Sample records for pdes partial differential

  1. Partial differential equation models in macroeconomics.

    PubMed

    Achdou, Yves; Buera, Francisco J; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin

    2014-11-13

    The purpose of this article is to get mathematicians interested in studying a number of partial differential equations (PDEs) that naturally arise in macroeconomics. These PDEs come from models designed to study some of the most important questions in economics. At the same time, they are highly interesting for mathematicians because their structure is often quite difficult. We present a number of examples of such PDEs, discuss what is known about their properties, and list some open questions for future research. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  3. (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Lu, Dianchen; Wang, Jun

    2017-07-01

    In this paper, we pursue the general form of the fractional reduced differential transform method (DTM) to (N+1)-dimensional case, so that fractional order partial differential equations (PDEs) can be resolved effectively. The most distinct aspect of this method is that no prescribed assumptions are required, and the huge computational exertion is reduced and round-off errors are also evaded. We utilize the proposed scheme on some initial value problems and approximate numerical solutions of linear and nonlinear time fractional PDEs are obtained, which shows that the method is highly accurate and simple to apply. The proposed technique is thus an influential technique for solving the fractional PDEs and fractional order problems occurring in the field of engineering, physics etc. Numerical results are obtained for verification and demonstration purpose by using Mathematica software.

  4. Solving PDEs with Intrepid

    DOE PAGES

    Bochev, P.; Edwards, H. C.; Kirby, R. C.; ...

    2012-01-01

    Intrepid is a Trilinos package for advanced discretizations of Partial Differential Equations (PDEs). The package provides a comprehensive set of tools for local, cell-based construction of a wide range of numerical methods for PDEs. This paper describes the mathematical ideas and software design principles incorporated in the package. We also provide representative examples showcasing the use of Intrepid both in the context of numerical PDEs and the more general context of data analysis.

  5. Partial differential equation models in the socio-economic sciences.

    PubMed

    Burger, Martin; Caffarelli, Luis; Markowich, Peter A

    2014-11-13

    Mathematical models based on partial differential equations (PDEs) have become an integral part of quantitative analysis in most branches of science and engineering, recently expanding also towards biomedicine and socio-economic sciences. The application of PDEs in the latter is a promising field, but widely quite open and leading to a variety of novel mathematical challenges. In this introductory article of the Theme Issue, we will provide an overview of the field and its recent boosting topics. Moreover, we will put the contributions to the Theme Issue in an appropriate perspective. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. THREE-POINT BACKWARD FINITE DIFFERENCE METHOD FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. (R825549C019)

    EPA Science Inventory

    A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...

  7. High-order fractional partial differential equation transform for molecular surface construction.

    PubMed

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.

  8. Numerical solution of modified differential equations based on symmetry preservation.

    PubMed

    Ozbenli, Ersin; Vedula, Prakash

    2017-12-01

    In this paper, we propose a method to construct invariant finite-difference schemes for solution of partial differential equations (PDEs) via consideration of modified forms of the underlying PDEs. The invariant schemes, which preserve Lie symmetries, are obtained based on the method of equivariant moving frames. While it is often difficult to construct invariant numerical schemes for PDEs due to complicated symmetry groups associated with cumbersome discrete variable transformations, we note that symmetries associated with more convenient transformations can often be obtained by appropriately modifying the original PDEs. In some cases, modifications to the original PDEs are also found to be useful in order to avoid trivial solutions that might arise from particular selections of moving frames. In our proposed method, modified forms of PDEs can be obtained either by addition of perturbation terms to the original PDEs or through defect correction procedures. These additional terms, whose primary purpose is to enable symmetries with more convenient transformations, are then removed from the system by considering moving frames for which these specific terms go to zero. Further, we explore selection of appropriate moving frames that result in improvement in accuracy of invariant numerical schemes based on modified PDEs. The proposed method is tested using the linear advection equation (in one- and two-dimensions) and the inviscid Burgers' equation. Results obtained for these tests cases indicate that numerical schemes derived from the proposed method perform significantly better than existing schemes not only by virtue of improvement in numerical accuracy but also due to preservation of qualitative properties or symmetries of the underlying differential equations.

  9. Free-form geometric modeling by integrating parametric and implicit PDEs.

    PubMed

    Du, Haixia; Qin, Hong

    2007-01-01

    Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.

  10. Computational cost of two alternative formulations of Cahn-Hilliard equations

    NASA Astrophysics Data System (ADS)

    Paszyński, Maciej; Gurgul, Grzegorz; Łoś, Marcin; Szeliga, Danuta

    2018-05-01

    In this paper we propose two formulations of Cahn-Hilliard equations, which have several applications in cancer growth modeling and material science phase-field simulations. The first formulation uses one C4 partial differential equations (PDEs) the second one uses two C2 PDEs. Finally, we compare the computational costs of direct solvers for both formulations, using the refined isogeometric analysis (rIGA) approach.

  11. Comparison between numeric and approximate analytic solutions for the prediction of soil metal uptake by roots. Example of cadmium.

    PubMed

    Schneider, André; Lin, Zhongbing; Sterckeman, Thibault; Nguyen, Christophe

    2018-04-01

    The dissociation of metal complexes in the soil solution can increase the availability of metals for root uptake. When it is accounted for in models of bioavailability of soil metals, the number of partial differential equations (PDEs) increases and the computation time to numerically solve these equations may be problematic when a large number of simulations are required, for example for sensitivity analyses or when considering root architecture. This work presents analytical solutions for the set of PDEs describing the bioavailability of soil metals including the kinetics of complexation for three scenarios where the metal complex in solution was fully inert, fully labile, or partially labile. The analytical solutions are only valid i) at steady-state when the PDEs become ordinary differential equations, the transient phase being not covered, ii) when diffusion is the major mechanism of transport and therefore, when convection is negligible, iii) when there is no between-root competition. The formulation of the analytical solutions is for cylindrical geometry but the solutions rely on the spread of the depletion profile around the root, which was modelled assuming a planar geometry. The analytical solutions were evaluated by comparison with the corresponding PDEs for cadmium in the case of the French agricultural soils. Provided that convection was much lower than diffusion (Péclet's number<0.02), the cumulative uptakes calculated from the analytic solutions were in very good agreement with those calculated from the PDEs, even in the case of a partially labile complex. The analytic solutions can be used instead of the PDEs to predict root uptake of metals. The analytic solutions were also used to build an indicator of the contribution of a complex to the uptake of the metal by roots, which can be helpful to predict the effect of soluble organic matter on the bioavailability of soil metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry.

    PubMed

    Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin

    2007-10-20

    We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.

  13. Dual-shaped offset reflector antenna designs from solutions of the geometrical optics first-order partial differential equations

    NASA Technical Reports Server (NTRS)

    Galindo-Israel, V.; Imbriale, W.; Shogen, K.; Mittra, R.

    1990-01-01

    In obtaining solutions to the first-order nonlinear partial differential equations (PDEs) for synthesizing offset dual-shaped reflectors, it is found that previously observed computational problems can be avoided if the integration of the PDEs is started from an inner projected perimeter and integrated outward rather than starting from an outer projected perimeter and integrating inward. This procedure, however, introduces a new parameter, the main reflector inner perimeter radius p(o), when given a subreflector inner angle 0(o). Furthermore, a desired outer projected perimeter (e.g., a circle) is no longer guaranteed. Stability of the integration is maintained if some of the initial parameters are determined first from an approximate solution to the PDEs. A one-, two-, or three-parameter optimization algorithm can then be used to obtain a best set of parameters yielding a close fit to the desired projected outer rim. Good low cross-polarization mapping functions are also obtained. These methods are illustrated by synthesis of a high-gain offset-shaped Cassegrainian antenna and a low-noise offset-shaped Gregorian antenna.

  14. High-order fractional partial differential equation transform for molecular surface construction

    PubMed Central

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation. PMID:24364020

  15. Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov-Kuznetsov equations

    NASA Astrophysics Data System (ADS)

    Huang, Ding-jiang; Ivanova, Nataliya M.

    2016-02-01

    In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.

  16. Presymplectic current and the inverse problem of the calculus of variations

    NASA Astrophysics Data System (ADS)

    Khavkine, Igor

    2013-11-01

    The inverse problem of the calculus of variations asks whether a given system of partial differential equations (PDEs) admits a variational formulation. We show that the existence of a presymplectic form in the variational bicomplex, when horizontally closed on solutions, allows us to construct a variational formulation for a subsystem of the given PDE. No constraints on the differential order or number of dependent or independent variables are assumed. The proof follows a recent observation of Bridges, Hydon, and Lawson [Math. Proc. Cambridge Philos. Soc. 148(01), 159-178 (2010)] and generalizes an older result of Henneaux [Ann. Phys. 140(1), 45-64 (1982)] from ordinary differential equations (ODEs) to PDEs. Uniqueness of the variational formulation is also discussed.

  17. Some remarks on the numerical solution of parabolic partial differential equations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Cuomo, S.; Leveque, S.; Toraldo, G.; Giannino, F.; Severino, G.

    2017-11-01

    Numerous environmental/engineering applications relying upon the theory of diffusion phenomena into chaotic environments have recently stimulated the interest toward the numerical solution of parabolic partial differential equations (PDEs). In the present paper, we outline a formulation of the mathematical problem underlying a quite general diffusion mechanism in the natural environments, and we shortly emphasize some remarks concerning the applicability of the (straightforward) finite difference method. An illustration example is also presented.

  18. Observability of discretized partial differential equations

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  19. On multilevel RBF collocation to solve nonlinear PDEs arising from endogenous stochastic volatility models

    NASA Astrophysics Data System (ADS)

    Bastani, Ali Foroush; Dastgerdi, Maryam Vahid; Mighani, Abolfazl

    2018-06-01

    The main aim of this paper is the analytical and numerical study of a time-dependent second-order nonlinear partial differential equation (PDE) arising from the endogenous stochastic volatility model, introduced in [Bensoussan, A., Crouhy, M. and Galai, D., Stochastic equity volatility related to the leverage effect (I): equity volatility behavior. Applied Mathematical Finance, 1, 63-85, 1994]. As the first step, we derive a consistent set of initial and boundary conditions to complement the PDE, when the firm is financed by equity and debt. In the sequel, we propose a Newton-based iteration scheme for nonlinear parabolic PDEs which is an extension of a method for solving elliptic partial differential equations introduced in [Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics with Applications, 43, 423-438, 2002]. The scheme is based on multilevel collocation using radial basis functions (RBFs) to solve the resulting locally linearized elliptic PDEs obtained at each level of the Newton iteration. We show the effectiveness of the resulting framework by solving a prototypical example from the field and compare the results with those obtained from three different techniques: (1) a finite difference discretization; (2) a naive RBF collocation and (3) a benchmark approximation, introduced for the first time in this paper. The numerical results confirm the robustness, higher convergence rate and good stability properties of the proposed scheme compared to other alternatives. We also comment on some possible research directions in this field.

  20. Presymplectic current and the inverse problem of the calculus of variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khavkine, Igor, E-mail: i.khavkine@uu.nl

    2013-11-15

    The inverse problem of the calculus of variations asks whether a given system of partial differential equations (PDEs) admits a variational formulation. We show that the existence of a presymplectic form in the variational bicomplex, when horizontally closed on solutions, allows us to construct a variational formulation for a subsystem of the given PDE. No constraints on the differential order or number of dependent or independent variables are assumed. The proof follows a recent observation of Bridges, Hydon, and Lawson [Math. Proc. Cambridge Philos. Soc. 148(01), 159–178 (2010)] and generalizes an older result of Henneaux [Ann. Phys. 140(1), 45–64 (1982)]more » from ordinary differential equations (ODEs) to PDEs. Uniqueness of the variational formulation is also discussed.« less

  1. Discovery and Optimization of Low-Storage Runge-Kutta Methods

    DTIC Science & Technology

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DISCOVERY AND OPTIMIZATION OF LOW-STORAGE RUNGE-KUTTA METHODS by Matthew T. Fletcher June 2015... methods are an important family of iterative methods for approximating the solutions of ordinary differential equations (ODEs) and differential...algebraic equations (DAEs). It is common to use an RK method to discretize in time when solving time dependent partial differential equations (PDEs) with a

  2. DNN-state identification of 2D distributed parameter systems

    NASA Astrophysics Data System (ADS)

    Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.

    2012-02-01

    There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.

  3. Explicit finite difference predictor and convex corrector with applications to hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, C.; Dey, S. K.

    1983-01-01

    An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.

  4. Hyperbolic Method for Dispersive PDEs: Same High-Order of Accuracy for Solution, Gradient, and Hessian

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.

  5. Solution of elliptic PDEs by fast Poisson solvers using a local relaxation factor

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1986-01-01

    A large class of two- and three-dimensional, nonseparable elliptic partial differential equations (PDEs) is presently solved by means of novel one-step (D'Yakanov-Gunn) and two-step (accelerated one-step) iterative procedures, using a local, discrete Fourier analysis. In addition to being easily implemented and applicable to a variety of boundary conditions, these procedures are found to be computationally efficient on the basis of the results of numerical comparison with other established methods, which lack the present one's: (1) insensitivity to grid cell size and aspect ratio, and (2) ease of convergence rate estimation by means of the coefficient of the PDE being solved. The two-step procedure is numerically demonstrated to outperform the one-step procedure in the case of PDEs with variable coefficients.

  6. Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations

    NASA Technical Reports Server (NTRS)

    Fijany, Amir

    1993-01-01

    In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.

  7. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  8. PDEs on moving surfaces via the closest point method and a modified grid based particle method

    NASA Astrophysics Data System (ADS)

    Petras, A.; Ruuth, S. J.

    2016-05-01

    Partial differential equations (PDEs) on surfaces arise in a wide range of applications. The closest point method (Ruuth and Merriman (2008) [20]) is a recent embedding method that has been used to solve a variety of PDEs on smooth surfaces using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. The original closest point method (CPM) was designed for problems posed on static surfaces, however the solution of PDEs on moving surfaces is of considerable interest as well. Here we propose solving PDEs on moving surfaces using a combination of the CPM and a modification of the grid based particle method (Leung and Zhao (2009) [12]). The grid based particle method (GBPM) represents and tracks surfaces using meshless particles and an Eulerian reference grid. Our modification of the GBPM introduces a reconstruction step into the original method to ensure that all the grid points within a computational tube surrounding the surface are active. We present a number of examples to illustrate the numerical convergence properties of our combined method. Experiments for advection-diffusion equations that are strongly coupled to the velocity of the surface are also presented.

  9. An Artificial Neural Networks Method for Solving Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Alharbi, Abir

    2010-09-01

    While there already exists many analytical and numerical techniques for solving PDEs, this paper introduces an approach using artificial neural networks. The approach consists of a technique developed by combining the standard numerical method, finite-difference, with the Hopfield neural network. The method is denoted Hopfield-finite-difference (HFD). The architecture of the nets, energy function, updating equations, and algorithms are developed for the method. The HFD method has been used successfully to approximate the solution of classical PDEs, such as the Wave, Heat, Poisson and the Diffusion equations, and on a system of PDEs. The software Matlab is used to obtain the results in both tabular and graphical form. The results are similar in terms of accuracy to those obtained by standard numerical methods. In terms of speed, the parallel nature of the Hopfield nets methods makes them easier to implement on fast parallel computers while some numerical methods need extra effort for parallelization.

  10. Towards information-optimal simulation of partial differential equations.

    PubMed

    Leike, Reimar H; Enßlin, Torsten A

    2018-03-01

    Most simulation schemes for partial differential equations (PDEs) focus on minimizing a simple error norm of a discretized version of a field. This paper takes a fundamentally different approach; the discretized field is interpreted as data providing information about a real physical field that is unknown. This information is sought to be conserved by the scheme as the field evolves in time. Such an information theoretic approach to simulation was pursued before by information field dynamics (IFD). In this paper we work out the theory of IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an action that can be minimized to obtain an information-optimal simulation scheme. It can be brought into a closed form using field operators to calculate the appearing Gaussian integrals. The resulting simulation schemes are tested numerically in two instances for the Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolution. The IFD scheme, however, has to be correctly informed on the subgrid correlation structure. In certain limiting cases we recover well-known simulation schemes like spectral Fourier-Galerkin methods. We discuss implications of the approximations made.

  11. Differential morphology and image processing.

    PubMed

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  12. Algorithm for Stabilizing a POD-Based Dynamical System

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2010-01-01

    This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.

  13. Noniterative three-dimensional grid generation using parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1985-01-01

    A new algorithm for generating three-dimensional grids has been developed and implemented which numerically solves a parabolic partial differential equation (PDE). The solution procedure marches outward in two coordinate directions, and requires inversion of a scalar tridiagonal system in the third. Source terms have been introduced to control the spacing and angle of grid lines near the grid boundaries, and to control the outer boundary point distribution. The method has been found to generate grids about 100 times faster than comparable grids generated via solution of elliptic PDEs, and produces smooth grids for finite-difference flow calculations.

  14. Reaction-diffusion systems in natural sciences and new technology transfer

    NASA Astrophysics Data System (ADS)

    Keller, André A.

    2012-12-01

    Diffusion mechanisms in natural sciences and innovation management involve partial differential equations (PDEs). This is due to their spatio-temporal dimensions. Functional semi-discretized PDEs (with lattice spatial structures or time delays) may be even more adapted to real world problems. In the modeling process, PDEs can also formalize behaviors, such as the logistic growth of populations with migration, and the adopters’ dynamics of new products in innovation models. In biology, these events are related to variations in the environment, population densities and overcrowding, migration and spreading of humans, animals, plants and other cells and organisms. In chemical reactions, molecules of different species interact locally and diffuse. In the management of new technologies, the diffusion processes of innovations in the marketplace (e.g., the mobile phone) are a major subject. These innovation diffusion models refer mainly to epidemic models. This contribution introduces that modeling process by using PDEs and reviews the essential features of the dynamics and control in biological, chemical and new technology transfer. This paper is essentially user-oriented with basic nonlinear evolution equations, delay PDEs, several analytical and numerical methods for solving, different solutions, and with the use of mathematical packages, notebooks and codes. The computations are carried out by using the software Wolfram Mathematica®7, and C++ codes.

  15. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  16. Optoelectronic imaging of speckle using image processing method

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Wang, Pengfei

    2018-01-01

    A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.

  17. Registration of cortical surfaces using sulcal landmarks for group analysis of MEG data☆

    PubMed Central

    Joshi, Anand A.; Shattuck, David W.; Thompson, Paul M.; Leahy, Richard M.

    2010-01-01

    We present a method to register individual cortical surfaces to a surface-based brain atlas or canonical template using labeled sulcal curves as landmark constraints. To map one cortex smoothly onto another, we minimize a thin-plate spline energy defined on the surface by solving the associated partial differential equations (PDEs). By using covariant derivatives in solving these PDEs, we compute the bending energy with respect to the intrinsic geometry of the 3D surface rather than evaluating it in the flattened metric of the 2D parameter space. This covariant approach greatly reduces the confounding effects of the surface parameterization on the resulting registration. PMID:20824115

  18. Semi-analytic valuation of stock loans with finite maturity

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoping; Putri, Endah R. M.

    2015-10-01

    In this paper we study stock loans of finite maturity with different dividend distributions semi-analytically using the analytical approximation method in Zhu (2006). Stock loan partial differential equations (PDEs) are established under Black-Scholes framework. Laplace transform method is used to solve the PDEs. Optimal exit price and stock loan value are obtained in Laplace space. Values in the original time space are recovered by numerical Laplace inversion. To demonstrate the efficiency and accuracy of our semi-analytic method several examples are presented, the results are compared with those calculated using existing methods. We also present a calculation of fair service fee charged by the lender for different loan parameters.

  19. Estimating varying coefficients for partial differential equation models.

    PubMed

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  20. Monge-Ampére simulation of fourth order PDEs in two dimensions with application to elastic-electrostatic contact problems

    NASA Astrophysics Data System (ADS)

    DiPietro, Kelsey L.; Lindsay, Alan E.

    2017-11-01

    We present an efficient moving mesh method for the simulation of fourth order nonlinear partial differential equations (PDEs) in two dimensions using the Parabolic Monge-Ampére (PMA) equation. PMA methods have been successfully applied to the simulation of second order problems, but not on systems with higher order equations which arise in many topical applications. Our main application is the resolution of fine scale behavior in PDEs describing elastic-electrostatic interactions. The PDE system considered has multiple parameter dependent singular solution modalities, including finite time singularities and sharp interface dynamics. We describe how to construct a dynamic mesh algorithm for such problems which incorporates known self similar or boundary layer scalings of the underlying equation to locate and dynamically resolve fine scale solution features in these singular regimes. We find a key step in using the PMA equation for mesh generation in fourth order problems is the adoption of a high order representation of the transformation from the computational to physical mesh. We demonstrate the efficacy of the new method on a variety of examples and establish several new results and conjectures on the nature of self-similar singularity formation in higher order PDEs.

  1. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    PubMed

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  2. Building Flexible User Interfaces for Solving PDEs

    NASA Astrophysics Data System (ADS)

    Logg, Anders; Wells, Garth N.

    2010-09-01

    FEniCS is a collection of software tools for the automated solution of differential equations by finite element methods. In this note, we describe how FEniCS can be used to solve a simple nonlinear model problem with varying levels of automation. At one extreme, FEniCS provides tools for the fully automated and adaptive solution of nonlinear partial differential equations. At the other extreme, FEniCS provides a range of tools that allow the computational scientist to experiment with novel solution algorithms.

  3. Computation of partially invariant solutions for the Einstein Walker manifolds' identifying equations

    NASA Astrophysics Data System (ADS)

    Nadjafikhah, Mehdi; Jafari, Mehdi

    2013-12-01

    In this paper, partially invariant solutions (PISs) method is applied in order to obtain new four-dimensional Einstein Walker manifolds. This method is based on subgroup classification for the symmetry group of partial differential equations (PDEs) and can be regarded as the generalization of the similarity reduction method. For this purpose, those cases of PISs which have the defect structure δ=1 and are resulted from two-dimensional subalgebras are considered in the present paper. Also it is shown that the obtained PISs are distinct from the invariant solutions that obtained by similarity reduction method.

  4. Clawpack: Building an open source ecosystem for solving hyperbolic PDEs

    USGS Publications Warehouse

    Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.

    2016-01-01

    Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.

  5. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    NASA Astrophysics Data System (ADS)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  6. Student Solution Manual for Essential Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-02-01

    1. Matrices and vector spaces; 2. Vector calculus; 3. Line, surface and volume integrals; 4. Fourier series; 5. Integral transforms; 6. Higher-order ODEs; 7. Series solutions of ODEs; 8. Eigenfunction methods; 9. Special functions; 10. Partial differential equations; 11. Solution methods for PDEs; 12. Calculus of variations; 13. Integral equations; 14. Complex variables; 15. Applications of complex variables; 16. Probability; 17. Statistics.

  7. Essential Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-02-01

    1. Matrices and vector spaces; 2. Vector calculus; 3. Line, surface and volume integrals; 4. Fourier series; 5. Integral transforms; 6. Higher-order ODEs; 7. Series solutions of ODEs; 8. Eigenfunction methods; 9. Special functions; 10. Partial differential equations; 11. Solution methods for PDEs; 12. Calculus of variations; 13. Integral equations; 14. Complex variables; 15. Applications of complex variables; 16. Probability; 17. Statistics; Appendices; Index.

  8. Preliminary Study of Turbulence for a Lobed Body in Hypersonic Flight

    DTIC Science & Technology

    2013-02-22

    physics. Modest improvements in numerical algorithms, particularly those for solving partial differential equations ( PDEs ), can now be fully...dramatically.[7] In slower speed flow fields, this energy is absorbed mostly in molecular translational and rotational modes, but for hypersonic...REFERENCES 1. Génin, F., Fryxell, B. and Menon, S., “Simulation of Detonation Propagation in Turbulent Gas- Solid Reactive Mixtures”, 41 st

  9. Partial differential equations constrained combinatorial optimization on an adiabatic quantum computer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh

    Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.

  10. Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes.

    PubMed

    Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong

    2008-10-01

    We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.

  11. Analysis of nonlocal neural fields for both general and gamma-distributed connectivities

    NASA Astrophysics Data System (ADS)

    Hutt, Axel; Atay, Fatihcan M.

    2005-04-01

    This work studies the stability of equilibria in spatially extended neuronal ensembles. We first derive the model equation from statistical properties of the neuron population. The obtained integro-differential equation includes synaptic and space-dependent transmission delay for both general and gamma-distributed synaptic connectivities. The latter connectivity type reveals infinite, finite, and vanishing self-connectivities. The work derives conditions for stationary and nonstationary instabilities for both kernel types. In addition, a nonlinear analysis for general kernels yields the order parameter equation of the Turing instability. To compare the results to findings for partial differential equations (PDEs), two typical PDE-types are derived from the examined model equation, namely the general reaction-diffusion equation and the Swift-Hohenberg equation. Hence, the discussed integro-differential equation generalizes these PDEs. In the case of the gamma-distributed kernels, the stability conditions are formulated in terms of the mean excitatory and inhibitory interaction ranges. As a novel finding, we obtain Turing instabilities in fields with local inhibition-lateral excitation, while wave instabilities occur in fields with local excitation and lateral inhibition. Numerical simulations support the analytical results.

  12. Scheduled Relaxation Jacobi method: Improvements and applications

    NASA Astrophysics Data System (ADS)

    Adsuara, J. E.; Cordero-Carrión, I.; Cerdá-Durán, P.; Aloy, M. A.

    2016-09-01

    Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficiency in the reduction of the residual increases with the number of levels employed in the algorithm. Applying the original methodology to compute the algorithm parameters with more than 5 levels notably hinders obtaining optimal SRJ schemes, as the mixed (non-linear) algebraic-differential system of equations from which they result becomes notably stiff. Here we present a new methodology for obtaining the parameters of SRJ schemes that overcomes the limitations of the original algorithm and provide parameters for SRJ schemes with up to 15 levels and resolutions of up to 215 points per dimension, allowing for acceleration factors larger than several hundreds with respect to the Jacobi method for typical resolutions and, in some high resolution cases, close to 1000. Most of the success in finding SRJ optimal schemes with more than 10 levels is based on an analytic reduction of the complexity of the previously mentioned system of equations. Furthermore, we extend the original algorithm to apply it to certain systems of non-linear ePDEs.

