Science.gov

Sample records for pdb carbohydrate residue

  1. Permethylation Linkage Analysis Techniques for Residual Carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Permethylation analysis is the classic approach to establishing the position of glycosidic linkages between sugar residues. Typically, the carbohydrate is derivatized to form acid-stable methyl ethers, hydrolyzed, peracetylated, and analyzed by gas chromatography-mass spectrometry (GC-MS). The pos...

  2. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues.

    PubMed

    Jo, Sunhwan; Cheng, Xi; Islam, Shahidul M; Huang, Lei; Rui, Huan; Zhu, Allen; Lee, Hui Sun; Qi, Yifei; Han, Wei; Vanommeslaeghe, Kenno; MacKerell, Alexander D; Roux, Benoît; Im, Wonpil

    2014-01-01

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since it is originally developed in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins.

  3. Carbohydrates

    MedlinePlus

    Starches; Simple sugars; Sugars; Complex carbohydrates; Diet - carbohydrates; Simple carbohydrates ... forms of carbohydrates to function properly. Sugars and starches are broken down by the body into glucose ( ...

  4. Review: Use of residual dipolar couplings to determine the structure of carbohydrates.

    PubMed

    Canales, A; Jiménez-Barbero, J; Martín-Pastor, M

    2012-12-01

    Solution nuclear magnetic resonance spectroscopy is especially useful in the carbohydrate field. The measurement of residual dipolar couplings provides long-range structural information, a valuable complement for the structural study of carbohydrates either in its free form or in the bound state to proteins. They permit to deduce the geometry and the flexibility of the glycosidic linkages, which have a major influence on the conformation of carbohydrates and their overall shape. This article reviews the current application of the residual dipolar couplings methodology to carbohydrates.

  5. Residual carbohydrates from in vitro digested processed rapeseed ( Brassica napus ) meal.

    PubMed

    Pustjens, Annemieke M; de Vries, Sonja; Gerrits, Walter J J; Kabel, Mirjam A; Schols, Henk A; Gruppen, Harry

    2012-08-29

    Rapeseed meal (RSM) was subjected to different physical or chemical pretreatments to decrease residual, hard to degrade carbohydrates and to improve fermentability of RSM polysaccharides. Next, these pretreated samples were in vitro digested and fermented, with or without the addition of commercial pectinolytic enzymes. Remaining carbohydrates were quantified, and two physical characteristics were analyzed: (1) water-binding capacity (WBC) of the insoluble residue and (2) viscosity of the soluble fraction. Mild acid pretreatment in combination with commercial pectinolytic enzyme mixtures showed best digestion of RSM carbohydrates; only 32% of the total carbohydrate content remained. For most pretreatments, addition of commercial pectinolytic enzymes had the strongest effect on lowering the WBC of the in vitro incubated RSM. In the cases that less carbohydrate remained after in vitro digestion, the WBC of the residue decreased, and less gas seems to be produced during fermentation.

  6. Carbohydrates

    MedlinePlus

    ... glossary girlshealth.gov home http://www.girlshealth.gov/ Home Nutrition Nutrition basics Carbohydrates Carbohydrates Carbohydrates (say: kar-boh-HEYE-drayts) are the body's main source of energy. They are sometimes called "carbs" for short. If ...

  7. Characterization of protein and carbohydrate mid-IR spectral features in crop residues

    NASA Astrophysics Data System (ADS)

    Xin, Hangshu; Zhang, Yonggen; Wang, Mingjun; Li, Zhongyu; Wang, Zhibo; Yu, Peiqiang

    2014-08-01

    To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.

  8. Carbohydrates

    MedlinePlus

    Carbohydrates are one of the main types of nutrients. They are the most important source of energy for your body. Your digestive system changes carbohydrates into glucose (blood sugar). Your body uses this ...

  9. Some characteristics of the residue obtained after pronase treatment of sheep erythrocyte membranes. II. Carbohydrate patterns.

    PubMed

    Marinari, U M; Averame, M M; Casu, A; Nanni, G

    1977-01-01

    The composition of single carbohydrate classes of intact and pronase treated sheep erythrocyte membranes has been studied. In comparison with the data obtained from untreated stromata after proteolytic digestion the amount of each class of sugars is decreased. A high disappearance of sialic acids and hexosamines can be observed. Nevertheless if the total sugar content is referred to the residual protein content (16% of the native proteins, an enrichment in carbohydrates, specially neutral hexoses, can be observed. The results indicate that most of the carbohydrate fractions solubilized by pronase treatment are sialic acids and hexosamines. Different molar ratios obtained for the single carbohydrate classes in comparison with NANA before and after pronase treatment suggest a microheterogeneity of the glycoprotein structure of sheep erythrocyte membranes. By the use of several analytical methods the residue obtained after pronase treatment shows two major fractions containing proteins, lipids and carbohydrates. The data are discussed in view of the possible arrangement of lipo-glycoproteins in sheep erythrocyte membrane.

  10. Carbohydrates.

    PubMed

    Cocinero, Emilio J; Çarçabal, Pierre

    2015-01-01

    Although carbohydrates represent one of the most important families of biomolecules, they remain under-studied in comparison to the other biomolecular families (peptides, nucleobases). Beyond their best-known function of energy source in living systems, they act as mediator of molecular recognition processes, carrying molecular information in the so-called "sugar code," just to name one of their countless functions. Owing to their high conformational flexibility, they encode extremely rich information conveyed via the non-covalent hydrogen bonds within the carbohydrate and with other biomolecular assemblies, such as peptide subunits of proteins. Over the last decade there has been tremendous progress in the study of the conformational preferences of neutral oligosaccharides, and of the interactions between carbohydrates and various molecular partners (water, aromatic models, and peptide models), using vibrational spectroscopy as a sensitive probe. In parallel, other spectroscopic techniques have recently become available to the study of carbohydrates in the gas phase (microwave spectroscopy, IRMPD on charged species).

  11. Application of sedimentary carbohydrate residues in a study of organic facies and natural gas occurrences

    NASA Astrophysics Data System (ADS)

    Swain, F. M.

    Recent aquatic environments and resulting organic facies can be characterized by types and amounts of carbohydrate residues. Characteristics are based on source organisms, degree and type of degradation, and reactions with associated compounds in the mineral-kerogen-humus complex. Selected modern environments are typified by the following presently known carbohydrate suites: (1) deep sea, mid-Pacific, mid-Atlantic Oceans—glucose, galactose, furfurals, low total carbohydrates (TC); (2) deep gulf, Gulf of California—glu, gal, xylose, mannose, furfurals, moderate to high TC; (3) continental shelf, eastern North America—glu, xyl, gal, furfurals, high TC; (5) oligotrophic lake, Minnesota—furfurals, low TC; (6) eutrophic lake, Minnesota—glu, xyl, arabinose, gal, rhamnose, man, ribose, furfurals, glucuronic acid, high TC; (7) bog, Minnesota—glu, ara, xyl, gal, man, rib, very high TC. Polysaccharides are rare to absent in modern deep sea deposits but have been found in Lower Quaternary and younger deep gulf sediments. Cellulose, alpha- and beta-amylose and laminaran are common in shallow marine and lacustrine sediments. Methane, derived from both terrestrial and aquatic higher plant residues is high in yield in freshwater marshes and bogs and in eutrophic lake sediments, moderate in salt-water marshes and estuaries and relatively low in offshore marine sediments. Nitrogen and carbon dioxide are the commonest non-hydrocarbon gases. In many samples studied, xylans appear to predominate over other plant polysaccharide as methane sources. Carbohydrate residues in ancient rocks, based on examples from North America, show a tentative, but as yet poorly investigated, relationship to environmental organic facies and should prove to be useful in natural gas exploration.

  12. Effect of the secondary structure of carbohydrate residues of alpha 1-acid glycoprotein (orosomucoid) on the local dynamics of Trp residues.

    PubMed

    Albani, Jihad René

    2004-01-01

    We studied in this work the relation between the secondary structure of the carbohydrate residues of alpha1-acid glycoprotein and the local motions of Trp residues of the protein. We measured for this purpose the fluorescence emission intensity and anisotropy of the Trp residues between -46 and +30 degrees of the sialylated and asialylated protein. Our results indicate that, in both forms, the global profile of the emission intensity with temperature shows that Trp residues display static and collisional interaction with the neighboring amino acids. However, the profile of the asialylated form is more structured than that observed for the sialylated protein. The Y-plot analysis of the emission-anisotropy results indicated that the frictional resistance to rotation of the surface Trp residue is less important in the sialylated protein than in the asialylated form. This result is in good agreement with the fact that, in the asialylated conformation, the carbohydrate residues are closer to the protein surface than in the sialylated form, thereby increasing the contact of the surface Trp residue with the neighboring amino acids. Also, the interaction between the carbohydrate residues and the surface Trp residue contributes to the modification of the frictional resistance to rotation of the fluorophore.

  13. Selenium Protects Retinal Cells from Cisplatin-Induced Alterations in Carbohydrate Residues

    PubMed Central

    Akşit, Dilek; Yazıcı, Alper; Akşit, Hasan; Sarı, Esin S.; Yay, Arzu; Yıldız, Onur; Kılıç, Adil; Ermiş, Sıtkı S.; Seyrek, Kamil

    2016-01-01

    Background: Investigate alterations in the expression and localization of carbohydrate units in rat retinal cells exposed to cisplatin toxicity. Aims: The aim of the study was to evaluate putative protective effects of selenium on retinal cells subjected to cisplatin. Study Design: Animal experiment. Methods: Eighteen healthy Wistar rats were divided into three equal groups: 1. Control, 2. Cisplatin and 3. Cisplatin+selenium groups. After anesthesia, the right eye of each rat was enucleated. Results: Histochemically, retinal cells of control groups reacted with α-2,3-bound sialic acid-specific Maackia amurensis lectin (MAA) strongly, while cisplatin reduced the staining intensity for MAA. However, selenium administration alleviated the reducing effect of cisplatin on the binding sites for MAA in retinal cells. The staining intensity for N-acetylgalactosamine (GalNAc residues) specific Griffonia simplicifolia-1 (GSL–1) was relatively slight in control animals and cisplatin reduced this slight staining for GSL-1 further. Selenium administration mitigated the reducing effect of cisplatin on the binding sites for GSL-1. A diffuse staining for N-acetylglucosamine (GlcNAc) specific wheat germ agglutinin (WGA) was observed throughout the retina of the control animals. In particular, cells localized in the inner plexiform and photoreceptor layers are reacted strongly with WGA. Compared to the control animals, binding sites for WGA in the retina of rats given cisplatin were remarkably decreased. However, the retinal cells of rats given selenium reacted strongly with WGA. Conclusion: Cisplatin reduces α-2,3-bound sialic acid, GlcNAc and GalNAc residues in certain retinal cells. However, selenium alleviates the reducing effect of cisplatin on carbohydrate residues in retinal cells. PMID:27606141

  14. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.

    PubMed

    Lee, Ok Kyung; Oh, You-Kwan; Lee, Eun Yeol

    2015-11-01

    The residual biomass of Chlorella sp. KR-1 obtained after lipid extraction was used for saccharification and bioethanol production. The carbohydrate was saccharified using simple enzymatic and chemical methods using Pectinex at pH 5.5 and 45°C and 0.3N HCl at 121°C for 15min with 76.9% and 98.2% yield, respectively, without any pretreatment. The residual biomass contained 49.7% carbohydrate consisting of 82.4% fermentable sugar and 17.6% non-fermentable sugar, which is valuable for bioethanol fermentation. Approximately 98.2% of the total carbohydrate was converted into monosaccharide (fermentable+non-fermentable sugar) using dilute acid saccharification. The fermentable sugar was subsequently fermented to bioethanol through separate hydrolysis and fermentation with a fermentation yield of 79.3%. Overall, 0.4g ethanol/g fermentable sugar and 0.16g ethanol/g residual biomass were produced.

  15. Relation between the secondary structure of carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) and the fluorescence of the protein.

    PubMed

    Albani, Jihad R

    2003-05-01

    We studied in this work the relation that exists between the secondary structure of the glycans of alpha(1)-acid glycoprotein and the fluorescence of the Trp residues of the protein. We calculated for that the efficiency of quenching and the radiative and non-radiative constants. Our results indicate that the glycans display a spatial structure that is modified upon asialylation. The asialylated conformation is closer to the protein matrix than the sialylated form, inducing by that a decrease in the fluorescence parameters of the Trp residues. In fact, the mean quantum yield of Trp residues in sialylated and asialylated alpha(1)-acid glycoprotein are 0.0645 and 0.0385, respectively. Analysis of the fluorescence emission of alpha(1)-acid glycoprotein as the result of two contributions (surface and hydrophobic domains) indicates that quantum yields of both classes of Trp residues are lower when the protein is in the asialylated form. Also, the mean fluorescence lifetime of Trp residues decreases from 2.285 ns in the sialylated protein to 1.948 ns in the asialylated one. The radiative rate constant k(r) of the Trp residues in the sialylated alpha(1)-acid glycoprotein is higher than that in the asialylated protein. Thus, the carbohydrate residues are closer to the Trp residues in the absence of sialic acid. The modification of the spatial conformation of the glycans upon asialylation is confirmed by the decrease of the fluorescence lifetimes of Calcofluor, a fluorophore that binds to the carbohydrate residues. Finally, thermal intensity quenching of Calcofluor bound to alpha(1)-acid glycoprotein shows that the carbohydrate residues have slower residual motions in the absence of sialic acid residues.

  16. Creative PDB`s (parts databases)

    SciTech Connect

    Cote, T.J.

    1998-12-31

    PDB component property entries and creative picklists can make the schematic entry process and downstream tools such as BOM generation more useful. This presentation will show how creative PDB`s can enhance the design process. Examples of PDB entries developed at Los Alamos National Laboratory will be discussed.

  17. Interaction between carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) and saturating concentrations of Calcofluor White. A fluorescence study.

    PubMed

    Albani, J R; Sillen, A; Plancke, Y D; Coddeville, B; Engelborghs, Y

    2000-07-24

    Calcofluor White is a fluorescent probe that interacts with polysaccharides and is commonly used in clinical studies. Interaction between Calcofluor White and carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) was previously followed by fluorescence titration of the Trp residues of the protein. A stoichiometry of one Calcofluor for one protein has been found [J.R. Albani and Y.D. Plancke, Carbohydr. Res., 318 (1999) 193-200]. Alpha1-acid glycoprotein contains 40% carbohydrate by weight and has up to 16 sialic acid residues. Since binding of Calcofluor to alpha1-acid glycoprotein occurs mainly on the carbohydrate residues, we studied in the present work the interaction between Calcofluor and the protein by following the fluorescence change of the fluorophore. In order to establish the role of the sialic acid residues in the interaction, the experiments were performed with the sialylated and asialylated protein. Interaction of Calcofluor with sialylated alpha1-acid glycoprotein induces a red shift of the emission maximum of the fluorophore from 438 to 450 nm at saturation (one Calcofluor for one sialic acid) and an increase in the fluorescence intensity. At saturation the fluorescence intensity increase levels off. Binding of Calcofluor to asialylated acid glycoprotein does not change the position of the emission maximum of the fluorophore and induces a decrease in its fluorescence intensity. Saturation occurs when 10 molecules of Calcofluor are bound to 1 mol of alpha1-acid glycoprotein. Since the protein contains five heteropolysaccharide groups, we have 2 mol of Calcofluor for each group. Addition of free sialic acid to Calcofluor induces a continuous decrease in the fluorescence intensity of the fluorophore but does not change the position of the emission maximum. Our results confirm the presence of a defined spatial conformation of the sialic acid residues, a conformation that disappears when they are free in solution. Dynamics studies on Calcofluor

  18. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate.

    PubMed

    Vieira Salla, Ana Cláudia; Margarites, Ana Cláudia; Seibel, Fábio Ivan; Holz, Luiz Carlos; Brião, Vandré Barbosa; Bertolin, Telma Elita; Colla, Luciane Maria; Costa, Jorge Alberto Vieira

    2016-06-01

    Non-renewable sources that will end with time are the largest part of world energy consumption, which emphasizes the necessity to develop renewable sources of energy. This necessity has created opportunities for the use of microalgae as a biofuel. The use of microalgae as a feedstock source for bioethanol production requires high yields of both biomass and carbohydrates. With mixotrophic cultures, wastewater can be used to culture algae. The aim of the study was to increase the carbohydrate content in the microalgae Spirulina with the additions of residues from the ultra and nanofiltration of whey protein. The nutrient deficit in the Zarrouk medium diluted to 20% and the addition of 2.5% of both residue types led to high carbohydrate productivity (60 mg L(-1) d(-1)). With these culture conditions, the increase in carbohydrate production in Spirulina indicated that the conditions were appropriate for use with microalgae as a feedstock in the production of bioethanol.

  19. Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes.

    PubMed

    Huang, Caoxing; He, Juan; Li, Xin; Min, Douyong; Yong, Qiang

    2015-09-01

    Kraft pulping was performed on bamboo residues and its impact on the chemical compositions and the enzymatic digestibility of the samples were investigated. To improve the digestibility of sample by degrading the xylan and lignin-carbohydrates complexes (LCCs), xylanase and α-L-arabinofuranosidase (AF) were supplemented with cellulase. The results showed more carbohydrates were remained in the samples pulped with low effective alkali (EA) charge, compared to conventional kraft pulping. When 120 IU/g xylanase and 15 IU/g AF were supplemented with 20 FPU/g cellulase, the xylan degradation yield of the sample pulped with 12% EA charge increased from 68.20% to 88.35%, resulting in an increased enzymatic saccharification efficiency from 58.98% to 83.23%. The amount of LCCs in this sample decreased from 8.63/100C9 to 2.99/100C9 after saccharification with these enzymes. The results indicated that degrading the remained xylan and LCCs in the pulp could improve its enzymatic digestibility.

  20. Ionic liquid crystals as alignment medium to measure residual dipolar couplings for carbohydrates.

    PubMed

    Dama, Murali; Berger, Stefan

    2013-08-09

    Ionic liquids consisting of N-dodecyl-N-methyl pyrrolidinium bromide [C12MPB] in a mixture with D2O, decanol, and DMSO were for the first time found to give anisotropic molecular alignment in magnetic fields and are useful to measure residual dipolar couplings (RDCs) from polar analytes, for example, glucose. The system shows less quadrupolar splitting of the deuterated solvent signal compared with other liquid crystal systems and hence less undesired line broadening.

  1. Effect of binding of Calcofluor White on the carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) on the structure and dynamics of the protein moiety. A fluorescence study.

    PubMed

    Albani, J R

    2001-08-23

    Calcofluor White is a fluorescent probe that interacts with polysaccharides and is commonly used in clinical studies. Interaction between Calcofluor White and carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) was previously studied at low and high concentrations of Calcofluor compared to that of the protein. alpha1-Acid glycoprotein contains 40% carbohydrate by weight and has up to 16 sialic acid residues. At equimolar concentrations of Calcofluor and alpha1-acid glycoprotein, the fluorophore displays free motions [Albani, J. R.; Sillen, A.; Coddeville, B.; Plancke, Y. D.; Engelborghs, Y. Carbohydr. Res. 1999, 322, 87-94], while at high concentration of Calcofluor, its surrounding microenvironment is rigid, inducing the rigidity of the fluorophore itself [Albani, J. R.; Sillen, A.; Plancke, Y. D.; Coddeville, B.; Engelborghs, Y. Carbohydr. Res. 2000, 327, 333-340]. In the present work, red-edge excitation spectra and steady-state anisotropy studies performed on Trp residues in the presence of Calcofluor, showed that the apparent dynamics of Trp residues are not modified. However, deconvoluting the emission spectra with two different methods into different components, reveals that the structure of the protein matrix has been disrupted in the presence of high Calcofluor concentrations.

  2. Application of information theory to a three-body coarse-grained representation of proteins in the PDB: insights into the structural and evolutionary roles of residues in protein structure.

    PubMed

    Thompson, Jared J; Tabatabaei Ghomi, Hamed; Lill, Markus A

    2014-12-01

    Knowledge-based methods for analyzing protein structures, such as statistical potentials, primarily consider the distances between pairs of bodies (atoms or groups of atoms). Considerations of several bodies simultaneously are generally used to characterize bonded structural elements or those in close contact with each other, but historically do not consider atoms that are not in direct contact with each other. In this report, we introduce an information-theoretic method for detecting and quantifying distance-dependent through-space multibody relationships between the sidechains of three residues. The technique introduced is capable of producing convergent and consistent results when applied to a sufficiently large database of randomly chosen, experimentally solved protein structures. The results of our study can be shown to reproduce established physico-chemical properties of residues as well as more recently discovered properties and interactions. These results offer insight into the numerous roles that residues play in protein structure, as well as relationships between residue function, protein structure, and evolution. The techniques and insights presented in this work should be useful in the future development of novel knowledge-based tools for the evaluation of protein structure.

  3. Analysis and validation of carbohydrate three-dimensional structures

    SciTech Connect

    Lütteke, Thomas

    2009-02-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures.

  4. Novel temperature-responsive polymer brushes with carbohydrate residues facilitate selective adhesion and collection of hepatocytes

    NASA Astrophysics Data System (ADS)

    Idota, Naokazu; Ebara, Mitsuhiro; Kotsuchibashi, Yohei; Narain, Ravin; Aoyagi, Takao

    2012-12-01

    Temperature-responsive glycopolymer brushes were designed to investigate the effects of grafting architectures of the copolymers on the selective adhesion and collection of hypatocytes. Homo, random and block sequences of N-isopropylacrylamide and 2-lactobionamidoethyl methacrylate were grafted on glass substrates via surface-initiated atom transfer radical polymerization. The galactose/lactose-specific lectin RCA120 and HepG2 cells were used to test for specific recognition of the polymer brushes containing galactose residues over the lower critical solution temperatures (LCSTs). RCA120 showed a specific binding to the brush surfaces at 37 °C. These brush surfaces also facilitated the adhesion of HepG2 cells at 37 °C under nonserum conditions, whereas no adhesion was observed for NIH-3T3 fibroblasts. When the temperature was decreased to 25 °C, almost all the HepG2 cells detached from the block copolymer brush, whereas the random copolymer brush did not release the cells. The difference in releasing kinetics of cells from the surfaces with different grafting architectures can be explained by the correlated effects of significant changes in LCST, mobility, hydrophilicity and mechanical properties of the grafted polymer chains. These findings are important for designing ‘on-off’ cell capture/release substrates for various biomedical applications such as selective cell separation.

  5. Novel temperature-responsive polymer brushes with carbohydrate residues facilitate selective adhesion and collection of hepatocytes

    PubMed Central

    Idota, Naokazu; Ebara, Mitsuhiro; Kotsuchibashi, Yohei; Narain, Ravin; Aoyagi, Takao

    2012-01-01

    Temperature-responsive glycopolymer brushes were designed to investigate the effects of grafting architectures of the copolymers on the selective adhesion and collection of hypatocytes. Homo, random and block sequences of N-isopropylacrylamide and 2-lactobionamidoethyl methacrylate were grafted on glass substrates via surface-initiated atom transfer radical polymerization. The galactose/lactose-specific lectin RCA120 and HepG2 cells were used to test for specific recognition of the polymer brushes containing galactose residues over the lower critical solution temperatures (LCSTs). RCA120 showed a specific binding to the brush surfaces at 37 °C. These brush surfaces also facilitated the adhesion of HepG2 cells at 37 °C under nonserum conditions, whereas no adhesion was observed for NIH-3T3 fibroblasts. When the temperature was decreased to 25 °C, almost all the HepG2 cells detached from the block copolymer brush, whereas the random copolymer brush did not release the cells. The difference in releasing kinetics of cells from the surfaces with different grafting architectures can be explained by the correlated effects of significant changes in LCST, mobility, hydrophilicity and mechanical properties of the grafted polymer chains. These findings are important for designing ‘on–off’ cell capture/release substrates for various biomedical applications such as selective cell separation. PMID:27877533

  6. Dynamics of carbohydrate residues of alpha 1-acid glycoprotein (orosomucoid) followed by red-edge excitation spectra and emission anisotropy studies of Calcofluor White.

    PubMed

    Albani, J R; Sillen, A; Coddeville, B; Plancke, Y D; Engelborghs, Y

    1999-11-23

    Dynamics studies on Calcofluor White bound to the carbohydrate residues of sialylated and asialylated alpha 1-acid glycoprotein (orosomucoid) have been performed. The interaction between the fluorophore and the protein was found to occur preferentially with the glycan residues with a dependence on their spatial conformation. In the presence of sialylated alpha 1-acid glycoprotein, excitation at the red edge of the absorption spectrum of calcofluor does not lead to a shift in the fluorescence emission maximum (440 nm) of the fluorophore. Thus, the emission of calcofluor occurs from a relaxed state. This is confirmed by anisotropy studies as a function of temperature (Perrin plot). In the presence of asialylated alpha 1-acid glycoprotein, red-edge excitation spectra show an important shift (8 nm) of the fluorescence emission maximum of the probe. This reveals that emission of calcofluor occurs before relaxation of the surrounding carbohydrate residues occurs. Emission from a non-relaxed state means that Calcofluor molecules are bound tightly to the carbohydrate residues, a result confirmed by anisotropy studies.

  7. Modifications of carbohydrate residues in the sheep oviductal ampulla after superovulation.

    PubMed

    Desantis, S; Accogli, G; Silvestre, F; Binetti, F; Caira, M; Lacalandra, G M

    2015-04-01

    Epithelium of oviductal ampulla was studied in normal and in superovulated sheep using morphologic analysis and lectin glycohistochemistry. The lining epithelium consisted of two types of cells, ciliated and nonciliated cells. Unlike superovulated samples, the nonciliated cells from control ewes showed apical protrusions indicating an apocrine secretory activity. The ciliated cells showed lectin-binding sites mainly at the level of the cilia which bound all the used lectins except Peanut agglutinin, suggesting the lack of glycans terminating with Galβ1,3GalNAc. In superovulated specimens, the ciliated cells with high mannosylated glycans Concanavalin A (Con A) and GlcNAc and GalNac termini Griffonia simplicifolia agglutinin II (GSA II) and Dolicurus biflorus agglutinin (DBA) decreased. The luminal surface of nonciliated cells showed all investigated sugar residues in controls, whereas it was lacking in high mannosylated (Con A) and terminal GalNAcα1,3(LFucα1,2)Galβ1,3/4GlcNAcβ1 sequence (DBA) in superovulated ewes. Apical protrusions from control ampullae nonciliated cells showed glycans containing mannose, GlcNac, GalNAc, galactose, and α2,3-linked sialic acid (Con A, KOH-sialidase- Wheat germ agglutnin [WGA], GSA II, SBA, Griffonia simplicifolia agglutinin-isolectin B4 [GSA I-B4], Maackia amurensis agglutinin II [MAL II]). The supranuclear cytoplasm of nonciliated cells expressed terminal GlcNAc (GSA II) in all specimens, also O-linked glycans (mucin-type glycans) with GalNAc and sialic acid termini (Helix pomatia agglutinin [HPA] and MAL II) in control animals, and also N-linked glycans with fucose, galactose, lactosamine, and α2,3-linked sialic acid termini (Ulex europaeus agglutinin I [UEA I], GSA I-B4, Ricinus communis agglutinin120 [RCA120], and Sambucus nigra agglutinin [SNA] ) in superovulated ewes. These results report for the first time that the superovulation treatment affects the secretory activity and the glycan pattern of the epithelium lining

  8. Studying and Polishing the PDB's Macromolecules

    PubMed Central

    Richardson, Jane S.; Richardson, David C.

    2012-01-01

    Macromolecular crystal structures are among the best of scientific data, providing detailed insight into these complex and biologically important molecules with a relatively low level of error and subjectivity. However, there are two notable problems with getting the most information from them. The first is that the models are not perfect: there is still opportunity for improving them, and users need to evaluate whether the local reliability in a structure is up to answering their question of interest. The second is that protein and nucleic acid molecules are highly complex and individual, inherently handed and 3-dimensional, and the cooperative and subtle interactions that govern their detailed structure and function are not intuitively evident. Thus there is a real need for graphical representations and descriptive classifications that enable molecular 3D literacy. We have spent our career working to understand these elegant molecules ourselves, and building tools to help us and others determine and understand them better. The Protein Data Bank (PDB) has of course been vital and central to this undertaking. Here we combine some history of our involvement as depositors, illustrators, evaluators, and end-users of PDB structures with commentary on how best to study and draw scientific inferences from them. PMID:23023928

  9. Mutational Insights into the Roles of Amino Acid Residues in Ligand Binding for Two Closely Related Family 16 Carbohydrate Binding Modules

    SciTech Connect

    Su, Xiaoyun; Agarwal, Vinayak; Dodd, Dylan; Bae, Brian; Mackie, Roderick I.; Nair, Satish K.; Cann, Isaac K.O.

    2010-11-22

    Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues that flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.

  10. Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of carbohydrates and corncob acid hydrolysis residues to 5-hydroxymethylfurfural

    PubMed Central

    Wang, Chao; Zhang, Liming; Zhou, Tian; Chen, Jiachuan; Xu, Feng

    2017-01-01

    5-hydroxymethylfurfural (HMF) is an important platform molecule in the synthesis of various chemicals and materials. Herein, we reported a simple and effective dehydration of glucose-based carbohydrates to HMF in a biphasic system containing cyclopentyl methyl ether as the organic phase and AlCl3 with minute amounts of HCl as co-catalysts. The results showed that the mixed catalysts had a positive synergistic catalytic effect on glucose conversion to HMF compared with single AlCl3 or HCl catalyst. For glucose, the highest HMF yield of 54.5% was achieved at 175 °C for 20 min. More importantly, the optimal catalytic system was so efficient that it achieved one of the highest reported yields of HMF (30.5%) directly from corncob acid hydrolysis residues. Thus, the catalytic system can become a promising route for effective utilization of biomass in future biorefineries. PMID:28084456

  11. Carbohydrate binding properties of banana (Musa acuminata) lectin I. Novel recognition of internal alpha1,3-linked glucosyl residues.

    PubMed

    Mo, H; Winter, H C; Van Damme, E J; Peumans, W J; Misaki, A; Goldstein, I J

    2001-05-01

    Examination of lectins of banana (Musa acuminata) and the closely related plantain (Musa spp.) by the techniques of quantitative precipitation, hapten inhibition of precipitation, and isothermal titration calorimetry showed that they are mannose/glucose binding proteins with a preference for the alpha-anomeric form of these sugars. Both generate precipitin curves with branched chain alpha-mannans (yeast mannans) and alpha-glucans (glycogens, dextrans, and starches), but not with linear alpha-glucans containing only alpha1,4- and alpha1,6-glucosidic bonds (isolichenan and pullulan). The novel observation was made that banana and plantain lectins recognize internal alpha1,3-linked glucosyl residues, which occur in the linear polysaccharides elsinan and nigeran. Concanavalin A and lectins from pea and lentil, also mannose/glucose binding lectins, did not precipitate with any of these linear alpha-glucans. This is, the authors believe, the first report of the recognition of internal alpha1,3-glucosidic bonds by a plant lectin. It is possible that these lectins are present in the pulp of their respective fruit, complexed with starch.

  12. Crystal structure of an enzymatically inactive trans-sialidase-like lectin from Trypanosoma cruzi: the carbohydrate binding mechanism involves residual sialidase activity.

    PubMed

    Oppezzo, Pablo; Obal, Gonzalo; Baraibar, Martín A; Pritsch, Otto; Alzari, Pedro M; Buschiazzo, Alejandro

    2011-09-01

    Trans-sialidases are surface-located proteins in Trypanosoma cruzi that participate in key parasite-host interactions and parasite virulence. These proteins are encoded by a large multigenic family, with tandem-repeated and individual genes dispersed throughout the genome. While a large number of genes encode for catalytically active enzyme isoforms, many others display mutations that involve catalytic residues. The latter ultimately code for catalytically inactive proteins with very high similarity to their active paralogs. These inactive members have been shown to be lectins, able to bind sialic acid and galactose in vitro, although their cellular functions are yet to be fully established. We now report structural and biochemical evidence extending the current molecular understanding of these lectins. We have solved the crystal structure of one such catalytically inactive trans-sialidase-like protein, after soaking with a specific carbohydrate ligand, sialyl-α2,3-lactose. Instead of the expected trisaccharide, the binding pocket was observed occupied by α-lactose, strongly suggesting that the protein retains residual hydrolytic activity. This hypothesis was validated by enzyme kinetics assays, in comparison to fully active wild-type trans-sialidase. Surface plasmon resonance also confirmed that these trans-sialidase-like lectins are not only able to bind small oligosaccharides, but also sialylated glycoproteins, which is relevant in the physiologic scenario of parasite infection. Inactive trans-sialidase proteins appear thus to be β-methyl-galactosyl-specific lectins, evolved within an exo-sialidase scaffold, thus explaining why their lectin activity is triggered by the presence of terminal sialic acid.

  13. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal.

    PubMed

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    decreased (P<0.05) during 48 h ruminal degradation in both carinata meal and canola meal. Although carinata meal differed from canola meal in some carbohydrate spectral parameters, multivariate results from agglomerative hierarchical cluster analysis and principal component analysis showed that both original and in situ residues of two meals were not fully distinguished from each other within carbohydrate spectral regions. It was concluded that carbohydrate structural conformation could be detected in carinata meal by using ATR-FT/IR techniques and further study is needed to explore more information on molecular spectral features of other functional group such as protein structure profile and their association with potential nutrient supply and availability of carinata meal in animals.

  14. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal

    NASA Astrophysics Data System (ADS)

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    .05) during 48 h ruminal degradation in both carinata meal and canola meal. Although carinata meal differed from canola meal in some carbohydrate spectral parameters, multivariate results from agglomerative hierarchical cluster analysis and principal component analysis showed that both original and in situ residues of two meals were not fully distinguished from each other within carbohydrate spectral regions. It was concluded that carbohydrate structural conformation could be detected in carinata meal by using ATR-FT/IR techniques and further study is needed to explore more information on molecular spectral features of other functional group such as protein structure profile and their association with potential nutrient supply and availability of carinata meal in animals.

  15. Carbohydrate markers of organism purity and growth environment

    SciTech Connect

    Wunschel, David S.; Fox, Alvin

    2012-01-01

    Recent experience with Bacillus spore characterization has demonstrated that carbohydrate content can provide potentially vital bioforensic information. Like other metabolites, the carbohydrate profiles of samples reflect variations in cellular structures as well as presence of residual carbohydrates from the medium found as trace components. The presence and characteristics of residual carbohydrates, such as agar, represent strong indicators of culturing method. The methods to detect residual carbohydrates can be extended to other compounds used in processing and preservation of microbes in a dry form.

  16. PDB explorer -- a web based algorithm for protein annotation viewer and 3D visualization.

    PubMed

    Nayarisseri, Anuraj; Shardiwal, Rakesh Kumar; Yadav, Mukesh; Kanungo, Neha; Singh, Pooja; Shah, Pratik; Ahmed, Sheaza

    2014-12-01

    The PDB file format, is a text format characterizing the three dimensional structures of macro molecules available in the Protein Data Bank (PDB). Determined protein structure are found in coalition with other molecules or ions such as nucleic acids, water, ions, Drug molecules and so on, which therefore can be described in the PDB format and have been deposited in PDB database. PDB is a machine generated file, it's not human readable format, to read this file we need any computational tool to understand it. The objective of our present study is to develop a free online software for retrieval, visualization and reading of annotation of a protein 3D structure which is available in PDB database. Main aim is to create PDB file in human readable format, i.e., the information in PDB file is converted in readable sentences. It displays all possible information from a PDB file including 3D structure of that file. Programming languages and scripting languages like Perl, CSS, Javascript, Ajax, and HTML have been used for the development of PDB Explorer. The PDB Explorer directly parses the PDB file, calling methods for parsed element secondary structure element, atoms, coordinates etc. PDB Explorer is freely available at http://www.pdbexplorer.eminentbio.com/home with no requirement of log-in.

  17. Resolving the ambiguity: Making sense of intrinsic disorder when PDB structures disagree.

    PubMed

    DeForte, Shelly; Uversky, Vladimir N

    2016-03-01

    Missing regions in X-ray crystal structures in the Protein Data Bank (PDB) have played a foundational role in the study of intrinsically disordered protein regions (IDPRs), especially in the development of in silico predictors of intrinsic disorder. However, a missing region is only a weak indication of intrinsic disorder, and this uncertainty is compounded by the presence of ambiguous regions, where more than one structure of the same protein sequence "disagrees" in terms of the presence or absence of missing residues. The question is this: are these ambiguous regions intrinsically disordered, or are they the result of static disorder that arises from experimental conditions, ensembles of structures, or domain wobbling? A novel way of looking at ambiguous regions in terms of the pattern between multiple PDB structures has been demonstrated. It was found that the propensity for intrinsic disorder increases as the level of ambiguity decreases. However, it is also shown that ambiguity is more likely to occur as the protein region is placed within different environmental conditions, and even the most ambiguous regions as a set display compositional bias that suggests flexibility. The results suggested that ambiguity is a natural result for many IDPRs crystallized under different conditions and that static disorder and wobbling domains are relatively rare. Instead, it is more likely that ambiguity arises because many of these regions were conditionally or partially disordered.

  18. Carbohydrate Analysis

    NASA Astrophysics Data System (ADS)

    Bemiller, James N.

    Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).

  19. Vivaldi: Visualization and validation of biomacromolecular NMR structures from the PDB

    PubMed Central

    Hendrickx, Pieter M S; Gutmanas, Aleksandras; Kleywegt, Gerard J

    2013-01-01

    We describe Vivaldi (VIsualization and VALidation DIsplay; http://pdbe.org/vivaldi), a web-based service for the analysis, visualization, and validation of NMR structures in the Protein Data Bank (PDB). Vivaldi provides access to model coordinates and several types of experimental NMR data using interactive visualization tools, augmented with structural annotations and model-validation information. The service presents information about the modeled NMR ensemble, validation of experimental chemical shifts, residual dipolar couplings, distance and dihedral angle constraints, as well as validation scores based on empirical knowledge and databases. Vivaldi was designed for both expert NMR spectroscopists and casual non-expert users who wish to obtain a better grasp of the information content and quality of NMR structures in the public archive. © Proteins 2013. © 2012 Wiley Periodicals, Inc. PMID:23180575

  20. Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues.

    PubMed

    Marcotullio, G; Krisanti, E; Giuntoli, J; de Jong, W

    2011-05-01

    The present work explores the combined production of hemicellulose-derived carbohydrates and an upgraded solid residue from wheat straw using a dilute-acid pretreatment at mild temperature. Dilute aqueous HCl solutions were studied at temperatures of 100 and 120°C, and they were compared to dilute FeCl(3) under the same conditions. Comparable yields of soluble sugars and acetic acid were obtained, affording an almost complete removal of pentoses when using 200 mM aqueous solutions at 120°C. The solid residues of pretreatment were characterized showing a preserved crystallinity of the cellulose, and a almost complete removal of ash forming matter other than Si. Results showed upgraded characteristic of the residues for thermal conversion applications compared to the untreated wheat straw.

  1. Carbohydrate Loading.

    ERIC Educational Resources Information Center

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  2. PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.

    PubMed

    Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein

    2016-05-01

    The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity.

  3. Residue-centric modeling and design of saccharide and glycoconjugate structures.

    PubMed

    Labonte, Jason W; Adolf-Bryfogle, Jared; Schief, William R; Gray, Jeffrey J

    2017-02-15

    The RosettaCarbohydrate framework is a new tool for modeling a wide variety of saccharide and glycoconjugate structures. This report describes the development of the framework and highlights its applications. The framework integrates with established protocols within the Rosetta modeling and design suite, and it handles the vast complexity and variety of carbohydrate molecules, including branching and sugar modifications. To address challenges of sampling and scoring, RosettaCarbohydrate can sample glycosidic bonds, side-chain conformations, and ring forms, and it utilizes a glycan-specific term within its scoring function. Rosetta can work with standard PDB, GLYCAM, and GlycoWorkbench (.gws) file formats. Saccharide residue-specific chemical information is stored internally, permitting glycoengineering and design. Carbohydrate-specific applications described herein include virtual glycosylation, loop-modeling of carbohydrates, and docking of glyco-ligands to antibodies. Benchmarking data are presented and compared to other studies, demonstrating Rosetta's ability to predict glyco-ligand binding. The framework expands the tools available to glycoscientists and engineers. © 2016 Wiley Periodicals, Inc.

  4. Counting carbohydrates

    MedlinePlus

    ... There are 3 major types of carbohydrates: Sugars Starches Fiber Sugars are found naturally in some foods ... syrups, such as those added to canned fruit Starches are found naturally in foods. Your body breaks ...

  5. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key

    PubMed Central

    Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) – a drug’s ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a

  6. Healthy carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional foods include dietary fiber consisting of health-promoting carbohydrates. We have produced novel prebiotics from orange peel and observed that they extend the shelf life of probiotic bacteria in synbiotics. Some pectic-oligosaccharides and xyloglucan-oligosaccharides also have anti-adhesi...

  7. Multivariate Analyses of Quality Metrics for Crystal Structures in the PDB Archive.

    PubMed

    Shao, Chenghua; Yang, Huanwang; Westbrook, John D; Young, Jasmine Y; Zardecki, Christine; Burley, Stephen K

    2017-03-07

    Following deployment of an augmented validation system by the Worldwide Protein Data Bank (wwPDB) partnership, the quality of crystal structures entering the PDB has improved. Of significance are improvements in quality measures now prominently displayed in the wwPDB validation report. Comparisons of PDB depositions made before and after introduction of the new reporting system show improvements in quality measures relating to pairwise atom-atom clashes, side-chain torsion angle rotamers, and local agreement between the atomic coordinate structure model and experimental electron density data. These improvements are largely independent of resolution limit and sample molecular weight. No significant improvement in the quality of associated ligands was observed. Principal component analysis revealed that structure quality could be summarized with three measures (Rfree, real-space R factor Z score, and a combined molecular geometry quality metric), which can in turn be reduced to a single overall quality metric readily interpretable by all PDB archive users.

  8. Learning about Carbohydrates

    MedlinePlus

    ... What Happens in the Operating Room? Learning About Carbohydrates KidsHealth > For Kids > Learning About Carbohydrates A A ... of energy for the body. Two Types of Carbohydrates There are two major types of carbohydrates (or ...

  9. Learning about Carbohydrates

    MedlinePlus

    ... dientes Video: Getting an X-ray Learning About Carbohydrates KidsHealth > For Kids > Learning About Carbohydrates Print A ... of energy for the body. Two Types of Carbohydrates There are two major types of carbohydrates (or ...

  10. hpvPDB: An Online Proteome Reserve for Human Papillomavirus

    PubMed Central

    Jena, Lingaraja; Daf, Sangeeta; Mohod, Kanchan; Goyal, Peyush; Varma, Ashok K.

    2013-01-01

    Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The molecular understanding of HPV proteins has significant connotation for understanding their intrusion in the host and designing novel protein vaccines and anti-viral agents, etc. Genomic, proteomic, structural, and disease-related information on HPV is available on the web; yet, with trivial annotations and more so, it is not well customized for data analysis, host-pathogen interaction, strain-disease association, drug designing, and sequence analysis, etc. We attempted to design an online reserve with comprehensive information on HPV for the end users desiring the same. The Human Papillomavirus Proteome Database (hpvPDB) domiciles proteomic and genomic information on 150 HPV strains sequenced to date. Simultaneous easy expandability and retrieval of the strain-specific data, with a provision for sequence analysis and exploration potential of predicted structures, and easy access for curation and annotation through a range of search options at one platform are a few of its important features. Affluent information in this reserve could be of help for researchers involved in structural virology, cancer research, drug discovery, and vaccine design. PMID:24465243

  11. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer

    PubMed Central

    2012-01-01

    Background Today, recognition and classification of sequence motifs and protein folds is a mature field, thanks to the availability of numerous comprehensive and easy to use software packages and web-based services. Recognition of structural motifs, by comparison, is less well developed and much less frequently used, possibly due to a lack of easily accessible and easy to use software. Results In this paper, we describe an extension of DeepView/Swiss-PdbViewer through which structural motifs may be defined and searched for in large protein structure databases, and we show that common structural motifs involved in stabilizing protein folds are present in evolutionarily and structurally unrelated proteins, also in deeply buried locations which are not obviously related to protein function. Conclusions The possibility to define custom motifs and search for their occurrence in other proteins permits the identification of recurrent arrangements of residues that could have structural implications. The possibility to do so without having to maintain a complex software/hardware installation on site brings this technology to experts and non-experts alike. PMID:22823337

  12. PDB4DNA: Implementation of DNA geometry from the Protein Data Bank (PDB) description for Geant4-DNA Monte-Carlo simulations

    NASA Astrophysics Data System (ADS)

    Delage, E.; Pham, Q. T.; Karamitros, M.; Payno, H.; Stepan, V.; Incerti, S.; Maigne, L.; Perrot, Y.

    2015-07-01

    This paper describes PDB4DNA, a new Geant4 user application, based on an independent, cross-platform, free and open source C++ library, so-called PDBlib, which enables use of atomic level description of DNA molecule in Geant4 Monte Carlo particle transport simulations. For the evaluation of direct damage induced on the DNA molecule by ionizing particles, the application makes use of an algorithm able to determine the closest atom in the DNA molecule to energy depositions. Both the PDB4DNA application and the PDBlib library are available as free and open source under the Geant4 license.

  13. PDBe: improved accessibility of macromolecular structure data from PDB and EMDB

    PubMed Central

    Velankar, Sameer; van Ginkel, Glen; Alhroub, Younes; Battle, Gary M.; Berrisford, John M.; Conroy, Matthew J.; Dana, Jose M.; Gore, Swanand P.; Gutmanas, Aleksandras; Haslam, Pauline; Hendrickx, Pieter M. S.; Lagerstedt, Ingvar; Mir, Saqib; Fernandez Montecelo, Manuel A.; Mukhopadhyay, Abhik; Oldfield, Thomas J.; Patwardhan, Ardan; Sanz-García, Eduardo; Sen, Sanchayita; Slowley, Robert A.; Wainwright, Michael E.; Deshpande, Mandar S.; Iudin, Andrii; Sahni, Gaurav; Salavert Torres, Jose; Hirshberg, Miriam; Mak, Lora; Nadzirin, Nurul; Armstrong, David R.; Clark, Alice R.; Smart, Oliver S.; Korir, Paul K.; Kleywegt, Gerard J.

    2016-01-01

    The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the ‘best structures’ for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data. PMID:26476444

  14. Biological Macromolecular Structures Data from the RCSB Protein Data Bank (RCSB PDB)

    DOE Data Explorer

    The Research Collaboratory for Structural Bioinformatics (RCSB) is a non-profit consortium that works to improve understanding of the function of biological systems through the study of the 3-D structure of biological macromolecules. The RCSB PDB is one of three sites serving as deposition, data processing, and distribution sites of the Protein Data Bank Archive. Each site provides its own view of the primary data, thus providing a variety of tools and resources for the global community. RCSB is also the official keeper for the PDB archive, with sole access authority to the PDB archive directory structure and contents. The RCSB PDB Information Portal for Biological Macromolecular Structures offers online tools for search and retrieval, for visualizing structures, for depositing, validating, or downloading data, news and highlights, a discussion forum, and links to other areas of related research. The PDB archive is a repository of atomic coordinates and other information describing proteins and other important biological macromolecules. Structural biologists use methods such as X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy to determine the location of each atom relative to each other in the molecule. They then deposit this information, which is then annotated and publicly released into the archive by the wwPDB. Results can be viewed as 3-D images or models.

  15. PDBe: improved accessibility of macromolecular structure data from PDB and EMDB.

    PubMed

    Velankar, Sameer; van Ginkel, Glen; Alhroub, Younes; Battle, Gary M; Berrisford, John M; Conroy, Matthew J; Dana, Jose M; Gore, Swanand P; Gutmanas, Aleksandras; Haslam, Pauline; Hendrickx, Pieter M S; Lagerstedt, Ingvar; Mir, Saqib; Fernandez Montecelo, Manuel A; Mukhopadhyay, Abhik; Oldfield, Thomas J; Patwardhan, Ardan; Sanz-García, Eduardo; Sen, Sanchayita; Slowley, Robert A; Wainwright, Michael E; Deshpande, Mandar S; Iudin, Andrii; Sahni, Gaurav; Salavert Torres, Jose; Hirshberg, Miriam; Mak, Lora; Nadzirin, Nurul; Armstrong, David R; Clark, Alice R; Smart, Oliver S; Korir, Paul K; Kleywegt, Gerard J

    2016-01-04

    The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the 'best structures' for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data.

  16. Disorders of Carbohydrate Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Carbohydrates are sugars. ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism NOTE: This is ...

  17. Carbohydrate Counting and Diabetes

    MedlinePlus

    ... are the other main nutrients. Carbohydrates include sugars, starches, and fiber. Carbohydrate counting can help you control ... called starchy vegetables because they are high in starch. These vegetables have more carbohydrates per serving than ...

  18. All about Carbohydrate Counting

    MedlinePlus

    Toolkit No. 14 All About Carbohydrate Counting What is carbohydrate counting? Carbohydrate counting is a way to plan your meals. It can help ... Diabetes Association, Inc. 2/14 Toolkit No. 14: All About Carbohydrate Counting continued The chart at the ...

  19. Carbohydrate and dietary fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrate provides 50 to 60% of the calories consumed by the average American. Although relatively little carbohydrate is needed in the diet, carbohydrate spares protein and fat being metabolized for calories. The principal dietary carbohydrates are sugars and starches. Sugars (simple carbohydrat...

  20. Web servers and services for electrostatics calculations with APBS and PDB2PQR

    SciTech Connect

    Unni, Samir; Huang, Yong; Hanson, Robert M.; Tobias, Malcolm; Krishnan, Sriram; Li, Wilfred; Nielsen, Jens E.; Baker, Nathan A.

    2011-04-02

    APBS and PDB2PQR are widely utilized free software packages for biomolecular electrostatics calculations. Using the Opal toolkit, we have developed a web services framework for these software packages that enables the use of APBS and PDB2PQR by users who do not have local access to the necessary amount of computational capabilities. This not only increases accessibility of the software to a wider range of scientists, educators, and students but it also increases the availability of electrostatics calculations on portable computing platforms. Users can access this new functionality in two ways. First, an Opal-enabled version of APBS is provided in current distributions, available freely on the web. Second, we have extended the PDB2PQR web server to provide an interface for the setup, execution, and visualization electrostatics potentials as calculated by APBS. This web interface also uses the Opal framework which ensures the scalability needed to support the large APBS user community. Both of these resources are available from the APBS/PDB2PQR website: http://www.poissonboltzmann.org/.

  1. Carbohydrates and Diabetes

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Carbohydrates and Diabetes KidsHealth > For Teens > Carbohydrates and Diabetes ... Los carbohidratos y la diabetes Carbs and Blood Sugar Keeping your blood sugar levels on track means ...

  2. Protein segment finder: an online search engine for segment motifs in the PDB.

    PubMed

    Samson, Abraham O; Levitt, Michael

    2009-01-01

    Finding related conformations in the Protein Data Bank (PDB) is essential in many areas of bioscience. To assist this task, we designed a search engine that uses a compact database to quickly identify protein segments obeying a set of primary, secondary and tertiary structure constraints. The database contains information such as amino acid sequence, secondary structure, disulfide bonds, hydrogen bonds and atoms in contact as calculated from all protein structures in the PDB. The search engine parses the database and returns hits that match the queried parameters. The conformation search engine, which is notable for its high speed and interactive feedback, is expected to assist scientists in discovering conformation homologs and predicting protein structure. The engine is publicly available at http://ari.stanford.edu/psf and it will also be used in-house in an automatic mode aimed at discovering new protein motifs.

  3. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.

    PubMed Central

    Postma, P W; Lengeler, J W; Jacobson, G R

    1993-01-01

    Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the

  4. Carbohydrates in Supramolecular Chemistry.

    PubMed

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  5. Promoting a structural view of biology for varied audiences: an overview of RCSB PDB resources and experiences.

    PubMed

    Dutta, Shuchismita; Zardecki, Christine; Goodsell, David S; Berman, Helen M

    2010-10-01

    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) supports scientific research and education worldwide by providing an essential resource of information on biomolecular structures. In addition to serving as a deposition, data-processing and distribution center for PDB data, the RCSB PDB offers resources and online materials that different audiences can use to customize their structural biology instruction. These include resources for general audiences that present macromolecular structure in the context of a biological theme, method-based materials for researchers who take a more traditional approach to the presentation of structural science, and materials that mix theme-based and method-based approaches for educators and students. Through these efforts the RCSB PDB aims to enable optimal use of structural data by researchers, educators and students designing and understanding experiments in biology, chemistry and medicine, and by general users making informed decisions about their life and health.

  6. Radioiodinated branched carbohydrates

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1989-01-01

    A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.

  7. Carbohydrates as allergens.

    PubMed

    Commins, Scott P

    2015-01-01

    Complex carbohydrates are effective inducers of Th2 responses, and carbohydrate antigens can stimulate the production of glycan-specific antibodies. In instances where the antigen exposure occurs through the skin, the resulting antibody production can contain IgE class antibody. The glycan-stimulated IgE may be non-specific but may also be antigen specific. This review focuses on the production of cross-reactive carbohydrate determinants, the recently identified IgE antibody response to a mammalian oligosaccharide epitope, galactose-alpha-1,3-galactose (alpha-gal), as well as discusses practical implications of carbohydrates in allergy. In addition, the biological effects of carbohydrate antigens are reviewed in setting of receptors and host recognition.

  8. Computerized molecular modeling of carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computerized molecular modleing continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to carbohydrate-inexperienced computational chemists. Its comments on various methods and studi...

  9. Locked-ring C-Glycoside sugars. New carbohydrate products from plant cell walls.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Residual products from the fermentation of biomass for fuel ethanol production typically consist of complex carbohydrates, plus other products such as lignin. The analysis of these carbohydrate residues will be important for maximizing the fermentation process for optimal ethanol production. Techn...

  10. Psychobiological effects of carbohydrates.

    PubMed

    Spring, B; Chiodo, J; Harden, M; Bourgeois, M J; Mason, J D; Lutherer, L

    1989-05-01

    The authors studied whether the fatiguing effects of eating lunch are greater for carbohydrate-rich meals than for other meals, and related the time course of behavioral change to plasma glucose, insulin, and amino acids. On different occasions, in counterbalanced order, normal women (N = 7) fasted overnight, ate a standard breakfast, and at lunch either continued to fast or ate a high-carbohydrate, low-protein meal; a hedonically similar meal containing both carbohydrate and protein; or a high-protein, low-carbohydrate meal. Meals were isocaloric and equated for fat content. Only the carbohydrate meal significantly increased fatigue, which could not be attributed to hypoglycemia because plasma glucose remained elevated. Fatigue began approximately, when the carbohydrate meal elevated the plasma tryptophan ratio but ended even though the ratio remained elevated. Fatigue after a high-carbohydrate lunch could not be explained by reactive hypoglycemia or sweet taste, and could partially be explained by the hypothesis that fatigue parallels an elevation of the tryptophan ratio.

  11. Low-carbohydrate diets.

    PubMed

    Last, Allen R; Wilson, Stephen A

    2006-06-01

    Americans spend dollar 33 billion annually on weight loss products and services, and a large portion of this money is spent on low-carbohydrate diets. Because of their higher protein and fat content and lower fiber and carbohydrate content, concerns have been raised about the potential health consequences of low-carbohydrate diets. Published long-term data are lacking. Short-term studies comparing traditional low-fat diets with low-carbohydrate diets found lower triglyceride levels, higher high-density lipoprotein cholesterol levels, similar low-density lipoprotein cholesterol levels, and lower A1C levels in persons on low-carbohydrate diets. These diets induce greater weight loss at three and six months than traditional low-fat diets; however, by one year there is no significant difference in maintained weight loss. Weight loss is directly related to calorie content and the ability to maintain caloric restriction; the proportions of nutrients in the diet are irrelevant. Low-carbohydrate diets had lower dropout rates than low-fat diets in several studies, possibly because of the high protein content and low glycemic index, which can be appetite suppressing. Data indicate that low-carbohydrate diets are a safe, reasonable alternative to low-fat diets for weight loss. Additional studies are needed to investigate the long-term safety and effectiveness of these and other approaches to weight loss.

  12. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB-REDO strategies

    SciTech Connect

    Rimsa, Vadim; Eadsforth, Thomas C.; Joosten, Robbie P.; Hunter, William N.

