out the advantages of this approach over the conventional particle rotor model with a fixed or variable moment of inertia. One clear evidence favoring our approach is the rotation alignment phenomenon which is demonstrated in the case of 137Pm. We discuss our results for 136Nd and 137Pm, and justify that this approach is suitable also for studying nuclei away from stability.

  3. Spin-dependent quasiparticle reflection and bound States at interfaces with itinerant antiferromagnets.

    PubMed

    Bobkova, I V; Hirschfeld, P J; Barash, Yu S

    2005-01-28

    We find a novel channel of quasiparticle reflection from the simplest two-sublattice antiferromagnet (AF) on a bipartite lattice. Low-energy quasiparticles in a normal metal (N) experience spin-dependent retroreflection at AF/N interfaces. As a combined effect of antiferromagnetic and Andreev reflections, subgap Andreev states arise at an AF/superconductor (SC) interface. When the antiferromagnetic reflection dominates the specular one, Andreev bound states have almost zero energy on AF/s-wave superconductor (sSC) interfaces, whereas there are no low-energy subgap states on AF/d-wave superconductor (dSC) boundaries. For an sSC/AF/sSC junction, the bound states are found to split, due to the finite width of the AF interlayer, and carry the supercurrent. The theory developed in the present Letter is based on a novel quasiclassical approach, which applies to interfaces involving itinerant antiferromagnets.

  4. Spin polarization dependence of quasiparticle properties in graphene

    NASA Astrophysics Data System (ADS)

    Qaiumzadeh, A.; Jahanbani, Kh.; Asgari, Reza

    2012-06-01

    We address spin polarization dependence of graphene's Fermi liquid properties quantitatively using a microscopic random phase approximation theory in an interacting spin-polarized Dirac electron system. We show an enhancement of the minority-spin many-body velocity renormalization at fully spin polarization due to reduction in the electron density and consequently increase in the interaction between electrons near the Fermi surface. We also show that the spin dependence of the Fermi velocity in the chiral Fermi systems is different than that in a conventional two-dimensional electron liquid. In addition, we show that the ratio of the majority-to-minority-spin lifetime is smaller than unity and related directly to the polarization and electron energy. The spin-polarization dependence of the carrier Fermi velocity is of significance in various spintronic applications.

  5. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    SciTech Connect

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L. )

    1993-07-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity.

  6. Four-Quasiparticle High-K States in Neutron-Deficient Lead and Polonium Nuclei

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Xu, Furong

    2012-06-01

    Configuration-constrained potential energy surface calculations have been performed to investigate four-quasiparticle high-K configurations in neutron-deficient lead and polonium isotopes. A good agreement between the calculations and the experimental data has been found for the excitation energy of the observed Kπ = 19- state in 188Pb. Several lowly excited high-K states are predicted, and the large oblate deformation and low energy indicate high-K isomerism in these nuclei.

  7. Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition

    PubMed Central

    Abrahams, Elihu; Wölfle, Peter

    2012-01-01

    We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh2Si2, for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results. PMID:22331893

  8. Spectral Function and Quasiparticle Damping of Interacting Bosons in Two Dimensions

    SciTech Connect

    Sinner, Andreas; Kopietz, Peter; Hasselmann, Nils

    2009-03-27

    We employ the functional renormalization group to study dynamical properties of the two-dimensional Bose gas. Our approach is free of infrared divergences, which plague the usual diagrammatic approaches, and is consistent with the exact Nepomnyashchy identity, which states that the anomalous self-energy vanishes at zero frequency and momentum. We recover the correct infrared behavior of the propagators and present explicit results for the spectral line shape, from which we extract the quasiparticle dispersion and dampi0008.

  9. Quasi-particles and effective mean field in strongly interacting matter

    NASA Astrophysics Data System (ADS)

    Lévai, P.; Ko, C. M.

    2010-03-01

    We introduce a quasi-particle model of strongly interacting quark-gluon matter and explore the possible connection to an effective field theoretical description consisting of a scalar σ field by introducing a dynamically generated mass, M(σ), and a self-consistently determined interaction term, B(σ). We display a possible connection between the two types of effective description, using the Friedberg-Lee model.

  10. A quasiparticle-trap-assisted transition-edge sensor for phonon-mediated particle detection

    SciTech Connect

    Irwin, K.D.; Nam, S.W.; Cabrera, B.; Chugg, B.; Young, B.A.

    1995-11-01

    We have demonstrated the operation of composite superconducting tungsten and aluminum transition-edge sensors which take advantage of quasiparticle trapping and electrothermal feedback. We call these devices W/Al QETs (quasiparticle-trap-assisted electrothermal feedback transition-edge sensors). The quasiparticle trapping mechanism makes it possible to instrument large surface areas without increasing sensor heat capacity, thus allowing larger absorbers and reducing phonon collection times. The sensor consists of a 30-nm-thick superconducting tungsten thin film with {ital T}{sub {ital c}}{similar_to}80 mK deposited on a high-purity silicon substrate. The W film is patterned into 200 parallel lines segments, each 2 {mu}m wide and 800 {mu}m long. Eight superconducting aluminum thin film pads are electrically connected to each segment, and cover a much larger surface area than the W. When phonons from particle interactions in the silicon crystal impinge on an aluminum pad, Cooper pairs are broken, forming quasiparticles which diffuse to the tungsten lines where they are rapidly thermalized. The W film is voltage biased, and self-regulates in temperature within its superconducting transition region by electrothermal feedback. Heat deposited in the film causes a current pulse of {similar_to}100 {mu}s duration, which is measured with a series array of dc superconducting quantum interference devices. We have demonstrated an energy resolution of {lt}350 eV full width at half-maximum for 6 keV x rays incident on the backside of a 1 cm{times}1 cm{times}1 mm (0.25 g) silicon absorber, the highest resolution that has been reported for a fast ({lt}1 ms pulse duration) calorimetric detector with an absorber mass{gt}0.1 g. Applications of this technology include dark matter searches and neutrino detection. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  11. ARPES Study of Nodal Quasiparticles Using Low-Energy Tunable Photons

    NASA Astrophysics Data System (ADS)

    Ino, Akihiro

    2006-03-01

    Low-energy quasiparticle excitations govern the thermodynamic properties of a superconductor both in the zero-field and vortex-mixed states. For a d-wave superconductor, nodal quasiparticles are crucial excitations starting from zero energy. So far, however, the nodal quasiparticle dynamics of high-Tc cuprates has been controversial. For example, it has been reported by an angle-resolved-photoemission (ARPES) experiment that the marginal-Fermi-liquid behavior persists into the superconducting state without appreciable change in the scattering rate, while microwave conductivity increases upon the superconducting transition. Here, we show a new ARPES result that solves the controversies with unprecedented momentum-resolution. Low-energy tunable photons have enabled us to resolve a small nodal bilayer splitting clearly, and to reveal the detailed temperature- and energy-dependence of the scattering rate, indicating the behaviors unique to the nodal quasiparticles. Due to the opening of the d-wave gap, the nodal scattering rate is remarkably suppressed, and shows a linear energy dependence. The difference in the energy-linear term between the bilayer-resolved scattering rates hints the nature of impurities involved. This work was done in collaboration with T. Yamasaki, T. Kamo, K. Yamazaki, H. Anzai, M. Arita, H. Namatame, M. Taniguchi, Grad. Sch. of Science and Hiroshima Synchrotron Radiation Center, Hiroshima Univ., A. Fujimori, Dept. of Complexity Science and Engineering, Univ. of Tokyo, Z.-X. Shen, Dept. of Physics, Applied Physics and SSRL, Stanford Univ., M. Ishikado, K. Fujita, and S. Uchida, Dept. of Physics, Univ. of Tokyo.

  12. Emergence of the bcc Phase and Phase Transition in Be through Phonon Quasiparticle Calculations

    NASA Astrophysics Data System (ADS)

    Zhang, D. B., Sr.; Wentzcovitch, R. M.

    2016-12-01

    Beryllium (Be) is an important material with applications in a number of areas ranging from aerospace components to X-ray equipment. Yet a precise understanding of the phase diagram of Be remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticle properties. We find that the hcp to bcc transition occurs near the melting curve at 0

  13. Anomalous Quasiparticle Symmetries and Non-Abelian Defects on Symmetrically Gapped Surfaces of Weak Topological Insulators.

    PubMed

    Mross, David F; Essin, Andrew; Alicea, Jason; Stern, Ady

    2016-01-22

    We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes.

  14. Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition.

    PubMed

    Abrahams, Elihu; Wölfle, Peter

    2012-02-28

    We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh(2)Si(2), for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results.

  15. Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in 254Rf

    NASA Astrophysics Data System (ADS)

    David, H. M.; Chen, J.; Seweryniak, D.; Kondev, F. G.; Gates, J. M.; Gregorich, K. E.; Ahmad, I.; Albers, M.; Alcorta, M.; Back, B. B.; Baartman, B.; Bertone, P. F.; Bernstein, L. A.; Campbell, C. M.; Carpenter, M. P.; Chiara, C. J.; Clark, R. M.; Cromaz, M.; Doherty, D. T.; Dracoulis, G. D.; Esker, N. E.; Fallon, P.; Gothe, O. R.; Greene, J. P.; Greenlees, P. T.; Hartley, D. J.; Hauschild, K.; Hoffman, C. R.; Hota, S. S.; Janssens, R. V. F.; Khoo, T. L.; Konki, J.; Kwarsick, J. T.; Lauritsen, T.; Macchiavelli, A. O.; Mudder, P. R.; Nair, C.; Qiu, Y.; Rissanen, J.; Rogers, A. M.; Ruotsalainen, P.; Savard, G.; Stolze, S.; Wiens, A.; Zhu, S.

    2015-09-01

    Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247 (73 ) μ s have been discovered in the heavy 254Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the Kπ=8- , ν2(7 /2+[624 ],9 /2-[734 ]) two-quasineutron and the Kπ=1 6+, 8-ν2(7 /2+[624 ],9 /2-[734 ])⊗8-π2(7 /2-[514 ],9 /2+[624 ]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N =150 isotones. The four-quasiparticle isomer is longer lived than the 254Rf ground state that decays exclusively by spontaneous fission with a half-life of 23.2 (1.1 ) μ s . The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state.

  16. Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals.

    PubMed

    Xu, N; Autès, G; Matt, C E; Lv, B Q; Yao, M Y; Bisti, F; Strocov, V N; Gawryluk, D; Pomjakushina, E; Conder, K; Plumb, N C; Radovic, M; Qian, T; Yazyev, O V; Mesot, J; Ding, H; Shi, M

    2017-03-10

    The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principles calculations, on transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two nontrivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (e.g., NbP), topological Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magnetotransport properties observed in TaAs, TaP, and NbP, where the Fermi arc states are similar.

  17. Critical pairing fluctuations in the normal state of a superconductor: Pseudogap and quasiparticle damping

    NASA Astrophysics Data System (ADS)

    Lange, Philipp; Tsyplyatyev, Oleksandr; Kopietz, Peter

    2017-08-01

    We study the effect of critical pairing fluctuations on the electronic properties in the normal state of a clean superconductor in three dimensions. Using a functional renormalization group approach to take the non-Gaussian nature of critical fluctuations into account, we show microscopically that in the BCS regime, where the inverse coherence length is much smaller than the Fermi wave vector, critical pairing fluctuations give rise to a nonanalytic contribution to the quasiparticle damping of order Tc√{Gi}ln(80 /Gi) , where the Ginzburg-Levanyuk number Gi is a dimensionless measure for the width of the critical region. As a consequence, there is a temperature window above Tc where the quasiparticle damping due to critical pairing fluctuations can be larger than the usual T2 Fermi liquid damping due to noncritical scattering processes. On the other hand, in the strong coupling regime where Gi is of order unity, we find within the Gaussian approximation that the quasiparticle damping due to critical pairing fluctuations is proportional to the temperature. Moreover, we show that in the vicinity of the critical temperature Tc the electronic density of states exhibits a fluctuation-induced pseudogap. We also use functional renormalization group methods to derive and classify various types of higher-order scattering processes induced by the pairing interaction in Fermi systems close to the superconducting instability.

  18. Scattering of a composite quasiparticle by an impurity on a lattice

    NASA Astrophysics Data System (ADS)

    Suzuki, Fumika; Litinskaya, Marina; Unruh, William G.

    2017-08-01

    We study scattering of a composite quasiparticle, which possesses a degree of freedom corresponding to relative separation between two bound excitations, by a δ -like impurity potential on a one-dimensional discrete lattice. First, we show that, due to specific properties of their dispersion, lattice excitations bind to impurities with both negative and positive potentials. We demonstrate that the finite size of the composite excitation leads to formation of multiple excitation-impurity bound states. The number and the degree of localization of these bound states depend on the signs and relative magnitudes of the impurity potential and the binding strength of two quasiparticles. We also report the existence of excitation-impurity bound states whose energies are located in the continuum band. Secondly, we study a change in the entanglement between the center of mass and relative coordinate degrees of freedom of a biexciton wave packet during single impurity scattering and decoherence caused by it. For a composite quasiparticle on a lattice, the entanglement between its relative and center of mass coordinate degrees of freedom arises naturally due to inseparability of the two-particle Hamiltonian. One of the main focuses of our study is to investigate how this inseparability affects the creation of the biexciton-impurity bound states and the entanglement dynamics.

  19. Quasi-particles ultrafastly releasing kink bosons to form Fermi arcs in a cuprate superconductor.

    PubMed

    Ishida, Y; Saitoh, T; Mochiku, T; Nakane, T; Hirata, K; Shin, S

    2016-01-05

    In a conventional framework, superconductivity is lost at a critical temperature (Tc) because, at higher temperatures, gluing bosons can no longer bind two electrons into a Cooper pair. In high-Tc cuprates, it is still unknown how superconductivity vanishes at Tc. We provide evidence that the so-called ≲ 70-meV kink bosons that dress the quasi-particle excitations are playing a key role in the loss of superconductivity in a cuprate. We irradiated a 170-fs laser pulse on Bi2Sr2CaCu2O(8+δ) and monitored the responses of the superconducting gap and dressed quasi-particles by time- and angle-resolved photoemission spectroscopy. We observe an ultrafast loss of superconducting gap near the d-wave node, or light-induced Fermi arcs, which is accompanied by spectral broadenings and weight redistributions occurring within the kink binding energy. We discuss that the underlying mechanism of the spectral broadening that induce the Fermi arc is the undressing of quasi-particles from the kink bosons. The loss mechanism is beyond the conventional framework, and can accept the unconventional phenomena such as the signatures of Cooper pairs remaining at temperatures above Tc.

  20. Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Xu, N.; Autès, G.; Matt, C. E.; Lv, B. Q.; Yao, M. Y.; Bisti, F.; Strocov, V. N.; Gawryluk, D.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Qian, T.; Yazyev, O. V.; Mesot, J.; Ding, H.; Shi, M.

    2017-03-01

    The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principles calculations, on transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two nontrivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (e.g., NbP), topological Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magnetotransport properties observed in TaAs, TaP, and NbP, where the Fermi arc states are similar.

  1. Localization of Bogoliubov quasiparticles in interacting Bose gases with correlated disorder

    SciTech Connect

    Lugan, P.; Sanchez-Palencia, L.

    2011-07-15

    We study the Anderson localization of Bogoliubov quasiparticles (elementary many-body excitations) in a weakly interacting Bose gas of chemical potential {mu} subjected to a disordered potential V. We introduce a general mapping (valid for weak inhomogeneous potentials in any dimension) of the Bogoliubov-de Gennes equations onto a single-particle Schroedinger-like equation with an effective potential. For disordered potentials, the Schroedinger-like equation accounts for the scattering and localization properties of the Bogoliubov quasiparticles. We derive analytically the localization lengths for correlated disordered potentials in the one-dimensional geometry. Our approach relies on a perturbative expansion in V/{mu}, which we develop up to third order, and we discuss the impact of the various perturbation orders. Our predictions are shown to be in very good agreement with direct numerical calculations. We identify different localization regimes: For low energy, the effective disordered potential exhibits a strong screening by the quasicondensate density background, and localization is suppressed. For high-energy excitations, the effective disordered potential reduces to the bare disordered potential, and the localization properties of quasiparticles are the same as for free particles. The maximum of localization is found at intermediate energy when the quasicondensate healing length is of the order of the disorder correlation length. Possible extensions of our work to higher dimensions are also discussed.

  2. Quantitative analysis of valence photoemission spectra and quasiparticle excitations at chromophore-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Patrick, Christopher; Giustino, Feliciano

    2013-03-01

    Understanding electron energetics at interfaces between solids and molecules is a key challenge in many areas of nanotechnology research. Here we develop a quantitative theory of quasiparticle excitations at these interfaces and apply it to the prototypical dye-sensitized solar cell interface of N3 dye molecules adsorbed on the anatase TiO2 (101) surface.[2] Our approach combines density-functional calculations on large interface models, bulk GW calculations,[3] image charge renormalization, thermal broadening and configurational disorder to obtain a quasiparticle spectrum in good agreement with experimental photoemission data. Our calculations clarify the atomistic origin of the chromophore peak at low binding energy, and illustrate the dual role played by the TiO2 substrate in screening the quasiparticle states of the N3 molecule through both long-range image-charge effects and direct charge transfer via the covalently-bonded anchor groups. Work funded by the UK EPSRC and the ERC under the EU FP7/ERC Grant No. 239578. Calculations were performed at the Oxford Supercomputing Centre.

  3. GW correlation effects on plutonium quasiparticle energies: changes in crystal-field splitting

    SciTech Connect

    Albers, Robert C; Chantis, Athanasios N; Svane, Axel; Christensen, Niels E

    2009-01-01

    We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent GW method (QSGW). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-centered cubic (fcc) unit cell. We span unit-cell volumes ranging from 10% greater than the equilibrium volume of the 8 phase to 90 % of the equivalent for the a phase of Pu. The self-consistent GW quasiparticle energies are compared to those obtained within the Local Density Approximation (LDA). The goal of the calculations is to understand systematic trends in the effects of electronic correlations on the quasiparticle energy bands of Pu as a function of the localization of the J orbitals. We show that correlation effects narrow the f bands in two significantly different ways. Besides the expected narrowing of individual f bands (flatter dispersion), we find that an even more significant effect on the f bands is a decrease in the crystal-field splitting of the different bands

  4. Systematic investigation of the low-energy dipole excitations in 176,178,180Hf within rotational, translational and Galilean invariant quasiparticle RPA

    NASA Astrophysics Data System (ADS)

    Guliyev, E.; Kuliev, A. A.; Ertugral, F.

    2013-10-01

    Low-energy magnetic and electric dipole excitations in the even-even isotopes 176-180Hf have been systematically studied within the rotational, translational and Galilean invariant Quasiparticle Random Phase Approximation (QRPA). The results of the calculations show that most of the states predicted to have magnetic character and the computed M1 strength in these nuclei is less strongly fragmented than in mid-shell isotopes. The results of the calculations are in good agreement with experimental data. The results of the calculations indicate the presence of a few prominent negative parity dipole K=1 states in the energy investigated region. The comparison of the calculations with the available experimental data makes possible the interpretation of the states where parity could not be assigned experimentally.

  5. Collective and quasiparticle excitations in superdeformed {sup 190}Hg

    SciTech Connect

    Wilson, A.N.; Timar, J.; Sharpey-Schafer, J.F.; Crowell, B.; Carpenter, M.P.; Janssens, R.V.; Blumenthal, D.J.; Ahmad, I.; Astier, A.; Azaiez, F.; Bergstroem, M.; Ducroux, L.; Gall, B.J.; Hannachi, F.; Khoo, T.L.; Korichi, A.; Lauritsen, T.; Lopez-Martens, A.; Meyer, M.; Nisius, D.; Paul, E.S.; Porquet, M.G.; Redon, N.; Wilson, J.N.; Nakatsukasa, T. ||||||

    1996-08-01

    Superdeformed (SD) states of {sup 190}Hg have been studied with the Eurogam Phase 2 {gamma}-ray spectrometer using the {sup 160}Gd({sup 34}S,4{ital n}) reaction. Two new excited SD bands have been found and identified as belonging to this nucleus, bringing the total number of SD bands in {sup 190}Hg to 4. One of the new bands has a dynamic moment of inertia that is very similar to that of the yrast SD band of {sup 190}Hg and most other SD bands in the {ital A}{approximately}190 region. In contrast, the other band has a dynamic moment of inertia which is mainly constant as a function of rotational frequency and exhibits a dramatic increase at the lowest frequencies. The observed dynamic moments of inertia are compared with the results of random phase approximation calculations based on the cranked shell model. Finally, the known excited SD band has been extended towards lower frequencies and new transitions have been found linking this band to the yrast SD band. The extracted {ital B}({ital E}1) values of the new linking transitions give further support for the possible octupole vibrational character of this band. {copyright} {ital 1996 The American Physical Society.}

  6. Collective and quasiparticle excitations in superformed Hg-190.

    SciTech Connect

    Wilson, A. N.; Timar, J.; Sharpey-Schafer, J. F.; Crowell, B.; Carpenter, M. P.; Janssens, R. V. F.; Blumenthal, D. J.; Ahmad, I.; Astier, A.; Azaiez, F.; Bergstrom, M.; Ducroux, L.; Gall, B. J. P.; Hannachi, F.; Khoo, T. L.; Korichi, A.; Lauritsen, T.; Lopez-Martens, A.; Meyer, M.; Nisius, D.; Paul, E. S.; Porquet, M. G.; Redon, N.; Wilson, J. N.; Nakatsukasa, T.; Physics; Univ. of Liverpool; Univ. of Liverpool; Centre de Recherches Nucleaires; Inst. de Physique Nucleaire Lyon; I.P.N.; Inst. of Physique Nucleaire Lyon; C.S.N.S.M.; AECL

    1996-08-01

    Superdeformed (SD) states of {sup 190}Hg have been studied with the Eurogam Phase 2 {gamma}-ray spectrometer using the {sup 160}Gd({sup 34}S,4n) reaction. Two new excited SD bands have been found and identified as belonging to this nucleus, bringing the total number of SD bands in {sup 190}Hg to 4. One of the new bands has a dynamic moment of inertia that is very similar to that of the yrast SD band of {sup 190}Hg and most other SD bands in the A{approx}190 region. In contrast, the other band has a dynamic moment of inertia which is mainly constant as a function of rotational frequency and exhibits a dramatic increase at the lowest frequencies. The observed dynamic moments of inertia are compared with the results of random phase approximation calculations based on the cranked shell model. Finally, the known excited SD band has been extended towards lower frequencies and new transitions have been found linking this band to the yrast SD band. The extracted B(E1) values of the new linking transitions give further support for the possible octupole vibrational character of this band.

  7. Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis.

    PubMed

    Kwon, Gihan; Ferguson, Glen A; Heard, Christopher J; Tyo, Eric C; Yin, Chunrong; DeBartolo, Janae; Seifert, Sönke; Winans, Randall E; Kropf, A Jeremy; Greeley, Jeffrey; Johnston, Roy L; Curtiss, Larry A; Pellin, Michael J; Vajda, Stefan

    2013-07-23

    Water oxidation is a key catalytic step for electrical fuel generation. Recently, significant progress has been made in synthesizing electrocatalytic materials with reduced overpotentials and increased turnover rates, both key parameters enabling commercial use in electrolysis or solar to fuels applications. The complexity of both the catalytic materials and the water oxidation reaction makes understanding the catalytic site critical to improving the process. Here we study water oxidation in alkaline conditions using size-selected clusters of Pd to probe the relationship between cluster size and the water oxidation reaction. We find that Pd4 shows no reaction, while Pd6 and Pd17 deposited clusters are among the most active (in terms of turnover rate per Pd atom) catalysts known. Theoretical calculations suggest that this striking difference may be a demonstration that bridging Pd-Pd sites (which are only present in three-dimensional clusters) are active for the oxygen evolution reaction in Pd6O6. The ability to experimentally synthesize size-specific clusters allows direct comparison to this theory. The support electrode for these investigations is ultrananocrystalline diamond (UNCD). This material is thin enough to be electrically conducting and is chemically/electrochemically very stable. Even under the harsh experimental conditions (basic, high potential) typically employed for water oxidation catalysts, UNCD demonstrates a very wide potential electrochemical working window and shows only minor evidence of reaction. The system (soft-landed Pd4, Pd6, or Pd17 clusters on a UNCD Si-coated electrode) shows stable electrochemical potentials over several cycles, and synchrotron studies of the electrodes show no evidence for evolution or dissolution of either the electrode material or the clusters.

  8. The PD-1/PD-Ls pathway and autoimmune diseases.

    PubMed

    Dai, Suya; Jia, Ru; Zhang, Xiao; Fang, Qiwen; Huang, Lijuan

    2014-07-01

    The programmed death (PD)-1/PD-1 ligands (PD-Ls) pathway, is a new member of the B7/CD28 family, and consists of the PD-1 receptor and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273). Recently, it is reported that PD-1, PD-L1 and PD-L2 also have soluble forms aside from their membrane bound forms. The soluble forms increase the diversity and complexity of PD-1/PD-Ls pathway in both composition and function. The PD-1/PD-Ls pathway is broadly expressed and exerts a wider range of immunoregulatory roles in T-cell activation and tolerance compared with other B7/CD28 family members. Studies show that the PD-1/PD-Ls pathway regulates the induction and maintenance of peripheral tolerance and protects tissues from autoimmune attack in physiological conditions. In addition, it is also involved in various diseases mediated by T cells, such as autoimmunity, tumor immunity, chronic viral infections, and transplantation immunity. In this review, we will summarize the relevance of the soluble forms and the latest researches on the role of PD-1/PD-Ls pathway in autoimmune diseases.

  9. Plot Description (PD)

    Treesearch

    Robert E. Keane

    2006-01-01

    The Plot Description (PD) form is used to describe general characteristics of the FIREMON macroplot to provide ecological context for data analyses. The PD data characterize the topographical setting, geographic reference point, general plant composition and cover, ground cover, fuels, and soils information. This method provides the general ecological data that can be...

  10. Quasiparticle energies, excitonic effects, and dielectric screening in transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Schleife, André

    Using the power of high-performance super computers, computational materials scientists nowadays employ highly accurate quantum-mechanical approaches to reliably predict materials properties. In particular, many-body perturbation theory is an excellent framework for performing theoretical spectroscopy on novel materials including transparent conducting oxides, since this framework accurately describes quasiparticle and excitonic effects.We recently used hybrid exchange-correlation functionals and an efficient implementation of the Bethe-Salpeter approach to investigate several important transparent conducting oxides. Despite their exceptional potential for applications in photovoltaics and optoelectronics their optical properties oftentimes remain poorly understood: Our calculations explain the optical spectrum of bixbyite indium oxide over a very large photon energy range, which allows us to discuss the importance of quasiparticle and excitonic effects at low photon energies around the absorption onset, but also for excitations up to 40 eV. We show that in this regime the energy dependence of the electronic self energy cannot be neglected. Furthermore, we investigated the influence of excitonic effects on optical absorption for lanthanum-aluminum oxide and hafnium oxide. Their complicated conduction band structures require an accurate description of quasiparticle energies and we find that for these strongly polar materials, a contribution of the lattice polarizability to dielectric screening needs to be taken into account. We discuss how this affects the electron-hole interaction and find a strong influence on excitonic effects.The deep understanding of electronic excitations that can be obtained using these modern first-principles techniques, eventually will allow for computational materials design, e.g. of band gaps, densities of states, and optical properties of transparent conducting oxides and other materials with societally important applications.

  11. Multi-quasiparticle excitation: Extending shape coexistence in A~190 neutron-deficient nuclei

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Xu, F. R.; Liu, H. L.; Walker, P. M.

    2010-10-01

    Multi-quasiparticle high-K states in neutron-deficient mercury, lead, and polonium isotopes have been investigated systematically by means of configuration-constrained potential-energy-surface calculations. An abundance of high-K states is predicted with both prolate and oblate shapes, which extends the shape coexistence of the mass region. Well-deformed shapes provide good conditions for the formation of isomers, as exemplified in Pb188. Of particular interest is the prediction of low-lying 10- states in polonium isotopes, which indicate long-lived isomers.

  12. First-principles calculations of quasiparticle excitations of open-shell condensed matter systems.

    PubMed

    Lischner, Johannes; Deslippe, Jack; Jain, Manish; Louie, Steven G

    2012-07-20

    We develop a Green's function approach to quasiparticle excitations of open-shell systems within the GW approximation. It is shown that accurate calculations of the characteristic multiplet structure require a precise knowledge of the self-energy and, in particular, its poles. We achieve this by constructing the self-energy from appropriately chosen mean-field theories on a fine frequency grid. We apply our method to a two-site Hubbard model, several molecules, and the negatively charged nitrogen-vacancy defect in diamond and obtain good agreement with experiment and other high-level theories.