  13. A numerical technique for linear elliptic partial differential equations in polygonal domains.

    PubMed

    Hashemzadeh, P; Fokas, A S; Smitheman, S A

    2015-03-08

    Integral representations for the solution of linear elliptic partial differential equations (PDEs) can be obtained using Green's theorem. However, these representations involve both the Dirichlet and the Neumann values on the boundary, and for a well-posed boundary-value problem (BVPs) one of these functions is unknown. A new transform method for solving BVPs for linear and integrable nonlinear PDEs usually referred to as the unified transform ( or the Fokas transform ) was introduced by the second author in the late Nineties. For linear elliptic PDEs, this method can be considered as the analogue of Green's function approach but now it is formulated in the complex Fourier plane instead of the physical plane. It employs two global relations also formulated in the Fourier plane which couple the Dirichlet and the Neumann boundary values. These relations can be used to characterize the unknown boundary values in terms of the given boundary data, yielding an elegant approach for determining the Dirichlet to Neumann map . The numerical implementation of the unified transform can be considered as the counterpart in the Fourier plane of the well-known boundary integral method which is formulated in the physical plane. For this implementation, one must choose (i) a suitable basis for expanding the unknown functions and (ii) an appropriate set of complex values, which we refer to as collocation points, at which to evaluate the global relations. Here, by employing a variety of examples we present simple guidelines of how the above choices can be made. Furthermore, we provide concrete rules for choosing the collocation points so that the condition number of the matrix of the associated linear system remains low.

  14. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1997-08-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large classmore » of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}« less

  15. Backstepping boundary control: an application to the suppression of flexible beam vibration

    NASA Astrophysics Data System (ADS)

    Boonkumkrong, Nipon; Asadamongkon, Pichai; Chinvorarat, Sinchai

    2018-01-01

    This paper presents a backstepping boundary control for vibration suppression of flexible beam. The applications are such as industrial robotic arms, space structures, etc. Most slender beams can be modelled using a shear beam. The shear beam is more complex than the conventional Euler-Bernoulli beam in that a shear deformation is additionally taken into account. At present, the application of this method in industry is rather limited, because the application of controllers to the beam is difficult. In this research, we use the shear beam with moving base as a model. The beam is cantilever type. This design method allows us to deal directly with the beam’s partial differential equations (PDEs) without resorting to approximations. An observer is used to estimate the deflections along the beam. Gain kernel of the system is calculated and then used in the control law design. The control setup is anti-collocation, i.e. a sensor is placed at the beam tip and an actuator is placed at the beam moving base. Finite difference equations are used to solve the PDEs and the partial integro-differential equations (PIDEs). Control parameters are varied to see their influences that affect the control performance. The results of the control are presented via computer simulation to verify that the control scheme is effective.

  16. Modelling atmospheric flows with adaptive moving meshes

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Smolarkiewicz, Piotr K.; Dörnbrack, Andreas

    2012-04-01

    An anelastic atmospheric flow solver has been developed that combines semi-implicit non-oscillatory forward-in-time numerics with a solution-adaptive mesh capability. A key feature of the solver is the unification of a mesh adaptation apparatus, based on moving mesh partial differential equations (PDEs), with the rigorous formulation of the governing anelastic PDEs in generalised time-dependent curvilinear coordinates. The solver development includes an enhancement of the flux-form multidimensional positive definite advection transport algorithm (MPDATA) - employed in the integration of the underlying anelastic PDEs - that ensures full compatibility with mass continuity under moving meshes. In addition, to satisfy the geometric conservation law (GCL) tensor identity under general moving meshes, a diagnostic approach is proposed based on the treatment of the GCL as an elliptic problem. The benefits of the solution-adaptive moving mesh technique for the simulation of multiscale atmospheric flows are demonstrated. The developed solver is verified for two idealised flow problems with distinct levels of complexity: passive scalar advection in a prescribed deformational flow, and the life cycle of a large-scale atmospheric baroclinic wave instability showing fine-scale phenomena of fronts and internal gravity waves.

  17. Variational formulation for dissipative continua and an incremental J-integral

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. Masiur; Dhas, Bensingh; Roy, D.; Reddy, J. N.

    2018-01-01

    Our aim is to rationally formulate a proper variational principle for dissipative (viscoplastic) solids in the presence of inertia forces. As a first step, a consistent linearization of the governing nonlinear partial differential equations (PDEs) is carried out. An additional set of complementary (adjoint) equations is then formed to recover an underlying variational structure for the augmented system of linearized balance laws. This makes it possible to introduce an incremental Lagrangian such that the linearized PDEs, including the complementary equations, become the Euler-Lagrange equations. Continuous groups of symmetries of the linearized PDEs are computed and an analysis is undertaken to identify the variational groups of symmetries of the linearized dissipative system. Application of Noether's theorem leads to the conservation laws (conserved currents) of motion corresponding to the variational symmetries. As a specific outcome, we exploit translational symmetries of the functional in the material space and recover, via Noether's theorem, an incremental J-integral for viscoplastic solids in the presence of inertia forces. Numerical demonstrations are provided through a two-dimensional plane strain numerical simulation of a compact tension specimen of annealed mild steel under dynamic loading.

  18. Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part II: Application to Partial Differential Equations

    DOE PAGES

    Pawlowski, Roger P.; Phipps, Eric T.; Salinger, Andrew G.; ...

    2012-01-01

    A template-based generic programming approach was presented in Part I of this series of papers [Sci. Program. 20 (2012), 197–219] that separates the development effort of programming a physical model from that of computing additional quantities, such as derivatives, needed for embedded analysis algorithms. In this paper, we describe the implementation details for using the template-based generic programming approach for simulation and analysis of partial differential equations (PDEs). We detail several of the hurdles that we have encountered, and some of the software infrastructure developed to overcome them. We end with a demonstration where we present shape optimization and uncertaintymore » quantification results for a 3D PDE application.« less

  19. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    PubMed Central

    Warnez, M. T.; Johnsen, E.

    2015-01-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967

  20. Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu

    2016-07-15

    In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.

  1. A Walsh Function Module Users' Manual

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2014-01-01

    The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities to simulate many challenging problems in mathematical physics. The approach was developed to better simulate hypersonic flows with shocks on unstructured grids. It is unique in that integrals and derivatives are computed using simple matrix multiplication of series representations of functions without the need for divided differences. The product of any two Walsh functions is another Walsh function - a feature that radically changes an algorithm for solving PDEs. A FORTRAN module for supporting Walsh function simulations is documented. A FORTRAN code is also documented with options for solving time-dependent problems: an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the usage of the Walsh function module including such features as operator overloading, Fast Walsh Transforms in multi-dimensions, and a Fast Walsh reciprocal.

  2. Automatic computation of the travelling wave solutions to nonlinear PDEs

    NASA Astrophysics Data System (ADS)

    Liang, Songxin; Jeffrey, David J.

    2008-05-01

    Various extensions of the tanh-function method and their implementations for finding explicit travelling wave solutions to nonlinear partial differential equations (PDEs) have been reported in the literature. However, some solutions are often missed by these packages. In this paper, a new algorithm and its implementation called TWS for solving single nonlinear PDEs are presented. TWS is implemented in MAPLE 10. It turns out that, for PDEs whose balancing numbers are not positive integers, TWS works much better than existing packages. Furthermore, TWS obtains more solutions than existing packages for most cases. Program summaryProgram title:TWS Catalogue identifier:AEAM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAM_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:1250 No. of bytes in distributed program, including test data, etc.:78 101 Distribution format:tar.gz Programming language:Maple 10 Computer:A laptop with 1.6 GHz Pentium CPU Operating system:Windows XP Professional RAM:760 Mbytes Classification:5 Nature of problem:Finding the travelling wave solutions to single nonlinear PDEs. Solution method:Based on tanh-function method. Restrictions:The current version of this package can only deal with single autonomous PDEs or ODEs, not systems of PDEs or ODEs. However, the PDEs can have any finite number of independent space variables in addition to time t. Unusual features:For PDEs whose balancing numbers are not positive integers, TWS works much better than existing packages. Furthermore, TWS obtains more solutions than existing packages for most cases. Additional comments:It is easy to use. Running time:Less than 20 seconds for most cases, between 20 to 100 seconds for some cases, over 100 seconds for few cases. References: [1] E.S. Cheb-Terrab, K. von Bulow, Comput. Phys. Comm. 90 (1995) 102. [2] S.A. Elwakil, S.K. El-Labany, M.A. Zahran, R. Sabry, Phys. Lett. A 299 (2002) 179. [3] E. Fan, Phys. Lett. 277 (2000) 212. [4] W. Malfliet, Amer. J. Phys. 60 (1992) 650. [5] W. Malfliet, W. Hereman, Phys. Scripta 54 (1996) 563. [6] E.J. Parkes, B.R. Duffy, Comput. Phys. Comm. 98 (1996) 288.

  3. Assessment of the further improved (G'/G)-expansion method and the extended tanh-method in probing exact solutions of nonlinear PDEs.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef

    2013-01-01

    The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.

  4. Workload Characterization of CFD Applications Using Partial Differential Equation Solvers

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.

  5. Dynamic grid refinement for partial differential equations on parallel computers

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids to provide adaptive resolution and fast solution of PDEs. An asynchronous version of FAC, called AFAC, that completely eliminates the bottleneck to parallelism is presented. This paper describes the advantage that this algorithm has in adaptive refinement for moving singularities on multiprocessor computers. This work is applicable to the parallel solution of two- and three-dimensional shock tracking problems.

  6. An RBF-FD closest point method for solving PDEs on surfaces

    NASA Astrophysics Data System (ADS)

    Petras, A.; Ling, L.; Ruuth, S. J.

    2018-10-01

    Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method.

  7. A finite elements method to solve the Bloch-Torrey equation applied to diffusion magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Dang Van; Li, Jing-Rebecca; Grebenkov, Denis; Le Bihan, Denis

    2014-04-01

    The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution at the cell interfaces by using double nodes. Using a transformation of the Bloch-Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit Runge-Kutta-Chebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.

  8. Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors - Performance results

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.

  9. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are determined automatically as part of the solution of the defining PDEs. Depending on the shape of the boundary segments and the physical nature of the problem to be solved on the grid, the solution of the defining PDEs may provide for rates of decay to vary along and among the boundary segments and may lend itself to interpretation in terms of one or more physical quantities associated with the problem.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzini, Gianmarco

    This document contains working annotations on the Virtual Element Method (VEM) for the approximate solution of diffusion problems with variable coefficients. To read this document you are assumed to have familiarity with concepts from the numerical discretization of Partial Differential Equations (PDEs) and, in particular, the Finite Element Method (FEM). This document is not an introduction to the FEM, for which many textbooks (also free on the internet) are available. Eventually, this document is intended to evolve into a tutorial introduction to the VEM (but this is really a long-term goal).

  11. Analytic Regularity and Polynomial Approximation of Parametric and Stochastic Elliptic PDEs

    DTIC Science & Technology

    2010-05-31

    Todor : Finite elements for elliptic problems with stochastic coefficients Comp. Meth. Appl. Mech. Engg. 194 (2005) 205-228. [14] R. Ghanem and P. Spanos...for elliptic partial differential equations with random input data SIAM J. Num. Anal. 46(2008), 2411–2442. [20] R. Todor , Robust eigenvalue computation...for smoothing operators, SIAM J. Num. Anal. 44(2006), 865– 878. [21] Ch. Schwab and R.A. Todor , Karhúnen-Loève Approximation of Random Fields by

  12. Numerical study of a matrix-free trust-region SQP method for equality constrained optimization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinkenschloss, Matthias; Ridzal, Denis; Aguilo, Miguel Antonio

    2011-12-01

    This is a companion publication to the paper 'A Matrix-Free Trust-Region SQP Algorithm for Equality Constrained Optimization' [11]. In [11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-exact) solution of linear systems. In this report, we document the numerical behavior of the algorithm applied to a variety of equality constrained optimization problems, with constraints given by partial differential equations (PDEs).

  13. Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk

    PubMed Central

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  14. Solving Partial Differential Equations on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less

  15. Fast Maximum Entropy Moment Closure Approach to Solving the Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Summy, Dustin; Pullin, Dale

    2015-11-01

    We describe a method for a moment-based solution of the Boltzmann Equation (BE). This is applicable to an arbitrary set of velocity moments whose transport is governed by partial-differential equations (PDEs) derived from the BE. The equations are unclosed, containing both higher-order moments and molecular-collision terms. These are evaluated using a maximum-entropy reconstruction of the velocity distribution function f (c , x , t) , from the known moments, within a finite-box domain of single-particle velocity (c) space. Use of a finite-domain alleviates known problems (Junk and Unterreiter, Continuum Mech. Thermodyn., 2002) concerning existence and uniqueness of the reconstruction. Unclosed moments are evaluated with quadrature while collision terms are calculated using any desired method. This allows integration of the moment PDEs in time. The high computational cost of the general method is greatly reduced by careful choice of the velocity moments, allowing the necessary integrals to be reduced from three- to one-dimensional in the case of strictly 1D flows. A method to extend this enhancement to fully 3D flows is discussed. Comparison with relaxation and shock-wave problems using the DSMC method will be presented. Partially supported by NSF grant DMS-1418903.

  16. Discussion summary: Fictitious domain methods

    NASA Technical Reports Server (NTRS)

    Glowinski, Rowland; Rodrigue, Garry

    1991-01-01

    Fictitious Domain methods are constructed in the following manner: Suppose a partial differential equation is to be solved on an open bounded set, Omega, in 2-D or 3-D. Let R be a rectangle domain containing the closure of Omega. The partial differential equation is first solved on R. Using the solution on R, the solution of the equation on Omega is then recovered by some procedure. The advantage of the fictitious domain method is that in many cases the solution of a partial differential equation on a rectangular region is easier to compute than on a nonrectangular region. Fictitious domain methods for solving elliptic PDEs on general regions are also very efficient when used on a parallel computer. The reason is that one can use the many domain decomposition methods that are available for solving the PDE on the fictitious rectangular region. The discussion on fictitious domain methods began with a talk by R. Glowinski in which he gave some examples of a variational approach to ficititious domain methods for solving the Helmholtz and Navier-Stokes equations.

  17. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using Diffpack and MPI are also presented. Chapter 2 presents the overlapping domain decomposition method for solving PDEs. It is well known that these methods are suitable for parallel processing. The first part of the chapter covers the mathematical formulation of the method as well as algorithmic and implementational issues. The second part presents a serial and a parallel implementational framework within the programming environment of Diffpack. The chapter closes by showing how to solve two application examples with the overlapping domain decomposition method using Diffpack. Chapter 3 is a tutorial about how to incorporate the multigrid solver in Diffpack. The method is illustrated by examples such as a Poisson solver, a general elliptic problem with various types of boundary conditions and a nonlinear Poisson type problem. In chapter 4 the mixed finite element is introduced. Technical issues concerning the practical implementation of the method are also presented. The main difficulties of the efficient implementation of the method, especially in two and three space dimensions on unstructured grids, are presented and addressed in the framework of Diffpack. The implementational process is illustrated by two examples, namely the system formulation of the Poisson problem and the Stokes problem. Chapter 5 is closely related to chapter 4 and addresses the problem of how to solve efficiently the linear systems arising by the application of the mixed finite element method. The proposed method is block preconditioning. Efficient techniques for implementing the method within Diffpack are presented. Optimal block preconditioners are used to solve the system formulation of the Poisson problem, the Stokes problem and the bidomain model for the electrical activity in the heart. The subject of chapter 6 is systems of PDEs. Linear and nonlinear systems are discussed. Fully implicit and operator splitting methods are presented. Special attention is paid to how existing solvers for scalar equations in Diffpack can be used to derive fully implicit solvers for systems. The proposed techniques are illustrated in terms of two applications, namely a system of PDEs modelling pipeflow and a two-phase porous media flow. Stochastic PDEs is the topic of chapter 7. The first part of the chapter is a simple introduction to stochastic PDEs; basic analytical properties are presented for simple models like transport phenomena and viscous drag forces. The second part considers the numerical solution of stochastic PDEs. Two basic techniques are presented, namely Monte Carlo and perturbation methods. The last part explains how to implement and incorporate these solvers into Diffpack. Chapter 8 describes how to operate Diffpack from Python scripts. The main goal here is to provide all the programming and technical details in order to glue the programming environment of Diffpack with visualization packages through Python and in general take advantage of the Python interfaces. Chapter 9 attempts to show how to use numerical experiments to measure the performance of various PDE solvers. The authors gathered a rather impressive list, a total of 14 PDE solvers. Solvers for problems like Poisson, Navier--Stokes, elasticity, two-phase flows and methods such as finite difference, finite element, multigrid, and gradient type methods are presented. The authors provide a series of numerical results combining various solvers with various methods in order to gain insight into their computational performance and efficiency. In Chapter 10 the authors consider a computationally challenging problem, namely the computation of the electrical activity of the human heart. After a brief introduction on the biology of the problem the authors present the mathematical models involved and a numerical method for solving them within the framework of Diffpack. Chapter 11 and 12 are closely related; actually they could have been combined in a single chapter. Chapter 11 introduces several mathematical models used in finance, based on the Black--Scholes equation. Chapter 12 considers several numerical methods like Monte Carlo, lattice methods, finite difference and finite element methods. Implementation of these methods within Diffpack is presented in the last part of the chapter. Chapter 13 presents how the finite element method is used for the modelling and analysis of elastic structures. The authors describe the structural elements of Diffpack which include popular elements such as beams and plates and examples are presented on how to use them to simulate elastic structures. Chapter 14 describes an application problem, namely the extrusion of aluminum. This is a rather\\endcolumn complicated process which involves non-Newtonian flow, heat transfer and elasticity. The authors describe the systems of PDEs modelling the underlying process and use a finite element method to obtain a numerical solution. The implementation of the numerical method in Diffpack is presented along with some applications. The last chapter, chapter 15, focuses on mathematical and numerical models of systems of PDEs governing geological processes in sedimentary basins. The underlying mathematical model is solved using the finite element method within a fully implicit scheme. The authors discuss the implementational issues involved within Diffpack and they present results from several examples. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall the book is well written, the subject of each chapter is well presented and can serve as a reference for graduate students, researchers and engineers who are interested in the numerical solution of partial differential equations modelling various applications.

  18. Phosphodiesterase from Daboia russelli russelli venom: purification, partial characterization and inhibition of platelet aggregation.

    PubMed

    Mitra, Jyotirmoy; Bhattacharyya, Debasish

    2014-09-01

    Phosphodiesterases (PDEs) belong to a super-family of enzymes that have multiple roles in the metabolism of extracellular nucleotides and regulation of nucleotide-based intercellular signalling. A PDE from Russell's viper (Daboia russelli russelli) venom (DR-PDE) was purified by gel filtration, ion exchange and affinity chromatographies. Homogeneity of the preparation was verified by SDS-PAGE, SE-HPLC and mass spectrometry. It was free from 5'-nucleotidase, alkaline phosphatase and protease activities. Identity of the enzyme was ensured from partial sequence homology with other PDEs. DR-PDE was inactivated by polyvalent anti-venom serum and metal chelators. The enzyme was partially inhibited by the root extracts of four medicinal plants but remained unaffected by inhibitors of intracellular PDEs. DR-PDE hydrolyses ADP and thus, strongly inhibits ADP-induced platelet aggregation in human platelet rich plasma. This study leads to better understanding of a component of Russell's viper venom that affects homoeostatic system of the victim. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Parameter Estimation of Partial Differential Equation Models.

    PubMed

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.

  20. A finite elements method to solve the Bloch–Torrey equation applied to diffusion magnetic resonance imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dang Van; NeuroSpin, Bat145, Point Courrier 156, CEA Saclay Center, 91191 Gif-sur-Yvette Cedex; Li, Jing-Rebecca, E-mail: jingrebecca.li@inria.fr

    2014-04-15

    The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch–Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution atmore » the cell interfaces by using double nodes. Using a transformation of the Bloch–Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit Runge–Kutta–Chebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.« less

  1. Basis adaptation and domain decomposition for steady partial differential equations with random coefficients

    DOE PAGES

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    2017-09-04

    In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less

  2. Continuum Modeling and Control of Large Nonuniform Wireless Networks via Nonlinear Partial Differential Equations

    DOE PAGES

    Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; ...

    2013-01-01

    We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less

  3. Basis adaptation and domain decomposition for steady-state partial differential equations with random coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numericalmore » experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less

  4. BOOK REVIEW: Partial Differential Equations in General Relativity

    NASA Astrophysics Data System (ADS)

    Halburd, Rodney G.

    2008-11-01

    Although many books on general relativity contain an overview of the relevant background material from differential geometry, very little attention is usually paid to background material from the theory of differential equations. This is understandable in a first course on relativity but it often limits the kinds of problems that can be studied rigorously. Einstein's field equations lie at the heart of general relativity. They are a system of partial differential equations (PDEs) relating the curvature of spacetime to properties of matter. A central part of most problems in general relativity is to extract information about solutions of these equations. Most standard texts achieve this by studying exact solutions or numerical and analytical approximations. In the book under review, Alan Rendall emphasises the role of rigorous qualitative methods in general relativity. There has long been a need for such a book, giving a broad overview of the relevant background from the theory of partial differential equations, and not just from differential geometry. It should be noted that the book also covers the basic theory of ordinary differential equations. Although there are many good books on the rigorous theory of PDEs, methods related to the Einstein equations deserve special attention, not only because of the complexity and importance of these equations, but because these equations do not fit into any of the standard classes of equations (elliptic, parabolic, hyperbolic) that one typically encounters in a course on PDEs. Even specifying exactly what ones means by a Cauchy problem in general relativity requires considerable care. The main problem here is that the manifold on which the solution is defined is determined by the solution itself. This means that one does not simply define data on a submanifold. Rendall's book gives a good overview of applications and results from the qualitative theory of PDEs to general relativity. It would be impossible to give detailed proofs of the main results in a self-contained book of reasonable length. Instead, the author concentrates on providing key definitions together with their motivations and explaining the main results, tools and difficulties for each topic. There is a section at the end of each chapter which points the reader to appropriate literature for further details. In this way, Rendall manages to describe the central issues concerning many subjects. Each of the twelve chapters (except for one on functional analysis) contains an important application to general relativity. For example, the chapter on ODEs discusses Bianchi spacetimes and the Einstein constraint equations are discussed in the chapter on elliptic equations. In the chapter on hyperbolic equations, the Einstein dust system is considered in the context of Leray hyperbolicity and Gowdy spacetimes are analysed in the section on Fuchsian methods. The book concludes with four chapters purely on applications to general relativity, namely The Cauchy problem for the Einstein equations, Global results, The Einstein-Vlasov system and The Einstein-scalar field systems. On reading this book, someone with a basic understanding of relativity could rapidly develop a picture, painted in broad brush strokes, of the main problems and tools in the area. It would be particularly useful for someone, such as a graduate student, just entering the field, or for someone who wants a general idea of the main issues. For those who want to go further, a lot more reading will be necessary but the author has sign-posted appropriate entry points to the literature throughout the book. Ultimately, this is a very technical subject and this book can only provide an overview. I believe that Alan Rendall's book is a valuable contribution to the field of mathematical relativity.

  5. Modeling and vibration control of the flapping-wing robotic aircraft with output constraint

    NASA Astrophysics Data System (ADS)

    He, Wei; Mu, Xinxing; Chen, Yunan; He, Xiuyu; Yu, Yao

    2018-06-01

    In this paper, we propose the boundary control for undesired vibrations suppression with output constraint of the flapping-wing robotic aircraft (FWRA). We also present the dynamics of the flexible wing of FWRA with governing equations and boundary conditions, which are partial differential equations (PDEs) and ordinary differential equations (ODEs), respectively. An energy-based barrier Lyapunov function is introduced to analyze the system stability and prevent violation of output constraint. With the effect of the proposed boundary controller, distributed states of the system remain in the constrained spaces. Then the IBLF-based boundary controls are proposed to assess the stability of the FWRA in the presence of output constraint.

  6. Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation.

    PubMed

    Costin, Ovidiu; Luo, Guo; Tanveer, Saleh

    2008-08-13

    We describe how the Borel summability of a divergent asymptotic expansion can be expanded and applied to nonlinear partial differential equations (PDEs). While Borel summation does not apply for non-analytic initial data, the present approach generates an integral equation (IE) applicable to much more general data. We apply these concepts to the three-dimensional Navier-Stokes (NS) system and show how the IE approach can give rise to local existence proofs. In this approach, the global existence problem in three-dimensional NS systems, for specific initial condition and viscosity, becomes a problem of asymptotics in the variable p (dual to 1/t or some positive power of 1/t). Furthermore, the errors in numerical computations in the associated IE can be controlled rigorously, which is very important for nonlinear PDEs such as NS when solutions are not known to exist globally.Moreover, computation of the solution of the IE over an interval [0,p0] provides sharper control of its p-->infinity behaviour. Preliminary numerical computations give encouraging results.

  7. Maximum-entropy reconstruction method for moment-based solution of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Summy, Dustin; Pullin, Dale

    2013-11-01

    We describe a method for a moment-based solution of the Boltzmann equation. This starts with moment equations for a 10 + 9 N , N = 0 , 1 , 2 . . . -moment representation. The partial-differential equations (PDEs) for these moments are unclosed, containing both higher-order moments and molecular-collision terms. These are evaluated using a maximum-entropy construction of the velocity distribution function f (c , x , t) , using the known moments, within a finite-box domain of single-particle-velocity (c) space. Use of a finite-domain alleviates known problems (Junk and Unterreiter, Continuum Mech. Thermodyn., 2002) concerning existence and uniqueness of the reconstruction. Unclosed moments are evaluated with quadrature while collision terms are calculated using a Monte-Carlo method. This allows integration of the moment PDEs in time. Illustrative examples will include zero-space- dimensional relaxation of f (c , t) from a Mott-Smith-like initial condition toward equilibrium and one-space dimensional, finite Knudsen number, planar Couette flow. Comparison with results using the direct-simulation Monte-Carlo method will be presented.

  8. An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R Tonks; Derek R Gaston; Paul C Millett

    2012-01-01

    The phase field approach is a powerful and popular method for modeling microstructure evolution. In this work, advanced numerical tools are used to create a phase field framework that facilitates rapid model development. This framework, called MARMOT, is based on Idaho National Laboratory's finite element Multiphysics Object-Oriented Simulation Environment. In MARMOT, the system of phase field partial differential equations (PDEs) are solved simultaneously with PDEs describing additional physics, such as solid mechanics and heat conduction, using the Jacobian-Free Newton Krylov Method. An object-oriented architecture is created by taking advantage of commonalities in phase fields models to facilitate development of newmore » models with very little written code. In addition, MARMOT provides access to mesh and time step adaptivity, reducing the cost for performing simulations with large disparities in both spatial and temporal scales. In this work, phase separation simulations are used to show the numerical performance of MARMOT. Deformation-induced grain growth and void growth simulations are included to demonstrate the muliphysics capability.« less

  9. Concentration-driven models revisited: towards a unified framework to model settling tanks in water resource recovery facilities.