    2014-02-01

    The structure of a bacterial M14-family carboxypeptidase determined exploiting microfocus synchrotron radiation and highly automated refinement protocols reveals its potential to act as a polyglutamylase. A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB-REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn{sup 2+}-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn{sup 2+}, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate.

  13. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB_REDO strategies

    PubMed Central

    Rimsa, Vadim; Eadsforth, Thomas C.; Joosten, Robbie P.; Hunter, William N.

    2014-01-01

    A potential cytosolic metallocarboxypeptidase from Burk­holderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB_REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn2+-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn2+, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate. PMID:24531462

  14. Carbohydrates: functionality in foods.

    PubMed

    Chinachoti, P

    1995-04-01

    Many functional requirements are met by the use of simple and complex carbohydrates in food. Carbohydrates offer a wide range of rheological and other properties, including solubility, cryoprotection, sweetening effect, hygroscopicity, crystallization inhibition, flavor encapsulation, and coating ability. These properties are based on chemical structure and interactions with other molecules through hydrogen bonding, ionic effect, and the formation of complexes with lipids and proteins. The ability to understand these properties directly affects the development of food products and processes. Thus, the functionality of carbohydrates in foods integrates precise knowledge of chemical structure and behavior with practical applications in the development and preparation of foods.

  15. Carbohydrate Dehydration Demonstrations.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Discusses the impact of various factors on the "charring reaction" of a carbohydrate with concentrated sulfuric acid including the type of sugar, the degree of fineness of the sugar crystals, and the amount of water added. (JRH)

  16. Carbohydrate Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. Normally ...

  17. Carbohydrates and Depression.

    ERIC Educational Resources Information Center

    Wurtman, Richard J.; Wurtman, Judith J.

    1989-01-01

    Describes the symptoms, such as appetite change and mood fluctuation, basic mechanisms, and some treatments of Seasonal Affective Disorder (SAD), Carbohydrate-Craving Obesity (CCO) and Premenstrual Syndrome (PMS). Provides several tables and diagrams, and three reading references. (YP)

  18. Digestion and Absorption of Carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrates are the major dietary sources of energy for humans. While most dietary carbohydrates are derived from multiple botanical sources, lactose and trehalose are the only animal-derived carbohydrates. Digestion of starch, the carbohydrate most abundantly consumed by humans, depends on the c...

  19. RCSB PDB Mobile: iOS and Android mobile apps to provide data access and visualization to the RCSB Protein Data Bank

    SciTech Connect

    Quinn, Gregory B.; Bi, Chunxiao; Christie, Cole H.; Pang, Kyle; Prlic, Andreas; Nakane, Takanori; Zardecki, Christine; Voigt, Maria; Berman, Helen M.; Bourne, Philip E.; Rose, Peter W.

    2014-09-02

    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) resource provides tools for query, analysis and visualization of the 3D structures in the PDB archive. As the mobile Web is starting to surpass desktop and laptop usage, scientists and educators are beginning to integrate mobile devices into their research and teaching. In response, we have developed the RCSB PDB Mobile app for the iOS and Android mobile platforms to enable fast and convenient access to RCSB PDB data and services. Lastly, using the app, users from the general public to expert researchers can quickly search and visualize biomolecules, and add personal annotations via the RCSB PDB's integrated MyPDB service.

  20. RCSB PDB Mobile: iOS and Android mobile apps to provide data access and visualization to the RCSB Protein Data Bank

    PubMed Central

    Quinn, Gregory B.; Bi, Chunxiao; Christie, Cole H.; Pang, Kyle; Prlić, Andreas; Nakane, Takanori; Zardecki, Christine; Voigt, Maria; Berman, Helen M.; Rose, Peter W.

    2015-01-01

    Summary: The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) resource provides tools for query, analysis and visualization of the 3D structures in the PDB archive. As the mobile Web is starting to surpass desktop and laptop usage, scientists and educators are beginning to integrate mobile devices into their research and teaching. In response, we have developed the RCSB PDB Mobile app for the iOS and Android mobile platforms to enable fast and convenient access to RCSB PDB data and services. Using the app, users from the general public to expert researchers can quickly search and visualize biomolecules, and add personal annotations via the RCSB PDB’s integrated MyPDB service. Availability and implementation: RCSB PDB Mobile is freely available from the Apple App Store and Google Play (http://www.rcsb.org). Contact: pwrose@ucsd.edu PMID:25183487

  1. RCSB PDB Mobile: iOS and Android mobile apps to provide data access and visualization to the RCSB Protein Data Bank

    DOE PAGES

    Quinn, Gregory B.; Bi, Chunxiao; Christie, Cole H.; ...

    2014-09-02

    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) resource provides tools for query, analysis and visualization of the 3D structures in the PDB archive. As the mobile Web is starting to surpass desktop and laptop usage, scientists and educators are beginning to integrate mobile devices into their research and teaching. In response, we have developed the RCSB PDB Mobile app for the iOS and Android mobile platforms to enable fast and convenient access to RCSB PDB data and services. Lastly, using the app, users from the general public to expert researchers can quickly search and visualize biomolecules,more » and add personal annotations via the RCSB PDB's integrated MyPDB service.« less

  2. Diarrhea caused by carbohydrate malabsorption.

    PubMed

    Hammer, Heinz F; Hammer, Johann

    2012-09-01

    This article will focus on the role of the colon in the pathogenesis of diarrhea in carbohydrate malabsorption or physiologically incomplete absorption of carbohydrates, and on the most common manifestation of carbohydrate malabsorption, lactose malabsorption. In addition, incomplete fructose absorption, the role of carbohydrate malabsorption in other malabsorptive diseases, and congenital defects that lead to malabsorption will be covered. The article concludes with a section on diagnostic tools to evaluate carbohydrate malabsorption.

  3. Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop.

    PubMed

    Sali, Andrej; Berman, Helen M; Schwede, Torsten; Trewhella, Jill; Kleywegt, Gerard; Burley, Stephen K; Markley, John; Nakamura, Haruki; Adams, Paul; Bonvin, Alexandre M J J; Chiu, Wah; Peraro, Matteo Dal; Di Maio, Frank; Ferrin, Thomas E; Grünewald, Kay; Gutmanas, Aleksandras; Henderson, Richard; Hummer, Gerhard; Iwasaki, Kenji; Johnson, Graham; Lawson, Catherine L; Meiler, Jens; Marti-Renom, Marc A; Montelione, Gaetano T; Nilges, Michael; Nussinov, Ruth; Patwardhan, Ardan; Rappsilber, Juri; Read, Randy J; Saibil, Helen; Schröder, Gunnar F; Schwieters, Charles D; Seidel, Claus A M; Svergun, Dmitri; Topf, Maya; Ulrich, Eldon L; Velankar, Sameer; Westbrook, John D

    2015-07-07

    Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models?

  4. Carbohydrates, pollinators, and cycads

    PubMed Central

    Marler, Thomas E; Lindström, Anders J

    2015-01-01

    Cycad biology, ecology, and horticulture decisions are not supported by adequate research, and experiments in cycad physiology in particular have been deficient. Our recent report on free sugar content in a range of cycad taxa and tissues sets the stage for developing continued carbohydrate research. Growth and development of cycad pollen, mediation of the herbivory traits of specialist pollinators, and support of expensive strobilus behavioral traits are areas of cycad pollination biology that would benefit from a greater understanding of the role of carbohydrate relations. PMID:26479502

  5. Carbohydrates, pollinators, and cycads.

    PubMed

    Marler, Thomas E; Lindström, Anders J

    2015-01-01

    Cycad biology, ecology, and horticulture decisions are not supported by adequate research, and experiments in cycad physiology in particular have been deficient. Our recent report on free sugar content in a range of cycad taxa and tissues sets the stage for developing continued carbohydrate research. Growth and development of cycad pollen, mediation of the herbivory traits of specialist pollinators, and support of expensive strobilus behavioral traits are areas of cycad pollination biology that would benefit from a greater understanding of the role of carbohydrate relations.

  6. The prediction of the degree of exposure to solvent of amino acid residues via genetic programming

    SciTech Connect

    Handley, S.

    1994-12-31

    In this paper I evolve programs that predict the degree of exposure to solvent (the buriedness) of amino acid residues given only the primary structure. I use genetic programming to evolve programs that take as input the primary structure and that output the buriedness of each residue. I trained these programs on a set of 82 proteins from the Brookhaven Protein Data Bank (PDB) and cross-validated them on a separate testing set of 40 proteins, also from the PDB. The best program evolved had a correlation of 0.434 between the predicted and observed buriednesses on the testing set.

  7. Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology.

    PubMed

    de la Fuente, Jesus M; Penadés, Soledad

    2004-01-01

    Carbohydrate-carbohydrate interaction is a reliable and versatile mechanism for cell adhesion and recognition. Glycosphingolipid (GSL) clusters at the cell membrane are mainly involved in this interaction. To investigate carbohydrate-carbohydrate interaction an integrated strategy (Glyconanotechnology) was developed. This strategy includes polyvalent tools (gold glyconanoparticles) mimicking GSL clustering at the cell membrane as well as analytical techniques such as AFM, TEM, and SPR to evaluate the interactions. The results obtained by means of this strategy and current status are presented.

  8. Carbohydrates for training and competition.

    PubMed

    Burke, Louise M; Hawley, John A; Wong, Stephen H S; Jeukendrup, Asker E

    2011-01-01

    An athlete's carbohydrate intake can be judged by whether total daily intake and the timing of consumption in relation to exercise maintain adequate carbohydrate substrate for the muscle and central nervous system ("high carbohydrate availability") or whether carbohydrate fuel sources are limiting for the daily exercise programme ("low carbohydrate availability"). Carbohydrate availability is increased by consuming carbohydrate in the hours or days prior to the session, intake during exercise, and refuelling during recovery between sessions. This is important for the competition setting or for high-intensity training where optimal performance is desired. Carbohydrate intake during exercise should be scaled according to the characteristics of the event. During sustained high-intensity sports lasting ~1 h, small amounts of carbohydrate, including even mouth-rinsing, enhance performance via central nervous system effects. While 30-60 g · h(-1) is an appropriate target for sports of longer duration, events >2.5 h may benefit from higher intakes of up to 90 g · h(-1). Products containing special blends of different carbohydrates may maximize absorption of carbohydrate at such high rates. In real life, athletes undertake training sessions with varying carbohydrate availability. Whether implementing additional "train-low" strategies to increase the training adaptation leads to enhanced performance in well-trained individuals is unclear.

  9. Specific Carbohydrate Diet: Does It Work?

    MedlinePlus

    ... Specific Carbohydrate Diet (SCD) Go Back The Specific Carbohydrate Diet (SCD) Email Print + Share There is no ... diet that has received attention is the Specific Carbohydrate Diet. This diet limits poorly digestible carbohydrates to ...

  10. Carbohydrates as Fat Replacers.

    PubMed

    Peng, Xingyun; Yao, Yuan

    2017-02-28

    The overconsumption of dietary fat contributes to various chronic diseases, which encourages attempts to develop and consume low-fat foods. Simple fat reduction causes quality losses that impede the acceptance of foods. Fat replacers are utilized to minimize the quality deterioration after fat reduction or removal to achieve low-calorie, low-fat claims. In this review, the forms of fats and their functions in contributing to food textural and sensory qualities are discussed in various food systems. The connections between fat reduction and quality loss are described in order to clarify the rationales of fat replacement. Carbohydrate fat replacers usually have low calorie density and provide gelling, thickening, stabilizing, and other texture-modifying properties. In this review, carbohydrates, including starches, maltodextrins, polydextrose, gums, and fibers, are discussed with regard to their interactions with other components in foods as well as their performances as fat replacers in various systems.

  11. Carbohydrate post-glycosylational modifications

    PubMed Central

    Yu, Hai; Chen, Xi

    2008-01-01

    Carbohydrate modification is a common phenomenon in nature. Many carbohydrate modifications such as some epimerization, O-acetylation, O-sulfation, O-methylation, N-deacetylation, and N-sulfation, take place after the formation of oligosaccharide or polysaccharide backbones. These modifications can be categorized as carbohydrate post-glycosylational modifications (PGMs). Carbohydrate PGMs further extend the complexity of the structures and the synthesis of carbohydrates and glycoconjugates. They also increase the capacity of the biological information that can be controlled by finely tuning the structures of carbohydrates. Developing efficient methods to obtain structurally defined naturally occurring oligosaccharides, polysaccharides, and glycoconjugates with carbohydrate PGMs is essential for understanding the biological significance of carbohydrate PGMs. Combine with high-throughput screening methods, synthetic carbohydrates with PGMs are invaluable probes in structure-activity relationship studies. We illustrate here several classes of carbohydrates with PGMs and their applications. Recent progress in chemical, enzymatic, and chemoenzymatic syntheses of these carbohydrates and their derivatives are also presented. PMID:17340000

  12. Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB.

    PubMed

    Lagerstedt, Ingvar; Moore, William J; Patwardhan, Ardan; Sanz-García, Eduardo; Best, Christoph; Swedlow, Jason R; Kleywegt, Gerard J

    2013-11-01

    The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed.

  13. Outcome of the first wwPDB/CCDC/D3R Ligand Validation Workshop

    PubMed Central

    Adams, Paul D.; Aertgeerts, Kathleen; Bauer, Cary; Bell, Jeffrey A.; Berman, Helen M.; Bhat, Talapady N.; Blaney, Jeff; Bolton, Evan; Bricogne, Gerard; Brown, David; Burley, Stephen K.; Case, David A.; Clark, Kirk L.; Darden, Tom; Emsley, Paul; Feher, Victoria A.; Feng, Zukang; Groom, Colin R.; Harris, Seth F.; Hendle, Jorg; Holder, Thomas; Joachimiak, Andrzej; Kleywegt, Gerard J.; Krojer, Tobias; Marcotrigiano, Joseph; Mark, Alan E.; Markley, John L.; Miller, Matthew; Minor, Wladek; Montelione, Gaetano T.; Murshudov, Garib; Nakagawa, Atsushi; Nakamura, Haruki; Nicholls, Anthony; Nicklaus, Marc; Nolte, Robert T.; Padyana, Anil K.; Peishoff, Catherine E.; Pieniazek, Susan; Read, Randy J.; Shao, Chenghua; Sheriff, Steven; Smart, Oliver; Soisson, Stephen; Spurlino, John; Stouch, Terry; Svobodova, Radka; Tempel, Wolfram; Terwilliger, Thomas C.; Tronrud, Dale; Velankar, Sameer; Ward, Suzanna; Warren, Gregory L.; Westbrook, John D.; Williams, Pamela; Yang, Huanwang; Young, Jasmine

    2016-01-01

    Summary Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank archive, ~75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery/design, and the goodness-of-fit of ligand models to electron density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide Protein Data Bank/Cambridge Crystallographic Data Centre/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30–31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the Protein Data Bank? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated. PMID:27050687

  14. Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop

    DOE PAGES

    Adams, Paul  D.; Aertgeerts, Kathleen; Bauer, Cary; ...

    2016-04-05

    Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank archive, ~75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery/design, and the goodness-of-fit of ligand models to electron density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide Protein Data Bank/Cambridge Crystallographicmore » Data Centre/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the Protein Data Bank? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.« less

  15. Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop

    SciTech Connect

    Adams, Paul  D.; Aertgeerts, Kathleen; Bauer, Cary; Bell, Jeffrey A.; Berman, Helen  M.; Bhat, Talapady  N.; Blaney, Jeff  M.; Bolton, Evan; Bricogne, Gerard; Brown, David; Burley, Stephen  K.; Case, David  A.; Clark, Kirk  L.; Darden, Tom; Emsley, Paul; Feher, Victoria  A.; Feng, Zukang; Groom, Colin  R.; Harris, Seth  F.; Hendle, Jorg; Holder, Thomas; Joachimiak, Andrzej; Kleywegt, Gerard  J.; Krojer, Tobias; Marcotrigiano, Joseph; Mark, Alan  E.; Markley, John  L.; Miller, Matthew; Minor, Wladek; Montelione, Gaetano  T.; Murshudov, Garib; Nakagawa, Atsushi; Nakamura, Haruki; Nicholls, Anthony; Nicklaus, Marc; Nolte, Robert  T.; Padyana, Anil  K.; Peishoff, Catherine E.; Pieniazek, Susan; Read, Randy  J.; Shao, Chenghua; Sheriff, Steven; Smart, Oliver; Soisson, Stephen; Spurlino, John; Stouch, Terry; Svobodova, Radka; Tempel, Wolfram; Terwilliger, Thomas  C.; Tronrud, Dale; Velankar, Sameer; Ward, Suzanna  C.; Warren, Gregory  L.; Westbrook, John  D.; Williams, Pamela; Yang, Huanwang; Young, Jasmine

    2016-04-05

    Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank archive, ~75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery/design, and the goodness-of-fit of ligand models to electron density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide Protein Data Bank/Cambridge Crystallographic Data Centre/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the Protein Data Bank? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.

  16. Re-refinement from deposited X-ray data can deliver improved models for most PDB entries

    PubMed Central

    Joosten, Robbie P.; Womack, Thomas; Vriend, Gert; Bricogne, Gérard

    2009-01-01

    The deposition of X-ray data along with the customary structural models defining PDB entries makes it possible to apply large-scale re-refinement protocols to these entries, thus giving users the benefit of improvements in X-ray methods that have occurred since the structure was deposited. Auto­mated gradient refinement is an effective method to achieve this goal, but real-space intervention is most often required in order to adequately address problems detected by structure-validation software. In order to improve the existing protocol, automated re-refinement was combined with structure validation and difference-density peak analysis to produce a catalogue of problems in PDB entries that are amenable to automatic correction. It is shown that re-refinement can be effective in producing improvements, which are often associated with the systematic use of the TLS parameterization of B factors, even for relatively new and high-resolution PDB entries, while the accompanying manual or semi-manual map analysis and fitting steps show good prospects for eventual automation. It is proposed that the potential for simultaneous improvements in methods and in re-refinement results be further encouraged by broadening the scope of depositions to include refinement metadata and ultimately primary rather than reduced X-ray data. PMID:19171973

  17. Proteins of unknown function in the Protein Data Bank (PDB): an inventory of true uncharacterized proteins and computational tools for their analysis.

    PubMed

    Nadzirin, Nurul; Firdaus-Raih, Mohd

    2012-10-08

    Proteins of uncharacterized functions form a large part of many of the currently available biological databases and this situation exists even in the Protein Data Bank (PDB). Our analysis of recent PDB data revealed that only 42.53% of PDB entries (1084 coordinate files) that were categorized under "unknown function" are true examples of proteins of unknown function at this point in time. The remainder 1465 entries also annotated as such appear to be able to have their annotations re-assessed, based on the availability of direct functional characterization experiments for the protein itself, or for homologous sequences or structures thus enabling computational function inference.

  18. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    PubMed

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  19. Noncaloric Benefits of Carbohydrates.

    PubMed

    Reddy, B Ravinder

    2015-01-01

    Noncaloric benefits of carbohydrates are due to the presence of dietary fibers, which are a heterogeneous group of natural food sources and form an important component of a healthy diet. They differ in physiochemical properties such as solubility, fermentability and viscosity. They have a wide range of physiological effects resulting in gastrointestinal and systemic benefits. These include appetite, satiety, bowel transit time and function, production of short-chain fatty acids and certain vitamins, and effects on gut microbiota, immunity and inflammation, as well as mineral absorption. They also help to control the glycemic status and serum lipid levels, resulting in reduced incidence rates of atherosclerosis, hypertension, stroke and cardiovascular diseases.

  20. Clustered Carbohydrates in Synthetic Vaccines†

    PubMed Central

    Peri, Francesco

    2013-01-01

    Are there general rules to achieve efficient immunization against carbohydrate antigens? Thanks to technological advances in glycobiology and glycochemistry we entered in a new era in which the rational design of carbohydrate vaccines has become an achievable goal. Aim of this Tutorial Review is to present the most recent achievements in the field of semi and fully synthetic carbohydrate vaccines against viruses, bacteria and cancer. It is also pointed out that the understanding of the chemical and biochemical processes related to immunization allows the modern chemist to rationally design carbohydrate vaccines with improved efficiency. PMID:23250562

  1. Issues in Nutrition: Carbohydrates.

    PubMed

    Thompson, Margaret E; Noel, Mary Barth

    2017-01-01

    Carbohydrates include sugars, starches, and dietary fibers. Resistant starches resemble fiber in their behavior in the intestinal tract, and may have positive effects on blood glucose levels and the gut microbiome. Fibers are classified as soluble and insoluble, but most fiber-containing foods contain a mixture of soluble and insoluble fiber. Soluble fiber has been shown to lower low-density lipoprotein cholesterol levels. Many artificial sweeteners and other sugar substitutes are available. Most natural sources of sweeteners also are energy sources. Many artificial sweeteners contain no kilocalories in the amounts typically used. Sugar alcohols may have a laxative effect when consumed in large amounts. Glycemic index and glycemic load are measurements that help quantify serum glucose response after ingestion of particular foods. These measurements may be affected by the combination of foods consumed in a given meal, and the glycemic index may vary among individuals eating the same meal. Eating foods with a low glycemic index may help prevent development of type 2 diabetes. There is no definitive evidence to recommend low-carbohydrate diets over low-fat diets for long-term weight loss; they are equally effective.

  2. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    ERIC Educational Resources Information Center

    Lasker, Denise Ann

    2009-01-01

    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  3. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins

    PubMed Central

    Jo, Sunhwan; Song, Kevin C.; Desaire, Heather; MacKerell, Alexander D.; Im, Wonpil

    2011-01-01

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. PMID:21815173

  4. Glycan Reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins.

    PubMed

    Jo, Sunhwan; Song, Kevin C; Desaire, Heather; MacKerell, Alexander D; Im, Wonpil

    2011-11-15

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics.

  5. Stereochemical Control in Carbohydrate Chemistry

    ERIC Educational Resources Information Center

    Batchelor, Rhys; Northcote, Peter T.; Harvey, Joanne E.; Dangerfield, Emma M.; Stocker, Bridget L.

    2008-01-01

    Carbohydrates, in the form of glycoconjugates, have recently been shown to control a wide range of cellular processes. Accordingly, students interested in the study of organic chemistry and biomedical sciences should be exposed to carbohydrate chemistry. To this end, we have developed a sequence of experiments that leads the student from the…

  6. Synthesis of carbohydrate-based surfactants

    DOEpatents

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  7. Abuse potential of carbohydrates for overweight carbohydrate cravers

    PubMed Central

    Spring, Bonnie; Schneider, Kristin; Smith, Malaina; Kendzor, Darla; Appelhans, Bradley; Hedeker, Donald; Pagoto, Sherry

    2010-01-01

    Rationale The long-rejected construct of food addiction is undergoing re-examination. Objectives . To evaluate whether a novel carbohydrate food shows abuse potential for rigorously defined carbohydrate cravers, as evidenced by selective self-administration and mood enhancement during double-blind discrimination testing. Methods Discrete trials choice testing was performed with 61 overweight (BMI m=27.64, SD=2.59) women (ages 18–45; 19.70% African American) whose diet records showed >4 weekly afternoon/evening emotional eating episodes confined to snacks with carbohydrate:protein ≥ 6:1. After being induced into a sad mood, participants were exposed, double-blind and in counterbalanced order, to taste-matched carbohydrate and protein beverages. They were asked to choose and self-administer the drink that made them feel better. Results Women overwhelmingly chose the carbohydrate beverage, even though blinded. Mixed-effects regression modeling, controlling for beverage order, revealed greater liking and greater reduction in dysphoria following the carbohydrate beverage compared to the protein beverage, but no differential effect on vigor. Conclusion For women who crave them, carbohydrates appear to display abuse potential, plausibly contributing to overconsumption and overweight. PMID:18273603

  8. GenomewidePDB 2.0: A Newly Upgraded Versatile Proteogenomic Database for the Chromosome-Centric Human Proteome Project.

    PubMed

    Jeong, Seul-Ki; Hancock, William S; Paik, Young-Ki

    2015-09-04

    Since the launch of the Chromosome-centric Human Proteome Project (C-HPP) in 2012, the number of "missing" proteins has fallen to 2932, down from ∼5932 since the number was first counted in 2011. We compared the characteristics of missing proteins with those of already annotated proteins with respect to transcriptional expression pattern and the time periods in which newly identified proteins were annotated. We learned that missing proteins commonly exhibit lower levels of transcriptional expression and less tissue-specific expression compared with already annotated proteins. This makes it more difficult to identify missing proteins as time goes on. One of the C-HPP goals is to identify alternative spliced product of proteins (ASPs), which are usually difficult to find by shot-gun proteomic methods due to their sequence similarities with the representative proteins. To resolve this problem, it may be necessary to use a targeted proteomics approach (e.g., selected and multiple reaction monitoring [S/MRM] assays) and an innovative bioinformatics platform that enables the selection of target peptides for rarely expressed missing proteins or ASPs. Given that the success of efforts to identify missing proteins may rely on more informative public databases, it was necessary to upgrade the available integrative databases. To this end, we attempted to improve the features and utility of GenomewidePDB by integrating transcriptomic information (e.g., alternatively spliced transcripts), annotated peptide information, and an advanced search interface that can find proteins of interest when applying a targeted proteomics strategy. This upgraded version of the database, GenomewidePDB 2.0, may not only expedite identification of the remaining missing proteins but also enhance the exchange of information among the proteome community. GenomewidePDB 2.0 is available publicly at http://genomewidepdb.proteomix.org/.

  9. Being a binding site: characterizing residue composition of binding sites on proteins.

    PubMed

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-12-30

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs.

  10. Decarbonylation and dehydrogenation of carbohydrates

    DOEpatents

    Andrews, Mark A.; Klaeren, Stephen A.

    1991-01-01

    Carbohydrates, especially aldose or ketose sugars, including those whose carbonyl group is masked by hemi-acetal or hemi-ketal formation, are decarbonylated by heating the feed carbohydrate together with a transition metal complex in a suitable solvent. Also, primary alcohols, including sugar alditols are simultaneously dehydrogenated and decarbonylated by heating a mixture of rhodium and ruthenium complexes and the alcohol and optionally a hydrogen acceptor in an acceptable solvent. Such defarbonylation and/or dehydrogenation of sugars provides a convenient procedure for the synthesis of certain carbohydrates and may provide a means for the conversion of biomass into useful products.

  11. JET2 Viewer: a database of predicted multiple, possibly overlapping, protein–protein interaction sites for PDB structures

    PubMed Central

    Ripoche, Hugues; Laine, Elodie; Ceres, Nicoletta; Carbone, Alessandra

    2017-01-01

    The database JET2 Viewer, openly accessible at http://www.jet2viewer.upmc.fr/, reports putative protein binding sites for all three-dimensional (3D) structures available in the Protein Data Bank (PDB). This knowledge base was generated by applying the computational method JET2 at large-scale on more than 20 000 chains. JET2 strategy yields very precise predictions of interacting surfaces and unravels their evolutionary process and complexity. JET2 Viewer provides an online intelligent display, including interactive 3D visualization of the binding sites mapped onto PDB structures and suitable files recording JET2 analyses. Predictions were evaluated on more than 15 000 experimentally characterized protein interfaces. This is, to our knowledge, the largest evaluation of a protein binding site prediction method. The overall performance of JET2 on all interfaces are: Sen = 52.52, PPV = 51.24, Spe = 80.05, Acc = 75.89. The data can be used to foster new strategies for protein–protein interactions modulation and interaction surface redesign. PMID:27899675

  12. Carbohydrates and Diabetes (For Parents)

    MedlinePlus

    ... than others. Whole-grain foods, vegetables, candy, and soda all have carbohydrates. But fruits, vegetables, and whole- ... generally healthier than sugary foods like candy and soda because they provide fiber , vitamins, and other nutrients. ...

  13. Carbohydrates and Diabetes (For Parents)

    MedlinePlus

    ... two main forms of carbohydrates are sugars and starches. Types of sugars include fructose (sugar found in ... sugar found in milk and yogurt). Types of starches include vegetables like potatoes, corn, and peas; grains, ...

  14. An eleven amino acid residue deletion expands the substrate specificity of acetyl xylan esterase II (AXE II) from Penicillium purpurogenum

    NASA Astrophysics Data System (ADS)

    Colombres, Marcela; Garate, José A.; Lagos, Carlos F.; Araya-Secchi, Raúl; Norambuena, Patricia; Quiroz, Soledad; Larrondo, Luis; Pérez-Acle, Tomas; Eyzaguirre, Jaime

    2008-01-01

    The soft-rot fungus Penicillium purpurogenum secretes to the culture medium a variety of enzymes related to xylan biodegradation, among them three acetyl xylan esterases (AXE I, II and III). AXE II has 207 amino acids; it belongs to family 5 of the carbohydrate esterases and its structure has been determined by X-ray crystallography at 0.9 Å resolution (PDB 1G66). The enzyme possesses the α/β hydrolase fold and the catalytic triad typical of serine esterases (Ser90, His187 and Asp175). AXE II can hydrolyze esters of a large variety of alcohols, but it is restricted to short chain fatty acids. An analysis of its three-dimensional structure shows that a loop that covers the active site may be responsible for this strict specificity. Cutinase, an enzyme that hydrolyzes esters of long chain fatty acids and shows a structure similar to AXE II, lacks this loop. In order to generate an AXE II with this broader specificity, the preparation of a mutant lacking residues involving this loop (Gly104 to Ala114) was proposed. A set of molecular simulation experiments based on a comparative model of the mutant enzyme predicted a stable structure. Using site-directed mutagenesis, the loop's residues have been eliminated from the AXE II cDNA. The mutant protein has been expressed in Aspergillus nidulans A722 and Pichia pastoris, and it is active towards a range of fatty acid esters of up to at least 14 carbons. The availability of an esterase with broader specificity may have biotechnological applications for the synthesis of sugar esters.

  15. FragBag, an accurate representation of protein structure, retrieves structural neighbors from the entire PDB quickly and accurately.

    PubMed

    Budowski-Tal, Inbal; Nov, Yuval; Kolodny, Rachel

    2010-02-23

    Fast identification of protein structures that are similar to a specified query structure in the entire Protein Data Bank (PDB) is fundamental in structure and function prediction. We present FragBag: An ultrafast and accurate method for comparing protein structures. We describe a protein structure by the collection of its overlapping short contiguous backbone segments, and discretize this set using a library of fragments. Then, we succinctly represent the protein as a "bags-of-fragments"-a vector that counts the number of occurrences of each fragment-and measure the similarity between two structures by the similarity between their vectors. Our representation has two additional benefits: (i) it can be used to construct an inverted index, for implementing a fast structural search engine of the entire PDB, and (ii) one can specify a structure as a collection of substructures, without combining them into a single structure; this is valuable for structure prediction, when there are reliable predictions only of parts of the protein. We use receiver operating characteristic curve analysis to quantify the success of FragBag in identifying neighbor candidate sets in a dataset of over 2,900 structures. The gold standard is the set of neighbors found by six state of the art structural aligners. Our best FragBag library finds more accurate candidate sets than the three other filter methods: The SGM, PRIDE, and a method by Zotenko et al. More interestingly, FragBag performs on a par with the computationally expensive, yet highly trusted structural aligners STRUCTAL and CE.

  16. Cancer Vaccines and Carbohydrate Epitopes

    PubMed Central

    Heimburg-Molinaro, Jamie; Lum, Michelle; Vijay, Geraldine; Jain, Miten; Almogren, Adel; Rittenhouse-Olson, Kate

    2011-01-01

    Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related LewisY, Sialyl LewisX and Sialyl LewisA, and LewisX, (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described. PMID:21964054

  17. Carbohydrate chemistry in drug discovery.

    PubMed

    Galan, M Carmen; Benito-Alifonso, David; Watt, Gregory M

    2011-05-21

    The multitude of roles that carbohydrates and their glyco-conjugates play in biological processes has stimulated great interest in determining the nature of their interactions in both normal and diseased states. Manipulating such interactions will provide leads for drug discovery. Of the major classes of biomolecule, carbohydrates are the most structurally diverse. This hetereogeneity makes isolation of pure samples, and in sufficient amounts, from biological sources extremely difficult. Chemical synthesis offers the advantage of producing pure and structurally defined oligosaccharides for biological investigations. Although the complex nature of carbohydrates means that this is challenging, recent advances in the field have facilitated access to these molecules. The synthesis and isolation of oligosaccharides combined with progress in glycoarray technology have aided the identification of new carbohydrate-binding drug targets. This review aims to provide an overview of the latest advancements in carbohydrate chemistry and the role of these complex molecules in drug discovery, focusing particularly on synthetic methodologies, glycosaminoglycans, glycoprotein synthesis and vaccine development over the last few years.

  18. Characterization of the carbohydrate components of Taenia solium oncosphere proteins and their role in the antigenicity.

    PubMed

    Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H; Gilman, Robert H

    2013-10-01

    This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that posttranslational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells.

  19. CHARACTERIZATION OF THE CARBOHYDRATE COMPONENTS OF Taenia solium ONCOSPHERE PROTEINS AND THEIR ROLE IN THE ANTIGENICITY

    PubMed Central

    Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H.; Gilman, Robert H.

    2015-01-01

    This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that post-translational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells. PMID:23982308

  20. New carbohydrate-based materials

    SciTech Connect

    Callstrom, M.R.

    1992-07-01

    We have prepared a series of new carbohydrate-based materials based on the use of carbohydrates as a template for the introduction of functionality to polymeric materials with complete regio- and stereochemical control. The synthesis of these new materials by the use of chemical and enzymatic methods allows for the rational design of new materials based on the properties of the monomeric subunit. These materials have potential applications that range from their use in enhanced oil recovery to biodegradable plastics to biological applications including targeted drug delivery and enzyme stabilization.

  1. Challenges with nonfiber carbohydrate methods.

    PubMed

    Hall, M B

    2003-12-01

    Nonfiber carbohydrates (NFC) encompass a compositionally and nutritionally diverse group exclusive of those carbohydrates found in NDF. Their content in feeds has often been described as a single value estimated by difference as 100% of dry matter minus the percentages of CP, NDF (adjusted for CP in NDF), ether extract, and ash. A calculated value was used because of difficulties with assays for individual NFC, but it does not differentiate among nutritionally distinct NFC. Errors in NFC estimation can arise from not accounting for CP in NDF and when multipliers other than 6.25 are appropriate to estimate CP. Analyses that begin to distinguish among NFC are those for starch, soluble fiber (non-NDF, nonstarch polysaccharides), and low molecular weight carbohydrates (mono- and oligosaccharides). Many starch analyses quantify alpha-glucans through specific hydrolysis of alpha-(1 --> 4) and alpha-(1 --> 6) linkages in the glucan, and measurement of released glucose. Incomplete gelatinization and hydrolysis will lead to underestimation of starch content. Starch values are inflated by enzyme preparations that hydrolyze carbohydrates other than alpha-glucan, measurement of all released monosaccharides without specificity for glucose, and failure to exclude free glucose present in the unhydrolyzed sample. Soluble fiber analyses err in a fashion similar to NFC if estimation of CP requires multipliers other than 6.25, or if contaminants such as CP and starch have not been properly accounted. Depolymerization and incomplete precipitation can also decrease soluble fiber estimates. The low molecular weight carbohydrates have been defined as carbohydrates soluble in 78 to 80% ethanol, which separates them from polysaccharides. They can be measured in extracts using broad-spectrum colorimetric assays (phenol-sulfuric acid assay or reducing sugar analysis of acid hydrolyzed samples) or chromatographic methods. Limitations of the colorimetric assays include lack of differentiation

  2. A Systematic Analysis of the Structures of Heterologously Expressed Proteins and Those from Their Native Hosts in the RCSB PDB Archive

    PubMed Central

    Zhou, Ren-Bin; Lu, Hui-Meng; Liu, Jie; Shi, Jian-Yu; Zhu, Jing; Lu, Qin-Qin; Yin, Da-Chuan

    2016-01-01

    Recombinant expression of proteins has become an indispensable tool in modern day research. The large yields of recombinantly expressed proteins accelerate the structural and functional characterization of proteins. Nevertheless, there are literature reported that the recombinant proteins show some differences in structure and function as compared with the native ones. Now there have been more than 100,000 structures (from both recombinant and native sources) publicly available in the Protein Data Bank (PDB) archive, which makes it possible to investigate if there exist any proteins in the RCSB PDB archive that have identical sequence but have some difference in structures. In this paper, we present the results of a systematic comparative study of the 3D structures of identical naturally purified versus recombinantly expressed proteins. The structural data and sequence information of the proteins were mined from the RCSB PDB archive. The combinatorial extension (CE), FATCAT-flexible and TM-Align methods were employed to align the protein structures. The root-mean-square distance (RMSD), TM-score, P-value, Z-score, secondary structural elements and hydrogen bonds were used to assess the structure similarity. A thorough analysis of the PDB archive generated five-hundred-seventeen pairs of native and recombinant proteins that have identical sequence. There were no pairs of proteins that had the same sequence and significantly different structural fold, which support the hypothesis that expression in a heterologous host usually could fold correctly into their native forms. PMID:27517583

  3. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    SciTech Connect

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-10-01

    Macromolecular structures deposited in the PDB can and should be continually reinterpreted and improved on the basis of their accompanying experimental X-ray data, exploiting the steady progress in methods and software that the deposition of such data into the PDB on a massive scale has made possible. Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be

  4. Carbohydrates - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Carbohydrates URL of this page: https://medlineplus.gov/languages/carbohydrates.html Other topics A-Z A B ...

  5. Low-digestible carbohydrates in practice.

    PubMed

    Grabitske, Hollie A; Slavin, Joanne L

    2008-10-01

    Low-digestible carbohydrates are carbohydrates that are incompletely or not absorbed in the small intestine but are at least partly fermented by bacteria in the large intestine. Fiber, resistant starch, and sugar alcohols are types of low-digestible carbohydrates. Given potential health benefits (including a reduced caloric content, reduced or no effect on blood glucose levels, non-cariogenic effect), the prevalence of low-digestible carbohydrates in processed foods is increasing. Low-digestible carbohydrate fermentation in the gut causes gastrointestinal effects, especially at higher intakes. We review the wide range of low-digestible carbohydrates in food products, offer advice on identifying low-digestible carbohydrates in foods and beverages, and make suggestions for intakes of low-digestible carbohydrates.

  6. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    SciTech Connect

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-09-30

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.

  7. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    DOE PAGES

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-09-30

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when itmore » was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.« less

  8. AMPK beta subunits display isoform specific affinities for carbohydrates.

    PubMed

    Koay, Ann; Woodcroft, Ben; Petrie, Emma J; Yue, Helen; Emanuelle, Shane; Bieri, Michael; Bailey, Michael F; Hargreaves, Mark; Park, Jong-Tae; Park, Kwan-Hwa; Ralph, Stuart; Neumann, Dietbert; Stapleton, David; Gooley, Paul R

    2010-08-04

    AMP-activated protein kinase (AMPK) is a heterotrimer of catalytic (alpha) and regulatory (beta and gamma) subunits with at least two isoforms for each subunit. AMPK beta1 is widely expressed whilst AMPK beta2 is highly expressed in muscle and both beta isoforms contain a mid-molecule carbohydrate-binding module (beta-CBM). Here we show that beta2-CBM has evolved to contain a Thr insertion and increased affinity for glycogen mimetics with a preference for oligosaccharides containing a single alpha-1,6 branched residue. Deletion of Thr-101 reduces affinity for single alpha-1,6 branched oligosaccharides by 3-fold, while insertion of this residue into the equivalent position in the beta1-CBM sequence increases affinity by 3-fold, confirming the functional importance of this residue.

  9. Carbohydrates as enantioinduction components in stereoselective catalysis

    PubMed Central

    Henderson, Alexander S.

    2016-01-01

    Carbohydrate derivatives are readily available chiral molecules, yet they are infrequently employed as enantioinduction components in stereoselective catalysis. In this review, synthetic approaches to carbohydrate-based ligands and catalysts are outlined, along with example applications in enantioselective catalysis. A wide range of carbohydrate-based functionality is covered, and key trends and future opportunities are identified. PMID:27064817

  10. Overall carbohydrate-binding properties of Castanea crenata agglutinin (CCA).

    PubMed

    Nomura, Keiichi; Takahashi, Nobuyuki; Hirose, Masaaki; Nakamura, Sachiko; Yagi, Fumio

    2005-09-05

    The carbohydrate-binding properties of Castanea crenata agglutinin (CCA) were investigated by an enzyme-linked lectin absorbent assay. The binding ability of each carbohydrate was compared using IC(50) values. CCA exhibited mannose/glucose specificity, as observed with many mannose-binding jacalin-related lectins. For oligosaccharides containing glucose, it has been shown that the degree of polymerization and the linkage mode of glucose residues have no effect on CCA-carbohydrate interaction; thus, only the non-reducing end glucose unit in glucooligosaccharides may be involved in the interaction with CCA. Among mannooligosaccharides, CCA strongly recognized alpha-(1-->3)-D-Man-[alpha-D-Man-(1-->6)]-D-Man, which is a core in N-linked carbohydrate chains. By considering the results with glycoproteins, it is likely that CCA binds preferentially to mono- or non-sialylated biantennary carbohydrate chains. We also obtained K(d) values by analysis of the dependency of the IC(50) on CCA concentration, based on the hypothesis that CCA has a single binding site or two equivalent binding sites. The estimated K(d) values for mannose, glucose and alpha-(1-->3)-D-Man-[alpha-D-Man-(1-->6)]-D-Man were 2.39, 7.19 and 0.483 mM, respectively. The relative binding abilities showed good agreement with the relative inhibition intensities. Isothermal calorimetric titration was carried out to directly estimate the dissociation constants of CCA for mannose and for alpha-D-Man-(1-->3)-D-Man. The values were 2.34 mM for mannose and 0.507 mM alpha-D-Man-(1-->3)-D-Man. These results suggest that the relative inhibition intensity represents the ratio of K(d) values and that CCA has a single or two equivalent binding sites.

  11. Disorders of carbohydrate digestion and absorption.

    PubMed

    Heitlinger, L A; Lebenthal, E

    1988-04-01

    The carbohydrate malabsorptive syndromes are frequently seen by pediatricians. The congenital deficiency states are quite rare, but adult type hypolactasia and lactose intolerance following rotavirus infection are recognized with increasing frequency by primary care physicians. Therapy for these disorders involves identification of the offending carbohydrate, removal of the carbohydrate from the diet, and exclusion of other entities that may result in carbohydrate malabsorption but not respond to its removal from the diet. Prognosis for both the primary and secondary carbohydrate malabsorption syndromes is excellent. Compliance with diets for those pediatric patients who will require lifelong therapy remains problematic.

  12. Carbohydrates in peptide and protein design.

    PubMed

    Jensen, Knud J; Brask, Jesper

    2005-01-01

    Monosaccharides and amino acids are fundamental building blocks in the assembly of nature's polymers. They have different structural aspects and, to a significant extent, different functional groups. Oligomerization gives rise to oligosaccharides and peptides, respectively. While carbohydrates and peptides can be found conjoined in nature, e.g., in glycopeptides, the aim of this review is the radical redesign of peptide structures using carbohydrates, particularly monosaccharides and cyclic oligosaccharides, to produce novel peptides, peptidomimetics, and abiotic proteins. These hybrid molecules, chimeras, have properties arising largely from the combination of structural characteristics of carbohydrates with the functional group diversity of peptides. This field includes de novo designed synthetic glycopeptides, sugar (carbohydrate) amino acids, carbohydrate scaffolds for nonpeptidal peptidomimetics of cyclic peptides, cyclodextrin functionalized peptides, and carboproteins, i.e., carbohydrate-based proteinmimetics. These successful applications demonstrate the general utility of carbohydrates in peptide and protein architecture.

  13. Stacking Interactions between Carbohydrate and Protein Quantified by Combination of Theoretical and Experimental Methods

    PubMed Central

    Nečasová, Ivona; Mishra, Sushil Kumar; Komárek, Jan; Koča, Jaroslav

    2012-01-01

    Carbohydrate – receptor interactions are an integral part of biological events. They play an important role in many cellular processes, such as cell-cell adhesion, cell differentiation and in-cell signaling. Carbohydrates can interact with a receptor by using several types of intermolecular interactions. One of the most important is the interaction of a carbohydrate's apolar part with aromatic amino acid residues, known as dispersion interaction or CH/π interaction. In the study presented here, we attempted for the first time to quantify how the CH/π interaction contributes to a more general carbohydrate - protein interaction. We used a combined experimental approach, creating single and double point mutants with high level computational methods, and applied both to Ralstonia solanacearum (RSL) lectin complexes with α-l-Me-fucoside. Experimentally measured binding affinities were compared with computed carbohydrate-aromatic amino acid residue interaction energies. Experimental binding affinities for the RSL wild type, phenylalanine and alanine mutants were −8.5, −7.1 and −4.1 kcal.mol−1, respectively. These affinities agree with the computed dispersion interaction energy between carbohydrate and aromatic amino acid residues for RSL wild type and phenylalanine, with values −8.8, −7.9 kcal.mol−1, excluding the alanine mutant where the interaction energy was −0.9 kcal.mol−1. Molecular dynamics simulations show that discrepancy can be caused by creation of a new hydrogen bond between the α-l-Me-fucoside and RSL. Observed results suggest that in this and similar cases the carbohydrate-receptor interaction can be driven mainly by a dispersion interaction. PMID:23056230

  14. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants

    PubMed Central

    2004-01-01

    Cell-surface saccharides of Mycobacterium tuberculosis appear to be crucial factors in tuberculosis pathogenicity and could be useful antigens in tuberculosis immunodiagnosis. In the present study, we report the successful antigenic and immunogenic mimicry of mannose-containing cell-wall compounds of M. tuberculosis by dodecamer peptides identified by phage-display technology. Using a rabbit antiserum raised against M. tuberculosis cell-surface saccharides as a target for biopanning, peptides with three different consensus sequences were identified. Phage-displayed and chemically synthesized peptides bound to the anticarbohydrate antiserum. Rabbit antibodies elicited against the peptide QEPLMGTVPIRAGGGS recognize the mannosylated M. tuberculosis cell-wall antigens arabinomannan and lipoarabinomannan, and the glycosylated recombinant protein alanine/proline-rich antigen. Furthermore, antibodies were also able to react with mannan from Saccharomyces cerevisiae, but not with phosphatidylinositol dimannosides or arabinogalactan from mycobacteria. These results suggest that the immunogenic peptide mimics oligomannosidic epitopes. Interestingly, this report provides evidence that, in contrast with previously known carbohydrate mimotopes, no aromatic residues are necessary in a peptide sequence for mimicking unusual glycoconjugates synthesized by mycobacteria. The possible usefulness of the identified peptide mimotopes as surrogate reagents for immunodiagnosis and for the study of functional roles of the native non-peptide epitopes is discussed. PMID:15560754

  15. Electrocatalysis in proteins, nucleic acids and carbohydrates.

    PubMed

    Paleček, Emil; Bartošík, Martin; Ostatná, Veronika; Trefulka, Mojmír

    2012-02-01

    The ability of proteins to catalyze hydrogen evolution has been known for more than 80 years, but the poorly developed d.c. polarographic "pre-sodium wave" was of little analytical use. Recently, we have shown that by using constant current chronopotentiometric stripping analysis, proteins produce a well-developed peak H at hanging mercury drop and solid amalgam electrodes. Peak H sensitively reflects changes in protein structures due to protein denaturation, single amino acid exchange, etc. at the picomole level. Unmodified DNA and RNA do not yield such a peak, but they produce electrocatalytic voltammetric signals after modification with osmium tetroxide complexes with nitrogen ligands [Os(VIII)L], binding covalently to pyrimidine bases in nucleic acids. Recently, it has been shown that six-valent [Os(VI)L] complexes bind to 1,2-diols in polysaccharides and oligosaccharides, producing voltammetric responses similar to those of DNA-Os(VIII)L adducts. Electrocatalytic peaks produced by Os-modified nucleic acids, proteins (reaction with tryptophan residues) and carbohydrates are due to the catalytic hydrogen evolution, allowing determination of oligomers at the picomolar level.

  16. Prediction of carbohydrate binding sites on protein surfaces with 3-dimensional probability density distributions of interacting atoms.

    PubMed

    Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall

  17. Ectoine and 5-hydroxyectoine accumulation in the halophile Virgibacillus halodenitrificans PDB-F2 in response to salt stress.

    PubMed

    Tao, Ping; Li, Hui; Yu, Yunjiang; Gu, Jidong; Liu, Yongdi

    2016-08-01

    The moderately halophilic bacterium Virgibacillus halodenitrificans PDB-F2 copes with salinity by synthesizing or taking up compatible solutes. The main compatible solutes in this strain were ectoine and hydroxyectoine, as determined by (1)H nuclear magnetic resonance spectroscopy ((1)H-NMR). A high-performance liquid chromatography (HPLC) analysis showed that ectoine was the major solute that was synthesized in response to elevated salinity, while hydroxyectoine was a minor solute. However, the hydroxyectoine/ectoine ratio increased from 0.04 at 3 % NaCl to 0.45 at 15 % NaCl in the late exponential growth phase. A cluster of ectoine biosynthesis genes was identified, including three genes in the order of ectA, ectB, and ectC. The hydroxyectoine biosynthesis gene ectD was not part of the ectABC gene cluster. Reverse transcription-quantitative polymerase chain reactions (RT-qPCR) showed that the expression of the ect genes was salinity dependent. The expression of ectABC reached a maximum at 12 % NaCl, while ectD expression increased up to 15 % NaCl. Ectoine and hydroxyectoine production was growth phase dependent. The hydroxyectoine/ectoine ratio increased from 0.018 in the early exponential phase to 0.11 in the stationary phase at 5 % NaCl. Hydroxyectoine biosynthesis started much later than ectoine biosynthesis after osmotic shock, and the temporal expression of the ect genes differed under these conditions, with the ectABC genes being expressed first, followed by ectD gene. Increased culture salinity triggered ectoine or hydroxyectoine uptake when they were added to the medium. Hydroxyectoine was accumulated preferentially when both ectoine and hydroxyectoine were provided exogenously.

  18. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens

    PubMed Central

    Chakraborty, Sandeep; Phu, My; de Morais, Tâmara Prado; Nascimento, Rafael; Goulart, Luiz Ricardo; Rao, Basuthkar J.; Asgeirsson, Bjarni; Dandekar, Abhaya M.

    2015-01-01

    The therapeutic potential of α-helical anti-microbial peptides (AH-AMP) to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL), we elucidate a search methodology (SCALPEL) that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens ( Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens) by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20), and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25). The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism could possibly ensure that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection. PMID:26629331

  19. A systematic study of chemogenomics of carbohydrates.

    PubMed

    Gu, Jiangyong; Luo, Fang; Chen, Lirong; Yuan, Gu; Xu, Xiaojie

    2014-03-04

    Chemogenomics focuses on the interactions between biologically active molecules and protein targets for drug discovery. Carbohydrates are the most abundant compounds in natural products. Compared with other drugs, the carbohydrate drugs show weaker side effects. Searching for multi-target carbohydrate drugs can be regarded as a solution to improve therapeutic efficacy and safety. In this work, we collected 60 344 carbohydrates from the Universal Natural Products Database (UNPD) and explored the chemical space of carbohydrates by principal component analysis. We found that there is a large quantity of potential lead compounds among carbohydrates. Then we explored the potential of carbohydrates in drug discovery by using a network-based multi-target computational approach. All carbohydrates were docked to 2389 target proteins. The most potential carbohydrates for drug discovery and their indications were predicted based on a docking score-weighted prediction model. We also explored the interactions between carbohydrates and target proteins to find the pathological networks, potential drug candidates and new indications.

  20. A development of chimeric VEGFR2 TK inhibitor based on two ligand conformers from PDB: 1Y6A complex--medicinal chemistry consequences of a TKs analysis.

    PubMed

    Lintnerová, Lucia; García-Caballero, Melissa; Gregáň, Fridrich; Melicherčík, Milan; Quesada, Ana R; Dobiaš, Juraj; Lác, Ján; Sališová, Marta; Boháč, Andrej

    2014-01-24

    VEGFR2 is an important mediator of angiogenesis and influences fate of some cancer stem cells. Here we analysed all 34 structures of VEGFR2 TK available from PDB database. From them a complex PDB: 1Y6A has an exceptional AAZ ligand bound to TK in form of two conformers (U- and S-shaped). This observation inspired us to develop three chimeric bispyridyl VEGFR2 inhibitors by combining structural features of both AAZ conformers and/or their relative ligand AAX (PDB: 1Y6B). Our most interesting inhibitor 22SYM has an enzymatic VEGFR2 TK activity (IC50: 15.1 nM) comparable or better to the active compounds from clinical drugs Nexavar and Sutent. 22SYM inhibits growth, migration and tube formation of endothelial cells (EC) and selectively induces EC apoptosis. 22SYM also inhibits in vivo angiogenesis in Zebrafish embryo assay. Additionally to the above results, we proved here that tyrosine kinases in an inactive form possessing Type I inhibitors can adopt both a closed or an opened conformation of kinase A-loop independently on their DFG-out arrangement. We proposed here that an activity of certain Type I inhibitors (e.g. 22SYM-like) in complex with DFG-out TK can be negatively influenced by collisions with a dynamically moving TK A-loop.

  1. Carbohydrates

    MedlinePlus

    ... found in certain vegetables, such as potatoes, beans, peas, and corn. They are also found in breads, ... Foods high in fiber include fruits, vegetables, beans, peas, nuts, seeds, and whole-grain foods (such as ...

  2. Hydrothermal carbonization of agricultural residues.

    PubMed

    Oliveira, Ivo; Blöhse, Dennis; Ramke, Hans-Günter

    2013-08-01

    The work presented in this article addresses the application of hydrothermal carbonization (HTC) to produce a solid fuel named HTC-Biochar, whose characteristics are comparable to brown coal. Several batch HTC experiments were performed using agricultural residues (AR) as substrates, commonly treated in farm-based biogas plants in Germany. Different AR were used in different combinations with other biomass residues. The biogas potential from the resulting process water was also determined. The combination of different AR lead to the production of different qualities of HTC-Biochars as well as different mass and energy yields. Using more lignocellulosic residues lead to higher mass and energy yields for the HTC-Biochar produced. Whilst residues rich in carbohydrates of lower molecular weight such as corn silage and dough residues lead to the production of a HTC-Biochar of better quality and more similar to brown coal. Process water achieved a maximum of 16.3 L CH4/kg FM (fresh matter).

  3. Surface characterization of carbohydrate microarrays.

    PubMed

    Scurr, David J; Horlacher, Tim; Oberli, Matthias A; Werz, Daniel B; Kroeck, Lenz; Bufali, Simone; Seeberger, Peter H; Shard, Alexander G; Alexander, Morgan R

    2010-11-16

    Carbohydrate microarrays are essential tools to determine the biological function of glycans. Here, we analyze a glycan array by time-of-flight secondary ion mass spectrometry (ToF-SIMS) to gain a better understanding of the physicochemical properties of the individual spots and to improve carbohydrate microarray quality. The carbohydrate microarray is prepared by piezo printing of thiol-terminated sugars onto a maleimide functionalized glass slide. The hyperspectral ToF-SIMS imaging data are analyzed by multivariate curve resolution (MCR) to discern secondary ions from regions of the array containing saccharide, linker, salts from the printing buffer, and the background linker chemistry. Analysis of secondary ions from the linker common to all of the sugar molecules employed reveals a relatively uniform distribution of the sugars within the spots formed from solutions with saccharide concentration of 0.4 mM and less, whereas a doughnut shape is often formed at higher-concentration solutions. A detailed analysis of individual spots reveals that in the larger spots the phosphate buffered saline (PBS) salts are heterogeneously distributed, apparently resulting in saccharide concentrated at the rim of the spots. A model of spot formation from the evaporating sessile drop is proposed to explain these observations. Saccharide spot diameters increase with saccharide concentration due to a reduction in surface tension of the saccharide solution compared to PBS. The multivariate analytical partial least squares (PLS) technique identifies ions from the sugars that in the complex ToF-SIMS spectra correlate with the binding of galectin proteins.