  13. Quasiparticle interference and resonant states in normal and superconducting line nodal semimetals

    NASA Astrophysics Data System (ADS)

    Setty, Chandan; Phillips, Philip W.; Narayan, Awadhesh

    2017-04-01

    We study impurity scattering in the normal and d -wave superconducting states of line nodal semimetals and show that, due to additional scattering phase space available for impurities on the surface, the quasiparticle interference pattern acquires an extended character instead of a discrete collection of delta function peaks. Moreover, using the T -matrix formalism, we demonstrate that the conventional behavior of a scalar impurity in a d -wave superconductor breaks down on the surface of a line nodal semimetal in the quasi-flat-band limit.

  14. Topological interactions of non-Abelian vortices with quasiparticles in high density QCD

    NASA Astrophysics Data System (ADS)

    Hirono, Yuji; Kanazawa, Takuya; Nitta, Muneto

    2011-04-01

    Non-Abelian vortices are topologically stable objects in the color-flavor locked phase of dense QCD. We derive a dual Lagrangian starting with the Ginzburg-Landau effective Lagrangian for the color-flavor locked phase, and obtain topological interactions of non-Abelian vortices with quasiparticles such as U(1)B Nambu-Goldstone bosons (phonons) and massive gluons. We find that the phonons couple to the translational zero modes of the vortices while the gluons couple to their orientational zero modes in the internal space.

  15. Anomalous quasiparticle lifetime and strong electron-phonon coupling in graphite.

    PubMed

    Sugawara, K; Sato, T; Souma, S; Takahashi, T; Suematsu, H

    2007-01-19

    We have performed ultrahigh-resolution angle-resolved photoemission spectroscopy on high-quality single crystals of graphite to elucidate the character of low-energy excitations. We found evidence for a well-defined quasiparticle (QP) peak in the close vicinity of the Fermi level comparable to the nodal QP in high-T(c) cuprates, together with the mass renormalization of the band at an extremely narrow momentum region around the K(H) point. Analysis of the QP lifetime demonstrates the presence of strong electron-phonon coupling and linear energy dependence of the QP scattering rate indicative of a marked deviation from the conventional Fermi-liquid theory.

  16. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors

    SciTech Connect

    Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.

    2007-03-01

    We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.

  17. Quasiclassical calculation of the quasiparticle thermal conductivity in a mixed state

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroto; Miranovic, Predrag; Ichioka, Masanori; Machida, Kazushige

    2007-03-01

    We report the result of calculation of the quasiparticle thermal conductivity κxx(∇T⊥B) in the vortex state of a two-dimensional superconductor. We compute κxx for both s-wave and d-wave superconductors, taking account of the spatial dependence of normal Green's function g, which is neglected in the previous studies using the Brandt-Pesch-Tewordt (BPT) method. Our results indicate that κxx based on the BPT method is slightly underestimated due to its incoherent spatial averaging procedure.

  18. Ab initio quasiparticle energies in 2H, 4H, and 6H SiC

    NASA Astrophysics Data System (ADS)

    Ummels, R. T. M.; Bobbert, P. A.; van Haeringen, W.

    1998-09-01

    Ab initio quasiparticle energies are calculated for the 2H, 4H, and 6H polytypes of SiC within the GW approximation for the self-energy. The starting point is a calculation within the pseudopotential local-density approximation framework. The calculated fundamental gaps of 3.15, 3.35, and 3.24 eV for 2H, 4H, and 6H SiC, respectively, show very good agreement with experimental data. The energy dependence of the screened interaction is modeled by a plasmon pole model from which the plasmon band structures are obtained.

  19. Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Bian, Guang; Chang, Guoqing; Lu, Hong; Xu, Su-Yang; Wang, Guangqiang; Chang, Tay-Rong; Zhang, Songtian; Belopolski, Ilya; Alidoust, Nasser; Sanchez, Daniel S.; Song, Fengqi; Jeng, Horng-Tay; Yao, Nan; Bansil, Arun; Jia, Shuang; Lin, Hsin; Hasan, M. Zahid

    2016-12-01

    We combine quasiparticle interference simulation (theory) and atomic resolution scanning tunneling spectromicroscopy (experiment) to visualize the interference patterns on a type-II Weyl semimetal Mox W1 -xTe2 for the first time. Our simulation based on first-principles band topology theoretically reveals the surface electron scattering behavior. We identify the topological Fermi arc states and reveal the scattering properties of the surface states in Mo0.66 W0.34 Te2 . In addition, our result reveals an experimental signature of the topology via the interconnectivity of bulk and surface states, which is essential for understanding the unusual nature of this material.

  20. Collisional energy losses in relativistic nuclear collisions within an effective quasiparticle model

    SciTech Connect

    Tarasov, Yu. A.

    2009-10-15

    We investigate the collisional energy losses of the fast gluons and light quarks in quark-gluon plasma produced in central (Au+Au) collisions at at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC) ({radical}(s{sub NN})=200 GeV). We use the effective quasiparticle model for investigation of physical characteristic of expanding plasma. We take into account the possibility of hot glue production at the first stage. We calculate these energy losses and compare them with radiative energy losses of gluons and quarks in an analogous model. We show that radiative energy losses exceed considerably the collisional energy losses.

  1. Decay patterns of multi-quasiparticle bands—a model independent test of chiral symmetry

    NASA Astrophysics Data System (ADS)

    Lawrie, E. A.

    2017-09-01

    Nuclear chiral systems exhibit chiral symmetry bands, built on left-handed and right-handed angular momentum nucleon configurations. The experimental search for such chiral systems revealed a number of suitable candidates, however an unambiguous identification of nuclear chiral symmetry is still outstanding. In this work it is shown that the decay patterns of chiral bands built on multi-quasiparticle configurations are different from those involving different single-particle configurations. It is suggested to use the observed decay patterns of chiral candidates as a new model-independent test of chiral symmetry.

  2. Multi-quasiparticle excitation: Extending shape coexistence in A{approx}190 neutron-deficient nuclei

    SciTech Connect

    Shi Yue; Liu, H. L.; Xu, F. R.; Walker, P. M.

    2010-10-15

    Multi-quasiparticle high-K states in neutron-deficient mercury, lead, and polonium isotopes have been investigated systematically by means of configuration-constrained potential-energy-surface calculations. An abundance of high-K states is predicted with both prolate and oblate shapes, which extends the shape coexistence of the mass region. Well-deformed shapes provide good conditions for the formation of isomers, as exemplified in {sup 188}Pb. Of particular interest is the prediction of low-lying 10{sup -} states in polonium isotopes, which indicate long-lived isomers.

  3. Quasiparticle band structure for the Hubbard systems: Application to. alpha. -CeAl sub 2

    SciTech Connect

    Costa-Quintana, J.; Lopez-Aguilar, F. ); Balle, S. ); Salvador, R. Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052 )

    1990-04-01

    A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy {ital U}. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of {alpha}-CeAl{sub 2} because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method.

  4. Local density of states modulation and quasiparticle interference in Bi-2212

    NASA Astrophysics Data System (ADS)

    Lee, Dung-Hai

    2003-03-01

    Recent STM studies by Hoffman et al [1], and McElory et al [2], reported a wealth of spatial patterns associated with the modulation of dI/dV as a function of tip position on the surface of Bi-2212. Detailed analysis of the modulation wavevectors as a function of bias voltage implies that these modulations are due to quasiparticle scattering interference [1],[3]. This talk addresses the implications of this result. [1] J.E. Hoffman et al, Science 297, 1148 (2002). [2] K. McElory et al, submitted to Nature. [3] Q. Wang and D-H Lee, cond-mat/0205118. of

  5. Projected quasiparticle calculations for the N =82 odd-proton isotones

    SciTech Connect

    Losano, L. ); Dias, H. )

    1991-12-01

    The structure of low-lying states in odd-mass {ital N}=82 isotones (135{le}{ital A}{le}145) is investigated in terms of a number-projected one- and three-quasiparticles Tamm-Dancoff approximation. A surface-delta interaction is taken as the residual nucleon-nucleon interaction. Excitation energies, dipole and quadrupole moments, and {ital B}({ital M}1) and {ital B}({ital E}2) values are calculated and compared with the experimental data.

  6. Probing quasiparticle states in strongly interacting atomic gases by momentum-resolved Raman photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dao, Tung-Lam; Carusotto, Iacopo; Georges, Antoine

    2009-08-01

    We investigate a momentum-resolved Raman spectroscopy technique which is able to probe the one-body spectral function and the quasiparticle states of a gas of strongly interacting ultracold atoms. This technique is inspired by angle-resolved photoemission spectroscopy, a powerful experimental probe of electronic states in solid-state systems. Quantitative examples of experimentally accessible spectra are given for the most significant regimes along the BEC-BCS crossover. When the theory is specialized to rf spectroscopy, agreement is found with recent experimental data. The main advantages of this Raman spectroscopy over existing techniques are pointed out.

  7. Nodal quasiparticles and the onset of spin-density-wave order in cuprate superconductors.

    PubMed

    Pelissetto, Andrea; Sachdev, Subir; Vicari, Ettore

    2008-07-11

    We present a theory for the onset of spin-density-wave order in the superconducting ground state of the cuprates. We compute the scaling dimensions of allowed perturbations of a "relativistic" fixed point with O4 x O(3) symmetry, including those associated with the fermionic nodal Bogoliubov quasiparticles. Analyses of up to six loops show that all perturbations with square lattice symmetry are likely irrelevant. We demonstrate that the fermion spectral functions are primarily damped by the coupling to fluctuations of a composite field with Ising nematic order. A number of other experimental implications are also discussed.

  8. PD-1, PD-L1 and PD-L2 expression in mouse prostate cancer.

    PubMed

    Yang, Shijie; Zhang, Qiuyang; Liu, Sen; Wang, Alun R; You, Zongbing

    2016-01-01

    Programmed cell death protein 1 (PD-1) and its ligands PD-L1 and PD-L2 play critical roles in maintaining an immunosuppressive tumor microenvironment. The purpose of the present study was to assess expression of PD-1, PD-L1, and PD-L2 in mouse prostate tumors. A total of 33 mouse prostate tumors derived from Pten-null mice were examined using immunohistochemical staining for PD-1, PD-L1, and PD-L2. The animals were either with interleukin-17 receptor c (Il-17rc) wild-type or knockout genotype, or fed with regular diet or high-fat diet to 30 weeks of age. We found that Il-17rc wild-type mouse prostate tumors had significantly higher levels of PD-1, PD-L1, and PD-L2 than Il-17rc knockout mouse prostate tumors. High-fat diet-induced obese mice had significantly higher levels of PD-1, PD-L1, and PD-L2 in their prostate tumors than lean mice fed with regular diet. Increased expression of PD-1, PD-L1, and PD-L2 was associated with increased number of invasive prostate tumors formed in the Il-17rc wild-type and obese mice compared to the Il-17rc knockout and lean mice, respectively. Our findings suggest that expression of PD-1, PD-L1, and PD-L2 may enhance development of mouse prostate cancer through creating an immunosuppressive tumor microenvironment.

  9. Thermal conductivity from phonon quasiparticles with subminimal mean free path in the MgSiO3 perovskite

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Bo; Allen, Philip B.; Sun, Tao; Wentzcovitch, Renata M.

    2017-09-01

    Understanding the lattice thermal conductivity at high temperatures is important for many applications. We characterize phonon quasiparticles numerically through a hybrid approach that combines first-principles molecular dynamics and lattice dynamics. We find no lower-bound limits on phonon mean free paths in the MgSiO3 perovskite. This contradicts the widely used minimal mean free path idea. The clear identification of phonon quasiparticles validates the use of a phonon gas model when the phonon mean free paths are shorter than the lattice constants of solids. Using the phonon quasiparticle properties, we have calculated the lattice thermal conductivity of the MgSiO3 perovskite. The results are reasonable compared to recent experimental measurements.

  10. Thermodynamic anomaly above the superconducting critical temperature in the quasi-one-dimensional superconductor Ta4Pd3Te16

    NASA Astrophysics Data System (ADS)

    Helm, T.; Flicker, F.; Kealhofer, R.; Moll, P. J. W.; Hayes, I. M.; Breznay, N. P.; Li, Z.; Louie, S. G.; Zhang, Q. R.; Balicas, L.; Moore, J. E.; Analytis, J. G.

    2017-02-01

    We study the intrinsic electronic anisotropy and fermiology of the quasi-one-dimensional superconductor Ta4Pd3Te16 . Below T*=20 K, we detect a thermodynamic phase transition that predominantly affects the conductivity perpendicular to the quasi-one-dimensional chains. The transition relates to the presence of charge order that precedes superconductivity. Remarkably, the Fermi surface pockets detected by de Haas-van Alphen oscillations are unaffected by this transition, suggesting that the ordered state does not break any translational symmetries but rather alters the scattering of the quasiparticles themselves.

  11. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors.

    PubMed

    Hinton, J P; Thewalt, E; Alpichshev, Z; Mahmood, F; Koralek, J D; Chan, M K; Veit, M J; Dorow, C J; Barišić, N; Kemper, A F; Bonn, D A; Hardy, W N; Liang, Ruixing; Gedik, N; Greven, M; Lanzara, A; Orenstein, J

    2016-04-13

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO(4+δ) (Hg-1201) and YBa2Cu3O(6+x) (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.

  12. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barišić, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.

    2016-04-01

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T ) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.

  13. Phases of QCD, thermal quasiparticles, and dilepton radiation from a fireball

    NASA Astrophysics Data System (ADS)

    Renk, Thorsten; Schneider, Roland; Weise, Wolfram

    2002-07-01

    We calculate dilepton production rates from a fireball adapted to the kinematical conditions realized in ultrarelativistic heavy-ion collisions over a broad range of beam energies. The freeze-out state of the fireball is fixed by hadronic observables. We use this information combined with the initial geometry of the collision region to follow the space-time evolution of the fireball. Assuming entropy conservation, its bulk thermodynamic properties can then be uniquely obtained once the equation of state (EOS) is specified. The high-temperature quark-gluon plasma (QGP) phase is modeled by a nonperturbative quasiparticle model that incorporates a phenomenological confinement description, adapted to lattice QCD results. For the hadronic phase, we interpolate the EOS into the region where a resonance gas approach seems applicable, keeping track of a possible overpopulation of the pion phase space. In this way, the fireball evolution is specified without reference to dilepton data, thus eliminating it as an adjustable parameter in the rate calculations. Dilepton emission in the QGP phase is then calculated within the quasiparticle model. In the hadronic phase, both temperature and finite baryon density effects on the photon spectral function are incorporated. Existing dilepton data from CERES at 158 and 40 A GeV Pb-Au collisions are well described, and a prediction for the PHENIX setup at RHIC for (s)=200A GeV is given.

  14. Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional

    SciTech Connect

    Refaely-Abramson, Sivan; Sharifzadeh, Sahar; Govind, Niranjan; Autschbach, Jochen; Neaton, Jeffrey B.; Baer, Roi; Kronik, Leeor

    2012-11-28

    We present a method for obtaining quasiparticle excitation energies from a DFT-based calculation, but with accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters - the range separation and the short-range Fock fraction. Both are determined non-empirically, per system, based on satisfaction of exact physical constraints for the ionization potential and many-electron self-interaction, respectively. The accuracy of the method is demonstrated on the important benchmark molecule, 3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA), where it is shown to be the only non-empirical DFT-based method comparable to GW calculations. For any finite system, we envision that the approach could be useful directly as an inexpensive alternative to GW that offers good accuracy for both frontier and non-frontier quasiparticle excitation energies, opening the door to the studyof presently out of reach large-scale systems.

  15. REVIEWS OF TOPICAL PROBLEMS: Quasiparticles in strongly correlated electron systems in copper oxides

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Sergei G.

    1997-10-01

    New experimental and theoretical results on the electronic structure and spectral properties of quasiparticles in copper oxides are reviewed. It is shown that the electronic structure transforms from antiferromagnetic insulators to optimally doped high-temperature superconductors as the doping level is varied. The experimental methods considered are primarily angular resolved photoelectron spectroscopy (ARPES), neutron scattering, and NMR. Two types of electronic structure calculations for data interpretation purposes are considered, namely, exact numerical methods for finite clusters (exact diagonalization and the quantum Monte Carlo method) and approximate schemes for an infinite lattice. As a result, a coherent unified picture emerges, in which magnetic polarons (which are carriers in a weakly doped antiferromagnetic lattice) transform into a system of Fermi quasiparticles dressed in short-range antiferromagnetic-type spin fluctuations. In the region of weakly doped metallic compositions, deviations from Fermi-liquid properties are seen, such as the failure of Luttinger's theorem, shadowy photoemission bands, and the spin pseudogap effect in spectral and thermodynamic measurements. The situation in the neighborhood of the insulator-metal concentration transition is noted to be least understood.

  16. Quasiparticle band structure of infinite hydrogen fluoride and hydrogen chloride chains.

    PubMed

    Buth, Christian

    2006-10-21

    We study the quasiparticle band structure of isolated, infinite (HF)(infinity) and (HCl)(infinity) bent (zigzag) chains and examine the effect of the crystal field on the energy levels of the constituent monomers. The chains are one of the simplest but realistic models of the corresponding three-dimensional crystalline solids. To describe the isolated monomers and the chains, we set out from the Hartree-Fock approximation, harnessing the advanced Green's function methods local molecular orbital algebraic diagrammatic construction (ADC) scheme and local crystal orbital ADC (CO-ADC) in a strict second order approximation, ADC(2,2) and CO-ADC(2,2), respectively, to account for electron correlations. The configuration space of the periodic correlation calculations is found to converge rapidly only requiring nearest-neighbor contributions to be regarded. Although electron correlations cause a pronounced shift of the quasiparticle band structure of the chains with respect to the Hartree-Fock result, the bandwidth essentially remains unaltered in contrast to, e.g., covalently bound compounds.

  17. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    DOE PAGES

    Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; ...

    2016-04-13

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp,more » as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Lastly, our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.« less

  18. Correlating quasiparticle excitations with quantum femtosecond magnetism in photoexcited nonequilibrium states of insulating antiferromagnetic manganites

    NASA Astrophysics Data System (ADS)

    Lingos, P. C.; Patz, A.; Li, T.; Barmparis, G. D.; Keliri, A.; Kapetanakis, M. D.; Li, L.; Yan, J.; Wang, J.; Perakis, I. E.

    2017-06-01

    We describe a mechanism for insulator-to-metal transition triggered by spin canting following femtosecond laser excitation of insulating antiferromagnetic (AFM) states of colossal magnetoresistive (CMR) manganites. We show that photoexcitation of composite fermion quasiparticles dressed by spin fluctuations results in the population of a broad metallic conduction band due to canting of the AFM background spins via strong electron-spin local correlation. By inducing spin canting, photoexcitation can increase the quasiparticle energy dispersion and quench the charge excitation energy gap. This increases the critical Jahn-Teller (JT) lattice displacement required to maintain an insulating state. We present femtosecond-resolved pump-probe measurements showing biexponential relaxation of the differential reflectivity below the AFM transition temperature. We observe a nonlinear dependence of the ratio of the femtosecond and picosecond relaxation component amplitudes at the same pump fluence threshold where we observe femtosecond magnetization photoexcitation. We attribute this correlation between nonlinear femtosecond spin and charge dynamics to spin/charge/lattice coupling and population inversion between the polaronic majority carriers and metallic quasielectron minority carriers as the lattice displacement becomes smaller than the critical value required to maintain an insulating state following laser-induced spin canting.

  19. Quasiparticle interference from different impurities on the surface of pyrochlore iridates: Signatures of the Weyl phase

    NASA Astrophysics Data System (ADS)

    Lambert, F.; Schnyder, A. P.; Moessner, R.; Eremin, I.

    2016-10-01

    Weyl semimetals are gapless three-dimensional topological materials where two bands touch at an even number of points in the bulk Brillouin zone. These semimetals exhibit topologically protected surface Fermi arcs, which pairwise connect the projected bulk band touchings in the surface Brillouin zone. Here, we analyze the quasiparticle interference patterns of the Weyl phase when time-reversal symmetry is explicitly broken. We use a multiband d -electron Hubbard Hamiltonian on a pyrochlore lattice, relevant for the pyrochlore iridate R2Ir2O7 (where R is a rare earth). Using exact diagonalization, we compute the surface spectrum and quasiparticle interference (QPI) patterns for various surface terminations and impurities. We show that the spin and orbital texture of the surface states can be inferred from the absence of certain backscattering processes and from the symmetries of the QPI features for nonmagnetic and magnetic impurities. Furthermore, we show that the QPI patterns of the Weyl phase in pyrochlore iridates may exhibit additional interesting features that go beyond those found previously in TaAs.

  20. The Quasiparticle Puzzle: Reconciling ARPES and FTSTS Studies of Bi2212

    SciTech Connect

    Vishik, I.M.; Nowadnick, E.A.; Lee, W.S.; Shen, Z.X.; Moritz, B.; Devereaux, T.P.; Tanaka, K.; Sasagawa, T.; Fujii, T.; /Tokyo U.

    2009-12-17

    Angle Resolved Photoemission Spectroscopy (ARPES) probes the momentum-space electronic structure of materials, and provides invaluable information about the high-temperature superconducting cuprates. Likewise, cuprates real-space, inhomogeneous electronic structure is elucidated by Scanning Tunneling Spectroscopy (STS). Recently, STS has exploited quasiparticle interference (QPI) - wave-like electrons scattering off impurities to produce periodic interference patterns - to infer properties of the QP in momentum-space. Surprisingly, some interference peaks in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212) are absent beyond the antiferromagnetic (AF) zone boundary, implying the dominance of particular scattering process. Here, we show that ARPES sees no evidence of quasiparticle (QP) extinction: QP-like peaks are measured everywhere on the Fermi surface, evolving smoothly across the AF zone boundary. This apparent contradiction stems from different natures of single-particle (ARPES) and two-particle (STS) processes underlying these probes. Using a simple model, we demonstrate extinction of QPI without implying the loss of QP beyond the AF zone boundary.

  1. Thermodynamics and higher order moments in SU(3) linear σ-model with gluonic quasiparticles

    NASA Astrophysics Data System (ADS)

    Nasser Tawfik, Abdel; Magdy, Niseem

    2015-01-01

    In the framework of the linear σ-model (LSM) with three quark flavors, the chiral phase diagram at finite temperature and density is investigated. For temperatures higher than the critical temperature ({{T}c}), we added to the LSM the gluonic sector from the quasi-particle model (QPM), which assumes that the interacting gluons in the strongly interacting matter, the quark-gluon plasma (QGP), are phenomenologically the same as non-interacting massive quasi-particles. The dependence of the chiral condensates of strange and non-strange quarks on the temperature and chemical potential is analyzed. Then, we calculate the thermodynamics in the new approach (using a combination of the LSM and the QPM). Confronting the results with those from recent lattice quantum chromodynamics simulations reveals an excellent agreement for almost all thermodynamic quantities. The dependences of the first-order and second-order moments of the particle multiplicity on the chemical potential at fixed temperature are studied. These investigations are implemented through characterizing the large fluctuations accompanying the chiral phase transition. The results for the first-order and second-order moments are compared with those from the SU(3) Polyakov linear σ-model (PLSM). Also, the resulting phase diagrams deduced in the PLSM and the LSM+QPM are compared with each other.

  2. Quasiparticle weight and renormalized Fermi velocity of graphene with long-range Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Tang, Ho-Kin; Leaw, Jia Ning; Rodrigues, J. N. B.; Sengupta, P.; Assaad, F. F.; Adam, S.

    In this work, we study the effects of realistic Coulomb interactions in graphene using a projective quantum Monte Carlo simulation of electrons at half-filing on a honeycomb lattice. We compute the quasiparticle residue, the renormalized Fermi velocity and the antiferromagnetic order parameter as a function of both the long-range and short-range components of the Coulomb potential. We find that the Mott insulator transition is determined mostly by the short-range interaction and is consistent with the Gross-Neveu-Yukawa critical theory. Far from the critical point and in the semi-metallic regime, we find that the Fermi-velocity and quasiparticle residue are influenced by the long-range tail of the Coulomb potential, and for very small interaction strength are consistent with predictions of first order perturbation theory. For experimentally relevant and stronger values of the long-range interaction, our numerical data contradicts prediction from both perturbation theory and the renormalization group approaches. This work was supported by Singapore National Research Foundation (NRF-NRFF2012-01 and CA2DM mid-size Centre), Singapore Ministry of Education(Yale-NUS College R-607-265-01312 and MOE2014-T2-2-112), and DFG Grant No. AS120/9-1.

  3. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    PubMed Central

    Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barišić, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.

    2016-01-01

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T ) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs. PMID:27071712

  4. Coulomb-blockade-induced bound quasiparticle states in a double-island structure.

    PubMed

    Pesin, D A; Andreev, A V

    2004-11-05

    We determine the low temperature shape of the Coulomb-blockade staircase in a superconducting double-island device. For an odd number of electrons, in the ground state the intrinsic quasiparticle is bound to the tunneling contact. For a single channel contact the gap between the ground state and the continuum of excited states is of the order of the Josephson energy E(J). The temperature dependence of the Coulomb-blockade step width is nonmonotonic, with the minimal width occurring at T(i) approximately E(J)/ln(square root DeltaE(J)/delta), where Delta and delta are, respectively, the superconducting gap and mean level spacing in the island. For an even number of electrons, the Coulomb enhancement of the Josephson energy is shown to be significantly stronger than that for a single grain coupled to a lead. If the electrostatic energy favors a single broken Cooper pair, the resulting quasiparticles are bound to the contact at T=0.

  5. Nodal quasiparticle lifetime in the superconducting state of Bi(2)Sr(2)CaCu(2)O(8+delta)

    PubMed

    Corson; Orenstein; Oh; O'Donnell; Eckstein

    2000-09-18

    We have measured the complex conductivity sigma of a Bi(2)Sr(2)CaCu(2)O(8+delta) thin film between 0.2 and 0.8 THz. We find sigma in the superconducting state to be well described as the sum of contributions from quasiparticles, condensate, and order parameter fluctuations which draw 30% of the spectral weight from the condensate. An analysis based on this decomposition yields a quasiparticle scattering rate on the order of k(B)T/Planck's over 2pi for temperatures below T(c).

  6. Systematic study of multi-quasiparticle K -isomeric bands in tungsten isotopes by the extended projected shell model

    NASA Astrophysics Data System (ADS)

    Wu, Xin-Yi; Ghorui, S. K.; Wang, Long-Jun; Sun, Yang; Guidry, Mike; Walker, Philip M.

    2017-06-01

    Background: The interplay between collective and single-particle degrees of freedom is an important structure aspect to study. The nuclei in the A ≈180 mass region are often denoted as good examples to study such problems because these nuclei are known to exhibit many rotational bands based on multi-quasiparticle K isomers. Purpose: A large set of high-quality experimental data on high-K isomeric states in the A ≈180 mass region has accumulated. A systematic description of them is a theoretical challenge as it requires a method going beyond the usual mean field with multi-quasiparticle configurations built in the shell-model basis. The K -isomer data provide an ideal testing ground for theoretical models. Method: The recently extended projected shell model (PSM) by the Pfaffian method is employed with a sufficiently large configuration space including up to 10 quasiparticles. The restoration of rotational symmetry which is broken in the deformed mean field is obtained by means of angular-momentum projection. With axial symmetry in the basis deformation, each multi-quasiparticle state, classified by a K quantum number, represents the major component of a rotational K band. Shell-model diagonalization in such a projected basis defines the K mixing, which is the key ingredient of the present method. Results: Quasiparticle structure and rotational properties of high-K isomers in even-even neutron-rich W-186174 isotopes are described. The rotational evolution of the yrast and near-yrast bands is discussed with successive band crossings. Multi-quasiparticle K isomers and associated rotational bands in each W isotope are studied with detailed quasiparticle configurations given. Electromagnetic transition properties are also studied and the calculated B (E 2 ),B (M 1 ) , and g -factors are compared with experiment if data exist. Conclusions: Many nuclei of the A ≈180 mass region exhibit properties of an axially symmetric shape and K is approximately a good quantum

  7. Nodal Quasiparticle Lifetime in the Superconducting State of Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Corson, J.; Orenstein, J.; Oh, Seongshik; O'Donnell, J.; Eckstein, J. N.