    PubMed

    Torfs, Elena; Martí, M Carmen; Locatelli, Florent; Balemans, Sophie; Bürger, Raimund; Diehl, Stefan; Laurent, Julien; Vanrolleghem, Peter A; François, Pierre; Nopens, Ingmar

    2017-02-01

    A new perspective on the modelling of settling behaviour in water resource recovery facilities is introduced. The ultimate goal is to describe in a unified way the processes taking place both in primary settling tanks (PSTs) and secondary settling tanks (SSTs) for a more detailed operation and control. First, experimental evidence is provided, pointing out distributed particle properties (such as size, shape, density, porosity, and flocculation state) as an important common source of distributed settling behaviour in different settling unit processes and throughout different settling regimes (discrete, hindered and compression settling). Subsequently, a unified model framework that considers several particle classes is proposed in order to describe distributions in settling behaviour as well as the effect of variations in particle properties on the settling process. The result is a set of partial differential equations (PDEs) that are valid from dilute concentrations, where they correspond to discrete settling, to concentrated suspensions, where they correspond to compression settling. Consequently, these PDEs model both PSTs and SSTs.

  10. One shot methods for optimal control of distributed parameter systems 1: Finite dimensional control

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1991-01-01

    The efficient numerical treatment of optimal control problems governed by elliptic partial differential equations (PDEs) and systems of elliptic PDEs, where the control is finite dimensional is discussed. Distributed control as well as boundary control cases are discussed. The main characteristic of the new methods is that they are designed to solve the full optimization problem directly, rather than accelerating a descent method by an efficient multigrid solver for the equations involved. The methods use the adjoint state in order to achieve efficient smoother and a robust coarsening strategy. The main idea is the treatment of the control variables on appropriate scales, i.e., control variables that correspond to smooth functions are solved for on coarse grids depending on the smoothness of these functions. Solution of the control problems is achieved with the cost of solving the constraint equations about two to three times (by a multigrid solver). Numerical examples demonstrate the effectiveness of the method proposed in distributed control case, pointwise control and boundary control problems.

  11. Compatible Spatial Discretizations for Partial Differential Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Douglas, N, ed.

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide varietymore » of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical simulations. + Identification and design of compatible spatial discretizations of PDEs, their classification, analysis, and relations. + Relationships between different compatible spatial discretization methods and concepts which have been developed; + Impact of compatible spatial discretizations upon physical fidelity, verification and validation of simulations, especially in large-scale, multiphysics settings. + How solvers address the demands placed upon them by compatible spatial discretizations. This report provides information about the program and abstracts of all the presentations.« less

  12. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.

    2018-02-01

    A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.

  13. A Solution Space for a System of Null-State Partial Differential Equations: Part 1

    NASA Astrophysics Data System (ADS)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the first of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). In CFT, these are null-state equations and conformal Ward identities. They govern partition functions for the continuum limit of a statistical cluster or loop-gas model, such as percolation, or more generally the Potts models and O( n) models, at the statistical mechanical critical point. (SLE partition functions also satisfy these equations.) For such a lattice model in a polygon with its 2 N sides exhibiting a free/fixed side-alternating boundary condition , this partition function is proportional to the CFT correlation function where the w i are the vertices of and where is a one-leg corner operator. (Partition functions for "crossing events" in which clusters join the fixed sides of in some specified connectivity are linear combinations of such correlation functions.) When conformally mapped onto the upper half-plane, methods of CFT show that this correlation function satisfies the system of PDEs that we consider. In this first article, we use methods of analysis to prove that the dimension of this solution space is no more than C N , the Nth Catalan number. While our motivations are based in CFT, our proofs are completely rigorous. This proof is contained entirely within this article, except for the proof of Lemma 14, which constitutes the second article (Flores and Kleban, in Commun Math Phys, arXiv:1404.0035, 2014). In the third article (Flores and Kleban, in Commun Math Phys, arXiv:1303.7182, 2013), we use the results of this article to prove that the solution space of this system of PDEs has dimension C N and is spanned by solutions constructed with the CFT Coulomb gas (contour integral) formalism. In the fourth article (Flores and Kleban, in Commun Math Phys, arXiv:1405.2747, 2014), we prove further CFT-related properties about these solutions, some useful for calculating cluster-crossing probabilities of critical lattice models in polygons.

  14. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.

    PubMed

    Harrison, Jonathan U; Yates, Christian A

    2016-09-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.

  15. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics

    PubMed Central

    Yates, Christian A.

    2016-01-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction–diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. PMID:27628171

  16. Dynamic least-squares kernel density modeling of Fokker-Planck equations with application to neural population.

    PubMed

    Shotorban, Babak

    2010-04-01

    The dynamic least-squares kernel density (LSQKD) model [C. Pantano and B. Shotorban, Phys. Rev. E 76, 066705 (2007)] is used to solve the Fokker-Planck equations. In this model the probability density function (PDF) is approximated by a linear combination of basis functions with unknown parameters whose governing equations are determined by a global least-squares approximation of the PDF in the phase space. In this work basis functions are set to be Gaussian for which the mean, variance, and covariances are governed by a set of partial differential equations (PDEs) or ordinary differential equations (ODEs) depending on what phase-space variables are approximated by Gaussian functions. Three sample problems of univariate double-well potential, bivariate bistable neurodynamical system [G. Deco and D. Martí, Phys. Rev. E 75, 031913 (2007)], and bivariate Brownian particles in a nonuniform gas are studied. The LSQKD is verified for these problems as its results are compared against the results of the method of characteristics in nondiffusive cases and the stochastic particle method in diffusive cases. For the double-well potential problem it is observed that for low to moderate diffusivity the dynamic LSQKD well predicts the stationary PDF for which there is an exact solution. A similar observation is made for the bistable neurodynamical system. In both these problems least-squares approximation is made on all phase-space variables resulting in a set of ODEs with time as the independent variable for the Gaussian function parameters. In the problem of Brownian particles in a nonuniform gas, this approximation is made only for the particle velocity variable leading to a set of PDEs with time and particle position as independent variables. Solving these PDEs, a very good performance by LSQKD is observed for a wide range of diffusivities.

  17. Accelerating solutions of one-dimensional unsteady PDEs with GPU-based swept time-space decomposition

    NASA Astrophysics Data System (ADS)

    Magee, Daniel J.; Niemeyer, Kyle E.

    2018-03-01

    The expedient design of precision components in aerospace and other high-tech industries requires simulations of physical phenomena often described by partial differential equations (PDEs) without exact solutions. Modern design problems require simulations with a level of resolution difficult to achieve in reasonable amounts of time-even in effectively parallelized solvers. Though the scale of the problem relative to available computing power is the greatest impediment to accelerating these applications, significant performance gains can be achieved through careful attention to the details of memory communication and access. The swept time-space decomposition rule reduces communication between sub-domains by exhausting the domain of influence before communicating boundary values. Here we present a GPU implementation of the swept rule, which modifies the algorithm for improved performance on this processing architecture by prioritizing use of private (shared) memory, avoiding interblock communication, and overwriting unnecessary values. It shows significant improvement in the execution time of finite-difference solvers for one-dimensional unsteady PDEs, producing speedups of 2 - 9 × for a range of problem sizes, respectively, compared with simple GPU versions and 7 - 300 × compared with parallel CPU versions. However, for a more sophisticated one-dimensional system of equations discretized with a second-order finite-volume scheme, the swept rule performs 1.2 - 1.9 × worse than a standard implementation for all problem sizes.

  18. The Kadomtsev{endash}Petviashvili equation as a source of integrable model equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1996-12-01

    A new integrable and nonlinear partial differential equation (PDE) in 2+1 dimensions is obtained, by an asymptotically exact reduction method based on Fourier expansion and spatiotemporal rescaling, from the Kadomtsev{endash}Petviashvili equation. The integrability property is explicitly demonstrated, by exhibiting the corresponding Lax pair, that is obtained by applying the reduction technique to the Lax pair of the Kadomtsev{endash}Petviashvili equation. This model equation is likely to be of applicative relevance, because it may be considered a consistent approximation of a large class of nonlinear evolution PDEs. {copyright} {ital 1996 American Institute of Physics.}

  19. Invariant and partially-invariant solutions of the equations describing a non-stationary and isentropic flow for an ideal and compressible fluid in (3 + 1) dimensions

    NASA Astrophysics Data System (ADS)

    Grundland, A. M.; Lalague, L.

    1996-04-01

    This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.

  20. Efficient Development of High Fidelity Structured Volume Grids for Hypersonic Flow Simulations

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2003-01-01

    A new technique for the control of grid line spacing and intersection angles of a structured volume grid, using elliptic partial differential equations (PDEs) is presented. Existing structured grid generation algorithms make use of source term hybridization to provide control of grid lines, imposing orthogonality implicitly at the boundary and explicitly on the interior of the domain. A bridging function between the two types of grid line control is typically used to blend the different orthogonality formulations. It is shown that utilizing such a bridging function with source term hybridization can result in the excessive use of computational resources and diminishes robustness. A new approach, Anisotropic Lagrange Based Trans-Finite Interpolation (ALBTFI), is offered as a replacement to source term hybridization. The ALBTFI technique captures the essence of the desired grid controls while improving the convergence rate of the elliptic PDEs when compared with source term hybridization. Grid generation on a blunt cone and a Shuttle Orbiter is used to demonstrate and assess the ALBTFI technique, which is shown to be as much as 50% faster, more robust, and produces higher quality grids than source term hybridization.

  1. Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Xiao-Chuan; Keyes, David; Yang, Chao

    2014-09-29

    The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementationmore » since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.« less

  2. A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Lu, Jinling; Yuan, Shifei; Yang, Jun; Zhou, Xuan

    2017-03-01

    This paper proposes a novel parameter identification method for the lithium-ion (Li-ion) battery equivalent circuit model (ECM) considering the electrochemical properties. An improved pseudo two-dimension (P2D) model is established on basis of partial differential equations (PDEs), since the electrolyte potential is simplified from the nonlinear to linear expression while terminal voltage can be divided into the electrolyte potential, open circuit voltage (OCV), overpotential of electrodes, internal resistance drop, and so on. The model order reduction process is implemented by the simplification of the PDEs using the Laplace transform, inverse Laplace transform, Pade approximation, etc. A unified second order transfer function between cell voltage and current is obtained for the comparability with that of ECM. The final objective is to obtain the relationship between the ECM resistances/capacitances and electrochemical parameters such that in various conditions, ECM precision could be improved regarding integration of battery interior properties for further applications, e.g., SOC estimation. Finally simulation and experimental results prove the correctness and validity of the proposed methodology.

  3. Preface of the "Symposium on Mathematical Models and Methods to investigate Heterogeneity in Cell and Cell Population Biology"

    NASA Astrophysics Data System (ADS)

    Clairambault, Jean

    2016-06-01

    This session investigates hot topics related to mathematical representations of cell and cell population dynamics in biology and medicine, in particular, but not only, with applications to cancer. Methods in mathematical modelling and analysis, and in statistical inference using single-cell and cell population data, should contribute to focus this session on heterogeneity in cell populations. Among other methods are proposed: a) Intracellular protein dynamics and gene regulatory networks using ordinary/partial/delay differential equations (ODEs, PDEs, DDEs); b) Representation of cell population dynamics using agent-based models (ABMs) and/or PDEs; c) Hybrid models and multiscale models to integrate single-cell dynamics into cell population behaviour; d) Structured cell population dynamics and asymptotic evolution w.r.t. relevant traits; e) Heterogeneity in cancer cell populations: origin, evolution, phylogeny and methods of reconstruction; f) Drug resistance as an evolutionary phenotype: predicting and overcoming it in therapeutics; g) Theoretical therapeutic optimisation of combined drug treatments in cancer cell populations and in populations of other organisms, such as bacteria.

  4. DVS-SOFTWARE: An Effective Tool for Applying Highly Parallelized Hardware To Computational Geophysics

    NASA Astrophysics Data System (ADS)

    Herrera, I.; Herrera, G. S.

    2015-12-01

    Most geophysical systems are macroscopic physical systems. The behavior prediction of such systems is carried out by means of computational models whose basic models are partial differential equations (PDEs) [1]. Due to the enormous size of the discretized version of such PDEs it is necessary to apply highly parallelized super-computers. For them, at present, the most efficient software is based on non-overlapping domain decomposition methods (DDM). However, a limiting feature of the present state-of-the-art techniques is due to the kind of discretizations used in them. Recently, I. Herrera and co-workers using 'non-overlapping discretizations' have produced the DVS-Software which overcomes this limitation [2]. The DVS-software can be applied to a great variety of geophysical problems and achieves very high parallel efficiencies (90%, or so [3]). It is therefore very suitable for effectively applying the most advanced parallel supercomputers available at present. In a parallel talk, in this AGU Fall Meeting, Graciela Herrera Z. will present how this software is being applied to advance MOD-FLOW. Key Words: Parallel Software for Geophysics, High Performance Computing, HPC, Parallel Computing, Domain Decomposition Methods (DDM)REFERENCES [1]. Herrera Ismael and George F. Pinder, Mathematical Modelling in Science and Engineering: An axiomatic approach", John Wiley, 243p., 2012. [2]. Herrera, I., de la Cruz L.M. and Rosas-Medina A. "Non Overlapping Discretization Methods for Partial, Differential Equations". NUMER METH PART D E, 30: 1427-1454, 2014, DOI 10.1002/num 21852. (Open source) [3]. Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  5. Highly Scalable Asynchronous Computing Method for Partial Differential Equations: A Path Towards Exascale

    NASA Astrophysics Data System (ADS)

    Konduri, Aditya

    Many natural and engineering systems are governed by nonlinear partial differential equations (PDEs) which result in a multiscale phenomena, e.g. turbulent flows. Numerical simulations of these problems are computationally very expensive and demand for extreme levels of parallelism. At realistic conditions, simulations are being carried out on massively parallel computers with hundreds of thousands of processing elements (PEs). It has been observed that communication between PEs as well as their synchronization at these extreme scales take up a significant portion of the total simulation time and result in poor scalability of codes. This issue is likely to pose a bottleneck in scalability of codes on future Exascale systems. In this work, we propose an asynchronous computing algorithm based on widely used finite difference methods to solve PDEs in which synchronization between PEs due to communication is relaxed at a mathematical level. We show that while stability is conserved when schemes are used asynchronously, accuracy is greatly degraded. Since message arrivals at PEs are random processes, so is the behavior of the error. We propose a new statistical framework in which we show that average errors drop always to first-order regardless of the original scheme. We propose new asynchrony-tolerant schemes that maintain accuracy when synchronization is relaxed. The quality of the solution is shown to depend, not only on the physical phenomena and numerical schemes, but also on the characteristics of the computing machine. A novel algorithm using remote memory access communications has been developed to demonstrate excellent scalability of the method for large-scale computing. Finally, we present a path to extend this method in solving complex multi-scale problems on Exascale machines.

  6. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less

  7. Brain Surface Conformal Parameterization Using Riemann Surface Structure

    PubMed Central

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung

    2011-01-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336

  8. Modern aspects of homogeneous-heterogeneous reactions and variable thickness in nanofluids through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Ahmed, Sohail; Muhammad, Taseer; Alsaedi, Ahmed

    2017-10-01

    This article examines homogeneous-heterogeneous reactions and internal heat generation in Darcy-Forchheimer flow of nanofluids with different base fluids. Flow is generated due to a nonlinear stretchable surface of variable thickness. The characteristics of nanofluid are explored using CNTs (single and multi walled carbon nanotubes). Equal diffusion coefficients are considered for both reactants and auto catalyst. The conversion of partial differential equations (PDEs) to ordinary differential equations (ODEs) is done via appropriate transformations. Optimal homotopy approach is implemented for solutions development of governing problems. Averaged square residual errors are computed. The optimal solution expressions of velocity, temperature and concentration are explored through plots by using several values of physical parameters. Further the coefficient of skin friction and local Nusselt number are examined through graphs.

  9. Conservation laws and conserved quantities for (1+1)D linearized Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Carvalho, Cindy; Harley, Charis

    2017-05-01

    Conservation laws and physical conserved quantities for the (1+1)D linearized Boussinesq equations at a constant water depth are presented. These equations describe incompressible, inviscid, irrotational fluid flow in the form of a non steady solitary wave. A systematic multiplier approach is used to obtain the conservation laws of the system of third order partial differential equations (PDEs) in dimensional form. Physical conserved quantities are derived by integrating the conservation laws in the direction of wave propagation and imposing decaying boundary conditions in the horizontal direction. One of these is a newly discovered conserved quantity which relates to an energy flux density.

  10. Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2017-10-01

    This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.

  11. Computationally efficient statistical differential equation modeling using homogenization

    USGS Publications Warehouse

    Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.

    2013-01-01

    Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.

  12. Interface modeling in incompressible media using level sets in Escript

    NASA Astrophysics Data System (ADS)

    Gross, L.; Bourgouin, L.; Hale, A. J.; Mühlhaus, H.-B.

    2007-08-01

    We use a finite element (FEM) formulation of the level set method to model geological fluid flow problems involving interface propagation. Interface problems are ubiquitous in geophysics. Here we focus on a Rayleigh-Taylor instability, namely mantel plumes evolution, and the growth of lava domes. Both problems require the accurate description of the propagation of an interface between heavy and light materials (plume) or between high viscous lava and low viscous air (lava dome), respectively. The implementation of the models is based on Escript which is a Python module for the solution of partial differential equations (PDEs) using spatial discretization techniques such as FEM. It is designed to describe numerical models in the language of PDEs while using computational components implemented in C and C++ to achieve high performance for time-intensive, numerical calculations. A critical step in the solution geological flow problems is the solution of the velocity-pressure problem. We describe how the Escript module can be used for a high-level implementation of an efficient variant of the well-known Uzawa scheme. We begin with a brief outline of the Escript modules and then present illustrations of its usage for the numerical solutions of the problems mentioned above.

  13. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  14. Inversion of potential field data using the finite element method on parallel computers

    NASA Astrophysics Data System (ADS)

    Gross, L.; Altinay, C.; Shaw, S.

    2015-11-01

    In this paper we present a formulation of the joint inversion of potential field anomaly data as an optimization problem with partial differential equation (PDE) constraints. The problem is solved using the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the Hessian operator of the regularization and cross-gradient component of the cost function as preconditioner. We will show that each iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects and for the application of the preconditioner. In extension to the traditional discrete formulation the BFGS method is applied to continuous descriptions of the unknown physical properties in combination with an appropriate integral form of the dot product. The PDEs can easily be solved using standard conforming finite element methods (FEMs) with potentially different resolutions. For two examples we demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE discretization and that as a consequence the method is weakly scalable with the number of cells on parallel computers. We also show a comparison with the UBC-GIF GRAV3D code.

  15. Correspondence between discrete and continuous models of excitable media: trigger waves

    NASA Technical Reports Server (NTRS)

    Chernyak, Y. B.; Feldman, A. B.; Cohen, R. J.

    1997-01-01

    We present a theoretical framework for relating continuous partial differential equation (PDE) models of excitable media to discrete cellular automata (CA) models on a randomized lattice. These relations establish a quantitative link between the CA model and the specific physical system under study. We derive expressions for the CA model's plane wave speed, critical curvature, and effective diffusion constant in terms of the model's internal parameters (the interaction radius, excitation threshold, and time step). We then equate these expressions to the corresponding quantities obtained from solution of the PDEs (for a fixed excitability). This yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict our analysis to "trigger" wave solutions obtained in the limiting case of a two-dimensional excitable medium with no recovery processes. We tested the correspondence between our CA model and two PDE models (the FitzHugh-Nagumo medium and a medium with a "sawtooth" nonlinear reaction source) and found good agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is actually controlled by a small number of parameters.

  16. Modulation of kinetic Alfvén waves in an intermediate low-beta magnetoplasma

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debjani; Misra, A. P.

    2018-05-01

    We study the amplitude modulation of nonlinear kinetic Alfvén waves (KAWs) in an intermediate low-beta magnetoplasma. Starting from a set of fluid equations coupled to the Maxwell's equations, we derive a coupled set of nonlinear partial differential equations (PDEs) which govern the evolution of KAW envelopes in the plasma. The modulational instability (MI) of such KAW envelopes is then studied by a nonlinear Schrödinger equation derived from the coupled PDEs. It is shown that the KAWs can evolve into bright envelope solitons or can undergo damping depending on whether the characteristic ratio ( α ) of the Alfvén to ion-acoustic speeds remains above or below a critical value. The parameter α is also found to shift the MI domains around the k x k z plane, where k x ( k z ) is the KAW number perpendicular (parallel) to the external magnetic field. The growth rate of MI, as well as the frequency shift and the energy transfer rate, are obtained and analyzed. The results can be useful for understanding the existence and formation of bright and dark envelope solitons, or damping of KAW envelopes in space plasmas, e.g., interplanetary space, solar winds, etc.

  17. Infiltration on sloping terrain and its role on runoff generation and slope stability

    NASA Astrophysics Data System (ADS)

    Loáiciga, Hugo A.; Johnson, J. Michael

    2018-06-01

    A modified Green-and-Ampt model is formulated to quantify infiltration on sloping terrain underlain by homogeneous soil wetted by surficial water application. This paper's theory for quantifying infiltration relies on the mathematical statement of the coupled partial differential equations (pdes) governing infiltration and runoff. These pdes are solved by employing an explicit finite-difference numerical method that yields the infiltration, the infiltration rate, the depth to the wetting front, the rate of runoff, and the depth of runoff everywhere on the slope during external wetting. Data inputs consist of a water application rate or the rainfall hyetograph of a storm of arbitrary duration, soil hydraulic characteristics and antecedent moisture, and the slope's hydraulic and geometric characteristics. The presented theory predicts the effect an advancing wetting front has on slope stability with respect to translational sliding. This paper's theory also develops the 1D pde governing suspended sediment transport and slope degradation caused by runoff influenced by infiltration. Three examples illustrate the application of the developed theory to calculate infiltration and runoff on a slope and their role on the stability of cohesive and cohesionless soils forming sloping terrain.

  18. State-of-charge estimation in lithium-ion batteries: A particle filter approach

    NASA Astrophysics Data System (ADS)

    Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.

    2016-11-01

    The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.

  19. Mapping implicit spectral methods to distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Overman, Andrea L.; Vanrosendale, John

    1991-01-01

    Spectral methods were proven invaluable in numerical simulation of PDEs (Partial Differential Equations), but the frequent global communication required raises a fundamental barrier to their use on highly parallel architectures. To explore this issue, a 3-D implicit spectral method was implemented on an Intel hypercube. Utilization of about 50 percent was achieved on a 32 node iPSC/860 hypercube, for a 64 x 64 x 64 Fourier-spectral grid; finer grids yield higher utilizations. Chebyshev-spectral grids are more problematic, since plane-relaxation based multigrid is required. However, by using a semicoarsening multigrid algorithm, and by relaxing all multigrid levels concurrently, relatively high utilizations were also achieved in this harder case.

  20. Rigorous Numerics for ill-posed PDEs: Periodic Orbits in the Boussinesq Equation

    NASA Astrophysics Data System (ADS)

    Castelli, Roberto; Gameiro, Marcio; Lessard, Jean-Philippe

    2018-04-01

    In this paper, we develop computer-assisted techniques for the analysis of periodic orbits of ill-posed partial differential equations. As a case study, our proposed method is applied to the Boussinesq equation, which has been investigated extensively because of its role in the theory of shallow water waves. The idea is to use the symmetry of the solutions and a Newton-Kantorovich type argument (the radii polynomial approach) to obtain rigorous proofs of existence of the periodic orbits in a weighted ℓ1 Banach space of space-time Fourier coefficients with exponential decay. We present several computer-assisted proofs of the existence of periodic orbits at different parameter values.

  1. Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Akram, Ghazala; Mahak, Nadia

    2018-06-01

    The nonlinear Schrödinger equation (NLSE) with the aid of three order dispersion terms is investigated to find the exact solutions via the extended (G'/G2)-expansion method and the first integral method. Many exact traveling wave solutions, such as trigonometric, hyperbolic, rational, soliton and complex function solutions, are characterized with some free parameters of the problem studied. It is corroborated that the proposed techniques are manageable, straightforward and powerful tools to find the exact solutions of nonlinear partial differential equations (PDEs). Some figures are plotted to describe the propagation of traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions.

  2. Aeroelastic oscillations of a cantilever with structural nonlinearities: theory and numerical simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Brandon; Rocha da Costa, Leandro Jose; Poirel, Dominique

    Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from themore » fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.« less

  3. Optical solitons, nonlinear self-adjointness and conservation laws for the cubic nonlinear Shrödinger's equation with repulsive delta potential

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi

    2017-11-01

    In this paper, the complex envelope function ansatz method is used to acquire the optical solitons to the cubic nonlinear Shrödinger's equation with repulsive delta potential (δ-NLSE). The method reveals dark and bright optical solitons. The necessary constraint conditions which guarantee the existence of the solitons are also presented. We studied the δ-NLSE by analyzing a system of partial differential equations (PDEs) obtained by decomposing the equation into real and imaginary components. We derive the Lie point symmetry generators of the system and prove that the system is nonlinearly self-adjoint with an explicit form of a differential substitution satisfying the nonlinear self-adjoint condition. Then we use these facts to establish a set of conserved vectors for the system using the general Cls theorem presented by Ibragimov. Some interesting figures for the acquired solutions are also presented.

  4. Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy

    NASA Astrophysics Data System (ADS)

    Sajid, T.; Sagheer, M.; Hussain, S.; Bilal, M.

    2018-03-01

    The present article is about the study of Darcy-Forchheimer flow of Maxwell nanofluid over a linear stretching surface. Effects like variable thermal conductivity, activation energy, nonlinear thermal radiation is also incorporated for the analysis of heat and mass transfer. The governing nonlinear partial differential equations (PDEs) with convective boundary conditions are first converted into the nonlinear ordinary differential equations (ODEs) with the help of similarity transformation, and then the resulting nonlinear ODEs are solved with the help of shooting method and MATLAB built-in bvp4c solver. The impact of different physical parameters like Brownian motion, thermophoresis parameter, Reynolds number, magnetic parameter, nonlinear radiative heat flux, Prandtl number, Lewis number, reaction rate constant, activation energy and Biot number on Nusselt number, velocity, temperature and concentration profile has been discussed. It is viewed that both thermophoresis parameter and activation energy parameter has ascending effect on the concentration profile.