  4. Benefits and hazards of dietary carbohydrate.

    PubMed

    Connor, William E; Duell, P Barton; Connor, Sonja L

    2005-11-01

    Since the dawn of civilization, carbohydrate has comprised the largest source of energy in the diet for most populations. The source of the carbohydrate has been from plants in the form of complex carbohydrate high in fiber. Only in affluent cultures has sugar contributed so much of the total energy. When carbohydrate is consumed as a major component of a plant-based diet, a high-carbohydrate, low-fat diet is associated with low plasma levels of total and low-density lipoprotein cholesterol, less coronary heart disease, less diabetes, and less obesity. Very low-carbohydrate (ketogenic) diets may provide short-term solutions but do not lead to a long-term solution for most people.

  5. Applications of synthetic carbohydrates to chemical biology.

    PubMed

    Lepenies, Bernd; Yin, Jian; Seeberger, Peter H

    2010-06-01

    Access to synthetic carbohydrates is an urgent need for the development of carbohydrate-based drugs, vaccines, adjuvants as well as novel drug delivery systems. Besides traditional synthesis in solution, synthetic carbohydrates have been generated by chemoenzymatic methods as well as automated solid-phase synthesis. Synthetic oligosaccharides have proven to be useful for identifying ligands of carbohydrate-binding proteins such as C-type lectins and siglecs using glycan arrays. Furthermore, glyconanoparticles and glycodendrimers have been used for specific targeting of lectins of the immune system such as selectins, DC-SIGN, and CD22. This review focuses on how diverse carbohydrate structures can be synthetically derived and highlights the benefit of synthetic carbohydrates for glycobiology.

  6. New fabrication and applications of carbohydrate arrays.

    PubMed

    Huang, Gangliang; Chen, Xin; Xiao, Feng

    2014-01-01

    Carbohydrate arrays are used as high-throughput screening platforms to study the carbohydrate-mediated recognition events for glycobiology. The polysaccharide arrays are easy to fabricate by non-covalently or covalently immobilizing polysaccharides onto array surfaces because polysaccharides have hydrophobic interactions. Oligosaccharides must be derived and covalently or non-covalently immobilized onto array surfaces to fabricate oligosaccharide arrays because they have hydrophilic interactions. At the moment, carbohydrate arrays are mainly used to study the carbohydrate-protein interactions and carbohydrate-binding lectins or antibodies, which are possible to be applied to clinics and diagnoses. This review mainly summed up the new fabrication strategies of carbohydrate arrays and their applications in recent four years.

  7. Dietary Plans for Carbohydrate Loading

    DTIC Science & Technology

    1989-11-01

    NUTS - CASHEWS -OIL ROASTED 6.00 TBSPS 48.8 GMS Nutrient Values Kcalories 4071 Kcal Carbohydrate 574.3 Gm Protein 168.1 Gm Fat 125.4 Gm Protein: 16...ENR 2.00 ITEMS 28.00 Gm (5%) ORANGE JUICE-CAN 1.00 CUP 24.50 Gm (4%) SOUP-VEGETABLE-CAN-LOW SOD 1.50 CUPS 21.60 Gm (4%) NUTS - CASHEWS -OIL ROASTED 6.00...LOW SOD 8 POUNDS 4 KILOS Beverages FRUIT PUNCH DRINK-CAN 5 POUNDS 2 KILOS (3 QUARTS) Nuts & Seeds NUTS - CASHEWS -OIL ROASTED 1 POUND 488 GRAMS Fats & Oils

  8. Digestion of carbohydrates in the pig.

    PubMed

    Drochner, W

    1993-01-01

    A review of carbohydrate digestion in the pig is given. The cascade of digestion in the mouth, stomach, small and large intestine is described. Principles of enzymatic and fermentative digestion according to new results with fistulated animals are discussed. The efficacy and quality of fermentation in the large intestine depending on level and quality of carbohydrates in the diet are demonstrated. Some aspects of energetical efficacy of hindgut digestion are discussed. Dietetic effects of carbohydrates are described.

  9. Regioselective azidotrimethylsilylation of carbohydrates and applications thereof.

    PubMed

    L, Mallikharjuna Rao; Yousuf, Syed Khalid; Mukherjee, Debaraj; Taneja, Subhash Chandra

    2012-12-07

    Azidotrimethylsilylation of carbohydrates (monosaccharides and disaccharides) has been achieved in high yields under Mitsunobu conditions. The azidation of carbohydrates is effected at 0 °C essentially only at the primary alcoholic position in mono, di- and triols in protected/unprotected glycosides, whereas the remaining secondary hydroxyl groups got silylated. Surprisingly, no azidation of the secondary hydroxyls was observed in all the carbohydrate substrates. Applications of the methodology for the synthesis of amino sugars, triazoles and azasugars are reported.

  10. Regioselective monodeprotection of peracetylated carbohydrates.

    PubMed

    Filice, Marco; Guisan, Jose M; Terreni, Marco; Palomo, Jose M

    2012-10-01

    This protocol describes the regioselective deprotection of single hydroxyls in peracetylated monosaccharides and disaccharides by enzymatic or chemoenzymatic strategies. The introduction of a one-pot enzymatic step by using immobilized biocatalysts obviates the requirement to carry out tedious workups and time-consuming purifications. By using this straightforward protocol, different per-O-acetylated glycopyranosides (mono- or disaccharides, 1-substituted or glycals) can be transformed into a whole set of differentially monodeprotected 1-alcohols, 3-alcohols, 4-alcohols and 6-alcohols in high yields. These tailor-made glycosyl acceptors can then be used for stereoselective glycosylation for oligosaccharide and glycoderivative synthesis. They have been successfully used as building blocks to synthesize tailor-made di- and trisaccharides involved in the structure of lacto-N-neo-tetraose and precursors of the tumor-associated carbohydrate antigen T and the antitumoral drug peracetylated β-naphtyl-lactosamine. We are able to prepare a purified monoprotected carbohydrate in between 1 and 4 d. With this protocol, the small library of monodeprotected products can be synthesized in 1-2 weeks.

  11. Ligand-mediated dimerization of a carbohydrate-binding molecule reveals a novel mechanism for protein-carbohydrate recognition.

    PubMed

    Flint, James; Nurizzo, Didier; Harding, Stephen E; Longman, Emma; Davies, Gideon J; Gilbert, Harry J; Bolam, David N

    2004-03-19

    The structural and thermodynamic basis for carbohydrate-protein recognition is of considerable importance. NCP-1, which is a component of the Piromyces equi cellulase/hemicellulase complex, presents a provocative model for analyzing how structural and mutational changes can influence the ligand specificity of carbohydrate-binding proteins. NCP-1 contains two "family 29" carbohydrate-binding modules designated CBM29-1 and CBM29-2, respectively, that display unusually broad specificity; the proteins interact weakly with xylan, exhibit moderate affinity for cellulose and mannan, and bind tightly to the beta-1,4-linked glucose-mannose heteropolymer glucomannan. The crystal structure of CBM29-2 in complex with cellohexaose and mannohexaose identified key residues involved in ligand recognition. By exploiting this structural information and the broad specificity of CBM29-2, we have used this protein as a template to explore the evolutionary mechanisms that can lead to significant changes in ligand specificity. Here, we report the properties of the E78R mutant of CBM29-2, which displays ligand specificity that is different from that of wild-type CBM29-2; the protein retains significant affinity for cellulose but does not bind to mannan or glucomannan. Significantly, E78R exhibits a stoichiometry of 0.5 when binding to cellohexaose, and both calorimetry and ultracentrifugation show that the mutant protein displays ligand-mediated dimerization in solution. The three-dimensional structure of E78R in complex with cellohexaose reveals the intriguing molecular basis for this "dimeric" binding mode that involves the lamination of the oligosaccharide between two CBM molecules. The 2-fold screw axis of the ligand is mirrored in the orientation of the two protein domains with adjacent sugar rings stacking against the equivalent aromatic residues in the binding site of each protein molecule of the molecular sandwich. The sandwiching of an oligosaccharide chain between two protein

  12. Off-line elimination of carbohydrates for amino acid analysis of samples with high carbohydrate content by ion-exchange chromatography.

    PubMed

    Ding, Yongsheng; Yu, Hong; Mou, Shifen

    2003-05-16

    This paper introduces a new off-line sample preparation that eliminates carbohydrates from amino acid samples containing a high carbohydrate content before analysis by anion-exchange chromatography and integrated pulsed amperometric detection. First, the sample is introduced into a cation-exchange column in the hydrogen form. Carbohydrates are removed completely using 0.02% formic acid as a transfer fluid, while only amino acids are retained. Amino acids are then extracted from the cation-exchange resin by 10 ml of 1 M ammonia. The ammonia collected is evaporated to dryness and the residue redissolved in water containing 20 mg/l NaN3 for injection. All amino acids are recovered following the carbohydrate removal step. The average recovery is 97.2%. The relative standard deviation for seven replicates is less than 5.2%. The usefulness of the method is illustrated with chromatograms of ratafia samples obtained before and after the off-line removal of carbohydrates.

  13. Structural consequences of chromophore formation and exploration of conserved lid residues amongst naturally occurring fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Zimmer, Matthew H.; Li, Binsen; Shahid, Ramza; Peshkepija, Paola; Zimmer, Marc

    2014-01-01

    Computational methods were used to generate the lowest energy conformations of the immature precyclized forms of the 28 naturally occurring GFP-like proteins deposited in the pdb. In all 28 GFP-like proteins, the beta-barrel contracts upon chromophore formation and becomes more rigid. Our prior analysis of over 260 distinct naturally occurring GFP-like proteins revealed that most of the conserved residues are located in the top and bottom of the barrel in the turns between the β-sheets (Ong et al. 2011) [1]. Structural analyses, molecular dynamics simulations and the Anisotropic Network Model were used to explore the role of these conserved lid residues as possible folding nuclei. Our results are internally consistent and show that the conserved residues in the top and bottom lids undergo relatively less translational movement than other lid residues, and a number of these residues may play an important role as hinges or folding nuclei in the fluorescent proteins.

  14. C-type lectin-like carbohydrate recognition of the hemolytic lectin CEL-III containing ricin-type -trefoil folds.

    PubMed

    Hatakeyama, Tomomitsu; Unno, Hideaki; Kouzuma, Yoshiaki; Uchida, Tatsuya; Eto, Seiichiro; Hidemura, Haruki; Kato, Norihisa; Yonekura, Masami; Kusunoki, Masami

    2007-12-28

    CEL-III is a Ca(2+)-dependent hemolytic lectin, isolated from the marine invertebrate Cucumaria echinata. The three-dimensional structure of CEL-III/GalNAc and CEL-III/methyl alpha-galactoside complexes was solved by x-ray crystallographic analysis. In these complexes, five carbohydrate molecules were found to be bound to two carbohydrate-binding domains (domains 1 and 2) located in the N-terminal 2/3 portion of the polypeptide and that contained beta-trefoil folds similar to ricin B-chain. The 3-OH and 4-OH of bound carbohydrate molecules were coordinated with Ca(2+) located at the subdomains 1alpha, 1gamma, 2alpha, 2beta, and 2gamma, simultaneously forming hydrogen bond networks with nearby amino acid side chains, which is similar to carbohydrate binding in C-type lectins. The binding of carbohydrates was further stabilized by aromatic amino acid residues, such as tyrosine and tryptophan, through a stacking interaction with the hydrophobic face of carbohydrates. The importance of amino acid residues in the carbohydrate-binding sites was confirmed by the mutational analyses. The orientation of bound GalNAc and methyl alpha-galactoside was similar to the galactose moiety of lactose bound to the carbohydrate-binding site of the ricin B-chain, although the ricin B-chain does not require Ca(2+) ions for carbohydrate binding. The binding of the carbohydrates induced local structural changes in carbohydrate-binding sites in subdomains 2alpha and 2beta. Binding of GalNAc also induced a slight change in the main chain structure of domain 3, which could be related to the conformational change upon binding of specific carbohydrates to induce oligomerization of the protein.

  15. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates.

    PubMed

    Nehls, Uwe

    2008-01-01

    Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized.

  16. Carbohydrates as synthetic tools in organic chemistry.

    PubMed

    Boysen, Mike M K

    2007-01-01

    While amino acids, terpenes and alkaloids have found broad application as tools in stereoselective organic synthesis, carbohydrates have only lately been recognised as versatile starting materials for chiral auxiliaries, reagents, ligands and organocatalysts. The structural diversity of carbohydrates and the high density of functional groups offer a wide variety of opportunities for derivatization and tailoring of synthetic tools to a specific problem.

  17. Determining a carbohydrate profile for Hansenula polymorpha.

    PubMed

    Petersen, G R

    1985-07-01

    The determination of the levels of carbohydrates in the yeast Hansenula polymorpha required the development of new analytical procedures. Existing fractionation and analytical methods were adapted to deal with the problems involved with the lysis of whole cells. Using these new procedures, the complete carbohydrates profiles of H. polymorpha and selected mutant strains were determined and shown to correlate favourably with previously published results.

  18. Wood adhesives containing proteins and carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there has been resurgent interest in using biopolymers as sustainable and environmentally friendly ingredients in wood adhesive formulations. Among them, proteins and carbohydrates are the most commonly used. In this chapter, an overview is given of protein-based and carbohydrate-...

  19. Determining a carbohydrate profile for Hansenula polymorpha

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.

    1985-01-01

    The determination of the levels of carbohydrates in the yeast Hansenula polymorpha required the development of new analytical procedures. Existing fractionation and analytical methods were adapted to deal with the problems involved with the lysis of whole cells. Using these new procedures, the complete carbohydrate profiles of H. polymorpha and selected mutant strains were determined and shown to correlate favourably with previously published results.

  20. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  1. Industrial applications of marine carbohydrates.

    PubMed

    Sudha, Prasad N; Aisverya, S; Nithya, R; Vijayalakshmi, K

    2014-01-01

    Biomaterials have been used increasingly in various fields, such as drug delivery, imaging, and tissue engineering. The main reason justifying the widespread use of biomaterials relies on its valuable and low-cost source of new drugs. Current research goals are focused on identifying more potent and specific compounds with antitumor, immunomodulatory, antihyperlipidemic, anticoagulant, and antiviral activities. The increasing knowledge of structural analysis and chemical modifications enables the use of these marine carbohydrates in a newer way for the human welfare. This chapter focuses on the recent developments related to industrial and biomedical applications using chitin, chitosan, alginate, agar, and carrageenan derivatives and reports the main advances published over the last 10-15 years.

  2. The importance of dietary carbohydrates.

    PubMed

    Sánchez-Castillo, Claudia P; Hudson, Geoffrey J; Englyst, Hans N; Dewey, Peter; James, W Philip T

    2002-12-01

    Forty years ago carbohydrates (CHO) were regarded as a simple energy source whereas they are now recognized as important food components. The human diet contains a wide range of CHO, the vast majority of which are of plant origin. Modern techniques based on chemical classification of dietary CHO replaced the traditional "by difference" measurement. They provide a logical basis for grouping into categories of specific nutritional importance. The physiological effects of dietary CHO are highly dependent on the rate and extent of digestion and absorption in the small intestine and fermentation in the large intestine, interactions which promote human health. Current knowledge of the fate of dietary CHO means that the potentially undesirable properties of many modern foods could be altered by using processing techniques that yield foods with more intact plant cell wall structures. Such products would more closely resemble the foods in the pre-agriculture diet with respect to the rate of digestion and absorption of CHO in the small intestine. The potentially detrimental physiological consequences of eating sugars and starch that are rapidly digested and absorbed in the small intestine suggest that, as fibre, the form, as well as the amount of starch should be considered. Increasing consumer awareness of the relationship between diet and health has led to demands for more widespread nutrition labelling. The entry "carbohydrate" is required in most countries, and the value is usually obtained "by difference" and used in the calculation of energy content. However, the value provides no nutritional information per se. Food labels should provide values that aid consumers in selecting a healthy diet.

  3. LIBP-Pred: web server for lipid binding proteins using structural network parameters; PDB mining of human cancer biomarkers and drug targets in parasites and bacteria.

    PubMed

    González-Díaz, Humberto; Munteanu, Cristian R; Postelnicu, Lucian; Prado-Prado, Francisco; Gestal, Marcos; Pazos, Alejandro

    2012-03-01

    Lipid-Binding Proteins (LIBPs) or Fatty Acid-Binding Proteins (FABPs) play an important role in many diseases such as different types of cancer, kidney injury, atherosclerosis, diabetes, intestinal ischemia and parasitic infections. Thus, the computational methods that can predict LIBPs based on 3D structure parameters became a goal of major importance for drug-target discovery, vaccine design and biomarker selection. In addition, the Protein Data Bank (PDB) contains 3000+ protein 3D structures with unknown function. This list, as well as new experimental outcomes in proteomics research, is a very interesting source to discover relevant proteins, including LIBPs. However, to the best of our knowledge, there are no general models to predict new LIBPs based on 3D structures. We developed new Quantitative Structure-Activity Relationship (QSAR) models based on 3D electrostatic parameters of 1801 different proteins, including 801 LIBPs. We calculated these electrostatic parameters with the MARCH-INSIDE software and they correspond to the entire protein or to specific protein regions named core, inner, middle, and surface. We used these parameters as inputs to develop a simple Linear Discriminant Analysis (LDA) classifier to discriminate 3D structure of LIBPs from other proteins. We implemented this predictor in the web server named LIBP-Pred, freely available at , along with other important web servers of the Bio-AIMS portal. The users can carry out an automatic retrieval of protein structures from PDB or upload their custom protein structural models from their disk created with LOMETS server. We demonstrated the PDB mining option performing a predictive study of 2000+ proteins with unknown function. Interesting results regarding the discovery of new Cancer Biomarkers in humans or drug targets in parasites have been discussed here in this sense.

  4. Phenol-Sulfuric Acid Method for Total Carbohydrates

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The phenol-sulfuric acid method is a simple and rapid colorimetric method to determine total carbohydrates in a sample. The method detects virtually all classes of carbohydrates, including mono-, di-, oligo-, and polysaccharides. Although the method detects almost all carbohydrates, the absorptivity of the different carbohydrates varies. Thus, unless a sample is known to contain only one carbohydrate, the results must be expressed arbitrarily in terms of one carbohydrate.

  5. Isolation of carbohydrate-metabolizing, extremely halophilic bacteria.

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1972-01-01

    Four previously unrecognized strains of extremely halophilic bacteria that utilize carbohydrates have been isolated. Gas production proved an unreliable index of carbohydrate metabolism; therefore, carbohydrate utilization was measured by determining acid formation and sugar disappearance during growth. By these procedures, carbohydrate utilization was readily detected. The results suggest that carbohydrate dissimilation by extremely halophilic bacteria may be more common than previously thought and that the apparent rarity of carbohydrate-metabolizing halophiles may be an artifact of the isolation procedures used.

  6. Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture.

    PubMed

    Gallagher, Morgan E; Hockaday, William C; Masiello, Caroline A; Snapp, Sieglinde; McSwiney, Claire P; Baldock, Jeffrey A

    2011-03-01

    Concerns about energy security and climate change have increased biofuel demand, particularly ethanol produced from cellulosic feedstocks (e.g., food crop residues). A central challenge to cropping for cellulosic ethanol is the potential environmental damage from increased fertilizer use. Previous analyses have assumed that cropping for carbohydrate in residue will require the same amount of fertilizer as cropping for grain. Using (13)C nuclear magnetic resonance, we show that increases in biomass in response to fertilization are not uniform across biochemical classes (carbohydrate, protein, lipid, lignin) or tissues (leaf and stem, grain, reproductive support). Although corn grain responds vigorously and nonlinearly, corn residue shows only modest increases in carbohydrate yields in response to high levels of fertilization (25% increase with 202 kg N ha(-1)). Lignin yields in the residue increased almost twice as much as carbohydrate yields in response to nitrogen, implying that residue feedstock quality declines as more fertilizer is applied. Fertilization also increases the decomposability of corn residue, implying that soil carbon sequestration becomes less efficient with increased fertilizer. Our results suggest that even when corn is grown for grain, benefits of fertilization decline rapidly after the ecosystem's N demands are met. Heavy application of fertilizer yields minimal grain benefits and almost no benefits in residue carbohydrates, while degrading the cellulosic ethanol feedstock quality and soil carbon sequestration capacity.

  7. Carbohydrate Moieties and Cytoenzymatic Characterization of Hemocytes in Whiteleg Shrimp Litopenaeus vannamei

    PubMed Central

    Velázquez, Edwin; Rodríguez-Jaramillo, Carmen; Ascencio, Felipe

    2016-01-01

    Hemocytes represent one of the most important defense mechanisms against foreign material in Crustacea and are also involved in a variety of other physiological responses. Fluorescent lectin-binding assays and cytochemical reactions were used to identify specificity and distribution of carbohydrate moieties and presence of several hydrolytic enzymes, in hemocytes of whiteleg shrimp Litopenaeus vannamei. Two general classes of circulating hemocytes (granular and agranular) exist in L. vannamei, which express carbohydrates residues for FITC-conjugated lectins WGA, LEA, and PNA; UEA and Con-A were not observed. Enzymatic studies indicated that acid phosphatase, nonspecific esterase, and specific esterases were present; alkaline phosphatase was not observed. The enzymes and carbohydrates are useful tools in hemocyte classification and cellular defense mechanism studies. PMID:27833641

  8. Carbohydrate Polymers for Nonviral Nucleic Acid Delivery

    PubMed Central

    Sizovs, Antons; McLendon, Patrick M.; Srinivasachari, Sathya

    2014-01-01

    Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102

  9. Safety of low-carbohydrate diets.

    PubMed

    Crowe, T C

    2005-08-01

    Low-carbohydrate diets have re-emerged into the public spotlight and are enjoying a high degree of popularity as people search for a solution to the population's ever-expanding waistline. The current evidence though indicates that low-carbohydrate diets present no significant advantage over more traditional energy-restricted diets on long-term weight loss and maintenance. Furthermore, a higher rate of adverse side-effects can be attributed to low-carbohydrate dieting approaches. Short-term efficacy of low-carbohydrate diets has been demonstrated for some lipid parameters of cardiovascular risk and measures of glucose control and insulin sensitivity, but no studies have ascertained if these effects represent a change in primary outcome measures. Low-carbohydrate diets are likely effective and not harmful in the short term and may have therapeutic benefits for weight-related chronic diseases although weight loss on such a program should be undertaken under medical supervision. While new commercial incarnations of the low-carbohydrate diet are now addressing overall dietary adequacy by encouraging plenty of high-fibre vegetables, fruit, low-glycaemic-index carbohydrates and healthier fat sources, this is not the message that reaches the entire public nor is it the type of diet adopted by many people outside of the world of a well-designed clinical trial. Health effects of long-term ad hoc restriction of inherently beneficial food groups without a concomitant reduction in body weight remains unanswered.

  10. Utilization of carbohydrates by radiation processing

    NASA Astrophysics Data System (ADS)

    Kume, T.; Nagasawa, N.; Yoshii, F.

    2002-03-01

    Upgrading and utilization of carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated for recycling these bio-resources and reducing the environmental pollution. These carbohydrates were easily degraded by irradiation and various kinds of biological activities such as anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction, etc. were induced. On the other hand, some carbohydrate derivatives, carboxymethylcellulose and carboxymethylstarch, could be crosslinked under certain radiation condition and produce the biodegradable hydrogel for medical and agricultural use.

  11. Carbohydrate functionalized carbon nanotubes and their applications.

    PubMed

    Gorityala, Bala Kishan; Ma, Jimei; Wang, Xin; Chen, Peng; Liu, Xue-Wei

    2010-08-01

    Carbon nanotubes (CNTs) have attracted tremendous attention in biomedical applications due to their molecular size and unique properties. This tutorial review summarizes the strategies to functionalize CNTs with bioactive carbohydrates, which improve their solubility, biocompatibility and biofunctionalities while preserving their desired properties. In addition, studies on the usage of carbohydrate functionalized CNTs to detect bacteria, to bind to specific lectins, to deliver glycomimetic drug molecules into cells and to probe cellular activities as biosensors are reviewed. Improvement in biocompatibility and introduction of bio-functionalities by integration of carbohydrate with CNTs are paving the way to glyconanotechnology and may provide new tools for glycobiological studies.

  12. RESIDUAL RISK ASSESSMENTS - RESIDUAL RISK ...

    EPA Pesticide Factsheets

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Coke Ovens. These assesments utilize existing models and data bases to examine the multi-media and multi-pollutant impacts of air toxics emissions on human health and the environment. Details on the assessment process and methodologies can be found in EPA's Residual Risk Report to Congress issued in March of 1999 (see web site). To assess the health risks imposed by air toxics emissions from Coke Ovens to determine if control technology standards previously established are adequately protecting public health.

  13. Rapid Analysis of Listeria monocytogenes Cell Wall Teichoic Acid Carbohydrates by ESI-MS/MS

    PubMed Central

    Eugster, Marcel R.; Loessner, Martin J.

    2011-01-01

    We report the application of electrospray ionization (ESI) mass spectrometry for compositional characterization of wall teichoic acids (WTA), a major component of Gram-positive bacterial cell walls. Tandem mass spectrometry (ESI-MS/MS) of purified and chemically hydrolyzed monomeric WTA components provided sufficient information to identify WTA monomers and their specific carbohydrate constituents. A lithium matrix was used for ionization of uncharged WTA monomers, and successfully applied to analyze the WTA molecules of four Listeria strains differing in carbohydrate substitution on a conserved polyribitol-phosphate backbone structure. Carbohydrate residues such as N-acetylglucosamine or rhamnose linked to the WTA could directly be identified by ESI-MS/MS, circumventing the need for quantitative analysis by gas chromatography. The presence of a terminal N-acetylglucosamine residue tethered to the ribitol was confirmed using fluorescently labeled wheat-germ agglutinin. In conclusion, the mass spectrometry method described here will greatly facilitate compositional analysis and characterization of teichoic acids and similar macromolecules from diverse bacterial species, and represents a significant advance in the identification of serovar-specific carbohydrates and sugar molecules on bacteria. PMID:21738682

  14. Rapid analysis of Listeria monocytogenes cell wall teichoic acid carbohydrates by ESI-MS/MS.

    PubMed

    Eugster, Marcel R; Loessner, Martin J

    2011-01-01

    We report the application of electrospray ionization (ESI) mass spectrometry for compositional characterization of wall teichoic acids (WTA), a major component of gram-positive bacterial cell walls. Tandem mass spectrometry (ESI-MS/MS) of purified and chemically hydrolyzed monomeric WTA components provided sufficient information to identify WTA monomers and their specific carbohydrate constituents. A lithium matrix was used for ionization of uncharged WTA monomers, and successfully applied to analyze the WTA molecules of four Listeria strains differing in carbohydrate substitution on a conserved polyribitol-phosphate backbone structure. Carbohydrate residues such as N-acetylglucosamine or rhamnose linked to the WTA could directly be identified by ESI-MS/MS, circumventing the need for quantitative analysis by gas chromatography. The presence of a terminal N-acetylglucosamine residue tethered to the ribitol was confirmed using fluorescently labeled wheat-germ agglutinin. In conclusion, the mass spectrometry method described here will greatly facilitate compositional analysis and characterization of teichoic acids and similar macromolecules from diverse bacterial species, and represents a significant advance in the identification of serovar-specific carbohydrates and sugar molecules on bacteria.

  15. Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis

    SciTech Connect

    Wartchow, C.A.; Wang, Peng; Bednarski, M.D.; Callstrom, M.R. |

    1995-12-31

    The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonyl amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.

  16. Workshop to establish databases of carbohydrate spectra

    SciTech Connect

    1995-12-31

    The workshop was organized to formulate guidelines for establishing spectral databases of complex carbohydrates. The databases will enable the scientific community to avoid the great waste of research effort and funds that frequently occurs when carbohydrate chemists are forced to duplicate the structural characterization of previously characterized complex carbohydrates. Chemists waste their effort on repetitive characterizations because in the absence of spectral databases they are unaware they are analyzing a known molecule until they have completely determined its structure. Chemists will be able to avoid much of this wasted effort when the collections of mass and of nuclear magnetic resonance (NMR) spectra initiated at the workshop are subsequently developed into searchable databases. Then scientists only need query the databases with the spectrum or with information defining the spectrum of an unidentified carbohydrate to find out if it has been previously characterized.

  17. Indium triflate catalyzed peracetylation of carbohydrates.

    PubMed

    Bizier, Nicholas P; Atkins, Shannon R; Helland, Luke C; Colvin, Shane F; Twitchell, Joseph R; Cloninger, Mary J

    2008-07-21

    Peracetylation is a very common protection strategy that is widely implemented in carbohydrate synthesis. Here, a method for the peracetylation of carbohydrates using catalytic In(OTf)(3) in neat acetic anhydride is reported. In(OTf)(3) has low toxicity and is mild and water tolerant, and the reactions are high yielding and efficient. Details regarding the scope and mechanism of the reaction are briefly discussed.

  18. Partition coefficients of organic contaminants with carbohydrates.

    PubMed

    Hung, Hsu-Wen; Lin, Tsair-Fuh; Chiou, Cary T

    2010-07-15

    In view of the current lack of reliable partition coefficients for organic compounds with carbohydrates (K(ch)), carefully measured values with cellulose and starch, the two major forms of carbohydrates, are provided for a wide range of compounds: short-chain chlorinated hydrocarbons, halogenated benzenes, alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and organochlorine pesticides. To ensure the accuracy of the K(ch) data, solute concentrations in both water and carbohydrate phases are measured by direct solvent extraction of the samples. For a given compound, the observed partition coefficient with cellulose (K(cl)) is virtually the same as that with starch (K(st)). This finding expedites the evaluation of organic contamination with different forms of carbohydrates. The presently determined K(ch) values of 13 PAHs are substantially lower (by 3-66 times) than the literature data; the latter are suspect as they were obtained with (i) presumably impure carbohydrate samples or (ii) indirectly measured equilibrium solute concentrations in carbohydrate and water phases. Although the K(ch) values are generally considerably lower than the respective K(ow) (octanol-water) or K(lipid) (lipid-water), accurate K(ch) data are duly required to accurately estimate the contamination of carbohydrates by organic compounds because of the abundance of carbohydrates over lipids in crops and plants. To overcome the current lack of reliable K(ch) data for organic compounds, a close correlation of log K(ch) with log K(ow) has been established for predicting the unavailable K(ch) data for low-polarity compounds.

  19. Molecular simulations of carbohydrates and protein-carbohydrate interactions: motivation, issues and prospects.

    PubMed

    Fadda, Elisa; Woods, Robert J

    2010-08-01

    The characterization of the 3D structure of oligosaccharides, their conjugates and analogs is particularly challenging for traditional experimental methods. Molecular simulation methods provide a basis for interpreting sparse experimental data and for independently predicting conformational and dynamic properties of glycans. Here, we summarize and analyze the issues associated with modeling carbohydrates, with a detailed discussion of four of the most recently developed carbohydrate force fields, reviewed in terms of applicability to natural glycans, carbohydrate-protein complexes and the emerging area of glycomimetic drugs. In addition, we discuss prospectives and new applications of carbohydrate modeling in drug discovery.

  20. Characterizing the glycocalyx of poultry spermatozoa; semen cryopreservation methods alter the carbohydrate component of rooster sperm membrane glycoconjugates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The carbohydrate-rich zone on the sperm surface is essential for inmunoprotection in the female tract and early gamete interactions. We recently have shown the glycocalyx of chicken sperm to be extensively sialylated and contain residues of mannose, glucose, galactose, fucose, N-acetyl-galactosamine...

  1. Glycoprotein labeling with click chemistry (GLCC) and carbohydrate detection.

    PubMed

    Wu, Zhengliang L; Huang, Xinyi; Burton, Andrew J; Swift, Karl A D

    2015-08-14

    Molecular labeling and detection techniques are essential to research in life science. Here, a method for glycoprotein labeling/carbohydrate detection through glycan replacement, termed glycoprotein labeling with click chemistry (GLCC), is described. In this method, a glycoprotein is first treated with specific glycosidases to remove certain sugar residues, a procedure that creates acceptor sites for a specific glycosyltransferase. A 'clickable' monosaccharide is then installed onto these sites by the glycosyltransferase. This modified glycoprotein is then conjugated to a reporter molecule using a click chemistry reaction. For glycoproteins that already contain vacant glycosylation sites, deglycosylation is not needed before the labeling step. As a demonstration, labeling on fetal bovine fetuin, mouse immunoglobulin IgG and bacterial expressed human TNFα and TNFβ are shown. Compared to traditional ways of protein labeling, labeling at glycosylation sites with GLCC is considerably more specific and less likely to have adverse effects, and, when utilized as a method for carbohydrate detection, this method is also highly specific and sensitive.

  2. Carbohydrate Nutrition and Team Sport Performance.

    PubMed

    Williams, Clyde; Rollo, Ian

    2015-11-01

    The common pattern of play in 'team sports' is 'stop and go', i.e. where players perform repeated bouts of brief high-intensity exercise punctuated by lower intensity activity. Sprints are generally 2-4 s long and recovery between sprints is of variable length. Energy production during brief sprints is derived from the degradation of intra-muscular phosphocreatine and glycogen (anaerobic metabolism). Prolonged periods of multiple sprints drain muscle glycogen stores, leading to a decrease in power output and a reduction in general work rate during training and competition. The impact of dietary carbohydrate interventions on team sport performance have been typically assessed using intermittent variable-speed shuttle running over a distance of 20 m. This method has evolved to include specific work to rest ratios and skills specific to team sports such as soccer, rugby and basketball. Increasing liver and muscle carbohydrate stores before sports helps delay the onset of fatigue during prolonged intermittent variable-speed running. Carbohydrate intake during exercise, typically ingested as carbohydrate-electrolyte solutions, is also associated with improved performance. The mechanisms responsible are likely to be the availability of carbohydrate as a substrate for central and peripheral functions. Variable-speed running in hot environments is limited by the degree of hyperthermia before muscle glycogen availability becomes a significant contributor to the onset of fatigue. Finally, ingesting carbohydrate immediately after training and competition will rapidly recover liver and muscle glycogen stores.

  3. Techniques for visualization of carbohydrate molecules.

    PubMed

    Kuttel, Michelle; Gain, James; Burger, Anton; Eborn, Ian

    2006-11-01

    Standard molecular visualizations, such as the classic ball-and-stick model, are not suitable for large, complex molecules because the overall molecular structure is obscured by the atomic detail. For proteins, the more abstract ribbon and cartoon representations are instead used to reveal large scale molecular conformation and connectivity. However, there is currently no accepted convention for simplifying oligo- and polysaccharide structures. We introduce two novel visualization algorithms for carbohydrates, incorporated into a visualization package, CarboHydra. Both algorithms highlight the sugar rings and backbone conformation of the carbohydrate chain, ignoring ring substituents. The first algorithm, termed PaperChain, emphasizes the type and conformation of the carbohydrate rings. The second, Twister, emphasizes the relative orientation of the rings. We further include two rendering enhancements to augment these visualizations: silhouettes edges and a translucent overlay of the ball-and-stick atomic representation. To demonstrate their utility, the algorithms and visualization enhancements are here applied to a variety of carbohydrate molecules. User evaluations indicate that they present a more useful view of carbohydrate structure than the standard ball-and-stick representation. The algorithms were found to be complementary, with PaperChain particularly effective for smaller carbohydrates and Twister useful at larger scales for highlighting the backbone twist of polysaccharides.

  4. Metabolic aspects of low carbohydrate diets and exercise

    PubMed Central

    Peters, Sandra J; LeBlanc, Paul J

    2004-01-01

    Following a low carbohydrate diet, there is a shift towards more fat and less carbohydrate oxidation to provide energy to skeletal muscle, both at rest and during exercise. This review summarizes recent work on human skeletal muscle carbohydrate and fat metabolic adaptations to a low carbohydrate diet, focusing mainly on pyruvate dehydrogenase and pyruvate dehydrogenase kinase, and how these changes relate to the capacity for carbohydrate oxidation during exercise. PMID:15507161

  5. Computer Simulations Reveal Multiple Functions for Aromatic Residues in Cellulase Enzymes (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    NREL researchers use high-performance computing to demonstrate fundamental roles of aromatic residues in cellulase enzyme tunnels. National Renewable Energy Laboratory (NREL) computer simulations of a key industrial enzyme, the Trichoderma reesei Family 6 cellulase (Cel6A), predict that aromatic residues near the enzyme's active site and at the entrance and exit tunnel perform different functions in substrate binding and catalysis, depending on their location in the enzyme. These results suggest that nature employs aromatic-carbohydrate interactions with a wide variety of binding affinities for diverse functions. Outcomes also suggest that protein engineering strategies in which mutations are made around the binding sites may require tailoring specific to the enzyme family. Cellulase enzymes ubiquitously exhibit tunnels or clefts lined with aromatic residues for processing carbohydrate polymers to monomers, but the molecular-level role of these aromatic residues remains unknown. In silico mutation of the aromatic residues near the catalytic site of Cel6A has little impact on the binding affinity, but simulation suggests that these residues play a major role in the glucopyranose ring distortion necessary for cleaving glycosidic bonds to produce fermentable sugars. Removal of aromatic residues at the entrance and exit of the cellulase tunnel, however, dramatically impacts the binding affinity. This suggests that these residues play a role in acquiring cellulose chains from the cellulose crystal and stabilizing the reaction product, respectively. These results illustrate that the role of aromatic-carbohydrate interactions varies dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, the results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering strategies for

  6. Screening method of carbohydrate-binding proteins in biological sources by capillary affinity electrophoresis and its application to determination of Tulipa gesneriana agglutinin in tulip bulbs.

    PubMed

    Nakajima, Kazuki; Kinoshita, Mitsuhiro; Oda, Yasuo; Masuko, Takashi; Kaku, Hanae; Shibuya, Naoto; Kakehi, Kazuaki

    2004-09-01

    We developed capillary affinity electrophoresis (CAE) to analyze the molecular interaction between carbohydrate chains and proteins in solution state. A mixture of oligosaccharides derived from a glycoprotein was labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS), and used as glycan library without isolation. Interaction of a carbohydrate-binding protein with each oligosaccharide in the mixture could be simultaneously observed, and relative affinities of oligosaccharides toward the protein were accurately determined. In this study, we applied CAE to detect the presence of lectins in some plants (Japanese elderberry bark and tulip bulb). In the crude extract of the elderberry bark, binding activity toward sialo-carbohydrate chains could be easily detected. We also examined the presence of lectins in the crude extract of tulip bulbs and determined the detailed carbohydrate-binding specificity of Tulipa gesneriana agglutinin (TGA), one of the lectins from tulip bulbs. Kinetic studies demonstrated that TGA showed novel carbohydrate-binding specificity and preferentially recognized triantennary oligosaccharides with Gal residues at nonreducing termini and a Fuc residue linked through alpha(1-6) linkage at chitobiose portion of the reducing termini but not tetraantennary carbohydrates. The results described here indicate that CAE will be a valuable method for both screening of lectins in natural sources and determination of their detailed carbohydrate-binding specificities.

  7. A study of the influence of charged residues on β-hairpin formation by nuclear magnetic resonance and molecular dynamics.

    PubMed

    Makowska, Joanna; Zmudzińska, Wioletta; Uber, Dorota; Chmurzyński, Lech

    2014-12-01

    Chain reversals are often nucleation sites in protein folding. The β-hairpins of FBP28 WW domain and IgG are stable and have been proved to initiate the folding and are, therefore, suitable for studying the influence of charged residues on β-hairpin conformation. In this paper, we carried out NMR examination of the conformations in solution of two fragments from the FPB28 protein (PDB code: 1E0L) (N-terminal part) namely KTADGKT-NH2 (1E0L 12-18, D7) and YKTADGKTY-NH2 (1E0L 11-19, D9), one from the B3 domain of the protein G (PDB code: 1IGD), namely DDATKT-NH2 (1IGD 51-56) (Dag1), and three variants of Dag1 peptide: DVATKT-NH2 (Dag2), OVATKT-NH2 (Dag3) and KVATKT-NH2 (Dag4), respectively, in which the original charged residue were replaced with non-polar residues or modified charged residues. It was found that both the D7 and D9 peptides form a large fraction bent conformations. However, no hydrophobic contacts between the terminal Tyr residues of D9 occur, which suggests that the presence of a pair of like-charged residues stabilizes chain reversal. Conversely, only the Dag1 and Dag2 peptides exhibit some chain reversal; replacing the second aspartic-acid residue with a valine and the first one with a basic residue results in a nearly extended conformation. These results suggest that basic residues farther away in sequence can result in stabilization of chain reversal owing to screening of the non-polar core. Conversely, smaller distance in sequence prohibits this screening, while the presence oppositely-charged residues can stabilize a turn because of salt-bridge formation.

  8. Saturated fat, carbohydrate, and cardiovascular disease.

    PubMed

    Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M

    2010-03-01

    A focus of dietary recommendations for cardiovascular disease (CVD) prevention and treatment has been a reduction in saturated fat intake, primarily as a means of lowering LDL-cholesterol concentrations. However, the evidence that supports a reduction in saturated fat intake must be evaluated in the context of replacement by other macronutrients. Clinical trials that replaced saturated fat with polyunsaturated fat have generally shown a reduction in CVD events, although several studies showed no effects. An independent association of saturated fat intake with CVD risk has not been consistently shown in prospective epidemiologic studies, although some have provided evidence of an increased risk in young individuals and in women. Replacement of saturated fat by polyunsaturated or monounsaturated fat lowers both LDL and HDL cholesterol. However, replacement with a higher carbohydrate intake, particularly refined carbohydrate, can exacerbate the atherogenic dyslipidemia associated with insulin resistance and obesity that includes increased triglycerides, small LDL particles, and reduced HDL cholesterol. In summary, although substitution of dietary polyunsaturated fat for saturated fat has been shown to lower CVD risk, there are few epidemiologic or clinical trial data to support a benefit of replacing saturated fat with carbohydrate. Furthermore, particularly given the differential effects of dietary saturated fats and carbohydrates on concentrations of larger and smaller LDL particles, respectively, dietary efforts to improve the increasing burden of CVD risk associated with atherogenic dyslipidemia should primarily emphasize the limitation of refined carbohydrate intakes and a reduction in excess adiposity.

  9. Carbohydrate sources in a coastal marine environment

    NASA Astrophysics Data System (ADS)

    Cowie, Gregory L.; Hedges, John I.

    1984-10-01

    Individual neutral sugars in sediments, sediment trap materials and major biological sources of a coastal marine environment (Dabob Bay, Washington State) were analyzed by capillary gas chromatography of equilibrated isomeric mixtures. Plankton, bacteria, and vascular plant tissues of different types yielded reproducible and biochemically consistent compositional patterns. These patterns, when expressed in simple parameters, allowed distinctions between marine and terrestrial carbohydrate sources as well as among the major different types of vascular plant tissues. Plankton and bacteria, due to their compositional diversity, were not further distinguishable by carbohydrate compositions alone. Carbohydrate compositions of Dabob Bay sediments and sediment trap materials, interpreted using source-indicator parameters, indicate a predominantly marine origin with increased relative input of terrestrially-derived carbohydrates in winter periods of low phytoplankton productivity. Both plankton and grasses are indicated as major carbohydrate sources during spring. Glucose yield enhancement factors, determined by comparative acid pretreatments, confirm the general predominance of α-cellulose-poor marine polysaccharides and increased levels of α-cellulose-rich vascular plant remains in winter sediment trap samples.

  10. Potential effect of ultrasound on carbohydrates.

    PubMed

    Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man

    2015-06-17

    The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000.

  11. Carbohydrates and T cells: a sweet twosome.

    PubMed

    Avci, Fikri Y; Li, Xiangming; Tsuji, Moriya; Kasper, Dennis L

    2013-04-01

    Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease.

  12. Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction.

    PubMed

    Zhao, Huiying; Yang, Yuedong; von Itzstein, Mark; Zhou, Yaoqi

    2014-11-15

    Carbohydrate-binding proteins (CBPs) are potential biomarkers and drug targets. However, the interactions between carbohydrates and proteins are challenging to study experimentally and computationally because of their low binding affinity, high flexibility, and the lack of a linear sequence in carbohydrates as exists in RNA, DNA, and proteins. Here, we describe a structure-based function-prediction technique called SPOT-Struc that identifies carbohydrate-recognizing proteins and their binding amino acid residues by structural alignment program SPalign and binding affinity scoring according to a knowledge-based statistical potential based on the distance-scaled finite-ideal gas reference state (DFIRE). The leave-one-out cross-validation of the method on 113 carbohydrate-binding domains and 3442 noncarbohydrate binding proteins yields a Matthews correlation coefficient of 0.56 for SPalign alone and 0.63 for SPOT-Struc (SPalign + binding affinity scoring) for CBP prediction. SPOT-Struc is a technique with high positive predictive value (79% correct predictions in all positive CBP predictions) with a reasonable sensitivity (52% positive predictions in all CBPs). The sensitivity of the method was changed slightly when applied to 31 APO (unbound) structures found in the protein databank (14/31 for APO versus 15/31 for HOLO). The result of SPOT-Struc will not change significantly if highly homologous templates were used. SPOT-Struc predicted 19 out of 2076 structural genome targets as CBPs. In particular, one uncharacterized protein in Bacillus subtilis (1oq1A) was matched to galectin-9 from Mus musculus. Thus, SPOT-Struc is useful for uncovering novel carbohydrate-binding proteins. SPOT-Struc is available at http://sparks-lab.org.

  13. Structural Basis for Carbohydrate Recognition and Anti-inflammatory Modulation by Gastrointestinal Nematode Parasite Toxascaris leonina Galectin.

    PubMed

    Hwang, Eun Young; Jeong, Mi Suk; Park, Sang Kyun; Ha, Sung Chul; Yu, Hak Sun; Jang, Se Bok

    2016-12-02

    Toxascaris leonina galectin (Tl-gal) is a galectin-9 homologue protein isolated from an adult worm of the canine gastrointestinal nematode parasite, and Tl-gal-vaccinated challenge can inhibit inflammation in inflammatory bowel disease-induced mice. We determined the first X-ray structures of full-length Tl-gal complexes with carbohydrates (lactose, N-acetyllactosamine, lacto-N-tetraose, sialyllactose, and glucose). Bonds were formed on concave surfaces of both carbohydrate recognition domains (CRDs) in Tl-gal. All binding sites were found in the HXXXR and WGXEER motifs. Charged Arg(61)/Arg(196) and Glu(80)/Glu(215) on the conserved motif of Tl-gal N-terminal CRD and C-terminal CRD are critical amino acids for recognizing carbohydrate binding, and the residues can affect protein folding and structure. The polar amino acids His, Asn, and Trp are also important residues for the interaction with carbohydrates through hydrogen bonding. Hemagglutination activities of Tl-gal were inhibited by interactions with carbohydrates and mutations. We found that the mutation of Tl-gal (E80A/E215A) at the carbohydrate binding region induced protein aggregation and could be caused in many diseases. The short linker region between the N-terminal and C-terminal CRDs of Tl-gal was very stable against proteolysis and maintained its biological activity. This structural information is expected to elucidate the carbohydrate recognition mechanism of Tl-gal and improve our understanding of anti-inflammatory mediators and modulators of immune response.

  14. Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity.

    PubMed

    Knott, Brandon C; Crowley, Michael F; Himmel, Michael E; Ståhlberg, Jerry; Beckham, Gregg T

    2014-06-18

    Translocation of carbohydrate polymers through protein tunnels and clefts is a ubiquitous biochemical phenomenon in proteins such as polysaccharide synthases, glycoside hydrolases, and carbohydrate-binding modules. Although static snapshots of carbohydrate polymer binding in proteins have long been studied via crystallography and spectroscopy, the molecular details of polysaccharide chain processivity have not been elucidated. Here, we employ simulation to examine how a cellulose chain translocates by a disaccharide unit during the processive cycle of a glycoside hydrolase family 7 cellobiohydrolase. Our results demonstrate that these biologically and industrially important enzymes employ a two-step mechanism for chain threading to form a Michaelis complex and that the free energy barrier to chain threading is significantly lower than the hydrolysis barrier. Taken with previous studies, our findings suggest that the rate-limiting step in enzymatic cellulose degradation is the glycosylation reaction, not chain processivity. Based on the simulations, we find that strong electrostatic interactions with polar residues that are conserved in GH7 cellobiohydrolases, but not in GH7 endoglucanases, at the leading glucosyl ring provide the thermodynamic driving force for polysaccharide chain translocation. Also, we consider the role of aromatic-carbohydrate interactions, which are widespread in carbohydrate-active enzymes and have long been associated with processivity. Our analysis suggests that the primary role for these aromatic residues is to provide tunnel shape and guide the carbohydrate chain to the active site. More broadly, this work elucidates the role of common protein motifs found in carbohydrate-active enzymes that synthesize or depolymerize polysaccharides by chain translocation mechanisms coupled to catalysis.

  15. Nutraceutical and pharmacological implications of marine carbohydrates.

    PubMed

    Pallela, Ramjee

    2014-01-01

    Current day's research has been focusing much on the potential pharmacological or nutraceutical agents of selective health benefits with less toxicity. As a consequence of increased demand of nutritional supplements of great medicinal values, development of therapeutic agents from natural sources, in particular, marine environment are being considered much important. A diverse array of marine natural products containing medicinally useful nutritional substances, i.e., marine nutraceuticals have been focused to the benefit of mankind. Carbohydrates, by being constituted in considerable amount of many marine organisms display several nutraceutical and pharmaceutical behavior to defend from various diseases. Moreover, the carbohydrates from algae as well as from shellfish wastes, like chitosan and its derivatives, showed tremendous applications in biology and biomedicine. In the current chapter, several of marine carbohydrates from various marine flora and fauna have been covered with their applications and prospects in the development of nutraceuticals and pharmaceuticals.

  16. Investigation of Carbohydrate Recognition via Computer Simulation

    SciTech Connect

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; Shen, Tongye

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.

  17. Investigation of Carbohydrate Recognition via Computer Simulation

    DOE PAGES

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; ...

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We reviewmore » the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.« less

  18. Boronic acids for fluorescence imaging of carbohydrates.

    PubMed

    Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D

    2016-02-28

    "Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.

  19. Capillary electrophoresis-mass spectrometry of carbohydrates

    PubMed Central

    Zaia, Joseph

    2014-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This review summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications. PMID:23386333

  20. Oxygen solubility and permeability of carbohydrates.

    PubMed

    Whitcombe, Michael J; Parker, Roger; Ring, Stephen G

    2005-06-13

    The saturated oxygen concentration in a series of aqueous solutions of sorbitol (up to 35% w/w) and maltitol (up to 50% w/w) was measured using colorimetric reagent vials based on Rhodazine D. The results indicate that the solubility of oxygen in low-water carbohydrates is considerably lower than its solubility in pure water. It was concluded that the low-oxygen solubility is a major factor contributing to the barrier properties of low-water content carbohydrates used in the encapsulation of flavours, lipids, peptides and other oxidisable species.

  1. Fructose-derived carbohydrates from Alisma orientalis.

    PubMed

    Zhang, Zhen; Wang, Dong; Zhao, Yun; Gao, Hong; Hu, Ying-He; Hu, Jin-Feng

    2009-01-01

    Nine fructose-derived carbohydrates were obtained from the methanol extract from the rhizome of Alisma orientalis. On the basis of spectroscopic analysis, their structures were determined to be alpha-D-fructofuranose (1), beta-D-fructofuranose (2), ethyl alpha-D-fructofuranoside (3), ethyl beta-D-fructofuranoside (4), 5-hydroxymethyl-furaldehyde (5), sucrose (6), raffinose (7), stachyose (8) and verbascose (9), along with two oligosaccharides of manninotriose (10) and verbascotetraose (11). Compounds 3, 4 and 7-11 were isolated from this plant for the first time. A hypothetical biosynthesis pathway among these isolated carbohydrates (1-11) was briefly introduced.

  2. Synthesis of chiral dopants based on carbohydrates.

    PubMed

    Tsuruta, Toru; Koyama, Tetsuo; Yasutake, Mikio; Hatano, Ken; Matsuoka, Koji

    2014-07-01

    Chiral dopants based on carbohydrates for nematic liquid crystals were synthesized from D-glucose, and their helical twisting power (HTP) values were evaluated. The chiral dopants induced helices in the host nematic liquid crystals. An acetyl derivative having an ether-type glycosidic linkage between carbohydrate and a mesogenic moiety showed the highest HTP value of 10.4 μm(-1), while an acetyl derivative having an anomeric ester-type linkage did not show any HTP. It was surprising that this molecule had no HTP despite the presence of chirality in the molecule. A relationship between HTP and specific rotation was not observed in this study.

  3. Capillary electrophoresis-mass spectrometry of carbohydrates.

    PubMed

    Zaia, Joseph

    2013-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.

  4. Engineered xyloglucan specificity in a carbohydrate-binding module.

    PubMed

    Gunnarsson, Lavinia Cicortas; Zhou, Qi; Montanier, Cedric; Karlsson, Eva Nordberg; Brumer, Harry; Ohlin, Mats

    2006-12-01

    The field of plant cell wall biology is constantly growing and consequently so is the need for more sensitive and specific probes for individual wall components. Xyloglucan is a key polysaccharide widely distributed in the plant kingdom in both structural and storage tissues that exist in both fucosylated and non-fucosylated variants. Presently, the only xyloglucan marker available is the monoclonal antibody CCRC-M1 that is specific to terminal alpha-1,2-linked fucosyl residues on xyloglucan oligo- and polysaccharides. As a viable alternative to searches for natural binding proteins or creation of new monoclonal antibodies, an approach to select xyloglucan-specific binding proteins from a combinatorial library of the carbohydrate-binding module, CBM4-2, from xylanase Xyn10A of Rhodothermus marinus is described. Using phage display technology in combination with a chemoenzymatic method to anchor xyloglucan to solid supports, the selection of xyloglucan-binding modules with no detectable residual wild-type xylan and beta-glucan-binding ability was achieved.

  5. Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted.

    PubMed

    Kasper, Andreas M; Cocking, Scott; Cockayne, Molly; Barnard, Marcus; Tench, Jake; Parker, Liam; McAndrew, John; Langan-Evans, Carl; Close, Graeme L; Morton, James P

    2016-08-01

    We tested the hypothesis that carbohydrate mouth rinsing, alone or in combination with caffeine, augments high-intensity interval (HIT) running capacity undertaken in a carbohydrate-restricted state. Carbohydrate restriction was achieved by performing high-intensity running to volitional exhaustion in the evening prior to the main experimental trials and further refraining from carbohydrate intake in the post-exercise and overnight period. On the subsequent morning, eight males performed 45-min steady-state (SS) exercise (65% [Formula: see text]) followed by HIT running to exhaustion (1-min at 80% [Formula: see text]interspersed with 1-min walking at 6 km/h). Subjects completed 3 trials consisting of placebo capsules (administered immediately prior to SS and immediately before HIT) and placebo mouth rinse at 4-min intervals during HIT (PLACEBO), placebo capsules but 10% carbohydrate mouth rinse (CMR) at corresponding time-points or finally, caffeine capsules (200 mg per dose) plus 10% carbohydrate mouth rinse (CAFF + CMR) at corresponding time-points. Heart rate, capillary glucose, lactate, glycerol and NEFA were not different at exhaustion during HIT (P > 0.05). However, HIT capacity was different (P < 0.05) between all pair-wise comparisons such that CAFF + CMR (65 ± 26 min) was superior to CMR (52 ± 23 min) and PLACEBO (36 ± 22 min). We conclude that carbohydrate mouth rinsing and caffeine ingestion improves exercise capacity undertaken in carbohydrate-restricted states. Such nutritional strategies may be advantageous for those athletes who deliberately incorporate elements of training in carbohydrate-restricted states (i.e. the train-low paradigm) into their overall training programme in an attempt to strategically enhance mitochondrial adaptations of skeletal muscle.

  6. A Universal Protocol for Photochemical Covalent Immobilization of Intact Carbohydrates for the Preparation of Carbohydrate Microarrays

    PubMed Central

    Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi

    2010-01-01

    A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, non-reducing sugars such as alditols and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging. PMID:21138274

  7. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp.