    2000-09-01

    We have measured the complex conductivity σ of a Bi2Sr2CaCu2O8+δ thin film between 0.2 and 0.8 THz. We find σ in the superconducting state to be well described as the sum of contributions from quasiparticles, condensate, and order parameter fluctuations which draw 30% of the spectral weight from the condensate. An analysis based on this decomposition yields a quasiparticle scattering rate on the order of kBT/ħ for temperatures below Tc.

  8. Variational theory of valence fluctuations: Ground states and quasiparticle excitations of the Anderson lattice model

    NASA Astrophysics Data System (ADS)

    Brandow, B. H.

    1986-01-01

    A variational study of ground states of the orbitally nondegenerate Anderson lattice model, using a wave function with one variational parameter per Bloch state k, has been extended to deal with essentially metallic systems having a nonintegral number of electrons per site. Quasiparticle excitations are obtained by direct appeal to Landau's original definition for interacting Fermi liquids, scrEqp(k,σ)=δEtotal/δn qp(k,σ). This approach provides a simple and explicit realization of the Luttinger picture of a periodic Fermi liquid. A close correspondence is maintained between the ``interacting'' (U=∞) system and the corresponding ``noninteracting'' (U=0) case, i.e., ordinary band theory; the result can be described as a renormalized band or renormalized hybridization theory. The occupation-number distribution for the conduction orbitals displays a finite discontinuity at the Fermi surface. If the d-f hybridization is nonzero throughout the Brillouin zone, the quasiparticle spectrum will always exhibit a gap, although this gap becomes exponentially small (i.e., of order TK) in the Kondo-lattice regime. In the ``ionic'' case with precisely two electrons per site, such a system may therefore exhibit an insulating (semiconducting) gap. The quasiparticle state density exhibits a prominent spike on each side of the spectral gap, just as in the elementary hybridization model (the U=0 case). For the metallic case, with a nonintegral number of electrons per site, the Fermi level falls within one of the two sharp density peaks. The effective mass at the Fermi surface tends to be very large; enhancements by a factor >~102 are quite feasible. The foregoing variational theory has also been refined by means of a trial wave function having two variational parameters per Bloch state k. The above qualitative features are all retained, with some quantitative differences, but there are also some qualitatively new features. The most interesting of these is the appearance, within

  9. Measuring, interpreting, and translating electron quasiparticle - Phonon interactions on the surfaces of the topological insulators bismuth selenide and bismuth telluride

    NASA Astrophysics Data System (ADS)

    Howard, Colin

    The following dissertation presents a comprehensive study of the interaction between Dirac fermion quasiparticles (DFQs) and surface phonons on the surfaces of the topological insulators Bi2Se3 and Bi2Te 3. Inelastic helium atom surface scattering (HASS) spectroscopy and time of flight (TOF) techniques were used to measure the surface phonon dispersion of these materials along the two high-symmetry directions of the surface Brillouin zone (SBZ). Two anomalies common to both materials are exhibited in the experimental data. First, there is an absence of Rayleigh acoustic waves on the surface of these materials, pointing to weak coupling between the surface charge density and the surface acoustic phonon modes and potential applications for soundproofing technologies. Secondly, both materials exhibit an out-of-plane polarized optical phonon mode beginning at the SBZ center and dispersing to lower energy with increasing wave vector along both high-symmetry directions of the SBZ. This trend terminates in a V-shaped minimum at a wave vector corresponding to 2 kF for each material, after which the dispersion resumes its upward trend. This phenomenon constitutes a strong Kohn anomaly and can be attributed to the interaction between the surface phonons and DFQs. To quantify the coupling between the optical phonons experiencing strong renormalization and the DFQs at the surface, a phenomenological model was constructed based within the random phase approximation. Fitting the theoretical model to the experimental data allowed for the extraction of the matrix elements of the coupling Hamiltonian and the modifications to the surface phonon propagator encoded in the phonon self energy. This allowed, for the first time, calculation of phonon mode-specific quasiparticle-phonon coupling lambdanu( q) from experimental data. Additionally, an averaged coupling parameter was determined for both materials yielding bar lambdaTe ≈ 2 and bar lambdaSe ≈ 0.7. These values are

  10. Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling

    DOE PAGES

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    2015-11-05

    Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd5Si-μ, Pd9Si2-α, Pd3 Si-β, Pd2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd9 Si2-α, Pd3Si-β, and Pd2Si-γ are treated as stable phases down to 0more » K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd5Si-μ, Pd9Si2-α, Pd3Si-β, Pd2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.« less

  11. Phase Stability for the Pd-Si System: First-Principles, Experiments, and Solution-Based Modeling

    NASA Astrophysics Data System (ADS)

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    2016-01-01

    The relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd5Si-{μ }, Pd9Si_2-{α }, Pd_3Si-{β }, Pd_2Si-{γ }, and PdSi-{δ } are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-{δ } phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd5Si-{μ }, Pd9Si2-{α }, Pd3Si-{β }, and Pd_2Si-{γ } are treated as stable phases down to 0 K (-273 °C), while the PdSi-{δ } is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. The liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd5Si-{μ }, Pd9Si_2-{α }, Pd_3Si-{β }, Pd_2Si-{γ }, and PdSi-{δ }. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.

  12. Spin transfer torque in non-collinear magnetic tunnel junctions exhibiting quasiparticle bands: a non-equilibrium Green's function study

    NASA Astrophysics Data System (ADS)

    Jaya, Selvaraj Mathi

    2017-06-01

    A non-equilibrium Green's function formulation to study the spin transfer torque (STT) in non-collinear magnetic tunnel junctions (MTJs) exhibiting quasiparticle bands is developed. The formulation can be used to study the magnetoresistance and spin current too. The formulation is used to study the STT in model tunnel junctions exhibiting multiple layers and quasiparticle bands. The many body interaction that gives rise to quasiparticle bands is assumed to be a s - f exchange interaction at the electrode regions of the MTJ. The quasiparticle bands are obtained using a many body procedure and the single particle band structure is obtained using the tight binding model. The bias dependence of the STT as well as the influence of band occupancy and s - f exchange coupling strength on the STT are studied. We find from our studies that the band occupancy plays a significant role in deciding the STT and the s - f interaction strength too influences the STT significantly. Anomalous behavior in both the parallel and perpendicular components of the STT is obtained from our studies. Our results obtained for certain values of the band occupation are found to show the trend observed from the experimental measurements of STT.

  13. Nodal quasiparticle dynamics in the heavy fermion superconductor CeCoIn₅ revealed by precision microwave spectroscopy.

    PubMed

    Truncik, C J S; Huttema, W A; Turner, P J; Ozcan, S; Murphy, N C; Carrière, P R; Thewalt, E; Morse, K J; Koenig, A J; Sarrao, J L; Broun, D M

    2013-01-01

    CeCoIn₅ is a heavy fermion superconductor with strong similarities to the high-Tc cuprates, including quasi-two-dimensionality, proximity to antiferromagnetism and probable d-wave pairing arising from a non-Fermi-liquid normal state. Experiments allowing detailed comparisons of their electronic properties are of particular interest, but in most cases are difficult to realize, due to their very different transition temperatures. Here we use low-temperature microwave spectroscopy to study the charge dynamics of the CeCoIn₅ superconducting state. The similarities to cuprates, in particular to ultra-clean YBa₂Cu₃O(y), are striking: the frequency and temperature dependence of the quasiparticle conductivity are instantly recognizable, a consequence of rapid suppression of quasiparticle scattering below T(c); and penetration-depth data, when properly treated, reveal a clean, linear temperature dependence of the quasiparticle contribution to superfluid density. The measurements also expose key differences, including prominent multiband effects and a temperature-dependent renormalization of the quasiparticle mass.

  14. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  15. Spin-flip scattering of critical quasiparticles and the phase diagram of YbRh2Si2

    NASA Astrophysics Data System (ADS)

    Wölfle, Peter; Abrahams, Elihu

    2015-10-01

    Several observed transport and thermodynamic properties of the heavy-fermion compound YbRh2Si2 in the quantum critical regime are unusual and suggest that the fermionic quasiparticles are critical, characterized by a scale-dependent diverging effective mass. A theory based on the concept of critical quasiparticles scattering off antiferromagnetic spin fluctuations in a strong-coupling regime has been shown to successfully explain the unusual existing data and to predict a number of so far unobserved properties. In this paper, we point out a new feature of a magnetic field-tuned quantum critical point of a heavy-fermion metal: anomalies in the transport and thermodynamic properties caused by the freezing out of spin-flip scattering of critical quasiparticles and the scattering off collective spin excitations. We show a steplike behavior as a function of magnetic field of, e.g., the Hall coefficient and magnetoresistivity results, which accounts quantitatively for the observed behavior of these quantities. That behavior has been described as a crossover line T*(H ) in the T -H phase diagram of YbRh2Si2 . Whereas some authors have interpreted this observation as signaling the breakdown of Kondo screening and an associated abrupt change of the Fermi surface, our results suggest that the T* line may be quantitatively understood within the picture of robust critical quasiparticles.

  16. Density of quasiparticle states for a two-dimensional disordered system: Metallic, insulating, and critical behavior in the class-D thermal quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Mildenberger, A.; Evers, F.; Mirlin, A. D.; Chalker, J. T.

    2007-06-01

    We investigate numerically the quasiparticle density of states ϱ(E) for a two-dimensional, disordered superconductor in which both time-reversal and spin-rotation symmetries are broken. As a generic single-particle description of this class of systems (symmetry class D), we use the Cho-Fisher version of the network model. This has three phases: a thermal insulator, a thermal metal, and a quantized thermal Hall conductor. In the thermal metal, we find a logarithmic divergence in ϱ(E) as E→0 , as predicted from sigma model calculations. Finite-size effects lead to superimposed oscillations, as expected from random-matrix theory. In the thermal insulator and quantized thermal Hall conductor, we find that ϱ(E) is finite at E=0 . At the plateau transition between these phases, ϱ(E) decreases toward zero as ∣E∣ is reduced, in line with the result ϱ(E)˜∣E∣ln(1/∣E∣) derived from calculations for Dirac fermions with random mass.

  17. (3 +1 )D Quasiparticle Anisotropic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mubarak; Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael

    2017-07-01

    We present the first comparisons of experimental data with phenomenological results from (3 +1 )D quasiparticle anisotropic hydrodynamics (aHydroQP). We compare particle spectra, average transverse momentum, and elliptic flow. The dynamical equations used for the hydrodynamic stage utilize aHydroQP, which naturally includes both shear and bulk viscous effects. The (3 +1 )D aHydroQP evolution obtained is self-consistently converted to hadrons using anisotropic Cooper-Frye freeze-out. Hadron production and decays are modeled using a customized version of therminator 2. In this first study, we utilized smooth Glauber-type initial conditions and a single effective freeze-out temperature TFO=130 MeV with all hadronic species in full chemical equilibrium. With this rather simple setup, we find a very good description of many heavy-ion observables.

  18. Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates.

    PubMed

    Kreisel, A; Choubey, Peayush; Berlijn, T; Ku, W; Andersen, B M; Hirschfeld, P J

    2015-05-29

    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi_{2}Sr_{2}CaCu_{2}O_{8} can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.

  19. Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission

    SciTech Connect

    Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra

    2011-06-03

    High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} . We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly

  20. Field Suppression of In-Gap Quasiparticle Excitations in SmB_6

    NASA Astrophysics Data System (ADS)

    Reyes, Arneil; Caldwell, Tod; Kuhns, Phillip; Moulton, William; Abdelrazek, Margie; Achey, Randy; Young, David; Fisk, Zachary

    2000-03-01

    We present the results of ^11B NMR studies of high quality single-crystal SmB6 for temperatures down to 2K and in magnetic fields up to 22T. The Knight shift tracks the bulk susceptibility down to ~60K,where susceptibility is maximum. The axial part of the shift is totally accounted for by a dipolar coupling from the Sm moments with a hyperfine field A_(dip) = 0.29 kOe/uB, implying that local moments persists unshielded above the gap temperature. The low temperature spin-lattice relaxation shows evidence for quasiparticle states just above the Fermi energy which are suppressed by the application of field of 20T. It is suggested that these states arises from the Kondo-like correlation of localized electronic spins within a low-density carrier system.

  1. Superconductivity. Quasiparticle mass enhancement approaching optimal doping in a high-T(c) superconductor.

    PubMed

    Ramshaw, B J; Sebastian, S E; McDonald, R D; Day, James; Tan, B S; Zhu, Z; Betts, J B; Liang, Ruixing; Bonn, D A; Hardy, W N; Harrison, N

    2015-04-17

    In the quest for superconductors with higher transition temperatures (T(c)), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. Recent experiments have suggested the existence of the requisite broken-symmetry phase in the high-T(c) cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. We used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O(6+δ) over a wide range of doping, and observed magnetic quantum oscillations that reveal a strong enhancement of the quasiparticle effective mass toward optimal doping. This mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p(crit) ≈ 0.18. Copyright © 2015, American Association for the Advancement of Science.

  2. Quasiparticle mass enhancement approaching optimal doping in a high-Tc superconductor

    DOE PAGES

    Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.; ...

    2015-03-26

    In the quest for superconductors with higher transition temperatures (Tc), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-Tc cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strong enhancement of the quasiparticle effectivemore » mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of pcrit ≈ 0.18.« less

  3. Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach

    NASA Astrophysics Data System (ADS)

    Mezio, Alejandro; McKenzie, Ross H.

    2017-07-01

    We use the Kotliar-Ruckenstein slave-boson formalism to study the temperature dependence of paramagnetic phases of the one-band Hubbard model for a variety of band structures. We calculate the Fermi liquid quasiparticle spectral weight Z and identify the temperature at which it decreases significantly to a crossover to a bad metal region. Near the Mott metal-insulator transition, this coherence temperature Tcoh is much lower than the Fermi temperature of the uncorrelated Fermi gas, as is observed in a broad range of strongly correlated electron materials. After a proper rescaling of temperature and interaction, we find a universal behavior that is independent of the band structure of the system. We obtain the temperature-interaction phase diagram as function of doping, and we compare the temperature dependence of the double occupancy, entropy, and charge compressibility with previous results obtained with dynamical mean-field theory. We analyze the stability of the method by calculating the charge compressibility.

  4. Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system

    NASA Astrophysics Data System (ADS)

    Schanz, Holger; Esser, Bernd

    1997-05-01

    The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed quantum-classical and fully quantized descriptions is investigated. The system is considered as a model for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu- tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn- amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.

  5. Study of weakly-bound odd-A nuclei with quasiparticle blocking

    NASA Astrophysics Data System (ADS)

    Xiong, Xue-Yu; Pei, Jun-Chen; Zhang, Yi-Nu; Zhu, Yi

    2016-02-01

    The coordinate-space Hartree-Fock-Bogoliubov (HFB) approach with quasiparticle blocking has been applied to study the odd-A weakly bound nuclei 17,19B and 37Mg, in which halo structures have been reported in experiments. The Skyrme nuclear forces SLy4 and UNEDF1 have been adopted in our calculations. The results with and without blocking have been compared to demonstrate the emergence of deformed halo structures due to blocking effects. In our calculations, 19B and 37Mg have remarkable features of deformed halos. Supported by National Key Basic Research Program of China (2013CB83440), National Natural Science Foundation of China (11375016, 11235001, 11320101004) and Research Fund for Doctoral Program of Higher Education of China (20130001110001)

  6. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Tran, Vy; Fei, Ruixiang; Yang, Li

    2015-12-01

    We report first-principles GW-Bethe-Salpeter-equation (BSE) studies of excited-state properties of few-layer black phosphorus (BP) (phosphorene). With improved GW computational methods, we obtained converged quasiparticle band gaps and optical absorption spectra by the single-shot (G0W0) procedure. Moreover, we reveal fine structures of anisotropic excitons, including the series of one-dimensional like wave functions, spin singlet-triplet splitting, and electron-hole binding energy spectra by solving BSE. An effective-mass model is employed to describe these electron-hole pairs, shedding light on estimating the exciton binding energy of anisotropic two-dimensional semiconductors without expensive ab initio simulations. Finally, the anisotropic optical response of BP is explained by using optical selection rules based on the projected single-particle density of states at band edges.

  7. Breaking the theoretical scaling limit for predicting quasiparticle energies: the stochastic GW approach.

    PubMed

    Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi

    2014-08-15

    We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with N_{e}>3000 electrons.

  8. Quasi-Particle Spectrum around a Single Vortex in Superconductors --- s-Wave Case---

    NASA Astrophysics Data System (ADS)

    Kato, M.; Maki, K.

    2000-05-01

    Making use of the Bogoliubov-de Gennes equation, we study the quasi-particle spectrum and the vortex core structure of a single vortex in quasi 2D s-wave superconductors for small pFξ0, where pF is the Fermi momentum and ξ0=vF/ Δ0 is the coherence length (hbar=1). During our numerical calculation, the particle number is conserved for each pFξ0. In particular, we find that there are only 1 or 2 bound states for pFξ0=1. Also, for pFξ0=1, the Kramer-Pesch effect ceases to exist at around T/Tc =~ 0.3.

  9. Speeding up GW Calculations to Meet the Challenge of Large Scale Quasiparticle Predictions

    PubMed Central

    Gao, Weiwei; Xia, Weiyi; Gao, Xiang; Zhang, Peihong

    2016-01-01

    Although the GW approximation is recognized as one of the most accurate theories for predicting materials excited states properties, scaling up conventional GW calculations for large systems remains a major challenge. We present a powerful and simple-to-implement method that can drastically accelerate fully converged GW calculations for large systems, enabling fast and accurate quasiparticle calculations for complex materials systems. We demonstrate the performance of this new method by presenting the results for ZnO and MgO supercells. A speed-up factor of nearly two orders of magnitude is achieved for a system containing 256 atoms (1024 valence electrons) with a negligibly small numerical error of ±0.03 eV. Finally, we discuss the application of our method to the GW calculations for 2D materials. PMID:27833140

  10. Universal signatures of Fermi arcs in quasiparticle interference on the surface of Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Kourtis, Stefanos; Li, Jian; Wang, Zhijun; Yazdani, Ali; Bernevig, B. Andrei

    2016-01-01

    Weyl semimetals constitute a newly discovered class of three-dimensional topological materials with linear touchings of valence and conduction bands in the bulk. The most striking property of topological origin in these materials, so far unequivocally observed only in photoemission experiments, is the presence of open constant-energy contours at the boundary— the so-called Fermi arcs. In this Rapid Communication, we establish the universal characteristics of Fermi-arc contributions to surface quasiparticle interference. Using a general phenomenological model, we determine the defining interference patterns stemming from the existence of Fermi arcs in a surface band structure. We then trace these patterns in both simple tight-binding models and realistic ab initio calculations. Our results show that definitive signatures of Fermi arcs can be observed in existing and proposed Weyl semimetals using scanning tunneling spectroscopy.

  11. Quasiparticle Lifetime in Ultracold Fermionic Mixtures with Density and Mass Imbalance

    NASA Astrophysics Data System (ADS)

    Lan, Zhihao; Bruun, Georg M.; Lobo, Carlos

    2013-10-01

    We show that atomic Fermi mixtures with density and mass imbalance exhibit a rich diversity of scaling laws for the quasiparticle decay rate beyond the quadratic energy and temperature dependence of conventional Fermi liquids. For certain densities and mass ratios, the decay rate is linear, whereas in other cases, it exhibits a plateau. Remarkably, this plateau extends from the deeply degenerate to the high temperature classical regime of the light species. Many of these scaling laws are analogous to what is found in very different systems, including dirty metals, liquid metals, and high temperature plasmas. The Fermi mixtures can in this sense span a whole range of seemingly diverse and separate physical systems. Our results are derived in the weakly interacting limit, making them quantitatively reliable. The different regimes can be detected with radio-frequency spectroscopy.

  12. Electronic quasiparticles and evolution of Fermi level spin states in thin magnetic layers

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Hoinkis, M.; Schrupp, D.; Rotenberg, Eli; Blaha, P.; Claessen, R.

    2006-09-01

    Here we report on high-resolution photoemission of iron layers grown on a W(1 1 0) substrate. The evolution of the substrate states upon sub-monolayer adsorption of Fe atoms leads to a shift in surface state binding energy. For thicker (1 1 0) films, sharp metallic surface states are obtained. Their dispersion displays the signature of quasiparticle renormalization due to dressing with excitations. The energy scale is characteristic for the spin wave spectrum in iron, thereby giving evidence of electron-magnon coupling. Furthermore, it is found that quantum well states occur as a function of layer thickness. These modify the spin density of states at the Fermi level in the ferromagnetic film.

  13. Beyond the quasi-particle: stochastic domain wall dynamics in soft ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Hayward, T. J.; Omari, K. A.

    2017-03-01

    We study the physical origins of stochastic domain wall pinning in soft ferromagnetic nanowires using focused magneto-optic Kerr effect measurements and dynamic micromagnetic simulations. Our results illustrate the ubiquitous nature of these effects in Ni80Fe20 nanowires, and show that they are not only a result of the magnetisation history of the system (i.e. the magnetisation structure of the injected domain walls), and the onset of non-linear propagation dynamics above the Walker breakdown field, but also a complex interplay between the two. We show that this means that, while micromagnetics can be used to make qualitative predictions of the behaviour of domain walls at defect sites, making quantitative predictions is much more challenging. Together, our results reinforce the view that even in these simple pseudo-one dimensional nanomagnets, domain walls must be considered as complex, dynamically evolving objects rather than simple quasi-particles.

  14. πNNN-NNN problem: Connectedness, transition amplitudes, and quasiparticle approximation

    NASA Astrophysics Data System (ADS)

    Cattapan, G.; Canton, L.

    1997-08-01

    In this paper we review the present status of the πNNN-NNN problem. In particular, we reconsider the chain-labeled approach recently proposed by us, and identify a class of graphs, previously overlooked, which prevents the kernel of the corresponding πNNN-NNN equations from being connected. We propose some approximate schemes, yielding connected-kernel equations. A generalization of the residue method allows us to relate the transition amplitudes for the coupled πNNN-NNN system to the chain-labeled formalism. The quasiparticle approach is extended to the present situation, where emission/absorption of particles is allowed. The open problems for the πNNN-NNN system in light of the present and of previous approaches are finally discussed.

  15. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes

    NASA Astrophysics Data System (ADS)

    Karzig, Torsten; Knapp, Christina; Lutchyn, Roman M.; Bonderson, Parsa; Hastings, Matthew B.; Nayak, Chetan; Alicea, Jason; Flensberg, Karsten; Plugge, Stephan; Oreg, Yuval; Marcus, Charles M.; Freedman, Michael H.

    2017-06-01

    We present designs for scalable quantum computers composed of qubits encoded in aggregates of four or more Majorana zero modes, realized at the ends of topological superconducting wire segments that are assembled into superconducting islands with significant charging energy. Quantum information can be manipulated according to a measurement-only protocol, which is facilitated by tunable couplings between Majorana zero modes and nearby semiconductor quantum dots. Our proposed architecture designs have the following principal virtues: (1) the magnetic field can be aligned in the direction of all of the topological superconducting wires since they are all parallel; (2) topological T junctions are not used, obviating possible difficulties in their fabrication and utilization; (3) quasiparticle poisoning is abated by the charging energy; (4) Clifford operations are executed by a relatively standard measurement: detection of corrections to quantum dot energy, charge, or differential capacitance induced by quantum fluctuations; (5) it is compatible with strategies for producing good approximate magic states.

  16. Impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors

    NASA Astrophysics Data System (ADS)

    Guo, Yao-Wu; Li, Wei; Chen, Yan

    2017-10-01

    Both impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors are investigated theoretically by solving the Bogoliubov-de Gennes equations self-consistently. At the strong scattering limit, we find that a universal state bound to the impurity can be induced for both a single nonmagnetic impurity and a single magnetic impurity. Furthermore, we find that different chiral order parameters and the corresponding supercurrents have uniform distributions around linear impurities. Calculations of the local density of states in the presence of an external magnetic field show that the intensity peak of the zero-energy Majorana mode in the vortex core can be enhanced dramatically by tuning the strength of the external magnetic field or pairing interaction.

  17. Revealing Fermi arcs and Weyl nodes in MoTe2 by quasiparticle interference mapping

    NASA Astrophysics Data System (ADS)

    Deng, Peng; Xu, Zhilin; Deng, Ke; Zhang, Kenan; Wu, Yang; Zhang, Haijun; Zhou, Shuyun; Chen, Xi

    2017-06-01

    A Weyl semimetal exhibits unique properties with Weyl nodes in the bulk and Fermi arcs on the surface. Recently, MoTe2 was found to be a type-II Weyl semimetal, providing a platform for realizing these Weyl physics. Here, we report visualization of topological surface states on the surface of MoTe2 using a scanning tunneling microscope. Scattering between topological states forms quasiparticle interference (QPI) patterns in the Fourier transform of conductance maps. The complete existence of topological surface states in energy momentum space is revealed by d I /d V mapping. By comparing QPI results with a first-principles calculation, we further unveil the locations of Weyl nodes in the surface Brillouin zone. Our work provides spectroscopic information in the unoccupied states, especially those around the Weyl nodes energy, demonstrating the node-arc correlation in Weyl semimetals.

  18. Nucleation and Control of Magnetic Quasi-particles via Extrinsic and Intrinsic Energies

    NASA Astrophysics Data System (ADS)

    Pulecio, Javier; Warnicke, Peter; Arena, Dario; Im, Mi-Young; Pollard, Shawn; Fischer, Peter; Zhu, Yimei

    2015-03-01

    Magnetic quasi-particles present an excellent opportunity to study fundamental magnetic properties and dynamics. The fine balance of energies including demagnetization, direct exchange, external perturbations, crystalline anisotropy, indirect exchange, and DMI, allows for the nucleation of a diverse ensemble of spin textures such as vortices, merons, and skyrmions, all of which demonstrate unique behavior. We present our investigations of single vortex symmetry breaking under external perturbations and demonstrate a method to determine the core polarity using Lorentz Transmission Electron Microscopy. We also discuss how to tailor the high-frequency dynamics of coupled coaxial vortices using indirect exchange interactions. We conclude by discussing the nucleation of unconventional chiral spin textures in nano-disc heterostructures using a complementary multi-technique approach, i.e. micromagnetic modeling, FMR, MFM, MTXM, and LTEM. DOE BES #DE-AC02-98CH10886, DOE BES #DE-AC02-05-CH11231, NRF Korea MEST #2012K1A4A3053565.

  19. Electron and electron-hole quasiparticle states in a driven quantum contact

    NASA Astrophysics Data System (ADS)

    Vanević, Mihajlo; Gabelli, Julien; Belzig, Wolfgang; Reulet, Bertrand

    2016-01-01

    We study the many-body electronic state created by a time-dependent drive of a mesoscopic contact. The many-body state is expressed manifestly in terms of single-electron and electron-hole quasiparticle excitations with the amplitudes and probabilities of creation which depend on the details of the applied voltage. We experimentally probe the time dependence of the constituent electronic states by using an analog of the optical Hong-Ou-Mandel correlation experiment where electrons emitted from the terminals with a relative time delay collide at the contact. The electron wave packet overlap is directly related to the current noise power in the contact. We have confirmed the time dependence of the electronic states predicted theoretically by measurements of the current noise power in a tunnel junction under harmonic excitation.

  20. Evolution of quasiparticle states with and without a Zn impurity in doped 122 iron pnictides

    NASA Astrophysics Data System (ADS)

    Pan, Lihua; Li, Jian; Tai, Yuan-Yen; Graf, Matthias J.; Zhu, Jian-Xin; Ting, C. S.

    2014-10-01

    Based on a minimal two-orbital model [Tai et al., Europhys. Lett. 103, 67001 (2013), 10.1209/0295-5075/103/67001], which captures the canonical electron-hole-doping phase diagram of the iron-pnictide BaFe2As2, we study the evolution of quasiparticle states as a function of doping using the Bogoliubov-de Gennes equations with and without a single impurity. Analyzing the density of states of uniformly doped samples, we are able to identify the origin of the two superconducting gaps observed in optimally hole- or electron-doped systems. The local density of states (LDOS) is then examined near a single impurity in samples without antiferromagnetic order. The qualitative features of our results near the single impurity are consistent with a work based on a five-orbital model [T. Kariyado et al., J. Phys. Soc. Jpn. 79, 083704 (2010), 10.1143/JPSJ.79.083704]. Some of the results are consistent with recent angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy experiments. This further supports the validity of our two-orbital model in dealing with LDOS in the single-impurity problem. Finally, we investigate the evolution of the LDOS with doping near a single impurity in the unitary or strong scattering limit, such as Zn replacing Fe. The positions of the in-gap resonance peaks exhibited in our LDOS may indirectly reflect the evolution of the Fermi surface topology according to the phase diagram. Our prediction of in-gap states and the evolution of the LDOS near a strong scattering single impurity can be validated by further experiments probing the local quasiparticle spectrum.