  5. Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling

    PubMed Central

    Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira

    2015-01-01

    Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology. PMID:26356082

  6. Partial differential equation transform — Variational formulation and Fourier analysis

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform’s controllable frequency localization obtained by adjusting the order of PDEs. The frequency selection is achieved either by diffusion coefficients or by propagation time. Finally, we explore a large number of practical applications to further demonstrate the utility of proposed PDE transform. PMID:22207904

  7. Fast RBF OGr for solving PDEs on arbitrary surfaces

    NASA Astrophysics Data System (ADS)

    Piret, Cécile; Dunn, Jarrett

    2016-10-01

    The Radial Basis Functions Orthogonal Gradients method (RBF-OGr) was introduced in [1] to discretize differential operators defined on arbitrary manifolds defined only by a point cloud. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent complex geometries in any spatial dimension. A large limitation of the RBF-OGr method was its large computational complexity, which greatly restricted the size of the point cloud. In this paper, we apply the RBF-Finite Difference (RBF-FD) technique to the RBF-OGr method for building sparse differentiation matrices discretizing continuous differential operators such as the Laplace-Beltrami operator. This method can be applied to solving PDEs on arbitrary surfaces embedded in ℛ3. We illustrate the accuracy of our new method by solving the heat equation on the unit sphere.

  8. Well-posedness for a class of doubly nonlinear stochastic PDEs of divergence type

    NASA Astrophysics Data System (ADS)

    Scarpa, Luca

    2017-08-01

    We prove well-posedness for doubly nonlinear parabolic stochastic partial differential equations of the form dXt - div γ (∇Xt) dt + β (Xt) dt ∋ B (t ,Xt) dWt, where γ and β are the two nonlinearities, assumed to be multivalued maximal monotone operators everywhere defined on Rd and R respectively, and W is a cylindrical Wiener process. Using variational techniques, suitable uniform estimates (both pathwise and in expectation) and some compactness results, well-posedness is proved under the classical Leray-Lions conditions on γ and with no restrictive smoothness or growth assumptions on β. The operator B is assumed to be Hilbert-Schmidt and to satisfy some classical Lipschitz conditions in the second variable.

  9. Growth shapes and turbulent spots in unstable systems

    NASA Astrophysics Data System (ADS)

    Conrado, Claudine V.; Bohr, Tomas

    1995-05-01

    We study the growth shapes of localized turbulent patches (turbulent spots) in a class of partial differential equations (PDEs) in two spatial dimensions, of first order in time and in one scalar field u. The PDE's are chosen such that the ``laminar'' state u=0 is unstable, at least convectively (i.e., in a moving frame). We show which symmetry breaking terms are required to generate the characteristic nonconvex growth shapes found in turbulent spots in boundary layers, and how the shapes transform when we vary the coefficients of these terms. Finally, we show how it is possible, in certain cases, to find exact solutions for the nonliear growth shapes and how to measure Lyapunov exponents of growing turbulent spots.

  10. A high-accuracy algorithm for solving nonlinear PDEs with high-order spatial derivatives in 1 + 1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jian Hua; Gooding, R.J.

    1994-06-01

    We propose an algorithm to solve a system of partial differential equations of the type u[sub t](x,t) = F(x, t, u, u[sub x], u[sub xx], u[sub xxx], u[sub xxxx]) in 1 + 1 dimensions using the method of lines with piecewise ninth-order Hermite polynomials, where u and F and N-dimensional vectors. Nonlinear boundary conditions are easily incorporated with this method. We demonstrate the accuracy of this method through comparisons of numerically determine solutions to the analytical ones. Then, we apply this algorithm to a complicated physical system involving nonlinear and nonlocal strain forces coupled to a thermal field. 4 refs.,more » 5 figs., 1 tab.« less

  11. A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations

    DOE PAGES

    Teichert, Gregory H.; Gunda, N. S. Harsha; Rudraraju, Shiva; ...

    2016-12-18

    Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energymore » data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.« less

  12. An improved numerical method for the kernel density functional estimation of disperse flow

    NASA Astrophysics Data System (ADS)

    Smith, Timothy; Ranjan, Reetesh; Pantano, Carlos

    2014-11-01

    We present an improved numerical method to solve the transport equation for the one-point particle density function (pdf), which can be used to model disperse flows. The transport equation, a hyperbolic partial differential equation (PDE) with a source term, is derived from the Lagrangian equations for a dilute particle system by treating position and velocity as state-space variables. The method approximates the pdf by a discrete mixture of kernel density functions (KDFs) with space and time varying parameters and performs a global Rayleigh-Ritz like least-square minimization on the state-space of velocity. Such an approximation leads to a hyperbolic system of PDEs for the KDF parameters that cannot be written completely in conservation form. This system is solved using a numerical method that is path-consistent, according to the theory of non-conservative hyperbolic equations. The resulting formulation is a Roe-like update that utilizes the local eigensystem information of the linearized system of PDEs. We will present the formulation of the base method, its higher-order extension and further regularization to demonstrate that the method can predict statistics of disperse flows in an accurate, consistent and efficient manner. This project was funded by NSF Project NSF-DMS 1318161.

  13. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    PubMed

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  14. Novel Numerical Approaches to Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Diener, Peter

    2015-04-01

    Loop Quantum Gravity (LQG) is an (as yet incomplete) approach to the quantization of gravity. When applied to symmetry reduced cosmological spacetimes (Loop Quantum Cosmology or LQC) one of the predictions of the theory is that the Big Bang is replaced by a Big Bounce, i.e. a previously existing contracting universe underwent a bounce at finite volume before becoming our expanding universe. The evolution equations of LQC take the form of difference equations (with the discretization given by the theory) that in the large volume limit can be approximated by partial differential equations (PDEs). In this talk I will first discuss some of the unique challenges encountered when trying to numerically solve these difference equations. I will then present some of the novel approaches that have been employed to overcome the challenges. I will here focus primarily on the Chimera scheme that takes advantage of the fact that the LQC difference equations can be approximated by PDEs in the large volume limit. I will finally also briefly discuss some of the results that have been obtained using these numerical techniques by performing simulations in regions of parameter space that were previously unreachable. This work is supported by a grant from the John Templeton Foundation and by NSF grant PHYS1068743.

  15. Construction of energy-stable Galerkin reduced order models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan

    2013-05-01

    This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolicmore » or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.« less

  16. Autonomous selection of PDE inpainting techniques vs. exemplar inpainting techniques for void fill of high resolution digital surface models

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Yates, J. Harlan; Allen, Josef DeVaughn; Kelley, Patrick

    2007-04-01

    High resolution Digital Surface Models (DSMs) may contain voids (missing data) due to the data collection process used to obtain the DSM, inclement weather conditions, low returns, system errors/malfunctions for various collection platforms, and other factors. DSM voids are also created during bare earth processing where culture and vegetation features have been extracted. The Harris LiteSite TM Toolkit handles these void regions in DSMs via two novel techniques. We use both partial differential equations (PDEs) and exemplar based inpainting techniques to accurately fill voids. The PDE technique has its origin in fluid dynamics and heat equations (a particular subset of partial differential equations). The exemplar technique has its origin in texture analysis and image processing. Each technique is optimally suited for different input conditions. The PDE technique works better where the area to be void filled does not have disproportionately high frequency data in the neighborhood of the boundary of the void. Conversely, the exemplar based technique is better suited for high frequency areas. Both are autonomous with respect to detecting and repairing void regions. We describe a cohesive autonomous solution that dynamically selects the best technique as each void is being repaired.

  17. WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS

    PubMed Central

    MU, LIN; WANG, JUNPING; WEI, GUOWEI; YE, XIU; ZHAO, SHAN

    2013-01-01

    Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h1.5) for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75) to O(h2) in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution. PMID:24072935

  18. Estimating Soil Hydraulic Parameters using Gradient Based Approach

    NASA Astrophysics Data System (ADS)

    Rai, P. K.; Tripathi, S.

    2017-12-01

    The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.

  19. On the Importance of the Dynamics of Discretizations

    NASA Technical Reports Server (NTRS)

    Sweby, Peter K.; Yee, H. C.; Rai, ManMohan (Technical Monitor)

    1995-01-01

    It has been realized recently that the discrete maps resulting from numerical discretizations of differential equations can possess asymptotic dynamical behavior quite different from that of the original systems. This is the case not only for systems of Ordinary Differential Equations (ODEs) but in a more complicated manner for Partial Differential Equations (PDEs) used to model complex physics. The impact of the modified dynamics may be mild and even not observed for some numerical methods. For other classes of discretizations the impact may be pronounced, but not always obvious depending on the nonlinear model equations, the time steps, the grid spacings and the initial conditions. Non-convergence or convergence to periodic solutions might be easily recognizable but convergence to incorrect but plausible solutions may not be so obvious - even for discretized parameters within the linearized stability constraint. Based on our past four years of research, we will illustrate some of the pathology of the dynamics of discretizations, its possible impact and the usage of these schemes for model nonlinear ODEs, convection-diffusion equations and grid adaptations.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less

  1. COMMENT Comment on 'Conservation laws of higher order nonlinear PDEs and the variational conservation laws in the class with mixed derivatives'

    NASA Astrophysics Data System (ADS)

    Sarlet, W.

    2010-11-01

    In a recent paper (R Narain and A H Kara 2010 J. Phys. A: Math. Theor. 43 085205), the authors claim to be applying Noether's theorem to higher-order partial differential equations and state that in a large class of examples 'the resultant conserved flows display some previously unknown interesting 'divergence properties' owing to the presence of the mixed derivatives' (citation from their abstract). It turns out that what this obscure sentence is meant to say is that the vector whose divergence must be zero (according to Noether's theorem), turns out to have non-zero divergence and subsequently must be modified to obtain a true conservation law. Clearly this cannot be right: we explain in detail the main source of the error.

  2. Multi-Dimensional Quantum Effect Simulation Using a Density-Gradient Model and Script-Level Programming Techniques

    NASA Technical Reports Server (NTRS)

    Rafferty, Connor S.; Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario G.; Bude, J.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A density-gradient (DG) model is used to calculate quantum-mechanical corrections to classical carrier transport in MOS (Metal Oxide Semiconductor) inversion/accumulation layers. The model is compared to measured data and to a fully self-consistent coupled Schrodinger and Poisson equation (SCSP) solver. Good agreement is demonstrated for MOS capacitors with gate oxide as thin as 21 A. It is then applied to study carrier distribution in ultra short MOSFETs (Metal Oxide Semiconductor Field Effect Transistor) with surface roughness. This work represents the first implementation of the DG formulation on multidimensional unstructured meshes. It was enabled by a powerful scripting approach which provides an easy-to-use and flexible framework for solving the fourth-order PDEs (Partial Differential Equation) of the DG model.

  3. Multilevel Sequential Monte Carlo Samplers for Normalizing Constants

    DOE PAGES

    Moral, Pierre Del; Jasra, Ajay; Law, Kody J. H.; ...

    2017-08-24

    This article considers the sequential Monte Carlo (SMC) approximation of ratios of normalizing constants associated to posterior distributions which in principle rely on continuum models. Therefore, the Monte Carlo estimation error and the discrete approximation error must be balanced. A multilevel strategy is utilized to substantially reduce the cost to obtain a given error level in the approximation as compared to standard estimators. Two estimators are considered and relative variance bounds are given. The theoretical results are numerically illustrated for two Bayesian inverse problems arising from elliptic partial differential equations (PDEs). The examples involve the inversion of observations of themore » solution of (i) a 1-dimensional Poisson equation to infer the diffusion coefficient, and (ii) a 2-dimensional Poisson equation to infer the external forcing.« less

  4. Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouri, Drew Philip; Surowiec, Thomas M.

    Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. Here in this paper, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Lastly, we introduce a new riskmore » measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.« less

  5. Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization

    DOE PAGES

    Kouri, Drew Philip; Surowiec, Thomas M.

    2018-06-05

    Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. Here in this paper, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Lastly, we introduce a new riskmore » measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.« less

  6. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  7. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  8. Ordering Unstructured Meshes for Sparse Matrix Computations on Leading Parallel Systems

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Li, Xiaoye; Heber, Gerd; Biswas, Rupak

    2000-01-01

    The ability of computers to solve hitherto intractable problems and simulate complex processes using mathematical models makes them an indispensable part of modern science and engineering. Computer simulations of large-scale realistic applications usually require solving a set of non-linear partial differential equations (PDES) over a finite region. For example, one thrust area in the DOE Grand Challenge projects is to design future accelerators such as the SpaHation Neutron Source (SNS). Our colleagues at SLAC need to model complex RFQ cavities with large aspect ratios. Unstructured grids are currently used to resolve the small features in a large computational domain; dynamic mesh adaptation will be added in the future for additional efficiency. The PDEs for electromagnetics are discretized by the FEM method, which leads to a generalized eigenvalue problem Kx = AMx, where K and M are the stiffness and mass matrices, and are very sparse. In a typical cavity model, the number of degrees of freedom is about one million. For such large eigenproblems, direct solution techniques quickly reach the memory limits. Instead, the most widely-used methods are Krylov subspace methods, such as Lanczos or Jacobi-Davidson. In all the Krylov-based algorithms, sparse matrix-vector multiplication (SPMV) must be performed repeatedly. Therefore, the efficiency of SPMV usually determines the eigensolver speed. SPMV is also one of the most heavily used kernels in large-scale numerical simulations.

  9. Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements

    NASA Astrophysics Data System (ADS)

    Cliffe, K. A.; Graham, I. G.; Scheichl, R.; Stals, L.

    2000-11-01

    In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity-pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.

  10. Dissolution enhancement and mathematical modeling of removal of residual trichloroethene in sands by ozonation during flushing with micro-nano-bubble solution

    NASA Astrophysics Data System (ADS)

    Sung, Menghau; Teng, Chun-Hao; Yang, Tsung-Hsien

    2017-07-01

    Soil flushing using micro-nano-sized bubbles (MNB) in water as the flushing solution was tested in laboratory sand columns for the cleanup of residual trichloroethene (TCE) non-aqueous-phase-liquid (NAPL). Experiments considering flushing with MNB as well as ozone MNB (OZMNB) in water to treat soils contaminated with residual TCE liquid were conducted to examine effects of ozone on dissolution enhancement. The degrees of residual TCE saturation in soils, ranging from 0.44% to 7.6%, were tested. During flushings, aqueous TCE concentrations at the column exit were monitored and TCE masses remained in the columns after flushing were determined. Experimental results between runs with MNB and OZMNB in water revealed that dissolution enhancement was dependent on residual saturation conditions, and the maximum enhancement was around 9%. Governing equations consisting of three coupled partial differential equations (PDEs) were developed to model the system, and high-order finite difference (HOFD) method was employed to solve these PDEs. From mathematical modeling of reactive mass transfer under low residual saturation conditions (0.44% and 1.9%), experimental data were simulated and important controlling mechanisms were identified. It was concluded that a specific parameter pertinent to NAPL-water interfacial area in the Sherwood number had to be modified to satisfactorily describe the dissolution of TCE in the presence of MNB in water.

  11. On the optimal systems of subalgebras for the equations of hydrodynamic stability analysis of smooth shear flows and their group-invariant solutions

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George

    2017-04-01

    We present a unifying solution framework for the linearized compressible equations for two-dimensional linearly sheared unbounded flows using the Lie symmetry analysis. The full set of symmetries that are admitted by the underlying system of equations is employed to systematically derive the one- and two-dimensional optimal systems of subalgebras, whose connected group reductions lead to three distinct invariant ansatz functions for the governing sets of partial differential equations (PDEs). The purpose of this analysis is threefold and explicitly we show that (i) there are three invariant solutions that stem from the optimal system. These include a general ansatz function with two free parameters, as well as the ansatz functions of the Kelvin mode and the modal approach. Specifically, the first approach unifies these well-known ansatz functions. By considering two limiting cases of the free parameters and related algebraic transformations, the general ansatz function is reduced to either of them. This fact also proves the existence of a link between the Kelvin mode and modal ansatz functions, as these appear to be the limiting cases of the general one. (ii) The Lie algebra associated with the Lie group admitted by the PDEs governing the compressible dynamics is a subalgebra associated with the group admitted by the equations governing the incompressible dynamics, which allows an additional (scaling) symmetry. Hence, any consequences drawn from the compressible case equally hold for the incompressible counterpart. (iii) In any of the systems of ordinary differential equations, derived by the three ansatz functions in the compressible case, the linearized potential vorticity is a conserved quantity that allows us to analyze vortex and wave mode perturbations separately.

  12. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion.

    PubMed

    Yates, Christian A; Flegg, Mark B

    2015-05-06

    Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of the first, it is derived in the continuum limit over the PDE region alone. We test our hybrid methods for functionality and accuracy in a variety of different scenarios by comparing the averaged simulations with analytical solutions of PDEs for mean concentrations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. A Solution Space for a System of Null-State Partial Differential Equations: Part 3

    NASA Astrophysics Data System (ADS)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the third of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Extending these results, we prove in this article that dim and entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in , whose components we find as inner products of elements in a Temperley-Lieb algebra. We gather these vectors together as columns of a symmetric matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014; Commun Math Phys, arXiv:1405.2747, 2014) is completely rigorous.

  14. Partial differential equation techniques for analysing animal movement: A comparison of different methods.

    PubMed

    Wang, Yi-Shan; Potts, Jonathan R

    2017-03-07

    Recent advances in animal tracking have allowed us to uncover the drivers of movement in unprecedented detail. This has enabled modellers to construct ever more realistic models of animal movement, which aid in uncovering detailed patterns of space use in animal populations. Partial differential equations (PDEs) provide a popular tool for mathematically analysing such models. However, their construction often relies on simplifying assumptions which may greatly affect the model outcomes. Here, we analyse the effect of various PDE approximations on the analysis of some simple movement models, including a biased random walk, central-place foraging processes and movement in heterogeneous landscapes. Perhaps the most commonly-used PDE method dates back to a seminal paper of Patlak from 1953. However, our results show that this can be a very poor approximation in even quite simple models. On the other hand, more recent methods, based on transport equation formalisms, can provide more accurate results, as long as the kernel describing the animal's movement is sufficiently smooth. When the movement kernel is not smooth, we show that both the older and newer methods can lead to quantitatively misleading results. Our detailed analysis will aid future researchers in the appropriate choice of PDE approximation for analysing models of animal movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems with Application to Porous Medium Flow

    NASA Astrophysics Data System (ADS)

    Petra, N.; Alexanderian, A.; Stadler, G.; Ghattas, O.

    2015-12-01

    We address the problem of optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs). The inverse problem seeks to infer a parameter field (e.g., the log permeability field in a porous medium flow model problem) from synthetic observations at a set of sensor locations and from the governing PDEs. The goal of the OED problem is to find an optimal placement of sensors so as to minimize the uncertainty in the inferred parameter field. We formulate the OED objective function by generalizing the classical A-optimal experimental design criterion using the expected value of the trace of the posterior covariance. This expected value is computed through sample averaging over the set of likely experimental data. Due to the infinite-dimensional character of the parameter field, we seek an optimization method that solves the OED problem at a cost (measured in the number of forward PDE solves) that is independent of both the parameter and the sensor dimension. To facilitate this goal, we construct a Gaussian approximation to the posterior at the maximum a posteriori probability (MAP) point, and use the resulting covariance operator to define the OED objective function. We use randomized trace estimation to compute the trace of this covariance operator. The resulting OED problem includes as constraints the system of PDEs characterizing the MAP point, and the PDEs describing the action of the covariance (of the Gaussian approximation to the posterior) to vectors. We control the sparsity of the sensor configurations using sparsifying penalty functions, and solve the resulting penalized bilevel optimization problem via an interior-point quasi-Newton method, where gradient information is computed via adjoints. We elaborate our OED method for the problem of determining the optimal sensor configuration to best infer the log permeability field in a porous medium flow problem. Numerical results show that the number of PDE solves required for the evaluation of the OED objective function and its gradient is essentially independent of both the parameter dimension and the sensor dimension (i.e., the number of candidate sensor locations). The number of quasi-Newton iterations for computing an OED also exhibits the same dimension invariance properties.

  16. Spillover, nonlinearity, and flexible structures

    NASA Technical Reports Server (NTRS)

    Bass, Robert W.; Zes, Dean

    1991-01-01

    Many systems whose evolution in time is governed by Partial Differential Equations (PDEs) are linearized around a known equilibrium before Computer Aided Control Engineering (CACE) is considered. In this case, there are infinitely many independent vibrational modes, and it is intuitively evident on physical grounds that infinitely many actuators would be needed in order to control all modes. A more precise, general formulation of this grave difficulty (spillover problem) is due to A.V. Balakrishnan. A possible route to circumvention of this difficulty lies in leaving the PDE in its original nonlinear form, and adding the essentially finite dimensional control action prior to linearization. One possibly applicable technique is the Liapunov Schmidt rigorous reduction of singular infinite dimensional implicit function problems to finite dimensional implicit function problems. Omitting details of Banach space rigor, the formalities of this approach are given.

  17. MOOSE: A parallel computational framework for coupled systems of nonlinear equations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derek Gaston; Chris Newman; Glen Hansen

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in timemore » scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.« less

  18. Modeling Drinking Behavior Progression in Youth: a Non-identified Probability Discrete Event System Using Cross-sectional Data

    PubMed Central

    Hu, Xingdi; Chen, Xinguang; Cook, Robert L.; Chen, Ding-Geng; Okafor, Chukwuemeka

    2016-01-01

    Background The probabilistic discrete event systems (PDES) method provides a promising approach to study dynamics of underage drinking using cross-sectional data. However, the utility of this approach is often limited because the constructed PDES model is often non-identifiable. The purpose of the current study is to attempt a new method to solve the model. Methods A PDES-based model of alcohol use behavior was developed with four progression stages (never-drinkers [ND], light/moderate-drinker [LMD], heavy-drinker [HD], and ex-drinker [XD]) linked with 13 possible transition paths. We tested the proposed model with data for participants aged 12–21 from the 2012 National Survey on Drug Use and Health (NSDUH). The Moore-Penrose (M-P) generalized inverse matrix method was applied to solve the proposed model. Results Annual transitional probabilities by age groups for the 13 drinking progression pathways were successfully estimated with the M-P generalized inverse matrix approach. Result from our analysis indicates an inverse “J” shape curve characterizing pattern of experimental use of alcohol from adolescence to young adulthood. We also observed a dramatic increase for the initiation of LMD and HD after age 18 and a sharp decline in quitting light and heavy drinking. Conclusion Our findings are consistent with the developmental perspective regarding the dynamics of underage drinking, demonstrating the utility of the M-P method in obtaining a unique solution for the partially-observed PDES drinking behavior model. The M-P approach we tested in this study will facilitate the use of the PDES approach to examine many health behaviors with the widely available cross-sectional data. PMID:26511344

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yuanyuan; Cui, Wenjun; Huang, Manna

    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a K M of 110 μM and a k cat of 16.9 s⁻¹ for cAMP and a K M of 105 μM and a k cat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (k cat/K McAMP)/(k cat/K M cGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMPmore » at 1.31 Å resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less

  20. Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux

    NASA Astrophysics Data System (ADS)

    Mamatha Upadhya, S.; Raju, C. S. K.; Mahesha; Saleem, S.

    2018-06-01

    This is a theoretical study of unsteady nonlinear convection on magnetohydrodynamic fluid in a suspension of dust and graphene nanoparticles. For boosting the heat transport phenomena we consider the Cattaneo-Christov heat flux and thermal radiation. Dispersal of graphene nanoparticles in dusty fluids finds applications in biocompatibility, bio-imaging, biosensors, detection and cancer treatment, in monitoring stem cells differentiation etc. Initially the simulation is performed by amalgamation of dust (micron size) and nanoparticles into base fluid. Primarily existing partial differential system (PDEs) is changed to ordinary differential system (ODEs) with the support of usual similarity transformations. Consequently, the highly nonlinear ODEs are solved numerically through Runge-Kutta and Shooting method. The computational results for Non-dimensional temperature and velocity profiles are offered through graphs (ϕ = 0 and ϕ = 0.05) cases. Additionally, the numerical values of friction factor and heat transfer rate are tabulated numerically for various physical parameters obtained. We also validated the current outcomes with previously available study and found to be extremely acceptable. From this study we conclude that in the presence of nanofluid heat transfer rate and temperature distribution is higher compared to micro fluid.

  1. Thermally Radiative Rotating Magneto-Nanofluid Flow over an Exponential Sheet with Heat Generation and Viscous Dissipation: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Sagheer, M.; Bilal, M.; Hussain, S.; Ahmed, R. N.

    2018-03-01

    This article examines a mathematical model to analyze the rotating flow of three-dimensional water based nanofluid over a convectively heated exponentially stretching sheet in the presence of transverse magnetic field with additional effects of thermal radiation, Joule heating and viscous dissipation. Silver (Ag), copper (Cu), copper oxide (CuO), aluminum oxide (Al 2 O 3 ) and titanium dioxide (TiO 2 ) have been taken under consideration as the nanoparticles and water (H 2 O) as the base fluid. Using suitable similarity transformations, the governing partial differential equations (PDEs) of the modeled problem are transformed to the ordinary differential equations (ODEs). These ODEs are then solved numerically by applying the shooting method. For the particular situation, the results are compared with the available literature. The effects of different nanoparticles on the temperature distribution are also discussed graphically and numerically. It is witnessed that the skin friction coefficient is maximum for silver based nanofluid. Also, the velocity profile is found to diminish for the increasing values of the magnetic parameter.

  2. Local polynomial chaos expansion for linear differential equations with high dimensional random inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Jakeman, John; Gittelson, Claude

    2015-01-08

    In this paper we present a localized polynomial chaos expansion for partial differential equations (PDE) with random inputs. In particular, we focus on time independent linear stochastic problems with high dimensional random inputs, where the traditional polynomial chaos methods, and most of the existing methods, incur prohibitively high simulation cost. Furthermore, the local polynomial chaos method employs a domain decomposition technique to approximate the stochastic solution locally. In each subdomain, a subdomain problem is solved independently and, more importantly, in a much lower dimensional random space. In a postprocesing stage, accurate samples of the original stochastic problems are obtained frommore » the samples of the local solutions by enforcing the correct stochastic structure of the random inputs and the coupling conditions at the interfaces of the subdomains. Overall, the method is able to solve stochastic PDEs in very large dimensions by solving a collection of low dimensional local problems and can be highly efficient. In our paper we present the general mathematical framework of the methodology and use numerical examples to demonstrate the properties of the method.« less

  3. New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun

    In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.