    PubMed

    Wang, Xin; Sheng, Lili; Yang, Xiaoyi

    2017-04-01

    Microalgal components were isolated gradually to get lipid-rich, protein-rich and carbohydrate-rich components. The aim of this work was to study pyrolysis mechanism of microalgae by real isolated real algae components. Thermogrametric analysis (DTG) curve of microalgae was fitted by single pyrolysis curves of protein, lipid and carbohydrate except special zones, which likely affected by cell disruption and hydrolysis mass loss. Experimental microalgae liquefaction without water index N was 0.6776, 0.3861 and 0.2856 for isolated lipid, protein and carbohydrate. Pyrolysis pathways of lipid are decarboxylation, decarbonylation, fragmentation of glycerin moieties and steroid to form hydrocarbons, carboxylic acids and esters. Pyrolysis pathways of protein are decarboxylation, deamination, hydrocarbon residue fragmentation, dimerization and fragmentation of peptide bonds to form amide/amines/nitriles, esters, hydrocarbons and N-heterocyclic compounds, especially diketopiperazines (DKPs). Pyrolysis pathways of carbohydrate are dehydrated reactions and further fragmentation to form ketones and aldehyde, decomposition of lignin to form phenols, and fragmentation of lipopolysaccharides.

  8. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.

    PubMed

    Alibardi, Luca; Cossu, Raffaello

    2016-01-01

    Organic waste from municipalities, food waste and agro-industrial residues are ideal feedstocks for use in biological conversion processes in biorefinery chains, representing biodegradable materials containing a series of substances belonging to the three main groups of the organic matter: carbohydrates, proteins and lipids. Biological hydrogen production by dark fermentation may assume a central role in the biorefinery concept, representing an up-front treatment for organic waste capable of hydrolysing complex organics and producing biohydrogen. This research study was aimed at evaluating the effects of carbohydrate, protein and lipid content of organic waste on hydrogen yields, volatile fatty acid production and carbon-fate. Biogas and hydrogen productions were linearly correlated to carbohydrate content of substrates while proteins and lipids failed to produce significant contributions. Chemical composition also produced effects on the final products of dark fermentation. Acetic and butyric acids were the main fermentation products, with their ratio proving to correlate with carbohydrate and protein content. The results obtained in this research study enhance the understanding of data variability on hydrogen yields from organic waste. Detailed information on waste composition and chemical characterisation are essential to clearly identify the potential performances of the dark fermentation process.

  9. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types.

    PubMed

    Mélida, Hugo; Sandoval-Sierra, Jose V; Diéguez-Uribeondo, Javier; Bulone, Vincent

    2013-02-01

    Some of the most devastating plant and animal pathogens belong to the oomycete class. The cell walls of these microorganisms represent an excellent target for disease control, but their carbohydrate composition is elusive. We have undertaken a detailed cell wall analysis in 10 species from 2 major oomycete orders, the Peronosporales and the Saprolegniales, thereby unveiling the existence of 3 clearly different cell wall types: type I is devoid of N-acetylglucosamine (GlcNAc) but contains glucuronic acid and mannose; type II contains up to 5% GlcNAc and residues indicative of cross-links between cellulose and 1,3-β-glucans; type III is characterized by the highest GlcNAc content (>5%) and the occurrence of unusual carbohydrates that consist of 1,6-linked GlcNAc residues. These 3 cell wall types are also distinguishable by their cellulose content and the fine structure of their 1,3-β-glucans. We propose a cell wall paradigm for oomycetes that can serve as a basis for the establishment of cell wall architectural models and the further identification of cell wall subtypes. This paradigm is complementary to morphological and molecular criteria for taxonomic grouping and provides useful information for unraveling poorly understood cell wall carbohydrate biosynthetic pathways through the identification and characterization of the corresponding enzymes.

  10. Analyses of Extracellular Carbohydrates in Oomycetes Unveil the Existence of Three Different Cell Wall Types

    PubMed Central

    Mélida, Hugo; Sandoval-Sierra, Jose V.; Diéguez-Uribeondo, Javier

    2013-01-01

    Some of the most devastating plant and animal pathogens belong to the oomycete class. The cell walls of these microorganisms represent an excellent target for disease control, but their carbohydrate composition is elusive. We have undertaken a detailed cell wall analysis in 10 species from 2 major oomycete orders, the Peronosporales and the Saprolegniales, thereby unveiling the existence of 3 clearly different cell wall types: type I is devoid of N-acetylglucosamine (GlcNAc) but contains glucuronic acid and mannose; type II contains up to 5% GlcNAc and residues indicative of cross-links between cellulose and 1,3-β-glucans; type III is characterized by the highest GlcNAc content (>5%) and the occurrence of unusual carbohydrates that consist of 1,6-linked GlcNAc residues. These 3 cell wall types are also distinguishable by their cellulose content and the fine structure of their 1,3-β-glucans. We propose a cell wall paradigm for oomycetes that can serve as a basis for the establishment of cell wall architectural models and the further identification of cell wall subtypes. This paradigm is complementary to morphological and molecular criteria for taxonomic grouping and provides useful information for unraveling poorly understood cell wall carbohydrate biosynthetic pathways through the identification and characterization of the corresponding enzymes. PMID:23204192

  11. Carbohydrate-Based Lactones: Synthesis and Applications

    NASA Astrophysics Data System (ADS)

    Xavier, Nuno M.; Rauter, Amélia P.; Queneau, Yves

    The synthesis and uses of different kinds of carbohydrate-based lactones are described. This group of compounds includes aldonolactones, other related monocyclic lactones and bicyclic systems. The latter can arise from uronic acids, carboxymethyl ethers or glycosides, or from C-branched sugars.

  12. Indicators of normal carbohydrate digestion in children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More research is needed to determine the nutritional and clinical significance of the intermediate values of low but not deficient duodenal disaccharidase activities, but the Dahlqvist-method biopsy assay of activity serves as a gnomon of carbohydrate digestion, in the sense that Anaximander used a ...

  13. Carbohydrate Metabolism in Bifidobacteria: Human Symbiotic Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bifidobacterium ssp. constitute up to 90% of microbial gut flora in the infant colon, but considerably less in adults. Carbohydrate metabolism in these bacteria is highly unusual. Data from four Bifidobacterium genomes indicates genes missing from glycolysis, gluconeogenesis, and the TCA cycle, in...

  14. Genetics of carbohydrate accumulation in onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans are soluble carbohydrates composed of fructose chains attached to a basal sucrose molecule and act both as health-enhancing pro- and pre-biotics. In onion, higher fructan concentrations are correlated with greater soluble solids content, dry weights, and pungency. We analyzed dry weights ...

  15. Separation and quantification of microalgal carbohydrates.

    PubMed

    Templeton, David W; Quinn, Matthew; Van Wychen, Stefanie; Hyman, Deborah; Laurens, Lieve M L

    2012-12-28

    Structural carbohydrates can constitute a large fraction of the dry weight of algal biomass and thus accurate identification and quantification is important for summative mass closure. Two limitations to the accurate characterization of microalgal carbohydrates are the lack of a robust analytical procedure to hydrolyze polymeric carbohydrates to their respective monomers and the subsequent identification and quantification of those monosaccharides. We address the second limitation, chromatographic separation of monosaccharides, here by identifying optimum conditions for the resolution of a synthetic mixture of 13 microalgae-specific monosaccharides, comprised of 8 neutral, 2 amino sugars, 2 uronic acids and 1 alditol (myo-inositol as an internal standard). The synthetic 13-carbohydrate mix showed incomplete resolution across 11 traditional high performance liquid chromatography (HPLC) methods, but showed improved resolution and accurate quantification using anion exchange chromatography (HPAEC) as well as alditol acetate derivatization followed by gas chromatography (for the neutral- and amino-sugars only). We demonstrate the application of monosaccharide quantification using optimized chromatography conditions after sulfuric acid analytical hydrolysis for three model algae strains and compare the quantification and complexity of monosaccharides in analytical hydrolysates relative to a typical terrestrial feedstock, sugarcane bagasse.

  16. General Properties, Occurrence, and Preparation of Carbohydrates

    NASA Astrophysics Data System (ADS)

    Robyt, John F.

    D-Glucose and its derivatives and analogues, N-acetyl-D-glucosamine, N-acetyl-D-muramic acid, D-glucopyranosyl uronic acid, and D-glucitol represent 99.9% of the carbohydrates on the earth. D-Glucose is found in the free state in human blood and in the combined state in disaccharides, sucrose, lactose, and α,α-trehalose, in cyclic dextrins, and in polysaccharides, starch, glycogen, cellulose, dextrans; N-acetyl-D-glucosamine and an analogue N-acetyl-D-muramic acid are found in bacterial cell wall polysaccharide, murein, along with teichoic acids made up of poly-glycerol or -ribitol phosphodiesters. Other carbohydrates, D-mannose, D-mannuronic acid, D-galactose, N-acetyl-D-galactosamine, D-galacturonic acid, D-iduronic acid, L-guluronic acid, L-rhamnose, L-fucose, D-xylose, and N-acetyl-D-neuraminic acid are found in glycoproteins, hemicelluloses, glycosaminoglycans, and polysaccharides of plant exudates, bacterial capsules, alginates, and heparin. D-Ribofuranose-5-phosphate is found in many coenzymes and is the backbone of RNAs (ribonucleic acid), and 2-deoxy-D-ribofuranose-5-phosphate is the backbone of DNA (deoxyribonucleic acid). D-Fructofuranose is found in sucrose, inulin, and levan. The general properties and occurrence of these carbohydrates and general methods of isolation and preparation of carbohydrates are presented.

  17. High Carbohydrate-Fiber Nutrition for Running and Health.

    ERIC Educational Resources Information Center

    Battinelli, Thomas

    1983-01-01

    The roles of carbohydrates, fats, proteins, and fiber in producing energy for health and exercise are discussed. Long-distance runners should have a high intake of complex carbohydrates and fiber. (PP)

  18. Carbohydrates: How Carbs Fit into a Healthy Diet

    MedlinePlus

    ... carbohydrates to processed foods in the form of starch or added sugar. Common sources of naturally occurring ... fructose), table sugar (sucrose) and milk sugar (lactose). Starch. Starch is a complex carbohydrate, meaning it is ...

  19. Exercise and Regulation of Carbohydrate Metabolism.

    PubMed

    Mul, Joram D; Stanford, Kristin I; Hirshman, Michael F; Goodyear, Laurie J

    2015-01-01

    Carbohydrates are the preferred substrate for contracting skeletal muscles during high-intensity exercise and are also readily utilized during moderate intensity exercise. This use of carbohydrates during physical activity likely played an important role during the survival of early Homo sapiens, and genes and traits regulating physical activity, carbohydrate metabolism, and energy storage have undoubtedly been selected throughout evolution. In contrast to the life of early H. sapiens, modern lifestyles are predominantly sedentary. As a result, intake of excessive amounts of carbohydrates due to the easy and continuous accessibility to modern high-energy food and drinks has not only become unnecessary but also led to metabolic diseases in the face of physical inactivity. A resulting metabolic disease is type 2 diabetes, a complex endocrine disorder characterized by abnormally high concentrations of circulating glucose. This disease now affects millions of people worldwide. Exercise has beneficial effects to help control impaired glucose homeostasis with metabolic disease, and is a well-established tool to prevent and combat type 2 diabetes. This chapter focuses on the effects of exercise on carbohydrate metabolism in skeletal muscle and systemic glucose homeostasis. We will also focus on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. It is now well established that there are different proximal signaling pathways that mediate the effects of exercise and insulin on glucose uptake, and these distinct mechanisms are consistent with the ability of exercise to increase glucose uptake in the face of insulin resistance in people with type 2 diabetes. Ongoing research in this area is aimed at defining the precise mechanism by which exercise increases glucose uptake and insulin sensitivity and the types of exercise necessary for these important health benefits.

  20. Maternal carbohydrate intake and pregnancy outcome.

    PubMed

    Clapp, James F

    2002-02-01

    Experimental evidence indicates that the primary maternal environmental factor that regulates feto-placental growth is substrate delivery to the placental site, which is the product of maternal substrate levels and the rate of placental-bed blood flow. Thus, maternal factors which change either substrate level or flow alter feto-placental growth rate. The best-studied substrate in human pregnancy is glucose, and there is a direct relationship between maternal blood glucose levels and size at birth. Altering the type of carbohydrate eaten (high- v. low-glycaemic sources) changes postprandial glucose and insulin responses in both pregnant and non-pregnant women, and a consistent change in the type of carbohydrate eaten during pregnancy influences both the rate of feto-placental growth and maternal weight gain. Eating primarily high-glycaemic carbohydrate results in feto-placental overgrowth and excessive maternal weight gain, while intake of low-glycaemic carbohydrate produces infants with birth weights between the 25th and the 50th percentile and normal maternal weight gain. The calculated difference in energy retention with similar total energy intakes is of the order of 80,000 kJ. Preliminary information from subsequent metabolic studies indicates that the mechanisms involved include changes in: daily digestible energy requirements (i.e. metabolic efficiency), substrate utilization (glucose oxidation v. lipid oxidation), and insulin resistance and sensitivity. Thus, altering the source of maternal dietary carbohydrate may prove to be a valuable tool in the management of pregnancies at risk for anomalous feto-placental growth and for the prevention and/or treatment of obesity and insulin resistance in the non-pregnant state.

  1. Crystal structures of three bicyclic carbohydrate derivatives

    PubMed Central

    Schilde, Uwe; Kelling, Alexandra; Umbreen, Sumaira; Linker, Torsten

    2016-01-01

    The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis­(acet­yloxy)-7-oxo-2-oxabi­cyclo[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acet­yloxy-7-hy­droxy­imino-2-oxobi­cyclo­[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis­(acet­yloxy)-2-oxo­octa­hydro­pyrano[3,2-b]pyrrol-5-yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings. PMID:27980845

  2. Cancer vaccine with mimotopes of tumor-associated carbohydrate antigens.

    PubMed

    Kozbor, Danuta

    2010-03-01

    The GD2 ganglioside, displayed by five carbohydrate Neu5Acalpha2-8Neu5Acalpha2-3(GalNAcbeta1-4)Galbeta1-4Glcbeta residues attached to a ceramide chain that anchors the ganglioside in the cell membrane, is expressed on neuroectodermally derived tumors. GD2 has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have generated 47-LDA mimotope of GD2 by screening a phage display peptide library with anti-GD2 mAb 14G2a and reported that vaccination with the 47-LDA mimotope elicited GD2 cross-reactive IgG antibody responses as well as MHC class I-restricted CD8(+) T cells to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated antigen cross-reacting with 47-LDA. Immunoblotting studies using 14G2a mAb demonstrated that this antibody cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(-) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional (3D) collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by 105 kDa activated leukocyte cell adhesion molecules (ALCAM/CD166). The CD166 glycoprotein was shown to be recognized by 14G2a antibody, and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166 and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate antigens.

  3. Structural Insight of a Trimodular Halophilic Cellulase with a Family 46 Carbohydrate-Binding Module

    PubMed Central

    Yao, Chaoxiang; Junaid, Muhammad; Lu, Zhenghui; Zhang, Houjin; Ma, Yanhe

    2015-01-01

    Cellulases are the key enzymes used in the biofuel industry. A typical cellulase contains a catalytic domain connected to a carbohydrate-binding module (CBM) through a flexible linker. Here we report the structure of an atypical trimodular cellulase which harbors a catalytic domain, a CBM46 domain and a rigid CBM_X domain between them. The catalytic domain shows the features of GH5 family, while the CBM46 domain has a sandwich-like structure. The catalytic domain and the CBM46 domain form an extended substrate binding cleft, within which several tryptophan residues are well exposed. Mutagenesis assays indicate that these residues are essential for the enzymatic activities. Gel affinity electrophoresis shows that these tryptophan residues are involved in the polysaccharide substrate binding. Also, electrostatic potential analysis indicates that almost the entire solvent accessible surface of CelB is negatively charged, which is consistent with the halophilic nature of this enzyme. PMID:26562160

  4. Influence of Grape Maturity on Complex Carbohydrate Composition of Red Sparkling Wines.

    PubMed

    Martínez-Lapuente, Leticia; Apolinar-Valiente, Rafael; Guadalupe, Zenaida; Ayestarán, Belén; Pérez-Magariño, Silvia; Williams, Pascale; Doco, Thierry

    2016-06-22

    This paper studied how grape maturity affected complex carbohydrate composition during red sparkling wine making and wine aging. Grape ripening stage (premature and mature grapes) showed a significant impact on the content, composition, and evolution of polysaccharides and oligosaccharides of sparkling wines. Polysaccharides rich in arabinose and galactose, mannoproteins, rhamnogalacturonans II, and oligosaccharides in base wines increased with maturity. For both maturity stages, polysaccharides rich in arabinose and galactose, and the glucuronic acid glycosyl residue of the oligosaccharides were the major carbohydrates detected in all vinification stages. The total glycosyl content of oligosaccharides decreased during the whole period of aging on yeast lees. The reduction of polysaccharides rich in arabinose and galactose and rhamnogalacturonans type II during the aging was more pronounced in mature samples. To our knowledge, this is the first report of the polysaccharide and oligosaccharide composition of red sparkling wines.

  5. Identification and Characterization of Sulfated Carbohydrate-Binding Protein from Lactobacillus reuteri

    PubMed Central

    Nishiyama, Keita; Ochiai, Ayaka; Tsubokawa, Daigo; Ishihara, Kazuhiko; Yamamoto, Yuji; Mukai, Takao

    2013-01-01

    We previously purified a putative sulfated-galactosylceramide (sulfatide)-binding protein with a molecular weight of 47 kDa from the cell surface of Lactobacillus reuteri JCM1081. The aim of this study was to identify the 47-kDa protein, examine its binding to sulfated glycolipids and mucins, and evaluate its role in bacterial adhesion to mucosal surfaces. By cloning and sequencing analysis, the 47-kDa protein was identified as elongation factor-Tu (EF-Tu). Adhesion properties were examined using 6×Histidine-fused EF-Tu (His6-EF-Tu). Surface plasmon resonance analysis demonstrated pH-dependent binding of His6-EF-Tu to sulfated glycolipids, but not to neutral or sialylated glycolipids, suggesting that a sulfated galactose residue was responsible for EF-Tu binding. Furthermore, His6-EF-Tu was found to bind to porcine gastric mucin (PGM) by enzyme-linked immunosorbent assay. Binding was markedly reduced by sulfatase treatment of PGM and in the presence of acidic and desialylated oligosaccharide fractions containing sulfated carbohydrate residues prepared from PGM, demonstrating that sulfated carbohydrate moieties mediated binding. Histochemical staining revealed similar localization of His6-EF-Tu and high iron diamine staining in porcine mucosa. These results indicated that EF-Tu bound PGM via sulfated carbohydrate moieties. To characterize the contribution of EF-Tu to the interaction between bacterial cells and PGM, we tested whether anti-EF-Tu antibodies could inhibit the interaction. Binding of L. reuteri JCM1081 to PGM was significantly blocked in a concentration-dependent matter, demonstrating the involvement of EF-Tu in bacterial adhesion. In conclusion, the present results demonstrated, for the first time, that EF-Tu bound sulfated carbohydrate moieties of sulfated glycolipids and sulfomucin, thereby promoting adhesion of L. reuteri to mucosal surfaces. PMID:24391811

  6. Analysis of carbohydrate-protein interactions with synthetic N-linked neoglycoconjugate probes.

    PubMed Central

    Wong, S Y; Manger, I D; Guile, G R; Rademacher, T W; Dwek, R A

    1993-01-01

    Recently we have describe a simple efficient chemical method of generating an asparagine side-chain linker with beta-stereochemistry at the anomeric position of neutral oligosaccharides. We now report the 1-N-glycyl beta-derivatization of sialylated saccharides. Several neoglycoconjugates formed using these N-linked inter-mediates were investigated for their usefulness in probing carbohydrate-protein interactions. First, biotinyl derivatives of two xylose/fucose class plant-type oligosaccharides purified from horseradish peroxidase were effective in demonstrating the carbohydrate specificity of polyclonal anti-(horseradish peroxidase) antibodies. Secondly, a fluorescein-labelled asialo- and digalactosylated biantennary complex sugar was synthesized and shown to bind to a Ricinus communis agglutinin column. This galactose-specific recognition was abolished by treating this fluorescein-labelled oligosaccharide with jack bean beta-galactosidase. Finally, two 1-N-glycyl beta-saccharide derivatives were modified with thiophosgene to form their corresponding isothiocyanate derivatives. Coupling of these isothiocyanate derivatives of sugars to BSA, amino-derivatized polystyrene plates and glass-fibre discs resulted in multiple sugar presentation. The binding of an anti-N-acetylglucosamine monoclonal antibody to N,N'-diacetylchitobiose residues presented on BSA and solid supports was shown by e.l.i.s.a. Similarly the binding of concanavalin A to asialo-, agalactosylated biantennary complex oligosaccharide residues attached to BSA was demonstrated by a competitive e.l.i.s.a. Our results demonstrate that N-linked neoglycoconjugates could be made readily available and they are valuable tools for the detailed analyses of carbohydrates and carbohydrate-binding proteins. Images Figure 2 Figure 6 Figure 9 PMID:7506528

  7. Organotin-catalyzed highly regioselective thiocarbonylation of nonprotected carbohydrates and synthesis of deoxy carbohydrates in a minimum number of steps.

    PubMed

    Muramatsu, Wataru; Tanigawa, Satoko; Takemoto, Yuki; Yoshimatsu, Hirofumi; Onomura, Osamu

    2012-04-16

    Nonprotected carbohydrates: The catalytic regioselective thiocarbonylation of carbohydrates by using organotin dichloride under mild conditions was demonstrated. The reaction afforded various deoxy saccharides in high yields and excellent regioselectivity in a minimum number of steps. The regioselectivity of the thiocarbonylation is attributed to the intrinsic character of the carbohydrates based on the stereorelationship of their hydroxy groups (see scheme).

  8. Carbohydrate and the regulation of blood glucose and metabolism.

    PubMed

    Wolever, Thomas M S

    2003-05-01

    Classifying the glycemic responses of carbohydrate foods using the glycemic index (GI) requires standardized methodology for valid results. Dietary carbohydrates influence metabolism by at least four mechanisms: nature of the monosaccharides absorbed, amount of carbohydrate consumed, rate of absorption, and colonic fermentation. Reducing glycemic responses by reducing carbohydrate intake increases postprandial serum free-fatty acids (FFA) and does not improve overall glycemic control in diabetic subjects. By contrast, low-GI diets reduce serum FFA and improve glycemic control. Thus, current evidence supports FAO/WHO recommendations to maintain a high-carbohydrate diet and choose low-GI starchy foods.

  9. Carbohydrate engineered cells for regenerative medicine.

    PubMed

    Du, Jian; Yarema, Kevin J

    2010-06-15

    Carbohydrates are integral components of the stem cell niche on several levels; proteoglycans are a major constituent of the extracellular matrix (ECM) surrounding a cell, glycosoaminoglycans (GAGs) help link cells to the ECM and the neighboring cells, and small but informationally-rich oligosaccharides provide a "sugar code" that identifies each cell and provides it with unique functions. This article samples roles that glycans play in development and then describes how metabolic glycoengineering - a technique where monosaccharide analogs are introduced into the metabolic pathways of a cell and are biosynthetically incorporated into the glycocalyx - is overcoming many of the long-standing barriers to manipulating carbohydrates in living cells and tissues and is becoming an intriguing new tool for tissue engineering and regenerative medicine.

  10. Carbohydrate Engineered Cells for Regenerative Medicine

    PubMed Central

    Du, Jian; Yarema, Kevin J.

    2010-01-01

    Carbohydrates are integral components of the stem cell niche on several levels; proteoglycans are a major constituent of the extracellular matrix (ECM) surrounding a cell, glycosoaminoglycans (GAGs) help link cells to the ECM and the neighboring cells, and small but informationally-rich oligosaccharides provide a “sugar code” that identifies each cell and provides it with unique functions. This article samples roles that glycans play in development and then describes how metabolic glycoengineering – a technique where monosaccharide analogs are introduced into the metabolic pathways of a cell and are biosynthetically incorporated into the glycocalyx – is overcoming many of the long-standing barriers to manipulating carbohydrates in living cells and tissues and is becoming an intriguing new tool for tissue engineering and regenerative medicine. PMID:20117158

  11. Solubility of carbohydrates in heavy water.

    PubMed

    Cardoso, Marcus V C; Carvalho, Larissa V C; Sabadini, Edvaldo

    2012-05-15

    The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water.

  12. Functionalized carbon nanomaterials derived from carbohydrates.

    PubMed

    Jagadeesan, Dinesh; Eswaramoorthy, Muthusamy

    2010-02-01

    A tremendous growth in the field of carbon nanomaterials has led to the emergence of carbon nanotubes, fullerenes, mesoporous carbon and more recently graphene. Some of these materials have found applications in electronics, sensors, catalysis, drug delivery, composites, and so forth. The high temperatures and hydrocarbon precursors involved in their synthesis usually yield highly inert graphitic surfaces. As some of the applications require functionalization of their inert graphitic surface with groups like -COOH, -OH, and -NH(2), treatment of these materials in oxidizing agents and concentrated acids become inevitable. More recent works have involved using precursors like carbohydrates to produce carbon nanostructures rich in functional groups in a single-step under hydrothermal conditions. These carbon nanostructures have already found many applications in composites, drug delivery, materials synthesis, and Li ion batteries. The review aims to highlight some of the recent developments in the application of carbohydrate derived carbon nanostructures and also provide an outlook of their future prospects.

  13. Glycosylated Conductive Polymer: A Multimodal Biointerface for Studying Carbohydrate-Protein Interactions.

    PubMed

    Zeng, Xiangqun; Qu, Ke; Rehman, Abdul

    2016-09-20

    polymerization but also enable the simultaneous analysis of the binding events with orthogonal electrical, optical, or mass sensing label-free readouts. We established this approach using polyaniline and polythiophene as examples. Two general methods were demonstrated for glycosylated polymer fabrications (i.e., electropolymerization of monomer bearing α-mannoside residues or click chemistry based mannose conjugation to electrochemically preformed quinone fused polymer with potential to introduce different carbohydrate moieties and construct glycan arrays in a similar manner). Their conjugated π system extending over a large number of recurrent monomer units renders them sensitive optoelectronic materials. The carbohydrate-protein interactions on the side chain could disrupt the electrostatic, H-bonding, steric, or van der Waals interactions within or between polymers, leading to a change of conductivity or optical absorption of the conductive polymers. This will allow concurrent interrogation of these interactions with adjoining biological processes and mechanisms in multimodal fashion. Furthermore, the functionalized glycosylated conductive polymers can be designed and synthesized with controlled oxidation states, desired ionic dopants, and the imperative density and orientation of the sugar ligands that enable the assessment of differential receptor binding profiles of carbohydrate-protein interactions with much more detailed information and high accuracy. Finally, the glycosylated biosensing interfaces were successfully validated for their applications in Gram-negative bacterial detection, antibiotic resistance studies, and antimicrobial susceptibility assays, all based on inferring carbohydrate-protein interactions directly on cell surfaces, thus illustrating their potential uses in infectious disease research, clinical diagnostics, and environmental monitoring of harmful pathogens.

  14. Small-Molecule Carbohydrate-Based Immunostimulants.

    PubMed

    Marzabadi, Cecilia H; Franck, Richard W

    2017-02-03

    In this review, we discuss small-molecule, carbohydrate-based immunostimulants that target Toll-like receptor 4 (TLR-4) and cluster of differentiation 1D (CD1d) receptors. The design and use of these molecules in immunotherapy as well as results from their use in clinical trials are described. How these molecules work and their utilization as vaccine adjuvants are also discussed. Future applications and extensions for the use of these analogues as therapeutic agents will be outlined.

  15. Crystallisation and crystal forms of carbohydrate derivatives

    NASA Astrophysics Data System (ADS)

    Lennon, Lorna

    This thesis is focused on the synthesis and solid state analysis of carbohydrate derivatives, including many novel compounds. Although the synthetic chemistry surrounding carbohydrates is well established in the literature, the crystal chemistry of carbohydrates is less well studied. Therefore this research aims to improve understanding of the solid state properties of carbohydrate derivatives through gaining more information on their supramolecular bonding. Chapter One focuses on an introduction to the solid state of organic compounds, with a background to crystallisation, including issues that can arise during crystal growth. Chapter Two is based on glucopyranuronate derivatives which are understudied in terms of their solid state forms. This chapter reports on the formation of novel glucuronamides and utilising the functionality of the amide bond for crystallisation. TEMPO oxidation was completed to form glucopyranuronates by oxidation of the primary alcohol groups of glucosides to the carboxylic acid derivatives, to increase functionality for enhanced crystal growth. Chapter Three reports on the synthesis of glucopyranoside derivatives by O-glycosylation reactions and displays crystal structures, including a number of previously unsolved acetate protected and deprotected crystal structures. More complex glycoside derivatives were also researched in an aim to study the resultant supramolecular motifs. Chapter Four contains the synthesis of aryl cellobioside derivatives including the novel crystal structures that were solved for the acetate protected and deprotected compounds. Research was carried out to determine if 1-deoxycellodextrins could act as putative isostructures for cellulose. Our research displays the presence of isostructural references with 1-deoxycellotriose shown to be similar to cellulose III11, 1-deoxycellotetraose correlates with cellulose IV11 and 1-deoxycellopentose shows isostructurality similar to that of cellulose II. Chapter Five contains

  16. Direct synthesis of methyl phosphoramidates in carbohydrates.

    PubMed

    Dhurandhare, Vijay M; Mishra, Girija Prasad; Lam, Sarah; Wang, Cheng-Chung

    2015-09-28

    A direct installation of a methyl phosphoramidate group by using methyl benzylphosphoramidochloridate into carbohydrates and amino acid is described. This one-step synthesis is efficient for both primary and secondary alcohols and exhibited excellent regioselectivity and functional group compatibility. Formation of a single diastereomer is observed in certain cases. The N-benzyl protecting group on methyl phosphoramidates is easily removed under mild conditions.

  17. A quick look at biochemistry: carbohydrate metabolism.

    PubMed

    Dashty, Monireh

    2013-10-01

    In mammals, there are different metabolic pathways in cells that break down fuel molecules to transfer their energy into high energy compounds such as adenosine-5'-triphosphate (ATP), guanosine-5'-triphosphate (GTP), reduced nicotinamide adenine dinucleotide (NADH2), reduced flavin adenine dinucleotide (FADH2) and reduced nicotinamide adenine dinucleotide phosphate (NADPH2). This process is called cellular respiration. In carbohydrate metabolism, the breakdown starts from digestion of food in the gastrointestinal tract and is followed by absorption of carbohydrate components by the enterocytes in the form of monosaccharides. Monosaccharides are transferred to cells for aerobic and anaerobic respiration via glycolysis, citric acid cycle and pentose phosphate pathway to be used in the starvation state. In the normal state, the skeletal muscle and liver cells store monosaccharides in the form of glycogen. In the obesity state, the extra glucose is converted to triglycerides via lipogenesis and is stored in the lipid droplets of adipocytes. In the lipotoxicity state, the lipid droplets of other tissues such as the liver, skeletal muscle and pancreatic beta cells also accumulate triacylglycerol. This event is the axis of the pathogenesis of metabolic dysregulation in insulin resistance, metabolic syndrome and type 2 diabetes. In this paper a summary of the metabolism of carbohydrates is presented in a way that researchers can follow the biochemical processes easily.

  18. Hearing Loss, Dizziness, and Carbohydrate Metabolism

    PubMed Central

    Albernaz, Pedro L. Mangabeira

    2015-01-01

    Introduction  Metabolic activity of the inner ear is very intense, and makes it sensitive to changes in the body homeostasis. This study involves a group of patients with inner ear disorders related to carbohydrate metabolism disturbances, including hearing loss, tinnitus, dizziness, and episodes of vertigo. Objectives  To describe the symptoms of metabolic inner ear disorders and the examinations required to establish diagnoses. These symptoms are often the first to allow for an early diagnosis of metabolic disorders and diabetes. Methods  Retrospective study of 376 patients with inner ear symptoms suggestive of disturbances of carbohydrate metabolism. The authors present patientś clinical symptoms and clinical evaluations, with emphasis on the glucose and insulin essays. Results  Authors based their conclusions on otolaryngological findings, diagnostic procedures and treatment principles. They found that auditory and vestibular symptoms usually occur prior to other manifestations of metabolic changes, leading to an early diagnosis of hyperinsulinemia, intestinal sugar malabsorption or diabetes. Previously undiagnosed diabetes mellitus type II was found in 39 patients. Conclusions  The identification of carbohydrate metabolism disturbances is important not only to minimize the patients' clinical symptoms, but also to help maintain their general health. PMID:27413410

  19. Extraction and analysis of soluble carbohydrates.

    PubMed

    Maness, Niels

    2010-01-01

    Soluble sugars are a universal component of most living organisms and a fundamental building block in biosynthetic processes. It is no wonder that both qualitative and quantitative changes in carbohydrates often accompany plant's responses to stress. Depending on the speed of onset of stress, plant tissues can exhibit rapid and very site-specific shifts in their soluble carbohydrate pool - rapid and precise tissue collection and stabilization are necessary if analytical results are to truly represent the sugar composition at the instant of harvest. Since soluble carbohydrates are, by definition, soluble in the cell's aqueous environment, they may be analyzed directly from liquids obtained from plants or they may require extraction from the plant matrix. During extraction and prior to analysis, steps should be taken to avoid change in form or quantity of sugars by endogenous active enzyme conversion or by contaminating microbial growth. Many procedures for soluble sugar analysis exist; the choice of the most appropriate analytical protocol is ultimately dictated by the depth of information required to substantiate findings for a particular purpose.

  20. Lectin binding patterns and carbohydrate mediation of sperm binding to llama oviductal cells in vitro.

    PubMed

    Apichela, Silvana A; Valz-Gianinet, Jorge N; Schuster, Stefanie; Jiménez-Díaz, María A; Roldán-Olarte, Eugenia M; Miceli, Dora C

    2010-04-01

    Sperm binding to oviductal epithelium would be involved in sperm reservoir formation in the utero tubal junction (UTJ). Although in other mammals sperm-oviduct interaction has been proved to be mediated by carbohydrate-recognition mechanisms, the factors implicated in the sperm adhesion to oviductal epithelium of llama are still unknown. In order to assess the role of carbohydrates present in the mucosa surface, we examined the distribution of glycoconjugates in the llama oviduct by confocal lectin-histochemistry. Mannosyl, glucosyl, N-acetylglucosaminyl, galactosyl, N-acetylgalactosaminyl and sialic acid residues were detected in the oviductal mucose glycocalyx. By incubation of UTJ oviductal explants with LCA, DBA, UEA-1 or PNA lectin previous to co-culture with sperm, we observed a significant decrease in sperm binding only with LCA lectin. In the mucosa surface there were numerous d-glucosyl and D-manosyl residues, which were spotted by this lectin. Probably, this fact promotes the whole covering of the oviduct luminal surface by the sugar-lectin complex, preventing sperm access and adhesion of further residues. However, sperm incubation with mannose or glucose does not significantly prevent binding, which means that glucose and mannose would not be involved in a specific sperm-oviduct interaction. On the other hand, we observed a high reduction in sperm binding to UTJ explants with N-acetylgalactosamine and galactose (p<0.001). Coincidentally, binding sites for N-acetylgalactosamine-PAA-FITC conjugate were observed on the whole surface of the sperm, supporting the concept that llama sperm have lectin-like molecules in their surface, as is the case in other mammals. Probably, these lectin-like molecules, by means of N-acetylgalactosamine and galactose recognition, could link the sperm to the oviductal mucosa with the purpose of forming storing sites in the UTJ. Our results support the idea that more than one carbohydrate could participate in sperm reservoir

  1. Renewable Hydrogen Carrier Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    SciTech Connect

    Zhang, Y.-H. Percival; Mielenz, Jonathan R

    2011-01-01

    Abstract The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology called cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms cannot complete, for example, C6H10O5 (aq) + 7 H2O (l) 12 H2 (g) + 6 CO2 (g) (PLoS One 2007, 2:e456). Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from PEM fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  2. The long underestimated carbonyl function of carbohydrates – an organocatalyzed shot into carbohydrate chemistry.

    PubMed

    Mahrwald, R

    2015-09-21

    The aggressive and strong development of organocatalysis provides several protocols for the convenient utilization of the carbonyl function of unprotected carbohydrates in C-C-bond formation processes. These amine-catalyzed mechanisms enable multiple cascade-protocols for the synthesis of a wide range of carbohydrate-derived compound classes. Several, only slightly different protocols, have been developed for the application of 1,3-dicarbonyl compounds in the stereoselective chain-elongation of unprotected carbohydrates and the synthesis of highly functionalized C-glycosides of defined configuration. In addition, C-glycosides can also be accessed by amine-catalyzed reactions with methyl ketones. By a one-pot cascade reaction of isocyanides with unprotected aldoses and amino acids access to defined configured glycopeptide mimetics is achieved. Depending on the reaction conditions different origins to control the installation of configuration during the bond-formation process were observed.

  3. Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide.

    PubMed

    Bi, Lin; Yang, Lei; Narsimhan, Ganesan; Bhunia, Arun K; Yao, Yuan

    2011-03-10

    In this work, carbohydrate nanoparticles were created to prolong the efficacy of antimicrobial peptide against pathogens. Nisin and Listeria monocytogenes were used as the peptide and pathogen models, respectively, and phytoglycogen (PG)-based nanoparticles were developed as carriers of nisin. PG from su1 mutant maize was subjected to β-amylolysis as well as subsequent succinate or octenyl succinate substitutions. The goal was to minimize the loss of peptide during storage and meanwhile realize an effective release in the presence of bacteria. The capabilities of PG derivatives as carriers of nisin were evaluated using centrifugal ultrafiltration, zeta-potential, and the initial availability of nisin against L. monocytogenes. All methods indicated that nisin loading was favored by a high degree of substitution (DS), presence of hydrophobic octenyl moiety, and β-amylolysis of PG nanoparticles. To evaluate the prolonged nisin efficacy, preparations containing nisin and PG derivatives were loaded into a BHI-agar deep-well model (mimicking nisin depletion at the nutrient-containing surface). The residual inhibitory activities of preparations against L. monocytogenes were monitored during 21 days of storage at 4 °C. The results showed that all PG derivatives led to the prolonged retention of nisin activity and the longest retention was associated with high DS, β-amylolysis, and octenyl succinate. Evidently, both electrostatic and hydrophobic interactions are the driving forces of nisin adsorption, and the glucan structure at the nanoparticle surface also affects nisin loading and retention during storage.

  4. Carbohydrate-protein interactions and their biosensing applications.

    PubMed

    Zeng, Xiangqun; Andrade, Cesar A S; Oliveira, Maria D L; Sun, Xue-Long

    2012-04-01

    Carbohydrate recognition is clearly present throughout nature, playing a major role in the initial attachment of one biological entity to another. The important question is whether these prevalent interactions could provide a real suitable alternative to the use of antibodies or nucleic acid for detection and identification. Currently, examples of carbohydrates being employed in biological detection systems are limited. The challenges of using carbohydrate recognition for detection mainly come from the weak affinity of carbohydrate-protein interactions, the lack of versatile carbohydrate scaffolds with well-defined structures, and the less developed high-information-content, real-time, and label-free assay technology. In this review, we focus on discussing the characteristics of carbohydrate-protein interactions in nature and the methods for carbohydrate immobilization based on surface coupling chemistry in terms of their general applicability for developing carbohydrate- and lectin-based label-free sensors. Furthermore, examples of innovative design of multivalent carbohydrate-protein interactions for sensor applications are given. We limit our review to show the feasibility of carbohydrate and lectin as recognition elements for label-free sensor development in several representative cases to formulate a flexible platform for their use as recognition elements for real-world biosensor applications.

  5. Setting up a large set of protein-ligand PDB complexes for the development and validation of knowledge-based docking algorithms

    PubMed Central

    Diago, Luis A; Morell, Persy; Aguilera, Longendri; Moreno, Ernesto

    2007-01-01

    Background The number of algorithms available to predict ligand-protein interactions is large and ever-increasing. The number of test cases used to validate these methods is usually small and problem dependent. Recently, several databases have been released for further understanding of protein-ligand interactions, having the Protein Data Bank as backend support. Nevertheless, it appears to be difficult to test docking methods on a large variety of complexes. In this paper we report the development of a new database of protein-ligand complexes tailored for testing of docking algorithms. Methods Using a new definition of molecular contact, small ligands contained in the 2005 PDB edition were identified and processed. The database was enriched in molecular properties. In particular, an automated typing of ligand atoms was performed. A filtering procedure was applied to select a non-redundant dataset of complexes. Data mining was performed to obtain information on the frequencies of different types of atomic contacts. Docking simulations were run with the program DOCK. Results We compiled a large database of small ligand-protein complexes, enriched with different calculated properties, that currently contains more than 6000 non-redundant structures. As an example to demonstrate the value of the new database, we derived a new set of chemical matching rules to be used in the context of the program DOCK, based on contact frequencies between ligand atoms and points representing the protein surface, and proved their enhanced efficiency with respect to the default set of rules included in that program. Conclusion The new database constitutes a valuable resource for the development of knowledge-based docking algorithms and for testing docking programs on large sets of protein-ligand complexes. The new chemical matching rules proposed in this work significantly increase the success rate in DOCKing simulations. The database developed in this work is available at . PMID:17718923

  6. A step towards personalized sports nutrition: carbohydrate intake during exercise.

    PubMed

    Jeukendrup, Asker

    2014-05-01

    There have been significant changes in the understanding of the role of carbohydrates during endurance exercise in recent years, which allows for more specific and more personalized advice with regard to carbohydrate ingestion during exercise. The new proposed guidelines take into account the duration (and intensity) of exercise and advice is not restricted to the amount of carbohydrate; it also gives direction with respect to the type of carbohydrate. Studies have shown that during exercise lasting approximately 1 h in duration, a mouth rinse or small amounts of carbohydrate can result in a performance benefit. A single carbohydrate source can be oxidized at rates up to approximately 60 g/h and this is the recommendation for exercise that is more prolonged (2-3 h). For ultra-endurance events, the recommendation is higher at approximately 90 g/h. Carbohydrate ingested at such high ingestion rates must be a multiple transportable carbohydrates to allow high oxidation rates and prevent the accumulation of carbohydrate in the intestine. The source of the carbohydrate may be a liquid, semisolid, or solid, and the recommendations may need to be adjusted downward when the absolute exercise intensity is low and thus carbohydrate oxidation rates are also low. Carbohydrate intake advice is independent of body weight as well as training status. Therefore, although these guidelines apply to most athletes, they are highly dependent on the type and duration of activity. These new guidelines may replace the generic existing guidelines for carbohydrate intake during endurance exercise.

  7. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  8. Sweeter but deadlier: decoupling size, charge and capping effects in carbohydrate coated bactericidal silver nanoparticles.

    PubMed

    de Oliveira, Luciane França; Gonçalves, Julianna de Oliveira; Gonçalves, Kaliandra de Almeida; Kobarg, Jörg; Cardoso, Mateus Borba

    2013-11-01

    Silver nanoparticles are widely used due to their biomedical-antibacterial applications. At the same time, the stabilization of these nanoparticles is challenging and may be made using polymeric carbohydrates, based on the practice of avoiding toxic chemicals and undesirable residues. In this study, we synthesized silver nanoparticles (AgNPs) which were stabilized by carbohydrates (potato starch and chitosan) and characterized by UV-Vis spectroscopy, zeta potential and transmission electron microscopy techniques. Bactericidal efficiency of AgNPs capped with different carbohydrates was tested demonstrating that the synthesized materials were able to inhibit the growth of two clinical/medical relevant bacteria strains (Escherichia coil and Staphylococcus aureus). AgNPs stabilized by chitosan presented enhanced bactericidal activity if compared to the ones synthesized in presence of potato starch. This difference is mainly attributed to the known antibacterial properties of chitosan associated to overall positive charge of the nanoparticles capped by this polymer. Those nanoparticles obtained in presence of starch presented minor bactericidal effects since the starch-capping agent is not able to contribute to the avoidance of bacteria growth and confers a quasi-neutral charge to the nanoparticle.

  9. The structure of the carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-79104.

    PubMed

    Vinogradov, Evgeny; Li, Jianjun; Sadovskaya, Irina; Jabbouri, Said; Helander, Ilkka M

    2004-06-22

    The structure of the carbohydrate backbone of the lipopolysaccharide from Pectinatus frisingensis strain VTT E-79104 was analyzed using chemical degradations, NMR spectroscopy, mass spectrometry, and chemical methods. The LPS contains two major structural variants, differing in the presence or absence of an octasaccharide fragment. The largest structure of the carbohydrate backbone of the LPS, that could be deduced from experimental results, consists of 20 monosaccharides arranged in a nonrepetitive sequence: [carbohydrate structure: see text] where R is H or 4-O-Me-alpha-L-Fuc-(1-2)-4-O-Me-beta-Hep-(1-3)-alpha-GlcNAc-(1-2)-beta-Man-(1-3)-beta-ManNAc-(1-4)-alpha-Gal-(1-4)-beta-Hep-(1-3)-beta-GalNAc-(1- where Hep is a residue of D-glycero-D-galacto-heptose; all monosaccharides have the D-configuration except for 4-O-Me-L-Fuc and L-Ara4N. This structure is architecturally similar to the oligosaccharide system reported previously in P. frisingensis VTT E-82164 LPS, but differs from the latter in composition and also in the size of the outer region.

  10. [Malabsorption of carbohydrates in children (author's transl)].

    PubMed

    Vázquez, C; Escobar, H; Polanco, I; Codoceo, R; Vitoria, J C

    1975-01-01

    Physiological bases of digestion and absorption of carbohydrates are reviewed, as a preliminary step, in order to draw a general scheme of its patholophysiology. Clasification of different types of carbohydrate malabsorption is presented. Various exploration methods are discussed in terms of autors' own experiences. Relationship between a sugar screening test, faecal lactic acid contents and a simplified lactose tolerance test, is described in detail. Systematic diagnoses of these diseases are established. Different clinical pictures are reviewed. It is not yet well defined if a starch malabsorption can be caused by either a primary or secondary duodenal amylase deficiency. The clinical forms of congenital sucrose-isomaltose intolerance may be more attenuated than its classical form; incertain cases, secondary sucrose intolerance may also be present due to mucosa anatomic lesions. Maltose malabsorption has no clinical implications. As compared to other alpha-glycosidades, the trehalase activity has been not more affected by not using trehalose in feeding. Primary congenital lactase deficiency is not frequent, whereas secondary forms as much more usual and appear, in primary malabsorption syndromes and in the coeliac disease, very often along with clinical tolerance to lactose. In Spain, lactose nonabsorbers in 16.5% for adults 11.2% for adolescents and 18.3% for children, meaning, that it is being favored by environmental factors in the latter. The unspecified sugar malabsorption during the child's first year is still the most frequent cause of carbohydrate intolerance in children and, although certain progress has been achieved in its diagnosis and therapy, its pathogenic mechanism is not satisfactorily known yet.

  11. Chemical biology approaches to designing defined carbohydrate vaccines.

    PubMed

    Anish, Chakkumkal; Schumann, Benjamin; Pereira, Claney Lebev; Seeberger, Peter H

    2014-01-16

    Carbohydrate antigens have shown promise as important targets for developing effective vaccines and pathogen detection strategies. Modifying purified microbial glycans through synthetic routes or completely synthesizing antigenic motifs are attractive options to advance carbohydrate vaccine development. However, limited knowledge on structure-property correlates hampers the discovery of immunoprotective carbohydrate epitopes. Recent advancements in tools for glycan modification, high-throughput screening of biological samples, and 3D structural analysis may facilitate antigen discovery process. This review focuses on advances that accelerate carbohydrate-based vaccine development and various technologies that are driving these efforts. Herein we provide a critical overview of approaches and resources available for rational design of better carbohydrate antigens. Structurally defined and fully synthetic oligosaccharides, designed based on molecular understanding of antigen-antibody interactions, offer a promising alternative for developing future carbohydrate vaccines.

  12. Carbohydrate nanotechnology: hierarchical assembly using nature's other information carrying biopolymers.

    PubMed

    Han, Xu; Zheng, Yeting; Munro, Catherine J; Ji, Yiwen; Braunschweig, Adam B

    2015-08-01

    Despite their central role in directing some of the most complex biological processes, carbohydrates--nature's other information carrying biopolymer--have been largely ignored as building blocks for synthetic hierarchical assemblies. The non-stoichiometric binding and astronomical diversity characteristic of carbohydrates could lead to tantalizingly complex assembly algorithms, but these attributes simultaneously increase the difficulty of preparing carbohydrate assemblies and anticipating their behavior. Convergences in biotechnology, nanotechnology, polymer chemistry, surface science, and supramolecular chemistry have led to many recent important breakthroughs in glycan microarrays and synthetic carbohydrate receptors, where the idiosyncrasies of carbohydrate structure and binding are increasingly considered. We hope to inspire more researchers to consider carbohydrate structure, diversity, and binding as attractive tools for constructing synthetic hierarchical assemblies.

  13. Targeting carbohydrate antigens in HIV vaccine development.

    PubMed

    Pashov, Anastas; Canziani, Gabriela; Macleod, Stewart; Plaxco, Jason; Monzavi-Karbassi, Behjatolah; Kieber-Emmons, Thomas

    2005-03-18

    Peptide mimotopes provide a strategy to augment human immunodeficiency virus 1 (HIV-1) specific carbohydrate reactive immune responses. Their antigenic and immunological properties will depend on the optimization of motif clustering and multimerization. We observe that structural variants of the same mimetic motif, linear versus cyclic, can be used to tune the properties of the antibodies elicited. The expansion of the database of mimotope sequence motifs can be increased by analyzing structures that bind to HIV directed monoclonal antibody 2G12 and the lectin Concanavalin A (Con A), fostering new mimotope designs. Such analysis indicates that these reagents bind to subsets of mannosyl antigens on the envelope (env) protein.

  14. Carbohydrates/nucleosides/RNA-DNA-ligand interactions

    SciTech Connect

    Kaptein, R.; McConnell, B.; Serianni, A.S.; Silks, L.A. III

    1994-12-01

    Carbohydrate and nucleotide structural determination using modern spectroscopic techniques is dependent on our ability to label oligonucleotides and oligosaccharides with stable isotopes. Uniform Carbon 13 and Nitrogen 15 labeling of oligonucleotides is important to present-day efforts, which are focused on determining the structure of relatively small oligosaccharides and oligonucleotides, which form the elements of larger structures. Because of the relatively recent interest in three-dimensional structure, the development of techniques used to label them has lagged behind parallel techniques used to label peptides and proteins. Therefore, this group`s discussion focused primarily on problems faced today in obtaining oligonucleotides labeled uniformly with carbon 13 and nitrogen 15.

  15. Light period regulation of carbohydrate partitioning

    NASA Technical Reports Server (NTRS)

    Janes, Harry W.

    1994-01-01

    We have shown that the photosynthetic period is important in regulating carbon partitioning. Even when the same amount of carbon is fixed over a 24h period considerably more is translocated out of the leaf under the longer photosynthetic period. This is extremely important when parts of the plant other than the leaves are to be sold. It is also important to notice the amount of carbon respired in the short photosynthetic period. The light period effect on carbohydrate fixation, dark respiration, and translocation is shown in this report.

  16. Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance

    NASA Astrophysics Data System (ADS)

    Spiwok, Vojtěch; Lipovová, Petra; Skálová, Tereza; Vondráčková, Eva; Dohnálek, Jan; Hašek, Jindřich; Králová, Blanka

    2005-12-01

    Aromatic amino acid residues are often present in carbohydrate-binding sites of proteins. These binding sites are characterized by a placement of a carbohydrate moiety in a stacking orientation to an aromatic ring. This arrangement is an example of CH/π interactions. Ab initio interaction energies for 20 carbohydrate-aromatic complexes taken from 6 selected ultra-high resolution X-ray structures of glycosidases and carbohydrate-binding proteins were calculated. All interaction energies of a pyranose moiety with a side chain of an aromatic residue were calculated as attractive with interaction energy ranging from -2.8 to -12.3 kcal/mol as calculated at the MP2/6-311+G(d) level. Strong attractive interactions were observed for a wide range of orientations of carbohydrate and aromatic ring as present in selected X-ray structures. The most attractive interaction was associated with apparent combination of CH/π interactions and classical H-bonds. The failure of Hartree-Fock method (interaction energies from +1.0 to -6.9 kcal/mol) can be explained by a dispersion nature of a majority of the studied complexes. We also present a comparison of interaction energies calculated at the MP2 level with those calculated using molecular mechanics force fields (OPLS, GROMOS, CSFF/CHARMM, CHEAT/CHARMM, Glycam/AMBER, MM2 and MM3). For a majority of force fields there was a strong correlation with MP2 values. RMSD between MP2 and force field values were 1.0 for CSFF/CHARMM, 1.2 for Glycam/AMBER, 1.2 for GROMOS, 1.3 for MM3, 1.4 for MM2, 1.5 for OPLS and to 2.3 for CHEAT/CHARMM (in kcal/mol). These results show that molecular mechanics approximates interaction energies very well and support an application of molecular mechanics methods in the area of glycochemistry and glycobiology.

  17. Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors

    DTIC Science & Technology

    2004-08-01

    means to eradicate tumor cells would therefore be an advantage in vaccine development (manuscript #2 submitted). Choice of peptide mimotope Arrays of...peptide mimotopes of carbohydrate antigens formulated as multiple antigen peptides or as DNA vaccines can elicit carbohydrate reactive IgM serum...specific CTL. Immunity 1999; 10:51-61. 1. Kieber-Emmons T, Luo P, Qiu J, et al. Vaccination with carbohydrate peptide mimotopes promotes anti-tumor

  18. Structure-function relations of carbohydrates by neoglycolipid arrays.

    PubMed

    Huang, Gang-Liang; Huang, Hua-Liang; Zhang, Hou-Cheng; Wang, Peng-George

    2006-06-01

    The work presented herein is a new noncovalent glycoarray assembly method for microplates created by simply mixing together a carbohydrate and a tetradecylamine. alpha-D-Mannopyranoside, alpha-D-glucopyranoside, and alpha-D-galactopyranoside were utilized in model studies and product formations were detected by lectin binding. The method can be extended to study the steric hindrance effect of carbohydrate-protein interactions, namely the structure-function relations of carbohydrates.

  19. The amino acid sequence of a carbohydrate-containing fragment of hen ovotransferrin.

    PubMed Central

    Kingston, I B; Williams, J

    1975-01-01

    1. Hen ovotransferrin was treated with CNBr and fractionated by gel filtration. 2. After further treatment by reduction and carboxymethylation a carbohydrate-containing fragment of molecular weight 11990 was obtained (fragment BCd). 3. The amino acid sequence of this fragment was determined. It consists of a single chain of 94 residues. 4. The structure of a tryptic glycopeptide derived from whole ovotransferrin permitted a further eight residues to be assigned at the N-terminus of fragment BCd. 5. Heterogeneity was found at two positions. 6. Further evidence has been deposited as Supplementary Publication SUP 50045 (19 pages) at the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1975), 145, 5. PMID:1172663

  20. Carbohydrate Recognition by Boronolectins, Small Molecules, and Lectins

    PubMed Central

    Jin, Shan; Cheng, Yunfeng; Reid, Suazette; Li, Minyong; Wang, Binghe

    2009-01-01

    Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of “binders” capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and “binders/receptors,” and their applications. The focus is on discoveries during the last five years. PMID:19291708

  1. Carbohydrate recognition by boronolectins, small molecules, and lectins.

    PubMed

    Jin, Shan; Cheng, Yunfeng; Reid, Suazette; Li, Minyong; Wang, Binghe

    2010-03-01

    Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of "binders" capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and "binders/receptors," and their applications. The focus is on discoveries during the last 5 years.

  2. Carbohydrate Analysis: Can We Control the Ripening of Bananas?

    NASA Astrophysics Data System (ADS)

    Deal, S. Todd; Farmer, Catherine E.; Cerpovicz, Paul F.

    2002-04-01

    We have developed an experiment for nutritional/introductory biochemistry courses that focuses on carbohydrate analysis--specifically, the carbohydrates found in bananas and the change in carbohydrate composition as the banana ripens. Pairs of students analyze the starch and reducing sugar content of green, ripe, and overripe bananas. Using the techniques and knowledge gained from these analyses, they then investigate the influence of various storage methods on the ripening process. While this experiment was developed for an introductory-level biochemistry lab, it can easily be adapted for use in other laboratory programs that seek to teach the fundamentals of carbohydrate analysis.