  1. Quasiparticle explanation of the weak-thermalization regime under quench in a nonintegrable quantum spin chain

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Ju; Motrunich, Olexei I.

    2017-02-01

    The eigenstate thermalization hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Bañuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2007), 10.1103/PhysRevLett.106.050405] of a nonintegrable quantum Ising model with longitudinal field under such a quench setting found different behaviors for different initial quantum states. One particular case called the "weak-thermalization" regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We note that the corresponding initial state has low energy density relative to the ground state of the model. We then use perturbation theory near the ground state and identify the oscillation frequency as essentially a quasiparticle gap. With this quasiparticle picture, we can then address the long-time behavior of the oscillations. Upon making additional approximations which intuitively should only make thermalization weaker, we argue that the oscillations nevertheless decay in the long-time limit. As part of our arguments, we also consider a quench from a BEC to a hard-core boson model in one dimension. We find that the expectation value of a single-boson creation operator oscillates but decays exponentially in time, while a pair-boson creation operator has oscillations with a t-3 /2 decay in time. We also study dependence of the decay time on the density of bosons in the low-density regime and use this to estimate decay time for oscillations in the original spin model.

  2. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    SciTech Connect

    Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barisic, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.

    2016-04-13

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Lastly, our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.

  3. Coulomb correlation effects in the quasiparticle band structure of ferromagnetic rare-earth insulators

    NASA Astrophysics Data System (ADS)

    Nolting, W.; Borgiel, W.; Borstel, G.

    1988-05-01

    We present a method for calculating the temperature dependence of the electronic quasiparticle density of states (QDOS) of a ferromagnetic rare-earth insulator like EuO. Special attention is devoted to how the ``localized'' ferromagnetism manifests itself in x-ray photoemission and bremsstrahlung isochromat spectra. Our study includes the first six conduction bands of EuO (the first five are Eu 5d like, the sixth is mainly of Eu 6s character) as well as the rather flat 4f levels. The starting point is an extended d-f exchange model, the main parts of which are an exchange interaction between 4f moments and conduction electrons, a Coulomb repulsion between highly correlated 4f electrons, and a hybridization of 4f with conduction-band states. We use an exact T=0 relationship between spin-up quasiparticle energies and one-electron Bloch energies ɛm(k) for an optimal determination of the latter by performing a self-consistent, spin-polarized band-structure calculation based on density-functional theory. For finite temperatures the model is approximately solved by a many-body procedure. The QDOS exhibits a striking temperature dependence mainly due to the d-f exchange. Two 4f-like peaks appear in the spin-polarized QDOS, the low-energy one being occupied, the high-energy one being empty. The temperature dependence of the localized ferromagnetism appears in the QDOS as a temperature-dependent shift of spectral weight between the low- and the high-energy peak.

  4. Manipulation of type-I and type-II Dirac points in PdTe2 superconductor by external pressure

    NASA Astrophysics Data System (ADS)

    Xiao, R. C.; Gong, P. L.; Wu, Q. S.; Lu, W. J.; Wei, M. J.; Li, J. Y.; Lv, H. Y.; Luo, X.; Tong, P.; Zhu, X. B.; Sun, Y. P.

    2017-08-01

    A pair of type-II Dirac cones in PdTe2 was recently predicted by theories and confirmed in experiments, making PdTe2 the first material that processes both superconductivity and type-II Dirac fermions. In this paper, we study the evolution of Dirac cones in PdTe2 under hydrostatic pressure by first-principles calculations. Our results show that the pair of type-II Dirac points disappears at 6.1 GPa. Interestingly, a new pair of type-I Dirac points from the same two bands emerges at 4.7 GPa. Due to the distinctive band structures compared with those of PtSe2 and PtTe2, the two types of Dirac points can coexist in PdTe2 under proper pressure (4.7-6.1 GPa). The emergence of type-I Dirac cones and the disappearance of type-II Dirac ones are attributed to an increase/decrease of the energy of the states at the Γ and A points, which have antibonding/bonding characters of the interlayer Te-Te atoms. On the other hand, we find that the superconductivity of PdTe2 slightly decreases with pressure. The pressure-induced types of Dirac cones combined with superconductivity may open a promising way to investigate the complex interactions between Dirac fermions and superconducting quasiparticles.

  5. PD-1 Blockers.

    PubMed

    Wolchok, Jedd D

    2015-08-27

    Nivolumab and pembrolizumab are monoclonal antibodies that block the programmed death-1 receptor (PD-1, CD279), resulting in dis-inhibition of tumor-specific immune responses. Both are recently approved for use in the treatment of metastatic melanoma, and nivolumab as well for non-small cell lung cancer.

  6. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2HNbSe2

    SciTech Connect

    Arguello, C. J.; Rosenthal, E. P.; Andrade, E. F.; Jin, W.; Yeh, P. C.; Zaki, N.; Jia, S.; Cava, R. J.; Fernandes, R. M.; Millis, A. J.; Valla, T.; Osgood, Jr., R. M.; Pasupathy, A. N.

    2015-01-21

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe₂, that we measure by scanning tunneling spectroscopic imaging. We show from the momentum and energy dependence of the quasiparticle interference that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe₂. Thus, we demonstrate that by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wavevector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiology and the interactions. In 2H-NbSe₂, we use this combination to show that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the CDW ordering wave vector.

  7. Experimental Realization of Type-II Dirac Fermions in a PdTe_{2} Superconductor.

    PubMed

    Noh, Han-Jin; Jeong, Jinwon; Cho, En-Jin; Kim, Kyoo; Min, B I; Park, Byeong-Gyu

    2017-07-07

    A Dirac fermion in a topological Dirac semimetal is a quadruple-degenerate quasiparticle state with a relativistic linear dispersion. Breaking either time-reversal or inversion symmetry turns this system into a Weyl semimetal that hosts double-degenerate Weyl fermion states with opposite chiralities. These two kinds of quasiparticles, although described by a relativistic Dirac equation, do not necessarily obey Lorentz invariance, allowing the existence of so-called type-II fermions. The recent theoretical discovery of type-II Weyl fermions evokes the prediction of type-II Dirac fermions in PtSe_{2}-type transition metal dichalcogenides, expecting experimental confirmation. Here, we report an experimental realization of type-II Dirac fermions in PdTe_{2} by angle-resolved photoemission spectroscopy combined with ab initio band calculations. Our experimental finding shows the first example that has both superconductivity and type-II Dirac fermions, which turns the topological material research into a new phase.

  8. Supported Pd-Cu bimetallic nanoparticles that have high activity for the electrochemical oxidation of methanol.

    PubMed

    Yin, Zhen; Zhou, Wu; Gao, Yongjun; Ma, Ding; Kiely, Christopher J; Bao, Xinhe

    2012-04-16

    Monodisperse bimetallic Pd-Cu nanoparticles with controllable size and composition were synthesized by a one-step multiphase ethylene glycol (EG) method. Adjusting the stoichiometric ratio of the Pd and Cu precursors afforded nanoparticles with different compositions, such as Pd(85)-Cu(15), Pd(56)-Cu(44), and Pd(39)-Cu(61). The nanoparticles were separated from the solution mixture by extraction with non-polar solvents, such as n-hexane. Monodisperse bimetallic Pd-Cu nanoparticles with narrow size-distribution were obtained without the need for a size-selection process. Capping ligands that were bound to the surface of the particles were removed through heat treatment when the as-prepared nanoparticles were loaded onto a Vulcan XC-72 carbon support. Supported bimetallic Pd-Cu nanoparticles showed enhanced electrocatalytic activity towards methanol oxidation compared with supported Pd nanoparticles that were fabricated according to the same EG method. For a bimetallic Pd-Cu catalyst that contained 15 % Cu, the activity was even comparable to the state-of-the-art commercially available Pt/C catalysts. A STEM-HAADF study indicated that the formation of random solid-solution alloy structures in the bimetallic Pd(85)-Cu(15)/C catalysts played a key role in improving the electrochemical activity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Isotropic Kink and Quasiparticle Excitations in the Three-Dimensional Perovskite Manganite La_{0.6}Sr_{0.4}MnO_{3}.

    PubMed

    Horiba, Koji; Kitamura, Miho; Yoshimatsu, Kohei; Minohara, Makoto; Sakai, Enju; Kobayashi, Masaki; Fujimori, Atsushi; Kumigashira, Hiroshi

    2016-02-19

    In order to reveal the many-body interactions in three-dimensional perovskite manganites that show colossal magnetoresistance, we performed an in situ angle-resolved photoemission spectroscopy on La_{0.6}Sr_{0.4}MnO_{3} and investigated the behavior of quasiparticles. We observed quasiparticle peaks near the Fermi momentum in both the electron and the hole bands, and clear kinks throughout the entire hole Fermi surface in the band dispersion. This isotropic behavior of quasiparticles and kinks suggests that polaronic quasiparticles produced by the coupling of electrons with Jahn-Teller phonons play an important role in the colossal magnetoresistance properties of the ferromagnetic metallic phase of three-dimensional manganites.

  10. Strong lattice correlation of non-equilibrium quasiparticles in a pseudospin-1/2 Mott insulator Sr2IrO4

    PubMed Central

    Li, Yuelin; Schaller, Richard D.; Zhu, Mengze; Walko, Donald A.; Kim, Jungho; Ke, Xianglin; Miao, Ludi; Mao, Z. Q.

    2016-01-01

    In correlated oxides the coupling of quasiparticles to other degrees of freedom such as spin and lattice plays critical roles in the emergence of symmetry-breaking quantum ordered states such as high temperature superconductivity. We report a strong lattice coupling of photon-induced quasiparticles in spin-orbital coupling Mott insulator Sr2IrO4 probed via optical excitation. Combining time-resolved x-ray diffraction and optical spectroscopy techniques, we reconstruct a spatiotemporal map of the diffusion of these quasiparticles. Due to the unique electronic configuration of the quasiparticles, the strong lattice correlation is unexpected but extends the similarity between Sr2IrO4 and cuprates to a new dimension of electron-phonon coupling which persists under highly non-equilibrium conditions. PMID:26787094

  11. Strong lattice correlation of non-equilibrium quasiparticles in a pseudospin-1/2 Mott insulator Sr2IrO4

    SciTech Connect

    Li, Yuelin; Schaller, Richard D.; Zhu, Mengze; Walko, Donald A.; Kim, Jungho; Ke, Xianglin; Miao, Ludi; Mao, Z. Q.

    2016-01-20

    In correlated oxides the coupling of quasiparticles to other degrees of freedom such as spin and lattice plays critical roles in the emergence of symmetry-breaking quantum ordered states such as high temperature superconductivity. We report a strong lattice coupling of photon-induced quasiparticles in spin-orbital coupling Mott insulator Sr2IrO4 probed via optical excitation. Combining time-resolved x-ray diffraction and optical spectroscopy techniques, we reconstruct a spatiotemporal map of the diffusion of these quasiparticles. Lastly, due to the unique electronic configuration of the quasiparticles, the strong lattice correlation is unexpected but extends the similarity between Sr2IrO4 and cuprates to a new dimension of electron-phonon coupling which persists under highly non-equilibrium conditions.

  12. Strong lattice correlation of non-equilibrium quasiparticles in a pseudospin-1/2 Mott insulator Sr2IrO4

    DOE PAGES

    Li, Yuelin; Schaller, Richard D.; Zhu, Mengze; ...

    2016-01-20

    In correlated oxides the coupling of quasiparticles to other degrees of freedom such as spin and lattice plays critical roles in the emergence of symmetry-breaking quantum ordered states such as high temperature superconductivity. We report a strong lattice coupling of photon-induced quasiparticles in spin-orbital coupling Mott insulator Sr2IrO4 probed via optical excitation. Combining time-resolved x-ray diffraction and optical spectroscopy techniques, we reconstruct a spatiotemporal map of the diffusion of these quasiparticles. Lastly, due to the unique electronic configuration of the quasiparticles, the strong lattice correlation is unexpected but extends the similarity between Sr2IrO4 and cuprates to a new dimension ofmore » electron-phonon coupling which persists under highly non-equilibrium conditions.« less

  13. Fermi Surface and Quasiparticle Dynamics of Na0.7CoO2 Investigated by Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hasan, M. Z.; Chuang, Y.-D.; Qian, D.; Li, Y. W.; Kong, Y.; Kuprin, A.; Fedorov, A. V.; Kimmerling, R.; Rotenberg, E.; Rossnagel, K.; Hussain, Z.; Koh, H.; Rogado, N. S.; Foo, M. L.; Cava, R. J.

    2004-06-01

    We present the first angle-resolved photoemission study of Na0.7CoO2, the host material of the superconducting NaxCoO2·nH2O series. Our results show a hole-type Fermi surface, a strongly renormalized quasiparticle band, a small Fermi velocity, and a large Hubbard U. The quasiparticle band crosses the Fermi level from M toward Γ suggesting a negative sign of effective single-particle hopping teff (about 10meV) which is on the order of magnetic exchange coupling J in this system. Quasiparticles are well defined only in the T-linear resistivity (non-Fermi-liquid) regime. Unusually small single-particle hopping and unconventional quasiparticle dynamics may have implications for understanding the phase of matter realized in this new class of a strongly interacting quantum system.

  14. On the absence of higher generations of incompressible daughter states of composite Fermion quasiparticles

    NASA Astrophysics Data System (ADS)

    Quinn, John J.

    2016-03-01

    Jain [1] introduced a simple mean-field (MF) composite Fermion (CF) picture by attaching to each electron in a quantum Hall system a flux tube producing a Chern- Simons magnetic field b(r) = 2pϕ0 Σi δ(r - r i)ẑ. Here ϕ0 = hc/e is the quantum of flux, and the sum is over all electron coordinates r i. He then averaged the total flux and the total charge (electronic plus positive background) over the entire sample. This MF picture gave a system of noninteracting CFs in an effective magnetic field B * 0 = νB 0. It predicted incompressible quantum liquid (IQL) states at filling factors ν = n(1 + 2pn)-1 for integral values of n. Chen and Quinn [2] demonstrated that Jain’s MF CF picture predicted the total angular momentum values of the lowest energy band of states for any value of the applied magnetic field B0. Justification of when the MFCF picture was valid was given by Wojs and Quinn [3], who extended the CF hierarchy scheme of Sitko et al. [4]. The CF hierarchy gave the Jain states for integrally filled CF Landau levels (CF LLs), and the Haldane hierarchy of all odd denominator fractions when quasiparticles in the highest (partially filled) CF angular momentum shell had interactions sufficiently similar to the Coulomb interactions of electrons in the lowest Landau level. Sitko et al. showed that the predictions of the CF hierarchy scheme were not always correct. By using a simple pair angular momentum identity and the concept of fractional grandparentage, Wojs and Quinn showed that higher generations of CFs could result from the interactions of the original CF quasiparticles only if their interaction energy V QP(L 2) as a function of their pair angular momentum L 2 increased with increasing L 2 faster than L2(L2 + 1). For Laughlin quasielectrons of the ν = 1/3 IQL state this condition was not satisfied. Therefore, no second generation of CFs could occur. The observed IQL at electron filling factor ν = 4/11 can not be attributed to a daughter IQL state at

  15. Gamow-Teller strength distributions for {beta}{beta}-decaying nuclei within continuum quasiparticle random-phase approximation

    SciTech Connect

    Igashov, S. Yu.; Urin, M. H.; Rodin, Vadim; Faessler, Amand

    2011-04-15

    An isospin-self-consistent pn-continuum-QRPA approach is formulated and applied to describe the Gamow-Teller strength distributions for {beta}{beta}-decaying open-shell nuclei. Calculation results obtained for the pairs of nuclei {sup 76}Ge-Se, {sup 100}Mo-Ru, {sup 116}Cd-Sn, and {sup 130}Te-Xe are compared with available experimental data.

  16. Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa2 Cu3 Oy

    NASA Astrophysics Data System (ADS)

    Zhou, R.; Hirata, M.; Wu, T.; Vinograd, I.; Mayaffre, H.; Krämer, S.; Horvatić, M.; Berthier, C.; Reyes, A. P.; Kuhns, P. L.; Liang, R.; Hardy, W. N.; Bonn, D. A.; Julien, M.-H.

    2017-01-01

    We report the NMR observation of a skewed distribution of 17O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa2Cu3Oy . This distribution is explained by an inhomogeneous pattern of the local density of states N (EF) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.

  17. Fermi Surface and Quasiparticle Excitations of Sr2RhO4

    SciTech Connect

    Baumberger, F.; Ingle, N. J. C.; Meevasana, W.; Lu, D. H.; Perry, R. S.; Mackenzie, A. P.; Hussain, Z; Singh, David J; Shen, Z. X.

    2006-01-01

    The electronic structure of the layered 4d transition metal oxide Sr2RhO4 is investigated by angle resolved photoemission. We find well-defined quasiparticle excitations with a highly anisotropic dispersion, suggesting a quasi-two-dimensional Fermi-liquid-like ground state. Markedly different from the isostructural Sr2RuO4, only two bands with dominant Rh 4dxz;zy character contribute to the Fermi surface. A quantitative analysis of the photoemission quasiparticle band structure is in excellent agreement with bulk data. In contrast, it is found that state-of-the-art density functional calculations in the local density approximation differ significantly from the experimental findings.

  18. Field-orientation dependence of low-energy quasiparticle excitations in the heavy-electron superconductor UBe(13).

    PubMed

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Amitsuka, Hiroshi; Tsutsumi, Yasumasa; Machida, Kazushige

    2015-04-10

    Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.

  19. Quasiparticle structure of superheavy nuclei in α-decay chains of 285Fl and 291,293Lv

    NASA Astrophysics Data System (ADS)

    Kartavenko, V. G.; Antonenko, N. V.; Bezbakh, A. N.; Malov, L. A.; Shirikova, N. Yu.; Sushkov, A. V.; Jolos, R. V.

    2017-07-01

    Two mean-field potentials, Woods-Saxon and Skyrme based potentials, are used to calculate the energies of low-lying one-quasiparticle states. The spectra of the low-lying states and the α-decay spectra of nuclei belonging to the α-decay chains of 285Fl and 291,293Lv are calculated and compared with the available experimental data. Dependence of the splitting of the pseudospin doublets and of the energies of the unique parity neutron one-quasiparticle states on the mean field potential are discussed. As shown, the α-decay spectra could be different in the α-decay chain and at the direct production of the nucleus in a fusion reaction.

  20. Fast and accurate approximate quasiparticle band structure calculations of ZnO, CdO, and MgO polymorphs

    NASA Astrophysics Data System (ADS)

    Ataide, C. A.; Pelá, R. R.; Marques, M.; Teles, L. K.; Furthmüller, J.; Bechstedt, F.

    2017-01-01

    We investigate ZnO, CdO, and MgO oxides crystallizing in rocksalt, wurtzite, and zincblende structures. Whereas in MgO calculations, the conventional LDA-1/2 method is employed through a self-energy potential (VS), the shallow d bands in ZnO and CdO are treated through an increased amplitude (A ) of VS to modulate the self-energy of the d states to place them in the quasiparticle position. The LDA+A -1/2 scheme is applied to calculate band structures and electronic density of states of ZnO and CdO. We compare the results with those of more sophisticated quasiparticle calculations and experiments. We demonstrate that this new LDA+A -1/2 method reaches accuracy comparable to state-of-the-art methods, opening a door to study more complex systems containing shallow core electrons to the prize of LDA studies.

  1. Self-consistency and quasi-particle approximation in π- and Δ-propagation in nuclear matter

    NASA Astrophysics Data System (ADS)

    Cenni, R.; Dillon, G.

    1983-01-01

    The equations for the self-consistent π- and Δ-propagation in nuclear matter are solved numerically in the quasi-particle approximation. We have taken into account the full complexity of nucleon recoil and Fermi motion as well as the effects of binding and short-range correlations. Because of the much smoother behaviour of the self-consistent π and Δ self-energies it turns out that the quasi-particle approximation is still a good one even at normal nuclear density, whereas for kF ⩾ 1 fm -1 the first-order solution displays a multiple eigenmode propagation for the pion in the resonance region. The self-consistent π- and Δ-dispersion relations in the medium are then obtained for increasing densities by an iterative procedure which takes as a starting point, each time, the final result at the preceding density.

  2. Weak-coupling analysis of quasiparticle excitations in Sr2RuO4 along the Γ -M cut

    NASA Astrophysics Data System (ADS)

    Deisz, J. J.; Kidd, T. E.

    2017-01-01

    We examine normal-state quasiparticle excitations along the Γ -M cut in momentum space for the putative p -wave superconductor Sr2RuO4 on the basis of fluctuation exchange approximation calculations. We take as input first-principles derived parameters for the band structure and spin-orbit and electron-electron interactions. The numerical results are in excellent agreement with data from photoemission experiments and provide insight into the underlying quasiparticle properties. We find that, despite the correlation-induced effective mass increase near the Fermi surface, the full β and γ bandwidths are, if anything, increased by correlations. Furthermore, for the γ band we find anomalous lifetime broadening and a significant temperature of variation of unoccupied state quasiparticle energies for temperatures between 25 and 100 K, both of which are accounted for by the momentum dependence of the electron self-energy. In addition to aiding our understanding of experimental data, these results point to the challenge of assigning appropriate Fermi-liquid parameters or momentum-independent self-energies for schemes that require such approximations in order to model Sr2RuO4 .

  3. Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Sommer Thygesen, Kristian

    2017-06-01

    Atomically thin two-dimensional (2D) materials host a rich set of electronic states that differ substantially from those of their bulk counterparts due to quantum confinement and enhanced many-body effects. This Topical Review focuses on the theory and computation of excitons, plasmons and quasiparticle band structures in 2D materials and their heterostructures. The general theory is illustrated by applications to various types of 2D materials including transition metal dichalcogenides, graphene, phosphorene, and hexagonal boron nitride. The weak and highly non-local dielectric function of atomically thin crystals is shown to be responsible for many of the unique properties exhibited by the 2D materials such as the formation of strongly bound, non-Hydrogenic excitons, large band gap renormalization effects, and the different signatures of excitons and plasmons in electron energy loss spectroscopy (EELS). Among other topics covered are spin-orbit coupling, trions, interlayer excitons, exciton dissociation, and environmental screening. Technical issues associated with the application of the many-body GW method and the Bethe-Salpeter equation (BSE) to 2D materials are also discussed. A combined quantum/classical method is introduced and used throughout to account for dielectric screening and self-energy effects from substrates and van der Waals heterostructures including the difficult case of non-matching lattices.

  4. Robust measurement of superconducting gap sign changes via quasiparticle interference: an application to 111 compounds

    NASA Astrophysics Data System (ADS)

    Eremin, Ilya; Altenfeld, Dustin; Hirschfeld, Peter; Mazin, Igor

    While quasiparticle interference (QPI) measurements based on scanning tunneling spectroscopy are often proposed as definitive tests of gap structure, the analysis typically relies on details of the model employed. Here using the simplified two-band model system we propose, that the temperature dependence of momentum-integrated QPI data can be used to identify gap sign changes in a qualitative way, and present an illustration for s+/- and s+ + states in a system with typical Fe-pnictide Fermi surface. Using ARPES derived band structures within 10 orbital model Hamiltonian we analyze the QPI spectra in LiFeAs and Co-doped NaFeAs compounds and show that the sign-changing gap can be clearly identified using non-magnetic impurity scattering. P.J.H. was supported by NSF-DMR-1005625, and I.I.M. by the U.S. Office of Naval Research through the Naval Research Laboratory's Basic Research Program. The work of DA and IE was supported by the Focus Program 1458 Eisen-Pniktide of the DFG.

  5. Hanbury-Brown Twiss noise correlation with time controlled quasi-particles in ballistic quantum conductors

    NASA Astrophysics Data System (ADS)

    Glattli, D. C.; Roulleau, P.

    2016-02-01

    We study the Hanbury Brown and Twiss correlation of electronic quasi-particles injected in a quantum conductor using current noise correlations and we experimentally address the effect of finite temperature. By controlling the relative time of injection of two streams of electrons it is possible to probe the fermionic antibunching, performing the electron analog of the optical Hong Ou Mandel (HOM) experiment. The electrons are injected using voltage pulses with either sine-wave or Lorentzian shape. In the latter case, we propose a set of orthogonal wavefunctions, describing periodic trains of multiply charged electron pulses, which give a simple interpretation to the HOM shot noise. The effect of temperature is then discussed and experimentally investigated. We observe a perfect electron anti-bunching for a large range of temperature, showing that, as recently predicted, thermal mixing of the states does not affect anti-bunching properties, a feature qualitatively different from dephasing. For single charge Lorentzian pulses, we provide experimental evidence of the prediction that the HOM shot noise variation versus the emission time delay is remarkably independent of the temperature.

  6. Calculation of the spectrum of quasiparticle electron excitations in organic molecular semiconductors

    SciTech Connect

    Tikhonov, E. V.; Uspenskii, Yu. A.; Khokhlov, D. R.

    2015-06-15

    A quasiparticle electronic spectrum belongs to the characteristics of nanoobjects that are most important for applications. The following methods of calculating the electronic spectrum are analyzed: the Kohn-Sham equations of the density functional theory (DFT), the hybrid functional method, the GW approximation, and the Lehmann approximation used in the spectral representation of one-electron Green’s function. The results of these approaches are compared with the data of photoemission measurements of benzene, PTCDA, and phthalocyanine (CuPc, H{sub 2}Pc, FePc, PtPc) molecules, which are typical representatives of organic molecular semiconductors (OMS). This comparison demonstrates that the Kohn-Sham equations of DFT incorrectly reproduce the electronic spectrum of OMS. The hybrid functional method correctly describes the spectrum of the valence and conduction bands; however, the HOMO-LUMO gap width is significantly underestimated. The correct gap width is obtained in both the GW approximation and the Lehmann approach, and the total energy in this approach can be calculated in the local density approximation of DFT.

  7. Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography

    NASA Astrophysics Data System (ADS)

    Davison, Richard A.; Fu, Wenbo; Georges, Antoine; Gu, Yingfei; Jensen, Kristan; Sachdev, Subir

    2017-04-01

    We compute the thermodynamic properties of the Sachdev-Ye-Kitaev (SYK) models of fermions with a conserved fermion number Q . We extend a previously proposed Schwarzian effective action to include a phase field, and this describes the low-temperature energy and Q fluctuations. We obtain higher-dimensional generalizations of the SYK models which display disordered metallic states without quasiparticle excitations, and we deduce their thermoelectric transport coefficients. We also examine the corresponding properties of Einstein-Maxwell-axion theories on black brane geometries which interpolate from either AdS4 or AdS5 to an AdS2×R2 or AdS2×R3 near-horizon geometry. These provide holographic descriptions of nonquasiparticle metallic states without momentum conservation. We find a precise match between low-temperature transport and thermodynamics of the SYK and holographic models. In both models, the Seebeck transport coefficient is exactly equal to the Q derivative of the entropy. For the SYK models, quantum chaos, as characterized by the butterfly velocity and the Lyapunov rate, universally determines the thermal diffusivity, but not the charge diffusivity.

  8. Ab initio Sternheimer-GW method for quasiparticle calculations using plane waves

    NASA Astrophysics Data System (ADS)

    Lambert, Henry; Giustino, Feliciano

    2013-08-01

    We report on the extension and implementation of the Sternheimer-GW method introduced by Giustino [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.115105 81, 115105 (2010)] to the case of first-principles pseudopotential calculations based on a plane-waves basis. The Sternheimer-GW method consists of calculating the GW self-energy operator without resorting to the standard expansion over unoccupied Kohn-Sham electronic states. The Green's function is calculated by solving linear systems for frequencies along the real axis. The screened Coulomb interaction is calculated for frequencies along the imaginary axis by using the Sternheimer equation. Analytic continuation to the real axis is performed using Padé approximants. The generalized plasmon-pole approximation is avoided by performing explicit calculations at multiple frequencies using Frommer's multishift solver. We demonstrate our methodology by reporting tests on common insulators and semiconductors, including Si, diamond, LiCl, and SiC. Our calculated quasiparticle energies are in agreement with the results of fully converged calculations based on the sum-over-states approach. As the Sternheimer-GW method yields the complete self-energy Σ(r,r',ω) and not only its expectation values on Kohn-Sham states, this work opens the way to nonperturbative GW calculations and to direct calculations of spectral functions for angle-resolved photoemission spectroscopy. As an example of the capabilities of the method we calculate the G0W0 spectral functions of silicon and diamond.