  4. Efficient numerical method of freeform lens design for arbitrary irradiance shaping

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek

    2018-05-01

    A computational method to design a lens with a flat entrance surface and a freeform exit surface that can transform a collimated, generally non-uniform input beam into a beam with a desired irradiance distribution of arbitrary shape is presented. The methodology is based on non-linear elliptic partial differential equations, known as Monge-Ampère PDEs. This paper describes an original numerical algorithm to solve this problem by applying the Gauss-Seidel method with simplified boundary conditions. A joint MATLAB-ZEMAX environment is used to implement and verify the method. To prove the efficiency of the proposed approach, an exemplary study where the designed lens is faced with the challenging illumination task is shown. An analysis of solution stability, iteration-to-iteration ray mapping evolution (attached in video format), depth of focus and non-zero étendue efficiency is performed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  6. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref

    2017-11-01

    This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.

  7. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Manafian, Jalil

    2018-03-01

    This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.

  8. Dual specificity and novel structural folding of yeast phosphodiesterase-1 for hydrolysis of second messengers cyclic adenosine and guanosine 3',5'-Monophosphate

    DOE PAGES

    Tian, Yuanyuan; Cui, Wenjun; Huang, Manna; ...

    2014-08-05

    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a K M of 110 μM and a k cat of 16.9 s⁻¹ for cAMP and a K M of 105 μM and a k cat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (k cat/K McAMP)/(k cat/K M cGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMPmore » at 1.31 Å resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less

  9. 77 FR 58830 - State Program Requirements; Application To Administer Partial National Pollutant Discharge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... Pollutant Discharge Elimination System (AgPDES) program pursuant to Section 402(b) of the Clean Water Act... Discharge Elimination System (NPDES) permit program under Section 402(n)(3) of the Act for all discharges of... through Friday, excluding legal holidays, at EPA Region 6, 1445 Ross Ave., Dallas, Texas 75202. A copy of...

  10. A Solution Space for a System of Null-State Partial Differential Equations: Part 2

    NASA Astrophysics Data System (ADS)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the second of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). The system comprises 2 N null-state equations and three conformal Ward identities which govern CFT correlation functions of 2 N one-leg boundary operators. In the first article (Flores and Kleban, Commun Math Phys, arXiv:1212.2301, 2012), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. The analysis of that article is complete except for the proof of a lemma that it invokes. The purpose of this article is to provide that proof. The lemma states that if every interval among ( x 2, x 3), ( x 3, x 4),…,( x 2 N-1, x 2 N ) is a two-leg interval of (defined in Flores and Kleban, Commun Math Phys, arXiv:1212.2301, 2012), then F vanishes. Proving this lemma by contradiction, we show that the existence of such a nonzero function implies the existence of a non-vanishing CFT two-point function involving primary operators with different conformal weights, an impossibility. This proof (which is rigorous in spite of our occasional reference to CFT) involves two different types of estimates, those that give the asymptotic behavior of F as the length of one interval vanishes, and those that give this behavior as the lengths of two intervals vanish simultaneously. We derive these estimates by using Green functions to rewrite certain null-state PDEs as integral equations, combining other null-state PDEs to obtain Schauder interior estimates, and then repeatedly integrating the integral equations with these estimates until we obtain optimal bounds. Estimates in which two interval lengths vanish simultaneously divide into two cases: two adjacent intervals and two non-adjacent intervals. The analysis of the latter case is similar to that for one vanishing interval length. In contrast, the analysis of the former case is more complicated, involving a Green function that contains the Jacobi heat kernel as its essential ingredient.

  11. MIB Galerkin method for elliptic interface problems.

    PubMed

    Xia, Kelin; Zhan, Meng; Wei, Guo-Wei

    2014-12-15

    Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields. The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm the designed second order convergence of the MIB Galerkin method in the L ∞ and L 2 errors. Some of the best results are obtained in the present work when the interface is C 1 or Lipschitz continuous and the solution is C 2 continuous.

  12. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting. PMID:25309038

  13. Variable Step Integration Coupled with the Method of Characteristics Solution for Water-Hammer Analysis, A Case Study

    NASA Technical Reports Server (NTRS)

    Turpin, Jason B.

    2004-01-01

    One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.

  14. Biomolecular surface construction by PDE transform

    PubMed Central

    Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei

    2011-01-01

    This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high order PDEs. As a consequence, the time integration of high order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and the MSMS approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, i.e., surface area, surface enclosed volume, solvation free energy and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform based surface method, we solve the Poisson-Nernst-Planck (PNP) equations with a PDE transform surface of a protein. Second order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable and efficient approach for biomolecular surface generation in Cartesian meshes. PMID:22582140

  15. Construction of energy-stable projection-based reduced order models

    DOE PAGES

    Kalashnikova, Irina; Barone, Matthew F.; Arunajatesan, Srinivasan; ...

    2014-12-15

    Our paper aims to unify and extend several approaches for building stable projection-based reduced order models (ROMs) using the energy method and the concept of “energy-stability”. Attention is focused on linear time-invariant (LTI) systems. First, an approach for building energy stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is proposed. The key idea is to apply to the system a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The result of this procedure will be a ROM that is energy-stablemore » for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special inner product, termed the “symmetry inner product”. Next, attention is turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, termed the “Lyapunov inner product”, is derived. Moreover, it is shown that the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system ari sing from the discretization of a system of PDEs in space. Projection in this inner product guarantees a ROM that is energy-stable, again for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. We also made comparisons between the symmetry inner product and the Lyapunov inner product. Performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.« less

  16. Partial differential equation-based approach for empirical mode decomposition: application on image analysis.

    PubMed

    Niang, Oumar; Thioune, Abdoulaye; El Gueirea, Mouhamed Cheikh; Deléchelle, Eric; Lemoine, Jacques

    2012-09-01

    The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called "sifting process" used in the original Huang's EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.

  17. Non-symmetric forms of non-linear vibrations of flexible cylindrical panels and plates under longitudinal load and additive white noise

    NASA Astrophysics Data System (ADS)

    Krysko, V. A.; Awrejcewicz, J.; Krylova, E. Yu; Papkova, I. V.; Krysko, A. V.

    2018-06-01

    Parametric non-linear vibrations of flexible cylindrical panels subjected to additive white noise are studied. The governing Marguerre equations are investigated using the finite difference method (FDM) of the second-order accuracy and the Runge-Kutta method. The considered mechanical structural member is treated as a system of many/infinite number of degrees of freedom (DoF). The dependence of chaotic vibrations on the number of DoFs is investigated. Reliability of results is guaranteed by comparing the results obtained using two qualitatively different methods to reduce the problem of PDEs (partial differential equations) to ODEs (ordinary differential equations), i.e. the Faedo-Galerkin method in higher approximations and the 4th and 6th order FDM. The Cauchy problem obtained by the FDM is eventually solved using the 4th-order Runge-Kutta methods. The numerical experiment yielded, for a certain set of parameters, the non-symmetric vibration modes/forms with and without white noise. In particular, it has been illustrated and discussed that action of white noise on chaotic vibrations implies quasi-periodicity, whereas the previously non-symmetric vibration modes are closer to symmetric ones.

  18. An approach to rogue waves through the cnoidal equation

    NASA Astrophysics Data System (ADS)

    Lechuga, Antonio

    2014-05-01

    Lately it has been realized the importance of rogue waves in some events happening in open seas. Extreme waves and extreme weather could explain some accidents, but not all of them. Every now and then inflicted damages on ships only can be reported to be caused by anomalous and elusive waves, such as rogue waves. That's one of the reason why they continue attracting considerable interest among researchers. In the frame of the Nonlinear Schrödinger equation(NLS), Witham(1974) and Dingemans and Otta (2001)gave asymptotic solutions in moving coordinates that transformed the NLS equation in a ordinary differential equation that is the Duffing or cnoidal wave equation. Applying the Zakharov equation, Stiassnie and Shemer(2004) and Shemer(2010)got also a similar equation. It's well known that this ordinary equation can be solved in elliptic functions. The main aim of this presentation is to sort out the domains of the solutions of this equation, that, of course, are linked to the corresponding solutions of the partial differential equations(PDEs). That being, Lechuga(2007),a simple way to look for anomalous waves as it's the case with some "chaotic" solutions of the Duffing equation.

  19. Operator splitting method for simulation of dynamic flows in natural gas pipeline networks

    DOE PAGES

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; ...

    2017-09-19

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  20. Modelling Root Systems Using Oriented Density Distributions

    NASA Astrophysics Data System (ADS)

    Dupuy, Lionel X.

    2011-09-01

    Root architectural models are essential tools to understand how plants access and utilize soil resources during their development. However, root architectural models use complex geometrical descriptions of the root system and this has limitations to model interactions with the soil. This paper presents the development of continuous models based on the concept of oriented density distribution function. The growth of the root system is built as a hierarchical system of partial differential equations (PDEs) that incorporate single root growth parameters such as elongation rate, gravitropism and branching rate which appear explicitly as coefficients of the PDE. Acquisition and transport of nutrients are then modelled by extending Darcy's law to oriented density distribution functions. This framework was applied to build a model of the growth and water uptake of barley root system. This study shows that simplified and computer effective continuous models of the root system development can be constructed. Such models will allow application of root growth models at field scale.

  1. Albany v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinger, Andrew; Phipps, Eric; Ostien, Jakob

    2016-01-13

    The Albany code is a general-purpose finite element code for solving partial differential equations (PDEs). Albany is a research code that demonstrates how a PDE code can be built by interfacing many of the open-source software libraries that are released under Sandia's Trilinos project. Part of the mission of Albany is to be a testbed for new Trilinos libraries, to refine their methods, usability, and interfaces. Albany includes hooks to optimization and uncertainty quantification algorithms, including those in Trilinos as well as those in the Dakota toolkit. Because of this, Albany is a desirable starting point for new code developmentmore » efforts that wish to make heavy use of Trilinos. Albany is both a framework and the host for specific finite element applications. These applications have project names, and can be controlled by configuration option when the code is compiled, but are all developed and released as part of the single Albany code base, These include LCM, QCAD, FELIX, Aeras, and ATO applications.« less

  2. Ensemble-marginalized Kalman filter for linear time-dependent PDEs with noisy boundary conditions: application to heat transfer in building walls

    NASA Astrophysics Data System (ADS)

    Iglesias, Marco; Sawlan, Zaid; Scavino, Marco; Tempone, Raúl; Wood, Christopher

    2018-07-01

    In this work, we present the ensemble-marginalized Kalman filter (EnMKF), a sequential algorithm analogous to our previously proposed approach (Ruggeri et al 2017 Bayesian Anal. 12 407–33, Iglesias et al 2018 Int. J. Heat Mass Transfer 116 417–31), for estimating the state and parameters of linear parabolic partial differential equations in initial-boundary value problems when the boundary data are noisy. We apply EnMKF to infer the thermal properties of building walls and to estimate the corresponding heat flux from real and synthetic data. Compared with a modified ensemble Kalman filter (EnKF) that is not marginalized, EnMKF reduces the bias error, avoids the collapse of the ensemble without needing to add inflation, and converges to the mean field posterior using or less of the ensemble size required by EnKF. According to our results, the marginalization technique in EnMKF is key to performance improvement with smaller ensembles at any fixed time.

  3. Multiscale Modeling of Angiogenesis and Predictive Capacity

    NASA Astrophysics Data System (ADS)

    Pillay, Samara; Byrne, Helen; Maini, Philip

    Tumors induce the growth of new blood vessels from existing vasculature through angiogenesis. Using an agent-based approach, we model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death-like processes. We use the transition probabilities associated with the discrete model and a discrete conservation equation for cell occupancy to determine collective cell behavior, in terms of partial differential equations (PDEs). We derive three PDE models incorporating single, multi-species and no volume exclusion. By fitting the parameters in our PDE models and other well-established continuum models to agent-based simulations during a specific time period, and then comparing the outputs from the PDE models and agent-based model at later times, we aim to determine how well the PDE models predict the future behavior of the agent-based model. We also determine whether predictions differ across PDE models and the significance of those differences. This may impact drug development strategies based on PDE models.

  4. Spatiotemporal motion boundary detection and motion boundary velocity estimation for tracking moving objects with a moving camera: a level sets PDEs approach with concurrent camera motion compensation.

    PubMed

    Feghali, Rosario; Mitiche, Amar

    2004-11-01

    The purpose of this study is to investigate a method of tracking moving objects with a moving camera. This method estimates simultaneously the motion induced by camera movement. The problem is formulated as a Bayesian motion-based partitioning problem in the spatiotemporal domain of the image quence. An energy functional is derived from the Bayesian formulation. The Euler-Lagrange descent equations determine imultaneously an estimate of the image motion field induced by camera motion and an estimate of the spatiotemporal motion undary surface. The Euler-Lagrange equation corresponding to the surface is expressed as a level-set partial differential equation for topology independence and numerically stable implementation. The method can be initialized simply and can track multiple objects with nonsimultaneous motions. Velocities on motion boundaries can be estimated from geometrical properties of the motion boundary. Several examples of experimental verification are given using synthetic and real-image sequences.

  5. Numerical approaches to model perturbation fire in turing pattern formations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.

    2017-11-01

    Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.

  6. Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyong; Zhu, Linhe

    2016-06-01

    The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. Rumor propagation in social networks has brought new challenges to network security and social stability. This paper, based on partial differential equations (PDEs), proposes a new SIS rumor propagation model by considering the effect of the communication between the different rumor infected users on rumor propagation. The stabilities of a nonrumor equilibrium point and a rumor-spreading equilibrium point are discussed by linearization technique and the upper and lower solutions method, and the existence of a traveling wave solution is established by the cross-iteration scheme accompanied by the technique of upper and lower solutions and Schauder’s fixed point theorem. Furthermore, we add the time delay to rumor propagation and deduce the conditions of Hopf bifurcation and stability switches for the rumor-spreading equilibrium point by taking the time delay as the bifurcation parameter. Finally, numerical simulations are performed to illustrate the theoretical results.

  7. Segmentation of Image Ensembles via Latent Atlases

    PubMed Central

    Van Leemput, Koen; Menze, Bjoern H.; Wells, William M.; Golland, Polina

    2010-01-01

    Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the availability of comprehensive, reliable and suitable manual segmentations for atlas construction is limited. We therefore propose a method for joint segmentation of corresponding regions of interest in a collection of aligned images that does not require labeled training data. Instead, a latent atlas, initialized by at most a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The algorithm is based on probabilistic principles but is solved using partial differential equations (PDEs) and energy minimization criteria. We evaluate the method on two datasets, segmenting subcortical and cortical structures in a multi-subject study and extracting brain tumors in a single-subject multi-modal longitudinal experiment. We compare the segmentation results to manual segmentations, when those exist, and to the results of a state-of-the-art atlas-based segmentation method. The quality of the results supports the latent atlas as a promising alternative when existing atlases are not compatible with the images to be segmented. PMID:20580305

  8. Final Report: Subcontract B623868 Algebraic Multigrid solvers for coupled PDE systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannick, J.

    The Pennsylvania State University (“Subcontractor”) continued to work on the design of algebraic multigrid solvers for coupled systems of partial differential equations (PDEs) arising in numerical modeling of various applications, with a main focus on solving the Dirac equation arising in Quantum Chromodynamics (QCD). The goal of the proposed work was to develop combined geometric and algebraic multilevel solvers that are robust and lend themselves to efficient implementation on massively parallel heterogeneous computers for these QCD systems. The research in these areas built on previous works, focusing on the following three topics: (1) the development of parallel full-multigrid (PFMG) andmore » non-Galerkin coarsening techniques in this frame work for solving the Wilson Dirac system; (2) the use of these same Wilson MG solvers for preconditioning the Overlap and Domain Wall formulations of the Dirac equation; and (3) the design and analysis of algebraic coarsening algorithms for coupled PDE systems including Stokes equation, Maxwell equation and linear elasticity.« less

  9. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles

    NASA Astrophysics Data System (ADS)

    Tzirtzilakis, E. E.

    2015-06-01

    In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.

  10. Ferrofluids: Modeling, numerical analysis, and scientific computation

    NASA Astrophysics Data System (ADS)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.

  11. EXPONENTIAL TIME DIFFERENCING FOR HODGKIN–HUXLEY-LIKE ODES

    PubMed Central

    Börgers, Christoph; Nectow, Alexander R.

    2013-01-01

    Several authors have proposed the use of exponential time differencing (ETD) for Hodgkin–Huxley-like partial and ordinary differential equations (PDEs and ODEs). For Hodgkin–Huxley-like PDEs, ETD is attractive because it can deal effectively with the stiffness issues that diffusion gives rise to. However, large neuronal networks are often simulated assuming “space-clamped” neurons, i.e., using the Hodgkin–Huxley ODEs, in which there are no diffusion terms. Our goal is to clarify whether ETD is a good idea even in that case. We present a numerical comparison of first- and second-order ETD with standard explicit time-stepping schemes (Euler’s method, the midpoint method, and the classical fourth-order Runge–Kutta method). We find that in the standard schemes, the stable computation of the very rapid rising phase of the action potential often forces time steps of a small fraction of a millisecond. This can result in an expensive calculation yielding greater overall accuracy than needed. Although it is tempting at first to try to address this issue with adaptive or fully implicit time-stepping, we argue that neither is effective here. The main advantage of ETD for Hodgkin–Huxley-like systems of ODEs is that it allows underresolution of the rising phase of the action potential without causing instability, using time steps on the order of one millisecond. When high quantitative accuracy is not necessary and perhaps, because of modeling inaccuracies, not even useful, ETD allows much faster simulations than standard explicit time-stepping schemes. The second-order ETD scheme is found to be substantially more accurate than the first-order one even for large values of Δt. PMID:24058276

  12. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.

  13. Direct modeling for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of discrete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydrodynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime.

  14. Creating Weather System Ensembles Through Synergistic Process Modeling and Machine Learning

    NASA Astrophysics Data System (ADS)

    Chen, B.; Posselt, D. J.; Nguyen, H.; Wu, L.; Su, H.; Braverman, A. J.

    2017-12-01

    Earth's weather and climate are sensitive to a variety of control factors (e.g., initial state, forcing functions, etc). Characterizing the response of the atmosphere to a change in initial conditions or model forcing is critical for weather forecasting (ensemble prediction) and climate change assessment. Input - response relationships can be quantified by generating an ensemble of multiple (100s to 1000s) realistic realizations of weather and climate states. Atmospheric numerical models generate simulated data through discretized numerical approximation of the partial differential equations (PDEs) governing the underlying physics. However, the computational expense of running high resolution atmospheric state models makes generation of more than a few simulations infeasible. Here, we discuss an experiment wherein we approximate the numerical PDE solver within the Weather Research and Forecasting (WRF) Model using neural networks trained on a subset of model run outputs. Once trained, these neural nets can produce large number of realization of weather states from a small number of deterministic simulations with speeds that are orders of magnitude faster than the underlying PDE solver. Our neural network architecture is inspired by the governing partial differential equations. These equations are location-invariant, and consist of first and second derivations. As such, we use a 3x3 lon-lat grid of atmospheric profiles as the predictor in the neural net to provide the network the information necessary to compute the first and second moments. Results indicate that the neural network algorithm can approximate the PDE outputs with high degree of accuracy (less than 1% error), and that this error increases as a function of the prediction time lag.

  15. Biomolecular surface construction by PDE transform.

    PubMed

    Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei

    2012-03-01

    This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable, and efficient approach for biomolecular surface generation in Cartesian meshes. Copyright © 2012 John Wiley & Sons, Ltd.

  16. A unified Fourier theory for time-of-flight PET data

    PubMed Central

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D X-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions—the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are necessary and sufficient for 3D X-ray transform with TOF measurement. Finally, we give numerical examples of inverse rebinning for a 3D TOF PET and Fourier-based rebinning for a 2D TOF PET using the FORCEs to show the efficacy of the unified Fourier solutions. PMID:26689836

  17. A unified Fourier theory for time-of-flight PET data.

    PubMed

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-21

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions--the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are necessary and sufficient for 3D x-ray transform with TOF measurement. Finally, we give numerical examples of inverse rebinning for a 3D TOF PET and Fourier-based rebinning for a 2D TOF PET using the FORCEs to show the efficacy of the unified Fourier solutions.

  18. Numerical investigation of magnetohydrodynamic slip flow of power-law nanofluid with temperature dependent viscosity and thermal conductivity over a permeable surface

    NASA Astrophysics Data System (ADS)

    Hussain, Sajid; Aziz, Asim; Khalique, Chaudhry Masood; Aziz, Taha

    2017-12-01

    In this paper, a numerical investigation is carried out to study the effect of temperature dependent viscosity and thermal conductivity on heat transfer and slip flow of electrically conducting non-Newtonian nanofluids. The power-law model is considered for water based nanofluids and a magnetic field is applied in the transverse direction to the flow. The governing partial differential equations(PDEs) along with the slip boundary conditions are transformed into ordinary differential equations(ODEs) using a similarity technique. The resulting ODEs are numerically solved by using fourth order Runge-Kutta and shooting methods. Numerical computations for the velocity and temperature profiles, the skin friction coefficient and the Nusselt number are presented in the form of graphs and tables. The velocity gradient at the boundary is highest for pseudoplastic fluids followed by Newtonian and then dilatant fluids. Increasing the viscosity of the nanofluid and the volume of nanoparticles reduces the rate of heat transfer and enhances the thickness of the momentum boundary layer. The increase in strength of the applied transverse magnetic field and suction velocity increases fluid motion and decreases the temperature distribution within the boundary layer. Increase in the slip velocity enhances the rate of heat transfer whereas thermal slip reduces the rate of heat transfer.

  19. Clinical and Molecular Genetics of the Phosphodiesterases (PDEs)

    PubMed Central

    Azevedo, Monalisa F.; Faucz, Fabio R.; Bimpaki, Eirini; Horvath, Anelia; Levy, Isaac; de Alexandre, Rodrigo B.; Ahmad, Faiyaz; Manganiello, Vincent

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that have the unique function of terminating cyclic nucleotide signaling by catalyzing the hydrolysis of cAMP and GMP. They are critical regulators of the intracellular concentrations of cAMP and cGMP as well as of their signaling pathways and downstream biological effects. PDEs have been exploited pharmacologically for more than half a century, and some of the most successful drugs worldwide today affect PDE function. Recently, mutations in PDE genes have been identified as causative of certain human genetic diseases; even more recently, functional variants of PDE genes have been suggested to play a potential role in predisposition to tumors and/or cancer, especially in cAMP-sensitive tissues. Mouse models have been developed that point to wide developmental effects of PDEs from heart function to reproduction, to tumors, and beyond. This review brings together knowledge from a variety of disciplines (biochemistry and pharmacology, oncology, endocrinology, and reproductive sciences) with emphasis on recent research on PDEs, how PDEs affect cAMP and cGMP signaling in health and disease, and what pharmacological exploitations of PDEs may be useful in modulating cyclic nucleotide signaling in a way that prevents or treats certain human diseases. PMID:24311737

  20. Optimized Hypervisor Scheduler for Parallel Discrete Event Simulations on Virtual Machine Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2013-01-01

    With the advent of virtual machine (VM)-based platforms for parallel computing, it is now possible to execute parallel discrete event simulations (PDES) over multiple virtual machines, in contrast to executing in native mode directly over hardware as is traditionally done over the past decades. While mature VM-based parallel systems now offer new, compelling benefits such as serviceability, dynamic reconfigurability and overall cost effectiveness, the runtime performance of parallel applications can be significantly affected. In particular, most VM-based platforms are optimized for general workloads, but PDES execution exhibits unique dynamics significantly different from other workloads. Here we first present results frommore » experiments that highlight the gross deterioration of the runtime performance of VM-based PDES simulations when executed using traditional VM schedulers, quantitatively showing the bad scaling properties of the scheduler as the number of VMs is increased. The mismatch is fundamental in nature in the sense that any fairness-based VM scheduler implementation would exhibit this mismatch with PDES runs. We also present a new scheduler optimized specifically for PDES applications, and describe its design and implementation. Experimental results obtained from running PDES benchmarks (PHOLD and vehicular traffic simulations) over VMs show over an order of magnitude improvement in the run time of the PDES-optimized scheduler relative to the regular VM scheduler, with over 20 reduction in run time of simulations using up to 64 VMs. The observations and results are timely in the context of emerging systems such as cloud platforms and VM-based high performance computing installations, highlighting to the community the need for PDES-specific support, and the feasibility of significantly reducing the runtime overhead for scalable PDES on VM platforms.« less

  1. Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium.

    PubMed

    Aziz, Asim; Siddique, J I; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.

  2. Steady Boundary Layer Slip Flow along with Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

    PubMed Central

    Aziz, Asim; Siddique, J. I.; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile. PMID:25531301

  3. Domain decomposition methods for the parallel computation of reacting flows

    NASA Technical Reports Server (NTRS)

    Keyes, David E.

    1988-01-01

    Domain decomposition is a natural route to parallel computing for partial differential equation solvers. Subdomains of which the original domain of definition is comprised are assigned to independent processors at the price of periodic coordination between processors to compute global parameters and maintain the requisite degree of continuity of the solution at the subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the only portion of the computation which generally stands in the way of efficient parallelization is the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian matrices drawn from an actual two-dimensional reacting flow problem, comparisons are made between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate Gradient and Chebyshev type, focusing attention on both iteration count and global inner product count. The generalized minimum residual method with block-ILU preconditioning is judged the best serial method among those considered, and parallel numerical experiments on the Encore Multimax demonstrate for it approximately 10-fold speedup on 16 processors.

  4. Local metrics admitting a principal Killing-Yano tensor with torsion

    NASA Astrophysics Data System (ADS)

    Houri, Tsuyoshi; Kubizňák, David; Warnick, Claude M.; Yasui, Yukinori

    2012-08-01

    In this paper we initiate a classification of local metrics admitting the principal Killing-Yano tensor with a skew-symmetric torsion. It is demonstrated that in such spacetimes rank-2 Killing tensors occur naturally and mutually commute. We reduce the classification problem to that of solving a set of partial differential equations, and we present some solutions to these PDEs. In even dimensions, three types of local metrics are obtained: one of them naturally generalizes the torsion-less case while the others occur only when the torsion is present. In odd dimensions, we obtain more varieties of local metrics. The explicit metrics constructed in this paper are not the most general possible admitting the required symmetry; nevertheless, it is demonstrated that they cover a wide variety of solutions of various supergravities, such as the Kerr-Sen black holes of (un-)gauged Abelian heterotic supergravity, the Chong-Cvetic-Lü-Pope black hole solution of five-dimensional minimal supergravity or the Kähler with torsion manifolds. The relation between generalized Killing-Yano tensors and various torsion Killing spinors is also discussed.