  3. Carbohydrate vaccines as immunotherapy for cancer.

    PubMed

    Slovin, Susan F; Keding, Stacy J; Ragupathi, Govind

    2005-08-01

    Carbohydrates have established themselves as the most clinically relevant antigens of those tested and subsequently developed for vaccines against infectious diseases. However, in cancer patients, many of the defined carbohydrate antigens are really altered 'self' antigens and for unclear reasons, the body does not react to them immunologically. Although these self antigens have been found to be potentially suitable targets for immune recognition and killing, the development of vaccines for cancer treatment is actually more challenging compared with those for infectious diseases mainly because of the difficulty associated with breaking the body's immunological tolerance to the antigen. These antigens lack the inherent immunogenicity associated with bacterial antigens and, therefore, methods to enhance immunological recognition and induction of immunity in vivo are under investigation. These include defining the appropriate tumour-associated antigen, successfully synthesizing the antigen to mimic the original molecule, inducing an immune response, and subsequently enhancing the immunological reactivity so that all components can work together. This has been successfully accomplished with several glycolipid and glycoprotein antigens using carriers such as keyhole limpet haemocyanin (KLH) together with a saponin adjuvant, QS-21. Not only can high titre IgM and IgG antibodies be induced, which are specific for the antigen used for immunization, but the antibodies can mediate complement lysis. The approaches for synthesis, conjugation, clinical administration and immunological potential are discussed.

  4. Bridging lectin binding sites by multivalent carbohydrates.

    PubMed

    Wittmann, Valentin; Pieters, Roland J

    2013-05-21

    Carbohydrate-protein interactions are involved in a multitude of biological recognition processes. Since individual protein-carbohydrate interactions are usually weak, multivalency is often required to achieve biologically relevant binding affinities and selectivities. Among the possible mechanisms responsible for binding enhancement by multivalency, the simultaneous attachment of a multivalent ligand to several binding sites of a multivalent receptor (i.e. chelation) has been proven to have a strong impact. This article summarizes recent examples of chelating lectin ligands of different size. Covered lectins include the Shiga-like toxin, where the shortest distance between binding sites is ca. 9 Å, wheat germ agglutinin (WGA) (shortest distance between binding sites 13-14 Å), LecA from Pseudomonas aeruginosa (shortest distance 26 Å), cholera toxin and heat-labile enterotoxin (shortest distance 31 Å), anti-HIV antibody 2G12 (shortest distance 31 Å), concanavalin A (ConA) (shortest distance 72 Å), RCA120 (shortest distance 100 Å), and Erythrina cristagalli (ECL) (shortest distance 100 Å). While chelating binding of the discussed ligands is likely, experimental proof, for example by X-ray crystallography, is limited to only a few cases.

  5. Easy Identification of Residues Involved on Structural Differences Between Nonphosphorylated and Phosphorylated CDK2Cyclin A Complexes Using Two-Dimensional Networks.

    PubMed

    Riadi, Gonzalo; Caballero, Julio

    2014-02-01

    The structures of proteins in Protein Data Bank (PDB) contain a lot of information that can be revealed through the use of tools to facilitate their organization and analysis. The increase in available structural data of nonphosphorylated and phosphorylated CDK2cyclin A (npCDK2cycA and pCDK2cycA) complexes has enabled a more realistic description of the fine structural details of the interface residues of these proteins. This work reports the application of two-dimensional network representations (TDNRs) to the structures deposited in PDB to distinguish the differences in the surface between both complexes due to phosphorylation. As a result, a detailed map of the hydrogen bonds (HBs) and hydrophobic interactions between the T-loop residues of CDK2 and the residues of cycA that are different among nonphosphorylated and phosphorylated complexes were described. In addition, we found some interesting subtle differences in the CDK2cycA interface between nonphosphorylated and phosphorylated complexes due to residues that are not located at the T-loop of CDK2. We noted that some HB interactions in CDK2cycA complex are reinforced when the CDK2 is phosphorylated.

  6. Species-specificity of amphibia carbohydrate chains: the Bufo viridis case study.

    PubMed

    Coppin, Alexandra; Maes, Emmanuel; Strecker, Gérard

    2002-02-05

    The jelly coat surrounding the eggs of amphibia is composed of oviducal mucins and plays an important role in the fertilization process. From a structural and chemical point of view, these jellies are very different from one species to another. Bufo viridis is the 13th amphibia species studied in term of carbohydrate structural analysis. The oligosaccharides have been released from the oviducal mucins by reductive beta elimination, purified by various chromatography procedures and analyzed by (1)H and (13)C 1D-2D NMR spectroscopy. Among the 15 compounds, ten have novel structures, although they possess some well-known structural patterns as blood group epitopes (Le(x), Le(y)) or other sequences already observed in other amphibia species. These results reinforce our hypothesis about the strict species-specificity of these carbohydrate chains. It must be noted that such species-specificity does not depend on one particular monosaccharide but it is rather due to a set of particular tri- or tetrasaccharide sequences. Hence, B. viridis species could be characterized by the simultaneous presence of a 2,3,6-trisubstituted galactosyl residue, the GlcNAc(beta 1-3)[Fuc(alpha 1-4)]GlcNAc beta sequence and the Le(x), Le(y) or Cad determinants. The anionic charge of the oligosaccharides is carried only by sialic acid alpha-(2-->6)-linked to GalNAc-ol residue as in Bufo bufo or in Bufo arenarum.

  7. Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase.

    PubMed

    Liu, Yu-Nan; Lai, Yen-Ting; Chou, Wei-I; Chang, Margaret Dah-Tsyr; Lyu, Ping-Chiang

    2007-04-01

    CBMs (carbohydrate-binding modules) function independently to assist carbohydrate-active enzymes. Family 21 CBMs contain approx. 100 amino acid residues, and some members have starchbinding functions or glycogen-binding activities. We report here the first structure of a family 21 CBM from the SBD (starch-binding domain) of Rhizopus oryzae glucoamylase (RoCBM21) determined by NMR spectroscopy. This CBM has a beta-sandwich fold with an immunoglobulin-like structure. Ligand-binding properties of RoCBM21 were analysed by chemical-shift perturbations and automated docking. Structural comparisons with previously reported SBDs revealed two types of topologies, namely type I and type II, with CBM20, CBM25, CBM26 and CBM41 showing type I topology, with CBM21 and CBM34 showing type II topology. According to the chemical-shift perturbations, RoCBM21 contains two ligand-binding sites. Residues in site II are similar to those found in the family 20 CBM from Aspergillus niger glucoamylase (AnCBM20). Site I, however, is embedded in a region with unique sequence motifs only found in some members of CBM21s. Additionally, docking of beta-cyclodextrin and malto-oligosaccharides highlights that side chains of Y83 and W47 (one-letter amino acid code) form the central part of the conserved binding platform in the SBD. The structure of RoCBM21 provides the first direct evidence of the structural features and the basis for protein-carbohydrate recognition from an SBD of CBM21.

  8. Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase

    PubMed Central

    Liu, Yu-Nan; Lai, Yen-Ting; Chou, Wei-I; Chang, Margaret Dah-Tsyr; Lyu, Ping-Chiang

    2006-01-01

    CBMs (carbohydrate-binding modules) function independently to assist carbohydrate-active enzymes. Family 21 CBMs contain approx. 100 amino acid residues, and some members have starchbinding functions or glycogen-binding activities. We report here the first structure of a family 21 CBM from the SBD (starch-binding domain) of Rhizopus oryzae glucoamylase (RoCBM21) determined by NMR spectroscopy. This CBM has a β-sandwich fold with an immunoglobulin-like structure. Ligand-binding properties of RoCBM21 were analysed by chemical-shift perturbations and automated docking. Structural comparisons with previously reported SBDs revealed two types of topologies, namely type I and type II, with CBM20, CBM25, CBM26 and CBM41 showing type I topology, with CBM21 and CBM34 showing type II topology. According to the chemical-shift perturbations, RoCBM21 contains two ligand-binding sites. Residues in site II are similar to those found in the family 20 CBM from Aspergillus niger glucoamylase (AnCBM20). Site I, however, is embedded in a region with unique sequence motifs only found in some members of CBM21s. Additionally, docking of β-cyclodextrin and malto-oligosaccharides highlights that side chains of Y83 and W47 (one-letter amino acid code) form the central part of the conserved binding platform in the SBD. The structure of RoCBM21 provides the first direct evidence of the structural features and the basis for protein–carbohydrate recognition from an SBD of CBM21. PMID:17117925

  9. Distribution of structural carbohydrates in corn plants as influenced by corn residue management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of the Sun Grant Regional Partnership corn stover project, continuous corn (Zea mays L.) field studies incorporating stover removal management practices (0 and 100% removal) were established in both Alabama and South Carolina. Plots in both states were representative of major soil types in t...

  10. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance

    PubMed Central

    Baker, Lindsay B.; Rollo, Ian; Stein, Kimberly W.; Jeukendrup, Asker E.

    2015-01-01

    Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1–2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30–60 g/h in the form of a 6%–7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a

  11. Effects of disturbance regime on carbohydrate reserves in meadow plants

    PubMed Central

    Janeček, Štěpán; Bartušková, Alena; Bartoš, Michael; Altman, Jan; de Bello, Francesco; Doležal, Jiří; Latzel, Vít; Lanta, Vojtěch; Lepš, Jan; Klimešová, Jitka

    2015-01-01

    Carbohydrate storage enables plants to tolerate both seasonally unfavourable conditions and recover from disturbance. Although short-term changes in storage levels due to disturbance are fairly well known, less is known about long-term changes in storage levels, especially in response to cessation of repeated disturbance. Additionally, whereas it is presumably the total amount (pool) of storage carbohydrate reserves that is of importance, typically carbohydrate concentrations are measured instead, as a proxy. We assessed changes in carbohydrate concentrations and pools in storage organs and changes in above- versus belowground biomass in response to mowing cessation in nine herbs from two meadows (dry and wet) at the (June) peak of vegetation development and the (October) growing season end 1 and 3 years after the change in the disturbance regime. We tested three hypotheses: (1) storage will increase with abandonment of mowing only in the first year after disturbance cessation, but not further increase subsequently, as high storage would hinder competitive ability; (2) storage will increase towards the end of the season in both disturbed and undisturbed plants; and (3) changes in carbohydrate concentrations are accurate predictors of changes in pools. Although species-specific changes in carbohydrate reserves occurred in the wet meadow, more general trends appeared in the dry meadow. There, plants accumulated higher carbohydrate reserves at the end of the season, especially in unmown plots. However, the reserves for plants in both disturbance regimes were the same at the growing season peak (June) in both examined years. The increase in storage of carbohydrates on unmown plots in October was manifested by increases of both storage organ biomass and carbohydrate concentration, whereas in mown plots, it was due only to increased carbohydrate concentration. Although concentrations and pools represent different aspects of plant carbohydrate economy, concentrations will

  12. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance.

    PubMed

    Baker, Lindsay B; Rollo, Ian; Stein, Kimberly W; Jeukendrup, Asker E

    2015-07-14

    Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1-2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30-60 g/h in the form of a 6%-7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a game

  13. firestar—prediction of functionally important residues using structural templates and alignment reliability

    PubMed Central

    López, Gonzalo; Valencia, Alfonso; Tress, Michael L.

    2007-01-01

    Here we present firestar, an expert system for predicting ligand-binding residues in protein structures. The server provides a method for extrapolating from the large inventory of functionally important residues organized in the FireDB database and adds information about the local conservation of potential-binding residues. The interface allows users to make queries by protein sequence or structure. The user can access pairwise and multiple alignments with structures that have relevant functionally important binding sites. The results are presented in a series of easy to read displays that allow users to compare binding residue conservation across homologous proteins. The binding site residues can also be viewed with molecular visualization tools. One feature of firestar is that it can be used to evaluate the biological relevance of small molecule ligands present in PDB structures. With the server it is easy to discern whether small molecule binding is conserved in homologous structures. We found this facility particularly useful during the recent assessment of CASP7 function prediction. Availability: http://firedb.bioinfo.cnio.es/Php/FireStar.php. PMID:17584799

  14. The use of carbohydrates during exercise as an ergogenic aid.

    PubMed

    Cermak, Naomi M; van Loon, Luc J C

    2013-11-01

    Carbohydrate and fat are the two primary fuel sources oxidized by skeletal muscle tissue during prolonged (endurance-type) exercise. The relative contribution of these fuel sources largely depends on the exercise intensity and duration, with a greater contribution from carbohydrate as exercise intensity is increased. Consequently, endurance performance and endurance capacity are largely dictated by endogenous carbohydrate availability. As such, improving carbohydrate availability during prolonged exercise through carbohydrate ingestion has dominated the field of sports nutrition research. As a result, it has been well-established that carbohydrate ingestion during prolonged (>2 h) moderate-to-high intensity exercise can significantly improve endurance performance. Although the precise mechanism(s) responsible for the ergogenic effects are still unclear, they are likely related to the sparing of skeletal muscle glycogen, prevention of liver glycogen depletion and subsequent development of hypoglycemia, and/or allowing high rates of carbohydrate oxidation. Currently, for prolonged exercise lasting 2-3 h, athletes are advised to ingest carbohydrates at a rate of 60 g·h⁻¹ (~1.0-1.1 g·min⁻¹) to allow for maximal exogenous glucose oxidation rates. However, well-trained endurance athletes competing longer than 2.5 h can metabolize carbohydrate up to 90 g·h⁻¹ (~1.5-1.8 g·min⁻¹) provided that multiple transportable carbohydrates are ingested (e.g. 1.2 g·min⁻¹ glucose plus 0.6 g·min⁻¹ of fructose). Surprisingly, small amounts of carbohydrate ingestion during exercise may also enhance the performance of shorter (45-60 min), more intense (>75 % peak oxygen uptake; VO(₂peak)) exercise bouts, despite the fact that endogenous carbohydrate stores are unlikely to be limiting. The mechanism(s) responsible for such ergogenic properties of carbohydrate ingestion during short, more intense exercise bouts has been suggested to reside in the central nervous

  15. A method for (13)C-labeling of metabolic carbohydrates within French bean leaves (Phaseolus vulgaris L.) for decomposition studies in soils.

    PubMed

    Girardin, Cyril; Rasse, Daniel P; Biron, Philippe; Ghashghaie, Jaleh; Chenu, Claire

    2009-06-01

    The molecular composition of plant residues is suspected to largely govern the fate of their constitutive carbon (C) in soils. Labile compounds, such as metabolic carbohydrates, are affected differently from recalcitrant and structural compounds by soil-C stabilisation mechanisms. Producing (13)C-enriched plant residues with specifically labeled fractions would help us to investigate the fate in soils of the constitutive C of these compounds. The objective of the present research was to test (13)C pulse chase labeling as a method for specifically enriching the metabolic carbohydrate components of plant residues, i.e. soluble sugars and starch. Bean plants were exposed to a (13)CO(2)-enriched atmosphere for 0.5, 1, 2, 3 and 21 h. The major soluble sugars were then determined on water-soluble extracts, and starch on HCl-hydrolysable extracts. The results show a quick differential labeling between water-soluble and water-insoluble compounds. For both groups, (13)C-labeling increased linearly with time. The difference in delta(13)C signature between water-soluble and insoluble fractions was 7 per thousand after 0.5 h and 70 per thousand after 21 h. However, this clear isotopic contrast masked a substantial labeling variability within each fraction. By contrast, metabolic carbohydrates on the one hand (i.e. soluble sugars + starch) and other fractions (essentially cell wall components) on the other hand displayed quite homogeneous signatures within fractions, and a significant difference in labeling between fractions: delta(13)C = 414 +/- 3.7 per thousand and 56 +/- 5.5 per thousand, respectively. Thus, the technique generates labeled plant residues displaying contrasting (13)C-isotopic signatures between metabolic carbohydrates and other compounds, with homogenous signatures within each group. Metabolic carbohydrates being labile compounds, our findings suggest that the technique is particularly appropriate for investigating the effect of compound lability on the long

  16. Synthesis of Chiral Spiroacetals from Carbohydrates.

    PubMed

    Martín, Angeles; Salazar, José A.; Suárez, Ernesto

    1996-06-14

    Chiral spiroacetals of the 1,7-dioxaspiro[5.5]undecane, 1,6-dioxaspiro[4.5]decane, and 1,6-dioxaspiro[4.4]nonane types have been prepared from carbohydrates in pyranose or furanose forms. The spirocyclization reaction has been accomplished from a conveniently homologated carbohydrate by an intramolecular hydrogen abstraction reaction promoted by alkoxy radicals. Thus, 2,3,4,6-tetra-O-benzyl-1-deoxy-1-(3'-hydroxypropyl)-alpha-D-glucopyranose (2) was photolyzed with visible light in the presence of (diacetoxyiodo)benzene and iodine to give a mixture of (1R)-(3) and (1S)-2,3,4,6-tetra-O-benzyl-1-deoxy-D-glucopyranose-1-spiro-2'-tetrahydrofuran (4). The photolysis of methyl 6-deoxy-6-(2'-hydroxyethyl)-2,3,4-tri-O-methyl-alpha-D-glucopyranoside (8) gave the isomeric spiroacetals methyl (5S)- (9) and (5R)-6-deoxy-5,2'-epoxy-6-ethyl-2,3,4-tri-O-methyl-alpha-D-glucopyranoside (10) in which the spirocenter is now located at C-5. The spiroacetals of the [5.5]undecane series: methyl (5R)- (19) and (5S)-6-deoxy-5,3'-epoxy-2,3,4-tri-O-methyl-6-propyl-beta-D-glucopyranoside (20) have been prepared starting from methyl 6-deoxy-6-(3'-hydroxypropyl)-2,3,4-tri-O-methyl-beta-D-glucopyranoside (18). The reaction has also been applied to hexofuranoses and 1-deoxy-1-(3'-hydroxypropyl)-2,3:5,6-di-O-isopropylidene-alpha-D-mannofuranose (21) gave rise to (1S)- (22) and (1R)-1-deoxy-2,3:5,6-di-O-isopropylidene-D-mannofuranose-1-spiro-2'-tetrahydrofuran (23); and 1-deoxy-1-(4'-hydroxybutyl)-2,3:5,6-di-O-isopropylidene-alpha-D-mannofuranose (28) to (1R)- (30) and (1S)-1-deoxy-2,3:5,6-di-O-isopropylidene-D-mannofuranose-1-spiro-2'-tetrahydropyran (32). Both spiroacetal enantiomers are formally available from the same carbohydrate.

  17. A single-amino-acid substitution eliminates the stringent carbohydrate requirement for intracellular transport of a viral glycoprotein.

    PubMed

    Pitta, A M; Rose, J K; Machamer, C E

    1989-09-01

    In this report, we have investigated the contribution of primary sequence to the carbohydrate requirement for intracellular transport of two closely related glycoproteins, the G proteins of the San Juan and Orsay strains of vesicular stomatitis virus. We used site-directed mutagenesis of the coding sequence to eliminate the two consensus sites for glycosylation in the Orsay G protein. Whereas the nonglycosylated San Juan G protein required at least one of its two asparagine-linked oligosaccharides for transport to the plasma membrane at 37 degrees C, a fraction of the Orsay G protein was transported without carbohydrate. Of the 10 amino acid differences between these two proteins, residue 172 (tyrosine in San Juan, aspartic acid in Orsay) played the major role in determining the stringency for the carbohydrate requirement. The rates at which the glycosylated and nonglycosylated Orsay G proteins were transported to the cell surface were the same, although a smaller fraction of the nonglycosylated protein was transported. These results suggest that the carbohydrate does not promote intracellular transport directly but influences a polypeptide folding or oligomerization step which is critical for transport.

  18. Asparagine-linked carbohydrate chains of inducible rat parotid proline-rich glycoprotein contain terminal beta-linked N-acetylgalactosamine.

    PubMed

    Bedi, G S

    1997-12-01

    Rats treated with daily injection of DL-isoproterenol for 10 consecutive days (25 mg kg(-1) body weight) showed marked induction of a proline-rich glycoprotein (GPRP) of 220 kDa. Proteinase K digestion of GPRP produced a homogeneous glycopeptide with an average chemical composition as follows (residues per mol): Pro4, Glx3, Asx2, Gly1, His1, Thr1, Arg1, GlcNAc5, GalNac1, Man3, Gal2-3, and Fuc1. The structural analysis of the asparagine-linked carbohydrate unit was performed by methylation, periodate oxidation and enzymatic degradation. Methylation studies indicated that the three mannosyl residues were substituted at 1,2-, 1,2,4-, and 1,3,6-positions. Fucose, N-acetylgalactosamine, 1.5 residues of galactose and 0.35 residues of N-acetylglucosamine were terminally located and one galactose residue was 1,4-substituted. Approximately four of the 5 N-acetylglucosamine residues were substituted at 1,4-position and approximately 1 residue of N-acetylglucosamine was substituted at 1,4,6-positions. Periodate oxidation studies and exoglycosidase results were consistent with the methylation data. Based on the results of Smith degradation, methylation and sequential exoglycosidase digestions a triantennary oligosaccharide structure having terminal N-acetylgalactosamine in one of the branches is proposed for the major Asn-linked carbohydrate moiety of GPRP.

  19. Alternatingly twisted β-hairpins and nonglycine residues in the disallowed II' region of the Ramachandran plot.

    PubMed

    Torshin, Ivan Yu; Esipova, Natalya G; Tumanyan, Vladimir G

    2014-01-01

    The structure of the SH3 domain of α-spectrin (PDB code 1SHG) features Asn47 in the II' area of the Ramachandran plot, which as a rule admits only glycine residues, and this phenomenon still awaits its explanation. Here, we undertook a computational study of this particular case by means of molecular dynamics and bioinformatics approaches. We found that the region of the SH3 domain in the vicinity of Asn47 remains relatively stable during denaturing molecular dynamics simulations of the entire domain and of its parts. This increased stability may be connected with the dynamic hydrogen bonding that is susceptible to targeted in silico mutations of Arg49. Bioinformatics analysis indicated that Asn47 is in the β-turn of a distinctive structural fragment we called 'alternatingly twisted β-hairpin.' Fragments of similar conformation are quite abundant in a nonredundant set of PDB chains and are distinguished from ordinary β-hairpins by some surplus of glycine in their β-turns, lack of certain interpeptide hydrogen bonds, and an increased chirality index. Thus, the disallowed conformation of residues other than glycine is realized in the β-turns of alternatingly twisted β-hairpins.

  20. Soil amino compound and carbohydrate contents influenced by organic amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino compounds (i. e. amino acids and sugars), and carbohydrates are labile organic components and contribute to the improvement of soil fertility and quality. Animal manure and other organic soil amendments are rich in both amino compounds and carbohydrates, hence organic soil amendments might af...

  1. Genetic Analyses of Soluble Carbohydrate Concentrations in Onion Bulbs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans are the primary soluble carbohydrate in onion (Allium cepa L.) bulbs and show significant correlations with dry weights and pungency. In this research, we estimated the genetic effects and interactions between two chromosome regions associated with higher amounts of soluble carbohydrates i...

  2. Why use DFT methods in the study of carbohydrates?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent advances in density functional theory (DFT) and computer technology allow us to study systems with more than 100 atoms routinely. This makes it feasible to study large carbohydrate molecules via quantum mechanical methods, whereas in the past, studies of carbohydrates were restricted to ...

  3. Carbohydrate-responsive gene expression in adipose tissue of rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although obesity is often associated with high fat diets, it can develop from a variety of meal patterns. Excessive intake of simple carbohydrates is one consistent eating behavior leading to obesity. However, the impact of over-consumption of diets with high carbohydrate-to-fat ratios (C/F) on body...

  4. Identification of carbohydrate anomers using ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K.

    2015-10-01

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  5. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  6. Reinforcement effect of soy protein and carbohydrates in polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The modulus of soft polymer material can be increased by filler reinforcement. A review of using soy protein and carbohydrates as alternative renewable reinforcement material is presented here. Dry soy protein and carbohydrates are rigid and can form strong filler networks through hydrogen-bonding...

  7. Genome of Bifidobacteria and Carbohydrate Metabolism

    PubMed Central

    2015-01-01

    In recent years, the knowledge about bifidobacteria has considerably evolved thanks to recent progress in molecular biology. The analysis of the whole genome sequences of 48 taxa of bifidobacteria offers new perspectives for their classification, especially to set up limit between two species. Indeed, several species are presenting a high homology and should be reclassified. On the other hand, some subspecies are presenting a low homology and should therefore be reclassified into different species. In addition, a better knowledge of the genome of bifidobacteria allows a better understanding of the mechanisms involved in complex carbohydrate metabolism. The genome of some species of bifidobacteria from human but also from animal origin demonstrates high presence in genes involved in the metabolism of complex oligosaccharides. Those species should be further tested to confirm their potential to metabolize complex oligosaccharides in vitro and in vivo. PMID:26761794

  8. [Carbohydrate absorption and malabsorption (author's transl)].

    PubMed

    Caspary, W F

    1977-06-01

    Starch is digested intraluminally by alpha-amylase to maltose, maltotriose, and alpha-limit dextrins. These products, as well as the disaccharides sucrose and lactose, undergo enzymatic hydrolysis to monosaccharides at the brush border surface. The monosaccharides enter the absorbing cell by specific transport mechanisms ("carriers"). Primary carbohydrate (CH) intolerance is characterized by the congenital or acquired absence of individual brush border enzymes or of monosaccharide "carriers" without morphologic abnormalities of the intestinal villus: lactose, sucrose and trehalose intolerance and glucose-galactose malabsorption (brush border diseases). Secondary CH intolerance arises when surface digestion and absorption are reduced due to structural changes of the intestinal mucosa: e.g., decrease or absence of villi with sprue and reduction of the absorbing surface with intestinal resection. Watery diarrhea is the lead symptom. Many drugs delay or interfere with CH absorption. This action may be viewed either as an unwanted side effect or as a welcome therapeutic principle.

  9. Carbohydrate structure: the rocky road to automation.

    PubMed

    Agirre, Jon; Davies, Gideon J; Wilson, Keith S; Cowtan, Kevin D

    2016-12-08

    With the introduction of intuitive graphical software, structural biologists who are not experts in crystallography are now able to build complete protein or nucleic acid models rapidly. In contrast, carbohydrates are in a wholly different situation: scant automation exists, with manual building attempts being sometimes toppled by incorrect dictionaries or refinement problems. Sugars are the most stereochemically complex family of biomolecules and, as pyranose rings, have clear conformational preferences. Despite this, all refinement programs may produce high-energy conformations at medium to low resolution, without any support from the electron density. This problem renders the affected structures unusable in glyco-chemical terms. Bringing structural glycobiology up to 'protein standards' will require a total overhaul of the methodology. Time is of the essence, as the community is steadily increasing the production rate of glycoproteins, and electron cryo-microscopy has just started to image them in precisely that resolution range where crystallographic methods falter most.

  10. Carbohydrate based materials for gamma radiation shielding

    NASA Astrophysics Data System (ADS)

    Tabbakh, F.; Babaee, V.; Naghsh-Nezhad, Z.

    2015-05-01

    Due to the limitation in using lead as a shielding material for its toxic properties and limitation in abundance, price or non-flexibility of other commonly used materials, finding new shielding materials and compounds is strongly required. In this conceptual study carbohydrate based compounds were considered as new shielding materials. The simulation of radiation attenuation is performed using MCNP and Geant4 with a good agreement in the results. It is found that, the thickness of 2 mm of the proposed compound may reduce up to 5% and 50% of 1 MeV and 35 keV gamma-rays respectively in comparison with 15% and 100% for the same thickness of lead.

  11. Glycosidases: a key to tailored carbohydrates.

    PubMed

    Bojarová, Pavla; Kren, Vladimír

    2009-04-01

    In recent years, carbohydrate-processing enzymes have become the enzymes of choice in many applications thanks to their stereoselectivity and efficiency. This review presents recent developments in glycosidase-catalyzed synthesis via two complementary approaches: the use of wild-type enzymes with engineered substrates, and mutant glycosidases. Genetic engineering has recently produced glucuronyl synthases, an inverting xylosynthase and the first mutant endo-beta-N-acetylglucosaminidase. A thorough selection of enzyme strains and aptly modified substrates have resulted in rare glycostructures, such as N-acetyl-beta-galactosaminuronates, beta1,4-linked mannosides and alpha1,4-linked galactosides. The efficient selection of mutant enzymes is facilitated by high-throughput screening assays involving the co-expression of coupled enzymes or chemical complementation. Selective glycosidase inhibitors and highly specific glycosidases are finding attractive applications in biomedicine, biology and proteomics.

  12. A simple extension to the CMASA method for the prediction of catalytic residues in the presence of single point mutations.

    PubMed

    Flores, David I; Sotelo-Mundo, Rogerio R; Brizuela, Carlos A

    2014-01-01

    The automatic identification of catalytic residues still remains an important challenge in structural bioinformatics. Sequence-based methods are good alternatives when the query shares a high percentage of identity with a well-annotated enzyme. However, when the homology is not apparent, which occurs with many structures from the structural genome initiative, structural information should be exploited. A local structural comparison is preferred to a global structural comparison when predicting functional residues. CMASA is a recently proposed method for predicting catalytic residues based on a local structure comparison. The method achieves high accuracy and a high value for the Matthews correlation coefficient. However, point substitutions or a lack of relevant data strongly affect the performance of the method. In the present study, we propose a simple extension to the CMASA method to overcome this difficulty. Extensive computational experiments are shown as proof of concept instances, as well as for a few real cases. The results show that the extension performs well when the catalytic site contains mutated residues or when some residues are missing. The proposed modification could correctly predict the catalytic residues of a mutant thymidylate synthase, 1EVF. It also successfully predicted the catalytic residues for 3HRC despite the lack of information for a relevant side chain atom in the PDB file.

  13. A Simple Extension to the CMASA Method for the Prediction of Catalytic Residues in the Presence of Single Point Mutations

    PubMed Central

    Flores, David I.; Sotelo-Mundo, Rogerio R.; Brizuela, Carlos A.

    2014-01-01

    The automatic identification of catalytic residues still remains an important challenge in structural bioinformatics. Sequence-based methods are good alternatives when the query shares a high percentage of identity with a well-annotated enzyme. However, when the homology is not apparent, which occurs with many structures from the structural genome initiative, structural information should be exploited. A local structural comparison is preferred to a global structural comparison when predicting functional residues. CMASA is a recently proposed method for predicting catalytic residues based on a local structure comparison. The method achieves high accuracy and a high value for the Matthews correlation coefficient. However, point substitutions or a lack of relevant data strongly affect the performance of the method. In the present study, we propose a simple extension to the CMASA method to overcome this difficulty. Extensive computational experiments are shown as proof of concept instances, as well as for a few real cases. The results show that the extension performs well when the catalytic site contains mutated residues or when some residues are missing. The proposed modification could correctly predict the catalytic residues of a mutant thymidylate synthase, 1EVF. It also successfully predicted the catalytic residues for 3HRC despite the lack of information for a relevant side chain atom in the PDB file. PMID:25268770

  14. Carbohydrate CuAAC click chemistry for therapy and diagnosis.

    PubMed

    He, Xiao-Peng; Zeng, Ya-Li; Zang, Yi; Li, Jia; Field, Robert A; Chen, Guo-Rong

    2016-06-24

    Carbohydrates are important as signaling molecules and for cellular recognition events, therefore offering scope for the development of carbohydrate-mimetic diagnostics and drug candidates. As a consequence, the construction of carbohydrate-based bioactive compounds and sensors has become an active research area. While the advent of click chemistry has greatly accelerated the progress of medicinal chemistry and chemical biology, recent literature has seen an extensive use of such approaches to construct functionally diverse carbohydrate derivatives. Here we summarize some of the progress, covering the period 2010 to mid-2015, in Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition CuAAC "click chemistry" of carbohydrate derivatives, in the context of potential therapeutic and diagnostic tool development.

  15. Single cell profiling of surface carbohydrates on Bacillus cereus

    PubMed Central

    Wang, Congzhou; Ehrhardt, Christopher J.; Yadavalli, Vamsi K.

    2015-01-01

    Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based ‘recognition force mapping’ as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level. PMID:25505137

  16. Defined presentation of carbohydrates on a duplex DNA scaffold.

    PubMed

    Schlegel, Mark K; Hütter, Julia; Eriksson, Magdalena; Lepenies, Bernd; Seeberger, Peter H

    2011-12-16

    A new method for the spatially defined alignment of carbohydrates on a duplex DNA scaffold is presented. The use of an N-hydroxysuccinimide (NHS)-ester phosphoramidite along with carbohydrates containing an alkylamine linker allows for on-column labeling during solid-phase oligonucleotide synthesis. This modification method during solid-phase synthesis only requires the use of minimal amounts of complex carbohydrates. The covalently attached carbohydrates are presented in the major groove of the B-form duplex DNA as potential substrates for murine type II C-type lectin receptors mMGL1 and mMGL2. CD spectroscopy and thermal melting revealed only minimal disturbance of the overall helical structure. Surface plasmon resonance and cellular uptake studies with bone-marrow-derived dendritic cells were used to assess the capability of these carbohydrate-modified duplexes to bind to mMGL receptors.

  17. Self-assembled carbohydrate-based vesicles for lectin targeting.

    PubMed

    Dos Santos, Marinalva Cardoso; Micheletto, Yasmine Miguel Serafini; da Silveira, Nadya Pesce; da Silva Pinto, Luciano; Giacomelli, Fernando Carlos; de Lima, Vânia Rodrigues; Frizon, Tiago Elias Allievi; Dal-Bó, Alexandre Gonçalves

    2016-12-01

    This study examined the physicochemical interactions between vesicles formed by phosphatidylcholine (PC) and glycosylated polymeric amphiphile N-acetyl-β-d-glucosaminyl-PEG900-docosanate (C22PEG900GlcNAc) conjugated with Bauhinia variegata lectin (BVL). Lectins are proteins or glycoproteins capable of binding glycosylated membrane components. Accordingly, the surface functionalization by such entities is considered a potential strategy for targeted drug delivery. We observed increased hydrodynamic radii (RH) of PC+C22PEG900GlcNAc vesicles in the presence of lectins, suggesting that this aggregation was due to the interaction between lectins and the vesicular glycosylated surfaces. Furthermore, changes in the zeta potential of the vesicles with increasing lectin concentrations implied that the vesicular glycosylated surfaces were recognized by the investigated lectin. The presence of carbohydrate residues on vesicle surfaces and the ability of the vesicles to establish specific interactions with BVL were further explored using atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) analysis. The results indicated that the thickness of the hydrophilic layer was to some extent influenced by the presence of lectins. The presence of lectins required a higher degree of polydispersity as indicated by the width parameter of the log-normal distribution of size, which also suggested more irregular structures. Reflectance Fourier transform infrared (HATR-FTIR), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-vis.) analyses revealed that the studied lectin preferentially interacted with the choline and carbonyl groups of the lipid, thereby changing the choline orientation and intermolecular interactions. The protein also discretely reduced the intermolecular communication of the hydrophobic acyl chains, resulting in a disordered state.

  18. Metabolic response to high-carbohydrate and low-carbohydrate meals in a nonhuman primate model

    PubMed Central

    Fabbrini, Elisa; Higgins, Paul B.; Magkos, Faidon; Bastarrachea, Raul A.; Voruganti, V. Saroja; Comuzzie, Anthony G.; Shade, Robert E.; Gastaldelli, Amalia; Horton, Jay D.; Omodei, Daniela; Patterson, Bruce W.

    2013-01-01

    We established a model of chronic portal vein catheterization in an awake nonhuman primate to provide a comprehensive evaluation of the metabolic response to low-carbohydrate/high-fat (LCHF; 20% carbohydrate and 65% fat) and high-carbohydrate/low-fat (HCLF; 65% carbohydrate and 20% fat) meal ingestion. Each meal was given 1 wk apart to five young adult (7.8 ± 1.3 yr old) male baboons. A [U-13C]glucose tracer was added to the meal, and a [6,6-2H2]glucose tracer was infused systemically to assess glucose kinetics. Plasma areas under the curve (AUCs) of glucose, insulin, and C-peptide in the femoral artery and of glucose and insulin in the portal vein were higher (P ≤ 0.05) after ingestion of the HCLF compared with the LCHF meal. Compared with the LCHF meal, the rate of appearance of ingested glucose into the portal vein and the systemic circulation was greater after the HCLF meal (P < 0.05). Endogenous glucose production decreased by ∼40% after ingestion of the HCLF meal but was not affected by the LCHF meal (P < 0.05). Portal vein blood flow increased (P < 0.001) to a similar extent after consumption of either meal. In conclusion, a LCHF diet causes minimal changes in the rate of glucose appearance in both portal and systemic circulations, does not affect the rate of endogenous glucose production, and causes minimal stimulation of C-peptide and insulin. These observations demonstrate that LCHF diets cause minimal perturbations in glucose homeostasis and pancreatic β-cell activity. PMID:23269412

  19. Relationship of carbohydrate molecular spectroscopic features in combined feeds to carbohydrate utilization and availability in ruminants

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewei; Yu, Peiqiang

    To date, there is no study on the relationship between carbohydrate (CHO) molecular structures and nutrient availability of combined feeds in ruminants. The objective of this study was to use molecular spectroscopy to reveal the relationship between CHO molecular spectral profiles (in terms of functional groups (biomolecular, biopolymer) spectral peak area and height intensity) and CHO chemical profiles, CHO subfractions, energy values, and CHO rumen degradation kinetics of combined feeds of hulless barley with pure wheat dried distillers grains with solubles (DDGS) at five different combination ratios (hulless barley to pure wheat DDGS: 100:0, 75:25, 50:50, 25:75, 0:100). The molecular spectroscopic parameters assessed included: lignin biopolymer molecular spectra profile (peak area and height, region and baseline: ca. 1539-1504 cm-1); structural carbohydrate (STCHO, peaks area region and baseline: ca. 1485-1186 cm-1) mainly associated with hemi- and cellulosic compounds; cellulosic materials peak area (centered at ca. 1240 cm-1 with region and baseline: ca. 1272-1186 cm-1); total carbohydrate (CHO, peaks area region and baseline: ca. 1186-946 cm-1). The results showed that the functional groups (biomolecular, biopolymer) in the combined feeds are sensitive to the changes of carbohydrate chemical and nutrient profiles. The changes of the CHO molecular spectroscopic features in the combined feeds were highly correlated with CHO chemical profiles, CHO subfractions, in situ CHO rumen degradation kinetics and fermentable organic matter supply. Further study is needed to investigate possibility of using CHO molecular spectral features as a predictor to estimate nutrient availability in combined feeds for animals and quantify their relationship.

  20. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum.

    PubMed

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Chan, Kun-Chi; Chung, Man-Chien; Wu, Shu-Hsien; Liu, Cheng-Pin; Tien, Shih-Yuan; Chen, Shan-Yuan; Chang, Jo-Shu; Lee, Wen-Jhy

    2015-05-01

    This study conducted batch experiments to evaluate the potential of butanol production from microalgae biodiesel residues by Clostridium acetobutylicum. The results indicated that with 90 g/L of glucose as the sole substrate the highest butanol yield of 0.2 g/g-glucose was found, but the addition of butyrate significantly enhanced the butanol yield. The highest butanol yield of 0.4 g/g-glucose was found with 60 g/L of glucose and 18 g/L of butyrate. Using microalgae biodiesel residues as substrate, C. acetobutylicum produced 3.86 g/L of butanol and achieved butanol yield of 0.13 g/g-carbohydrate via ABE fermentation, but the results indicated that approximately one third of carbohydrate was not utilized by C. acetobutylicum. Biological butanol production from microalgae biodiesel residues can be possible, but further research on fermentation strategies are required to improve production yield.

  1. Comparative Analysis of Carbohydrate Active Enzymes in Clostridium termitidis CT1112 Reveals Complex Carbohydrate Degradation Ability

    PubMed Central

    Munir, Riffat I.; Schellenberg, John; Henrissat, Bernard; Verbeke, Tobin J.; Sparling, Richard; Levin, David B.

    2014-01-01

    Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes), sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199) and carbohydrate binding modules (95) were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly. PMID:25101643

  2. [Performance enhancement by carbohydrate intake during sport: effects of carbohydrates during and after high-intensity exercise].

    PubMed

    Beelen, Milou; Cermak, Naomi M; van Loon, Luc J C

    2015-01-01

    Endogenous carbohydrate availability does not provide sufficient energy for prolonged moderate to high-intensity exercise. Carbohydrate ingestion during high-intensity exercise can therefore enhance performance.- For exercise lasting 1 to 2.5 hours, athletes are advised to ingest 30-60 g of carbohydrates per hour.- Well-trained endurance athletes competing for longer than 2.5 hours at high intensity can metabolise up to 90 g of carbohydrates per hour, provided that a mixture of glucose and fructose is ingested.- Athletes participating in intermittent or team sports are advised to follow the same strategies but the timing of carbohydrate intake depends on the type of sport.- If top performance is required again within 24 hours after strenuous exercise, the advice is to supplement endogenous carbohydrate supplies quickly within the first few hours post-exercise by ingesting large amounts of carbohydrate (1.2 g/kg/h) or a lower amount of carbohydrate (0.8 g/kg/h) with a small amount of protein (0.2-0.4 g/kg/h).

  3. Assessing carbohydrate-carbohydrate interactions by NMR spectroscopy: the trisaccharide epitope from the marine sponge Microciona prolifera.

    PubMed

    Santos, J Ignacio; Carvalho de Souza, Adriana; Cañada, F Javier; Martín-Santamaría, Sonsoles; Kamerling, Johannis P; Jiménez-Barbero, Jesús

    2009-02-13

    WEAK RECOGNITION PROCESSES: Weak calcium-mediated carbohydrate-carbohydrate interactions have been detected by DOSY and TRNOESY NMR methods by employing a gold glyconanoparticle as a multivalent system. In addition, 3D models of trisaccharide-Ca(II)-trisaccharide complexes based on results from molecular dynamics simulations are proposed. Diffusion-ordered NMR spectroscopy (DOSY-NMR) and TR-NOESY-NMR experiments are used to detect ligand binding to macromolecular receptors. These techniques have been applied to detect weak carbohydrate-carbohydrate self-recognition in solution, making use of sugar-decorated gold nanoparticles as the "macromolecule" and the same carbohydrate as the ligand. Changes in the diffusion coefficient of the free carbohydrate in the presence of the glyconanoparticle (only with Ca(II) ions in the sample solution), as well as changes in the sign of the sugar NOE peaks--positive for the free sugar (in the presence or absence of Ca(II)) and negative for the sugar only in the simultaneous presence of the glyconanoparticle and Ca(II) ions--have been taken as proof of weak Ca(II)-mediated carbohydrate-carbohydrate interactions in solution. Although different methods such as SPR, TEM, and AFM have been used in the past to detect carbohydrate-carbohydrate interactions with the aid of gold nanoparticles and gold selfassembled monolayers, they are restricted to high-affinity ranges. The methods used in this study allow expansion of the number of techniques to tackle this relevant biological problem, also for approaching ligand-receptor interactions below the high-affinity range. Additionally, 3D models of trisaccharide-Ca(II)-trisaccharide complexes based on results from molecular dynamics simulations are proposed.

  4. Elucidating the exact role of engineered CRABPII residues for the formation of a retinal protonated Schiff base

    SciTech Connect

    Vasileiou, Chrysoula; Wang, Wenjing; Jia, Xiaofei; Lee, Kin Sing Stephen; Watson, Camille T.; Geiger, James H.; Borhan, Babak

    2010-03-04

    Cellular Retinoic Acid Binding Protein II (CRABPII) has been reengineered to specifically bind and react with all-trans-retinal to form a protonated Schiff base. Each step of this process has been dissected and four residues (Lys132, Tyr134, Arg111, and Glu121) within the CRABPII binding site have been identified as crucial for imine formation and/or protonation. The precise role of each residue has been examined through site directed mutagenesis and crystallographic studies. The crystal structure of the R132K:L121E-CRABPII (PDB-3I17) double mutant suggests a direct interaction between engineered Glu121 and the native Arg111, which is critical for both Schiff base formation and protonation.

  5. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    PubMed Central

    Flannery, Andrea; Gerlach, Jared Q.; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i) conventional carbohydrate or glycan microarrays; (ii) whole mucin microarrays; and (iii) microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments. PMID:27600247

  6. Development of carbohydrate absorption in the fetus and neonate.

    PubMed

    Mobassaleh, M; Montgomery, R K; Biller, J A; Grand, R J

    1985-01-01

    Maturation of mechanisms for carbohydrate absorption occurs in a defined sequence during human fetal development. The intestinal enzymes, lactase, sucrase, maltase, isomaltase, and glucoamylase, are at mature levels in the term fetus. Mature levels of pancreatic amylase activity and glucose transport occur postnatally, and levels are low in both the term and preterm neonate. In the preterm infant, sucrase, maltase, and isomaltase are usually fully active, but lactase activity, which increases markedly from 24 to 40 weeks, may be low depending upon fetal age. Despite these developmental patterns, clinical lactose intolerance is uncommon. Postnatal adaptive responses to ingested carbohydrates lead to competent carbohydrate absorption. Inadequately absorbed carbohydrates are salvaged by colonic flora through fermentation of carbohydrates to hydrogen gas and short-chain fatty acids; the latter are readily absorbed by the colon. In this setting, carbohydrate tends to be absent from the stool. Noninvasive reflection of the status of carbohydrate absorption may be obtained from breath hydrogen testing, a technique of particular value in young infants.

  7. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity

    PubMed Central

    Warda, Alicja K.; Siezen, Roland J.; Boekhorst, Jos; Wells-Bennik, Marjon H. J.; de Jong, Anne; Kuipers, Oscar P.; Nierop Groot, Masja N.; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed. PMID:27272929

  8. TENORM: Coal Combustion Residuals

    EPA Pesticide Factsheets

    Burning coal in boilers to create steam for power generation and industrial applications produces a number of combustion residuals. Naturally radioactive materials that were in the coal mostly end up in fly ash, bottom ash and boiler slag.

  9. [Cariogenic carbohydrates in maltodextrin-containing breast milk food substitutes].

    PubMed

    Koch, H; Wetzel, W E

    1995-01-01

    Ten infant formulas containing maltodextrin were analysed for fermentable carbohydrates using enzymatic analysis test-combinations and a spectrophotometer. Besides lactose, sucrose and fructose an assessment was made of sugars typically contained in maltodextrin and corn syrup, namely maltose, maltotriose and glucose. Total carbohydrate was up to 10.3 g in 100 ml standard sample. Cariogenic sugars were found in concentrations between 4.0 and 7.3 g/100 ml. Declaration of the different types of carbohydrates, especially of maltodextrin/corn syrup proved to be insufficient in some products and consequently the consumer is not able to understand their cariogenic potential.

  10. Alcohol production from agricultural and forestry residues

    SciTech Connect

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  11. Carbohydrate degrading polypeptide and uses thereof

    DOEpatents

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide having carbohydrate material degrading activity which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 4, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional protein and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  12. Saturated fat, carbohydrates and cardiovascular disease.

    PubMed

    Kuipers, R S; de Graaf, D J; Luxwolda, M F; Muskiet, M H A; Dijck-Brouwer, D A J; Muskiet, F A J

    2011-09-01

    The dietary intake of saturated fatty acids (SAFA) is associated with a modest increase in serum total cholesterol, but not with cardiovascular disease (CVD). Replacing dietary SAFA with carbohydrates (CHO), notably those with a high glycaemic index, is associated with an increase in CVD risk in observational cohorts, while replacing SAFA with polyunsaturated fatty acids (PUFA) is associated with reduced CVD risk. However, replacing a combination of SAFA and trans-fatty acids with n-6 PUFA (notably linoleic acid) in controlled trials showed no indication of benefit and a signal toward increased coronary heart disease risk, suggesting that n-3 PUFA may be responsible for the protective association between total PUFA and CVD. High CHO intakes stimulate hepatic SAFA synthesis and conservation of dietary SAFA . Hepatic de novo lipogenesis from CHO is also stimulated during eucaloric dietary substitution of SAFA by CHO with high glycaemic index in normo-insulinaemic subjects and during hypocaloric high-CHO/low-fat diets in subjects with the metabolic syndrome. The accumulation of SAFA stimulates chronic systemic low-grade inflammation through its mimicking of bacterial lipopolysaccharides and÷or the induction of other pro-inflammatory stimuli. The resulting systemic low-grade inflammation promotes insulin resistance, reallocation of energy-rich substrates and atherogenic dyslipidaemia that concertedly give rise to increased CVD risk. We conclude that avoidance of SAFA accumulation by reducing the intake of CHO with high glycaemic index is more effective in the prevention of CVD than reducing SAFA intake per se.

  13. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry.

    PubMed

    Bythell, Benjamin J; Abutokaikah, Maha T; Wagoner, Ashley R; Guan, Shanshan; Rabus, Jordan M

    2016-11-28

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the (0,2) A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies. Graphical Abstract ᅟ.

  14. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2016-11-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  15. Attenuation Measurements in Solutions of Some Carbohydrates

    SciTech Connect

    Gagandeep; Singh, Kulwant; Lark, B.S.; Sahota, H.S.

    2000-02-15

    The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C{sub 6}H{sub 12}O{sub 6}), maltose monohydrate (C{sub 12}H{sub 22}O{sub 11}.H{sub 2}O), and sucrose (C{sub 12}H{sub 22}O{sub 11}), were determined at 81, 356, 511, 662, 1173, and 1332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm{sup 3}) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form.

  16. Attenuation measurements in solutions of some carbohydrates

    SciTech Connect

    Gagandeep; Singh, K.; Lark, B.S.; Sahota, H.S.

    2000-02-01

    The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C{sub 6}H{sub 12} O{sub 6}), maltose monohydrate (C{sub 12}H{sub 22}O{sub 11}{center{underscore}dot}H{sub 2}O), and sucrose (C{sub 12}H{sub 22}O{sub 11}), were determined at 81, 356, 511, 662, 1,173, and 1,332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm{sup 3}) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form.

  17. SeqX: a tool to detect, analyze and visualize residue co-locations in protein and nucleic acid structures

    PubMed Central

    Biro, Jan C; Fördös, Gergely

    2005-01-01

    Background The interacting residues of protein and nucleic acid sequences are close to each other – they are co-located. Structure databases (like Protein Data Bank, PDB and Nucleic Acid Data Bank, NDB) contain all information about these co-locations; however it is not an easy task to penetrate this complex information. We developed a JAVA tool, called SeqX for this purpose. Results SeqX tool is useful to detect, analyze and visualize residue co-locations in protein and nucleic acid structures. The user a. selects a structure from PDB; b. chooses an atom that is commonly present in every residues of the nucleic acid and/or protein structure(s) c. defines a distance from these atoms (3–15 Å). The SeqX tool detects every residue that is located within the defined distances from the defined "backbone" atom(s); provides a DotPlot-like visualization (Residues Contact Map), and calculates the frequency of every possible residue pairs (Residue Contact Table) in the observed structure. It is possible to exclude +/- 1 to 10 neighbor residues in the same polymeric chain from detection, which greatly improves the specificity of detections (up to 60% when tested on dsDNA). Results obtained on protein structures showed highly significant correlations with results obtained from literature (p < 0.0001, n = 210, four different subsets). The co-location frequency of physico-chemically compatible amino acids is significantly higher than is calculated and expected in random protein sequences (p < 0.0001, n = 80). Conclusion The tool is simple and easy to use and provides a quick and reliable visualization and analyses of residue co-locations in protein and nucleic acid structures. Availability and requirements SeqX, Java J2SE Runtime Environment 5.0 (available from [see Additional file 1] ) and at least a 1 GHz processor and with a minimum 256 Mb RAM. Source codes are available from the authors. PMID:16011796

  18. Photoswitchable carbohydrate-based fluorosurfactants as tuneable ice recrystallization inhibitors.

    PubMed

    Adam, Madeleine K; Hu, Yingxue; Poisson, Jessica S; Pottage, Matthew J; Ben, Robert N; Wilkinson, Brendan L

    2017-02-01

    Cryopreservation is an important technique employed for the storage and preservation of biological tissues and cells. The limited effectiveness and significant toxicity of conventionally-used cryoprotectants, such as DMSO, have prompted efforts toward the rational design of less toxic alternatives, including carbohydrate-based surfactants. In this paper, we report the modular synthesis and ice recrystallization inhibition (IRI) activity of a library of variably substituted, carbohydrate-based fluorosurfactants. Carbohydrate-based fluorosurfactants possessed a variable mono- or disaccharide head group appended to a hydrophobic fluoroalkyl-substituted azobenzene tail group. Light-addressable fluorosurfactants displayed weak-to-moderate IRI activity that could be tuned through selection of carbohydrate head group, position of the trifluoroalkyl group on the azobenzene ring, and isomeric state of the azobenzene tail fragment.

  19. Nonstructural carbohydrates and return bloom potential differ among cranberry cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    explain low fruit set and biennial bearing tendencies of cranberry (Vaccinium macrocarpon). Yet, comparisons of nonstructural carbohydrate concentrations during critical phenological stages across cultivars that differ in biennial bearing tendencies and return bloom potential are lacking, particular...

  20. Multicomponent cascade reactions of unprotected carbohydrates and amino acids.

    PubMed

    Voigt, Benjamin; Linke, Michael; Mahrwald, Rainer

    2015-06-05

    Herein an operationally simple multicomponent reaction of unprotected carbohydrates with amino acids and isonitriles is presented. By the extension of this Ugi-type reaction to an unprotected disaccharide a novel glycopeptide structure was accessible.

  1. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    PubMed

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  2. Hydrocracking of carbohydrates making glycerol, glycols and other polyols

    DOEpatents

    Andrews, Mark A.; Klaeren, Stephen A.

    1991-01-01

    A homogeneous process for hydrocracking of carbohydrates in the presence of soluble transition metal hydrogenation catalyst with the production of lower polyhydric alcohols. A carbohydrate is contacted with hydrogen in the presence of a soluble transition metal catalyst and a strong base at a temperature of from about 25.degree. C. to about 200.degree. C. and a pressure of from about 15 to about 3000 psi.

  3. The role of carbohydrates in infection strategies of enteric pathogens.

    PubMed

    Kato, Kentaro; Ishiwa, Akiko

    2015-03-01

    Enteric pathogens cause considerable public health concerns worldwide including tropical regions. Here, we review the roles of carbohydrates in the infection strategies of various enteric pathogens including viruses, bacteria and protozoa, which infect the epithelial lining of the human and animal intestine. At host cell entry, enteric viruses, including norovirus, recognize mainly histo-blood group antigens. At the initial step of bacterial infections, carbohydrates also function as receptors for attachment. Here, we describe the function of carbohydrates in infection by Salmonella enterica and several bacterial species that produce a variety of fimbrial adhesions. During invasion by enteropathogenic protozoa, apicomplexan parasites utilize sialic acids or sulfated glycans. Carbohydrates serve as receptors for infection by these microbes; however, their usage of carbohydrates varies depending on the microbe. On the surface of the mucosal tissues of the gastrointestinal tract, various carbohydrate moieties are present and play a crucial role in infection, representing the site of infection or route of access for most microbes. During the infection and/or invasion process of the microbes, carbohydrates function as receptors for various microbes, but they can also function as a barrier to infection. One approach to develop effective prophylactic and therapeutic antimicrobial agents is to modify the drug structure. Another approach is to modify the mode of inhibition of infection depending on the individual pathogen by using and mimicking the interactions with carbohydrates. In addition, similarities in mode of infection may also be utilized. Our findings will be useful in the development of new drugs for the treatment of enteric pathogens.

  4. Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers.

    PubMed

    Akbar, Jamshed; Iqbal, Mohammad S; Massey, Shazma; Masih, Rashid

    2012-10-15

    This work aims at study of thermal degradation kinetics and mechanism of pentose- and hexose-based carbohydrate polymers isolated from Plantago ovata (PO), Salvia aegyptiaca (SA) and Ocimum basilicum (OB). The analysis was performed by isoconversional method. The materials exhibited mainly two-stage degradation. The weight loss at ambient-115°C characterized by low activation energy corresponds to loss of moisture. The kinetic triplets consisting of E, A and g(α) model of the materials were determined. The major degradation stage represents a loss of high boiling volatile components. This stage is exothermic in nature. Above 340°C complete degradation takes place leaving a residue of 10-15%. The master plots of g(α) function clearly differentiated the degradation mechanism of hexose-based OB and SA polymers and pentose-based PO polymer. The pentose-based carbohydrate polymer showed D(4) type and the hexose-based polymers showed A(4) type degradation mechanism.

  5. A Processive Carbohydrate Polymerase That Mediates Bifunctional Catalysis Using a Single Active Site

    PubMed Central

    May, John F.; Levengood, Matthew R.; Splain, Rebecca A.; Brown, Christopher D.; Kiessling, Laura L.