  9. Possible superconductivity in Sr2IrO4 probed by quasiparticle interference

    PubMed Central

    Gao, Yi; Zhou, Tao; Huang, Huaixiang; Wang, Qiang-Hua

    2015-01-01

    Based on the possible superconducting (SC) pairing symmetries recently proposed, the quasiparticle interference (QPI) patterns in electron- and hole-doped Sr2IrO4 are theoretically investigated. In the electron-doped case, the QPI spectra can be explained based on a model similar to the octet model of the cuprates while in the hole-doped case, both the Fermi surface topology and the sign of the SC order parameter resemble those of the iron pnictides and there exists a QPI vector resulting from the interpocket scattering between the electron and hole pockets. In both cases, the evolution of the QPI vectors with energy and their behaviors in the nonmagnetic and magnetic impurity scattering cases can well be explained based on the evolution of the constant-energy contours and the sign structure of the SC order parameter. The QPI spectra presented in this paper can be compared with future scanning tunneling microscopy experiments to test whether there are SC phases in electron- and hole-doped Sr2IrO4 and what the pairing symmetry is. PMID:25783417

  10. Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates

    DOE PAGES

    Kreisel, Andreas; Choubey, Peayush; Berlijn, Tom; ...

    2015-05-27

    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov–de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2Sr2CaCu2O8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude “filter” theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show howmore » patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Furthermore, our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.« less

  11. Interference of e/3 quasiparticles encircling 2/5 fractional quantum Hall island

    NASA Astrophysics Data System (ADS)

    Lin, Ping V.; Camino, F. E.; Goldman, V. J.

    2010-03-01

    We report experiments in a large, 2.5 micron Fabry-Perot interferometer fabricated from a GaAs/AlGaAs heterostructure. Device is defined by etch trenches; front gates deposited in the trenches allow to tune the device. Tunneling in the two constrictions closes an Aharonov-Bohm path around the 2D electron island. Quantized plateaus in RXX and RXY allow to find out both: the bulk and the constriction filling. Etch trench depletion is such that in the fractional quantum Hall regime we obtain the situation when 1/3 chiral edge channels pass through the constrictions and encircle an island of the 2/5 FQH fluid. In this regime the magnetic field oscillation period is 5.4±0.3 of the integer filling 1 period. In this large device magnetic field period well approximates the flux period. We thus conclude that the flux period is 5h/e, and the corresponding back-gate period is 2e. These results agree with our previous reports of these superperiods in smaller size devices [1]. The experimental superperiods are interpreted as imposed by the anyonic statistics of the fractionally charged e/3 and e/5 quasiparticles. [1] F. E. Camino et al., PRB 72, 075342 (2005); W. Zhou et al., PRB 73, 245322 (2006).

  12. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd₃As₂.

    PubMed

    Jeon, Sangjun; Zhou, Brian B; Gyenis, Andras; Feldman, Benjamin E; Kimchi, Itamar; Potter, Andrew C; Gibson, Quinn D; Cava, Robert J; Vishwanath, Ashvin; Yazdani, Ali

    2014-09-01

    Condensed-matter systems provide a rich setting to realize Dirac and Majorana fermionic excitations as well as the possibility to manipulate them for potential applications. It has recently been proposed that chiral, massless particles known as Weyl fermions can emerge in certain bulk materials or in topological insulator multilayers and give rise to unusual transport properties, such as charge pumping driven by a chiral anomaly. A pair of Weyl fermions protected by crystalline symmetry effectively forming a massless Dirac fermion has been predicted to appear as low-energy excitations in a number of materials termed three-dimensional Dirac semimetals. Here we report scanning tunnelling microscopy measurements at sub-kelvin temperatures and high magnetic fields on the II-V semiconductor Cd3As2. We probe this system down to atomic length scales, and show that defects mostly influence the valence band, consistent with the observation of ultrahigh-mobility carriers in the conduction band. By combining Landau level spectroscopy and quasiparticle interference, we distinguish a large spin-splitting of the conduction band in a magnetic field and its extended Dirac-like dispersion above the expected regime. A model band structure consistent with our experimental findings suggests that for a magnetic field applied along the axis of the Dirac points, Weyl fermions are the low-energy excitations in Cd3As2.

  13. Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Ben Aziza, Zeineb; Pierucci, Debora; Henck, Hugo; Silly, Mathieu G.; David, Christophe; Yoon, Mina; Sirotti, Fausto; Xiao, Kai; Eddrief, Mahmoud; Girard, Jean-Christophe; Ouerghi, Abdelkarim

    2017-07-01

    Two-dimensional (2D) materials have recently been the focus of extensive research. By following a similar trend as graphene, other 2D materials, including transition metal dichalcogenides (M X2 ) and metal mono-chalcogenides (MX), show great potential for ultrathin nanoelectronic and optoelectronic devices. Despite the weak nature of interlayer forces in semiconducting MX materials, their electronic properties are highly dependent on the number of layers. Using scanning tunneling microscopy and spectroscopy, we demonstrate the tunability of the quasiparticle energy gap of few-layered gallium selenide (GaSe) directly grown on a bilayer graphene substrate by molecular beam epitaxy. Our results show that the band gap is about 3.50 ± 0.05 eV for single-tetralayer, 3.00 ±0.05 eV for bi-tetralayer, and 2.30 ±0.05 eV for tri-tetralayer GaSe. This band-gap evolution of GaSe, particularly the shift of the valence band with respect to the Fermi level, was confirmed by angle-resolved photoemission spectroscopy (ARPES) measurements and our theoretical calculations. Moreover, we observed a charge transfer in the GaSe/graphene van der Waals (vdW) heterostructure using ARPES. These findings demonstrate the high impact on the GaSe electronic band structure and electronic properties that can be obtained by the control of 2D materials layer thickness and the graphene induced doping.

  14. Characterizing featureless Mott insulating state by quasiparticle interference: A dynamical mean field theory view

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shantanu; Lee, Wei-Cheng

    2015-12-01

    The quasiparticle interferences (QPIs) of the featureless Mott insulators are investigated by a T -matrix formalism implemented with the dynamical mean field theory (T -DMFT). In the Mott insulating state, due to the singularity at zero frequency in the real part of the electron self-energy [Re Σ (ω )˜η /ω ] predicted by DMFT, where η can be considered as the "order parameter" for the Mott insulating state, QPIs are completely washed out at small bias voltages. However, a further analysis shows that Re Σ (ω ) serves as an energy-dependent chemical potential shift. As a result, the effective bias voltage seen by the system is e V'=e V -Re Σ (e V ) , which leads to a critical bias voltage e Vc˜√{η } satisfying e V'=0 if and only if η is nonzero. Consequently, the same QPI patterns produced by the noninteracting Fermi surfaces appear at this critical bias voltage e Vc in the Mott insulating state. We propose that this reentry of noninteracting QPI patterns at e Vc could serve as an experimental signature of the Mott insulating state, and the order parameter can be experimentally measured as η ˜(eVc) 2 .

  15. Characterizing Featureless Mott Insulating State by Quasiparticle Interferences - A DMFT Prospect

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shantanu; Lee, Wei-Cheng

    In this talk we discuss the quasiparticle interferences (QPIs) of a Mott insulator using a T-matrix formalism implemented with the dynamical mean-field theory (T-DMFT). In the Mott insulating state, the DMFT predicts a singularity in the real part of electron self energy s (w) at low frequencies, which completely washes out the QPI at small bias voltage. However, the QPI patterns produced by the non-interacting Fermi surfaces can appear at a critical bias voltage in Mott insulating state. The existence of this non-zero critical bias voltage is a direct consequence of the singular behavior of Re[s (w)] /sim n/w with n behaving as the 'order parameter' of Mott insulating state. We propose that this reentry of non-interacting QPI patterns could serve as an experimental signature of Mott insulating state, and the 'order parameter' can be experimentally measured W.C.L acknowledges financial support from start up fund from Binghamton University.

  16. Mechanical topological semimetals with massless quasiparticles and a finite Berry curvature

    NASA Astrophysics Data System (ADS)

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2017-06-01

    A topological quantum phase requires a finite momentum-space Berry curvature which, conventionally, can arise through breaking the inversion or the time-reversal symmetry so as to generate nontrivial, topologically invariant quantities associated with the underlying energy band structure (e.g., a finite Chern number). For conventional graphene or graphenelike two-dimensional (2D) systems with gapless Dirac cones, the symmetry breaking will make the system insulating due to lifting of the degeneracy. To design materials that simultaneously possess the two seemingly contradicting properties (i.e., a semimetal phase with gapless bulk Dirac-like cones and a finite Berry curvature) is of interest. We propose a 2D mechanical dice lattice system that exhibits precisely such properties. As a result, an intrinsic valley Hall effect can arise without compromising the carrier mobility as the quasiparticles remain massless. We also find that, with confinement along the zigzag edges, two distinct types of gapless edge states with opposite edge polarizations can arise, one with a finite but the other with zero group velocity.

  17. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.

    PubMed

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E; Proust, Cyril; Carrington, Antony

    2016-03-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.

  18. Search for a 2-quasiparticle high-K isomer in {sup 256}Rf

    SciTech Connect

    Robinson, A. P.; Jenkins, D. G.; Marley, P.; Khoo, T. L.; Seweryniak, D.; Ahmad, I.; Back, B. B.; Carpenter, M. P.; Davids, C. N.; Greene, J.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E.; Peterson, D.; Stefanescu, I.; Zhu, S.; Asai, M.; Chowdhury, P.

    2011-06-15

    The energies of 2-quasiparticle (2-qp) states in heavy shell-stabilized nuclei provide information on the single-particle states that are responsible for the stability of superheavy nuclei. We have calculated the energies of 2-qp states in {sup 256}Rf, which suggest that a long-lived, low-energy 8{sup -} isomer should exist. A search was conducted for this isomer through a calorimetric conversion electron signal, sandwiched in time between implantation of a {sup 256}Rf nucleus and its fission decay, all within the same pixel of a double-sided Si strip detector. A 17(5)-{mu}s isomer was identified. However, its low population, {approx}5(2)% that of the ground state instead of the expected {approx}30%, suggests that it is more likely a 4-qp isomer. Possible reasons for the absence of an electromagnetic signature of a 2-qp isomer decay are discussed. These include the favored possibility that the isomer decays by fission, with a half-life indistinguishably close to that of the ground state. Another possibility, that there is no 2-qp isomer at all, would imply an abrupt termination of axially symmetric deformed shapes at Z=104, which describes nuclei with Z=92-103 very well.

  19. Search for a 2-quasiparticle high-K isomer in {sup 256}Rf.

    SciTech Connect

    Robinson, A. P.; Khoo, T. L.; Seweryniak, D.; Ahmad, I.; Asai, M.; Back, B. B.; Carpenter, M. P.; Davids, C. N.; Greene, J.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E.; Peterson, D.; Zhu, S.

    2011-06-13

    The energies of 2-quasiparticle (2-qp) states in heavy shell-stabilized nuclei provide information on the single-particle states that are responsible for the stability of superheavy nuclei. We have calculated the energies of 2-qp states in {sup 256}Rf, which suggest that a long-lived, low-energy 8{sup -} isomer should exist. A search was conducted for this isomer through a calorimetric conversion electron signal, sandwiched in time between implantation of a {sup 256}Rf nucleus and its fission decay, all within the same pixel of a double-sided Si strip detector. A 17(5)-{micro}s isomer was identified. However, its low population, {approx}5(2)% that of the ground state instead of the expected {approx}30%, suggests that it is more likely a 4-qp isomer. Possible reasons for the absence of an electromagnetic signature of a 2-qp isomer decay are discussed. These include the favored possibility that the isomer decays by fission, with a half-life indistinguishably close to that of the ground state. Another possibility, that there is no 2-qp isomer at all, would imply an abrupt termination of axially symmetric deformed shapes at Z = 104, which describes nuclei with Z = 92-103 very well.

  20. Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties.

    PubMed

    Despoja, V; Marušić, L

    2014-12-03

    Our recently proposed theoretical formulation based on Bethe–Salpeter G(0)W(0) methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C(14)H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius r(s)) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for r(s) ≈ 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ ≈ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z(0) ≈ 12 a.u.). For r(s) > 5 the β exciton becomes infinitely sharp (Γ ≈ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO–LUMO gap shift. Finally, it is demonstrated that the HOMO–LUMO gap shift dominantly depends on the position of the effective image plane z(im) of the adjacent surface.

  1. Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties

    NASA Astrophysics Data System (ADS)

    Despoja, V.; Marušić, L.

    2014-12-01

    Our recently proposed theoretical formulation based on Bethe-Salpeter G0W0 methodology is applied here to explore the quasiparticle and optical spectra of anthracene (C14H10) placed close to a metallic surface. Special attention is paid to explore how the energy shift and decay width of the low-lying anthracene bright excitons p, α and β depend on the type of the adjacent surface (described by the Wigner Seits radius rs) and the separation from the surface. It is shown that p and α excitons weakly interact with surface excitations, but for rs ≈ 3 the intensive β exciton hybridizes with surface plasmon considerably, resulting in its splitting into two optically active modes. The β exciton decays extraordinarily fast (Γ ≈ 200 meV) to the electron-hole excitations in the metallic surface even for non-contact separations (z0 ≈ 12 a.u.). For rs > 5 the β exciton becomes infinitely sharp (Γ ≈ 0) and no longer interacts with the surface plasmon. Moreover, it is shown that HOMO and LUMO states near a metallic surface behave as statically screened rigid orbitals, with the result that the simple image theory arguments are sufficient to explain the HOMO-LUMO gap shift. Finally, it is demonstrated that the HOMO-LUMO gap shift dominantly depends on the position of the effective image plane zim of the adjacent surface.

  2. Particle-number conservation in quasiparticle representation in the isovector neutron-proton pairing case

    NASA Astrophysics Data System (ADS)

    Fellah, M.; Allal, N. H.; Hammache, Faiza; Oudih, M. R.

    2015-12-01

    Until now, the Sharp-Bardeen-Cooper-Schrieffer (SBCS) particle-number projection method, in the isovector neutron-proton pairing case, has been developed in the particle representation. However, this formalism is sometimes complicated and cumbersome. In this work, the formalism is developed in the quasiparticle representation. An expression of the projected ground state wave function is proposed. Expressions of the energy as well as the expectation values of the total particle-number operator and its square are deduced. It is shown that these expressions are formally similar to their homologues in the pairing between like-particles case. They are easier to handle than the ones obtained using the particle representation and are more adapted to numerical calculations. The method is then numerically tested within the schematic one-level model, which allows comparisons with exact results, as well as in the case of even-even nuclei within the Woods-Saxon model. In each case, it is shown that the particle-number fluctuations that are inherent to the BCS method are completely eliminated by the projection. In the framework of the one-level model, the values of the projected energy are clearly closer to the exact values than the BCS ones. In realistic cases, the relative discrepancies between projected and unprojected values of the energy are small. However, the absolute deviations may reach several MeV.

  3. Direct Observation of a Majorana Quasiparticle Heat Capacity in 3He

    NASA Astrophysics Data System (ADS)

    Bunkov, Y. M.

    2014-04-01

    The Majorana fermion, which acts as its own antiparticle, was suggested by Majorana in 1937 (Nuovo Cimento 14:171). While no stable particle with Majorana properties has yet been observed, Majorana quasiparticles (QP) may exist at the boundaries of topological insulators. Here we report the preliminary results of direct observation of Majorana QPs by a precise measurements of superfluid 3He heat capacity. The bulk superfluid 3He heat capacity falls exponentially with cooling at the temperatures significantly below the energy gap. Owing to the zero energy gap mode the Majorana heat capacity falls in a power law. The Majorana heat capacity can be larger than bulk one at some temperature, which depends on surface to volume ratio of the experimental cell. Some times ago we developed the Dark matter particles detector (DMD) on a basis of superfluid 3He which is working at the frontier of extremely low temperatures (Winkelmann et al., Nucl. Instrum. Meth. A 559:384-386, 2006). Here we report the observation of zero gap mode of Majorana, follows from the new analyses of DMD heat capacity, published early. We have found a 10 % deviation from the bulk superfluid 3He heat capacity at the temperature of 135 μK. This deviation corresponds well to the theoretical value for Majorana heat capacity at such low temperature. (Note, there were no fitting parameters).

  4. Calculation of the spectrum of quasiparticle electron excitations in organic molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Tikhonov, E. V.; Uspenskii, Yu. A.; Khokhlov, D. R.

    2015-06-01

    A quasiparticle electronic spectrum belongs to the characteristics of nanoobjects that are most important for applications. The following methods of calculating the electronic spectrum are analyzed: the Kohn-Sham equations of the density functional theory (DFT), the hybrid functional method, the GW approximation, and the Lehmann approximation used in the spectral representation of one-electron Green's function. The results of these approaches are compared with the data of photoemission measurements of benzene, PTCDA, and phthalocyanine (CuPc, H2Pc, FePc, PtPc) molecules, which are typical representatives of organic molecular semiconductors (OMS). This comparison demonstrates that the Kohn-Sham equations of DFT incorrectly reproduce the electronic spectrum of OMS. The hybrid functional method correctly describes the spectrum of the valence and conduction bands; however, the HOMO-LUMO gap width is significantly underestimated. The correct gap width is obtained in both the GW approximation and the Lehmann approach, and the total energy in this approach can be calculated in the local density approximation of DFT.

  5. Quasiparticle electronic structure of barium-silicon oxynitrides for white-LED application

    NASA Astrophysics Data System (ADS)

    Bertrand, B.; Poncé, S.; Waroquiers, D.; Stankovski, M.; Giantomassi, M.; Mikami, M.; Gonze, X.

    2013-08-01

    Ba3Si6O12N2:Eu2+ and Ba3Si6O9N4:Eu2+ have strikingly similar atomistic structures, but the former is an efficient green phosphor at working temperature while the latter is a bluish-green phosphor whose luminescence decreases quite fast with temperature. Aiming at the understanding of such different behavior, we compute the quasiparticle electronic band structure of the two hosts, Ba3Si6O12N2 and Ba3Si6O9N4, thanks to many-body perturbation theory in the G0W0 approximation. The gap differs by about 0.43 eV. We analyze the eigenfunctions at the top of the valence band, at the bottom of the conduction band, and also the chemical shifts for the Ba site in the two hosts. The valence bands, directly impacted by the different stoichiometric ratio, are not thought to play a large role in the luminescence. Deceivingly, the dispersive bottom of the conduction band, directly related to luminescent properties, is similar in both compounds. The spatial topology of the probability density of the bottom of the conduction bands differs, as well as the location of the 5d peak, with a much higher energy than the bottom of the conduction band in Ba3Si6O12N2 than in Ba3Si6O9N4. Electromagnetic absorption spectra are also computed for both compounds.

  6. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Jeon, Sangjun; Zhou, Brian B.; Gyenis, Andras; Feldman, Benjamin E.; Kimchi, Itamar; Potter, Andrew C.; Gibson, Quinn D.; Cava, Robert J.; Vishwanath, Ashvin; Yazdani, Ali

    2014-09-01

    Condensed-matter systems provide a rich setting to realize Dirac and Majorana fermionic excitations as well as the possibility to manipulate them for potential applications. It has recently been proposed that chiral, massless particles known as Weyl fermions can emerge in certain bulk materials or in topological insulator multilayers and give rise to unusual transport properties, such as charge pumping driven by a chiral anomaly. A pair of Weyl fermions protected by crystalline symmetry effectively forming a massless Dirac fermion has been predicted to appear as low-energy excitations in a number of materials termed three-dimensional Dirac semimetals. Here we report scanning tunnelling microscopy measurements at sub-kelvin temperatures and high magnetic fields on the II-V semiconductor Cd3As2. We probe this system down to atomic length scales, and show that defects mostly influence the valence band, consistent with the observation of ultrahigh-mobility carriers in the conduction band. By combining Landau level spectroscopy and quasiparticle interference, we distinguish a large spin-splitting of the conduction band in a magnetic field and its extended Dirac-like dispersion above the expected regime. A model band structure consistent with our experimental findings suggests that for a magnetic field applied along the axis of the Dirac points, Weyl fermions are the low-energy excitations in Cd3As2.

  7. Quasiparticle Lifetime Broadening in Resonant X-ray Scattering of NH4NO3

    PubMed Central

    Vinson, John; Jach, Terrence; Müller, Matthias; Unterumsberger, Rainer; Beckhoff, Burkhard

    2016-01-01

    It has been previously shown that two effects cause dramatic changes in the x-ray absorption and emission spectra from the N K edge of the insulating crystal ammonium nitrate. First, vibrational disorder causes major changes in the absorption spectrum, originating not only from the thermal population of phonons, but, significantly, from zero-point motion as well. Second, the anomalously large broadening (~ 4 eV) of the emission originating from nitrate σ states is due to unusually short lifetimes of quasiparticles in an otherwise extremely narrow band. In this work we investigate the coupling of these effects to core and valence excitons that are created as the initial x-ray excitation energy is progressively reduced toward the N edge. Using a GW/Bethe-Salpeter approach, we show the extent to which this anomalous broadening is captured by the GW approximation. The data and calculations demonstrate the importance that the complex self-energies (finite lifetimes) of valence bands have on the interpretation of emission spectra. We produce a scheme to explain why extreme lifetimes should appear in σ states of other similar compounds. PMID:27747308

  8. Inverse correlation between quasiparticle mass and Tc in a cuprate high-Tc superconductor

    PubMed Central

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E.; Proust, Cyril; Carrington, Antony

    2016-01-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature Tc is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-Tc superconductivity. We have tested the robustness of this correlation between m* and Tc by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as Tc increases under pressure. This inverse correlation between m* and Tc suggests that quantum fluctuations of the charge order enhance m* but do not enhance Tc. PMID:27034989

  9. Quasiparticle dynamics in YBCO and YBCO/LSMO Using Femtosecond Optical Pulses

    NASA Astrophysics Data System (ADS)

    Lee, J.; Talbayev, D.; Xiong, J.; Zhu, J.; Jia, Q.; Taylor, A. J.; Prasankumar, R. P.

    2012-02-01

    The properties of various complex oxide systems, such as multiferroics, high-Tc superconductors and colossal magnetoresistance manganites, have been extensively studied for the past ˜25 years. In particular, the interplay between superconductivity (SC) and ferromagnetism (FM) is interesting from both academic and applied viewpoints. we have temporally resolved quasiparticle dynamics in multilayered films composed of the high-temperature superconductor YBCO and the ferromagnetic manganite LaSrMnO3 (LSMO) by performing temperature-dependent UOS experiments. In YBCO alone, we observed two distinct decay relaxation channels that have previously been related to the pseudogap and superconducting gaps and can be explained with the phenomenological Rothwarf-Taylor (RT) model. However, the fast sub-picosecond relaxation related to the pseudogap was not observed in our YBCO/LSMO heterostructures, possibly due to the influence of FM order These first UOS experiments on SC/FM heterostructures demonstrate the ability of UOS to quantify the influence of ferromagnetism on superconductivity through time domain measurements.

  10. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe

    SciTech Connect

    Shi, Guangsha; Kioupakis, Emmanouil

    2015-02-14

    We used density functional and many-body perturbation theory to calculate the quasiparticle band structures and electronic transport parameters of p-type SnSe both for the low-temperature Pnma and high-temperature Cmcm phases. The Pnma phase has an indirect band gap of 0.829 eV, while the Cmcm has a direct band gap of 0.464 eV. Both phases exhibit multiple local band extrema within an energy range comparable to the thermal energy of carriers from the global extrema. We calculated the electronic transport coefficients as a function of doping concentration and temperature for single-crystal and polycrystalline materials to understand the previous experimental measurements. The electronic transport coefficients are highly anisotropic and are strongly affected by bipolar transport effects at high temperature. Our results indicate that SnSe exhibits optimal thermoelectric performance at high temperature when doped in the 10{sup 19}–10{sup 20 }cm{sup −3} range.

  11. Quasiparticle Spectra from a Nonempirical Optimally Tuned Range-Separated Hybrid Density Functional

    NASA Astrophysics Data System (ADS)

    Refaely-Abramson, Sivan; Sharifzadeh, Sahar; Govind, Niranjan; Autschbach, Jochen; Neaton, Jeffrey B.; Baer, Roi; Kronik, Leeor

    2013-03-01

    We present a method for obtaining outer-valence quasiparticle excitation energies from a density-functional-theory-based calculation, with an accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with an asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters, the range separation and the short-range Fock fraction. Both are determined nonempirically, per system, on the basis of the satisfaction of exact physical constraints for the ionization potential and many-electron self-interaction, respectively. The accuracy of the method is demonstrated on four important benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA), and 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA). We envision that for finite systems the approach could provide an inexpensive alternative to GW, opening the door to the study of presently out of reach large-scale systems (Phys. Rev. Lett., in press).

  12. Quasiparticle Spectra from a Nonempirical Optimally Tuned Range-Separated Hybrid Density Functional

    NASA Astrophysics Data System (ADS)

    Refaely-Abramson, Sivan; Sharifzadeh, Sahar; Govind, Niranjan; Autschbach, Jochen; Neaton, Jeffrey B.; Baer, Roi; Kronik, Leeor

    2012-11-01

    We present a method for obtaining outer-valence quasiparticle excitation energies from a density-functional-theory-based calculation, with an accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with an asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters, the range separation and the short-range Fock fraction. Both are determined nonempirically, per system, on the basis of the satisfaction of exact physical constraints for the ionization potential and frontier-orbital many-electron self-interaction, respectively. The accuracy of the method is demonstrated on four important benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA), and 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA). We envision that for the outer-valence excitation spectra of finite systems the approach could provide an inexpensive alternative to GW, opening the door to the study of presently out of reach large-scale systems.

  13. Self-energies, renormalization factor, Luttinger sum rule and quasiparticle structure of the Hubbard systems

    SciTech Connect

    Lopez-Aguilar, F.; Costa-Quintana, J. )

    1992-07-10

    In this paper, the authors give a method for obtaining the renormalized electronic structure of the Hubbard systems. The first step is the determination of the self-energy beyond the Hartree-Fock approximation. This self-energy is constructed from several dielectric response functions. The second step is the determination of the quasiparticle band structure calculation which is performed from an appropriate modification of the augmented plane wave method. The third step consists in the determination of the renormalized density of states deduced from the spectral functions. The analysis of the renormalized density of states of the strongly correlated systems leads to the conclusion that there exist three types of resonances in their electronic structures, the lower energy resonances (LER), the middle energy resonances (MER) and the upper energy resonances (UER). In addition, the authors analyze the conditions for which the Luttinger theorem is satisfied. All of these questions are determined in a characteristic example which allows to test the theoretical method.

  14. Bose glass and Mott glass of quasiparticles in a doped quantum magnet.

    PubMed

    Yu, Rong; Yin, Liang; Sullivan, Neil S; Xia, J S; Huan, Chao; Paduan-Filho, Armando; Oliveira, Nei F; Haas, Stephan; Steppke, Alexander; Miclea, Corneliu F; Weickert, Franziska; Movshovich, Roman; Mun, Eun-Deok; Scott, Brian L; Zapf, Vivien S; Roscilde, Tommaso

    2012-09-20

    The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose-Einstein condensation and superfluidity, which have been tested experimentally in a variety of different systems. When bosons interact, disorder can destroy condensation, leading to a 'Bose glass'. This phase has been very elusive in experiments owing to the absence of any broken symmetry and to the simultaneous absence of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic quasiparticles in a doped quantum magnet (bromine-doped dichloro-tetrakis-thiourea-nickel, DTN). The physics of DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand canonical ensemble; bromine doping introduces disorder into the hopping and interaction strength of the bosons, leading to their localization into a Bose glass down to zero field, where it becomes an incompressible Mott glass. The transition from the Bose glass (corresponding to a gapless spin liquid) to the Bose-Einstein condensate (corresponding to a magnetically ordered phase) is marked by a universal exponent that governs the scaling of the critical temperature with the applied field, in excellent agreement with theoretical predictions. Our study represents a quantitative experimental account of the universal features of disordered bosons in the grand canonical ensemble.

  15. Fano resonance and the hidden order in URu2 Si 2 probed by quasiparticle scattering spectroscopy*

    NASA Astrophysics Data System (ADS)

    Park, W. K.; Greene, L. H.; Bauer, E. D.; Tobash, P. H.; Ronning, F.; Lu, X.; Sarrao, J. L.; Thompson, J. D.