  5. A two-level stochastic collocation method for semilinear elliptic equations with random coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Luoping; Zheng, Bin; Lin, Guang

    In this work, we propose a novel two-level discretization for solving semilinear elliptic equations with random coefficients. Motivated by the two-grid method for deterministic partial differential equations (PDEs) introduced by Xu, our two-level stochastic collocation method utilizes a two-grid finite element discretization in the physical space and a two-level collocation method in the random domain. In particular, we solve semilinear equations on a coarse meshmore » $$\\mathcal{T}_H$$ with a low level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_{P}$$) and solve linearized equations on a fine mesh $$\\mathcal{T}_h$$ using high level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_p$$). We prove that the approximated solution obtained from this method achieves the same order of accuracy as that from solving the original semilinear problem directly by stochastic collocation method with $$\\mathcal{T}_h$$ and $$\\mathcal{P}_p$$. The two-level method is computationally more efficient, especially for nonlinear problems with high random dimensions. Numerical experiments are also provided to verify the theoretical results.« less

  6. Output Feedback-Based Boundary Control of Uncertain Coupled Semilinear Parabolic PDE Using Neurodynamic Programming.

    PubMed

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.

  7. Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media: SCALE-DEPENDENT UQ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, A. M.; Panzeri, M.; Tartakovsky, G. D.

    Equations governing flow and transport in heterogeneous porous media are scale-dependent. We demonstrate that it is possible to identify a support scalemore » $$\\eta^*$$, such that the typically employed approximate formulations of Moment Equations (ME) yield accurate (statistical) moments of a target environmental state variable. Under these circumstances, the ME approach can be used as an alternative to the Monte Carlo (MC) method for Uncertainty Quantification in diverse fields of Earth and environmental sciences. MEs are directly satisfied by the leading moments of the quantities of interest and are defined on the same support scale as the governing stochastic partial differential equations (PDEs). Computable approximations of the otherwise exact MEs can be obtained through perturbation expansion of moments of the state variables in orders of the standard deviation of the random model parameters. As such, their convergence is guaranteed only for the standard deviation smaller than one. We demonstrate our approach in the context of steady-state groundwater flow in a porous medium with a spatially random hydraulic conductivity.« less

  8. Low-discrepancy sampling of parametric surface using adaptive space-filling curves (SFC)

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2014-05-01

    Space-Filling Curves (SFCs) are encountered in different fields of engineering and computer science, especially where it is important to linearize multidimensional data for effective and robust interpretation of the information. Examples of multidimensional data are matrices, images, tables, computational grids, and Electroencephalography (EEG) sensor data resulting from the discretization of partial differential equations (PDEs). Data operations like matrix multiplications, load/store operations and updating and partitioning of data sets can be simplified when we choose an efficient way of going through the data. In many applications SFCs present just this optimal manner of mapping multidimensional data onto a one dimensional sequence. In this report, we begin with an example of a space-filling curve and demonstrate how it can be used to find the most similarity using Fast Fourier transform (FFT) through a set of points. Next we give a general introduction to space-filling curves and discuss properties of them. Finally, we consider a discrete version of space-filling curves and present experimental results on discrete space-filling curves optimized for special tasks.

  9. Summer Proceedings 2016: The Center for Computing Research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carleton, James Brian; Parks, Michael L.

    Solving sparse linear systems from the discretization of elliptic partial differential equations (PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve general linear systems, but are usually slower and use much more memory than effective iterative solvers. To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices on distributed memory machines. On a single processor, the factorization time of our parallel solver scales almost linearly with the problem size for three-dimensionalmore » problems, as opposed to the quadratic scalability of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations, when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large problems much faster than many existing packages as demonstrated by the numerical experiments.« less

  10. Parallel adaptive wavelet collocation method for PDEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nejadmalayeri, Alireza, E-mail: Alireza.Nejadmalayeri@gmail.com; Vezolainen, Alexei, E-mail: Alexei.Vezolainen@Colorado.edu; Brown-Dymkoski, Eric, E-mail: Eric.Browndymkoski@Colorado.edu

    2015-10-01

    A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allowsmore » fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.« less

  11. A Numerical Study of Three Moving-Grid Methods for One-Dimensional Partial Differential Equations Which Are Based on the Method of Lines

    NASA Astrophysics Data System (ADS)

    Furzeland, R. M.; Verwer, J. G.; Zegeling, P. A.

    1990-08-01

    In recent years, several sophisticated packages based on the method of lines (MOL) have been developed for the automatic numerical integration of time-dependent problems in partial differential equations (PDEs), notably for problems in one space dimension. These packages greatly benefit from the very successful developments of automatic stiff ordinary differential equation solvers. However, from the PDE point of view, they integrate only in a semiautomatic way in the sense that they automatically adjust the time step sizes, but use just a fixed space grid, chosen a priori, for the entire calculation. For solutions possessing sharp spatial transitions that move, e.g., travelling wave fronts or emerging boundary and interior layers, a grid held fixed for the entire calculation is computationally inefficient, since for a good solution this grid often must contain a very large number of nodes. In such cases methods which attempt automatically to adjust the sizes of both the space and the time steps are likely to be more successful in efficiently resolving critical regions of high spatial and temporal activity. Methods and codes that operate this way belong to the realm of adaptive or moving-grid methods. Following the MOL approach, this paper is devoted to an evaluation and comparison, mainly based on extensive numerical tests, of three moving-grid methods for 1D problems, viz., the finite-element method of Miller and co-workers, the method published by Petzold, and a method based on ideas adopted from Dorfi and Drury. Our examination of these three methods is aimed at assessing which is the most suitable from the point of view of retaining the acknowledged features of reliability, robustness, and efficiency of the conventional MOL approach. Therefore, considerable attention is paid to the temporal performance of the methods.

  12. Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei

    PubMed Central

    Rascón, Ana; Soderling, Scott H.; Schaefer, Jonathan B.; Beavo, Joseph A.

    2002-01-01

    Here we report the cloning, expression, and characterization of a cAMP-specific phosphodiesterase (PDE) from Trypanosoma brucei (TbPDE2B). Using a bioinformatic approach, two different expressed sequence tag clones were identified and used to isolate the complete sequence of two identical PDE genes arranged in tandem. Each gene consists of 2,793 bases that predict a protein of 930 aa with a molecular mass of 103.2 kDa. Two GAF (for cGMP binding and stimulated PDEs, Anabaena adenylyl cyclases, and Escherichia coli FhlA) domains, similar to those contained in many signaling molecules including mammalian PDE2, PDE5, PDE6, PDE10, and PDE11, were located N-terminal to a consensus PDE catalytic domain. The catalytic domain is homologous to the catalytic domain of all 11 mammalian PDEs, the Dictyostelium discoideum RegA, and a probable PDE from Caenorhabditis elegans. It is most similar to the T. brucei PDE2A (89% identity). TbPDE2B has substrate specificity for cAMP with a Km of 2.4 μM. cGMP is not hydrolyzed by TbPDE2B nor does this cyclic nucleotide modulate cAMP PDE activity. The nonselective PDE inhibitors 3-isobutyl-1-methylxanthine, papaverine and pentoxifyline are poor inhibitors of TbPDE2B. Similarly, PDE inhibitors selective for the mammalian PDE families 2, 3, 5, and 6 (erythro-9-[3-(2-hydroxynonyl)]-adenine, enoximone, zaprinast, and sildenafil) were also unable to inhibit this enzyme. However, dipyridamole was a reasonably good inhibitor of this enzyme with an IC50 of 27 μM. cAMP plays key roles in cell growth and differentiation in this parasite, and PDEs are responsible for the hydrolysis of this important second messenger. Therefore, parasite PDEs, including this one, have the potential to be attractive targets for selective drug design. PMID:11930017

  13. Numerical simulations of earthquakes and the dynamics of fault systems using the Finite Element method.

    NASA Astrophysics Data System (ADS)

    Kettle, L. M.; Mora, P.; Weatherley, D.; Gross, L.; Xing, H.

    2006-12-01

    Simulations using the Finite Element method are widely used in many engineering applications and for the solution of partial differential equations (PDEs). Computational models based on the solution of PDEs play a key role in earth systems simulations. We present numerical modelling of crustal fault systems where the dynamic elastic wave equation is solved using the Finite Element method. This is achieved using a high level computational modelling language, escript, available as open source software from ACcESS (Australian Computational Earth Systems Simulator), the University of Queensland. Escript is an advanced geophysical simulation software package developed at ACcESS which includes parallel equation solvers, data visualisation and data analysis software. The escript library was implemented to develop a flexible Finite Element model which reliably simulates the mechanism of faulting and the physics of earthquakes. Both 2D and 3D elastodynamic models are being developed to study the dynamics of crustal fault systems. Our final goal is to build a flexible model which can be applied to any fault system with user-defined geometry and input parameters. To study the physics of earthquake processes, two different time scales must be modelled, firstly the quasi-static loading phase which gradually increases stress in the system (~100years), and secondly the dynamic rupture process which rapidly redistributes stress in the system (~100secs). We will discuss the solution of the time-dependent elastic wave equation for an arbitrary fault system using escript. This involves prescribing the correct initial stress distribution in the system to simulate the quasi-static loading of faults to failure; determining a suitable frictional constitutive law which accurately reproduces the dynamics of the stick/slip instability at the faults; and using a robust time integration scheme. These dynamic models generate data and information that can be used for earthquake forecasting.

  14. Accelerated Simulation of Kinetic Transport Using Variational Principles and Sparsity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caflisch, Russel

    This project is centered on the development and application of techniques of sparsity and compressed sensing for variational principles, PDEs and physics problems, in particular for kinetic transport. This included derivation of sparse modes for elliptic and parabolic problems coming from variational principles. The research results of this project are on methods for sparsity in differential equations and their applications and on application of sparsity ideas to kinetic transport of plasmas.

  15. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity

    NASA Astrophysics Data System (ADS)

    Bridges, Thomas J.; Reich, Sebastian

    2001-06-01

    The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.

  16. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  17. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai

    2009-03-14

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  18. Non-intrusive reduced order modeling of nonlinear problems using neural networks

    NASA Astrophysics Data System (ADS)

    Hesthaven, J. S.; Ubbiali, S.

    2018-06-01

    We develop a non-intrusive reduced basis (RB) method for parametrized steady-state partial differential equations (PDEs). The method extracts a reduced basis from a collection of high-fidelity solutions via a proper orthogonal decomposition (POD) and employs artificial neural networks (ANNs), particularly multi-layer perceptrons (MLPs), to accurately approximate the coefficients of the reduced model. The search for the optimal number of neurons and the minimum amount of training samples to avoid overfitting is carried out in the offline phase through an automatic routine, relying upon a joint use of the Latin hypercube sampling (LHS) and the Levenberg-Marquardt (LM) training algorithm. This guarantees a complete offline-online decoupling, leading to an efficient RB method - referred to as POD-NN - suitable also for general nonlinear problems with a non-affine parametric dependence. Numerical studies are presented for the nonlinear Poisson equation and for driven cavity viscous flows, modeled through the steady incompressible Navier-Stokes equations. Both physical and geometrical parametrizations are considered. Several results confirm the accuracy of the POD-NN method and show the substantial speed-up enabled at the online stage as compared to a traditional RB strategy.

  19. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Anitescu, Mihai

    2009-03-01

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  20. MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders

    NASA Astrophysics Data System (ADS)

    Haq, Rizwan Ul; Shahzad, Faisal; Al-Mdallal, Qasem M.

    In this article, thermal performance of engine oil in the presence of both single and multiple wall carbon nanotubes (SWCNTs and MWCNTs) between two concentric cylinders is presented. Flow is driven with oscillatory pressure gradient and magneto-hydrodynamics (MHDs) effects are also introduced to control the random motion of the nanoparticles. Arrived broad, it is perceived that the inclusion of nanoparticles increases the thermal conductivity of working fluid significantly for both turbulent and laminar regimes. Fundamental momentum and energy equations are based upon partial differential equations (PDEs) that contain thermos-physical properties of both SWCNTs and MWCNTs. The solution has been evaluated for each mixture, namely: SWCNT-engine oil and MWCNT-engine oil. Results are determined for each velocity, temperature, pressure and stress gradient. Graphical results for the numerical values of the emerging parameters, namely: Hartmann number (M), the solid volume fraction of the nanoparticles (ϕ), Reynolds number (Reω), and the pulsation parameter based on the periodic pressure gradient are analyzed for pressure difference, frictional forces, velocity profile, temperature profile, crux, streamlines and vorticity phenomena. In addition, the assets of various parameters on the flow quantities of observation are investigated.

  1. Exact Solutions of Linear Reaction-Diffusion Processes on a Uniformly Growing Domain: Criteria for Successful Colonization

    PubMed Central

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0

  2. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    PubMed

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0

  3. An "age"-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia.

    PubMed

    Roeder, Ingo; Herberg, Maria; Horn, Matthias

    2009-04-01

    Previously, we have modeled hematopoietic stem cell organization by a stochastic, single cell-based approach. Applications to different experimental systems demonstrated that this model consistently explains a broad variety of in vivo and in vitro data. A major advantage of the agent-based model (ABM) is the representation of heterogeneity within the hematopoietic stem cell population. However, this advantage comes at the price of time-consuming simulations if the systems become large. One example in this respect is the modeling of disease and treatment dynamics in patients with chronic myeloid leukemia (CML), where the realistic number of individual cells to be considered exceeds 10(6). To overcome this deficiency, without losing the representation of the inherent heterogeneity of the stem cell population, we here propose to approximate the ABM by a system of partial differential equations (PDEs). The major benefit of such an approach is its independence from the size of the system. Although this mean field approach includes a number of simplifying assumptions compared to the ABM, it retains the key structure of the model including the "age"-structure of stem cells. We show that the PDE model qualitatively and quantitatively reproduces the results of the agent-based approach.

  4. Nonlinear dynamics of contact interaction of a size-dependent plate supported by a size-dependent beam

    NASA Astrophysics Data System (ADS)

    Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.

    2018-05-01

    A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.

  5. Simplified Least Squares Shadowing sensitivity analysis for chaotic ODEs and PDEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chater, Mario, E-mail: chaterm@mit.edu; Ni, Angxiu, E-mail: niangxiu@mit.edu; Wang, Qiqi, E-mail: qiqi@mit.edu

    This paper develops a variant of the Least Squares Shadowing (LSS) method, which has successfully computed the derivative for several chaotic ODEs and PDEs. The development in this paper aims to simplify Least Squares Shadowing method by improving how time dilation is treated. Instead of adding an explicit time dilation term as in the original method, the new variant uses windowing, which can be more efficient and simpler to implement, especially for PDEs.

  6. Stochastic Calculus and Differential Equations for Physics and Finance

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2013-02-01

    1. Random variables and probability distributions; 2. Martingales, Markov, and nonstationarity; 3. Stochastic calculus; 4. Ito processes and Fokker-Planck equations; 5. Selfsimilar Ito processes; 6. Fractional Brownian motion; 7. Kolmogorov's PDEs and Chapman-Kolmogorov; 8. Non Markov Ito processes; 9. Black-Scholes, martingales, and Feynman-Katz; 10. Stochastic calculus with martingales; 11. Statistical physics and finance, a brief history of both; 12. Introduction to new financial economics; 13. Statistical ensembles and time series analysis; 14. Econometrics; 15. Semimartingales; References; Index.

  7. Master equations and the theory of stochastic path integrals

    NASA Astrophysics Data System (ADS)

    Weber, Markus F.; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.

  8. Master equations and the theory of stochastic path integrals.

    PubMed

    Weber, Markus F; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.

  9. Dynamic transition between fixed- and mobile-bed: mathematical and numerical aspects

    NASA Astrophysics Data System (ADS)

    Zugliani, Daniel; Pasqualini, Matteo; Rosatti, Giorgio

    2017-04-01

    Free-surface flows with high sediment transport (as debris flow or hyper-concentrated flow) are composed by a mixture of fluid and solid phase, usually water and sediment. When these flows propagate over loose beds, particles constituting the mixture of water and sediments strongly interact with the ones forming the bed, leading to erosion or deposition. However, there are lots of other situations when the mixture flows over rigid bedrocks or over artificially paved transects, so there is no mass exchange between bed and mixture. The two situations are usually referred to as, respectively, mobile- and fixed-bed conditions. From a mathematical point of view, the systems of Partial Differential Equations (PDEs) that describe these flows derive from mass and momentum balance of both phases, but, the two resulting PDEs systems are different. The main difference concerns the concentration: in the mobile-bed condition, the concentration is linked to the local flow conditions by means of a suitable rheological relation, while in the fixed-bed case, the concentration is an unknown of the problem. It is quite common that a free surface flow with high sediment transport, in its path, encounters both conditions. In the recent work of Rosatti & Zugliani 2015, the mathematical and numerical description of the transition between fixed- and mobile-bed was successfully resolved, for the case of low sediment transport phenomena, by the introduction of a suitable erodibility variable and satisfactory results were obtained. The main disadvantage of the approach is related to the erodibility variable, that changes in space, based on bed characteristics, but remains constant in time. However, the nature of the bed can change dynamically as result of deposition over fixed bed or high erosion over mobile bed. With this work, we extend the applicability of the mentioned approach to the more complex PDEs describing the hyper-concentrated flow. Moreover, we introduce a strategy that allows a dynamic time variation of the erodibility variable. The issue of the dynamic transition between fixed- and mobile-bed condition is tackled, from a numerical point of view, using a particular predictor corrector technique that compare the transported concentration related with the fixed bed and the equilibrium concentration, deriving from a closure relation, associated to the mobile bed condition. Through a comparison between exact solution, built using the generalized Rankine - Hugoniot condition, and the numeric results, we highlight capabilities and limits of this enhanced technique. Bibliography: G. Rosatti and D. Zugliani, 2015. "Modelling the transition between fixed and mobile bed conditions in two-phase free-surface flows: The Composite Riemann Problem and its numerical solution". Journal of Computational Physics, 285:226-250

  10. A paradigm for modeling and computation of gas dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Liu, Chang

    2017-02-01

    In the continuum flow regime, the Navier-Stokes (NS) equations are usually used for the description of gas dynamics. On the other hand, the Boltzmann equation is applied for the rarefied flow. These two equations are based on distinguishable modeling scales for flow physics. Fortunately, due to the scale separation, i.e., the hydrodynamic and kinetic ones, both the Navier-Stokes equations and the Boltzmann equation are applicable in their respective domains. However, in real science and engineering applications, they may not have such a distinctive scale separation. For example, around a hypersonic flying vehicle, the flow physics at different regions may correspond to different regimes, where the local Knudsen number can be changed significantly in several orders of magnitude. With a variation of flow physics, theoretically a continuous governing equation from the kinetic Boltzmann modeling to the hydrodynamic Navier-Stokes dynamics should be used for its efficient description. However, due to the difficulties of a direct modeling of flow physics in the scale between the kinetic and hydrodynamic ones, there is basically no reliable theory or valid governing equations to cover the whole transition regime, except resolving flow physics always down to the mean free path scale, such as the direct Boltzmann solver and the Direct Simulation Monte Carlo (DSMC) method. In fact, it is an unresolved problem about the exact scale for the validity of the NS equations, especially in the small Reynolds number cases. The computational fluid dynamics (CFD) is usually based on the numerical solution of partial differential equations (PDEs), and it targets on the recovering of the exact solution of the PDEs as mesh size and time step converging to zero. This methodology can be hardly applied to solve the multiple scale problem efficiently because there is no such a complete PDE for flow physics through a continuous variation of scales. For the non-equilibrium flow study, the direct modeling methods, such as DSMC, particle in cell, and smooth particle hydrodynamics, play a dominant role to incorporate the flow physics into the algorithm construction directly. It is fully legitimate to combine the modeling and computation together without going through the process of constructing PDEs. In other words, the CFD research is not only to obtain the numerical solution of governing equations but to model flow dynamics as well. This methodology leads to the unified gas-kinetic scheme (UGKS) for flow simulation in all flow regimes. Based on UGKS, the boundary for the validation of the Navier-Stokes equations can be quantitatively evaluated. The combination of modeling and computation provides a paradigm for the description of multiscale transport process.

  11. Pencil It in: Exploring the Feasibility of Hand-Drawn Pencil Electrochemical Sensors and Their Direct Comparison to Screen-Printed Electrodes

    PubMed Central

    Bernalte, Elena; Foster, Christopher W.; Brownson, Dale A.C.; Mosna, Morgane; Smith, Graham C.; Banks, Craig E.

    2016-01-01

    We explore the fabrication, physicochemical characterisation (SEM, Raman, EDX and XPS) and electrochemical application of hand-drawn pencil electrodes (PDEs) upon an ultra-flexible polyester substrate; investigating the number of draws (used for their fabrication), the pencil grade utilised (HB to 9B) and the electrochemical properties of an array of batches (i.e, pencil boxes). Electrochemical characterisation of the PDEs, using different batches of HB grade pencils, is undertaken using several inner- and outer-sphere redox probes and is critically compared to screen-printed electrodes (SPEs). Proof-of-concept is demonstrated for the electrochemical sensing of dopamine and acetaminophen using PDEs, which are found to exhibit competitive limits of detection (3σ) upon comparison to SPEs. Nonetheless, it is important to note that a clear lack of reproducibility was demonstrated when utilising these PDEs fabricated using the HB pencils from different batches. We also explore the suitability and feasibility of a pencil-drawn reference electrode compared to screen-printed alternatives, to see if one can draw the entire sensing platform. This article reports a critical assessment of these PDEs against that of its screen-printed competitors, questioning the overall feasibility of PDEs’ implementation as a sensing platform. PMID:27589815

  12. ML 3.0 smoothed aggregation user's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-05-01

    ML is a multigrid preconditioning package intended to solve linear systems of equations Az = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the AZTEC 2.1 and AZTECOO iterative package [15]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and non-symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less

  13. ML 3.1 smoothed aggregation user's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-10-01

    ML is a multigrid preconditioning package intended to solve linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the Aztec 2.1 and AztecOO iterative package [16]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and nonsymmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less

  14. Multilevel sequential Monte Carlo samplers

    DOE PAGES

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; ...

    2016-08-24

    Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level h L. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levelsmore » $${\\infty}$$ >h 0>h 1 ...>h L. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.« less

  15. An MBO Scheme for Minimizing the Graph Ohta-Kawasaki Functional

    NASA Astrophysics Data System (ADS)

    van Gennip, Yves

    2018-06-01

    We study a graph-based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational model for pattern formation. Graph-based problems inspired by partial differential equations (PDEs) and variational methods have been the subject of many recent papers in the mathematical literature, because of their applications in areas such as image processing and data classification. This paper extends the area of PDE inspired graph-based problems to pattern-forming models, while continuing in the tradition of recent papers in the field. We introduce a mass conserving Merriman-Bence-Osher (MBO) scheme for minimizing the graph Ohta-Kawasaki functional with a mass constraint. We present three main results: (1) the Lyapunov functionals associated with this MBO scheme Γ -converge to the Ohta-Kawasaki functional (which includes the standard graph-based MBO scheme and total variation as a special case); (2) there is a class of graphs on which the Ohta-Kawasaki MBO scheme corresponds to a standard MBO scheme on a transformed graph and for which generalized comparison principles hold; (3) this MBO scheme allows for the numerical computation of (approximate) minimizers of the graph Ohta-Kawasaki functional with a mass constraint.

  16. Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre

    2014-07-01

    We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.

  17. Modeling hexavalent chromium removal in a Bacillus sp. fixed-film bioreactor.

    PubMed

    Nkhalambayausi-Chirwa, Evans M; Wang, Yi-Tin

    2004-09-30

    A one-dimensional diffusion-reaction model was developed to simulate Cr(VI) reduction in a Bacillus sp. pure culture biofilm reactor with glucose as a sole supplied carbon and energy source. Substrate utilization and Cr(VI) reduction in the biofilm was best represented by a system of (second-order) partial differential equations (PDEs). The PDE system was solved by the (fourth-order) Runge-Kutta method adjusted for mass transport resistance using the (second-order) Crank-Nicholson and Backward Euler finite difference methods. A heuristic procedure (genetic search algorithm) was used to find global optimum values of Cr(VI) reduction and substrate utilization rate kinetic parameters. The fixed-film bioreactor system yielded higher values of the maximum specific Cr(VI) reduction rate coefficient and Cr(VI) reduction capacity (kmc = 0.062 1/h, and Rc = 0.13 mg/mg, respectively) than previously determined in batch reactors (kmc = 0.022 1/h and Rc = 0.012 mg/mg). The model predicted effluent Cr(VI) concentration well with 98.9% confidence (sigmay2 = 2.37 mg2/L2, N = 119) and effluent glucose with 96.4 % confidence (sigmay(w)2 = 5402 mg2/L2, N = 121, w = 100) over a wide range of Cr(VI) loadings (10-498 mg Cr(VI)/L/d). Copyright 2004 Wiley Periodicals, Inc.

  18. A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex; Morris, Philip J.

    1999-01-01

    In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.

  19. Method of modelling the compaction behaviour of cylindrical pharmaceutical tablets.

    PubMed

    Ahmat, Norhayati; Ugail, Hassan; Castro, Gabriela González

    2011-02-28

    The mechanisms involved for compaction of pharmaceutical powders have become a crucial step in the development cycle for robust tablet design with required properties. Compressibility of pharmaceutical materials is measured by a force-displacement relationship which is commonly analysed using a well known method, the Heckel model. This model requires the true density and compacted powder mass value to determine the powder mean yield pressure. In this paper, we present a technique for shape modelling of pharmaceutical tablets based on the use of partial differential equations (PDEs). This work also presents an extended formulation of the PDE method to a higher dimensional space by increasing the number of parameters responsible for describing the surface in order to generate a solid tablet. Furthermore, the volume and the surface area of the parametric cylindrical tablet have been estimated numerically. Finally, the solution of the axisymmetric boundary value problem for a finite cylinder subject to a uniform axial load has been utilised in order to model the displacement components of a compressed PDE-based representation of a tablet. The Heckel plot obtained from the developed model shows that the model is capable of predicting the compaction behaviour of pharmaceutical materials since it fits the experimental data accurately. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Identification of cytosolic phosphodiesterases in the erythrocyte: A possible role for PDE5

    PubMed Central

    Adderley, Shaquria P.; Thuet, Kelly M.; Sridharan, Meera; Bowles, Elizabeth A.; Stephenson, Alan H.; Ellsworth, Mary L.; Sprague, Randy S.