    2012-01-01

    Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds. PMID:22217153

  6. Analysis of the carbohydrate-binding-module from Fragaria x ananassa α-L-arabinofuranosidase 1.

    PubMed

    Sin, I N; Perini, M A; Martínez, G A; Civello, P M

    2016-10-01

    α-L-arabinofuranosidases (EC 3.2.1.55) are enzymes involved in the catabolism of several cell-wall polysaccharides such as pectins and hemicelluloses, catalyzing the hydrolysis of terminal non-reducing α-L-arabinofuranosil residues. Bioinformatic analysis of the aminoacidic sequences of Fragaria x ananassa α-L-arabinofuranosidases predict a putative carbohydrate-binding-module of the family CBM_4_9, associated to a wide range of carbohydrate affinities. In this study, we report the characterization of the binding affinity profile to different cell wall polysaccharides of the putative CBM of α-L-arabinofuranosidase 1 from Fragaria x ananassa (CBM-FaARA1). The sequence encoding for the putative CBM was cloned and expressed in Escherichia coli, and the resultant recombinant protein was purified from inclusion bodies by a Nickel affinity chromatography under denaturing conditions. The refolded recombinant protein was then subjected to binding assays and affinity gel electrophoresis, which indicated its ability to bind cellulose and also high affinity for homogalacturonans.

  7. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    PubMed

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology.

  8. The primary structure of the Cytisus scoparius seed lectin and a carbohydrate-binding peptide.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T; Irimura, T

    1992-09-01

    The complete amino acid sequence of 2-acetamido-2-deoxy-D-galactose-binding Cytisus scoparius seed lectin II (CSII) was determined using a protein sequencer. After digestion of CSII with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSII with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid residues of concanavalin A (Con A) involved in the metal binding site are highly conserved among those of CSII. A carbohydrate-binding peptide of CSII was obtained from the endoproteinase Asp-N digest of CSII by affinity chromatography on a column of GalNAc-Gel. This peptide was retained on the GalNAc-Gel column and was presumed to have affinity for the column. The amino acid sequence of the retarded peptide was determined using a protein sequencer. The retarded peptide was found to correspond to the putative metal-binding region of Con A. These results strongly suggest that this peptide represents the carbohydrate-binding and metal ion-binding sites of CSII.

  9. Carbohydrate-mimetic peptides for pan anti-tumor responses.

    PubMed

    Kieber-Emmons, Thomas; Saha, Somdutta; Pashov, Anastas; Monzavi-Karbassi, Behjatolah; Murali, Ramachandran

    2014-01-01

    Molecular mimicry is fundamental to biology and transcends to many disciplines ranging from immune pathology to drug design. Structural characterization of molecular partners has provided insight into the origins and relative importance of complementarity in mimicry. Chemical complementarity is easy to understand; amino acid sequence similarity between peptides, for example, can lead to cross-reactivity triggering similar reactivity from their cognate receptors. However, conformational complementarity is difficult to decipher. Molecular mimicry of carbohydrates by peptides is often considered one of those. Extensive studies of innate and adaptive immune responses suggests the existence of carbohydrate mimicry, but the structural basis for this mimicry yields confounding details; peptides mimicking carbohydrates in some cases fail to exhibit both chemical and conformational mimicry. Deconvolution of these two types of complementarity in mimicry and its relationship to biological function can nevertheless lead to new therapeutics. Here, we discuss our experience examining the immunological aspects and implications of carbohydrate-peptide mimicry. Emphasis is placed on the rationale, the lessons learned from the methodologies to identify mimics, a perspective on the limitations of structural analysis, the biological consequences of mimicking tumor-associated carbohydrate antigens, and the notion of reverse engineering to develop carbohydrate-mimetic peptides in vaccine design strategies to induce responses to glycan antigens expressed on cancer cells.

  10. Profiling human serum antibodies with a carbohydrate antigen microarray

    PubMed Central

    Oyelaran, Oyindasola; McShane, Lisa M.; Dodd, Lori; Gildersleeve, Jeffrey C.

    2009-01-01

    Carbohydrate antigen arrays (glycan arrays) have been recently developed for the high-throughput analysis of carbohydrate macromolecule interactions. When profiling serum, information about experimental variability, inter-individual biological variability, and intra-individual temporal variability is critical. In this report, we describe the characterization of a carbohydrate antigen array and assay for profiling human serum. Through optimization of assay conditions and development of a normalization strategy, we obtain highly reproducible results with a within-experiment coefficient of variation (CV) of 10.8% and an overall CV (across multiple batches of slides and days) of 28.5%. We also report antibody profiles for 48 human subjects and evaluate for the first time the effects of age, race, sex, geographic location, and blood type on antibody profiles for a large set of carbohydrate antigens. We found significant dependence on age and blood type of antibody levels for a variety of carbohydrates. Finally, we conducted a longitudinal study with a separate group of 7 serum donors to evaluate the variation in anti-carbohydrate antibody levels within an individual over a period ranging from 3 to 13 weeks and found that, for nearly all antigens on our array, antibody levels are generally stable over this period. The results presented here provide the most comprehensive evaluation of experimental and biological variation reported to date for a glycan array and have significant implications for studies involving human serum profiling. PMID:19624168

  11. Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis.

    PubMed

    Zhou, Shengfei; Runge, Troy M

    2014-11-04

    This work studied the two-step acid hydrolysis for determining carbohydrates in lignocellulosic biomass. Estimation of sugar loss based on acid hydrolyzed sugar standards or analysis of sugar derivatives was investigated. Four model substrates (starch, holocellulose, filter paper and cotton) and three levels of acid/material ratios (7.8, 10.3 and 15.4, v/w) were studied to demonstrate the range of test artifacts. The method for carbohydrates estimation based on acid hydrolyzed sugar standards having the most satisfactory carbohydrate recovery and relative standard deviation. Raw material and the acid/material ratio both had significant effect on carbohydrate hydrolysis, suggesting the acid to have impacts beyond a catalyst in the hydrolysis. Following optimal procedures, we were able to reach a carbohydrate recovery of 96% with a relative standard deviation less than 3%. The carbohydrates recovery lower than 100% was likely due to the incomplete hydrolysis of substrates, which was supported by scanning electron microscope (SEM) images.

  12. Bacterial, plant, and fungal carbohydrate structure databases: daily usage.

    PubMed

    Toukach, Philip V; Egorova, Ksenia S

    2015-01-01

    Natural carbohydrates play important roles in living systems and therefore are used as diagnostic and therapeutic targets. The main goal of glycomics is systematization of carbohydrates and elucidation of their role in human health and disease. The amount of information on natural carbohydrates accumulates rapidly, but scientists still lack databases and computer-assisted tools needed for orientation in the glycomic information space. Therefore, freely available, regularly updated, and cross-linked databases are demanded. Bacterial Carbohydrate Structure Database (Bacterial CSDB) was developed for provision of structural, bibliographic, taxonomic, NMR spectroscopic, and other related information on bacterial and archaeal carbohydrate structures. Its main features are (1) coverage above 90%, (2) high data consistence (above 90% of error-free records), and (3) presence of manually verified bibliographic, NMR spectroscopic, and taxonomic annotations. Recently, CSDB has been expanded to cover carbohydrates of plant and fungal origin. The achievement of full coverage in the plant and fungal domains is expected in the future. CSDB is freely available on the Internet as a web service at http://csdb.glycoscience.ru. This chapter aims at showing how to use CSDB in your daily scientific practice.

  13. Simulation of carbohydrates, from molecular docking to dynamics in water.

    PubMed

    Sapay, Nicolas; Nurisso, Alessandra; Imberty, Anne

    2013-01-01

    Modeling of carbohydrates is particularly challenging because of the variety of structures resulting for the high number of monosaccharides and possible linkages and also because of their intrinsic flexibility. The development of carbohydrate parameters for molecular modeling is still an active field. Nowadays, main carbohydrates force fields are GLYCAM06, CHARMM36, and GROMOS 45A4. GLYCAM06 includes the largest choice of compounds and is compatible with the AMBER force fields and associated. Furthermore, AMBER includes tools for the implementation of new parameters. When looking at protein-carbohydrate interaction, the choice of the starting structure is of importance. Such complex can be sometimes obtained from the Protein Data Bank-although the stereochemistry of sugars may require some corrections. When no experimental data is available, molecular docking simulation is generally used to the obtain protein-carbohydrate complex coordinates. As molecular docking parameters are not specifically dedicated to carbohydrates, inaccuracies should be expected, especially for the docking of polysaccharides. This issue can be addressed at least partially by combining molecular docking with molecular dynamics simulation in water.

  14. Carbohydrate-based nanoparticles for potential applications in medicine.

    PubMed

    Marradi, Marco; García, Isabel; Penadés, Soledad

    2011-01-01

    Although carbohydrates are essential for life, the development of medical tools based on these important biomolecules is significantly slower than those based on proteins or nucleic acids. This chapter deals with the applications of nanoparticles decorated with carbohydrates and discusses the perspectives of their use in the field of medicine. The review is divided into two sections: diagnosis and therapy. Within these topics, the focus will be on two main types of systems: carbohydrate-coated metallic nanoparticles in which the carbohydrate ligands are "covalently" linked to a nanosized metallic cluster and polysaccharide-encapsulated metallic cores. The former glyconanoparticles (GNPs) represent a powerful chemical tool in the field of glycobiology as a specific carbohydrate can be selected to exert a concrete biological function and profile carbohydrate-based interactions. Up to now, these GNPs have been mainly used as potential anti-adhesion agents against pathogens. The opportunity of inserting multifunctionality and changing the nucleus size/material is giving birth to new targeted systems for imaging and therapy. On the other hand, nonmetallic polysaccharide-based nanoparticles have been successfully used as drug delivery carriers in addition to molecular imaging.

  15. Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin.

    PubMed

    McLaughlin, Heather P; Motherway, Mary O'Connell; Lakshminarayanan, Bhuvaneswari; Stanton, Catherine; Paul Ross, R; Brulc, Jennifer; Menon, Ravi; O'Toole, Paul W; van Sinderen, Douwe

    2015-06-16

    Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients.

  16. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    PubMed Central

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses. PMID:24213131

  17. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  18. NMR characterisation of inulin-type fructooligosaccharides as the major water-soluble carbohydrates from Matricaria maritima (L.).

    PubMed

    Cérantola, Stéphane; Kervarec, Nelly; Pichon, Roger; Magné, Christian; Bessieres, Marie-Anne; Deslandes, Eric

    2004-10-04

    By use of 1H and 13C NMR spectroscopy including 2D 1H,1H DQF-COSY/TOCSY and 1H,13C HMQC/HMBC experiments, the main water-soluble carbohydrate components extracted from leaves of Matricaria maritima were identified as oligofructans composed of a linear chain of (2-->1)-linked beta-D-fructofuranosyl residues specifying an inulin-type structure. Alpha-D-Glcp-(1-->2)-[beta-D-Fruf-(2-->1)-beta-D-Frucf]n-(2-->1)-beta-D-Fruf.

  19. Novel xylan-binding properties of an engineered family 4 carbohydrate-binding module.

    PubMed

    Cicortas Gunnarsson, Lavinia; Montanier, Cedric; Tunnicliffe, Richard B; Williamson, Mike P; Gilbert, Harry J; Nordberg Karlsson, Eva; Ohlin, Mats

    2007-09-01

    Molecular engineering of ligand-binding proteins is commonly used for identification of variants that display novel specificities. Using this approach to introduce novel specificities into CBMs (carbohydrate-binding modules) has not been extensively explored. Here, we report the engineering of a CBM, CBM4-2 from the Rhodothermus marinus xylanase Xyn10A, and the identification of the X-2 variant. As compared with the wild-type protein, this engineered module displays higher specificity for the polysaccharide xylan, and a lower preference for binding xylo-oligomers rather than binding the natural decorated polysaccharide. The mode of binding of X-2 differs from other xylan-specific CBMs in that it only has one aromatic residue in the binding site that can make hydrophobic interactions with the sugar rings of the ligand. The evolution of CBM4-2 has thus generated a xylan-binding module with different binding properties to those displayed by CBMs available in Nature.

  20. Modified carbohydrate-chitosan compounds, methods of making the same and methods of using the same

    DOEpatents

    Venditti, Richard A; Pawlak, Joel J; Salam, Abdus; El-Tahlawy, Khaled Fathy

    2015-03-10

    Compositions of matter are provided that include chitosan and a modified carbohydrate. The modified carbohydrate includes a carbohydrate component and a cross linking agent. The modified carbohydrate has increased carboxyl content as compared to an unmodified counterpart carbohydrate. A carboxyl group of the modified carbohydrate is covalently bonded with an amino group of chitosan. The compositions of matter provided herein may include cross linked starch citrate-chitosan and cross linked hemicellulose citrate-chitosan, including foams thereof. These compositions yield excellent absorbency and metal chelation properties. Methods of making cross linked modified carbohydrate-chitosan compounds are also provided.

  1. How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria†

    PubMed Central

    Deutscher, Josef; Francke, Christof; Postma, Pieter W.

    2006-01-01

    The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705

  2. Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans

    PubMed Central

    Moye, Zachary D.; Son, Minjun; Rosa-Alberty, Ariana E.; Zeng, Lin; Ahn, Sang-Joon

    2016-01-01

    ABSTRACT The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans. IMPORTANCE The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence

  3. Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712.

    PubMed

    Kim, Dong-Uk; Kim, Min-Sun; Lim, Jong-Sung; Ka, Jong-Ok

    2013-05-01

    Variovorax sp. strain DB1 and Pseudomonas pickettii strain 712 are 2,4-dicholorophenoxy-acetic acid (2,4-D)-degrading bacteria, which were isolated from agricultural soils in Republic of Korea and USA, respectively. Each strain harbors a 2,4-D degradative plasmid and is able to utilize 2,4-D as the sole source of carbon for its growth. The 2,4-D degradative plasmid pDB1 of strain DB1 consisted of a 65,269-bp circular molecule with a G+C content of 66.23% and had 68 ORFs. The 2,4-D degradative plasmid p712 of strain 712 was composed of a 62,798-bp circular molecule with a 62.11% G+C content and had 62 ORFs. The plasmids pDB1 and p712 share significantly homologous 2,4-D degradative genes with high similarity to the tfdR, tfdB-II, tfdC-II, tfdD-II, tfdE-II, tfdF-II, tfdK and tfdA genes of plasmid pJP4 of Alcaligenes eutrophus isolated from Australia. In a phylogenetic analysis with trfA, traL, and trbA genes, pDB1 belonged to IncP-1β with pJP4, while p712 belonged to IncP-1ε with pKJK5 and pEMT3. The results indicated that, in spite of the differences in their backbone regions, the 2,4-D catabolic genes of the two plasmids were closely related and also related to the well-known 2,4-D degradative plasmid pJP4 even though all were isolated from different geographic regions. Other similarities in the genetic organization and the presence of IS1071 suggested that these catabolic genes may be on a transposable element, leading to widespread occurrence in soil bacteria.

  4. MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) for identifying protein–ligand fragment interaction, pathways and SNPs

    PubMed Central

    Tanramluk, Duangrudee; Narupiyakul, Lalita; Akavipat, Ruj; Gong, Sungsam; Charoensawan, Varodom

    2016-01-01

    Protein–ligand interaction analysis is an important step of drug design and protein engineering in order to predict the binding affinity and selectivity between ligands to the target proteins. To date, there are more than 100 000 structures available in the Protein Data Bank (PDB), of which ∼30% are protein–ligand (MW below 1000 Da) complexes. We have developed the integrative web server MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) with the aim of providing a user-friendly web interface to assist structural study and design of protein–ligand interactions. In brief, the server allows the users to input the chemical fragments and present all the unique molecular interactions to the target proteins with available three-dimensional structures in the PDB. The users can also link the ligands of interest to assess possible off-target proteins, human variants and pathway information using our all-in-one integrated tools. Taken together, we envisage that the server will facilitate and improve the study of protein–ligand interactions by allowing observation and comparison of ligand interactions with multiple proteins at the same time. (http://manoraa.org). PMID:27131358

  5. Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism*

    PubMed Central

    Gregg, Katie J.; Suits, Michael D. L.; Deng, Lehua; Vocadlo, David J.; Boraston, Alisdair B.

    2015-01-01

    O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the −1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue. PMID:26304114

  6. Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism.

    PubMed

    Gregg, Katie J; Suits, Michael D L; Deng, Lehua; Vocadlo, David J; Boraston, Alisdair B

    2015-10-16

    O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the -1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue.

  7. Final Technical Report - Commercially Important Carbohydrate Diacids - Building Blocks from Renewable Carbohydrates

    SciTech Connect

    Kiely, Donald E.

    2009-01-07

    The primary objective of this project was to develop oxidation methods appropriate for the conversion of agriculturally derived simple sugars to their corresponding diacids (aldaric acids) for use as biobased chemical building blocks for new biodegradable polymers and other materials. Principal target diacids were D-glucaric, meso-xylaric, D-mannaric and L-arabinaric acid, each to be prepared by nitric acid oxidation of the naturally occurring precursor carbohydrates (monosaccharides) D-glucose, D-xylose, D-mannose and L-arabinose, respectively, all from hydrolysis of naturally abundant plant polysaccharides. These conversions were to be designed for scale up to a level suitable for transfer first to a pilot plant scale, and then to an industrial plant scale. The core of the project involved a comprehensive study of the title oxidation employing a computer controlled reactor. The plan of action involved defining experimental parameters to allow for control of the oxidations with considerable precision and reproducibility. The prototype oxidations were typically run using ca. 0.75 molar amounts of carbohydrate, with a goal of eventually doubling the reaction size when appropriate reaction parameters were established. During the course of the funding period for this grant, the fundamentals of reaction control were established for oxidation of D-glucose, a critical component of the project given the exothermic character of the reaction. The reactions were monitored using a reliable GC/MS protocol. The glucose to glucaric acid conversion represented the most important and potentially highest value conversion. During the grant period we were able to establish one workable system to carry out the glucose to glucaric acid conversion, but were not able to optimize the process or establish a protocol that was satisfactory for a scale up to a pilot plant scale. However, the work carried out showed the possibility that with appropriate innovation and continued effort, a

  8. Baroreflex sensitivity in acute hypoxia and carbohydrate loading.

    PubMed

    Klemenc, Matjaž; Golja, Petra

    2011-10-01

    Hypoxia decreases baroreflex sensitivity (BRS) and can be a sufficient cause for syncope in healthy individuals. Carbohydrate loading enhances efferent sympathetic activity, which affects cardiac contractility, heart rate and vascular resistance, the main determinants of blood pressure. Thus, in both normoxia and hypoxia, carbohydrate loading may be more than simply metabolically beneficial, as it may affect blood pressure regulation. We hypothesised that carbohydrate loading will, in both normoxia and hypoxia, alter the regulation of blood pressure, as reflected in a change in baroreflex sensitivity. Fourteen subjects participated in two experiments, composed of a 15-min normoxic period, after which the subjects ingested water or an equal amount of water with carbohydrates. A 30-min rest period was then followed by a 10-min second normoxic and a 30-min hypoxic period. Blood pressure and heart rate were monitored continuously during the experiment to determine BRS. Despite an increased sympathetic activation, reflected in increased heart rate (P < 0.001) BRS was lower (P < 0.01) after carbohydrate loading, as compared to the water experiment, in both normoxic [23.7 (12.4) versus 28.8 (13.8) ms/mmHg] and hypoxic [16.8 (11.0) versus 24.3 (12.3) ms/mmHg] phases of the present study. As BRS was decreased in acute hypoxic exposure, the results confirm that hypoxia interferes with blood pressure regulation. However, although oral carbohydrate loading induced sympathoexcitation, it did not improve blood pressure regulation in hypoxia, as evident from the BRS data. Baroreflex effects of other forms of carbohydrate loading, not causing postprandial blood shifts to digestive system, should therefore be investigated.

  9. Carbohydrate Supplementation Influences Serum Cytokines after Exercise under Hypoxic Conditions

    PubMed Central

    Caris, Aline Venticinque; Da Silva, Edgar Tavares; Dos Santos, Samile Amorim; Lira, Fabio Santos; Oyama, Lila Missae; Tufik, Sergio; Dos Santos, Ronaldo Vagner Thomatieli

    2016-01-01

    Introduction: Exercise performed at the hypoxia equivalent of an altitude of 4200 m is associated with elevated inflammatory mediators and changes in the Th1/Th2 response. By contrast, supplementation with carbohydrates has an anti-inflammatory effect when exercise is performed under normoxic conditions. The objective of this study was to evaluate the effect of carbohydrate supplementation on cytokines and cellular damage markers after exercise under hypoxic conditions at a simulated altitude of 4200 m. Methods: Seven adult male volunteers who exercised for 60 min at an intensity of 50% VO2Peak were randomly evaluated under three distinct conditions; normoxia, hypoxia and hypoxia + carbohydrate supplementation. Blood samples were collected at rest, at the end of exercise and after 60 min of recovery. To evaluate hypoxia + carbohydrate supplementation, volunteers received a solution of 6% carbohydrate (maltodextrin) or a placebo (strawberry-flavored Crystal Light®; Kraft Foods, Northfield, IL, USA) every 20 min during exercise and recovery. Statistical analyses comprised analysis of variance, with a one-way ANOVA followed by the Tukey post hoc test with a significance level of p < 0.05. Results: Under normoxic and hypoxic conditions, there was a significant increase in the concentration of IL-6 after exercise and after recovery compared to at rest (p < 0.05), while in the hypoxia + carbohydrate group, there was a significant increase in the concentration of IL-6 and TNF-α after exercise compared to at rest (p < 0.05). Furthermore, under this condition, TNF-α, IL-2 and the balance of IL-2/IL-4 were increased after recovery compared to at rest (p < 0.05). Conclusion: We conclude that carbohydrate supplementation modified the IL-6 and TNF-α serum concentrations and shifted the IL-2/IL-4 balance towards Th1 in response without glycemic, glutaminemia and cell damage effects. PMID:27827949

  10. Characterization of carbohydrates in rainwater from the southeastern North Carolina.

    PubMed

    Mullaugh, Katherine M; Byrd, Jade N; Avery, G Brooks; Mead, Ralph N; Willey, Joan D; Kieber, Robert J

    2014-07-01

    Carbohydrates have been widely reported in atmospheric aerosols, but have not previously been quantified in rainwater. We have identified and quantified a series of 11 specific compounds including monosaccharides (glucose, fructose, arabinose, galactose and pinitol), disaccharides (sucrose and trehalose), sugar alcohols (arabitol, dulcitol and mannitol) and the anhydrosaccharide levoglucosan. Rainwater analyzed in this study includes 52 distinct precipitation events in Wilmington, NC between June 2011 and October 2012. Our analysis indicates carbohydrates typically contribute <1% of total dissolved organic carbon in rain, but can account for as much as 10-35% during periods of high pollen or local fires. Concentrations of individual carbohydrates reached as high as 5.8 μM, with glucose and sucrose typically being the predominant species. The distribution of carbohydrates exhibited a distinct seasonal pattern, with higher concentrations of most carbohydrates, especially sucrose, in spring and summer, driven primarily by increased biogenic inputs during the growing season. Concentrations of carbohydrates were an order of magnitude higher in storms of terrestrial origin compared to marine events, further supporting a terrestrial biogenic origin of most species. Sequential sampling of Hurricane Irene showed significant quantities of carbohydrates present at the end of the storm when air mass back trajectories traversed over land. The highest level of levoglucosan, a compound associated with biomass burning, was detected in rain with an air mass back trajectory that traveled over a region affected by wildfires. When compared to aerosol concentrations reported by others, the sugar concentrations in rain demonstrate wet deposition is an important removal mechanism of this water-soluble and bioavailable fraction of atmospheric particulate organic matter.

  11. Abnormal Carbohydrate Metabolism in Chronic Renal Failure

    PubMed Central

    Rubenfeld, Sheldon; Garber, Alan J.

    1978-01-01

    To delineate the potential role of disordered glucose and glucose-precursor kinetics in the abnormal carbohydrate metabolism of chronic renal failure, alanine and glucose production and utilization and gluconeogenesis from alanine were studied in patients with chronic compensated renal insufficiency and in normal volunteers. With simultaneous primed injection-continuous infusions of radiolabeled alanine and glucose, rates of metabolite turnover and precursor-product interrelationships were calculated from the plateau portion of the appropriate specific activity curves. All subjects were studied in the postabsorption state. In 13 patients with chronic renal failure (creatinine = 10.7±1.2 mg/100 ml; mean±SEM), glucose turnover was found to be 1,035±99.3 μmol/min. This rate was increased 56% (P = 0.003) over that observed in control subjects (664±33.5 μmol/min). Alanine turnover was 474±96.0 μmol/min in azotemic patients. This rate was 191% greater (P = 0.007) than the rate determined in control subjects (163±19.4 μmol/min). Gluconeogenesis from alanine and the percent of glucose production contributed by gluconeogenesis from alanine were increased in patients with chronic renal failure (192% and 169%, respectively) as compared to controls (P < 0.05 for each). Alanine utilization for gluconeogenesis was increased from 40.2±3.86 μmol/min in control subjects to 143±39.0 μmol/min in azotemic patients (P < 0.05). The percent of alanine utilization accounted for by gluconeogenesis was not altered in chronic renal insufficiency. In nondiabetic azotemic subjects, mean fasting glucose and immunoreactive insulin levels were increased 24.3% (P = 0.005) and 130% (P = 0.046), respectively. These results in patients with chronic renal failure demonstrate (a) increased glucose production and utilization, (b) increased gluconeogenesis from alanine, (c) increased alanine production and utilization, and (d) a relative impairment to glucose disposal. We conclude that

  12. Leguminous lectins as tools for studying the role of sugar residues in leukocyte recruitment.

    PubMed Central

    Alencar, N M; Teixeira, E H; Assreuy, A M; Cavada, B S; Flores, C A; Ribeiro, R A

    1999-01-01

    The natural physiological ligands for selectins are oligosaccharides found in glycoprotein or glycolipid molecules in cell membranes. In order to study the role of sugar residues in the in vivo lectin anti-inflammatory effect, we tested three leguminous lectins with different carbohydrate binding affinities in the peritonitis and paw oedema models induced by carrageenin in rats. L. sericeus lectin was more anti-inflammatory than D. virgata lectin, the effects being reversed by their specific binding sugars (N-acetylglucosamine and alpha-methylmannoside, respectively). However, V. macrocarpa, a galactose-specific lectin, was not anti-inflammatory. The proposed anti-inflammatory activity of lectins could be due to a blockage of neutrophil-selectin carbohydrate ligands. Thus, according to the present data, we suggest an important role for N-acetylglucosamine residue as the major ligand for selectins on rat neutrophil membranes. PMID:10704148

  13. Predicting water-soluble carbohydrates and ethanol-soluble carbohydrates in cool-season grasses with near-infrared reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazing animals may require a high or low total nonstructural carbohydrate diet for optimal health and production. Understanding how nonstructural carbohydrates fluctuate in Kentucky pastures and being able to quantify and monitor nonstructural carbohydrates in a timely manner will greatly aid in m...

  14. Selectivity switch in the catalytic functionalization of nonprotected carbohydrates: selective synthesis in the presence of anomeric and structurally similar carbohydrates under mild conditions.

    PubMed

    Muramatsu, Wataru; Takemoto, Yuki

    2013-03-15

    A catalytic process for the chemo- and regioselective functionalization of nonprotected carbohydrates has been developed. This novel process allows selective thiocarbonylation, acylation, and sulfonylation of a particular hydroxy group in a particular carbohydrate in the simultaneous presence of structurally similar carbohydrates such as anomers. In addition, the chemoselectivity can be switched by regulating only the length of the alkyl chain in the organotin catalyst.

  15. Targeting a cluster of arginine residues of neuraminidase to avoid oseltamivir resistance in influenza A (H1N1): a theoretical study.

    PubMed

    Gema, L Ramírez-Salinas; Tolentino-Lopez, L E; Martínez-Ramos, F; Padilla-Martínez, I; García-Machorro, J; Correa-Basurto, J

    2015-01-01

    Following the influenza A (H1N1) pandemic in Mexico and around the world in 2009, the numbers of oseltamivir-resistant clinical cases have increased through a mechanism that remains unclear. In this work, we focus on studying the mutated NA structures ADA71175 (GenBank) and 3CKZ (PDB ID). Recently crystallized NA (PDB ID: 3NSS) was used as a wild-type structure and template to construct the three-dimensional (3D) structure of ADA71175. Then, the NA mutants and 3NSS natives as well as their refined monomer structures as determined through MD simulations (snapshots at 50 ns) were used as models to perform a docking study using a set of aryl-oseltamivir derivatives. These aryl-oseltamivir derivatives have better recognition properties than oseltamivir because of cation-π interactions with a cluster of Arg residues (118, 292, and 371) at the binding site. This cluster of Arg residues represents a potential binding site for aryl-oseltamivir derivatives that are potentially new NA inhibitors.

  16. Digestion of carbohydrates and utilization of energy in sows fed diets with contrasting levels and physicochemical properties of dietary fiber.

    PubMed

    Serena, A; Jørgensen, H; Bach Knudsen, K E

    2008-09-01

    Three experimental diets were used to investigate the digestion of carbohydrates and utilization of energy in sows fed diets with different levels and physicochemical properties of dietary fiber (DF). The low-fiber diet (LF; DF, 16%; soluble DF, 4.8%) was based on wheat and barley. The high-fiber 1 diet (HF1; DF, 41%; soluble DF, 11%) was based on wheat and barley supplemented with the coproducts: sugar beet pulp, potato pulp, and pectin residue, and the high-fiber 2 diet (HF2; DF, 44%; soluble DF, 7.3%) was based on wheat and barley supplemented with approximately 1/3 of the coproducts used in diet HF1 and 2/3 of brewers spent grain, seed residue, and pea hull (1:1:1, respectively). The diets were studied in 2 series of experiments. In Exp. 1, the digestibility and ileal and fecal flow of nutrients were studied in 6 ileal-cannulated sows placed in metabolic cages designed as a repeated 3 x 3 Latin square design. In Exp. 2, energy metabolism was measured in respiration chambers using 6 sows in a repeated 3 x 3 Latin square design. The DF level influenced the ileal flow of most nutrients, in particular carbohydrates, which increased from 190 g/d when feeding the LF diet to 538 to 539 g/d when feeding the HF diets; this was also reflected in the digestibility of OM and carbohydrates (P < 0.05). The ranking of total excretion of fecal materials was HF2 > > HF1 > LF, which also was reflected in the digestibility of OM, protein, and carbohydrates. Feeding HF diets resulted in greater CH(4) production, which was related to the amount of carbohydrates (r = 0.79) and OM (r = 0.72) fermented in the large intestine, but with no difference in heat production (12.2 to 13.1 MJ/kg of DM). Retained energy (MJ/kg of DM) was decreased when feeding HF1 compared with LF and negative when feeding HF2. Feeding sows HF1 reduced the activity of animals (5.1 h/24 h) compared with LF (6.1 h/24 h; P = 0.045).

  17. The ASCE Residuals Transport Manual

    SciTech Connect

    Albertson, O.E.; Bizier, P.A.; Brown, J.; Koch, C.; Sadick, T.

    1999-07-01

    This presentation will highlight the ASCE Residuals Transport Manual, which has been published by ASCE this year. This document, which represents the state of the art in information on residuals transport, is designed to be used by both the active practitioner, as well as for instructional purposes. The authors will present the various chapters which cover the following topics: Conveyance of Water and Wastewater Residuals, Rheology, Sludge Characteristics, Quality and Quantity, Overview of Residuals Conveyance Devices, Pumping of Viscous Sludges and Slurries, Transport of Thickened Residuals, Conveyance of Dewatered Residuals, Transport of Granular and Compactable Residuals, and Case Studies. The Objective of the Transport Monograph is to summarize in one concise volume the general state of knowledge regarding residuals transport from both water and wastewater residuals. The presentation will cover each chapter and will review the pertinent information contained in the manual.

  18. Calystegines in potatoes with genetically engineered carbohydrate metabolism.

    PubMed

    Richter, Ute; Sonnewald, Uwe; Dräger, Birgit

    2007-01-01

    Calystegines are hydroxylated nortropane alkaloids derived from the tropane alkaloid biosynthetic pathway. They are strong glycosidase inhibitors and occur in vegetables such as potatoes, tomatoes, and cabbage. Calystegine accumulation in root cultures was described to increase with carbohydrate availability. Whether this is indicative for the in planta situation is as yet unknown. Potatoes are model plants for the study of carbohydrate metabolism. Numerous transgenic potato lines with altered carbohydrate metabolism are available, but rarely were examined for alterations in secondary metabolism. In this study, calystegine accumulation and expression of biosynthetic enzymes were related to genetic modifications in carbohydrate metabolism in potato tubers. Tubers contained more soluble sugars due to overexpression of yeast invertase in the apoplast or in the cytosol, or due to antisense suppression of sucrose synthase. It is shown that the major part of calystegines in tubers originated from biosynthesis in plant roots. Yet, tuber calystegine levels responded to genetic alterations of carbohydrate metabolism in tubers. The strongest increase in calystegines was found in tubers with suppressed sucrose synthase activity. Transcripts and enzyme activities involved in calystegine biosynthesis largely concurred with product accumulation. Whole plant organs were examined similarly and displayed higher calystegines and corresponding enzyme activities in roots and stolons of plants with enhanced soluble sugars. Increases in calystegines appear to be linked to sucrose availability.

  19. Digestion kinetics of carbohydrate fractions of citrus by-products.

    PubMed

    Lashkari, Saman; Taghizadeh, Akbar

    2015-01-01

    The present experiment was carried out to determine the digestion kinetics of carbohydrate fractions of citrus by-products. Grapefruit pulp (GP), lemon pulp (LE), lime pulp (LI) and orange pulp (OP) were the test feed. Digestion kinetic of whole citrus by-products and neutral detergent fiber (NDF) fraction and acid detergent fiber (ADF) fractions of citrus by-products were measured using the in vitro gas production technique. Fermentation kinetics of the neutral detergent soluble carbohydrates (NDSC) fraction and hemicelluloses were calculated using a curve subtraction. The fermentation rate of whole was the highest for the LE (p < 0.05). For all citrus by-products lag time was longer for hemicellulose than other carbohydrate fractions. There was no significant difference among potential gas production (A) volumes of whole test feeds (p < 0.16). Dry matter (DM) digestibility contents of LE and LI were the highest (p < 0.02). The NDF digestibility was the highest (p < 0.05) in LI and GP, while the lowest (p < 0.03) values of ADF digestibility were observed in LI and LE. According to the results of the present study, carbohydrate fractions of citrus by-products have high potential for degradability. It could also be concluded that carbohydrate fractions of citrus by-products have remarkable difference in digestion kinetics and digestive behavior.

  20. Quantifying the Responses of Mixed Rumen Microbes to Excess Carbohydrate

    PubMed Central

    Hackmann, Timothy J.; Diese, Leanne E.

    2013-01-01

    The aim of this study was to determine if a mixed microbial community from the bovine rumen would respond to excess carbohydrate by accumulating reserve carbohydrate, energy spilling (dissipating excess ATP energy as heat), or both. Mixed microbes from the rumen were washed with N-free buffer and dosed with glucose. Total heat production was measured by calorimetry. Energy spilling was calculated as heat production not accounted by (i) endogenous metabolism (heat production before dosing glucose) and (ii) synthesis of reserve carbohydrate (heat from synthesis itself and reactions yielding ATP for it). For cells dosed with 5 mM glucose, synthesis of reserve carbohydrate and endogenous metabolism accounted for nearly all heat production (93.7%); no spilling was detected (P = 0.226). For cells dosed with 20 mM glucose, energy spilling was not detected immediately after dosing, but it became significant (P < 0.05) by approximately 30 min after dosing with glucose. Energy spilling accounted for as much as 38.7% of heat production in one incubation. Nearly all energy (97.9%) and carbon (99.9%) in glucose were recovered in reserve carbohydrate, fermentation acids, CO2, CH4, and heat. This full recovery indicates that products were measured completely and that spilling was not a methodological artifact. These results should aid future research aiming to mechanistically account for variation in energetic efficiency of mixed microbial communities. PMID:23584777

  1. Carbohydrate-Mimetic Peptides for Pan Anti-Tumor Responses

    PubMed Central

    Kieber-Emmons, Thomas; Saha, Somdutta; Pashov, Anastas; Monzavi-Karbassi, Behjatolah; Murali, Ramachandran

    2014-01-01

    Molecular mimicry is fundamental to biology and transcends to many disciplines ranging from immune pathology to drug design. Structural characterization of molecular partners has provided insight into the origins and relative importance of complementarity in mimicry. Chemical complementarity is easy to understand; amino acid sequence similarity between peptides, for example, can lead to cross-reactivity triggering similar reactivity from their cognate receptors. However, conformational complementarity is difficult to decipher. Molecular mimicry of carbohydrates by peptides is often considered one of those. Extensive studies of innate and adaptive immune responses suggests the existence of carbohydrate mimicry, but the structural basis for this mimicry yields confounding details; peptides mimicking carbohydrates in some cases fail to exhibit both chemical and conformational mimicry. Deconvolution of these two types of complementarity in mimicry and its relationship to biological function can nevertheless lead to new therapeutics. Here, we discuss our experience examining the immunological aspects and implications of carbohydrate–peptide mimicry. Emphasis is placed on the rationale, the lessons learned from the methodologies to identify mimics, a perspective on the limitations of structural analysis, the biological consequences of mimicking tumor-associated carbohydrate antigens, and the notion of reverse engineering to develop carbohydrate-mimetic peptides in vaccine design strategies to induce responses to glycan antigens expressed on cancer cells. PMID:25071769

  2. Phosphorous Nutritional Level, Carbohydrate Reserves and Flower Quality in Olives

    PubMed Central

    Erel, Ran; Yermiyahu, Uri; Yasuor, Hagai; Cohen Chamus, Dan; Schwartz, Amnon; Ben-Gal, Alon; Dag, Arnon

    2016-01-01

    The olive tree is generally characterized by relatively low final fruit set consequential to a significant rate of undeveloped pistils, pistil abortion, and flower and fruitlet abscission. These processes are acknowledged to be governed by competition for resources between the developing vegetative and reproductive organs. To study the role of phosphorus (P) nutritional level on reproductive development, trees were grown under four levels of P for three years in large containers. Phosphorus nutritional level was positively related to rate of reproductive bud break, inflorescence weight, rate of hermaphrodite flowers, pistil weight, fruitlet persistence, fruit set and the consequential total number of fruits. The positive impact of P nutrition on the productivity parameters was not related to carbohydrate reserves or to carbohydrate transport to the developing inflorescence. Phosphorous deficient trees showed significant impairment of assimilation rate, and yet, carbohydrates were accumulated in inflorescences at levels comparable to or higher than trees receiving high P. In contrast to female reproductive organs, pollen viability was consistently higher in P deficient trees, possibly due to the enhanced carbohydrate availability. Overall, the positive effect of P on female reproductive development was found to be independent of the total carbohydrate availability. Hence, P is speculated to have a direct influence on reproductive processes. PMID:27907133

  3. Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates.

    PubMed

    Ahmed, Abdul Bakrudeen Ali; Adel, Mohaddeseh; Karimi, Pegah; Peidayesh, Mahvash

    2014-01-01

    Marine carbohydrates are most important organic molecules made by photosynthetic organisms. It is very essential for humankind: the role in being an energy source for the organism and they are considered as an important dissolve organic compound (DOC) in marine environment's sediments. Carbohydrates found in different marine environments in different concentrations. Polysaccharides of carbohydrates play an important role in various fields such as pharmaceutical, food production, cosmeceutical, and so on. Marine organisms are good resources of nutrients, and they are rich carbohydrate in sulfated polysaccharide. Seaweeds (marine microalgae) are used in different pharmaceutical industries, especially in pharmaceutical compound production. Seaweeds have a significant amount of sulfated polysaccharides, which are used in cosmeceutical industry, besides based on the biological applications. Since then, traditional people, cosmetics products, and pharmaceutical applications consider many types of seaweed as an important organism used in food process. Sulfated polysaccharides containing seaweed have potential uses in the blood coagulation system, antiviral activity, antioxidant activity, anticancer activity, immunomodulating activity, antilipidepic activity, etc. Some species of marine organisms are rich in polysaccharides such as sulfated galactans. Various polysaccharides such as agar and alginates, which are extracted from marine organisms, have several applications in food production and cosmeceutical industries. Due to their high health benefits, compound-derived extracts of marine polysaccharides have various applications and traditional people were using them since long time ago. In the future, much attention is supposed to be paid to unraveling the structural, compositional, and sequential properties of marine carbohydrate as well.

  4. The statolith compartment in Chara rhizoids contains carbohydrate and protein

    NASA Technical Reports Server (NTRS)

    Wang-Cahill, F.; Kiss, J. Z.

    1995-01-01

    In contrast to higher plants, the alga Chara has rhizoids with single membrane-bound compartments that function as statoliths in gravity perception. Previous work has demonstrated that these statoliths contain barium sulfate crystals. In this study, we show that statoliths in Chara rhizoids react with a Coomassie Brilliant Blue cytochemical stain for proteins. While statoliths did not react with silver methenamine carbohydrate cytochemistry, the monoclonal antibody CCRC-M2, which is against a carbohydrate (sycamore-maple rhamnogalacturonan I), labeled the statolith compartment. These results demonstrate that in addition to barium sulfate, statoliths in Chara rhizoids have an organic matrix that consists of protein and carbohydrate moieties. Since the statoliths were silver methenamine negative, the carbohydrate in this compartment could be a 3-linked polysaccharide. CCRC-M2 also labeled Golgi cisternae, Golgi-associated vesicles, apical vesicles, and cell walls in the rhizoids. The specificity of CCRC-M2 immunolabeling was verified by several control experiments, including the demonstration that labeling was abolished when the antibody was preabsorbed with its antigen. Since in this and a previous study (John Z. Kiss and L. Andrew Staehelin, American Journal of Botany 80: 273-282, 1993) antibodies against higher plant carbohydrates crossreacted with cell walls of Chara in a specific manner, Characean algae may be a useful model system in biochemical and molecular studies of cell walls.

  5. GlycoCT-a unifying sequence format for carbohydrates.

    PubMed

    Herget, S; Ranzinger, R; Maass, K; Lieth, C-W V D

    2008-08-11

    As part of the EUROCarbDB project (www.eurocarbdb.org) we have carefully analyzed the encoding capabilities of all existing carbohydrate sequence formats and the content of publically available structure databases. We have found that none of the existing structural encoding schemata are capable of coping with the full complexity to be expected for experimentally derived structural carbohydrate sequence data across all taxonomic sources. This gap motivated us to define an encoding scheme for complex carbohydrates, named GlycoCT, to overcome the current limitations. This new format is based on a connection table approach, instead of a linear encoding scheme, to describe the carbohydrate sequences, with a controlled vocabulary to name monosaccharides, adopting IUPAC rules to generate a consistent, machine-readable nomenclature. The format uses a block concept to describe frequently occurring special features of carbohydrate sequences like repeating units. It exists in two variants, a condensed form and a more verbose XML syntax. Sorting rules assure the uniqueness of the condensed form, thus making it suitable as a direct primary key for database applications, which rely on unique identifiers. GlycoCT encompasses the capabilities of the heterogeneous landscape of digital encoding schemata in glycomics and is thus a step forward on the way to a unified and broadly accepted sequence format in glycobioinformatics.

  6. Effects of in ovo injection of carbohydrates on somatic characteristics and liver nutrient profiles of broiler embryos and hatchlings.

    PubMed

    Zhai, W; Bennett, L W; Gerard, P D; Pulikanti, R; Peebles, E D

    2011-12-01

    Effects of the in ovo injection of commercial diluent supplemented with dextrin or with dextrin in combination with various other carbohydrates on the somatic characteristics and liver nutrient profiles of Ross × Ross 708 broiler embryos and chicks were investigated. Results include information concerning the gluconeogenic energy status of the liver before and after hatch. Eggs containing live embryos were injected in the amnion on d 18 of incubation using an automated multiple-egg injector for the delivery of the following carbohydrates dissolved in 0.4 mL of commercial diluent: 1) 6.25% glucose and 18.75% dextrin; 2) 6.25% sucrose and 18.75% dextrin; 3) 6.25% maltose and 18.75% dextrin; and 4) 25% dextrin. Also, a noninjected control and a 0.4-mL diluent-injected control were included. Body weight relative to set egg weight on d 19 of incubation (E19) was increased by the injection of all carbohydrate solutions, and on the day of hatch was increased by the injection of diluent, sucrose and dextrin, and maltose and dextrin solutions. Hatchability of the fertilized eggs, residual yolk sac weight, and liver weight were not affected by any injection treatment; however, as compared with the 0.4 mL diluent-injected group, all of the supplementary carbohydrates, except for the glucose and dextrin combination group, increased liver glycogen and glucose concentrations on E19. Furthermore, all carbohydrates, except for the 25% dextrin treatment, decreased liver fat concentration on E19. From E19 to the day of hatch, liver glycogen concentrations dropped dramatically from an average of 3.2 to 0.6%. Despite treatment differences observed on E19 for liver glycogen, glucose, and fat concentrations, these differences were lost by the day of hatch. Nevertheless, liver glycogen and glucose concentrations were positively correlated on the day of hatch. In conclusion, the in ovo injection of various supplemental carbohydrates dissolved in 0.4 mL of commercial diluent altered the

  7. DFT Solvation Studies of Carbohydrates: Solvation effects in alpha-linked carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the current paper we address the effect of solvation on the landscape of alpha-linked glucose residues. The solvent is introduced via the implicit solvation models COSMO and PCM. Geometry optimizations, at the B3LYP/6-311++G** level of theory with and without implicit solvation were carried out...

  8. Residual stresses in material processing

    SciTech Connect

    Kozaczek, K.J.; Watkins, T.R.; Hubbard, C.R.; Wang, Xun-Li; Spooner, S.

    1994-09-01

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then adresses the direct, nondestructive methods of residual stress measurement by X-ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  9. Differences in residual lignin properties between Betula verrucosa and Eucalyptus urograndis kraft pulps.

    PubMed

    Hänninen, Tuomas A; Kontturi, Eero; Isogai, Akira; Vuorinen, Tapani

    2008-10-01

    By comparing the ultrastructural features of two oxygen delignified hardwood kraft pulps (Eucalyptus urograndis and Betula verrucosa), we have demonstrated a marked difference in their residual lignin properties. In this study, properties such as crystallinity and crystal size of cellulose, molecular weights, carboxyl group contents, and carbohydrate compositions of the two kraft pulps were compared. The examined pulps were in our observations relatively similar. A significant difference, however, was observed in the size exclusion chromatography measurements, which indirectly suggested that a significant portion of residual lignin in eucalyptus pulp was associated with cellulose. Birch pulp, in contrast, exhibited a more conventional tendency for hardwood pulps: lignin mainly associated with hemicelluloses.

  10. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  11. Binding of Sperm to the Zona Pellucida Mediated by Sperm Carbohydrate-Binding Proteins is not Species-Specific in vitro between Pigs and Cattle

    PubMed Central

    Takahashi, Kazuya; Kikuchi, Kazuhiro; Uchida, Yasuomi; Kanai-Kitayama, Saeko; Suzuki, Reiichiro; Sato, Reiko; Toma, Kazunori; Geshi, Masaya; Akagi, Satoshi; Nakano, Minoru; Yonezawa, Naoto

    2013-01-01

    Carbohydrates are candidates for the basis of species-selective interaction of gametes during mammalian fertilization. In this study, we sought to clarify the roles of sugar residues in the species-selective, sperm–oocyte interaction in pigs and cattle. Acrosome-intact porcine and bovine sperm exhibited their strongest binding affinities for β-Gal and α-Man residues, respectively. Porcine-sperm specificity changed from β-Gal to α-Man after the acrosome reaction, while bovine-sperm specificity did not. Binding of acrosome-intact and acrosome-reacted sperm decreased after trypsinization, indicating that the carbohydrate-binding components are proteins. While immature oocytes bound homologous sperm preferentially to heterologous sperm, oocytes matured in vitro bound similar numbers of homologous and heterologous sperm. Lectin staining revealed the aggregation of α-Man residues on the outer surface of the porcine zona during maturation. In both species, zona-free, mature oocytes bound homologous sperm preferentially to heterologous sperm. The lectin-staining patterns of the zona pellucida and zona-free oocytes coincided with the carbohydrate-binding specificities of acrosome-intact and acrosome-reacted sperm, respectively, supporting the involvement of carbohydrates in gamete recognition in pigs and cattle. These results also indicate that sperm-zona pellucida and sperm–oolemma bindings are not strictly species-specific in pigs and cattle, and further suggest that sperm penetration into the zona and/or fusion with oolemma may be species-specific between pigs and cattle. PMID:24970158

  12. Effect of Carbohydrate Ingestion on Sprint Performance Following Continuous Exercise

    NASA Astrophysics Data System (ADS)

    Siahkohian, M.; Farhadi, H.; Naghizadeh Baghi, A.; Valizadeh, A.

    The purpose of this study was to determine the effect of 5% carbohydrate ingestion on the sprint performance immediately following 90 min of running at 70-80% of maximal heart rate reserve. Thirty young active men were selected as subjects and allocated randomly to two carbohydrate (CHO, N = 15) and placebo (PL, N = 15) groups. Pre-test 200 m dash, 90 min running and post-test 200 m dash took place, respectively. Exercise heart rate monitored during 90 min running by a cardio frequency meter. Significant differences were found between the CHO and PL post-test 200 m dash records (p<0.05). Blood glucose was found to be significantly higher at the end of the 90 min running for the CHO group than for the PL group (p<0.01). The results suggest that carbohydrate ingestion during endurance exercise inhibits failing of Sprint performance of young active men.

  13. Effects of carbohydrates on brain tryptophan availability and stress performance.

    PubMed

    Markus, C R

    2007-09-01

    Although glucose intake has been associated with enhanced mental performance, this does not follow a clear synchronized relationship and findings are inconsistent. Given the brain's need for glucose during demanding conditions, glucose intake may be beneficial for stress performance. Brain serotonin may be involved as a postprandial mechanism initiated by increases in plasma tryptophan to the sum of the other large neutral amino acids (Trp/LNAA ratio). We tested whether carbohydrate drinks compared to placebo drinks increase the plasma Trp/LNAA ratio and improve stress performance and mood. Thirty-seven healthy subjects were monitored in a double-blind placebo-controlled study for performance when continuously exposed to cold pressor stress; 2h after carbohydrate- or placebo-intake. Cold pressor stress significantly increased cortisol and reduced mood and cognitive performance, whereas carbohydrates significantly increased plasma Trp/LNAA and positively influenced performance and mood under stress.

  14. Carbohydrate mimetics and scaffolds: sweet spots in medicinal chemistry.

    PubMed

    Cipolla, Laura; La Ferla, Barbara; Airoldi, Cristina; Zona, Cristiano; Orsato, Alexandre; Shaikh, Nasrin; Russo, Laura; Nicotra, Francesco

    2010-04-01

    Several glycoprocessing enzymes and glycoreceptors have been recognized as important targets for therapeutic intervention. This concept has inspired the development of important classes of therapeutics, such as anti-influenza drugs inhibiting influenza virus neuraminidase, anti-inflammatory drugs targeting lectin-sialyl-Lewis X interaction and glycosidase inhibitors against HIV, Gaucher's disease, hepatitis and cancer. These therapeutics are mainly carbohydrate mimics in which proper modifications permit stronger interactions with the target protein, higher stability, better pharmacokinetic properties and easier synthesis. Furthermore, the conformational rigidity and polyfunctionality of carbohydrates stimulate their use as scaffolds for the generation of libraries by combinatorial decoration with different pharmacophores. This mini-review will present examples of how to exploit carbohydrates mimics and scaffolds in drug research.

  15. Microbial degradation of complex carbohydrates in the gut

    PubMed Central

    Flint, Harry J.; Scott, Karen P.; Duncan, Sylvia H.; Louis, Petra; Forano, Evelyne

    2012-01-01

    Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non-digestible dietary carbohydrates and host–derived glycans in the human intestine has important consequences for health. Certain dominant species, notably among the Bacteroidetes, are known to possess very large numbers of genes that encode carbohydrate active enzymes and can switch readily between different energy sources in the gut depending on availability. Nevertheless, more nutritionally specialized bacteria appear to play critical roles in the community by initiating the degradation of complex substrates such as plant cell walls, starch particles and mucin. Examples are emerging from the Firmicutes, Actinobacteria and Verrucomicrobium phyla, but more information is needed on these little studied groups. The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs. PMID:22572875

  16. Microbial degradation of complex carbohydrates in the gut.

    PubMed

    Flint, Harry J; Scott, Karen P; Duncan, Sylvia H; Louis, Petra; Forano, Evelyne

    2012-01-01

    Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non-digestible dietary carbohydrates and host-derived glycans in the human intestine has important consequences for health. Certain dominant species, notably among the Bacteroidetes, are known to possess very large numbers of genes that encode carbohydrate active enzymes and can switch readily between different energy sources in the gut depending on availability. Nevertheless, more nutritionally specialized bacteria appear to play critical roles in the community by initiating the degradation of complex substrates such as plant cell walls, starch particles and mucin. Examples are emerging from the Firmicutes, Actinobacteria and Verrucomicrobium phyla, but more information is needed on these little studied groups. The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs.

  17. Derivatization of carbohydrates for GC and GC-MS analyses.

    PubMed

    Ruiz-Matute, A I; Hernández-Hernández, O; Rodríguez-Sánchez, S; Sanz, M L; Martínez-Castro, I

    2011-05-15

    GC and GC-MS are excellent techniques for the analysis of carbohydrates; nevertheless the preparation of adequate derivatives is necessary. The different functional groups that can be found and the diversity of samples require specific methods. This review aims to collect the most important methodologies currently used, either published as new procedures or as new applications, for the analysis of carbohydrates. A high diversity of compounds with diverse functionalities has been selected: neutral carbohydrates (saccharides and polyalcohols), sugar acids, amino and iminosugars, polysaccharides, glycosides, glycoconjugates, anhydrosugars, difructose anhydrides and products resulting of Maillard reaction (osuloses, Amadori compounds). Chiral analysis has also been considered, describing the use of diastereomers and derivatives to be eluted on chiral stationary phases.

  18. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.

    PubMed

    Solanki, Archana; Mehta, Jayen; Thakore, Sonal

    2014-09-22

    Biocompatible and biodegradable polyurethanes (PUs) based on castor oil and polypropylene glycols (PPGs) were prepared using various carbohydrate crosslinkers: monosaccharide (glucose), disaccharide (sucrose) and polysaccharides (starch and cellulose). The mechanical and thermal properties were investigated and interpreted on the basis of SEM study. The advantage of incorporating various carbohydrates is to have tunable mechanical properties and biodegradability due to variety in their structure. The glass transition temperature and sorption behavior were dominated by the type of polyol than by the type of crosslinker. All the PUs were observed to be biodegradable as well as non-cytotoxic as revealed by MTT assay in normal lung cell line L132. The study supports the suitability of carbohydrates as important components of biocompatible PUs for development of biomedical devices.

  19. Separation of carbohydrates using hydrophilic interaction liquid chromatography.

    PubMed

    Fu, Qing; Liang, Tu; Li, Zhenyu; Xu, Xiaoyong; Ke, Yanxiong; Jin, Yu; Liang, Xinmiao

    2013-09-20

    A strategy was developed to rapidly evaluate chromatographic properties of hydrophilic interaction chromatography (HILIC) columns for separating carbohydrates. Seven HILIC columns (Silica, Diol, TSK Amide-80, XAmide, Click Maltose, Click β-CD, and Click TE-Cys columns) were evaluated by using three monosaccharide and seven disaccharides as probes. The influence of column temperature on the peak shape and tautomerization of carbohydrates, as well as column selectivity were investigated. The influence of surface charge property on the retention was also studied by using glucose, glucuronic acid, and glucosamine, which indicated that buffer salt concentration and pH value in mobile phase was necessary to control the ionic interactions between ionic carbohydrates and HILIC columns. According to evaluation results, the XAmide column was selected as an example to establish experimental schemes for separation of complex mixtures of oligosaccharide.