    2011-03-01

    The nature of the hidden order transition occurring at 17.5 K in URu 2 Si 2 remains puzzling despite intensive investigations over the past two and half decades. Recent experimental and theoretical developments render it a timely subject to probe the hidden order state using quasiparticle tunneling and scattering techniques. We report on the Fano resonance in pure and Rh-doped URu 2 Si 2 single crystals using point-contact spectroscopy. The conductance spectra reproducibly reveal asymmetric double peak structures slightly off-centered around zero bias with the two peaks merging well above the hidden order transition temperature. An analysis using the Fano resonance model in a Kondo lattice [1] shows that the conductance peaks arise from the hybridization gap opening. Our estimated gap size agrees well with those reported from other measurements. We will present experimental results over a wide parameter space including temperature and doping dependences and discuss their underlying physics. M. Maltseva, M. Dzero, and P. Coleman, Phys. Rev. Lett. 103, 206402 (2009). * The work at UIUC is supported by the U.S. DOE under Award Nos. DE-FG02-07ER46453 and DE-AC02-98CH10886, and the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science.

  16. Quasiparticle mass enhancement approaching optimal doping in a high-Tc superconductor

    SciTech Connect

    Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.; Day, J.; Tan, B. S.; Zhu, Z.; Betts, J. B.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Harrison, N.

    2015-03-26

    In the quest for superconductors with higher transition temperatures (Tc), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-Tc cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strong enhancement of the quasiparticle effective mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of pcrit ≈ 0.18.

  17. Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates

    SciTech Connect

    Kreisel, Andreas; Choubey, Peayush; Berlijn, Tom; Ku, W.; Andersen, Brian M.; Hirschfeld, Peter J.

    2015-05-27

    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov–de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2Sr2CaCu2O8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude “filter” theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Furthermore, our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.

  18. A Novel PD-L1-targeting Antagonistic DNA Aptamer With Antitumor Effects.

    PubMed

    Lai, Wei-Yun; Huang, Bo-Tsang; Wang, Jen-Wei; Lin, Pei-Ying; Yang, Pan-Chyr

    2016-12-13

    The PD-1/PD-L1 axis is a major pathway involved in tumor immune evasion. Here, we report the novel PD-L1 antagonizing DNA aptamer (aptPD-L1) and demonstrate an integrated pipeline that expedites therapeutic aptamer development. Aptamer can exert antibody-mimic functions and is advantageous over antibody for its chemically synthetic nature, low immunogenicity, and efficient tissue penetration. Our results showed that aptPD-L1 blocked the binding between human PD-1 and PD-L1. Experiments using murine models showed that aptPD-L1 promoted in vitro lymphocyte proliferation and suppressed in vivo tumor growth without the induction of observable liver or renal toxicity. Analyses on the aptPD-L1-treated tumors further revealed elevated levels of infiltrating CD4(+) and CD8(+) T cells, intratumoral IL-2, TNF-α, interferon (IFN)-γ and the C-X-C motif chemokines, CXCL9 and CXCL10. The CD8(+) T cells in the aptPD-L1-treated tumors had higher CXCR3 expression level compared to the random-sequence oligonucleotides-treated ones. Besides, the length and density of CD31(+) intratumoral microvessels were significantly decreased in the aptPD-L1 treatment group. Collectively, our data suggested that aptPD-L1 helps T cell function restoration and modifies tumor microenvironment. These chemokines might orchestrate together to attract more T cells into the tumor tissues to form the positive amplification loop against tumor growth, indicating the translational potential of aptPD-L1 in cancer immunotherapy.

  19. A Novel PD-L1-targeting Antagonistic DNA Aptamer With Antitumor Effects.

    PubMed

    Lai, Wei-Yun; Huang, Bo-Tsang; Wang, Jen-Wei; Lin, Pei-Ying; Yang, Pan-Chyr

    2016-01-01

    The PD-1/PD-L1 axis is a major pathway involved in tumor immune evasion. Here, we report the novel PD-L1 antagonizing DNA aptamer (aptPD-L1) and demonstrate an integrated pipeline that expedites therapeutic aptamer development. Aptamer can exert antibody-mimic functions and is advantageous over antibody for its chemically synthetic nature, low immunogenicity, and efficient tissue penetration. Our results showed that aptPD-L1 blocked the binding between human PD-1 and PD-L1. Experiments using murine models showed that aptPD-L1 promoted in vitro lymphocyte proliferation and suppressed in vivo tumor growth without the induction of observable liver or renal toxicity. Analyses on the aptPD-L1-treated tumors further revealed elevated levels of infiltrating CD4(+) and CD8(+) T cells, intratumoral IL-2, TNF-α, interferon (IFN)-γ and the C-X-C motif chemokines, CXCL9 and CXCL10. The CD8(+) T cells in the aptPD-L1-treated tumors had higher CXCR3 expression level compared to the random-sequence oligonucleotides-treated ones. Besides, the length and density of CD31(+) intratumoral microvessels were significantly decreased in the aptPD-L1 treatment group. Collectively, our data suggested that aptPD-L1 helps T cell function restoration and modifies tumor microenvironment. These chemokines might orchestrate together to attract more T cells into the tumor tissues to form the positive amplification loop against tumor growth, indicating the translational potential of aptPD-L1 in cancer immunotherapy.

  20. Predictive role of PD-L1 expression in the response of renal Medullary carcinoma to PD-1 inhibition.

    PubMed

    Sodji, Quaovi; Klein, Kandy; Sravan, Kavuri; Parikh, Jigarkumar

    2017-08-15

    Renal medullary carcinoma is one of the rarest malignancies arising from the kidney. Despite various aggressive therapeutic regimens, mortality remains significantly high (95%) with a median overall survival of 5 months. Furthermore, the scarcity of this malignancy renders randomized clinical trials impossible. We examined the expression of programmed death ligand 1 (PD-L1) in two new renal medullary carcinoma cases, investigated their responses to the PD-L1 inhibitor nivolumab and explored the predictive role of the rate of PD-L1 expression in such response. Two African-American patients (male and female) with sickle cell trait who presented to our center with hematuria and flank pain were diagnosed with metastatic renal medullary carcinoma. PD-L1 was expressed at rate of 25% and 60% in patient 1 and 2 respectively. Following nephrectomy, they were started on nivolumab. Patient 1 initially responded to the treatment with regression of metastatic lesions. However, following this early response, patient 1 who has been receiving nivolumab for more than 15 months, was noted to have a disease progression. Patient 2 had disease progression after 3 months of nivolumab therapy. Although PD-L1 is expressed in these patients with renal medullary carcinoma, response to nivolumab was only observed in patient 1 whose tumor has the lowest rate of PD-L1 expression. This may suggest that in RMC, response to PD-L1 inhibition therapy may not correlate with the rate of PD-L1 expression.

  1. PD-1/PD-L and autoimmunity: A growing relationship.

    PubMed

    Zamani, Mohammad Reza; Aslani, Saeed; Salmaninejad, Arash; Javan, Mohammad Reza; Rezaei, Nima

    2016-12-01

    Programmed death 1 (PD-1) and its ligands, namely PD-L1 and PD-L2, are one of the key factors responsible for inhibitory T cell signaling, mediating the mechanisms of tolerance and providing immune homeostasis. Mounting evidence demonstrates that impaired PD-1:PD-L function plays an important role in a variety of autoimmune diseases such as Type 1 diabetes (T1D), encephalomyelitis, inflammatory bowel diseases (IBD), Rheumatoid Arthritis (RA), autoimmune hepatitis (AIH), Behcet's disease (BD), myasthenia gravis (MG), autoimmune uveitis (AU), Sjögren's syndrome (SjS), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), myocarditis, and ankylosing spondylitis (AS). By investigating the candidate genes, genome-wide association studies, and identification of single nucleotide polymorphisms (SNPs) in PD-1 gene in humans, it has been shown that there is a higher risk in relevant genetic associations with developing autoimmune diseases in certain ethnic groups. In this review we have tried to present a comprehensive role of PD-1:PD-L in all recently studied autoimmune diseases.

  2. PD-1 and PD-L1 antibodies for melanoma.

    PubMed

    Tsai, Katy K; Zarzoso, Inés; Daud, Adil I

    2014-01-01

    Melanoma is the most serious form of skin cancer. Metastatic melanoma historically carries a poor prognosis and until recently there have been few effective agents available to treat widely disseminated disease. Recognition of the immunogenic nature of melanoma has resulted in the development of various immunotherapeutic approaches, especially with regards to the programmed cell death 1 (PD-1) receptor and its ligand (PD-L1). Antibodies targeting the PD-1 axis have shown enormous potential in the treatment of metastatic melanoma. Here, we will review the immune basis for the disease and discuss approved immunotherapeutic options for advanced melanoma, as well as the current state of development of PD-1 and PD-L1 antibodies and their importance in shaping the future of melanoma treatment.

  3. PD-1 and PD-L1 antibodies for melanoma

    PubMed Central

    Tsai, Katy K; Zarzoso, Inés; Daud, Adil I

    2015-01-01

    Melanoma is the most serious form of skin cancer. Metastatic melanoma historically carries a poor prognosis and until recently there have been few effective agents available to treat widely disseminated disease. Recognition of the immunogenic nature of melanoma has resulted in the development of various immunotherapeutic approaches, especially with regards to the programmed cell death 1 (PD-1) receptor and its ligand (PD-L1). Antibodies targeting the PD-1 axis have shown enormous potential in the treatment of metastatic melanoma. Here, we will review the immune basis for the disease and discuss approved immunotherapeutic options for advanced melanoma, as well as the current state of development of PD-1 and PD-L1 antibodies and their importance in shaping the future of melanoma treatment. PMID:25625924

  4. Enhanced interlayer exchange coupling in antiferromagnetically coupled ultrathin (Co70Fe30/Pd) multilayers

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoliang; Qiu, Jinjun; Han, Guchang; Teo, Kie Leong

    2015-12-01

    We report the studies of magnetization reversal and magnetic interlayer coupling in synthetic antiferromagnetic (SAF) [Pd/Co70Fe30]9/Ru(tRu)/Pd(tPd)/[Co70Fe30/Pd]9 structure as functions of inserted Pd layer (tPd) and Ru layer (tRu) thicknesses. We found the exchange coupling field (Hex) and perpendicular magnetic anisotropy (PMA) can be controlled by both the tPd and tRu, The Hex shows a Ruderman-Kittel-Kasuya-Yosida-type oscillatory decay dependence on tRu and a maximum interlayer coupling strength Jex = 0.522 erg/cm2 is achieved at tPd + tRu ≈ 0.8 nm in the as-deposited sample. As it is known that a high post-annealing stability of SAF structure is required for magnetic random access memory applications, the dependence of Hex and PMA on the post-annealing temperature (Ta) is also investigated. We found that both high PMA of the top Co70Fe30/Pd multilayer is maintained and Hex is enhanced with increasing Ta up to 350 °C for tRu > 0.7 nm in our SAF structure.

  5. Polaronic quasiparticle picture for generation dynamics of coherent phonons in semiconductors: Transient and nonlinear Fano resonance

    NASA Astrophysics Data System (ADS)

    Watanabe, Yohei; Hino, Ken-ichi; Hase, Muneaki; Maeshima, Nobuya

    2017-01-01

    We examine generation dynamics of coherent phonons in both polar and nonpolar semiconductors, such as GaAs and Si, based on a polaronic-quasiparticle (PQ) model. In this model, the PQ operator is composed of two kinds of operators: one is a quasiboson operator, defined as a linear combination of a set of pairs of electron operators, and the other is a longitudinal optical (LO) phonon operator. In particular, the problem of transient and nonlinear Fano resonance (FR) is tackled, where the vestige of this quantum interference effect was observed exclusively in lightly n -doped Si immediately after carriers were excited by an ultrashort pulse laser [M. Hase et al., Nature (London) 426, 51 (2003), 10.1038/nature02044], although not observed yet in GaAs. The PQ model enables us to show straightforwardly that the phonon energy state is embedded in continuum states formed by a set of adiabatic eigenstates of the quasiboson; this energy configuration is a necessary condition of the manifestation of the transient FR in the present optically nonlinear system. Numerical calculations are done for photoemission spectra relevant to the retarded longitudinal dielectric function of transient photoexcited states and for power spectra relevant to the LO-phonon displacement function of time. The photoemission spectra show that in undoped Si, an asymmetric spectral profile characteristic of FR comes into existence immediately after the instantaneous carrier excitation to fade out gradually, whereas in undoped GaAs, no asymmetry in spectra appears in the whole temporal region. The similar results are also obtained in the power spectra. These results are in harmony with the reported experimental results. It is found that the obtained difference in spectral profile between undoped Si and GaAs is attributed to a phase factor of an effective interaction between the LO phonon and the quasiboson. More detailed discussion of the FR dynamics is made in the text.

  6. Quasiparticle energies and excitonic effects in dense solid hydrogen near metallization

    NASA Astrophysics Data System (ADS)

    Dvorak, Marc; Chen, Xiao-Jia; Wu, Zhigang

    2014-07-01

    We investigate the crucial metallization pressure of the Cmca-12 phase of solid hydrogen (H) using many-body perturbation theory within the GW approximation. We consider the effects of self-consistency, plasmon-pole models, and the vertex correction on the quasiparticle band gap (Eg). Our calculations show that self-consistency leads to an increase in Eg by 0.33 eV over the one-shot G0W0 approach. Because of error cancellation between the effects of self-consistency and the vertex correction, the simplest G0W0 method underestimates Eg by only 0.16 eV compared with the prediction of the more accurate GWΓ approach. Employing the plasmon-pole models underestimates Eg by 0.1-0.2 eV compared to the full-frequency numerical integration results. We thus predict a metallization pressure around 280 GPa, instead of 260 GPa predicted previously. Furthermore, we compute the optical absorption including the electron-hole interaction by solving the Bethe-Salpeter equation (BSE). The resulting absorption spectra demonstrate substantial redshifts and enhancement of absorption peaks compared to the calculated spectra neglecting excitonic effects. We find that the exciton binding energy decreases with increasing pressure from 66 meV at 100 GPa to 12 meV at 200 GPa due to the enhanced electronic screening as solid H approaches metallization. Because optical measurements are so important in identifying the structure of solid H, our BSE results should improve agreement between theory and experiment.

  7. Quasiparticle self-consistent G W electronic band structure of Cd-IV-N2 compounds

    NASA Astrophysics Data System (ADS)

    Lyu, Sai; Lambrecht, Walter R. L.

    2017-07-01

    Quasiparticle self-consistent G W calculations of the electronic band structures of Cd-IV-N2 with group-IV elements, Si, Ge, and Sn, are reported. The lattice parameters in the P n a 21 crystal structure are obtained both in the local density approximation and generalized gradient approximation (GGA) and provide respectively an underestimate and overestimate of the lattice constants for these until now not synthesized materials. The Wyckoff positions are obtained by structural minimization. At the GGA lattice constant, which is expected to be the most reliable, CdSiN2 is found to have an indirect gap (U -Γ ) of 2.72 eV, which is 0.55 eV lower than the direct gap at Γ of 3.27 eV. In CdGeN2, the indirect gap of 2.01 eV is only 0.1 eV smaller than the direct gap of 2.11 eV, and in CdSnN2 the gap is direct and equals 0.64 eV close to that of InN, as expected. The direct/indirect nature of CdGeN2 is found to be sensitive to shear strain. The conduction band effective masses decrease from CdSiN2 to CdGeN2 to CdSnSn2. The energies of formation indicate these materials to be stable with the possible exception of CdSnN2.

  8. A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane

    NASA Astrophysics Data System (ADS)

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.

    2013-05-01

    We report a detailed theoretical study of the structural and vibrational properties of solid nitromethane using first principles density functional calculations. The ground state properties were calculated using a plane wave pseudopotential code with either the local density approximation, the generalized gradient approximation, or with a correction to include van der Waals interactions. Our calculated equilibrium lattice parameters and volume using a dispersion correction are found to be in reasonable agreement with the experimental results. Also, our calculations reproduce the experimental trends in the structural properties at high pressure. We found a discontinuity in the bond length, bond angles, and also a weakening of hydrogen bond strength in the pressure range from 10 to 12 GPa, picturing the structural transition from phase I to phase II. Moreover, we predict the elastic constants of solid nitromethane and find that the corresponding bulk modulus is in good agreement with experiments. The calculated elastic constants show an order of C11> C22 > C33, indicating that the material is more compressible along the c-axis. We also calculated the zone center vibrational frequencies and discuss the internal and external modes of this material under pressure. From this, we found the softening of lattice modes around 8-11 GPa. We have also attempted the quasiparticle band structure of solid nitromethane with the G0W0 approximation and found that nitromethane is an indirect band gap insulator with a value of the band gap of about 7.8 eV with G0W0 approximation. Finally, the optical properties of this material, namely the absorptive and dispersive part of the dielectric function, and the refractive index and absorption spectra are calculated and the contribution of different transition peaks of the absorption spectra are analyzed. The static dielectric constant and refractive indices along the three inequivalent crystallographic directions indicate that this material

  9. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    NASA Astrophysics Data System (ADS)

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    2017-10-01

    We present a code implementing the linearized quasiparticle self-consistent GW method (LQSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N3 scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method. Program Files doi:http://dx.doi.org/10.17632/cpchkfty4w.1 Licensing provisions: GNU General Public License Programming language: Fortran 90 External routines/libraries: BLAS, LAPACK, MPI (optional) Nature of problem: Direct implementation of the GW method scales as N4 with the system size, which quickly becomes prohibitively time consuming even in the modern computers. Solution method: We implemented the GW approach using a method that switches between real space and momentum space representations. Some operations are faster in real space, whereas others are more computationally efficient in the reciprocal space. This makes our approach scale as N3. Restrictions: The limiting factor is usually the memory available in a computer. Using 10 GB/core of memory allows us to study the systems up to 15 atoms per unit cell.

  10. Constitution and thermodynamics of the Mo-Ru, Mo-Pd, Ru-Pd and Mo-Ru-Pd systems

    NASA Astrophysics Data System (ADS)

    Kleykamp, H.

    1989-09-01

    The constitution of the Mo-Ru, Mo-Pd and Ru-Pd systems was reinvestigated between 800 and 2000°C. The Mo-Ru system is of the eutectic type, a σ-phase Mo 5Ru 3 exists between 1915 and 1143°C. The Mo-Pd system is characterized by an hcp phase Mo 9Pd 11 and by two peritectic reactions, β- Mo( Pd) + L = Mo9Pd11andMo9Pd11 + L = α- Pd( Mo). Mo 9Pd 11 decomposes eutectoidally at 1370°C. The Ru-Pd system is simple peritectic. The continuous series of the hcp solid solutions between Mo 9Pd 11 and ɛ-Ru(Mo, Pd) in the ternary Mo-Ru-Pd system observed at 1700°C are suppressed below 1370°C near the Mo-Pd boundary system by the formation of a narrow α + β + ɛ three-phase field. Relative partial molar Gibbs energies of Mo, Mo and Ru in the respective binary systems and of Mo in the ternary system were measured by the EMF method with a Zr(Ca)O 2 electrolyte. xsΔ ḠMo∞ quantities were evaluated at 1200 K which give -43 kJ/mol Mo in Ru and -94 kJ/mol Mo in Pd at infinite dilution. Gibbs energies of formation of the Mo-Ru and Mo-Pd systems were calculated.

  11. CO-induced Pd segregation and the effect of subsurface Pd on CO adsorption on CuPd surfaces

    NASA Astrophysics Data System (ADS)

    Padama, A. A. B.; Villaos, R. A. B.; Albia, J. R.; Diño, W. A.; Nakanishi, H.; Kasai, H.

    2017-01-01

    We report results of our study on the adsorption of CO on CuPd surfaces with bulk stoichiometric and nonstoichiometric layers using density functional theory (DFT). We found that the presence of Pd atoms in the subsurface layer promotes the adsorption of CO. We also observed CO-induced Pd segregation on the CuPd surface and we attribute this to the strong CO-Pd interaction. Lastly, we showed that the adsorption of CO promotes Pd-Pd interaction as compared to the pristine surface which promotes strong Cu-Pd interaction. These results indicate that CO adsorption on CuPd surfaces can be tuned by taking advantage of the CO-induced segregation and by considering the role of subsurface Pd atoms.

  12. Quasiparticles in the superconducting state of Bi(2)Sr(2)CaCu(2)O(8+delta)

    PubMed

    Kaminski; Mesot; Fretwell; Campuzano; Norman; Randeria; Ding; Sato; Takahashi; Mochiku; Kadowaki; Hoechst

    2000-02-21

    Recent improvements in momentum resolution lead to qualitatively new angle-resolved photoemission spectroscopy results on the spectra of Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) along the (pi,pi) direction, where there is a node in the superconducting gap. We now see the intrinsic line shape, which indicates the presence of true quasiparticles at all Fermi momenta in the superconducting state, and lack thereof in the normal state. The region of momentum space probed here is relevant for charge transport, motivating a comparison of our results to conductivity measurements by infrared reflectivity.

  13. Studies of multi-quasiparticle k-isomers in rare-earth and trans-fermium nuclei.

    SciTech Connect

    Kondev, F. G.; Dracoulis, G. D.; Khoo, T. L.; Lane, G. J.; Byrne, A. P.; Kibedi, T.; Ahmad, I.; Carpenter, M. P.; Janssens, R. V. F.; Lauritzen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.; Chowdhury, P.; Tandel, S. K.; Australian National Univ.; Univ. of Massachusetts Lowell

    2007-01-01

    Nuclear K-isomers play an important role in understanding the structure of deformed axially symmetric nuclei. Examples are presented of recent studies in the rare-earth region (A {approx} 180) using deep-inelastic and multi-nucleon transfer reactions, and in the trans-fermium region (A {approx} 250) using fusion-evaporation reactions. A specific two-level mixing scenario is invoked to explain the unusual decay of the K{sup {pi}} = 13{sup +} isomer in {sup 174}Lu. The identification of 2- and 4-quasiparticle isomers in {sup 254}No is discussed and predictions of similar isomers in neighboring No and Rf nuclei are presented.

  14. Andreev Bound States Formation and Quasiparticle Trapping in Quench Dynamics Revealed by Time-Dependent Counting Statistics

    NASA Astrophysics Data System (ADS)

    Souto, R. Seoane; Martín-Rodero, A.; Yeyati, A. Levy

    2016-12-01

    We analyze the quantum quench dynamics in the formation of a phase-biased superconducting nanojunction. We find that in the absence of an external relaxation mechanism and for very general conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to extract information on the asymptotic population of even and odd many-body states, demonstrating that a universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact limit. These results shed light on recent experimental observations on quasiparticle trapping in superconducting atomic contacts.

  15. Andreev Bound States Formation and Quasiparticle Trapping in Quench Dynamics Revealed by Time-Dependent Counting Statistics.

    PubMed

    Souto, R Seoane; Martín-Rodero, A; Yeyati, A Levy

    2016-12-23

    We analyze the quantum quench dynamics in the formation of a phase-biased superconducting nanojunction. We find that in the absence of an external relaxation mechanism and for very general conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to extract information on the asymptotic population of even and odd many-body states, demonstrating that a universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact limit. These results shed light on recent experimental observations on quasiparticle trapping in superconducting atomic contacts.

  16. Influence of the nonergot dopamine agonist piribedil on vigilance in patients With Parkinson Disease and excessive daytime sleepiness (PiViCog-PD): an 11-week randomized comparison trial against pramipexole and ropinirole.

    PubMed

    Eggert, Karla; Öhlwein, Christian; Kassubek, Jan; Wolz, Martin; Kupsch, Andreas; Ceballos-Baumann, Andres; Ehret, Reinhard; Polzer, Udo; Klostermann, Fabian; Schwarz, Johannes; Fuchs, Gerd; Jost, Wolfgang; Albert, Anita; Haag, Anja; Hermsen, Anke; Lohmüller, Karin; Kuhn, Katrin; Wangemann, Martina; Oertel, Wolfgang H

    2014-01-01

    The aim of this study was to investigate the effects of piribedil on vigilance and cognitive performance in patients with Parkinson disease experiencing excessive daytime sleepiness on pramipexole or ropinirole. In this 11-week randomized, active-controlled, rater-blinded phase III study, eligible patients were randomly assigned to either receive piribedil or to continue on pramipexole or ropinirole. The primary outcome was the median reaction times during the second 15 minutes of the subtest "vigilance" of the Test battery for Attention Performances (TAP). Secondary outcomes included the Epworth Sleepiness Scale, Unified Parkinson's Disease Rating Scale, neuropsychological testing, and items of the Clinical Global Impression. Forty-four patients received piribedil; 36 continued on either pramipexole or ropinirole. There was no difference in the primary end point reaction time of the TAP subtest vigilance between piribedil and the comparator (996 vs 954 milliseconds, P = 0.68). Piribedil reduced daytime sleepiness with lower Epworth Sleepiness Scale scores at the end of treatment compared with the comparator (-4 vs -2 points; P = 0.01). The median Unified Parkinson's Disease Rating Scale III score at the end of treatment was comparable between the 2 groups. Neuropsychological tests revealed no significant between-treatment differences. A higher therapeutic effect and global improvement were shown by the Clinical Global Impression of piribedil-treated patients. This study shows that switching from pramipexole or ropinirole to piribedil has no effect on the reaction time of the TAP subtest vigilance but upholds the same therapeutic motor effect and reduces daytime sleepiness to a clinically relevant degree in patients with excessive daytime sleepiness.

  17. Quasiparticle properties of the quarks of the Nambu-Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Cao, Nan-Wei; Shakin, C. M.; Sun, Wei-Dong

    1992-12-01

    In spite of the apparent limitations of the model, in recent years there have been many applications of the Nambu-Jona-Lasinio (NJL) model in the study of hadron structure and in the study of the behavior of nuclear matter at finite temperature and density. A number of researchers have studied a generalized SU(3) version of the NJL model. For example, Vogl, Lutz, Klimt, and Weise [Nucl. Phys. A516 469 (1990)] have performed extensive calculations that include a calculation of a scalar form factor of a constituent quark, Fs(q2), and a calculation of a quark sigma term σq. (In their work, the latter quantity is related to the nucleon sigma term σN as in a constituent quark model: σN=3σq.) These calculations are made in what may be termed a sigma-dominance approximation. In the work reported here, we review the important role played by the nucleon sigma term in understanding the behavior of the quark condensate in the presence of matter. We make use of the original SU(2) version of the NJL model to study how various quark properties are modified when we take into account the dressing of the constituent quarks by the pion, the Goldstone boson of the model. We calculate the quark self-energy arising from emission and absorption of a pion and also show how the calculation of the scalar form factor of the quark and σq are modified due to the coupling of the quark to the pion. The correction terms considered here serve to reduce the value of σq by a small amount relative to the value obtained in the simplest version of the sigma dominance model. For example, for a Euclidean momentum cutoff, Λ=1050 MeV, the uncorrected result is σN=54.6 MeV. That value is then reduced to σN=51.5 MeV, if the corrections due to the pion ``dressing'' are included. It is also found that the residue at the quasiparticle pole of the quark propagator Z is about 0.86 when the coupling to the pion field is taken into account.

  18. Charge Qubit Coupled to an Intense Microwave Electromagnetic Field in a Superconducting Nb Device: Evidence for Photon-Assisted Quasiparticle Tunneling

    NASA Astrophysics Data System (ADS)

    de Graaf, S. E.; Leppäkangas, J.; Adamyan, A.; Danilov, A. V.; Lindström, T.; Fogelström, M.; Bauch, T.; Johansson, G.; Kubatkin, S. E.

    2013-09-01

    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.

  19. Charge qubit coupled to an intense microwave electromagnetic field in a superconducting Nb device: evidence for photon-assisted quasiparticle tunneling.

    PubMed

    de Graaf, S E; Leppäkangas, J; Adamyan, A; Danilov, A V; Lindström, T; Fogelström, M; Bauch, T; Johansson, G; Kubatkin, S E

    2013-09-27

    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.

  20. G6PD: The Test

    MedlinePlus

    ... initial findings. Screening tests typically involve a simple qualitative test that only tells if the person has ... this testing is used almost exclusively in the research setting. G6PD testing should not be done soon ...

  1. Ag-Pd-Si (009)

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 1 http://dx.doi.org/10.1007/97.etType="URL"/> 'Systems from Ag-Al-Ca to Au-Pd-Si' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter 'Ag-Pd-Si (009)' with the content:

  2. The latest achievements in the development of the concept of radio- and optical systems quasiparticle based on Feynman integrals

    NASA Astrophysics Data System (ADS)

    Potapov, A. A.; Rassadin, A. E.