    2011-01-01

    Summary Background Within erythrocytes (RBCs), cAMP levels are regulated by phosphodiesterases (PDEs). Increases in cAMP and ATP release associated with activation of β-adrenergic receptors (βARs) and prostacyclin receptors (IPRs) are regulated by PDEs 2, 4 and PDE 3, respectively. Here we establish the presence of cytosolic PDEs in RBCs and determine a role for PDE5 in regulating levels of cGMP. Material/Methods Purified cytosolic proteins were obtained from isolated human RBCs and western analysis was performed using antibodies against PDEs 3A, 4 and 5. Rabbit RBCs were incubated with dbcGMP, a cGMP analog, to determine the effect of cGMP on cAMP levels. To determine if cGMP affects receptor-mediated increases in cAMP, rabbit RBCs were incubated with dbcGMP prior to addition of isoproterenol (ISO), a βAR receptor agonist. To demonstrate that endogenous cGMP produces the same effect, rabbit and human RBCs were incubated with SpNONOate (SpNO), a nitric oxide donor, and YC1, a direct activator of soluble guanylyl cyclase (sGC), in the absence and presence of a selective PDE5 inhibitor, zaprinast (ZAP). Results Western analysis identified PDEs 3A, 4D and 5A. dbcGMP produced a concentration dependent increase in cAMP and ISO-induced increases in cAMP were potentiated by dbcGMP. In addition, incubation with YC1 and SpNO in the presence of ZAP potentiated βAR-induced increases in cAMP. Conclusions PDEs 2, 3A and 5 are present in the cytosol of human RBCs. PDE5 activity in RBCs regulates cGMP levels. Increases in intracellular cGMP augment cAMP levels. These studies suggest a novel role for PDE5 in erythrocytes. PMID:21525805

  1. A computational analysis subject to thermophysical aspects of Sisko fluid flow over a cylindrical surface

    NASA Astrophysics Data System (ADS)

    Awais, M.; Khalil-Ur-Rehman; Malik, M. Y.; Hussain, Arif; Salahuddin, T.

    2017-09-01

    The present analysis is devoted to probing the salient features of the mixed convection and non-linear thermal radiation effects on non-Newtonian Sisko fluid flow over a linearly stretching cylindrical surface. Properties of heat transfer are outlined via variable thermal conductivity and convective boundary conditions. The boundary layer approach is implemented to construct the mathematical model in the form of partial differential equations. Then, the requisite PDEs are transmuted into a complex ordinary differential system by invoking appropriate dimensionless variables. Solution of subsequent ODEs is obtained by utilizing the Runge-Kutta algorithm (fifth order) along with the shooting scheme. The graphical illustrations are presented to interpret the features of the involved pertinent flow parameters on concerning profiles. For a better description of the fluid flow, numerical variations in local skin friction coefficient and local Nusselt number are scrutinized in tables. From thorough analysis, it is inferred that the mixed convection parameter and the curvature parameter increase the velocity while temperature shows a different behavior. Additionally, both momentum and thermal distribution of fluid flow decrease with increasing values of the non-linearity index. Furthermore, variable thermal parameter and heat generation/absorption parameter amplify the temperature significantly. The skin friction is an increasing function of all momentum controlling parameters. The local Nusselt number also shows a similar behavior against heat radiation parameter and variable thermal conductivity parameter while it shows a dual nature for the heat generation/absorption parameter. Finally, the obtained results are validated by comparison with the existing literature and hence the correctness of the analysis is proved.

  2. Empirical Evaluation of Conservative and Optimistic Discrete Event Execution on Cloud and VM Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2013-01-01

    Virtual machine (VM) technologies, especially those offered via Cloud platforms, present new dimensions with respect to performance and cost in executing parallel discrete event simulation (PDES) applications. Due to the introduction of overall cost as a metric, the choice of the highest-end computing configuration is no longer the most economical one. Moreover, runtime dynamics unique to VM platforms introduce new performance characteristics, and the variety of possible VM configurations give rise to a range of choices for hosting a PDES run. Here, an empirical study of these issues is undertaken to guide an understanding of the dynamics, trends and trade-offsmore » in executing PDES on VM/Cloud platforms. Performance results and cost measures are obtained from actual execution of a range of scenarios in two PDES benchmark applications on the Amazon Cloud offerings and on a high-end VM host machine. The data reveals interesting insights into the new VM-PDES dynamics that come into play and also leads to counter-intuitive guidelines with respect to choosing the best and second-best configurations when overall cost of execution is considered. In particular, it is found that choosing the highest-end VM configuration guarantees neither the best runtime nor the least cost. Interestingly, choosing a (suitably scaled) low-end VM configuration provides the least overall cost without adversely affecting the total runtime.« less

  3. Seeking Space Aliens and the Strong Approximation Property: A (disjoint) Study in Dust Plumes on Planetary Satellites and Nonsymmetric Algebraic Multigrid

    NASA Astrophysics Data System (ADS)

    Southworth, Benjamin Scott

    PART I: One of the most fascinating questions to humans has long been whether life exists outside of our planet. To our knowledge, water is a fundamental building block of life, which makes liquid water on other bodies in the universe a topic of great interest. In fact, there are large bodies of water right here in our solar system, underneath the icy crust of moons around Saturn and Jupiter. The NASA-ESA Cassini Mission spent two decades studying the Saturnian system. One of the many exciting discoveries was a "plume" on the south pole of Enceladus, emitting hundreds of kg/s of water vapor and frozen water-ice particles from Enceladus' subsurface ocean. It has since been determined that Enceladus likely has a global liquid water ocean separating its rocky core from icy surface, with conditions that are relatively favorable to support life. The plume is of particular interest because it gives direct access to ocean particles from space, by flying through the plume. Recently, evidence has been found for similar geological activity occurring on Jupiter's moon Europa, long considered one of the most likely candidate bodies to support life in our solar system. Here, a model for plume-particle dynamics is developed based on studies of the Enceladus plume and data from the Cassini Cosmic Dust Analyzer. A C++, OpenMP/MPI parallel software package is then built to run large scale simulations of dust plumes on planetary satellites. In the case of Enceladus, data from simulations and the Cassini mission provide insight into the structure of emissions on the surface, the total mass production of the plume, and the distribution of particles being emitted. Each of these are fundamental to understanding the plume and, for Europa and Enceladus, simulation data provide important results for the planning of future missions to these icy moons. In particular, this work has contributed to the Europa Clipper mission and proposed Enceladus Life Finder. PART II: Solving large, sparse linear systems arises often in the modeling of biological and physical phenomenon, data analysis through graphs and networks, and other scientific applications. This work focuses primarily on linear systems resulting from the discretization of partial differential equations (PDEs). Because solving linear systems is the bottleneck of many large simulation codes, there is a rich field of research in developing "fast" solvers, with the ultimate goal being a method that solves an n x n linear system in O(n) operations. One of the most effective classes of solvers is algebraic multigrid (AMG), which is a multilevel iterative method based on projecting the problem into progressively smaller spaces, and scales like O(n) or O(nlog n) for certain classes of problems. The field of AMG is well-developed for symmetric positive definite matrices, and is typically most effective on linear systems resulting from the discretization of scalar elliptic PDEs, such as the heat equation. Systems of PDEs can add additional difficulties, but the underlying linear algebraic theory is consistent and, in many cases, an elliptic system of PDEs can be handled well by AMG with appropriate modifications of the solver. Solving general, nonsymmetric linear systems remains the wild west of AMG (and other fast solvers), lacking significant results in convergence theory as well as robust methods. Here, we develop new theoretical motivation and practical variations of AMG to solve nonsymmetric linear systems, often resulting from the discretization of hyperbolic PDEs. In particular, multilevel convergence of AMG for nonsymmetric systems is proven for the first time. A new nonsymmetric AMG solver is also developed based on an approximate ideal restriction, referred to as AIR, which is able to solve advection-dominated, hyperbolic-type problems that are outside the scope of existing AMG solvers and other fast iterative methods. AIR demonstrates scalable convergence on unstructured meshes, in multiple dimensions, and with high-order finite elements, expanding the applicability of AMG to a new class of problems.

  4. An efficient technique for higher order fractional differential equation.

    PubMed

    Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef

    2016-01-01

    In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.

  5. A New Class of Highly Accurate Differentiation Schemes Based on the Prolate Spheroidal Wave Functions

    DTIC Science & Technology

    2011-04-07

    predictor - corrector scheme. Such an approach for the solution of time-dependent PDEs, which is some- times referred to as the “method of lines,” is studied...particular, λj = i j |λj |. We define the self -adjoint operator Qc : L 2([−1, 1]) → L2([−1, 1]) by the formula Qc(φ) = 1 π ∫ 1 −1 sin( c (x− t)) x− t φ...Gaussian quadratures for bandlimited functions is to use the Newton-type nonlinear optimization algorithm of [14]. Specifically, for bandlimit c and

  6. Photocatalytic Oxidation of Low-Level Airborne 2-Propanol and Trichloroethylene over Titania Irradiated with Bulb-Type Light-Emitting Diodes.

    PubMed

    Jo, Wan-Kuen

    2013-01-18

    This study examined the photocatalytic oxidation of gas-phase trichloroethylene (TCE) and 2-propanol, at indoor levels, over titanium dioxide (TiO₂) irradiated with light-emitting diodes (LED) under different operational conditions. TiO₂ powder baked at 450 °C exhibited the highest photocatalytic decomposition efficiency (PDE) for TCE, while all photocatalysts baked at different temperatures showed similar PDEs for 2-propanol. The average PDEs of TCE over a three hour period were four, four, five, and 51% for TiO₂ powders baked at 150, 250, 350, and 450 °C, respectively. The average PDEs of 2-propanol were 95, 97, 98, and 96% for TiO₂ powders baked at 150, 250, 350, and 450 °C, respectively. The ratio of anatase at 2θ = 25.2° to rutile at 2θ = 27.4° was lowest for the TiO₂ powder baked at 450 °C. Although the LED-irradiated TiO₂ system revealed lower PDEs of TCE and 2-propanol when compared to those of the eight watt, black-light lamp-irradiated TiO₂ system, the results for the PDEs normalized to the energy consumption were reversed. Other operational parameters, such as relative humidity, input concentrations, flow rate, and feeding type were also found to influence the photocatalytic performance of the UV LED-irradiated TiO₂ system when applied to the cleaning of TCE and 2-propanol at indoor air levels.

  7. Considerations for the Development and Implementation of PDES (Product Data Exchange Specification) within a Government Environment

    DTIC Science & Technology

    1989-02-01

    definition and manipulation languages. TECHNOLOGY TRANSFER: Contractor Personnel Actively Participate in PDES Activities: Yes, (Althoff & Chia Hui Shih...ORGANIZATION I) (2 (3) Mr. Bill Alzheimer Sandia National Labs X X Mr. Jeff Arthurs NAVSEA CEL-PA X Mr. Howard Bloom Nat’l Inst of Stds & Tech X LCDR

  8. Relation of Parallel Discrete Event Simulation algorithms with physical models

    NASA Astrophysics Data System (ADS)

    Shchur, L. N.; Shchur, L. V.

    2015-09-01

    We extend concept of local simulation times in parallel discrete event simulation (PDES) in order to take into account architecture of the current hardware and software in high-performance computing. We shortly review previous research on the mapping of PDES on physical problems, and emphasise how physical results may help to predict parallel algorithms behaviour.

  9. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  10. Reduced-order model for dynamic optimization of pressure swing adsorption processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, A.; Biegler, L.; Zitney, S.

    2007-01-01

    Over the past decades, pressure swing adsorption (PSA) processes have been widely used as energy-efficient gas and liquid separation techniques, especially for high purity hydrogen purification from refinery gases. The separation processes are based on solid-gas equilibrium and operate under periodic transient conditions. Models for PSA processes are therefore multiple instances of partial differential equations (PDEs) in time and space with periodic boundary conditions that link the processing steps together. The solution of this coupled stiff PDE system is governed by steep concentrations and temperature fronts moving with time. As a result, the optimization of such systems for either designmore » or operation represents a significant computational challenge to current differential algebraic equation (DAE) optimization techniques and nonlinear programming algorithms. Model reduction is one approach to generate cost-efficient low-order models which can be used as surrogate models in the optimization problems. The study develops a reduced-order model (ROM) based on proper orthogonal decomposition (POD), which is a low-dimensional approximation to a dynamic PDE-based model. Initially, a representative ensemble of solutions of the dynamic PDE system is constructed by solving a higher-order discretization of the model using the method of lines, a two-stage approach that discretizes the PDEs in space and then integrates the resulting DAEs over time. Next, the ROM method applies the Karhunen-Loeve expansion to derive a small set of empirical eigenfunctions (POD modes) which are used as basis functions within a Galerkin's projection framework to derive a low-order DAE system that accurately describes the dominant dynamics of the PDE system. The proposed method leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial discretization before and making optimization problem computationally-efficient. The method has been applied to the dynamic coupled PDE-based model of a two-bed four-step PSA process for separation of hydrogen from methane. Separate ROMs have been developed for each operating step with different POD modes for each of them. A significant reduction in the order of the number of states has been achieved. The gas-phase mole fraction, solid-state loading and temperature profiles from the low-order ROM and from the high-order simulations have been compared. Moreover, the profiles for a different set of inputs and parameter values fed to the same ROM were compared with the accurate profiles from the high-order simulations. Current results indicate the proposed ROM methodology as a promising surrogate modeling technique for cost-effective optimization purposes. Moreover, deviations from the ROM for different set of inputs and parameters suggest that a recalibration of the model is required for the optimization studies. Results for these will also be presented with the aforementioned results.« less

  11. The Programming Language Python In Earth System Simulations

    NASA Astrophysics Data System (ADS)

    Gross, L.; Imranullah, A.; Mora, P.; Saez, E.; Smillie, J.; Wang, C.

    2004-12-01

    Mathematical models in earth sciences base on the solution of systems of coupled, non-linear, time-dependent partial differential equations (PDEs). The spatial and time-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.

  12. Muscle Activity Map Reconstruction from High Density Surface EMG Signals With Missing Channels Using Image Inpainting and Surface Reconstruction Methods.

    PubMed

    Ghaderi, Parviz; Marateb, Hamid R

    2017-07-01

    The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.

  13. Simulation and optimization of pressure swing adsorption systmes using reduced-order modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, A.; Biegler, L.; Zitney, S.

    2009-01-01

    Over the past three decades, pressure swing adsorption (PSA) processes have been widely used as energyefficient gas separation techniques, especially for high purity hydrogen purification from refinery gases. Models for PSA processes are multiple instances of partial differential equations (PDEs) in time and space with periodic boundary conditions that link the processing steps together. The solution of this coupled stiff PDE system is governed by steep fronts moving with time. As a result, the optimization of such systems represents a significant computational challenge to current differential algebraic equation (DAE) optimization techniques and nonlinear programming algorithms. Model reduction is one approachmore » to generate cost-efficient low-order models which can be used as surrogate models in the optimization problems. This study develops a reducedorder model (ROM) based on proper orthogonal decomposition (POD), which is a low-dimensional approximation to a dynamic PDE-based model. The proposed method leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial discretization and making the optimization problem computationally efficient. The method has been applied to the dynamic coupled PDE-based model of a twobed four-step PSA process for separation of hydrogen from methane. Separate ROMs have been developed for each operating step with different POD modes for each of them. A significant reduction in the order of the number of states has been achieved. The reduced-order model has been successfully used to maximize hydrogen recovery by manipulating operating pressures, step times and feed and regeneration velocities, while meeting product purity and tight bounds on these parameters. Current results indicate the proposed ROM methodology as a promising surrogate modeling technique for cost-effective optimization purposes.« less

  14. Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow

    NASA Astrophysics Data System (ADS)

    Gao, Zheng

    A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the proposed framework can be used to solve a physics problem that involves turbulence field and point-mass system, and therefore has a broad application.

  15. Aztec user`s guide. Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.

    1995-10-01

    Aztec is an iterative library that greatly simplifies the parallelization process when solving the linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. Aztec is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparsemore » unstructured matrices for parallel solution. Once the distributed matrix is created, computation can be performed on any of the parallel machines running Aztec: nCUBE 2, IBM SP2 and Intel Paragon, MPI platforms as well as standard serial and vector platforms. Aztec includes a number of Krylov iterative methods such as conjugate gradient (CG), generalized minimum residual (GMRES) and stabilized biconjugate gradient (BICGSTAB) to solve systems of equations. These Krylov methods are used in conjunction with various preconditioners such as polynomial or domain decomposition methods using LU or incomplete LU factorizations within subdomains. Although the matrix A can be general, the package has been designed for matrices arising from the approximation of partial differential equations (PDEs). In particular, the Aztec package is oriented toward systems arising from PDE applications.« less

  16. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopenko, Andrey; Tuminaro, Raymond S.

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  17. An assessment of CFD-based wall heat transfer models in piston engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sircar, Arpan; Paul, Chandan; Ferreyro-Fernandez, Sebastian

    The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictivemore » submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.« less

  18. Architecting the Finite Element Method Pipeline for the GPU.

    PubMed

    Fu, Zhisong; Lewis, T James; Kirby, Robert M; Whitaker, Ross T

    2014-02-01

    The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers.

  19. Semi-implicit integration factor methods on sparse grids for high-dimensional systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongyong; Chen, Weitao; Nie, Qing

    2015-07-01

    Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.

  20. Finite Dimensional Approximations for Continuum Multiscale Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlyand, Leonid

    2017-01-24

    The completed research project concerns the development of novel computational techniques for modeling nonlinear multiscale physical and biological phenomena. Specifically, it addresses the theoretical development and applications of the homogenization theory (coarse graining) approach to calculation of the effective properties of highly heterogenous biological and bio-inspired materials with many spatial scales and nonlinear behavior. This theory studies properties of strongly heterogeneous media in problems arising in materials science, geoscience, biology, etc. Modeling of such media raises fundamental mathematical questions, primarily in partial differential equations (PDEs) and calculus of variations, the subject of the PI’s research. The focus of completed researchmore » was on mathematical models of biological and bio-inspired materials with the common theme of multiscale analysis and coarse grain computational techniques. Biological and bio-inspired materials offer the unique ability to create environmentally clean functional materials used for energy conversion and storage. These materials are intrinsically complex, with hierarchical organization occurring on many nested length and time scales. The potential to rationally design and tailor the properties of these materials for broad energy applications has been hampered by the lack of computational techniques, which are able to bridge from the molecular to the macroscopic scale. The project addressed the challenge of computational treatments of such complex materials by the development of a synergistic approach that combines innovative multiscale modeling/analysis techniques with high performance computing.« less

  1. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE PAGES

    Prokopenko, Andrey; Tuminaro, Raymond S.

    2016-07-01

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  2. Operational Characteristics of a Rotating Detonation Engine Using Hydrogen and Air

    DTIC Science & Technology

    2011-06-01

    Naval Research Laboratory PDE Pulsed detonation engine RDE Rotating detonation engine TDW Transverse detonation wave Symbols [SI units...primarily been on pulsed detonation engines ( PDEs ). Recently, however, detonation research has begun to also focus on rotating , or continuous... rotating detonation engines have been studied, however, more progress was initially made regarding PDEs . Recently, though, there has been a renewed

  3. Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2

    NASA Astrophysics Data System (ADS)

    Rognes, M. E.; Ham, D. A.; Cotter, C. J.; McRae, A. T. T.

    2013-12-01

    Differential equations posed over immersed manifolds are of particular importance in studying geophysical flows; for instance, ocean and atmosphere simulations crucially rely on the capability to solve equations over the sphere. This paper presents the extension of the FEniCS software components to the automated solution of finite element formulations of differential equations defined over general, immersed manifolds. We describe the implementation and, in particular detail, how the required extensions essentially reduce to the extension of the FEniCS form compiler to cover this case. The resulting implementation has all the properties of the FEniCS pipeline and we demonstrate its flexibility by an extensive range of numerical examples covering a number of geophysical benchmark examples and test cases. The results are all in agreement with the expected values. The description here relates to DOLFIN/FEniCS 1.2.

  4. Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2

    NASA Astrophysics Data System (ADS)

    Rognes, M. E.; Ham, D. A.; Cotter, C. J.; McRae, A. T. T.

    2013-07-01

    Differential equations posed over immersed manifolds are of particular importance in studying geophysical flows; for instance, ocean and atmosphere simulations crucially rely on the capability to solve equations over the sphere. This paper presents the extension of the FEniCS software components to the automated solution of finite element formulations of differential equations defined over general, immersed manifolds. We describe the implementation and in particular detail how the required extensions essentially reduce to the extension of the FEniCS form compiler to cover this case. The resulting implementation has all the properties of the FEniCS pipeline and we demonstrate its flexibility by an extensive range of numerical examples covering a number of geophysical benchmark examples and test cases. The results are all in agreement with the expected values. The description here relates to DOLFIN/FEniCS 1.2.

  5. Build Up and Operation of an Axial Turbine Driven by a Rotary Detonation Engine

    DTIC Science & Technology

    2012-03-01

    RDEs) offer advantages over pulsed detonation engines ( PDEs ) due to a steadier exhaust and fewer total system losses. All previous research on...turbine integration with detonation combustors has focused on utilizing PDEs to drive axial and centrifugal turbines. The objective of this thesis was... detonation engine ............................................. 5 Figure 4. Schematic of the rotating detonation wave structure for an unwrapped view of an

  6. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets

    PubMed Central

    Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent

    2014-01-01

    By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711

  7. Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor

    NASA Astrophysics Data System (ADS)

    Pranger, Casper

    2017-04-01

    In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.

  8. Traveling waves in a continuum model of 1D schools

    NASA Astrophysics Data System (ADS)

    Oza, Anand; Kanso, Eva; Shelley, Michael

    2017-11-01

    We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.

  9. Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems

    NASA Astrophysics Data System (ADS)

    Katzourakis, Nikos

    2017-07-01

    We introduce a new theory of generalised solutions which applies to fully nonlinear PDE systems of any order and allows for merely measurable maps as solutions. This approach bypasses the standard problems arising by the application of Distributions to PDEs and is not based on either integration by parts or on the maximum principle. Instead, our starting point builds on the probabilistic representation of derivatives via limits of difference quotients in the Young measures over a toric compactification of the space of jets. After developing some basic theory, as a first application we consider the Dirichlet problem and we prove existence-uniqueness-partial regularity of solutions to fully nonlinear degenerate elliptic 2nd order systems and also existence of solutions to the ∞-Laplace system of vectorial Calculus of Variations in L∞.

  10. A correction function method for the wave equation with interface jump conditions

    NASA Astrophysics Data System (ADS)

    Abraham, David S.; Marques, Alexandre Noll; Nave, Jean-Christophe

    2018-01-01

    In this paper a novel method to solve the constant coefficient wave equation, subject to interface jump conditions, is presented. In general, such problems pose issues for standard finite difference solvers, as the inherent discontinuity in the solution results in erroneous derivative information wherever the stencils straddle the given interface. Here, however, the recently proposed Correction Function Method (CFM) is used, in which correction terms are computed from the interface conditions, and added to affected nodes to compensate for the discontinuity. In contrast to existing methods, these corrections are not simply defined at affected nodes, but rather generalized to a continuous function within a small region surrounding the interface. As a result, the correction function may be defined in terms of its own governing partial differential equation (PDE) which may be solved, in principle, to arbitrary order of accuracy. The resulting scheme is not only arbitrarily high order, but also robust, having already seen application to Poisson problems and the heat equation. By extending the CFM to this new class of PDEs, the treatment of wave interface discontinuities in homogeneous media becomes possible. This allows, for example, for the straightforward treatment of infinitesimal source terms and sharp boundaries, free of staircasing errors. Additionally, new modifications to the CFM are derived, allowing compatibility with explicit multi-step methods, such as Runge-Kutta (RK4), without a reduction in accuracy. These results are then verified through numerous numerical experiments in one and two spatial dimensions.

  11. Energy-optimal path planning in the coastal ocean

    NASA Astrophysics Data System (ADS)

    Subramani, Deepak N.; Haley, Patrick J.; Lermusiaux, Pierre F. J.

    2017-05-01

    We integrate data-driven ocean modeling with the stochastic Dynamically Orthogonal (DO) level-set optimization methodology to compute and study energy-optimal paths, speeds, and headings for ocean vehicles in the Middle-Atlantic Bight (MAB) region. We hindcast the energy-optimal paths from among exact time-optimal paths for the period 28 August 2006 to 9 September 2006. To do so, we first obtain a data-assimilative multiscale reanalysis, combining ocean observations with implicit two-way nested multiresolution primitive-equation simulations of the tidal-to-mesoscale dynamics in the region. Second, we solve the reduced-order stochastic DO level-set partial differential equations (PDEs) to compute the joint probability of minimum arrival time, vehicle-speed time series, and total energy utilized. Third, for each arrival time, we select the vehicle-speed time series that minimize the total energy utilization from the marginal probability of vehicle-speed and total energy. The corresponding energy-optimal path and headings are obtained through the exact particle-backtracking equation. Theoretically, the present methodology is PDE-based and provides fundamental energy-optimal predictions without heuristics. Computationally, it is 3-4 orders of magnitude faster than direct Monte Carlo methods. For the missions considered, we analyze the effects of the regional tidal currents, strong wind events, coastal jets, shelfbreak front, and other local circulations on the energy-optimal paths. Results showcase the opportunities for vehicles that intelligently utilize the ocean environment to minimize energy usage, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.

  12. An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Chen, Guoxian; Huang, Yuefei; Yang, Jerry Zhijian; Feng, Hui

    2013-04-01

    A new geometrical conservative interpolation on unstructured meshes is developed for preserving still water equilibrium and positivity of water depth at each iteration of mesh movement, leading to an adaptive moving finite volume (AMFV) scheme for modeling flood inundation over dry and complex topography. Unlike traditional schemes involving position-fixed meshes, the iteration process of the AFMV scheme moves a fewer number of the meshes adaptively in response to flow variables calculated in prior solutions and then simulates their posterior values on the new meshes. At each time step of the simulation, the AMFV scheme consists of three parts: an adaptive mesh movement to shift the vertices position, a geometrical conservative interpolation to remap the flow variables by summing the total mass over old meshes to avoid the generation of spurious waves, and a partial differential equations(PDEs) discretization to update the flow variables for a new time step. Five different test cases are presented to verify the computational advantages of the proposed scheme over nonadaptive methods. The results reveal three attractive features: (i) the AMFV scheme could preserve still water equilibrium and positivity of water depth within both mesh movement and PDE discretization steps; (ii) it improved the shock-capturing capability for handling topographic source terms and wet-dry interfaces by moving triangular meshes to approximate the spatial distribution of time-variant flood processes; (iii) it was able to solve the shallow water equations with a relatively higher accuracy and spatial-resolution with a lower computational cost.