  20. Structural Characterization of Carbohydrates by Fourier Transform Tandem Mass Spectrometry

    PubMed Central

    Zhou, Wen; Håkansson, Kristina

    2012-01-01

    Fourier transform tandem mass spectrometry (MS/MS) provides high mass accuracy, high sensitivity, and analytical versatility and has therefore emerged as an indispensable tool for structural elucidation of biomolecules. Glycosylation is one of the most common posttranslational modifications, occurring in ~50% of proteins. However, due to the structural diversity of carbohydrates, arising from non-template driven biosynthesis, achievement of detailed structural insight is highly challenging. This review briefly discusses carbohydrate sample preparation and ionization methods, and highlights recent developments in alternative high-resolution MS/MS strategies, including infrared multiphoton dissociation (IRMPD), electron capture dissociation (ECD), and electron detachment dissociation (EDD), for carbohydrates with a focus on glycans and proteoglycans from mammalian glycoproteins. PMID:22389641

  1. Galactose recognition by a tetrameric C-type lectin, CEL-IV, containing the EPN carbohydrate recognition motif.

    PubMed

    Hatakeyama, Tomomitsu; Kamiya, Takuro; Kusunoki, Masami; Nakamura-Tsuruta, Sachiko; Hirabayashi, Jun; Goda, Shuichiro; Unno, Hideaki

    2011-03-25

    CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which is known to be characteristic of mannose binding C-type CRDs, it showed preferential binding of galactose and N-acetylgalactosamine. Structural analyses of CEL-IV-melibiose and CEL-IV-raffinose complexes revealed that their galactose residues were recognized in an inverted orientation compared with mannose binding C-type CRDs containing the EPN motif, by the aid of a stacking interaction with the side chain of Trp-79. Changes in the environment of Trp-79 induced by binding to galactose were detected by changes in the intrinsic fluorescence and UV absorption spectra of WT CEL-IV and its site-directed mutants. The binding specificity of CEL-IV toward complex oligosaccharides was analyzed by frontal affinity chromatography using various pyridylamino sugars, and the results indicate preferential binding to oligosaccharides containing Galβ1-3/4(Fucα1-3/4)GlcNAc structures. These findings suggest that the specificity for oligosaccharides may be largely affected by interactions with amino acid residues in the binding site other than those determining the monosaccharide specificity.

  2. Identification of Oligosaccharides in Human Milk Bound onto the Toxin A Carbohydrate Binding Site of Clostridium difficile.

    PubMed

    Nguyen, Thi Thanh Hanh; Kim, Jong Woon; Park, Jun-Seong; Hwang, Kyeong Hwan; Jang, Tae-Su; Kim, Chun-Hyung; Kim, Doman

    2016-04-28

    The oligosaccharides in human milk constitute a major innate immunological mechanism by which breastfed infants gain protection against infectious diarrhea. Clostridium difficile is the most important cause of nosocomial diarrhea, and the C-terminus of toxin A with its carbohydrate binding site, TcdA-f2, demonstrates specific abolishment of cytotoxicity and receptor binding activity upon diethylpyrocarbonate modification of the histidine residues in TcdA. TcdA-f2 was cloned and expressed in E. coli BL21 (DE3). A human milk oligosaccharide (HMO) mixture displayed binding with TcdA-f2 at 38.2 respond units (RU) at the concentration of 20 μg/ml, whereas the eight purified HMOs showed binding with the carbohydrate binding site of TcdA-f2 at 3.3 to 14 RU depending on their structures via a surface plasma resonance biosensor. Among them, Lacto-N-fucopentaose V (LNFPV) and Lacto-N-neohexaose (LNnH) demonstrated tight binding to TcdA-f2 with docking energy of -9.48 kcal/mol and -12.81 kcal/mol, respectively. It displayed numerous hydrogen bonding and hydrophobic interactions with amino acid residues of TcdA-f2.

  3. Preparation of water-soluble glycoconjugated poly(acrylamide) for NMR analyses of carbohydrate-carbohydrate interactions

    NASA Astrophysics Data System (ADS)

    Xuan, Trinh Anh; Trung, Phan Nghia; Dinh, Bui Long; Yamaguchi, Takumi; Kato, Koichi

    2014-05-01

    Oligosaccharide chains of glycoconjugates are important biopolymers not only as carriers of information in cell-cell interactions but also as markers of cellular differentiation, aging, and malignant alteration. Molecular interactions where carbohydrates are involved are usually considered as weak interactions, so the study and evaluation of these interactions is still in its infancy. The evidences and studies of carbohydrate-carbohydrate interactions (CCI) will be confirming the importance of this mechanism for specific cell adhesion and communication. Their development will go hand in hand with the development of new and more sensitive techniques to study weak interactions. Recently, synthetic glycopolymers with functions similar to those of such natural carbohydrates and with specific pendant saccharide moieties were used as a solution for enhancement CCI when forming polyvalent interactions. Carbohydrates are ubiquitous components of cell wall membranes and occur as glycolipids, glycoproteins, proteoglycans, and capsular polysaccharides. As such they can participate in forefront intramolecular and intracellular events. Apart from their recognized roles in the physicochemical properties of glycolipids and glycoproteins. In this study, we designed trisaccharide monomers for free radical polymerization. Subsequently, the trisaccharide unit for chemical conjugation was synthesized from galactosamine in good yield. For further NMR analyses of CCI, glycopolymers composed of these sugar derivatives will be provided.

  4. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.

    PubMed

    Markou, Giorgos; Angelidaki, Irini; Georgakakis, Dimitris

    2012-11-01

    Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed.

  5. Dietary intake of carbohydrates and risk of type 2 diabetes: the European Prospective Investigation into Cancer-Norfolk study.

    PubMed

    Ahmadi-Abhari, Sara; Luben, Robert N; Powell, Natasha; Bhaniani, Amit; Chowdhury, Rajiv; Wareham, Nicholas J; Forouhi, Nita G; Khaw, Kay-Tee

    2014-01-28

    In the present study, we investigated the association between dietary intake of carbohydrates and the risk of type 2 diabetes. Incident cases of diabetes (n 749) were identified and compared with a randomly selected subcohort of 3496 participants aged 40-79 years. For dietary assessment, we used 7 d food diaries administered at baseline. We carried out modified Cox proportional hazards regression analyses and compared results obtained from the different methods of adjustment for total energy intake. Dietary intakes of total carbohydrates, starch, sucrose, lactose or maltose were not significantly related to diabetes risk after adjustment for confounders. However, in the residual method for energy adjustment, intakes of fructose and glucose were inversely related to diabetes risk. The multivariable-adjusted hazard ratios (HR) of diabetes comparing the extreme quintiles of intake were 0·79 (95 % CI 0·59, 1·07; P for trend = 0·03) for glucose and 0·62 (95 % CI 0·46, 0·83; P for trend = 0·01) for fructose. In the nutrient density method, only fructose was inversely related to diabetes risk (HR 0·65, 95 % CI 0·48, 0·88). The replacement of 5 % energy intake from SFA with an isoenergetic amount of fructose was associated with a 30 % lower diabetes risk (HR 0·69, 95 % CI 0·50, 0·96). Results of the standard and energy partition methods were similar to those of the residual method. These prospective findings suggest that the intakes of starch and sucrose are not associated, but that those of fructose and glucose are inversely associated with diabetes risk. Whether the inverse associations with fructose and glucose reflect the effect of substitution of these carbohydrate subtypes with other nutrients (i.e. SFA), their net higher intake or other nutrients associated with their intake remains to be established through further investigation.

  6. Carbohydrate intake, glycemic index and prostate cancer risk

    PubMed Central

    Vidal, Adriana C.; Williams, Christina D.; Allott, Emma H.; Howard, Lauren E.; Grant, Delores J.; McPhail, Megan; Sourbeer, Katharine N.; Pao-Hwa, Lin; Boffetta, Paolo; Hoyo, Cathrine; Freedland, Stephen J.

    2014-01-01

    BACKGROUND Reported associations between dietary carbohydrate and prostate cancer (PC) risk are poorly characterized by race. METHODS We analyzed the association between carbohydrate intake, glycemic index (GI), and PC risk in a study of white (N=262) and black (N=168) veterans at the Durham VA Hospital. Cases were 156 men with biopsy-confirmed PC and controls (N=274) had a PSA test but were not recommended for biopsy. Diet was assessed before biopsy with a self-administered food frequency questionnaire. Logistic regression models were used to estimate PC risk. RESULTS In multivariable analyses, higher carbohydrate intake, measured as percent of energy from carbohydrates, was associated with reduced PC risk (3rd vs. 1st tertile, OR=0.41, 95%CI 0.21–0.81, p=0.010), though this only reached significance in white men (p-trend=0.029). GI was unrelated to PC risk among all men, but suggestively linked with reduced PC risk in white men (p-trend=0.066) and increased PC risk in black men (p-trend=0.172), however the associations were not significant. Fiber intake was not associated with PC risk (all p-trends >0.55). Higher carbohydrate intake was associated with reduced risk of high-grade (p-trend=0.016), but not low-grade PC (p-trend=0.593). CONCLUSIONS Higher carbohydrate intake may be associated with reduced risk of overall and high-grade PC. Future larger studies are needed to confirm these findings. PMID:25417840

  7. Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique.

    PubMed

    Balakshin, Mikhail Yu; Capanema, Ewellyn A; Chen, Chen-Loung; Gracz, Hanna S

    2003-10-08

    Comparative studies on the structures of residual and dissolved lignins isolated from pine kraft pulp and pulping liquor have been undertaken using the (1)H-(13)C HMQC NMR technique, GPC, and sugar analysis to elucidate the reaction mechanisms in kraft pulping and the lignin reactivity. A modified procedure for the isolation of enzymatic residual lignins has resulted in an appreciable decrease in protein contaminants in the residual lignin preparations (N content < 0.2%). The very high dispersion of HMQC spectra allows identification of different lignin moieties, which signals appear overlapped in 1D (13)C NMR spectra. Elucidation of the role of condensation reactions indicates that an increase in the degree of lignin condensation during pulping results from accumulation of original condensed lignin moieties rather than from the formation of new alkyl-aryl structures. Among aryl-vinyl type moieties, only stilbene structures are accumulated in lignin in appreciable amounts. Benzyl ether lignin-carbohydrate bonds involving primary hydroxyl groups of carbohydrates have been detected in residual and dissolved lignin preparations. Structures of the alpha-hydroxyacid type have been postulated to be among the important lignin degradation products in kraft pulping. The effect of the isolation method on the lignin structure and differences between the residual and dissolved lignins are discussed.

  8. Synthesis of carbohydrate-scaffolded thymine glycoconjugates to organize multivalency

    PubMed Central

    Ciuk, Anna K

    2015-01-01

    Summary Multivalency effects are essential in carbohydrate recognition processes as occurring on the cell surface. Thus many synthetic multivalent glycoconjugates have been developed as important tools for glycobiological research. We are expanding this collection of molecules by the introduction of carbohydrate-scaffolded divalent glycothymine derivatives that can be intramolecularily dimerized by [2 + 2] photocycloaddition. Thus, thymine functions as a control element that allows to restrict the conformational flexibility of the scaffolded sugar ligands and thus to “organize” multivalency. With this work we add a parameter to multivalency studies additional to valency. PMID:26124869

  9. Interactions of polyphenols with carbohydrates, lipids and proteins.

    PubMed

    Jakobek, Lidija

    2015-05-15

    Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity.

  10. Carbohydrate nanocarriers in biomedical applications: functionalization and construction.

    PubMed

    Kang, Biao; Opatz, Till; Landfester, Katharina; Wurm, Frederik R

    2015-11-21

    The specific targeting of either tumor cells or immune cells in vivo by carefully designed and appropriately surface-functionalized nanocarriers may become an effective therapeutic treatment for a variety of diseases. Carbohydrates, which are prominent biomolecules, have shown their outstanding ability in balancing the biocompatibility, stability, biodegradability, and functionality of nanocarriers. The recent applications of sugar (mono/oligosaccharides and/or polysaccharides) for the development of nanomedicines are summarized in this review, including the application of carbohydrates for the surface-functionalization of various nanocarriers and for the construction of the nanocarrier itself. Current problems and challenges are also addressed.

  11. Diagnosing and Treating Intolerance to Carbohydrates in Children

    PubMed Central

    Berni Canani, Roberto; Pezzella, Vincenza; Amoroso, Antonio; Cozzolino, Tommaso; Di Scala, Carmen; Passariello, Annalisa

    2016-01-01

    Intolerance to carbohydrates is relatively common in childhood, but still poorly recognized and managed. Over recent years it has come to the forefront because of progresses in our knowledge on the mechanisms and treatment of these conditions. Children with intolerance to carbohydrates often present with unexplained signs and symptoms. Here, we examine the most up-to-date research on these intolerances, discuss controversies relating to the diagnostic approach, including the role of molecular analysis, and provide new insights into modern management in the pediatric age, including the most recent evidence for correct dietary treatment. PMID:26978392

  12. Adherence of Candida albicans and Candida parapsilosis to epithelial cells correlates with fungal cell surface carbohydrates.

    PubMed

    Lima-Neto, Reginaldo G; Beltrão, Eduardo I C; Oliveira, Patrícia C; Neves, Rejane P

    2011-01-01

    Many studies have described the adherence of Candida albicans to epithelial cells but little is known about Candida parapsilosis adhesion and its role in host cell surface recognition. This study was designed to evaluate the correlation between the adherence of 20 C. albicans and 12 C. parapsilosis strains to human buccal epithelial cells and the expression of fungal cell surface carbohydrates using lectin histochemistry. Adherence assays were carried out by incubating epithelial cells in yeast suspensions (10(7) cells ml(-1) ) and peroxidase conjugated lectins (Con A, WGA, UEA I and PNA at 25 μg ml(-1) ) were used for lectin histochemistry. The results showed that adherence was overall greater for C. albicans than for C. parapsilosis (P < 0.01) and that the individual strain differences correlated with a high content of cell surface α-l-fucose residues as indicated by the UEA I staining pattern. Based on the saccharide specificity of the lectins used, these results suggest that l-fucose residues on cell surface glycoconjugates may represent recognition molecules for interactions between the yeast strain studied and the host (r = 0.6985, P = 0.0045). In addition, our results indicated the presence of α-d-glucose/α-d-mannose, N-acetyl-D-glucosamine/N-acetylneuraminic acid and D-galactose/N-acetyl-D-galactosamine in fungal cell wall.

  13. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

    PubMed

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2015-09-11

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs.

  14. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    PubMed Central

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  15. Studies on Brassica carinata seed. 2. Carbohydrate molecular structure in relation to carbohydrate chemical profile, energy values, and biodegradation characteristics.

    PubMed

    Xin, Hangshu; Falk, Kevin C; Yu, Peiqiang

    2013-10-23

    The objectives of this study were to investigate (1) the carbohydrate chemical profile, (2) the energy values, (3) the rumen neutral detergent fiber (NDF) degradation kinetics, (4) the carbohydrate-related functional group structural features using a Fourier transform infrared (FTIR) spectroscopic technique with attenuated total reflectance (ATR), and (5) the correlations between carbohydrate intrinsic structural features and nutritional profiles in three strains of Brassica carinata in yellow and brown seed coats, with comparison to canola seed as a reference. The results showed that yellow B. carinata strains 111000EM and AAC A100 were lower for contents of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), and carbohydrate (CHO) and higher for contents of total digestible nutrients (TDN), energy values, and effective degradable NDF (EDNDF) than brown-seeded 110915EM. In comparison, brown canola seed (Brassica napus L.) had more fiber content and less EDNDF. Also, carinata strains showed significantly different IR intensities in structural carbohydrate (SCHO), cellulosic compounds (CELC), and total CHO profiles. These structural variations might be one of the possible reasons for various fiber profile and biodegradation characteristics for ruminants in oilseeds. However, multivariate analyses within carbohydrate regions indicated there were still some structural relationships among the four oilseed samples. Moreover, the correlation study showed that the changes of CELC and CHO peak intensities were highly related with some changes in CHO chemical profile, energy values, and in situ NDF degradation kinetics in B. carinata and canola seeds. Further study with a large sample size is still necessary to figure out whether CHO molecular spectral information could be used to predict nutrient values and biological behavior in oilseeds.

  16. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    PubMed

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution <1.5 A and the set of nonredundant protein structures from the PDB. The former was used to determine the distances between each metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  17. Carbohydrate maldigestion induces necrotizing enterocolitis in preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Necrotizing enterocolitis (NEC) remains the most severe gastrointestinal disorder in preterm infants. It is associated with the initiation of enteral nutrition and may be related to immature carbohydrate digestive capacity. We tested the hypothesis that a formula containing maltodextrin vs. lactose ...

  18. Carbohydrate Staple Food Modulates Gut Microbiota of Mongolians in China

    PubMed Central

    Li, Jing; Hou, Qiangchuan; Zhang, Jiachao; Xu, Haiyan; Sun, Zhihong; Menghe, Bilige; Zhang, Heping

    2017-01-01

    Gut microbiota is a determining factor in human physiological functions and health. It is commonly accepted that diet has a major influence on the gut microbial community, however, the effects of diet is not fully understood. The typical Mongolian diet is characterized by high and frequent consumption of fermented dairy products and red meat, and low level of carbohydrates. In this study, the gut microbiota profile of 26 Mongolians whom consumed wheat, rice and oat as the sole carbohydrate staple food for a week each consecutively was determined. It was observed that changes in staple carbohydrate rapidly (within a week) altered gut microbial community structure and metabolic pathway of the subjects. Wheat and oat favored bifidobacteria (Bifidobacterium catenulatum, Bifodobacteriumbifidum, Bifidobacterium adolescentis); whereas rice suppressed bifidobacteria (Bifidobacterium longum, Bifidobacterium adolescentis) and wheat suppresses Lactobaciilus, Ruminococcus and Bacteroides. The study exhibited two gut microbial clustering patterns with the preference of fucosyllactose utilization linking to fucosidase genes (glycoside hydrolase family classifications: GH95 and GH29) encoded by Bifidobacterium, and xylan and arabinoxylan utilization linking to xylanase and arabinoxylanase genes encoded by Bacteroides. There was also a correlation between Lactobacillus ruminis and sialidase, as well as Butyrivibrio crossotus and xylanase/xylosidase. Meanwhile, a strong concordance was found between the gastrointestinal bacterial microbiome and the intestinal virome. Present research will contribute to understanding the impacts of the dietary carbohydrate on human gut microbiome, which will ultimately help understand relationships between dietary factor, microbial populations, and the health of global humans. PMID:28377764

  19. Fouling characteristics of model carbohydrate mixtures and their interaction effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fouling resistances of carbohydrate mixtures were measured using an annular probe at bulk fluid temperatures of 75°C and initial probe surface temperature of 120°C. Induction period, maximum fouling resistance and mean fouling rates were determined. Two experiments were performed with two varieties ...

  20. [Carbohydrate metabolism in the brain in comatose states].

    PubMed

    Khapiĭ, Kh Kh; Gruzman, A B

    1990-01-01

    The article confirms an earlier discovered phenomenon that during comas and in post-coma periods the brain releases glucose and consumes lactate. It is suggested that the phenomenon is based on glucogenesis taking place in the brain from non-carbohydrate glucose precursors, which is phylogenetically predetermined and biologically expedient.

  1. Brain serotonin content - Increase following ingestion of carbohydrate diet.

    NASA Technical Reports Server (NTRS)

    Fernstrom, J. D.; Wurtman, R. J.

    1971-01-01

    In the rat, the injection of insulin or the consumption of carbohydrate causes sequential increases in the concentrations of tryptophan in the plasma and the brain and of serotonin in the brain. Serotonin-containing neurons may thus participate in systems whereby the rat brain integrates information about the metabolic state in its relation to control of homeostasis and behavior.

  2. Bibliography on carbohydrate synthesis. Selected works, 1861 - 1981

    NASA Technical Reports Server (NTRS)

    Dufour, P. A.

    1981-01-01

    International in scope, this bibliography cites 220 articles books, patents, and conference proceedings related to carbohydrate synthesis. The works are listed alphabetically by author in the following categories: (1) experimental and industrial chemistry; (2) space travel and feeding studies; (3) hardware; and (4) general reviews and progress.

  3. Efficient and selective removal of methoxy protecting groups in carbohydrates.

    PubMed

    Boto, Alicia; Hernández, Dácil; Hernández, Rosendo; Suárez, Ernesto

    2004-10-14

    [reaction: see text] The selective removal from carbohydrate substrates of methoxy protecting groups next to hydroxy groups is reported. On treatment with PhI(OAc)(2)-I(2), the methoxy group is transformed into an easily removable acetal. The mild conditions of this methodology are compatible with many functional groups, and good to excellent yields are usually achieved.

  4. DFT solvation studies of carbohydrates: implicit and explicit solvation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solvents play a role in carbohydrate structure. Therefore, it is important to include solvation effects in calculations to allow a more realistic comparison with experimental data. A possible way to include solvation effects is to use implicit solvation models such as COSMO and PCM. Another avenu...

  5. Resistance of Brachystegia spiciformis to Carbohydrate and Phenological Manipulation

    NASA Astrophysics Data System (ADS)

    Richer, R. A.

    2006-12-01

    Despite the development of metabolic ecology, the role that carbohydrate stores play in regulating phenological events is unknown. Whole tree manipulation experiments in the common southern African tree species, Brachystegia spiciformis offer new insights into the physiological and environmental mechanisms controlling bud break. This experiment tested a novel hypothesis that decreasing Total Non-Structural Carbohydrates (TNC) in the stem could cue bud break in Brachystegia spiciformis. The experimental treatments included fertilization, canopy defoliation, shading and stem heating and were repeated over a two year period in the Kalahari sand savanna system of northwestern Zimbabwe. The treatments were designed to decrease stem carbohydrates and result in an earlier leaf flush. None of the treatments significantly decreased seasonal stem TNC. Likewise the heating, fertilization and defoliation treatments did not significantly affect the date of bud break from controls. However, shaded trees showed a significant delay in bud break. This delay in bud break could not be attributed to leaf level photosynthetic traits, stem water content, leaf pre-dawn water potential or delayed leaf fall. These results question widely accepted hypotheses about the mechanism controlling bud break in savanna ecosystems and may suggest a carbohydrate homeostatic mechanism.

  6. The name of the -ose: An editorial on carbohydrate nomenclature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    What’s in a name? The term "sugar" is usually applied to the monosaccharides, disaccharides, and lower oligosaccharides, although "carbohydrate" ("hydrate de carbone") was originally used only for monosaccharides, because their composition can be expressed as Cn(H2O)n. Historically, sugars were name...

  7. CARBOHYDRATE NUTRITION AND SPORULATION OF ALLESCHERIA BOYDII1

    PubMed Central

    Cazin, John; Decker, David W.

    1964-01-01

    Cazin, John, Jr. (University of Iowa, Iowa City), and David W. Decker. Carbohydrate nutrition and sporulation of Allescheria boydii. J. Bacteriol. 88:1624–1628. 1964.—The influence of various carbohydrates on the growth and sporulation of Allescheria boydii was studied by incorporating the test substance in a medium consisting of the inorganic salts mixture contained in Czapek Dox medium with 2% agar. The data indicate that a wide variety of carbohydrates serve adequately as the sole source of carbon for A. boydii, and for its imperfect form, Monosporium apiospermum. Of those compounds tested, only raffinose and inulin were not assimilated by any of the organisms; one strain differed from all others tested in not being able to utilize sucrose. Of the ascigerous strains tested, those maintained in stock culture for a long period of time were able to grow somewhat more profusely on the various carbohydrates; recently isolated strains produced ascocarps in greater abundance. In contrast to reports appearing in the literature, these organisms are capable of assimilating mannitol, maltose, and lactose. PMID:14240948

  8. Science Study Aids 3: Carbohydrates - Nature's Energy Source.

    ERIC Educational Resources Information Center

    McConnell, Bill

    This publication is the third of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grade levels 7 through 12. It is concerned with the role of carbohydrates as important nutrients for consumers. This guide will enable…

  9. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism.

    PubMed

    Pérez-Torrado, Roberto; Matallana, Emilia

    2015-01-01

    During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench-top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry.

  10. Carbohydrate maldigestion induces necrotizing enterocolitis in preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Necrotizing enterocolitis (NEC) is a major gastrointestinal disorder in preterm infants. Key risk factors for NEC are enteral feeding and microbial colonization. Maldigestion of carbohydrate secondary to immature digestive function has been suspected to cause bacterial overgrowth and NEC. We investi...

  11. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency

    PubMed Central

    Taipale, Sami J.; Galloway, Aaron W. E.; Aalto, Sanni L.; Kahilainen, Kimmo K.; Strandberg, Ursula; Kankaala, Paula

    2016-01-01

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton. PMID:27510848

  12. Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercise

    PubMed Central

    Trommelen, Jorn; Fuchs, Cas J.; Beelen, Milou; Lenaerts, Kaatje; Jeukendrup, Asker E.; Cermak, Naomi M.; van Loon, Luc J. C.

    2017-01-01

    Peak exogenous carbohydrate oxidation rates typically reach ~1 g·min−1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Ten trained male cyclists (VO2peak: 65 ± 2 mL·kg−1·min−1) cycled on four different occasions for 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g·min−1 of glucose (GLU), 1.2 g·min−1 glucose + 0.6 g·min−1 fructose (GLU + FRU), 0.6 g·min−1 glucose + 1.2 g·min−1 sucrose (GLU + SUC), or water (WAT). Peak exogenous carbohydrate oxidation rates did not differ between GLU + FRU and GLU + SUC (1.40 ± 0.06 vs. 1.29 ± 0.07 g·min−1, respectively, p = 0.999), but were 46% ± 8% higher when compared to GLU (0.96 ± 0.06 g·min−1: p < 0.05). In line, exogenous carbohydrate oxidation rates during the latter 120 min of exercise were 46% ± 8% higher in GLU + FRU or GLU + SUC compared with GLU (1.19 ± 0.12, 1.13 ± 0.21, and 0.82 ± 0.16 g·min−1, respectively, p < 0.05). We conclude that fructose co-ingestion (0.6 g·min−1) with glucose (1.2 g·min−1) provided either as a monosaccharide or as sucrose strongly increases exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. PMID:28230742

  13. Understanding How Noncatalytic Carbohydrate Binding Modules Can Display Specificity for Xyloglucan*

    PubMed Central

    Luís, Ana S.; Venditto, Immacolata; Temple, Max J.; Rogowski, Artur; Baslé, Arnaud; Xue, Jie; Knox, J. Paul; Prates, José A.M.; Ferreira, Luís M. A.; Fontes, Carlos M. G. A.; Najmudin, Shabir; Gilbert, Harry J.

    2013-01-01

    Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the β1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of β-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated β-glucans. PMID:23229556

  14. Nickel-catalyzed proton-deuterium exchange (HDX) procedures for glycosidic linkage analysis of complex carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of non-carbohydrate substituents. The glycosidic linkage positions are often de...

  15. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    PubMed

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate.

  16. Chemoenzymatic synthesis of surfactants from carbohydrates, amino acids, and fatty acids.

    PubMed

    Bellahouel, S; Rolland, V; Roumestant, M L; Viallefont, P; Martinez, J

    2001-02-01

    The chemoenzymatic synthesis of new surfactants is reported; they were prepared from unprotected carbohydrates, amino acids, and fatty acids. This study pointed out the factors that govern the possibility to enzymatically bind the carbohydrate to the amino acid.

  17. Soaking Hay in Water to Reduce Soluble Carbohydrate Concentrations Prior to Horse Feeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Administering high concentrations of fructan to horses has resulted in laminitis. Cool season grasses accumulate fructan, which is estimated as the difference between water soluble carbohydrates (WSC; sucrose, fructose, glucose, fructans) and ethanol soluble carbohydrates (ESC; sucrose, fructose, gl...

  18. [Systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography].

    PubMed

    Fu, Qing; Wang, Jun; Liang, Tu; Xu, Xiaoyong; Jin, Yu

    2013-11-01

    A systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography (HILIC) was performed. The influences of mobile phase, stationary phase and buffer salt on the retention of carbohydrates were investigated. According to the results, the retention time of carbohydrates decreased as the proportion of acetonitrile in mobile phase decreased. Increased time of carbohydrates was observed as the concentration of buffer salt in mobile phase increased. The retention behavior of carbohydrates was also affected by organic solvent and HILIC stationary phase. Furthermore, an appropriate retention equation was used in HILIC mode. The retention equation lnk = a + blnC(B) + cC(B) could quantitatively describe the retention factors of carbohydrates of plant origin with good accuracy: the relative error of the predicted time to actual time was less than 0.3%. The evaluation results could provide guidance for carbohydrates to optimize the experimental conditions in HILIC method development especially for carbohydrate separation

  19. Effect of timing of carbohydrate ingestion on endurance exercise performance.

    PubMed

    McConell, G; Kloot, K; Hargreaves, M

    1996-10-01

    This study compared the effects of carbohydrate ingestion throughout exercise with ingestion of an equal amount of carbohydrate late in exercise. Eight well-trained men cycled 2 h at 70 +/- 1% VO2 peak, followed immediately by a 15-min performance ride, while ingesting either a 7% carbohydrate-electrolyte solution (CHO-7), an artificially sweetened placebo (CON), or the placebo for the first 90 min then a 21% glucose solution (CHO-0/21). At the start of the performance ride, plasma glucose averaged 4.2 +/- 0.2, 5.2 +/- 0.1, and 5.7 +/- 0.2 mmol.l-1 in CON, CHO-7, and CHO-0/21, respectively (all different, P < 0.05). Plasma insulin levels were similar just prior to the performance ride in CHO-7 and CHO-0/21, with both higher than CON. A similar pattern was observed with respiratory exchange ratio (RER). Work performed during the performance ride was significantly greater in CHO-7 (268 +/- 8 kJ) compared with CON (242 +/- 9 kJ). Performance in CHO-0/21 (253 +/- 10 kJ), however, was not improved compared with CON, despite higher plasma glucose levels and plasma insulin levels similar to CHO-7. Seven of the eight subjects performed best in CHO-7. In conclusion, performance was improved, relative to the control trial, only when carbohydrate was ingested throughout exercise. Carbohydrate ingestion late in exercise did not improve performance despite increases in plasma glucose and insulin.

  20. Carbohydrate digestibility predicts colon carcinogenesis in azoxymethane-treated rats.

    PubMed

    Jacobsen, Helene; Poulsen, Morten; Dragsted, Lars Ove; Ravn-Haren, Gitte; Meyer, Otto; Lindecrona, Rikke Hvid

    2006-01-01

    The purpose of this study was to compare the effect of carbohydrate structure and digestibility on azoxymethane (AOM)-induced colon carcinogenesis. Five groups of male Fischer 344 rats each comprising 30 animals were injected with AOM and fed a high-fat diet with 15% of various carbohydrates. The carbohydrate sources used were sucrose, cornstarch (a linear starch, reference group), potato starch (a branched starch), a short-chained oligofructose (Raftilose), and a long-chained inulin-type fructan (Raftiline). An interim sacrifice was performed after 9 wk to investigate markers of carbohydrate digestibility, including caecal fermentation (caecum weight and pH) and glucose and lipid metabolism [glucose, fructoseamine, HbA1c, triglycerides, and insulin-like growth factor (IGF) 1]. In addition potential early predictors of carcinogenicity [cell proliferation and aberrant crypt foci (ACF)] at 9 wk and their correlation to colon cancer risk after 32 wk were investigated. Tumor incidence was significantly reduced in animals fed oligofructose, and the number of tumors per animal was significantly reduced in animals fed inulin and oligofructose at 32 wk after AOM induction compared to the reference group fed sucrose. Increased caecum weight and decreased caecal pH were seen in groups fed oligofructose, inulin, and potato starch. Plasma triglyceride was decreased in rats fed oligofructose and inulin. Cell proliferation was increased in the proximal colon of rats fed sucrose, oligofructose, and inulin, and the number of cells per crypt decreased in rats fed oligofructose and inulin. The total number of ACF's was unaffected by treatment, and the size and multiplicity of ACF was unrelated to tumor development. It was concluded that less digestible carbohydrates with an early effect on caecum fermentation and plasma triglyceride decreased subsequent tumor incidence and multiplicity. This was unrelated to ACF, cell proliferation, and other markers of glucose and lipid metabolism.

  1. The effect of exercise on carbohydrate preference in female rats.

    PubMed

    Keeley, R J; Zelinski, E L; Fehr, L; McDonald, R J

    2014-02-01

    Exercise has a myriad of health benefits, including positive effects against heart disease, diabetes, and dementia. Cognitive performance improves following chronic exercise, both in animal models and humans. Studies have examined the effect of exercise on feeding, demonstrating a preference towards increased food consumption. Further, sex differences exist such that females tend to prefer carbohydrates over other macronutrients following exercise. However, no clear effect of exercise on macronutrient or carbohydrate selection has been described in animal or human studies. This research project sought to determine the effect of voluntary exercise on carbohydrate selection in female rats. Preference for a complex (starch) versus a simple (dextrose) carbohydrate was assessed using a discriminative preference to context paradigm in non-exercising and voluntarily exercising female rats. In addition, fasting blood glucose and performance in the Morris water task was examined in order to verify the effects of exercise on performance in this task. Female rats given access to running wheels preferred a context previously associated with starch, whereas females with no running wheel access preferred a context previously associated with dextrose. No changes in blood glucose were observed. However, cognitive differences in the Morris water task were observed such that voluntary exercise allowed rats to find a new location of a hidden platform following 4 days of training to an old platform location. These results suggest that voluntary exercise may decrease preservative behaviors in a spatial navigation task through the facilitation of plasticity mechanisms. This study is the first of its kind to demonstrate the influence of exercise on taste preference for complex and simple carbohydrates with this context conditioning paradigm.

  2. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus.

    PubMed

    Khoroshkin, Matvei S; Leyn, Semen A; Van Sinderen, Douwe; Rodionov, Dmitry A

    2016-01-01

    Bifidobacteria, which represent common commensals of mammalian gut, are believed to have positive effects on human health. The influence of certain non-digestible carbohydrates (and their use as so-called prebiotics) on growth and metabolic activity of bifidobacteria is of increasing interest; however, mechanisms of transcriptional control of carbohydrate metabolism are poorly understood in these species. We used a comparative genomics approach to reconstruct carbohydrate utilization pathways and transcriptional regulons in 10 Bifidobacterium genomes. Analysis of regulatory gene regions revealed candidate DNA motifs and reconstructed regulons for 268 transcription factors from the LacI, ROK, DeoR, AraC, GntR, and TetR families that form 64 orthologous groups of regulators. Most of the reconstructed regulons are local and control specific catabolic pathways for host- and diet-derived glycans and monosaccharides. Mosaic distributions of many of these local regulators across Bifidobacterium species correlate with distribution of corresponding catabolic pathways. In contrast, the maltose, galactose, sucrose, and fructose regulons, as well as a novel global LacI-family regulator that is predicted to control the central carbohydrate metabolism and arabinose catabolism genes, are universally present in all 10 studied bifidobacteria. A novel group of TetR-family regulators presumably controls the glucoside and galactoside utilization pathways. Paralogs of the ribose repressor RbsR control the pyrimidine nucleoside utilization genes. Multiple paralogs of the maltose regulator MalR co-regulate large sets of genes involved in maltodextrin utilization. The inferred metabolic regulons provide new insights on diverse carbohydrate utilization networks in bifidobacteria that can be employed in metabolic modeling, phenotype prediction and the rational development of novel prebiotics.

  3. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus

    PubMed Central

    Khoroshkin, Matvei S.; Leyn, Semen A.; Van Sinderen, Douwe; Rodionov, Dmitry A.

    2016-01-01

    Bifidobacteria, which represent common commensals of mammalian gut, are believed to have positive effects on human health. The influence of certain non-digestible carbohydrates (and their use as so-called prebiotics) on growth and metabolic activity of bifidobacteria is of increasing interest; however, mechanisms of transcriptional control of carbohydrate metabolism are poorly understood in these species. We used a comparative genomics approach to reconstruct carbohydrate utilization pathways and transcriptional regulons in 10 Bifidobacterium genomes. Analysis of regulatory gene regions revealed candidate DNA motifs and reconstructed regulons for 268 transcription factors from the LacI, ROK, DeoR, AraC, GntR, and TetR families that form 64 orthologous groups of regulators. Most of the reconstructed regulons are local and control specific catabolic pathways for host- and diet-derived glycans and monosaccharides. Mosaic distributions of many of these local regulators across Bifidobacterium species correlate with distribution of corresponding catabolic pathways. In contrast, the maltose, galactose, sucrose, and fructose regulons, as well as a novel global LacI-family regulator that is predicted to control the central carbohydrate metabolism and arabinose catabolism genes, are universally present in all 10 studied bifidobacteria. A novel group of TetR-family regulators presumably controls the glucoside and galactoside utilization pathways. Paralogs of the ribose repressor RbsR control the pyrimidine nucleoside utilization genes. Multiple paralogs of the maltose regulator MalR co-regulate large sets of genes involved in maltodextrin utilization. The inferred metabolic regulons provide new insights on diverse carbohydrate utilization networks in bifidobacteria that can be employed in metabolic modeling, phenotype prediction and the rational development of novel prebiotics. PMID:26903998

  4. Probing the mechanism of ligand recognition in family 29 carbohydrate-binding modules.

    PubMed

    Flint, James; Bolam, David N; Nurizzo, Didier; Taylor, Edward J; Williamson, Michael P; Walters, Christopher; Davies, Gideon J; Gilbert, Harry J

    2005-06-24

    The recycling of photosynthetically fixed carbon, by the action of microbial plant cell wall hydrolases, is integral to one of the major geochemical cycles and is of considerable industrial importance. Non-catalytic carbohydrate-binding modules (CBMs) play a key role in this degradative process by targeting hydrolytic enzymes to their cognate substrate within the complex milieu of polysaccharides that comprise the plant cell wall. Family 29 CBMs have, thus far, only been found in an extracellular multienzyme plant cell wall-degrading complex from the anaerobic fungus Piromyces equi, where they exist as a CBM29-1:CBM29-2 tandem. Here we present both the structure of the CBM29-1 partner, at 1.5 A resolution, and examine the importance of hydrophobic stacking interactions as well as direct and solvent-mediated hydrogen bonds in the binding of CBM29-2 to different polysaccharides. CBM29 domains display unusual binding properties, exhibiting specificity for both beta-manno- and beta-gluco-configured ligands such as mannan, cellulose, and glucomannan. Mutagenesis reveals that "stacking" of tryptophan residues in the n and n+2 subsites plays a critical role in ligand binding, whereas the loss of tyrosine-mediated stacking in the n+4 subsite reduces, but does not abrogate, polysaccharide recognition. Direct hydrogen bonds to ligand, such as those provided by Arg-112 and Glu-78, play a pivotal role in the interaction with both mannan and cellulose, whereas removal of water-mediated interactions has comparatively little effect on carbohydrate binding. The interactions of CBM29-2 with the O2 of glucose or mannose contribute little to binding affinity, explaining why this CBM displays dual gluco/manno specificity.

  5. Circular Permutation Provides an Evolutionary Link between Two Families of Calcium-dependent Carbohydrate Binding Modules*

    PubMed Central

    Montanier, Cedric; Flint, James E.; Bolam, David N.; Xie, Hefang; Liu, Ziyuan; Rogowski, Artur; Weiner, David P.; Ratnaparkhe, Supriya; Nurizzo, Didier; Roberts, Shirley M.; Turkenburg, Johan P.; Davies, Gideon J.; Gilbert, Harry J.

    2010-01-01

    The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed. PMID:20659893

  6. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    PubMed Central

    2014-01-01

    Background Microbial bioconversion of photosynthetic biomass is a promising approach to the generation of biofuels and other bioproducts. However, rapid, high-yield, and simple processes are essential for successful applications. Here, biomass from the rapidly growing photosynthetic marine cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. Results The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that pH was adjusted to the optimal value. The highest ethanol yield and concentration obtained was 0.27 g ethanol per g cell dry weight and 30 g ethanol L-1, respectively. About 90% of the glucose in the biomass was converted to ethanol. The cyanobacterial hydrolysate was rapidly fermented (up to 20 g ethanol L-1 day-1) even in the absence of any other nutrient additions to the fermentation medium. Conclusions Cyanobacterial biomass was hydrolyzed using a simple enzymatic treatment and fermented into ethanol more rapidly and to higher concentrations than previously reported for similar approaches using cyanobacteria or microalgae. Importantly, as well as fermentable carbohydrates, the cyanobacterial hydrolysate contained additional nutrients that promoted fermentation. This hydrolysate is therefore a promising substitute for the relatively expensive nutrient additives (such as yeast extract) commonly used for Saccharomyces fermentations. PMID:24739806

  7. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    PubMed

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only.

  8. Mutational analysis of the pumpkin (Cucurbita maxima) phloem exudate lectin, PP2 reveals Ser-104 is crucial for carbohydrate binding.

    PubMed

    Bobbili, Kishore Babu; Bandari, Shyam; Grobe, Kay; Swamy, Musti J

    2014-07-18

    The pumpkin phloem lectin (PP2) is an RNA-binding, defense-related, chitooligosaccharide-specific, homodimeric lectin of Mr 48 kDa expressed at high concentrations in the sieve elements and companion cells of pumpkin (Cucurbita maxima). In the present study, PP2 was expressed in the methylotrophic yeast Pichia pastoris with the Saccharomyces α-factor sequence to direct the recombinant protein into the secretory pathway as a prerequisite for unimpaired folding and posttranslational glycosylation of recombinant PP2. Previous computational modeling and ligand docking studies predicted a putative chitooligosaccharide-binding site on the PP2 surface, which was divided into three subsites, with two amino acid residues in each subsite identified as possible candidates for interaction with chitooligosaccharides (CHOs). In this work, mutational analysis and hemagglutination assays were employed to verify the role of the predicted residues in the carbohydrate binding activity of the protein. The results obtained revealed that mutation of Ser-104 to Ala (S104A) at subsite-2 resulted in about 90% loss of agglutination activity of the protein, indicating that Ser-104 is crucial for the binding of CHOs to PP2. Also, L100A (at subsite-1) and K200A (at subsite-3) independently decreased the lectin activity by about 40%, indicating that these two residues also contribute significantly to sugar binding by PP2. Together, these findings confirm that all the three subsites contribute to varying degrees toward PP2-carbohydrate interaction, and confirm the validity of the computational model, as proposed earlier.

  9. Interpretation of the breath hydrogen profile obtained after ingesting a solid meal containing unabsorbable carbohydrate.

    PubMed

    Read, N W; Al-Janabi, M N; Bates, T E; Holgate, A M; Cann, P A; Kinsman, R I; McFarlane, A; Brown, C

    1985-08-01

    The extent to which monitoring breath hydrogen excretion provides information concerning the entry of the residues of a solid test meal into the colon was investigated in 89 normal subjects, and 11 patients with the irritable bowel syndrome. The profile of breath hydrogen concentration showed an early peak, that occurred soon after ingesting the test meal in 89% subjects. This was followed by a later more prolonged rise in breath hydrogen concentration. The early peak occurred well before a radioactive marker, incorporated in the test meal, reached the caecum and the data suggest it was predominantly caused by the emptying of the remnants of the previous meal from the ileum into the colon. This hypothesis was supported by direct measurements of the rate of delivery of ileostomy effluent in 12 subjects with terminal ileostomies. Fermentation of carbohydrate in the mouth may, however, contribute to the initial peak, but this contribution may be avoided by collecting gas samples from the nares. The secondary rise in breath hydrogen excretion was closely correlated with the arrival of the radioactive marker in the caecum (r = 0.91), p less than 0.001), though the time, at which the secondary peak of breath hydrogen excretion occurred was poorly correlated with the time that all the radioactive test meal had entered the colon. When lactulose was infused directly into the colon, as little as 0.5 g produced a discernible hydrogen response, which occurred within two minutes of the infusion. Increasing the rate of colonic infusion of a 50 ml solution of 10% lactulose from 0.02 to 0.15 g/min in five subjects significantly increased the breath hydrogen concentration. At infusion rates below 0.075 g lactulose/minute, the peak breath hydrogen response preceded the end ot the infusion, while at higher rates of infusion, the peak hydrogen response occurred after the end of the infusion. Although these results confirmed that monitoring breath hydrogen concentration usefully

  10. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth.

  11. Effect of Carbohydrate Ingestion on Ratings of Perceived Exertion during a Marathon.

    ERIC Educational Resources Information Center

    Utter, Alan C.; Kang, Jie; Robertson, Robert J.; Nieman, David C.; Chaloupka, Edward C.; Suminski, Richard R.; Piccinni, Cristiana R.

    2002-01-01

    Investigated the effects of carbohydrate substrate availability on ratings of perceived exertion (RPE) and hormonal regulation during a competitive marathon. Data on marathon runners randomly assigned to receive carbohydrate or placebo indicated that those who ingested carbohydrate rather than placebo beverages were able to run at a higher…

  12. Sports Nutrition for the Primary Care Physician: The Importance of Carbohydrate.

    ERIC Educational Resources Information Center

    Wheeler, Keith B.

    1989-01-01

    Discusses the relationship between nutrition and fatigue and how carbohydrates and timing of carbohydrate consumption can affect fatigued athletes. Nutrition plays a significant role in successful training and competition. Key concerns are the specific needs of athletes for carbohydrates before, during, and after exercise. (Author/SM)

  13. Analysis of Predicted Carbohydrate Transport Systems Encoded by Bifidobacterium bifidum PRL2010

    PubMed Central

    Turroni, Francesca; Strati, Francesco; Foroni, Elena; Serafini, Fausta; Duranti, Sabrina; van Sinderen, Douwe

    2012-01-01

    The Bifidobacterium bifidum PRL2010 genome encodes a relatively small set of predicted carbohydrate transporters. Growth experiments and transcriptome analyses of B. bifidum PRL2010 revealed that carbohydrate utilization in this microorganism appears to be restricted to a relatively low number of carbohydrates. PMID:22562993

  14. Carbohydrate craving: A double-blind, placebo controlled test of the self-medication hypothesis

    PubMed Central

    Corsica, Joyce A.; Spring, Bonnie J.

    2008-01-01

    Carbohydrate craving, the overwhelming desire to consume carbohydrate-rich foods in an attempt to improve mood, remains a scientifically controversial construct. We tested whether carbohydrate preference and mood enhancement could be demonstrated in a double-blind, placebo-controlled self-administration trial. Overweight females who met strict operational criteria for carbohydrate craving participated in two three-day discrete choice trials over a two-week period. Participants reported their mood before and at several time points after undergoing a dysphoric mood induction and ingesting, under double-blind conditions, either a carbohydrate beverage or a taste-matched protein-rich nutrient balanced beverage. Every third testing day, participants were asked to self-administer the beverage preferred based on its previous mood effect. Results showed that, when rendered mildly dysphoric, carbohydrate cravers chose the carbohydrate beverage significantly more often than protein-rich beverage and reported that carbohydrate produced greater mood improvement. The carbohydrate beverage was perceived as being more palatable by the carbohydrate cravers, although not by independent taste testers who performed the pre-trial taste matching. Results support the existence of a carbohydrate craving syndrome in which carbohydrate ingestion medicates mildly dysphoric mood. PMID:18928908

  15. 21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... produced by the hydrogenolysis of carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food, subject to the provisions of this section: (a) It shall contain not...

  16. 21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Synthetic glycerin produced by the hydrogenolysis of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in...

  17. Carbohydrate-Loading: A Safe and Effective Method of Improving Endurance Performance.

    ERIC Educational Resources Information Center

    Beeker, Richard T.; Israel, Richard G.

    Carbohydrate-loading prior to distance events is a common practice among endurance athletes. The purposes of this paper are to review previous research and to clarify misconceptions which may exist concerning carbohydrate-loading. The most effective method of carbohydrate-loading involves a training run of sufficient intensity and duration to…

  18. 21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... produced by the hydrogenolysis of carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food, subject to the provisions of this section: (a) It shall contain not...

  19. 21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... produced by the hydrogenolysis of carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food, subject to the provisions of this section: (a) It shall contain not...

  20. 21 CFR 172.866 - Synthetic glycerin produced by the hydrogenolysis of carbohydrates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of carbohydrates. 172.866 Section 172.866 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... produced by the hydrogenolysis of carbohydrates. Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food, subject to the provisions of this section: (a) It shall contain not...

  1. Chemo- and regioselective monosulfonylation of nonprotected carbohydrates catalyzed by organotin dichloride under mild conditions.

    PubMed

    Muramatsu, Wataru

    2012-09-21

    The catalytic regioselective monosulfonylation of nonprotected carbohydrates using organotin dichloride under mild conditions is examined. The carbohydrates were chemo- and regioselectively converted to the corresponding monosulfonates in the presence of monoalcohols using catalytic dibutyltin dichloride. The regioselectivity of the sulfonylation is attributed to the intrinsic character of the carbohydrates derived from the relative stereochemistry between their hydroxy groups.

  2. Virtual Issue: Carbohydrates in the 21(st) Century: Synthesis and Applications.

    PubMed

    Fairbanks, Antony J

    2015-12-01

    Creative with carbohydrates! This Virtual Issue on Carbohydrates in the 21 (st) Century: Synthesis and Applications highlights current research in the carbohydrate field in which synthesis underpins the development of novel applications of sugar-based materials in medicine, diagnostics, and as antiinfectives.

  3. Snow on the Seafloor? Methods to Detect Carbohydrates in Deep-sea Sediments Impacted by the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Lincoln, S. A.; Freeman, K. H.

    2015-12-01

    A significant portion of the oil released from the Macondo well after the 2010 Deepwater Horizon (DwH) explosion reached the seafloor (1,2). The transfer of buoyant hydrocarbons from the sea surface and subsurface plumes to depths >1500 m, however, is not well understood. A prominent role for sinking marine snow--small, composite particles composed largely of extracellular polymeric substances exuded by algae and bacteria--has been proposed. Snow particles, rich in carbohydrates, may have sorbed and physically entrained oil from the water column as they sank. Several lines of evidence support this scenario: abundant snow was observed 3-4 weeks after the oil spill (3); oil and dispersants can induce marine snow formation (4); and flocculent material covering deep-sea corals near the DwH site contained biomarkers consistent with Macondo oil (5). To investigate whether the chemically complex marine oil snow leaves a direct sedimentary record, we analyzed carbohydrates at high resolution (2 mm intervals) in sediment cores collected at 4 sites in the northern Gulf of Mexico in 2013 using a modified phenol-sulfuric acid spectrophotometric method. We detected a sharp subsurface peak in carbohydrate concentrations near the Macondo well; we interpret this peak as post-DwH marine snow. Coeval carbohydrate, polycyclic aromatic hydrocarbon, and hopane profiles suggest a clear link between marine snow and Macondo oil components, as documented in a 3-year time-series at one site, and enable preliminary conclusions about the delivery and fate of marine snow components in sediments. We also characterized carbohydrates near the wellhead using fluorescent lectin-binding analyses developed for applications in cell biology. Particle morphologies include collapse structures suggestive of a water column origin. Finally, we explore the extent to which polysaccharide residues detected with selective lectins can be used to determine the provenance of marine snow (e.g., bacterial v. algal

  4. Pre-exercise carbohydrate status influences carbohydrate-mediated attenuation of post-exercise cytokine responses.

    PubMed

    Cox, A J; Pyne, D B; Cox, G R; Callister, R; Gleeson, M

    2008-12-01

    Most studies investigating the effects of acute carbohydrate (CHO) ingestion on post-exercise cytokine responses have involved fasted athletes. This study characterised the effects of acute CHO beverage ingestion preceded by consumption of a CHO-containing pre-exercise meal. Sixteen highly-trained male cyclists/triathletes (age: 30.6 +/- 5.6 y; V O (2max): 64.8 +/- 4.7 ml . kg . min (-1) [mean +/- SD]) undertook two cycle ergometry trials involving randomised consumption of a 10 % CHO beverage (15 mL . kg (-1) . hr (-1)) or water (H (2)O). Trials were undertaken 2 h after a breakfast providing 2.1 g CHO . kg (-1) body mass (BM) (48 kJ . kg (-1) BM) and consisted of 100 min steady state cycle ergometry at 70 % V O (2max) followed by a time trial of approximately 30 min duration. Blood samples were collected pre-, post- and 1 h post-exercise for measurement of Interleukin (IL)-6, IL-8, IL-10 and IL-1ra. Time-trial performance was not substantially different between CHO and H (2)O trials (4.5 %, p = 0.42). Neither IL-6 nor IL-8 responses were substantially reduced in the CHO compared to the H (2)O trial. There was a substantial reduction in IL-10 (32 %, p = 0.05) and IL-1ra (43 %, p = 0.02) responses at 1 h post-exercise with CHO compared to H (2)O ingestion. In conclusion, the previously shown attenuating effects of CHO ingestion during exercise on cytokine responses appear reduced when athletes consume a CHO-containing pre-exercise meal.

  5. Synthesis, biological evaluation, WAC and NMR studies of S-galactosides and non-carbohydrate ligands of cholera toxin based on polyhydroxyalkylfuroate moieties.

    PubMed

    Ramos-Soriano, Javier; Niss, Ulf; Angulo, Jesús; Angulo, Manuel; Moreno-Vargas, Antonio J; Carmona, Ana T; Ohlson, Sten; Robina, Inmaculada

    2013-12-23

    The synthesis of several non-carbohydrate ligands of cholera toxin based on polyhydroxyalkylfuroate moieties is reported. Some of them have been linked to D-galactose through a stable and well-tolerated S-glycosidic bond. They represent a novel type of non-hydrolyzable bidentate ligand featuring galactose and polyhydroxyalkylfuroic esters as pharmacophoric residues, thus mimicking the GM1 ganglioside. The affinity of the new compounds towards cholera toxin was measured by weak affinity chromatography (WAC). The interaction of the best candidates with this toxin was also studied by saturation transfer difference NMR experiments, which allowed identification of the binding epitopes of the ligands interacting with the protein. Interestingly, the highest affinity was shown by non-carbohydrate mimics based on a polyhydroxyalkylfuroic ester structure.

  6. residue and shunting pinholes

    NASA Astrophysics Data System (ADS)

    Gorji, Nima E.

    2014-09-01

    The present work considers two observable phenomena through the experimental fabrication and electrical characterization of the rf-sputtered CdS/CdTe thin film solar cells that extremely reduce the overall conversion efficiency of the device: CdCl2 residue on the surface of the semiconductor and shunting pinholes. The former happens through nonuniform treatment of the As-deposited solar cells before annealing at high temperature and the latter occurs by shunting pinholes when the cell surface is shunted by defects, wire-like pathways or scratches on the metallic back contact caused from the external contacts. Such physical problems may be quite common in the experimental activities and reduce the performance down to 4-5 % which leads to dismantle the device despite its precise fabrication. We present our electrical characterization on the samples that received wet CdCl2 surface treatment (uniform or nonuniform) and are damaged by the pinholes.

  7. A measure of the broad substrate specificity of enzymes based on 'duplicate' catalytic residues.

    PubMed

    Chakraborty, Sandeep; Ásgeirsson, Bjarni; Rao, Basuthkar J

    2012-01-01

    The ability of an enzyme to select and act upon a specific class of compounds with unerring precision and efficiency is an essential feature of life. Simultaneously, these enzymes often catalyze the reaction of a range of similar substrates of the same class, and also have promiscuous activities on unrelated substrates. Previously, we have established a methodology to quantify promiscuous activities in a wide range of proteins. In the current work, we quantitatively characterize the active site for the ability to catalyze distinct, yet related, substrates (BRASS). A protein with known structure and active site residues provides the framework for computing 'duplicate' residues, each of which results in slightly modified replicas of the active site scaffold. Such spatial congruence is supplemented by Finite difference Poisson Boltzmann analysis which filters out electrostatically unfavorable configurations. The congruent configurations are used to compute an index (BrassIndex), which reflects the broad substrate profile of the active site. We identify an acetylhydrolase and a methyltransferase as having the lowest and highest BrassIndex, respectively, from a set of non-homologous proteins extracted from the Catalytic Site Atlas. The acetylhydrolase, a regulatory enzyme, is known to be highly specific for platelet-activating factor. In the methyltransferase (PDB: 1QAM), various combinations of glycine (Gly38/40/42), asparagine (Asn101/11) and glutamic acid (Glu59/36) residues having similar spatial and electrostatic profiles with the specified scaffold (Gly38, Asn101 and Glu59) exemplifies the broad substrate profile such an active site may provide. 'Duplicate' residues identified by relaxing the spatial and/or electrostatic constraints can be the target of directed evolution methodologies, like saturation mutagenesis, for modulating the substrate specificity of proteins.