    2017-04-01

    In a number of previous papers authors have introduced quasiparticle of radio- and optical systems. We have called this quasiparticle by `radion'. The basis for this is the representation of Green's function of equation of quasioptics by Feynman integral. It means that radion has quantum mechanical properties. In particular in approximation of quasioptics one can interprete amplitude of electromagnetic field as amplitude of probability of radion. In the paper presented we describe new features of radion which we have established recently namely we have found some exact solutions of evolutionary equation for field of quantum mechanical averages of momenta of ensemble of radions possessing by average of momentum in initial state depending on average of coordinate in it. We demonstrate three the simplest solutions from this set of exact solutions. These solutions in the form of power series on dimensionless time are applicable up to the moment of gradient catastrophe. For representation of solutions of parabolic equation in approximation of quasioptics Remizov method of quasi-Feynman formulae has been used. All these results due to suggested by us physical analogy are valid for free one-dimensional nonrelativistic quantum mechanical particle too. Also in the framework of Remizov method a number of new formulae for statistical radiophysics and optics has been obtained. `Natural' fractality of radio- and optical systems has been discussed.

  3. Superperiods in Interference of eÕ3 Laughlin Quasiparticles Encircling Filling 2/5 FractionalQuantum Hall Island

    SciTech Connect

    Lin, P.V.; Camino, F.; Goldman, V.J.

    2009-12-01

    We report experiments in a large, 2.5 {mu}m diameter Fabry-Perot quantum Hall interferometer with two tunneling constrictions. Interference fringes are observed as conductance oscillations as a function of applied magnetic field (the Aharonov-Bohm flux through the electron island) or a global backgate voltage (electronic charge in the island). Depletion is such that in the fractional quantum Hall regime, filling 1/3 current-carrying chiral edge channels pass through constrictions when the island filling is 2/5. The interferometer device is calibrated with fermionic electrons in the integer quantum Hall regime. In the fractional regime, we observe magnetic flux and charge periods 5h/e and 2e, respectively, corresponding to creation of ten e/5 Laughlin quasiparticles in the island. These results agree with our prior report of the superperiods in a much smaller interferometer device. The observed experimental periods are interpreted as imposed by anyonic statistical interaction of fractionally charged quasiparticles.

  4. Electronic structure and the local electroneutrality level of SiC polytypes from quasiparticle calculations within the GW approximation

    SciTech Connect

    Brudnyi, V. N.; Kosobutsky, A. V.

    2012-06-15

    The most important interband transitions and the local charge neutrality level (CNL) in silicon carbide polytypes 3C-SiC and nH-SiC (n = 2-8) are calculated using the GW approximation for the self energy of quasiparticles. The calculated values of band gap E{sub g} for various polytypes fall in the range 2.38 eV (3C-SiC)-3.33 eV (2H-SiC) and are very close to the experimental data (2.42-3.33 eV). The quasiparticle corrections to E{sub g} determined by DFT-LDA calculations (about 1.1 eV) are almost independent of the crystal structure of a polytype. The positions of CNL in various polytypes are found to be almost the same, and the change in CNL correlates weakly with the change in E{sub g}, which increases with the hexagonality of SiC. The calculated value of CNL varies from 1.74 eV in polytype 3C-SiC to 1.81 eV in 4H-SiC.

  5. Coexistence of Antiferromagnetism and Superconductivity in Heavy Fermion Cerium Compound Ce3PdIn11

    PubMed Central

    Kratochvílová, M.; Prokleška, J.; Uhlířová, K.; Tkáč, V.; Dušek, M.; Sechovský, V.; Custers, J.

    2015-01-01

    Many current research efforts in strongly correlated systems focus on the interplay between magnetism and superconductivity. Here we report on coexistence of both cooperative ordered states in recently discovered stoichiometric and fully inversion symmetric heavy fermion compound Ce3PdIn11 at ambient pressure. Thermodynamic and transport measurements reveal two successive magnetic transitions at T1 = 1.67 K and TN = 1.53 K into antiferromagnetic type of ordered states. Below Tc = 0.42 K the compound enters a superconducting state. The large initial slope of dBc2/dT ≈ – 8.6 T/K indicates that heavy quasiparticles form the Cooper pairs. The origin of the two magnetic transitions and the coexistence of magnetism and superconductivity is briefly discussed in the context of the coexistence of the two inequivalent Ce-sublattices in the unit cell of Ce3PdIn11 with different Kondo couplings to the conduction electrons. PMID:26514364

  6. Coexistence of Antiferromagnetism and Superconductivity in Heavy Fermion Cerium Compound Ce3PdIn11.

    PubMed

    Kratochvílová, M; Prokleška, J; Uhlířová, K; Tkáč, V; Dušek, M; Sechovský, V; Custers, J

    2015-10-30

    Many current research efforts in strongly correlated systems focus on the interplay between magnetism and superconductivity. Here we report on coexistence of both cooperative ordered states in recently discovered stoichiometric and fully inversion symmetric heavy fermion compound Ce3PdIn11 at ambient pressure. Thermodynamic and transport measurements reveal two successive magnetic transitions at T1 = 1.67 K and TN = 1.53 K into antiferromagnetic type of ordered states. Below Tc = 0.42 K the compound enters a superconducting state. The large initial slope of dBc2/dT ≈ - 8.6 T/K indicates that heavy quasiparticles form the Cooper pairs. The origin of the two magnetic transitions and the coexistence of magnetism and superconductivity is briefly discussed in the context of the coexistence of the two inequivalent Ce-sublattices in the unit cell of Ce3PdIn11 with different Kondo couplings to the conduction electrons.

  7. Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling

    SciTech Connect

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    2015-11-05

    Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd5Si-μ, Pd9Si2-α, Pd3 Si-β, Pd2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd9 Si2-α, Pd3Si-β, and Pd2Si-γ are treated as stable phases down to 0 K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd5Si-μ, Pd9Si2-α, Pd3Si-β, Pd2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.

  8. Local Quasiparticle Density of States of Superconducting SmFeAsO1-xFx Single Crystals: Evidence for Spin-Mediated Pairing

    NASA Astrophysics Data System (ADS)

    Fasano, Y.; Maggio-Aprile, I.; Zhigadlo, N. D.; Katrych, S.; Karpinski, J.; Fischer, Ø.

    2010-10-01

    We probe the local quasiparticles density of states in micron-sized SmFeAsO1-xFx single crystals by means of scanning tunnelling spectroscopy. Spectral features resemble those of cuprates, particularly a dip-hump-like structure developed at energies larger than the gap that can be ascribed to the coupling of quasiparticles to a collective mode, quite likely a resonant spin mode. The energy of the collective mode revealed in our study decreases when the pairing strength increases. Our findings support spin-fluctuation-mediated pairing in pnictides.

  9. The role of engineered materials in superconducting tunnel junction X-ray detectors - Suppression of quasiparticle recombination losses via a phononic band gap

    NASA Technical Reports Server (NTRS)

    Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.

    1992-01-01

    An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.

  10. The role of engineered materials in superconducting tunnel junction X-ray detectors - Suppression of quasiparticle recombination losses via a phononic band gap

    NASA Astrophysics Data System (ADS)

    Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.

    1992-10-01

    An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.

  11. The role of engineered materials in superconducting tunnel junction X-ray detectors - Suppression of quasiparticle recombination losses via a phononic band gap

    NASA Technical Reports Server (NTRS)

    Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.

    1992-01-01

    An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.

  12. Nodal Quasiparticle Lifetime in the Superconducting State of Bi{sub 2}Sr{sub 2}Ca Cu{sub 2}O{sub 8+{delta}}

    SciTech Connect

    Corson, J.; Orenstein, J.; Oh, Seongshik; O'Donnell, J.; Eckstein, J. N.

    2000-09-18

    We have measured the complex conductivity {sigma} of a Bi{sub 2}Sr {sub 2}CaCu{sub 2}O{sub 8+{delta}} thin film between 0.2 and 0.8 THz. We find {sigma} in the superconducting state to be well described as the sum of contributions from quasiparticles, condensate, and order parameter fluctuations which draw 30% of the spectral weight from the condensate. An analysis based on this decomposition yields a quasiparticle scattering rate on the order of k{sub B}T/({Dirac_h}/2{pi}) for temperatures below T{sub c} . (c) 2000 The American Physical Society.

  13. Behavior of quasi-particles on hybrid spaces. Relations to the geometry of geodesics and to the problems of analytic number theory

    NASA Astrophysics Data System (ADS)

    Chernyshev, Vsevolod L.; Tolchennikov, Anton A.; Shafarevich, Andrei I.

    2016-09-01

    We review our recent results concerning the propagation of "quasi-particles" in hybrid spaces — topological spaces obtained from graphs via replacing their vertices by Riemannian manifolds. Although the problem is purely classical, it is initiated by the quantum one, namely, by the Cauchy problem for the time-dependent Schrödinger equation with localized initial data.We describe connections between the behavior of quasi-particles with the properties of the corresponding geodesic flows. We also describe connections of our problem with various problems in analytic number theory.

  14. Pd segregation to the surface of Au on Pd(111) and on Pd/TiO2(110)

    NASA Astrophysics Data System (ADS)

    Sharpe, Ryan; Counsell, Jon; Bowker, Michael

    2017-02-01

    The interaction of Au and Pd in bimetallic systems is important in a number of areas of technology, especially catalysis. In order to investigate the segregation behaviour in such systems, the interaction of Pd and Au was investigated by surface science methods. In two separate sets of experiments, Au was deposited onto a Pd(111) single crystal, and Pd and Au were sequentially deposited onto TiO2(110), all in ultra-high vacuum using metal vapour deposition. Heating Au on Pd/TiO2(110) to 773 K resulted in the loss of the Au signal in the LEIS, whilst still remaining present in the XPS, due to segregation of Pd to the surface and the formation of a Au-Pd core-shell structure. It is likely that this is due to alloying of Au with the Pd and surface dominance of that alloy by Pd. The Au:Pd XPS peak area ratio is found to substantially decrease on annealing Au/Pd(111) above 773 K, corresponding with a large increase in the CO sticking probability to that for clean Pd(111). This further indicates that Au diffuses into the bulk of Pd on annealing to temperatures above 773 K. It therefore appears that Au prefers to be in the bulk in these systems, reflecting the exothermicity of alloy formation.

  15. Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and tumor regression after PD-1 blockade.

    PubMed

    Lipson, Evan J; Lilo, Mohammed T; Ogurtsova, Aleksandra; Esandrio, Jessica; Xu, Haiying; Brothers, Patricia; Schollenberger, Megan; Sharfman, William H; Taube, Janis M

    2017-01-01

    Monoclonal antibodies that block immune regulatory proteins such as programmed death-1 (PD-1) have demonstrated remarkable efficacy in controlling the growth of multiple tumor types. Unresectable or metastatic basal cell carcinoma, however, has largely gone untested. Because PD-Ligand-1 (PD-L1) expression in other tumor types has been associated with response to anti-PD-1, we investigated the expression of PD-L1 and its association with PD-1 expression in the basal cell carcinoma tumor microenvironment. Among 40 basal cell carcinoma specimens, 9/40 (22%) demonstrated PD-L1 expression on tumor cells, and 33/40 (82%) demonstrated PD-L1 expression on tumor-infiltrating lymphocytes and associated macrophages. PD-L1 was observed in close geographic association to PD-1+ tumor infiltrating lymphocytes. Additionally, we present, here, the first report of an objective anti-tumor response to pembrolizumab (anti-PD-1) in a patient with metastatic PD-L1 (+) basal cell carcinoma, whose disease had previously progressed through hedgehog pathway-directed therapy. The patient remains in a partial response 14 months after initiation of therapy. Taken together, our findings provide a rationale for testing anti-PD-1 therapy in patients with advanced basal cell carcinoma, either as initial treatment or after acquired resistance to hedgehog pathway inhibition.

  16. Number-conserving random phase approximation with analytically integrated matrix elements

    SciTech Connect

    Kyotoku, M. ); Schmid, K.W. ); Gruemmer, F. ); Faessler, A. )

    1990-01-01

    In the present paper a number conserving random phase approximation is derived as a special case of the recently developed random phase approximation in general symmetry projected quasiparticle mean fields. All the occurring integrals induced by the number projection are performed analytically after writing the various overlap and energy matrices in the random phase approximation equation as polynomials in the gauge angle. In the limit of a large number of particles the well-known pairing vibration matrix elements are recovered. We also present a new analytically number projected variational equation for the number conserving pairing problem.

  17. Neutron one-quasiparticle states in {sup 251}Fm{sub 151} populated via the {alpha} decay of {sup 255}No

    SciTech Connect

    Asai, M.; Tsukada, K.; Ishii, Y.; Toyoshima, A.; Ishii, T.; Nagame, Y.; Nishinaka, I.; Haba, H.; Ichikawa, T.; Kojima, Y.; Sueki, K.

    2011-01-15

    Excited states in {sup 251}Fm populated via the {alpha} decay of {sup 255}No are studied in detail through {alpha}-{gamma} coincidence and {alpha} fine-structure measurements. Five excited states reported previously in {sup 251}Fm are firmly established through the {alpha}-{gamma} coincidence measurement, and rotational bands built on one-quasiparticle states are newly established through the {alpha} fine-structure measurement. Spin-parities and neutron configurations of the excited states in {sup 251}Fm as well as the ground state of {sup 255}No are definitely identified on the basis of deduced internal conversion coefficients, lifetimes of {gamma} transitions, rotational-band energies built on one-quasiparticle states, and hindrance factors of {alpha} transitions. It is found that the excitation energy of the 1/2{sup +}[620] state in N=151 isotones increases with the atomic number, especially at Z{>=}100, while that of the 1/2{sup +}[631] state decreases at Z=100. Ground-state deformations and energies of neutron one-quasiparticle states in the N=151 isotones are calculated using a macroscopic-microscopic model, and the energy systematics of the one-quasiparticle states in the isotones are discussed in terms of the evolution of nuclear deformation involving the hexadecapole ({beta}{sub 4}) and hexacontatetrapole ({beta}{sub 6}) deformations.

  18. Design innovations and baseline findings in a long-term Parkinson’s trial: NET-PD LS-1

    PubMed Central

    2012-01-01

    Background Based on the pre-clinical and the results of a phase 2 futility study, creatine was selected for an efficacy trial in Parkinson’s disease (PD). We present the design rationale and a description of the study cohort at baseline. Methods A randomized, multicenter, double-blind, parallel group, placebo controlled Phase 3 study of creatine (10 gm daily) in participants with early, treated PD, the Long-term Study – 1 (LS-1) is being conducted by the NINDS Exploratory Trials in Parkinson’s Disease (NET-PD) network. The study utilizes a global statistical test (GST) encompassing multiple clinical rating scales to provide a multidimensional assessment of disease progression. Results A total of 1,741 PD participants from 45 sites in the U.S. and Canada were randomized 1:1 to either 10-gm creatine/day or matching placebo. Participants are being evaluated for a minimum of 5 years. The LS-1 baseline cohort includes participants treated with dopaminergic therapy and generally mild PD. Conclusions LS-1 represents the largest cohort of patients with early treated PD ever enrolled in a clinical trial. The GST approach should provide high power to test the hypothesis that daily administration of creatine (10gm/day) is more effective than placebo in slowing clinical decline in PD between baseline and the 5 year follow-up visit against the background of dopaminergic therapy and best PD care. PMID:23079770

  19. Collectivity of {sup 98}Pd

    SciTech Connect

    Fransen, C.; Blazhev, A.; Dewald, A.; Jolie, J.; Muecher, D.; Pissulla, T.; Moeller, O.

    2009-01-28

    The N = 52 nucleus {sup 98}Pd was investigated at the Cologne TANDEM accelerator both with the Cologne plunger using the recoil distance Doppler-shift method (RDDS) and with the Cologne HORUS spectrometer for a {gamma}{gamma} angular correlation experiment. For the first time lifetimes of yrast states and highly excited low-spin states were measured in {sup 98}Pd and the low-spin level scheme was extended. From our data we were able to interpret {sup 98}Pd as a nucleus that exhibits some collective features, but is obviously much less collective than the neighboring N = 52 isotones {sup 94}Mo and {sup 96}Ru due to its closeness to doubly-magic {sup 100}Sn.

  20. Prognostic value of PD-L1 and PD-1 expression in pulmonary neuroendocrine tumors

    PubMed Central

    Fan, Yangwei; Ma, Ke; Wang, Chuying; Ning, Jing; Hu, Yuan; Dong, Danfeng; Dong, Xuyuan; Geng, Qianqian; Li, Enxiao; Wu, Yinying

    2016-01-01

    Purpose Programmed death 1 (PD-1) receptor and its ligand, programmed death ligand-1 (PD-L1), play critical roles in the immune invasion of various tumors. This study aimed to explore the clinical significance of PD-L1/PD-1 expression in the progression of pulmonary neuroendocrine tumors (PNETs). Methods The expression of PD-L1 and PD-1 in 80 patients diagnosed with PNETs were investigated. Immunohistochemical analysis was performed on 80 formalin-fixed paraffin-embedded tissue specimens from PNETs and 20 corresponding cancer-adjacent tissue specimens. Results Tissues from PNETs had higher levels of PD-L1 (58.8%) and PD-1 (51.3%) compared to the cancer-adjacent tissues (25% and 20%, respectively). Meanwhile, PD-L1 expression was associated with PD-1 expression (P=0.007). PD-L1 expression was significantly associated with histological type (P=0.014) and tumor stage (P=0.014). Univariate analyses showed that the overall survival time of PNETs patients was significantly associated with PD-L1 expression in cancer cells (P=0.003), PD-1 expression in tumor-infiltrating lymphocytes (P=0.001), tumor node metastasis stage (P<0.05), and distant metastasis (P<0.001). Additionally, multivariate analysis revealed that PD-L1 expression, PD1 expression, and distant metastasis of PNETs were independently associated with survival time. Moreover, Kaplan–Meier survival curves analysis revealed that patients with negative PD-L1 and PD-1 expression had better prognoses. Conclusion Data suggested that PD-L1 and PD-1 can be useful prognostic biomarkers for survival and can pave the way toward new immunotherapy regimens against PNETs through targeting the PD-L1/PD-1 pathway. PMID:27785054

  1. Unadulterated spectral function of low-energy quasiparticles in Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Evtushinsky, D. V.; Kordyuk, A. A.; Borisenko, S. V.; Zabolotnyy, V. B.; Knupfer, M.; Fink, J.; Büchner, B.; Pan, A. V.; Erb, A.; Lin, C. T.; Berger, H.

    2006-11-01

    Fitting the momentum distribution photoemission spectra to the Voigt profile appears to be a robust procedure to purify the interaction effects from the experimental resolution. In application to Bi2Sr2CaCu2O8+δ high- Tc cuprates, the procedure reveals the true scattering rate at low binding energies and temperatures, and consequently, the true value of the elastic scattering. Reaching the minimal value ˜16meV , the elastic scattering does not reveal a systematic dependence on doping level, but is rather sensitive to impurity concentration and can be explained by the forward scattering on out-of-plane impurities. The inelastic scattering is found to form well-defined quasiparticles with the scattering rate ˜ω2 and ˜ω3 , above and below Tc , respectively.

  2. Quasiparticle current along the c axis in junctions involving d -wave superconductors partially gapped by charge density waves

    NASA Astrophysics Data System (ADS)

    Gabovich, Alexander M.; Li, Mai Suan; Szymczak, Henryk; Voitenko, Alexander I.

    2015-08-01

    Quasiparticle tunnel current either between identical d -wave superconductors partially gapped by charge density waves (SCDWs) or between an SCDW and a normal metal was calculated. The cases of unidirectional and checkerboard CDWs were considered. The tunnel conductance was found in both cases to possess a number of peculiarities, which cannot be described by introducing a single combined gap. The results are in qualitative agreement with experimental data obtained for a number of cuprates by the scanning tunnel spectroscopy, intrinsic-tunneling, and break-junction measurements. The difference between the experiment and the theory seems to stem from the spread of gap values occurring due to the intrinsic spatial inhomogeneity of nonstoichiometric oxides and reflected in the cuprate tunnel spectra.

  3. Ultrafast dynamics of quasiparticles and coherent acoustic phonons in slightly underdoped (BaK)Fe2As2

    PubMed Central

    Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen

    2016-01-01

    We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873

  4. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S.; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J.; Schuck, P. James

    2017-08-01

    Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena—critical to both many-body physics exploration and device applications—presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  5. Quasiparticle liquid in the highly overdoped Bi(2)Sr(2)CaCu(2)O(8+delta).

    PubMed

    Yusof, Z M; Wells, B O; Valla, T; Fedorov, A V; Johnson, P D; Li, Q; Kendziora, C; Jian, Sha; Hinks, D G

    2002-04-22

    Results from the study of a highly overdoped (OD) Bi(2)Sr(2)CaCu(2)O(8+delta) with a T(c) = 51 K using angle-resolved photoemission spectroscopy are presented. We observe a sharp peak in the spectra near ( pi,0) that persists well above T(c), a nodal self-energy which approaches that seen for the Mo(110) surface state, and a more k-independent line shape at the Fermi surface than the lower-doped cuprates. This allows for a realistic comparison of the lifetime values to the experimental resistivity measurements. These observations point to the validity of the quasiparticle picture for the OD even in the normal state.

  6. Description of quasiparticle and satellite properties via cumulant expansions of the retarded one-particle Green's function

    DOE PAGES

    Mayers, Matthew Z.; Hybertsen, Mark S.; Reichman, David R.

    2016-08-22

    A cumulant-based GW approximation for the retarded one-particle Green's function is proposed, motivated by an exact relation between the improper Dyson self-energy and the cumulant generating function. We explore qualitative aspects of this method within a simple one-electron independent phonon model, where it is seen that the method preserves the energy moment of the spectral weight while also reproducing the exact Green's function in the weak-coupling limit. For the three-dimensional electron gas, this method predicts multiple satellites at the bottom of the band, albeit with inaccurate peak spacing. But, its quasiparticle properties and correlation energies are more accurate than bothmore » previous cumulant methods and standard G0W0. These results point to features that may be exploited within the framework of cumulant-based methods and suggest promising directions for future exploration and improvements of cumulant-based GW approaches.« less

  7. Description of quasiparticle and satellite properties via cumulant expansions of the retarded one-particle Green's function

    SciTech Connect

    Mayers, Matthew Z.; Hybertsen, Mark S.; Reichman, David R.

    2016-08-22

    A cumulant-based GW approximation for the retarded one-particle Green's function is proposed, motivated by an exact relation between the improper Dyson self-energy and the cumulant generating function. We explore qualitative aspects of this method within a simple one-electron independent phonon model, where it is seen that the method preserves the energy moment of the spectral weight while also reproducing the exact Green's function in the weak-coupling limit. For the three-dimensional electron gas, this method predicts multiple satellites at the bottom of the band, albeit with inaccurate peak spacing. But, its quasiparticle properties and correlation energies are more accurate than both previous cumulant methods and standard G0W0. These results point to features that may be exploited within the framework of cumulant-based methods and suggest promising directions for future exploration and improvements of cumulant-based GW approaches.

  8. Optical response of Sr2RuO4 reveals universal fermi-liquid scaling and quasiparticles beyond Landau theory.

    PubMed

    Stricker, D; Mravlje, J; Berthod, C; Fittipaldi, R; Vecchione, A; Georges, A; van der Marel, D

    2014-08-22

    We report optical measurements demonstrating that the low-energy relaxation rate (1/τ) of the conduction electrons in Sr(2)RuO(4) obeys scaling relations for its frequency (ω) and temperature (T) dependence in accordance with Fermi-liquid theory. In the thermal relaxation regime, 1/τ ∝ (ħω)(2)+(pπk(B)T)(2) with p = 2, and ω/T scaling applies. Many-body electronic structure calculations using dynamical mean-field theory confirm the low-energy Fermi-liquid scaling and provide quantitative understanding of the deviations from Fermi-liquid behavior at higher energy and temperature. The excess optical spectral weight in this regime provides evidence for strongly dispersing "resilient" quasiparticle excitations above the Fermi energy.

  9. Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc

    PubMed Central

    Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon

    2015-01-01

    Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between and is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc. PMID:26206417

  10. A thermodynamically consistent quasi-particle model without density-dependent infinity of the vacuum zero-point energy

    NASA Astrophysics Data System (ADS)

    Luo, Liu-jun; Cao, Jing; Yan, Yan; Sun, Wei-min; Zong, Hong-shi

    2013-11-01

    In this paper, we generalize the improved quasi-particle model proposed in Cao et al. (Phys. Lett. B 711:65, 2012) from finite temperature and zero chemical potential to the case of finite chemical potential and zero temperature, and calculate the equation of state (EOS) for (2+1) flavor Quantum Chromodynamics (QCD) at zero temperature and high density. We first calculate the partition function at finite temperature and chemical potential, then go to the limit T=0 and obtain the equation of state (EOS) for cold and dense QCD, which is important for the study of neutron stars. Furthermore, we use this EOS to calculate the quark-number density, the energy density, the quark-number susceptibility and the speed of sound at zero temperature and finite chemical potential and compare our results with the corresponding ones in the existing literature.

  11. Quasi-Particle Spectrum around a Single Vortex in Superconductors ---dx2-y2- Wave Case ---

    NASA Astrophysics Data System (ADS)

    Kato, M.; Maki, K.

    2002-05-01

    Making use of the Bogoliubov-de Gennes equation for d-wave superconductors, we study the quasi-particle spectrum and the vortex core structure of a single vortex in quasi-2D d-wave superconductors for small pFξ0, where pF is the Fermi momentum and ξ0=vF/Δ0 is the coherence length (hbar=1). Unlike in previous analyses, the electron density conservation is strictly imposed on our self-consistent solution. The eigenstates are classified as bound states and extended states. The bound states play an important role in the Kramer-Pesch effect in d-wave superconductors. Further, they should be accessible through T1 and the Knight shift in NMR.

  12. The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Saikat; Bansal, Dipanshu; Delaire, Olivier; Perrodin, Didier; Bourret-Courchesne, Edith; Singh, David J.; Lindsay, Lucas

    2017-09-01

    Strongly anharmonic phonon properties of CuCl are investigated with inelastic neutron-scattering measurements and first-principles simulations. An unusual quasiparticle spectral peak emerges in the phonon density of states with increasing temperature, in both simulations and measurements, emanating from exceptionally strong coupling between conventional phonon modes. Associated with this strong anharmonicity, the lattice thermal conductivity of CuCl is extremely low and exhibits anomalous, nonmonotonic pressure dependence. We show how this behavior arises from the structure of the phonon dispersions augmenting the phase space available for anharmonic three-phonon scattering processes, and contrast this mechanism with common arguments based on negative Grüneisen parameters. These results demonstrate the importance of considering intrinsic phonon-dispersion structure toward understanding scattering processes and designing new ultralow thermal conductivity materials.

  13. Scanning tunneling spectroscopy study of quasiparticle interference on the dual topological insulator Bi1 -xSbx

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Shunsuke; Nakamura, Fumitaka; Taskin, Alexey A.; Iimori, Takushi; Nakatsuji, Kan; Matsuda, Iwao; Ando, Yoichi; Komori, Fumio

    2015-01-01

    Electronic states of the topological insulator Bi1 -xSbx , which is nontrivial in terms of both the Z2 index and the mirror Chern number, were studied by quasiparticle interference (QPI) using low-temperature scanning tunneling spectroscopy. Our Fourier-transform analysis of the QPI patterns reveals the dispersion of the two surface bands above the Fermi energy (EF). Absence of the surface band crossing is unambiguously confirmed, which allowed us to elucidate the mirror Chern number of this system is -1 . We also found that Co atoms deposited onto a clean surface of Bi1 -xSbx create impurity states with a clover-leaf-like shape at around 80 meV above EF. While additional spin-flipping scatterings due to those Co atoms cannot be detected by QPI because of the inherent absence of interference between states with antiparallel spins, we observed clear enhancement of spin-conserving scatterings after Co deposition.

  14. Ab initio GW quasiparticle energies of small sodium clusters by an all-electron mixed-basis approach

    NASA Astrophysics Data System (ADS)

    Ishii, Soh; Ohno, Kaoru; Kawazoe, Yoshiyuki; Louie, Steven G.

    2001-04-01

    A state-of-the-art GW calculation is carried out for small sodium clusters, Na2, Na4, Na6, and Na8. The quasiparticle energies are evaluated by employing an ab initio GW code based on an all-electron mixed-basis approach, which uses both plane waves and atomic orbitals as basis functions. The calculated ionization potential and the electron affinity are in excellent agreement with available experimental data. The exchange and correlation parts to the electron self-energy within the GW approximation are presented from the viewpoint of their size dependence. In addition, the effect of the off-diagonal elements of the self-energy corrections to the local-density-approximation exchange-correlation potential is discussed. Na2 and Na8 have a larger energy gap than Na4 and Na6, consistent with the fact that they are magic number clusters.

  15. Description of quasiparticle and satellite properties via cumulant expansions of the retarded one-particle Green's function

    SciTech Connect

    Mayers, Matthew Z.; Hybertsen, Mark S.; Reichman, David R.

    2016-08-22

    A cumulant-based GW approximation for the retarded one-particle Green's function is proposed, motivated by an exact relation between the improper Dyson self-energy and the cumulant generating function. We explore qualitative aspects of this method within a simple one-electron independent phonon model, where it is seen that the method preserves the energy moment of the spectral weight while also reproducing the exact Green's function in the weak-coupling limit. For the three-dimensional electron gas, this method predicts multiple satellites at the bottom of the band, albeit with inaccurate peak spacing. But, its quasiparticle properties and correlation energies are more accurate than both previous cumulant methods and standard G0W0. These results point to features that may be exploited within the framework of cumulant-based methods and suggest promising directions for future exploration and improvements of cumulant-based GW approaches.

  16. Comparison of the pn quasiparticle RPA and shell model for Gamow-Teller beta and double-beta decays

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Brown, B. Alex

    1993-06-01

    We examine the validity of the pn quasiparticle RPA (pnQRPA) as a model for calculating β+ and 2νββ Gamow-Teller decays by making a comparison of the pnQRPA with a large-basis shell-model calculation within the 0f1p shell. We employ A=46 nuclei (those with six valence nucleons) for this comparison. Our comparison includes the decay matrix elements summed over final states, the strength distributions, and, for the first time, the coherent transition matrix elements (CTME). The pnQRPA overestimates the total β+ and 2νββ matrix elements. There are large differences in the shape of the spectra as well as in the CTME between the pnQRPA and shell-model results. Empirical improvements for the pnQRPA are discussed.

  17. Comparison of the [ital pn] quasiparticle RPA and shell model for Gamow-Teller beta and double-beta decays

    SciTech Connect

    Zhao, L.; Brown, B.A. )

    1993-06-01

    We examine the validity of the [ital pn] quasiparticle RPA ([ital pn]QRPA) as a model for calculating [beta][sup +] and 2[nu][beta][beta] Gamow-Teller decays by making a comparison of the [ital pn]QRPA with a large-basis shell-model calculation within the 0[ital f]1[ital p] shell. We employ [ital A]=46 nuclei (those with six valence nucleons) for this comparison. Our comparison includes the decay matrix elements summed over final states, the strength distributions, and, for the first time, the coherent transition matrix elements (CTME). The [ital pn]QRPA overestimates the total [beta][sup +] and 2[nu][beta][beta] matrix elements. There are large differences in the shape of the spectra as well as in the CTME between the [ital pn]QRPA and shell-model results. Empirical improvements for the [ital pn]QRPA are discussed.

  18. Registration of PD 05035 and PD 05041 germplasm lines of cotton

    USDA-ARS?s Scientific Manuscript database

    PD 05035 and PD 05041 are noncommercial breeding lines of cotton jointly released by the Agricultural Research Service, United States Department of Agriculture, the Clemson University Experiment Station, and Cotton Incorporated in 2014. PD 05035 was selected from a cross of PD 93007 and ‘SG 747’, an...

  19. Registration of PD 06001 and PD 06078 germplasm lines of cotton

    USDA-ARS?s Scientific Manuscript database

    PD 06001 and PD 06078 are noncommercial breeding lines of cotton jointly released by the Agricultural Research Service, United States Department of Agriculture, the Clemson University Experiment Station, and Cotton Incorporated in 2014. PD 06001 is a breeding line selected from a cross of PD 93007 a...

  20. Hydrogen-induced atomic rearrangement in MgPd{sub 3}

    SciTech Connect

    Kohlmann, H. . E-mail: h.kohlmann@mx.uni-saarland.de; Renaudin, G.; Yvon, K.; Wannek, C.; Harbrecht, B.

    2005-04-15

    The hydrogenation behavior of MgPd{sub 3} has been studied by in situ X-ray powder diffraction and by neutron powder diffraction. At room temperature and p {approx}500kPa hydrogen pressure its structure is capable of incorporating up to one hydrogen atom per formula unit ({alpha}-MgPd{sub 3}H{sub {approx}}{sub 1}), thereby retaining a tetragonal ZrAl{sub 3}-type metal atom arrangement. Upon heating to 750K in a hydrogen atmosphere of 610kPa it transforms into a cubic modification with AuCu{sub 3}-type metal atom arrangement ({beta}-MgPd{sub 3}H{sub {approx}}{sub 0.7}). Neutron diffraction on the deuteride reveals an anion deficient anti-perovskite-type structure ({beta}-MgPd{sub 3}D{sub 0.67}, a=398.200(7)pm) in which octahedral sites surrounded exclusively by palladium atoms are occupied by deuterium. Complete removal of hydrogen (480K, 1Pa) stabilizes a new binary modification ({beta}-MgPd{sub 3}, a=391.78(2)pm) crystallizing with a primitive cubic AuCu{sub 3}-type structure. Mechanical treatment (grinding) transforms both {alpha} and {beta} modifications of MgPd{sub 3} into a cubic face-centered solid solution Mg{sub 0.25}Pd{sub 0.75} showing a random distribution of magnesium and palladium atoms.

  1. PD-1/PD-L1 expression in extra-medullary lesions of multiple myeloma.

    PubMed

    Crescenzi, Anna; Annibali, Ombretta; Bianchi, Antonella; Pagano, Anastasia; Donati, Michele; Grifoni, Alba; Avvisati, Giuseppe

    2016-10-01

    Multiple myeloma patients may develop extraosseous involvement in the course of the disease making prognosis very poor and new drugs clearly needed. The PD-1/PD-L1 axis has emerged as a master immune checkpoint in antitumor responses and recent studies investigated the role of PD-L1 in multiple myeloma cells; no data however are still available about PD-L1 expression in extramedullary localizations. We demonstrate PD-L1 expression in 4/12 cases of extraosseous myeloma suggesting that these lesions represent a specialized microenvironment. We found presence of PD-1+ infiltrating lymphocytes in all observed cases supporting the relevance of PD-1/PD-L1 checkpoint in extramedullary myeloma. We also investigated the correlation in PD1/PD-L1 staining between marrow staining and EMP lesions.

  2. Tungsten carbide promoted Pd and Pd-Co electrocatalysts for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Yin, Min; Li, Qingfeng; Jensen, Jens Oluf; Huang, Yunjie; Cleemann, Lars N.; Bjerrum, Niels J.; Xing, Wei

    2012-12-01

    Tungsten carbide (WC) promoted palladium (Pd) and palladium-cobalt (Pd-Co) nanocatalysts are prepared and characterized for formic acid electrooxidation. The WC as the dopant to carbon supports is found to enhance the CO tolerance and promote the activity of the Pd-based catalysts for formic acid oxidation. Alloying of Pd with Co further improves the electrocatalytic activity and stability of the WC supported catalysts, attributable to a synergistic effect of the carbide support and PdCo alloy nanoparticles.

  3. Preparation of (103)Pd brachytherapy seeds by electroless plating of (103)Pd onto carbon bars.

    PubMed

    Li, Zhong-Yong; Gao, Hui-Bo; Deng, Xue-Song; Zhou, Leng; Zhang, Wen-Hui; Han, Lian-Ge; Jin, Xiao-Hai; Cui, Hai-Ping

    2015-09-01

    A method for preparing (103)Pd brachytherapy seeds is reported. The key of the method was to deposit (103)Pd onto carbon bars by electroless plating so as to prepare source cores. After each carbon bar with (103)Pd was sealed in a titanium capsule, the (103)Pd seeds were fabricated. This paper provides valuable experiences and data for the preparation of (103)Pd brachytherapy seeds.

  4. PD-1/PD-L1 expression in chromophobe renal cell carcinoma: An immunological exception?

    PubMed

    Erlmeier, Franziska; Hartmann, Arndt; Autenrieth, Michael; Wiedemann, Max; Ivanyi, Philipp; Steffens, Sandra; Weichert, Wilko

    2016-11-01

    Immune checkpoint inhibitors targeting the inhibitory cross talk between tumor and immune cells have been approved for therapy in renal cell carcinoma (RCC). In contrast to clear cell RCC, little is known on PD-1/PD-L1 expression patterns in rarer RCC subtypes. The aim of this study was to evaluate the prevalence, distribution and prognostic impact of PD-1 and PD-L1 expression in chromophobe (ch)RCC. Patients who underwent renal surgery due to chRCC were retrospectively evaluated. Tumor specimen was analyzed for PD-1 and PD-L1 expression by immunohistochemistry. Expression data were correlated with clinic-pathological parameters including patient survival. Eighty-one chRCC patients were eligible for analysis, thereof 25 (30.9 %) and 11 (13.6 %) patients were positive for PD-1(+) tumor-infiltrating mononuclear cells (TIMCs) and tumoral PD-L1(+) expression, respectively. No significant associations were found for PD-1(+) TIMC or tumoral PD-L1(+) expression and clinical attributes. In addition, no differences in 5- and 10-year overall survival for PD-1(-) TIMC compared to PD-1(+) TIMC (90.5 and 72.2 vs. 100 and 75 %; p = 0.41) and for PD-L1(-) tumors compared to PD-L1(+) tumors (91.9 and 76.4 vs. 100 and 50 %; p = 0.48) were observed. In conclusion, to our knowledge this is the first study to evaluate the prognostic impact of PD-1 and PD-L1 in chRCC. PD-L1 does seem to be expressed in a minority of all chRCC, likewise only a minority of chRCC was infiltrated by PD-1-positive inflammatory cells. Neither PD-1(+) TIMC nor tumoral PD-L1(+) expression was associated with parameters of aggressiveness or survival.

  5. Stability and ordering properties of fcc alloys based on Rh, Ir, Pd, and Pt

    NASA Astrophysics Data System (ADS)

    Turchi, P. E. A.; Drchal, V.; Kudrnovský, J.

    2006-08-01

    Stability properties and ordering trends for the six face-centered cubic binary combinations of the four transition metals Rh, Ir, Pd, and Pt are examined in the context of electronic structure calculations. The method is based on a Green’s function description of the electronic structure of random alloys. Configurational order is treated within the generalized perturbation method. On one hand, the three alloys Pd-Rh, Pd-Ir, and Pt-Ir that have been studied experimentally are confirmed to behave like phase-separating systems. On the other hand, the other three mixtures Pd-Pt, Rh-Ir, and Pt-Rh, for which phase-separating trends have been inferred from experiments, are found to display chemical order with ordering of the (1 0 0) and (11/20) family types and a mixture of both, respectively. The origin of these results is discussed in terms of electronic structure properties.

  6. Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment.

    PubMed

    Wang, Qiaohong; Wu, Xia

    2017-05-01

    PD-1/PD-L1 blockade appears to be a very promising immunotherapy with significant clinical benefits and durable responses in multiple tumor types. However, the effectual clinical benefits of PD-1/PD-L1 blockade are hampered by a high rate of primary resistance, where patients do not respond to PD-1/PD-L1 blockade initially. And more distressingly, most patients eventually develop acquired resistance after an initial response to PD-1/PD-L1 blockade. The mechanisms underlying primary and acquired resistance to PD-1/PD-L1 blockade have remained ambiguous. This review documents in detail the current understanding of the mechanisms through which resistance to anti-PD1/PD-L1 therapy occurs. The mechanisms underlying primary resistance to PD-1/PD-L1 blockade contain several immunoregulatory factors affecting tumor-specific immune responses within the immune microenvironment, co-enrichment of a group of 26 transcriptomic signatures (named innate anti-PD-1 resistance (IPRES) signatures) and cancer-cell-autonomous cues. The mechanism attributable to acquired resistance harbors evolution of neoantigen landscape, mutations of JAK and β-2-microglobulin, and epigenetic stability of exhausted T cells. At last, the promising therapeutic strategies to sensitize the resistant patients are also briefly discussed.

  7. Vibrational states on Pd surfaces

    NASA Astrophysics Data System (ADS)

    Sklyadneva, I. Yu.; Rusina, G. G.; Chulkov, E. V.

    1997-04-01

    We present the calculation of vibrational modes and lattice relaxation for the Pd(100), (110) and (111) surfaces. The surface phonon frequencies and polarizations are obtained using embedded-atom potentials. Comparison of the calculated frequency values with available experimental data gives agreement within 0.2 THz.

  8. G6PD Viangchan and G6PD Mediterranean are the main variants in G6PD deficiency in the Malay population of Malaysia.

    PubMed

    Yusoff, Narazah Mohd; Shirakawa, Taku; Nishiyama, Kaoro; Ee, Choo Keng; Isa, Mohd Nizam; Matsuo, Masafumi

    2003-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked red blood cell enzymopathy common in malaria endemic areas. Individuals affected by this disease show a wide variety of clinical signs of acute hemolytic anemia. Mutations of the G6PD gene in the Malay population with G6PD deficiency in Kelantan, a state in North East Malaysia were studied. Ninety-three individuals with G6PD deficiency were subjected to mutation analysis of the G6PD gene using polymerase chain reaction based techniques of multiplex PCR. Of the ninety-three DNA samples studied, molecular defects were identified in 80 cases (86%). Variants were heterogeneous - 28.7% were found to have a G to A nucleotide change at nucleotide 871 of the G6PD gene (G871A), corresponding to G6PD Viangchan. The other major mutations were G6PD Mediterranean, G6PD Vanua Lava, G6PD Coimbra, G6PD Kaiping, G6PD Orissa, G6PD Mahidol, G6PD Canton and G6PD Chatham. These results showed that there are heterogeneous mutations of the G6PD gene associated with G6PD deficiency and that G6PD Viangchan and G6PD Mediterranean account for the main variants in G6PD deficiency among the Malay population in Malaysia.

  9. The structure of AuPd nanoalloys anchored on spherical polyelectrolyte brushes determined by X-ray absorption spectroscopy.

    PubMed

    Kaiser, Julian; Szczerba, Wojciech; Riesemeier, Heinrich; Reinholz, Uwe; Radtke, Martin; Albrecht, Martin; Lu, Yan; Ballauff, Matthias

    2013-01-01

    Well-defined and facetted bimetallic gold-palladium nanoalloys have been synthesized and anchored in spherical polyelectrolyte brushes (SPB) as composite particles (AuPd@SPB). These particles are better catalysts in aqueous phase than the pure metals. The atomistic arrangement of these nanoalloys has been analysed by extended X-ray absorption fine structure (EXAFS) spectroscopy at the Au-L3 and the Pd-K absorption edge. The samples with high amounts of gold appear as almost statistically mixed random alloys. Alloy compositions with less gold show slight enrichment of Pd at the surface of the particle. In addition, signals of non-metallic palladium appear at the Pd-K edge which indicate the presence of the Pd2+ species in addition to metallic palladium. The relation of these structural features to the catalytic activity is discussed.

  10. Modification of local order in FePd films by low energy He+ irradiation

    NASA Astrophysics Data System (ADS)

    Merkel, D. G.; Tanczikó, F.; Sajti, Sz.; Major, M.; Németh, A.; Bottyán, L.; Horváth, Z. E.; Waizinger, J.; Stankov, S.; Kovács, A.

    2008-07-01

    Owing to their strong perpendicular magnetic anisotropy, FePd, CoPd, and their Co(Fe)Pt counterparts are candidate materials for ultrahigh density magnetic recording. The stability and magnetic properties of such films are largely dependent on the orientation and local distribution of the L10 FePd phase fraction. Therefore, the formation and transformation of the L10 phase in such thin films have been the subject of continued interest. Highly ordered epitaxial FePd(001) thin films (with an L10 phase fraction of 0.81) were prepared by molecular-beam epitaxy on a MgO(001) substrate. The effect of postgrown room temperature, 130 keV He+ irradiation was investigated at fluences up to 14.9×1015 ions/cm2. X-ray diffraction and conversion electron Mössbauer spectroscopy revealed that with increasing fluence, the L10 FePd phase decomposes into the face centered cubic phase with random Fe and Pd occupation of the sites. A partially ordered local environment exhibiting a large hyperfine magnetic field also develops. Upon He+ irradiation, the lattice parameter c of the FePd L10 structure increases and the long range order parameter S steeply decreases. The Fe-Fe nearest-neighbor coordination in the Fe-containing environments increases on average from Fe47Pd53 to Fe54Pd46, indicating a tendency of formation iron-rich clusters. The equilibrium parameters corresponding to the equiatomic L10 phase were found at different fluences by conversion electron Mössbauer spectroscopy and by x-ray diffraction a difference, from which a plane-perpendicular compressive stress and a corresponding in-plane tensile stress are conjectured. The steep increase in the interface roughness above 7.4×1015 ions/cm2 is interpreted as a percolation-type behavior related to the high diffusion anisotropy in the L10 phase.

  11. Chlorhexidine for routine PD catheter exit-site care.

    PubMed

    Olga, Balafa; Fotis, Zarzoulas; Margarita, Ikonomou; Sofia, Xiromeriti; Konstantinos, Siamopoulos

    2016-09-01

    Although guidelines suggest the routine use of mupirocin or gentamicin at the exit site of PD catheter, our PD unit has been using chlorhexidine gluconate 0.5 % as exit-site care protocol. The aim of this study was to ascertain whether mupirocin application is superior to the traditionally applied chlorhexidine-regarding prevention of exit-site infections and peritonitis in our unit. Stable incident and prevalent patients of our unit were randomized to apply mupirocin or chlorhexidine at exit site. The study started on July 1, 2010, and continued till December 2014. End point was the first episode of exit-site infection or peritonitis. Sixty-two patients (mean age 58.5 ± 14.6 years) were randomized. At the end of follow-up, there were 33 patients on mupirocin treatment and 29 on chlorhexidine. The two groups had no differences in age, sex, PD vintage or PD mode. The only difference between the two groups was the percentage of patients with diabetes, 28 % in chlorhexidine group versus 10 % in mupirocin group. Mean time of follow-up was 28.46 ± 16.37 months. Twenty-four episodes of infections (peritonitis and exit site) were recorded. Time to first infection episode was 32 months in mupirocin group (95 % CI 21.4-42.5) versus 29 months (95 % CI 8.6-49.4) in chlorhexidine group. The Kaplan-Meier survival analysis revealed no difference in the infections between the two protocols (log-rank test, p = 0.477). Mupirocin is not superior in preventing infections comparing with chlorhexidine in this cohort of patients.

  12. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway

    PubMed Central

    Ohaegbulam, Kim C; Assal, Amer; Lazar-Molnar, Eszter; Yao, Yu; Zang, Xingxing

    2014-01-01

    The PD-1 receptor and ligands PD-L1 and PD-L2, members of the CD28 and B7 families, play critical roles in T cell coinhibition and exhaustion. Overexpression of PD-L1 and PD-1 on tumor cells and tumor-infiltrating lymphocytes, respectively, correlates with poor disease outcome in some human cancers. Monoclonal antibodies (mAbs) blockading the PD-1/PD-L1 pathway have been developed for cancer immunotherapy via enhancing T cell functions. Clinical trials with mAbs to PD-1 and PD-L1 have shown impressive response rates in patients, particularly for melanoma, non-small-cell lung cancer, renal cell carcinoma, and bladder cancer. Further studies are needed to dissect mechanisms of variable response rate, to identify biomarkers for clinical response, to develop small molecule inhibitors, and to combine with other therapies. PMID:25440090

  13. Strain effects on ensemble populations in AuPd/Pd(100) surface alloys

    NASA Astrophysics Data System (ADS)

    Stephens, J. Adam; Hwang, Gyeong S.

    2013-10-01

    The effects of applied strain on the arrangement of atoms in AuPd/Pd(100) surface alloys are studied using Monte Carlo simulations and cluster expansion Hamiltonians. The strain effects are found to be significant, with heteronuclear (Au-Pd) interactions more strongly enhanced by biaxial compression than homonuclear (Pd-Pd) ones. In particular, compressive strain causes an increase in the population of Pd monomers and second nearest-neighbor pairs of Pd monomers, both of which have been identified previously as important ensembles for various catalytic reactions. We also discuss the origin of these effects using density functional theory calculations of the surface electronic structure of strained AuPd/Pd(100).Our findings may suggest an additional means of employing strain to tune the catalytic properties of surface alloys.

  14. Hydrogen electrosorption into Pd-Cd nanostructures.

    PubMed

    Adams, Brian D; Ostrom, Cassandra K; Chen, Aicheng

    2010-05-18

    Hydrogen-absorbing materials are crucial for both the purification and storage of hydrogen. Pd and Pd-based alloys have been studied extensively for their use as both hydrogen dissociation catalysts and hydrogen selective membrane materials. It is known that incorporating metal atoms of different sizes into the Pd lattice has a major impact on the hydrogen absorption process. In this paper, hydrogen electrosorption into nanostructured Pd-Cd alloys has been studied for different compositions of Cd that varied from 0 to 15 at. %. The low cost of Cd makes it an attractive material to combine with Pd for hydrogen sorption. A combination of chronoamperometry and cyclic voltammetric experiments was used to determine the ratio of the H/(Pd + Cd) and the kinetics of hydrogen sorption into these Pd-Cd alloys at different potentials. It was found that the maximum H/(Pd + Cd) value was 0.66 for pure Pd, and this decreased with increasing the amount of Cd. Also, the alpha (solid solution) to beta phase (metal hydride) hydrogen transition was determined to be the slowest step in the absorption process and was practically eliminated when an optimum amount of Cd atoms was doped (i.e., Pd-Cd(15%)). With increasing the amount of Cd, more hydrogen was absorbed into the Pd-Cd nanostructures at the higher potentials (the alpha phase region). The faster kinetics, along with the decrease in the phase transition of hydrogen sorption into the Pd-Cd nanostructures when compared to pure Pd, makes the Pd-Cd nanostructures attractive for use as a hydrogen dissociation catalytic capping layer for other metal hydrides or as a hydrogen selective membrane.

  15. The efficacy and safety of anti-PD-1/PD-L1 antibodies for treatment of advanced or refractory cancers: a meta-analysis

    PubMed Central

    Arai, Seiji; Wang, Liping; Shi, Xuezhong; Shi, Ni; Ma, Fen; Chen, Sen; Huang, Lan; Yang, Li; Ma, Wang; Zhang, Bin; Han, Weidong; Xia, Jianchuan; Chen, Hu; Zhang, Yi

    2016-01-01

    Purpose To systematically evaluate the overall efficacy and safety of current anti-PD-1/PD-L1 antibodies for treatment of patients with advanced or refractory cancer. Results Fifty-one trials including 6,800 patients were included. The overall response rates for melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC) were 29% (95% CI: 1.53−2.41), 21% (95% CI: 17%−25%) and 21% (95% CI: 16%−27%) respectively. While the overall adverse effects rate for melanoma, NSCLC, RCC were 16% (95% CI: 6%−28%), 11% (95% CI: 8%−14%) and 20% (95% CI: 11%−32%) respectively. Tumor PD-L1 expression and patient smoking status might serve as biomarkers to predict response of anti-PD-1/PD-L1 antibody treatment. Compared to tumors with negative PD-L1 expression, tumors with positive PD-L1 expression had a significantly higher clinical response rate (41.4% versus 26.5%) with RR = 1.92 (95% CI: 1.53−2.41, P < 0.001). Smoker patients also showed a significantly higher response rate (33.7%) than patients who never smoked (4.2%) with RR = 6.02 (95% CI: 1.22−29.75, P = 0.028). Nivolumab and Pembrolizumab were associated with significantly increased response rate (RR = 2.89, 95% CI: 2.46−3.40, P < 0.001), reduced death risk (HR= 0.53; 95% CI: 0.48−0.57; P < 0.001), and decreased adverse effect rate (RR = 0.49, 95% CI: 0.30−0.80, P = 0.004) compared with other therapies. Experimental Design Clinical trials reporting response or safety of anti-PD-1/PD-L1 antibodies for advanced or refractory cancer patients published before January 31th 2016 were searched in PubMed and EMBASE database. Meta-analyses using random effects models were used to calculate the overall estimate. Conclusions Anti-PD-1/PD-L1 antibodies have high response rates and low adverse effect rates for advanced or refractory cancers. PMID:27683031

  16. Prognostic significance of PD-L1 and PD-L2 in breast cancer.

    PubMed

    Baptista, Mauricio Z; Sarian, Luis Otavio; Derchain, Sophie F M; Pinto, Glauce A; Vassallo, José

    2016-01-01

    PD-L1 and PD-L2 constitute an important antitumor immune response. In breast cancer, their prognostic value is still to be defined. In this study, we investigate the correlation between PD-L1 and PD-L2 protein expressions with clinical and pathologic features and disease-free survival and overall survival. To assess PD-L1 and PD-L2 expressions, we conducted immunohistochemistry studies using a breast cancer tissue microarray encompassing a total of 192 breast cancer cases, stages I, II, and III, with detailed clinical and outcome data. PD-L1 expression was present in 56.6% (107/189), and PD-L2 expression was identified in 50.8% (97/191) of breast cancer cases. Younger age at diagnosis, lymph node positivity, negative estrogen receptor, and recurrence at distant sites were all associated with both PD-L1 and PD-L2 expressions. The presence of larger tumors was associated only with PD-L1 expression. In our study, PD-L1 expression was significantly associated with better overall survival (P = .04) in breast cancer patients. Despite its association with poor clinical and pathologic features, PD-L1 expression emerges as a positive prognostic biomarker in breast cancer. This survival result might be due to the presence of a strong antitumor immune response leading to PD-L1 expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Origin of perpendicular magnetic anisotropy in epitaxial Pd /Co /Pd (111 ) trilayers

    NASA Astrophysics Data System (ADS)

    Davydenko, A. V.; Kozlov, A. G.; Ognev, A. V.; Stebliy, M. E.; Samardak, A. S.; Ermakov, K. S.; Kolesnikov, A. G.; Chebotkevich, L. A.

    2017-02-01

    Perpendicular magnetic anisotropy in epitaxial Pd /Co /Pd (111 ) trilayered films grown on Si(111) substrate was investigated. Contributions to perpendicular magnetic anisotropy from the bottom and top Co/Pd interfaces were deduced by replacement of Pd layers by Cu layers and comparative analysis of the magnetic anisotropy in the samples. Perpendicular magnetic anisotropy in Pd/Co/Pd films was induced both by interface electronic effects and by stress caused by lattice mismatch between Pd and Co. Due to asymmetry of the stress in the Co film, the contribution to magnetic anisotropy induced by the bottom Co/Pd interface was stronger than that induced by the top Pd/Co interface. The energy of the perpendicular magnetic anisotropy and asymmetrical contributions from the bottom Co/Pd and top Pd/Co interfaces to anisotropy in Pd/Co/Pd trilayers strongly depend on the thickness of the bottom and top Pd layers and may be precisely controlled. The roughness of the interfaces does not have a large influence on the energy of perpendicular magnetic anisotropy in this system.

  18. Size-Dependent Disorder-Order Transformation in the Synthesis of Monodisperse Intermetallic PdCu Nanocatalysts.

    PubMed

    Wang, Chenyu; Chen, Dennis P; Sang, Xiahan; Unocic, Raymond R; Skrabalak, Sara E

    2016-06-28

    The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopy techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure-activity studies. Moreover, the study of their growth mechanism provides insights into the size dependence of disorder-order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.

  19. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts

    DOE PAGES

    Wang, Chenyu; Chen, Dennis P.; Unocic, Raymond R.; ...

    2016-05-23

    The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopymore » techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure–activity studies. Furthermore, the study of their growth mechanism provides insights into the size dependence of disorder–order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.« less

  20. Disorder and complexity in the atomic structure of the perfect icosahedral alloy of Al-Pd-Mn

    SciTech Connect

    de Boissieu, M.; Stephens, P. ); Boudard, M.; Janot, C. ); Chapman, D.L. ); Audier, M. )

    1994-05-30

    The atomic structure of the perfect Al-Pd-Mn icosahedral phase has been studied on single grain samples. Using anomalous x-ray diffraction close to the Pd edge, the partial structure factor [ital F][sub Pd] has been extracted. In the six-dimensional description of its structure, we find that the atomic surface cannot be described by an object with a sharp boundary. A phason Debye-Waller term has been introduced to fully account for the data. It is interpreted as resulting from random phason disorder and nonsphericity of the atomic surfaces.