  8. Residual frying oil in the diets of sheep: intake, digestibility, nitrogen balance and ruminal parameters

    PubMed Central

    Peixoto, Eduardo Lucas Terra; Mizubuti, Ivone Yurika; de Azambuja Ribeiro, Edson Luiz; dos Santos Moura, Elizabeth; Pereira, Elzânia Sales; do Prado, Odimari Pricila Pires; de Carvalho, Larissa Nóbrega; Pires, Kássia Amariz

    2017-01-01

    Objective The objective of this study was to evaluate the intake and nutrient digestibility, nitrogen balance and ruminal ammonia nitrogen in lambs of diets containing different levels of residual frying oil. Methods Levels of 0, 20, 40, 60, and 80 g/kg dry matter (DM) base of residual frying oil in the diets of lambs were evaluated. Five castrated lambs with initial body weights of 36.8±3.3 kg, distributed in a Latin square (5×5) design, were used. Results There was a decreasing linear effect on the intake of DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), total carbohydrates (TCH), and nonfibrous carbohydrates (NFC). There was an increased linear intake of ether extract (EE). The apparent digestibility of DM, OM, CP, NDF, TCH, and NFC, as well as urine nitrogen excretion, nitrogen balance and ruminal parameters, were not influenced by different levels of residual frying oil in the diet. EE digestibility presented a crescent linear effect. Conclusion It can be concluded that the addition of residual frying oil to the diets of sheep can affect nutrient intake without affecting the digestibility of most nutrients (with the exception of EE), nitrogen balance and ruminal ammonia nitrogen concentration. PMID:26954203

  9. A perspective on the primary and three-dimensional structures of carbohydrates.

    PubMed

    Widmalm, Göran

    2013-08-30

    Carbohydrates, in more biologically oriented areas referred to as glycans, constitute one of the four groups of biomolecules. The glycans, often present as glycoproteins or glycolipids, form highly complex structures. In mammals ten monosaccharides are utilized in building glycoconjugates in the form of oligo- (up to about a dozen monomers) and polysaccharides. Subsequent modifications and additions create a large number of different compounds. In bacteria, more than a hundred monosaccharides have been reported to be constituents of lipopolysaccharides, capsular polysaccharides, and exopolysaccharides. Thus, the number of polysaccharide structures possible to create is huge. NMR spectroscopy plays an essential part in elucidating the primary structure, that is, monosaccharide identity and ring size, anomeric configuration, linkage position, and sequence, of the sugar residues. The structural studies may also employ computational approaches for NMR chemical shift predictions (CASPER program). Once the components and sequence of sugar residues have been unraveled, the three-dimensional arrangement of the sugar residues relative to each other (conformation), their flexibility (transitions between and populations of conformational states), together with the dynamics (timescales) should be addressed. To shed light on these aspects we have utilized a combination of experimental liquid state NMR techniques together with molecular dynamics simulations. For the latter a molecular mechanics force field such as our CHARMM-based PARM22/SU01 has been used. The experimental NMR parameters acquired are typically (1)H,(1)H cross-relaxation rates (related to NOEs), (3)JCH and (3)JCCtrans-glycosidic coupling constants and (1)H,(13)C- and (1)H,(1)H-residual dipolar couplings. At a glycosidic linkage two torsion angles ϕ and ψ are defined and for 6-substituted residues also the ω torsion angle is required. Major conformers can be identified for which highly populated states are

  10. Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion.

    PubMed

    Zhao, Chen; Yan, Hu; Liu, Yan; Huang, Yan; Zhang, Ruihong; Chen, Chang; Liu, Guangqing

    2016-06-01

    Huge amounts of fruit residues are produced and abandoned annually. The high moisture and organic contents of these residues makes them a big problem to the environment. Conversely, they are a potential resource to the world. Anaerobic digestion is a good way to utilize these organic wastes. In this study, the biomethane conversion performances of a large number of fruit residues were determined and compared using batch anaerobic digestion, a reliable and easily accessible method. The results showed that some fruit residues containing high contents of lipids and carbohydrates, such as loquat peels and rambutan seeds, were well fit for anaerobic digestion. Contrarily, residues with high lignin content were strongly recommended not to be used as a single substrate for methane production. Multiple linear regression model was adopted to simulate the correlation between the organic component of these fruit residues and their experimental methane yield, through which the experimental methane yield could probably be predicted for any other fruit residues. Four kinetic models were used to predict the batch anaerobic digestion process of different fruit residues. It was shown that the modified Gompertz and Cone models were better fit for the fruit residues compared to the first-order and Fitzhugh models. The first findings of this study could provide useful reference and guidance for future studies regarding the applications and potential utilization of fruit residues.

  11. Stability and Ligand Promiscuity of Type A Carbohydrate-binding Modules Are Illustrated by the Structure of Spirochaeta thermophila StCBM64C.

    PubMed

    Pires, Virgínia M R; Pereira, Pedro M M; Brás, Joana L A; Correia, Márcia; Cardoso, Vânia; Bule, Pedro; Alves, Victor D; Najmudin, Shabir; Venditto, Immacolata; Ferreira, Luís M A; Romão, Maria João; Carvalho, Ana Luísa; Fontes, Carlos M G A; Prazeres, Duarte Miguel

    2017-03-24

    Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal GFP domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pH levels, and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a co-planar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrate how type A CBMs target their appended plant cell wall-degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

  12. Selective preservation of carbohydrates in volcanic ash soils

    NASA Astrophysics Data System (ADS)

    Kaal, J.; Buurman, P.; Nierop, K. G. J.; Piccolo, A.

    2009-04-01

    Volcanic soils (Andosols) are formed in volcanic ash and depending on environmental and climatic factors they develop to two main forms, either allophanic Andosols (dominated by amorphous minerals) or non-allophanic Andosols (dominated by Al/Fe organic matter complexes). Andosols contain the largest amounts of organic carbon of all mineral soil orders. In recent studies using analytical pyrolysis techniques on the soil organic matter (SOM) of allophanic soils from the Azores Islands (Portugal) there was no indication of preservation of plant-derived organic matter by allophane or Al3+, but the presence of large amounts of (microbial) polysaccharides and chitin suggested that secondary organic matter products were stabilized. In the present study we used 13C NMR to further explore the organic matter of the Andosols of the Azores, and applied a molecular mixing model (MMM; ascribing characteristic resonances to the main biocomponent classes carbohydrate, protein, lipid, lignin and char) to the quantified NMR spectra to allow for a quantitative comparison with pyrolysis-GC/MS. The dominance of O-alkyl and di-O-alkyl C in the NMR spectra and carbohydrate contribution to the predictions made by the MMM (50 ± 8%) confirms that the majority of the SOM can still be recognised as carbohydrate. The accumulation of secondary/microbial carbohydrates (and, to a lesser extent, secondary proteinaceous matter and chitins) is thus a key characteristic of these Andosols. NMR-MMM and pyrolysis-GC/MS were in rough agreement. However, NMR does not recognise chitin (N-containing carbohydrate-like material) and chitin-associated protein, nor can it be used to estimate the degree of degradation of the carbohydrates. Therefore, NMR (as applied here) has a very limited capacity for characterisation of the SOM particularly in the Andosols studied. On the other hand, large peaks from carboxylic and amidic functional groups detected by NMR were not observed by pyrolysis-GC/MS. It is therefore

  13. Materials recovery from shredder residues

    SciTech Connect

    Daniels, E. J.; Jody, B. J.; Pomykala, J., Jr.

    2000-07-24

    Each year, about five (5) million ton of shredder residues are landfilled in the US. Similar quantities are landfilled in Europe and the Pacific Rim. Landfilling of these residues results in a cost to the existing recycling industry and also represents a loss of material resources that are otherwise recyclable. In this paper, the authors outline the resources recoverable from typical shredder residues and describe technology that they have developed to recover these resources.

  14. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOEpatents

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  15. Microwave emission and crop residues

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1991-01-01

    A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.

  16. Structural role of a conserved active site cis proline in the Thermotoga maritima acetyl esterase from the carbohydrate esterase family 7.

    PubMed

    Singh, Mrityunjay K; Manoj, Narayanan

    2017-04-01

    A conserved cis proline residue located in the active site of Thermotoga maritima acetyl esterase (TmAcE) from the carbohydrate esterase family 7 (CE7) has been substituted by alanine. The residue was known to play a crucial role in determining the catalytic properties of the enzyme. To elucidate the structural role of the residue, the crystal structure of the Pro228Ala variant (TmAcEP228A ) was determined at 2.1 Å resolution. The replacement does not affect the overall secondary, tertiary, and quaternary structures and moderately decreases the thermal stability. However, the wild type cis conformation of the 227-228 peptide bond adopts a trans conformation in the variant. Other conformational changes in the tertiary structure are restricted to residues 222-226, preceding this peptide bond and are located away from the active site. Overall, the results suggest that the conserved proline residue is responsible for the cis conformation of the peptide and shapes the geometry of the active site. Elimination of the pyrrolidine ring results in the loss of van der Waals and hydrophobic interactions with both the alcohol and acyl moeities of the ester substrate, leading to significant impairment of the activity and perturbation of substrate specificity. Furthermore, a cis-to-trans conformational change arising out of residue changes at this position may be associated with the evolution of divergent activity, specificity, and stability properties of members constituting the CE7 family. Proteins 2017; 85:694-708. © 2016 Wiley Periodicals, Inc.

  17. Immunotherapy for cancer: synthetic carbohydrate-based vaccines.

    PubMed

    Buskas, Therese; Thompson, Pamela; Boons, Geert-Jan

    2009-09-28

    Aberrant glycosylation of glycoproteins and glycolipids of cancer cells, which correlates with poor survival rates, is being exploited for the development of immunotherapies for cancer. In particular, advances in the knowledge of cooperation between the innate and adaptive system combined with the implementation of efficient synthetic methods for assembly of oligosaccharides and glycopeptides is providing avenues for the rationale design of vaccine candidates. In this respect, fully synthetic vaccine candidates show great promise because they incorporate only those elements requires for relevant immune responses, and hence do not suffer from immune suppression observed with classical carbohydrate-protein conjugate vaccines. Such vaccines are chemically well-defined and it is to be expected that they can be produced in a reproducible fashion. In this feature article, recent advances in the development of fully synthetic sub-unit carbohydrate-based cancer vaccines will be discussed.

  18. Saccharification of bamboo carbohydrates for the production of ethanol

    SciTech Connect

    De Menezes, T.J.B.; Azzini, A.; Dos Santos, C.L.M.

    1983-04-01

    Bamboo carbohydrates were hydrolyzed with commercial amylases and a mixture of fungal culture broths containing cellulolytic and hemicellulolytic enzymes. The effects of cooking temperature and the size of fiber particles were also investigated. It was found that the higher the cooking temperature, the higher the rate of sugar formation and the lower the viscosity of the slurry. Additions of cellulose and hemicellulose digesting enzymes increased the sugar yield and decreased the viscosity of both the cooked and noncooked slurries. A smaller size of particle appeared to favor the average saccharification rate. Although glucose, xylose, and cellobiose were present in the hydrolysates, only 50% of the total carbohydrate was digested, and 78.9% of this was converted to reducing sugars. The alcohol efficiency for the fermentation of cooked and noncooked mashes by Saccharomyces was about 85%.

  19. High throughput screening of starch structures using carbohydrate microarrays

    PubMed Central

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  20. Normal Roles for Dietary Fructose in Carbohydrate Metabolism

    PubMed Central

    Laughlin, Maren R.

    2014-01-01

    Although there are many well-documented metabolic effects linked to the fructose component of a very high sugar diet, a healthy diet is also likely to contain appreciable fructose, even if confined to that found in fruits and vegetables. These normal levels of fructose are metabolized in specialized pathways that synergize with glucose at several metabolic steps. Glucose potentiates fructose absorption from the gut, while fructose catalyzes glucose uptake and storage in the liver. Fructose accelerates carbohydrate oxidation after a meal. In addition, emerging evidence suggests that fructose may also play a role in the secretion of insulin and GLP-1, and in the maturation of preadipocytes to increase fat storage capacity. Therefore, fructose undergoing its normal metabolism has the interesting property of potentiating the disposal of a dietary carbohydrate load through several routes. PMID:25100436

  1. Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters.

    PubMed

    Ebrahiminezhad, Alireza; Berenjian, Aydin; Ghasemi, Younes

    2016-06-01

    Template-assisted synthesis is one of the most recognised techniques for fabrication of silver nanoclusters (AgNCs). However, this process is time consuming, toxic and expensive. In this study, the authors report a completely novel approach for the green and facile synthesis of AgNCs using Matricaria chamomilla, without any additional template. Fluorescent and colloidally stable AgNCs with average particle size of 2.4 nm were successfully produced. They found that carbohydrates from Matricaria chamomilla act as an ideal template to generate fluorescent AgNCs. Moreover, oxygen-bearing functional groups were validated to be the active groups for anchoring and reducing of Ag(+) ions. The novel carbohydrate coating method makes the prepared nanoclusters completely hydrophilic and stable in aqueous matrices.

  2. Carbohydrates in diversity-oriented synthesis: challenges and opportunities.

    PubMed

    Lenci, E; Menchi, G; Trabocchi, A

    2016-01-21

    Over the last decade, Diversity-Oriented Synthesis (DOS) has become a new paradigm for developing large collections of structurally diverse small molecules as probes to investigate biological pathways, and to provide a larger array of the chemical space. Drug discovery and chemical biology are taking advantage of DOS approaches to exploit highly-diverse and complex molecular platforms, producing advances in both target and ligand discovery. In this view, carbohydrates are attractive building blocks for DOS libraries, due to their stereochemical diversity and high density of polar functional groups, thus offering many possibilities for chemical manipulation and scaffold decoration. This review will discuss research contributions and perspectives on the application of carbohydrate chemistry to explore the accessible chemical space through appendage, stereochemical and scaffold diversity.

  3. Carbohydrates and their free radical scavenging capability: a theoretical study.

    PubMed

    Hernandez-Marin, Elizabeth; Martínez, Ana

    2012-08-16

    A density functional theory (DFT) study on the free radical (OH(•) and OOH(•)) scavenging properties of some mono- and polysaccharides is presented. Two mechanisms, single electron transfer (SET) and hydrogen atom transfer (HAT), are considered. The former mechanism is studied by making use of the vertical ionization energy and vertical electron affinity of the radicals and carbohydrates. It is confirmed that the SET mechanism is not plausible to occur. With respect to the HAT, not only does the OH(•) radical react preferably with one hydrogen atom bonded to one carbon atom, but also the reaction with a hydrogen atom bonded to an oxygen is possible. Finally, it is suggested that the carbohydrates are not able to directly scavenge OOH(•).

  4. The Maillard reaction of bisoprolol fumarate with various reducing carbohydrates.

    PubMed

    Szalka, Mateusz; Lubczak, Jacek; Naróg, Dorota; Laskowski, Marek; Kaczmarski, Krzysztof

    2014-08-01

    HPLC analysis of drug products containing bisoprolol fumarate and lactose revealed the presence of N-formylbisoprolol, which is a final product of the Maillard reaction. Formulations containing secondary amines and reducing carbohydrates are prone to the condensation of amine and carbonyl functional groups and formation of glycosylamines in pharmaceutically relevant conditions. Further rearrangement occurs in the presence of a nucleophile and leads to the formation of 1-deoxy-1-amino-2-ketose also known as the Amadori Rearrangement Product (ARP). The influence of water content, carbohydrate, and lubricant types on the reaction rate was tested. The reaction progress was monitored by HPLC and UV-Vis spectrophotometry. The structures of intermediates were confirmed by the LC/MS(2) analysis. N-formylbisoprolol - the final reaction product - was synthesised and characterised by LC/MS(2), H(1) and C(13) NMR.

  5. Using structure to inform carbohydrate binding module function.

    PubMed

    Abbott, D Wade; van Bueren, Alicia Lammerts

    2014-10-01

    Generally, non-catalytic carbohydrate binding module (CBM) specificity has been shown to parallel the catalytic activity of the carbohydrate active enzyme (CAZyme) module it is appended to. With the rapid expansion in metagenomic sequence space for the potential discovery of new CBMs in addition to the recent emergence of several new CBM families that display diverse binding profiles and novel functions, elucidating the function of these protein modules has become a much more challenging task. This review summarizes several approaches that have been reported for using primary structure to inform CBM specificity and streamlining their biophysical characterization. In addition we discuss general trends in binding site architecture and several newly identified functions for CBMs. Streams of investigation that will facilitate the development and refinement of sequence-based prediction tools are suggested.

  6. The uniform galactose 4-sulfate structure in the carbohydrate-protein linkage region of human urinary trypsin inhibitor.

    PubMed

    Yamada, S; Oyama, M; Yuki, Y; Kato, K; Sugahara, K

    1995-10-15

    The carbohydrate-protein linkage region of a chondroitin 4-sulfate chain attached to urinary trypsin inhibitor (UTI) was isolated from human urine and characterized structurally. The chondroitin 4-sulfate chain was released from UTI by beta-elimination using alkaline NaBH4 then digested with chondroitinase ABC. These treatments resulted in only a single hexasaccharide alditol derived from the carbohydrate-protein linkage region. Chemical and enzymic analyses and 600-MHz 1H-NMR spectroscopy revealed that the hexasaccharide alditol had the following structure: delta HexA alpha 1-3GalNAc(4-sulfate) beta 1-4GlcA beta 1- 3Gal(4-sulfate) beta 1-3Gal beta 1-4Xyl-ol, where delta HexA, GlcA and Xyl-ol represent 4-deoxy-alpha-L-threo-hex-4-enepyranosyluronic acid, D-glucuronic acid and D-xylitol, respectively. This structure contained the novel 4-sulfated Gal residue, which was first demonstrated in one of the three linkage hexasaccharide-serines isolated from chondroitin 4-sulfate of rat chondrosarcoma [Sugahara, K., Yamashina, I., de Waard, P., Van Halbeek, H. & Vliegenhart, J. F. G. (1988) J. Biol. Chem. 263, 10168-10174]. This disulfated structure was recently identified as the sole structural component in the linkage hexasaccharide alditol fraction isolated from inter-alpha-trypsin inhibitor (ITI) in human plasma [Yamada, S., Oyama, M., Kinugasa, H., Nakagawa, T., Kawasaki, T., Nagasawa, S., Khoo, K.-H., Morris, H.R., Dell, A. & Sugahara, K. (1995) Glycobiology 5, 335-341]. The structural uniformity in the linkage hexasaccharide structure of ITI and UTI is in marked contrast to the heterogeneity demonstrated in the linkage hexasaccharides isolated from cartilaginous chondroitin sulfate whose linkage regions are sometimes but not always phosphorylated on the Xyl residue or sulfated on the Gal residue(s). The uniform structure containing the novel 4-sulfated Gal residue in the linkage region of UTI and ITI may imply its significance in the biosynthetic mechanism of

  7. Low Carbohydrate/High Fat Diet Attenuates Pressure Overload Induced Ventricular Remodeling and Dysfunction

    PubMed Central

    Duda, Monika K.; O’Shea, Karen M.; Lei, Biao; Barrows, Brian R.; Azimzadeh, Agnes M.; McElfresh, Tracy E.; Hoit, Brian D.; Kop, Willem J.; Stanley, William C.

    2009-01-01

    Background It is not known how carbohydrate and fat intake impact the development of left ventricular (LV) hypertrophy and contractile dysfunction in response to pressure overload. We hypothesized that a low carbohydrate/high fat diet prevents LV hypertrophy and dysfunction compared to high carbohydrate diets. Methods and Results Rats were fed high carbohydrate diets comprised of either starch or sucrose, or a low carbohydrate/high fat diet, and underwent abdominal aortic banding (AAB) for two months. AAB increased LV mass with all diets. LV end diastolic and systolic volumes, and the ratio of the mRNA for myosin heavy chainβ/α were increased with both high carbohydrate diets, but not with the low carbohydrate/high fat diet. Circulating levels of insulin and leptin, both stimulants for cardiac growth, were lower, and free fatty acids higher, with the low carbohydrate/high fat diet compared to high carbohydrate diets. Among AAB animals LV volumes were positively correlated with insulin, and LV mass correlated with leptin. Conclusion A low carbohydrate/high fat diet attenuated pressure overload-induced LV remodeling compared to high carbohydrate diets. This effect corresponded to lower insulin and leptin concentrations, suggesting they may contribute to the development of LV hypertrophy and dysfunction under conditions of pressure overload. PMID:18474346

  8. Carbohydrate Mimicking Peptides as Inhibitors of Angiogenesis and Metastasis

    DTIC Science & Technology

    1998-06-01

    cell line expressing SA-Lea determinant was generated by transfection of B 16F10 cells with al,3/4- fucosyltransferase (32). Murine B 16 melanoma cells...stably expressing specific glycosyltransferase, which activity results in synthesis of carbohydrate determinants SA-Lea al ,3/4 fucosyltransferase can...containing cDNA of al,3/4 fucosyltransferase (al,3/4FTIII) (provided by Dr. Brian Seed, Massachusetts General Hospital, Boston, MA). E-selectin-independent

  9. Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors

    DTIC Science & Technology

    2003-08-01

    antigens expressed on breast tumors. Towards this end we are developing peptide mimotopes of tumor associated carbohydrate antigens as they are T cell...dependent antigens. In our progress to date we have shown the 1) immunization with peptide mimotope activates a specific cellular response to a model murine...tumor cell line; 2) vaccination of mice with peptide eradicates established tumor; 3) Immunization with DNA format of the peptide suppresses tumor

  10. Hypoglycemia Detection and Carbohydrate Suggestion in an Artificial Pancreas.

    PubMed

    Turksoy, Kamuran; Kilkus, Jennifer; Hajizadeh, Iman; Samadi, Sediqeh; Feng, Jianyuan; Sevil, Mert; Lazaro, Caterina; Frantz, Nicole; Littlejohn, Elizabeth; Cinar, Ali

    2016-11-01

    Fear of hypoglycemia is a major concern for many patients with type 1 diabetes and affects patient decisions for use of an artificial pancreas system. We propose an alternative way for prevention of hypoglycemia by issuing predictive hypoglycemia alarms and encouraging patients to consume carbohydrates in a timely manner. The algorithm has been tested on 6 subjects (3 males and 3 females, age 24.2 ± 4.5 years, weight 79.2 ± 16.2 kg, height 172.7 ± 9.4 cm, HbA1C 7.3 ± 0.48%, duration of diabetes 209.2 ± 87.9 months) over 3-day closed-loop clinical experiments as part of a multivariable artificial pancreas control system. Over 6 three-day clinical experiments, there were only 5 real hypoglycemia episodes, of which only 1 hypoglycemia episode occurred due to being missed by the proposed algorithm. The average hypoglycemia alarms per day and per subject was 3. Average glucose value when the first alarms were triggered was recorded to be 117 ± 30.6 mg/dl. Average carbohydrate consumption per alarm was 14 ± 7.8 grams. Our results have shown that most low glucose concentrations can be predicted in advance and the glucose levels can be raised back to the desired levels by consuming an appropriate amount of carbohydrate. The proposed algorithm is able to prevent most hypoglycemic events by suggesting appropriate levels of carbohydrate consumption before the actual occurrence of hypoglycemia.

  11. Detection of Toxins Using Immobilized Carbohydrates as Recognition Elements

    DTIC Science & Technology

    2004-11-16

    important in many recognition processes that occur on cell surfaces. Bacteria , viruses and toxins use these interactions to bind to the host cells and...combinations of monosaccharides can yield numerous oligosaccharides that could be employed as ligands for protein toxins , bacteria and viruses. Therefore...1 DETECTION OF TOXINS USING IMMOBILIZED CARBOHYDRATES AS RECOGNITION ELEMENTS Miriam M. Ngundi, Chris R. Taitt and Frances S. Ligler Center

  12. Carbohydrate maldigestion induces necrotizing enterocolitis in preterm pigs.

    PubMed

    Thymann, Thomas; Møller, Hanne K; Stoll, Barbara; Støy, Ann Cathrine F; Buddington, Randal K; Bering, Stine B; Jensen, Bent B; Olutoye, Oluyinka O; Siggers, Richard H; Mølbak, Lars; Sangild, Per T; Burrin, Douglas G

    2009-12-01

    Necrotizing enterocolitis (NEC) remains the most severe gastrointestinal disorder in preterm infants. It is associated with the initiation of enteral nutrition and may be related to immature carbohydrate digestive capacity. We tested the hypothesis that a formula containing maltodextrin vs. a formula containing lactose as the principal source of carbohydrate would predispose preterm pigs to a higher NEC incidence. Cesarean-derived preterm pigs were given total parenteral nutrition for 48 h followed by total enteral nutrition with a lactose-based (n = 11) or maltodextrin-based (n = 11) formula for 36 h. A higher incidence (91% vs. 27%) and severity (score of 3.3 vs. 1.8) of NEC were observed in the maltodextrin than in the lactose group. This higher incidence of NEC in the maltodextrin group was associated with significantly lower activities of lactase, maltase, and aminopeptidase; reduced villus height; transiently reduced in vivo aldohexose uptake; and reduced ex vivo aldohexose uptake capacity in the middle region of the small intestine. Bacterial diversity was low for both diets, but alterations in bacterial composition and luminal concentrations of short-chain fatty acids were observed in the maltodextrin group. In a second study, we quantified net portal absorption of aldohexoses (glucose and galactose) during acute jejunal infusion of a maltodextrin- or a lactose-based formula (n = 8) into preterm pigs. We found lower net portal aldohexose absorption (4% vs. 42%) and greater intestinal recovery of undigested carbohydrate (68% vs. 27%) in pigs acutely perfused with the maltodextrin-based formula than those perfused with the lactose-based formula. The higher digestibility of the lactose than the maltodextrin in the formulas can be attributed to a 5- to 20-fold higher hydrolytic activity of tissue-specific lactase than maltases. We conclude that carbohydrate maldigestion is sufficient to increase the incidence and severity of NEC in preterm pigs.

  13. Photonic crystal borax competitive binding carbohydrate sensing motif.

    PubMed

    Cui, Qingzhou; Ward Muscatello, Michelle M; Asher, Sanford A

    2009-05-01

    We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols.

  14. Global Profiling of Carbohydrate Active Enzymes in Human Gut Microbiome

    PubMed Central

    Mande, Sharmila S.

    2015-01-01

    Motivation Carbohydrate Active enzyme (CAZyme) families, encoded by human gut microflora, play a crucial role in breakdown of complex dietary carbohydrates into components that can be absorbed by our intestinal epithelium. Since nutritional wellbeing of an individual is dependent on the nutrient harvesting capability of the gut microbiome, it is important to understand how CAZyme repertoire in the gut is influenced by factors like age, geography and food habits. Results This study reports a comprehensive in-silico analysis of CAZyme profiles in the gut microbiomes of 448 individuals belonging to different geographies, using similarity searches of the corresponding gut metagenomic contigs against the carbohydrate active enzymes database. The study identifies a core group of 89 CAZyme families that are present across 85% of the gut microbiomes. The study detects several geography/age-specific trends in gut CAZyme repertoires of the individuals. Notably, a group of CAZymes having a positive correlation with BMI has been identified. Further this group of BMI-associated CAZymes is observed to be specifically abundant in the Firmicutes phyla. One of the major findings from this study is identification of three distinct groups of individuals, referred to as 'CAZotypes', having similar CAZyme profiles. Distinct taxonomic drivers for these CAZotypes as well as the probable dietary basis for such trends have also been elucidated. The results of this study provide a global view of CAZyme profiles across individuals of various geographies and age-groups. These results re-iterate the need of a more precise understanding of the role of carbohydrate active enzymes in human nutrition. PMID:26544883

  15. Dietary fiber content influences soluble carbohydrate levels in ruminal fluids.

    PubMed

    Pinder, R S; Patterson, J A; O'Bryan, C A; Crandall, P G; Ricke, S C

    2012-01-01

    The soluble carbohydrate concentration of ruminal fluid, as affected by dietary forage content (DFC) and/or ruminally undegradable intake protein content (UIPC), was determined. Four ruminally cannulated steers, in a 4 × 4 Latin square design, were offered diets containing high (75 % of DM) or low (25 % of DM) DFC and high (6 % of DM) or low (5 % of DM) UIPC, in a 2 × 2 factorial arrangement. Zinc-treated SBM was the primary UIP source. Soluble hexose concentration (145.1 μM) in ruminal fluid (RF) of steers fed low DFC diets exhibited a higher trend (P = 0.08) than that (124.5 μM) of steers fed high DFC diets. UIPC did not modulate (P = 0.54) ruminal soluble hexose concentrations. Regardless of diet, soluble hexose concentration declined immediately after feeding and did not rise until 3 h after feeding (P < 0.0001). Cellobiose (≈90 %) and glucose (≈10 %) were the major soluble hexoses present in RF. Maltose was not detected. Soluble glucose concentration (13.0 μM) was not modified by either UIPC (P = 0.40) nor DFC (P = 0.61). However, a DFC by post-prandial time interaction was detected (P = 0.02). Pentose concentrations were greater (P = 0.02) in RF of steers fed high DFC (100.2 μM) than steers fed low DFC (177.0 μM). UIPC did not influence (P = 0.35) soluble pentose concentration. The identity of soluble pentoses in ruminal fluid could not be determined. However, unsubstituted xylose and arabinose were excluded. These data indicate that: (i) soluble carbohydrate concentrations remain in ruminal fluid during digestion and fermentation; (ii) slight diurnal changes began after feeding; (iii) DFC influences the soluble carbohydrate concentration in RF; and (iv) UIPC of these diets does not affect the soluble carbohydrate concentration of RF.

  16. Polycations. 17. Synthesis and properties of polycationic derivatives of carbohydrates.

    PubMed

    Thomas, Marie; Montenegro, Diego; Castaño, Alejandra; Friedman, Laura; Leb, Jay; Huang, Mia Lace; Rothman, Leah; Lee, Heidi; Capodiferro, Craig; Ambinder, Daniel; Cere, Eva; Galante, Jessica; Rizzo, JaimeLee; Melkonian, Karin; Engel, Robert

    2009-09-08

    In our continuing investigation of polycationic salts for purposes of antimicrobial action, ion-channel blocking, and construction of ionic liquids, we have prepared several series of polycationic salts derived from carbohydrate precursors. These salts are currently being investigated for optimal efficacy as antibacterials and antifungals, as well as for other applications. The syntheses of such series of salts are described here along with preliminary antibacterial testing results and a discussion of their properties indicating their potential utility for several purposes.

  17. Dietary strategies for the management of cardiovascular risk: role of dietary carbohydrates.

    PubMed

    Macdonald, Ian A

    2014-05-01

    Carbohydrate-rich foods are an essential component of the diet, providing the glucose that is continuously required by the nervous system and some other cells and tissues in the body for normal function. There is some concern that too much carbohydrate or certain types of carbohydrate such as fructose or the high glycaemic index carbohydrate foods that produce large, rapid increases in blood glucose may be detrimental to health. This review considers these issues and also summarises the public health advice currently available in Europe and the USA concerning dietary carbohydrates. The UK Scientific Advisory Committee on Nutrition is currently reviewing carbohydrates and health, and the subsequent report should help clarify some of the concerns regarding carbohydrates and health.

  18. Short-chain carbohydrates and functional gastrointestinal disorders.

    PubMed

    Shepherd, Susan J; Lomer, Miranda C E; Gibson, Peter R

    2013-05-01

    Carbohydrates occur across a range of foods regularly consumed including grains such as wheat and rye, vegetables, fruits, and legumes. Short-chain carbohydrates with chains of up to 10 sugars vary in their digestibility and subsequent absorption. Those that are poorly absorbed exert osmotic effects in the intestinal lumen increasing its water volume, and are rapidly fermented by bacteria with consequent gas production. These two effects alone may underlie most of the induction of gastrointestinal symptoms after they are ingested in moderate amounts via luminal distension in patients with visceral hypersensitivity. This has been the basis of the use of lactose-free diets in those with lactose malabsorption and of fructose-reduced diets for fructose malabsorption. However, application of such dietary approaches in patients with functional bowel disorders has been restricted to observational studies with uncertain efficacy. As all dietary poorly absorbed short-chain carbohydrates have similar and additive effects in the intestine, a concept has been developed to regard them collectively as FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) and to evaluate a dietary approach that restricts them all. In patients with irritable bowel syndrome, there is now an accumulating body of evidence, based on observational and comparative studies, and on randomized-controlled trials that supports the notion that FODMAPs trigger gastrointestinal symptoms in patients with functional bowel disorders, and that a diet low in FODMAPs offers considerable symptom relief in the majority of patients who use it.

  19. Strategies for carbohydrate model building, refinement and validation

    PubMed Central

    2017-01-01

    Sugars are the most stereochemically intricate family of biomolecules and present substantial challenges to anyone trying to understand their nomenclature, reactions or branched structures. Current crystallographic programs provide an abstraction layer allowing inexpert structural biologists to build complete protein or nucleic acid model components automatically either from scratch or with little manual intervention. This is, however, still not generally true for sugars. The need for carbohydrate-specific building and validation tools has been highlighted a number of times in the past, concomitantly with the introduction of a new generation of experimental methods that have been ramping up the production of protein–sugar complexes and glycoproteins for the past decade. While some incipient advances have been made to address these demands, correctly modelling and refining carbohydrates remains a challenge. This article will address many of the typical difficulties that a structural biologist may face when dealing with carbohydrates, with an emphasis on problem solving in the resolution range where X-ray crystallography and cryo-electron microscopy are expected to overlap in the next decade. PMID:28177313

  20. Carbohydrate-Dependent, Exercise-Induced Gastrointestinal Distress

    PubMed Central

    de Oliveira, Erick Prado; Burini, Roberto C.

    2014-01-01

    Gastrointestinal (GI) problems are a common concern of athletes during intense exercise. Ultimately, these symptoms can impair performance and possibly prevent athletes from winning or even finishing a race. The main causes of GI problems during exercise are mechanical, ischemic and nutritional factors. Among the nutritional factors, a high intake of carbohydrate and hyperosmolar solutions increases GI problems. A number of nutritional manipulations have been proposed to minimize gastrointestinal symptoms, including the use of multiple transportable carbohydrates. This type of CHO intake increases the oxidation rates and can prevent the accumulation of carbohydrate in the intestine. Glucose (6%) or glucose plus fructose (8%–10%) beverages are recommended in order to increase CHO intake while avoiding the gastric emptying delay. Training the gut with high intake of CHO may increase absorption capacity and probably prevent GI distress. CHO mouth rinse may be a good strategy to enhance performance without using GI tract in exercises lasting less than an hour. Future strategies should be investigated comparing different CHO types, doses, and concentration in exercises with the same characteristics. PMID:25314645

  1. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques.

    PubMed Central

    King, S. P.; Lunn, J. E.; Furbank, R. T.

    1997-01-01

    Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning. PMID:12223695

  2. Carbohydrate Metabolism of Cactus in a Desert Environment

    PubMed Central

    Sutton, B. G.; Ting, Irwin P.; Sutton, R.

    1981-01-01

    The concentration of glucan, mucilage, soluble carbohydrates, and malic acid were determined in Opuntia bigelovii Engelm. during a 23-week period. The experiment began during the dry summer by irrigation to stimulate Crassulacean acid metabolism and was followed by 13 weeks of drought. After the 13-week drought period, the plants were irrigated throughout a 10-week period until late December. The maximum level of malic acid determined each day at dawn decreased throughout the drought period and increased after irrigation. High levels of malic acid occurring at dawn are indicative of active Crassulacean acid metabolism. Soluble carbohydrates also decreased during drought and increased after irrigation. Both glucan and mucilage increased slightly for about 9 weeks during the drought period and then began to decrease. Irrigation was accompanied by a further decrease in concentration of glucan and mucilage. Since both glucan and mucilage changed in a similar manner and since their concentrations in the tissue are correlated, it is hypothesized that both function as storage carbohydrates. Whereas glucan is the nocturnal substrate for malic acid synthesis, there are no data to support or refute a similar hypothesis for mucilage. PMID:16661999

  3. Carbohydrate metabolism of cactus in a desert environment.

    PubMed

    Sutton, B G

    1981-09-01

    The concentration of glucan, mucilage, soluble carbohydrates, and malic acid were determined in Opuntia bigelovii Engelm. during a 23-week period. The experiment began during the dry summer by irrigation to stimulate Crassulacean acid metabolism and was followed by 13 weeks of drought. After the 13-week drought period, the plants were irrigated throughout a 10-week period until late December. The maximum level of malic acid determined each day at dawn decreased throughout the drought period and increased after irrigation. High levels of malic acid occurring at dawn are indicative of active Crassulacean acid metabolism. Soluble carbohydrates also decreased during drought and increased after irrigation. Both glucan and mucilage increased slightly for about 9 weeks during the drought period and then began to decrease. Irrigation was accompanied by a further decrease in concentration of glucan and mucilage. Since both glucan and mucilage changed in a similar manner and since their concentrations in the tissue are correlated, it is hypothesized that both function as storage carbohydrates. Whereas glucan is the nocturnal substrate for malic acid synthesis, there are no data to support or refute a similar hypothesis for mucilage.

  4. Carbohydrate-binding modules: fine-tuning polysaccharide recognition

    PubMed Central

    2004-01-01

    The enzymic degradation of insoluble polysaccharides is one of the most important reactions on earth. Despite this, glycoside hydrolases attack such polysaccharides relatively inefficiently as their target glycosidic bonds are often inaccessible to the active site of the appropriate enzymes. In order to overcome these problems, many of the glycoside hydrolases that utilize insoluble substrates are modular, comprising catalytic modules appended to one or more non-catalytic CBMs (carbohydrate-binding modules). CBMs promote the association of the enzyme with the substrate. In view of the central role that CBMs play in the enzymic hydrolysis of plant structural and storage polysaccharides, the ligand specificity displayed by these protein modules and the mechanism by which they recognize their target carbohydrates have received considerable attention since their discovery almost 20 years ago. In the last few years, CBM research has harnessed structural, functional and bioinformatic approaches to elucidate the molecular determinants that drive CBM–carbohydrate recognition. The present review summarizes the impact structural biology has had on our understanding of the mechanisms by which CBMs bind to their target ligands. PMID:15214846

  5. Lanthanide-IMAC enrichment of carbohydrates and polyols.

    PubMed

    Schemeth, Dieter; Rainer, Matthias; Messner, Christoph B; Rode, Bernd M; Bonn, Günther K

    2014-03-01

    In this study a new type of immobilized metal ion affinity chromatography resin for the enrichment of carbohydrates and polyols was synthesized by radical polymerization reaction of vinyl phosphonic acid and 1,4-butandiole dimethacrylate using azo-bis-isobutyronitrile as radical initiator. Interaction between the chelated trivalent lanthanide ions and negatively charged hydroxyl groups of carbohydrates and polyols was observed by applying high pH values. The new method was evaluated by single standard solutions, mixtures of standards, honey and a more complex extract of Cynara scolymus. The washing step was accomplished by acetonitrile in excess volumes. Elution of enriched carbohydrates was successfully performed with deionized water. The subsequent analysis was carried out with matrix-free laser desorption/ionization-time of flight mass spectrometry involving a TiO2 -coated steel target, especially suitable for the measurement of low-molecular-weight substances. Quantitative analysis of the sugar alcohol xylitol as well as the determination of the maximal loading capacity was performed by gas chromatography in conjunction with mass spectrometric detection after chemical derivatization. In a parallel approach quantum mechanical geometry optimizations were performed in order to compare the coordination behavior of various trivalent lanthanide ions.

  6. Strategies for carbohydrate model building, refinement and validation.

    PubMed

    Agirre, Jon

    2017-02-01

    Sugars are the most stereochemically intricate family of biomolecules and present substantial challenges to anyone trying to understand their nomenclature, reactions or branched structures. Current crystallographic programs provide an abstraction layer allowing inexpert structural biologists to build complete protein or nucleic acid model components automatically either from scratch or with little manual intervention. This is, however, still not generally true for sugars. The need for carbohydrate-specific building and validation tools has been highlighted a number of times in the past, concomitantly with the introduction of a new generation of experimental methods that have been ramping up the production of protein-sugar complexes and glycoproteins for the past decade. While some incipient advances have been made to address these demands, correctly modelling and refining carbohydrates remains a challenge. This article will address many of the typical difficulties that a structural biologist may face when dealing with carbohydrates, with an emphasis on problem solving in the resolution range where X-ray crystallography and cryo-electron microscopy are expected to overlap in the next decade.

  7. Role of Carbohydrates in Diurnal Chilling Sensitivity of Tomato Seedlings

    PubMed Central

    King, Ann I.; Joyce, Daryl C.; Reid, Michael S.

    1988-01-01

    Tomato seedlings (Lycopersicon esculentum Mill.) chilled starting at different times during the light/dark cycle were most chilling-sensitive at the end of the dark period (AI King, MS Reid, BD Patterson 1982 Plant Physiol 70: 211-214). Low-temperature tolerance was regained with as little as 10 minutes of light exposure. Low light intensities were less effective than high light intensities in reducing sensitivity, and the length of exposure to light directly influenced sensitivity. Seedlings kept at low night temperatures prior to chilling were also less injured following chilling. Light also restored chilling tolerance to seedlings whose roots were removed. Supplying cut shoots with sucrose, glucose, or fructose reduced chilling sensitivity and largely eliminated the diurnal difference in sensitivity. Endogenous carbohydrate content was correlated with changes in chilling sensitivity; starch and sugar content fell markedly during the dark period. Increased concentrations of sugars were detected 15 minutes after the start of the light period. This evidence all suggests that changes in chilling sensitivity over the diurnal period are regulated by the light cycle. It also suggests that increased sensitivity at the end of the dark period could be due to carbohydrate depletion, and that chilling tolerance following light exposure is likely due to carbohydrate accumulation or closely related events. PMID:16665984

  8. Prediction of conformationally dependent atomic multipole moments in carbohydrates.

    PubMed

    Cardamone, Salvatore; Popelier, Paul L A

    2015-12-15

    The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an "atom in a molecule," thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol(-1) for open chains and just over 90% an error of maximum 4 kJ mol(-1) for rings.

  9. Structure-activity relationships in carbohydrates revealed by their hydration.

    PubMed

    Maugeri, Laura; Busch, Sebastian; McLain, Sylvia E; Pardo, Luis Carlos; Bruni, Fabio; Ricci, Maria Antonietta

    2016-12-21

    One of the more intriguing aspects of carbohydrate chemistry is that despite having very similar molecular structures, sugars have very different properties. For instance, there is a sensible difference in sweet taste between glucose and trehalose, even though trehalose is a disaccharide that comprised two glucose units, suggesting a different ability of these two carbohydrates to bind to sweet receptors. Here we have looked at the hydration of specific sites and at the three-dimensional configuration of water molecules around three carbohydrates (glucose, cellobiose, and trehalose), combining neutron diffraction data with computer modelling. Results indicate that identical chemical groups can have radically different hydration patterns depending on their location on a given molecule. These differences can be linked with the specific activity of glucose, cellobiose, and trehalose as a sweet substance, as building block of cellulose fiber, and as a bioprotective agent, respectively. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.

  10. Reductive amination of carbohydrates using NaBH(OAc)3.

    PubMed

    Dalpathado, Dilusha S; Jiang, Hui; Kater, Marcus A; Desaire, Heather

    2005-03-01

    An improved protocol for reductive amination of carbohydrates is developed. This derivatization facilitates the detection of oligosaccharides in HPLC-UV and mass spectrometric applications by enhancing the signal of the carbohydrates. In this study, reductive amination was achieved using NaBH(OAc)3. This reducing agent is an attractive alternative to the toxic, but extensively used reducing agent, NaBH3CN. Several types of carbohydrates were successfully derivatized using NaBH(OAc)3, and the results obtained from this protocol were compared with those obtained with NaBH(OAc)3. Both reducing agents were equally effective in side-by-side analysis. Two purification strategies (purification by zip-tip and HPLC) were implemented and the instrumental limit of detection of each method was compared. The detection limit was approximately 1,000 times lower when the purification was done using HPLC, compared to using the zip-tip. Since the derivatization by-products in this protocol are not toxic, MS analysis also could also be performed directly, without purification. The MS/MS data of derivatized and underivatized oligosaccharides were acquired as well. The derivatized oligosaccharides produce more easily interpretable product ions than underivatized oligosaccharides.

  11. Shape: automatic conformation prediction of carbohydrates using a genetic algorithm

    PubMed Central

    2009-01-01

    Background Detailed experimental three dimensional structures of carbohydrates are often difficult to acquire. Molecular modelling and computational conformation prediction are therefore commonly used tools for three dimensional structure studies. Modelling procedures generally require significant training and computing resources, which is often impractical for most experimental chemists and biologists. Shape has been developed to improve the availability of modelling in this field. Results The Shape software package has been developed for simplicity of use and conformation prediction performance. A trivial user interface coupled to an efficient genetic algorithm conformation search makes it a powerful tool for automated modelling. Carbohydrates up to a few hundred atoms in size can be investigated on common computer hardware. It has been shown to perform well for the prediction of over four hundred bioactive oligosaccharides, as well as compare favourably with previously published studies on carbohydrate conformation prediction. Conclusion The Shape fully automated conformation prediction can be used by scientists who lack significant modelling training, and performs well on computing hardware such as laptops and desktops. It can also be deployed on computer clusters for increased capacity. The prediction accuracy under the default settings is good, as it agrees well with experimental data and previously published conformation prediction studies. This software is available both as open source and under commercial licenses. PMID:20298520

  12. Influence of fungicide residues on the primary fermentation of young lager beer.

    PubMed

    Navarro, Simón; Pérez, Gabriel; Navarro, Ginés; Mena, Luis; Vela, Nuria

    2007-02-21

    The effect of four sterol biosynthesis-inhibiting fungicides added to the pitching wort on the evolution of several organoleptic parameters during the primary fermentation of young lager beer was assessed. Pyrimidine (nuarimol and fenarimol) and triazole (myclobutanil and propiconazole) fungicides were individually supplied to the pitching wort to obtain a concentration of 1 mg/L. A marked influence in the fermentation rate was observed for the samples with propiconazole residues. From the fourth day onward, the fermentation prematurely ceased (stuck fermentation), and therefore, statistical significant differences were found in fermented extract, alcohol content, fermentable carbohydrates, pH, color, and total polyphenol and flavonoid contents of beer. Myclobutanil residues are only influenced in the total polyphenol and flavonoid contents, while differences in the analyzed parameters were not noticeable for the samples containing nuarimol and fenarimol residues in comparison with the blank sample.

  13. On tide-induced lagrangian residual current and residual transport: 1. Lagrangian residual current

    USGS Publications Warehouse

    Feng, Shizuo; Cheng, Ralph T.; Pangen, Xi

    1986-01-01

    Residual currents in tidal estuaries and coastal embayments have been recognized as fundamental factors which affect the long-term transport processes. It has been pointed out by previous studies that it is more relevant to use a Lagrangian mean velocity than an Eulerian mean velocity to determine the movements of water masses. Under weakly nonlinear approximation, the parameter k, which is the ratio of the net displacement of a labeled water mass in one tidal cycle to the tidal excursion, is assumed to be small. Solutions for tides, tidal current, and residual current have been considered for two-dimensional, barotropic estuaries and coastal seas. Particular attention has been paid to the distinction between the Lagrangian and Eulerian residual currents. When k is small, the first-order Lagrangian residual is shown to be the sum of the Eulerian residual current and the Stokes drift. The Lagrangian residual drift velocity or the second-order Lagrangian residual current has been shown to be dependent on the phase of tidal current. The Lagrangian drift velocity is induced by nonlinear interactions between tides, tidal currents, and the first-order residual currents, and it takes the form of an ellipse on a hodograph plane. Several examples are given to further demonstrate the unique properties of the Lagrangian residual current.

  14. Structural Insights into the Carbohydrate Binding Ability of an α-(1→2) Branching Sucrase from Glycoside Hydrolase Family 70*

    PubMed Central

    Brison, Yoann; Malbert, Yannick; Czaplicki, Georges; Mourey, Lionel; Remaud-Simeon, Magali; Tranier, Samuel

    2016-01-01

    The α-(1→2) branching sucrase ΔN123-GBD-CD2 is a transglucosylase belonging to glycoside hydrolase family 70 (GH70) that catalyzes the transfer of d-glucosyl units from sucroseto dextrans or gluco-oligosaccharides via the formation of α-(1→2) glucosidic linkages. The first structures of ΔN123-GBD-CD2 in complex with d-glucose, isomaltosyl, or isomaltotriosyl residues were solved. The glucose complex revealed three glucose-binding sites in the catalytic gorge and six additional binding sites at the surface of domains B, IV, and V. Soaking with isomaltotriose or gluco-oligosaccharides led to structures in which isomaltosyl or isomaltotriosyl residues were found in glucan binding pockets located in domain V. One aromatic residue is systematically identified at the bottom of these pockets in stacking interaction with one glucosyl moiety. The carbohydrate is also maintained by a network of hydrogen bonds and van der Waals interactions. The sequence of these binding pockets is conserved and repeatedly present in domain V of several GH70 glucansucrases known to bind α-glucans. These findings provide the first structural evidence of the molecular interaction occurring between isomalto-oligosaccharides and domain V of the GH70 enzymes. PMID:26865636

  15. Transient hydrogen bonding in uniformly ¹³C,¹⁵N-labeled carbohydrates in water.

    PubMed

    Norris, Scott E; Landström, Jens; Weintraub, Andrej; Bull, Thomas E; Widmalm, Göran; Freedberg, Darón I

    2012-03-01

    We report NMR studies of transient hydrogen bonding in a polysaccharide (PS) dissolved in water without cosolvent at ambient temperature. The PS portion of the Escherichia coli O142 lipopolysaccharide is comprised of repeating pentasaccharide units of GalNAc (N-acetyl galactosamine), GlcNAc (N-acetyl glucosamine), and rhamnose in a 3:1:1 ratio, respectively. A 105-ns molecular dynamics (MD) simulation on one pentasaccharide repeat unit predicts transient inter-residue hydrogen bonds from the GalNAc NH groups in the PS. To investigate these predictions experimentally, the PS was uniformly ¹³C,¹⁵N enriched and the NH, carbonyl, C2, C4, and methyl resonances of the GalNAc and GlcNAc residues assigned using through-bond triple-resonance NMR experiments. Temperature dependence of amide NH chemical shifts and one-bond NH J couplings support that NH groups on two of the GalNAc residues are donors in transient hydrogen bonds. The remaining GalNAc and GlcNAc NHs do not appear to be donors from either temperature-dependent chemical shifts or one-bond NH J couplings. These results substantiate the presence of weak or partial hydrogen bonds in carbohydrates, and that MD simulations of repeating units in PSs provide insight into overall PS structure and dynamics.

  16. Biochemical and Domain Analyses of FSUAxe6B, a Modular Acetyl Xylan Esterase, Identify a Unique Carbohydrate Binding Module in Fibrobacter succinogenes S85▿ †

    PubMed Central

    Yoshida, Shosuke; Mackie, Roderick I.; Cann, Isaac K. O.

    2010-01-01

    Acetyl xylan esterase (EC 3.1.1.72) is a member of a set of enzymes required to depolymerize hemicellulose, especially xylan that is composed of a main chain of β-1,4-linked xylopyranoside residues decorated with acetyl side groups. Fibrobacter succinogenes S85 Axe6B (FSUAxe6B) is an acetyl xylan esterase encoded in the genome of this rumen bacterium. The enzyme is a modular protein comprised of an esterase domain, a carbohydrate-binding module, and a region of unknown function. Sequences that are homologous to the region of unknown function are paralogously distributed, thus far, only in F. succinogenes. Therefore, the sequences were designated Fibrobacter succinogenes-specific paralogous module 1 (FPm-1). The FPm-1s are associated with at least 24 polypeptides in the genome of F. succinogenes S85. A bioinformatics search showed that most of the FPm-1-appended polypeptides are putative carbohydrate-active enzymes, suggesting a potential role in carbohydrate metabolism. Truncational analysis of FSUAxe6B, together with catalytic and substrate binding studies, has allowed us to delineate the functional modules in the polypeptide. The N-terminal half of FSUAxe6B harbors the activity that cleaves side chain acetyl groups from xylan-like substrates, and the binding of insoluble xylan was determined to originate from FPm-1. Site-directed mutagenesis studies of highly conserved active-site residues in the esterase domain suggested that the esterase activity is derived from a tetrad composed of Ser44, His273, Glu194, and Asp270, with both Glu194 and Asp270 functioning as helper acids, instead of a single carboxylate residue proposed to initiate catalysis. PMID:19897648

  17. Residue-based scattering factors.

    PubMed

    Xu, Hongliang

    2016-11-01

    A glob is defined as a group of atoms in the crystal which can be chosen in various ways. Globs themselves can be used as scattering elements in the theory of structure determination, just as atoms are used at present. In this paper, amino-acid residues are chosen to form globs and empirical formulas for residue-based scattering factors have been developed.

  18. Pill formulations and their effect on lipid and carbohydrate metabolism.

    PubMed

    Brooks, P G

    1984-07-01

    Recent data on oral contraceptives (OCs) employing new low-dose formulations appear to indicate that most of the previously reported metabolic effects are minimized, particularly when a product is neigher ovverly estrogenic nor progestational. Evidence suggests that elevated levels of cholesterol and triglycerides in the plasma are correlated with the risk of cardiovascular disease. Epidemiologic students have indicated a correlation between elevation of low denisty lipoprotein (LDL) cholesterol and coronary heart disease, and a correlation between decreases in high density lipoprotein (HDL) cholesterol and arterial disease. Epidemiologic evidence seems to suggest that combination OCs are associated with increased cardiovascular risk, especially risks of venous thrombosis, myocardial infarction, and stroke. There is some debate as to whether OCs themselves are an independent risk factor or whether they increase the effects of other risk factors. Women using combination OCs have been reported to have higher total serum triglyceride and cholesterol concentrations, related primarily to the estrogen dose. While most of the earlier literature associated estrogens with a higher risk of cardiovascular disease, recent studies have increasingly implicated the progestin component. Increasing potencies of progestin have been found to proportionally lower the HDL-cholesterol level. There is a positive association between the estrogen dose and HDL-cholesterol level. Among combination pill users, HDL levels gevverally depend on the relative amounts and potencies of both components. It is generally agreed that there are some high-risk women who should be carefully monitored while using the pill or who should not use it at all. Steroid type and dosage both play a role in affecting carbohydrate metabolism. Ethinyl estradiol (EE), the estrogen component in most OCs, does not seem to have the same biphasic effect on carbohydrate metaolism as most other estrogens. Most of the recent

  19. The influence of elevated CO2 on non-structural carbohydrate distribution and fructan accumulation in wheat canopies

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Chatterton, N. J.; Bugbee, B.

    1994-01-01

    We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 micromoles m-2 s-1) and using two CO2 concentrations, 360 and 1200 micromoles mol-1. Photosynthetically active radiation (400-700 nm) was attenuated slightly faster through canopies grown in 360 micromoles mol-1 than through canopies grown in 1200 micromoles mol-1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200 micromoles mol-1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p < 0.05) than for canopies grown in 360 micromoles mol-1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 degrees C over 5 d increased starch, fructan and glucose levels in canopies grown in 1200 micromoles mol-1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.

  20. Stevia Glycosides: Chemical and Enzymatic Modifications of Their Carbohydrate Moieties to Improve the Sweet-Tasting Quality.

    PubMed

    Gerwig, Gerrit J; Te Poele, Evelien M; Dijkhuizen, Lubbert; Kamerling, Johannis P

    2016-01-01

    Stevia glycosides, extracted from the leaves of the plant Stevia rebaudiana Bertoni, display an amazing high degree of sweetness. As processed plant products, they are considered as excellent bio-alternatives for sucrose and artificial sweeteners. Being noncaloric and having beneficial properties for human health, they are the subject of an increasing number of studies for applications in food and pharmacy. However, one of the main obstacles for the successful commercialization of Stevia sweeteners, especially in food, is their slight bitter aftertaste and astringency. These undesirable properties may be reduced or eliminated by modifying the carbohydrate moieties of the steviol glycosides. A promising procedure is to subject steviol glycosides to enzymatic glycosylation, thereby introducing additional monosaccharide residues into the molecules. Depending on the number and positions of the monosaccharide units, the taste quality and sweetness potency of the compounds will vary. Many studies have been performed already, and this review summarizes the structures of native steviol glycosides and the recent data of modifications of the carbohydrate moieties that have been published to provide an overview of the current progress.