  13. 3D Orthorhombic Elastic Wave Propagation Pre-Test Simulation of SPE DAG-1 Test

    NASA Astrophysics Data System (ADS)

    Jensen, R. P.; Preston, L. A.

    2017-12-01

    A more realistic representation of many geologic media can be characterized as a dense system of vertically-aligned microfractures superimposed on a finely-layered horizontal geology found in shallow crustal rocks. This seismic anisotropy representation lends itself to being modeled as an orthorhombic elastic medium comprising three mutually orthogonal symmetry planes containing nine independent moduli. These moduli can be determined by observing (or prescribing) nine independent P-wave and S-wave phase speeds along different propagation directions. We have developed an explicit time-domain finite-difference (FD) algorithm for simulating 3D elastic wave propagation in a heterogeneous orthorhombic medium. The components of the particle velocity vector and the stress tensor are governed by a set of nine, coupled, first-order, linear, partial differential equations (PDEs) called the velocity-stress system. All time and space derivatives are discretized with centered and staggered FD operators possessing second- and fourth-order numerical accuracy, respectively. Additionally, we have implemented novel perfectly matched layer (PML) absorbing boundary conditions, specifically designed for orthorhombic media, to effectively suppress grid boundary reflections. In support of the Source Physics Experiment (SPE) Phase II, a series of underground chemical explosions at the Nevada National Security Site, the code has been used to perform pre-test estimates of the Dry Alluvium Geology - Experiment 1 (DAG-1). Based on literature searches, realistic geologic structure and values for orthorhombic P-wave and S-wave speeds have been estimated. Results and predictions from the simulations are presented.

  14. Plume-Surface Interaction Modeling for a Human-Scale Mars Lander

    NASA Technical Reports Server (NTRS)

    Hart, Kenneth

    2017-01-01

    Landing vehicles impart thermal and strain energy onto the landing site from the retrorocket exhaust. Depending on the design of the vehicle, the energy may be great enough to cause spallation at the landing site. This damage may be minor and repairable in the case of landing on a terrestrial landing pad. For missions to other planetary bodies, the spallation may cause the landing site to become uneven and unstable, as well as damage. Simulating this phenomenon in a laboratory or computationally would require a significant amount of time and other resources. These resources typically are not available during the design phase of a mission. This paper presents a computationally-efficient model for the temperature and stress distributions that arise during landing. These quantities can be used along with existing failure criteria, such as the Hoek-Brown criterion for geological materials, to quickly determine whether spallation will occur. The stress and temperature distributions at the landing site are inherently 3D; however, there is a plane of symmetry and in that plane the distributions are 2D. Both quantities are modeled using series solutions to their governing partial differential equations (PDEs). The stress is modeled using the Airy stress potential function and its governing PDE is the biharmonic equation. The temperature is governed by Fourier's law. The models assume that stress due to gravity can be neglected, the points in the plane do not accelerate, and that the material properties are constant.

  15. Going from microscopic to macroscopic on nonuniform growing domains.

    PubMed

    Yates, Christian A; Baker, Ruth E; Erban, Radek; Maini, Philip K

    2012-08-01

    Throughout development, chemical cues are employed to guide the functional specification of underlying tissues while the spatiotemporal distributions of such chemicals can be influenced by the growth of the tissue itself. These chemicals, termed morphogens, are often modeled using partial differential equations (PDEs). The connection between discrete stochastic and deterministic continuum models of particle migration on growing domains was elucidated by Baker, Yates, and Erban [Bull. Math. Biol. 72, 719 (2010)] in which the migration of individual particles was modeled as an on-lattice position-jump process. We build on this work by incorporating a more physically reasonable description of domain growth. Instead of allowing underlying lattice elements to instantaneously double in size and divide, we allow incremental element growth and splitting upon reaching a predefined threshold size. Such a description of domain growth necessitates a nonuniform partition of the domain. We first demonstrate that an individual-based stochastic model for particle diffusion on such a nonuniform domain partition is equivalent to a PDE model of the same phenomenon on a nongrowing domain, providing the transition rates (which we derive) are chosen correctly and we partition the domain in the correct manner. We extend this analysis to the case where the domain is allowed to change in size, altering the transition rates as necessary. Through application of the master equation formalism we derive a PDE for particle density on this growing domain and corroborate our findings with numerical simulations.

  16. Inversion of geophysical potential field data using the finite element method

    NASA Astrophysics Data System (ADS)

    Lamichhane, Bishnu P.; Gross, Lutz

    2017-12-01

    The inversion of geophysical potential field data can be formulated as an optimization problem with a constraint in the form of a partial differential equation (PDE). It is common practice, if possible, to provide an analytical solution for the forward problem and to reduce the problem to a finite dimensional optimization problem. In an alternative approach the optimization is applied to the problem and the resulting continuous problem which is defined by a set of coupled PDEs is subsequently solved using a standard PDE discretization method, such as the finite element method (FEM). In this paper, we show that under very mild conditions on the data misfit functional and the forward problem in the three-dimensional space, the continuous optimization problem and its FEM discretization are well-posed including the existence and uniqueness of respective solutions. We provide error estimates for the FEM solution. A main result of the paper is that the FEM spaces used for the forward problem and the Lagrange multiplier need to be identical but can be chosen independently from the FEM space used to represent the unknown physical property. We will demonstrate the convergence of the solution approximations in a numerical example. The second numerical example which investigates the selection of FEM spaces, shows that from the perspective of computational efficiency one should use 2 to 4 times finer mesh for the forward problem in comparison to the mesh of the physical property.

  17. Discontinuous Galerkin methods for Hamiltonian ODEs and PDEs

    NASA Astrophysics Data System (ADS)

    Tang, Wensheng; Sun, Yajuan; Cai, Wenjun

    2017-02-01

    In this article, we present a unified framework of discontinuous Galerkin (DG) discretizations for Hamiltonian ODEs and PDEs. We show that with appropriate numerical fluxes the numerical algorithms deduced from DG discretizations can be combined with the symplectic methods in time to derive the multi-symplectic PRK schemes. The resulting numerical discretizations are applied to the linear and nonlinear Schrödinger equations. Some conservative properties of the numerical schemes are investigated and confirmed in the numerical experiments.

  18. Crystal Structure of the Leishmania Major Phosphodiesterase LmjPDEB1 and Insight into the Design of hte Parasite-Selective Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang,H.; Yan, Z.; Geng, J.

    2007-01-01

    Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 Angstroms resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bondmore » with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.« less

  19. Identification of New Signaling Components in the Sensory Epithelium of Human Saccule

    PubMed Central

    Degerman, Eva; Rauch, Uwe; Göransson, Olga; Lindberg, Sven; Hultgårdh, Anna; Magnusson, Måns

    2011-01-01

    Objective: To locate components and target proteins of relevance for the cAMP and cGMP signaling networks including cAMP and cGMP phosphodiesterases (PDEs), salt-inducible kinases (SIKs), subunits of Na+, K+-ATPases, and aquaporins (AQPs) in the human saccule. Methods: The human saccule was dissected out during the removal of vestibular schwannoma via the translabyrinthine approach and immediately fixed. Immunohistochemistry was performed using PDE, SIK, Na+, K+-ATPase, and AQP antibodies. Results: PDEs selective for cAMP (PDE4A, PDE4D, and PDE8A) and cGMP (PDE9A) as well a dual specificity PDE (PDE10A) were detected in the sensory epithelium of the saccule. Furthermore, AQP2, 4, and 9, SIK1 and the α-1 subunit of the Na+, K+-ATPase were detected. Conclusion: cAMP and cGMP are important regulators of ion and water homeostasis in the inner ear. The identification of PDEs and SIK1 in the vestibular system offers new treatment targets for endolymphatic hydrops. Exactly how the PDEs are connected to SIK1 and the SIK1 substrate Na+, K+-ATPase and to AQPs 2, 4, 9 remains to be elucidated. The dissection of the signaling networks utilizing these components and evaluating their roles will add new basic knowledge regarding inner ear physiology. PMID:21886636

  20. Dietary flavonoid luteolin attenuates uropathogenic Escherichia. Coli invasion of the urinary bladder.

    PubMed

    Shen, Xiao-Fei; Teng, Yan; Sha, Kai-Hui; Wang, Xin-Yuan; Yang, Xiao-Long; Guo, Xiao-Juan; Ren, Lai-Bin; Wang, Xiao-Ying; Li, Jingyu; Huang, Ning

    2016-11-12

    Uropathogenic Escherichia coli (UPEC), the primary uropathogen, adhere to and invade bladder epithelial cells (BECs) to establish a successful urinary tract infection (UTI). Emerging antibiotic resistance requires novel nonantibiotic strategies. Our previous study indicated that luteolin attenuated adhesive and invasive abilities as well as cytotoxicity of UPEC on T24 BECs through down-regulating UPEC virulence factors. The aims of this study were to investigate the possible function of the flavonoid luteolin and the mechanisms by which luteolin functions in UPEC-induced bladder infection. Firstly, obvious reduction of UPEC invasion but not adhesion were observed in luteolin-pretreated 5637 and T24 BECs sa well as mice bladder via colony counting. The luteolin-mediated suppression of UPEC invasion was linked to elevated levels of intracellular cAMP induced by inhibiting the activity of cAMP-phosphodiesterases (cAMP-PDEs), which resulting activation of protein kinase A, thereby negatively regulating Rac1-GTPase-mediated actin polymerization. Furthermore, p38 MAPK was primarily and ERK1/2 was partially involved in luteolin-mediated suppression of UPEC invasion and actin polymerization, as confirmed with chemical activators of p38 MAPK and ERK1/2. These data suggest that luteolin can protect bladder epithelial cells against UPEC invasion. Therefore, luteolin or luteolin-rich products as dietary supplement may be beneficial to control the UPEC-related bladder infections, and cAMP-PDEs may be a therapy target for UTIs treatment. © 2016 BioFactors, 42(6):674-685, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  1. Visual Data-Analytics of Large-Scale Parallel Discrete-Event Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Caitlin; Carothers, Christopher D.; Mubarak, Misbah

    Parallel discrete-event simulation (PDES) is an important tool in the codesign of extreme-scale systems because PDES provides a cost-effective way to evaluate designs of highperformance computing systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow events to be processed without global synchronization among the processing elements. A rollback mechanism is provided when events are processed out of timestamp order. Although optimistic synchronization protocols enable the scalability of large-scale PDES, the performance of the simulations must be tuned to reduce the number of rollbacks and provide an improved simulation runtime. To enable efficient large-scale optimistic simulations, one has tomore » gain insight into the factors that affect the rollback behavior and simulation performance. We developed a tool for ROSS model developers that gives them detailed metrics on the performance of their large-scale optimistic simulations at varying levels of simulation granularity. Model developers can use this information for parameter tuning of optimistic simulations in order to achieve better runtime and fewer rollbacks. In this work, we instrument the ROSS optimistic PDES framework to gather detailed statistics about the simulation engine. We have also developed an interactive visualization interface that uses the data collected by the ROSS instrumentation to understand the underlying behavior of the simulation engine. The interface connects real time to virtual time in the simulation and provides the ability to view simulation data at different granularities. We demonstrate the usefulness of our framework by performing a visual analysis of the dragonfly network topology model provided by the CODES simulation framework built on top of ROSS. The instrumentation needs to minimize overhead in order to accurately collect data about the simulation performance. To ensure that the instrumentation does not introduce unnecessary overhead, we perform a scaling study that compares instrumented ROSS simulations with their noninstrumented counterparts in order to determine the amount of perturbation when running at different simulation scales.« less

  2. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin.

    PubMed

    Xu, Kaijia; Wang, Yuzhi; Li, Yixue; Lin, Yunxuan; Zhang, Haibao; Zhou, Yigang

    2016-11-23

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe 3 O 4 @SiO 2 -MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe 3 O 4 @SiO 2 -MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV-vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe 3 O 4 @SiO 2 -MPS, Fe 3 O 4 @SiO 2 -MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe 3 O 4 @SiO 2 -MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe 3 O 4 @SiO 2 -MPS@PDES-MSPE method in separation of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Stable isotope ratios of carbon and nitrogen and mercury concentrations in 13 toothed whale species taken from the western Pacific Ocean off Japan.

    PubMed

    Endo, Tetsuya; Hisamichi, Yohsuke; Kimura, Osamu; Haraguchi, Koichi; Lavery, Shane; Dalebout, Merel L; Funahashi, Naoko; Baker, C Scott

    2010-04-01

    Stable isotope ratios of carbon (partial differential(13)C) and nitrogen (partial differential(15)N) and total mercury (T-Hg) concentrations were measured in red meat samples from 11 odontocete species (toothed whales, dolphins, and porpoises) sold in Japan (n = 96) and in muscle samples from stranded killer whales (n = 6) and melon-headed whales (n = 15), and the analytical data for these species were classified into three regions (northern, central, and southern Japan) depending on the locations in which they were caught or stranded. The partial differential(15)N in the samples from southern Japan tended to be lower than that in samples from the north, whereas both partial differential(13)C and T-Hg concentrations in samples from the south tended to higher than those in samples from northern Japan. Negative correlations were found between the partial differential(13)C and partial differential(15)N values and between the partial differential(15)N value and T-Hg concentrations in the combined samples all three regions (gamma= -0.238, n = 117, P < 0.01). The partial differential(13)C, partial differential(15)N, and T-Hg concentrations in the samples varied more by habitat than by species. Spatial variations in partial differential(13)C, partial differential(15)N, and T-Hg concentrations in the ocean may be the cause of these phenomena.

  4. Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity

    DTIC Science & Technology

    2015-10-23

    AFRL-AFOSR-VA-TR-2015-0337 Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity Jean-Luc Guermond TEXAS A & M UNIVERSITY 750...REPORT DATE (DD-MM-YYYY) 09-05-2015 2. REPORT TYPE Final report 3. DATES COVERED (From - To) 01-07-2012 - 30-06-2015 4. TITLE AND SUBTITLE Entropy ...conservation equations can be stabilized by using the so-called entropy viscosity method and we proposed to to investigate this new technique. We

  5. Investigation of the Stability of POD-Galerkin Techniques for Reduced Order Model Development

    DTIC Science & Technology

    2016-01-09

    symmetrizing the higher- order PDE with a preconditioning matrix. Rowley et al. also pointed out that defining a proper inner product can be important when...equations. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower-order ODE system by means of POD eigen-bases...employing Galerkin’s method to reduce the high-order PDEs to a lower-order ODE system by means of POD eigen-bases. Possible solutions of the ROM stability

  6. Exploration of POD-Galerkin Techniques for Developing Reduced Order Models of the Euler Equations

    DTIC Science & Technology

    2015-07-01

    modes [1]. Barone et al [15, 16] proposed to stabilize the reduced system by symmetrizing the higher-order PDE with a preconditioning matrix. Rowley et...advection scalar equation. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower- order ODE system by means of POD...high-order PDEs to a lower-order ODE system by means of POD eigen-bases. For purposes of this study, a linearized version of the Euler equations is

  7. Simulation of all-scale atmospheric dynamics on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna; Xiao, Feng

    2016-10-01

    The advance of massively parallel computing in the nineteen nineties and beyond encouraged finer grid intervals in numerical weather-prediction models. This has improved resolution of weather systems and enhanced the accuracy of forecasts, while setting the trend for development of unified all-scale atmospheric models. This paper first outlines the historical background to a wide range of numerical methods advanced in the process. Next, the trend is illustrated with a technical review of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach, proven effective in simulations of atmospheric flows from small-scale dynamics to global circulations and climate. The outlined approach exploits the synergy of two specific ingredients: the MPDATA methods for the simulation of fluid flows based on the sign-preserving properties of upstream differencing; and the flexible finite-volume median-dual unstructured-mesh discretisation of the spatial differential operators comprising PDEs of atmospheric dynamics. The paper consolidates the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-incompressible systems, common in large-eddy simulation of small- and meso-scale dynamics, as well as all-scale compressible Euler equations. Such a framework naturally extends predictive skills of large-eddy simulation to the global atmosphere, providing a bottom-up alternative to the reverse approach pursued in the weather-prediction models. Theoretical considerations are substantiated by calculations attesting to the versatility and efficacy of the NFTFV approach. Some prospective developments are also discussed.

  8. A Performance Comparison of the Parallel Preconditioners for Iterative Methods for Large Sparse Linear Systems Arising from Partial Differential Equations on Structured Grids

    NASA Astrophysics Data System (ADS)

    Ma, Sangback

    In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The results show that in general ILU(0) in the Multi-Color ordering ahd ILU(0) in the Wavefront ordering outperform the other methods but for symmetric and nearly symmetric 5-point matrices Multi-Color Block SOR gives the best performance, except for a few cases with a small number of processors.

  9. Optimizing some 3-stage W-methods for the time integration of PDEs

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pinto, S.; Hernandez-Abreu, D.; Perez-Rodriguez, S.

    2017-07-01

    The optimization of some W-methods for the time integration of time-dependent PDEs in several spatial variables is considered. In [2, Theorem 1] several three-parametric families of three-stage W-methods for the integration of IVPs in ODEs were studied. Besides, the optimization of several specific methods for PDEs when the Approximate Matrix Factorization Splitting (AMF) is used to define the approximate Jacobian matrix (W ≈ fy(yn)) was carried out. Also, some convergence and stability properties were presented [2]. The derived methods were optimized on the base that the underlying explicit Runge-Kutta method is the one having the largest Monotonicity interval among the thee-stage order three Runge-Kutta methods [1]. Here, we propose an optimization of the methods by imposing some additional order condition [7] to keep order three for parabolic PDE problems [6] but at the price of reducing substantially the length of the nonlinear Monotonicity interval of the underlying explicit Runge-Kutta method.

  10. Recent advances in numerical PDEs

    NASA Astrophysics Data System (ADS)

    Zuev, Julia Michelle

    In this thesis, we investigate four neighboring topics, all in the general area of numerical methods for solving Partial Differential Equations (PDEs). Topic 1. Radial Basis Functions (RBF) are widely used for multi-dimensional interpolation of scattered data. This methodology offers smooth and accurate interpolants, which can be further refined, if necessary, by clustering nodes in select areas. We show, however, that local refinements with RBF (in a constant shape parameter [varepsilon] regime) may lead to the oscillatory errors associated with the Runge phenomenon (RP). RP is best known in the case of high-order polynomial interpolation, where its effects can be accurately predicted via Lebesgue constant L (which is based solely on the node distribution). We study the RP and the applicability of Lebesgue constant (as well as other error measures) in RBF interpolation. Mainly, we allow for a spatially variable shape parameter, and demonstrate how it can be used to suppress RP-like edge effects and to improve the overall stability and accuracy. Topic 2. Although not as versatile as RBFs, cubic splines are useful for interpolating grid-based data. In 2-D, we consider a patch representation via Hermite basis functions s i,j ( u, v ) = [Special characters omitted.] h mn H m ( u ) H n ( v ), as opposed to the standard bicubic representation. Stitching requirements for the rectangular non-equispaced grid yield a 2-D tridiagonal linear system AX = B, where X represents the unknown first derivatives. We discover that the standard methods for solving this NxM system do not take advantage of the spline-specific format of the matrix B. We develop an alternative approach using this specialization of the RHS, which allows us to pre-compute coefficients only once, instead of N times. MATLAB implementation of our fast 2-D cubic spline algorithm is provided. We confirm analytically and numerically that for large N ( N > 200), our method is at least 3 times faster than the standard algorithm and is just as accurate. Topic 3. The well-known ADI-FDTD method for solving Maxwell's curl equations is second-order accurate in space/time, unconditionally stable, and computationally efficient. We research Richardson extrapolation -based techniques to improve time discretization accuracy for spatially oversampled ADI-FDTD. A careful analysis of temporal accuracy, computational efficiency, and the algorithm's overall stability is presented. Given the context of wave- type PDEs, we find that only a limited number of extrapolations to the ADI-FDTD method are beneficial, if its unconditional stability is to be preserved. We propose a practical approach for choosing the size of a time step that can be used to improve the efficiency of the ADI-FDTD algorithm, while maintaining its accuracy and stability. Topic 4. Shock waves and their energy dissipation properties are critical to understanding the dynamics controlling the MHD turbulence. Numerical advection algorithms used in MHD solvers (e.g. the ZEUS package) introduce undesirable numerical viscosity. To counteract its effects and to resolve shocks numerically, Richtmyer and von Neumann's artificial viscosity is commonly added to the model. We study shock power by analyzing the influence of both artificial and numerical viscosity on energy decay rates. Also, we analytically characterize the numerical diffusivity of various advection algorithms by quantifying their diffusion coefficients e.

  11. Scalable analysis of nonlinear systems using convex optimization

    NASA Astrophysics Data System (ADS)

    Papachristodoulou, Antonis

    In this thesis, we investigate how convex optimization can be used to analyze different classes of nonlinear systems at various scales algorithmically. The methodology is based on the construction of appropriate Lyapunov-type certificates using sum of squares techniques. After a brief introduction on the mathematical tools that we will be using, we turn our attention to robust stability and performance analysis of systems described by Ordinary Differential Equations. A general framework for constrained systems analysis is developed, under which stability of systems with polynomial, non-polynomial vector fields and switching systems, as well estimating the region of attraction and the L2 gain can be treated in a unified manner. We apply our results to examples from biology and aerospace. We then consider systems described by Functional Differential Equations (FDEs), i.e., time-delay systems. Their main characteristic is that they are infinite dimensional, which complicates their analysis. We first show how the complete Lyapunov-Krasovskii functional can be constructed algorithmically for linear time-delay systems. Then, we concentrate on delay-independent and delay-dependent stability analysis of nonlinear FDEs using sum of squares techniques. An example from ecology is given. The scalable stability analysis of congestion control algorithms for the Internet is investigated next. The models we use result in an arbitrary interconnection of FDE subsystems, for which we require that stability holds for arbitrary delays, network topologies and link capacities. Through a constructive proof, we develop a Lyapunov functional for FAST---a recently developed network congestion control scheme---so that the Lyapunov stability properties scale with the system size. We also show how other network congestion control schemes can be analyzed in the same way. Finally, we concentrate on systems described by Partial Differential Equations. We show that axially constant perturbations of the Navier-Stokes equations for Hagen-Poiseuille flow are globally stable, even though the background noise is amplified as R3 where R is the Reynolds number, giving a 'robust yet fragile' interpretation. We also propose a sum of squares methodology for the analysis of systems described by parabolic PDEs. We conclude this work with an account for future research.

  12. Microlocal approach towards construction of nonreflecting boundary conditions

    NASA Astrophysics Data System (ADS)

    Vaibhav, V.

    2014-09-01

    This paper addresses the problem of construction of non-reflecting boundary condition for certain second-order nonlinear dispersive equations. It is shown that using the concept of microlocality it is possible to relax the requirement of compact support of the initial data. The method is demonstrated for a class of initial data such that outside the computational domain it behaves like a continuous-wave. The generalization is detailed for two existing schemes in the framework of pseudo-differential calculus, namely, Szeftel's method (Szeftel (2006) [1]) and gauge transformation strategy (Antoine et al. (2006) [2]). Efficient numerical implementation is discussed and a comparative performance analysis is presented. The paper also briefly surveys the possibility of extension of the method to higher-dimensional PDEs.

  13. Uniform in N global well-posedness of the time-dependent Hartree-Fock-Bogoliubov equations in R^{1+1}

    NASA Astrophysics Data System (ADS)

    Chong, Jacky Jia Wei

    2018-04-01

    We prove the global well-posedness of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) equations in R^{1+1} with two-body interaction potential of the form N^{-1}v_N(x) = N^{β -1} v(N^β x) where v≥0 is a sufficiently regular radial function, i.e., v \\in L^1(R)\\cap C^∞ (R) . In particular, using methods of dispersive PDEs similar to the ones used in Grillakis and Machedon (Commun Partial Differ Equ 42:24-67, 2017), we are able to show for any scaling parameter β >0 the TDHFB equations are globally well-posed in some Strichartz-type spaces independent of N, cf. (Bach et al. in The time-dependent Hartree-Fock-Bogoliubov equations for Bosons, 2016. arXiv:1602.05171).

  14. WE-AB-204-07: Spatiotemporal Distribution of the FDG PET Tracer in Solid Tumors: Contributions of Diffusion and Convection Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani, M; Sefidgar, M; Bazmara, H

    2015-06-15

    Purpose: In this study, a mathematical model is utilized to simulate FDG distribution in tumor tissue. In contrast to conventional compartmental modeling, tracer distributions across space and time are directly linked together (i.e. moving beyond ordinary differential equations (ODEs) to utilizing partial differential equations (PDEs) coupling space and time). The diffusion and convection transport mechanisms are both incorporated to model tracer distribution. We aimed to investigate the contributions of these two mechanisms on FDG distribution for various tumor geometries obtained from PET/CT images. Methods: FDG transport was simulated via a spatiotemporal distribution model (SDM). The model is based on amore » 5K compartmental model. We model the fact that tracer concentration in the second compartment (extracellular space) is modulated via convection and diffusion. Data from n=45 patients with pancreatic tumors as imaged using clinical FDG PET/CT imaging were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. Tumors with varying shapes and sizes were assessed in order to investigate the effects of convection and diffusion mechanisms on FDG transport. Numerical methods simulating interstitial flow and solute transport in tissue were utilized. Results: We have shown the convection mechanism to depend on the shape and size of tumors whereas diffusion mechanism is seen to exhibit low dependency on shape and size. Results show that concentration distribution of FDG is relatively similar for the considered tumors; and that the diffusion mechanism of FDG transport significantly dominates the convection mechanism. The Peclet number which shows the ratio of convection to diffusion rates was shown to be of the order of 10−{sup 3} for all considered tumors. Conclusion: We have demonstrated that even though convection leads to varying tracer distribution profiles depending on tumor shape and size, the domination of the diffusion phenomenon prevents these factors from modulating FDG distribution.« less

  15. Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions

    NASA Astrophysics Data System (ADS)

    Chebotarev, Alexander Yu.; Grenkin, Gleb V.; Kovtanyuk, Andrey E.; Botkin, Nikolai D.; Hoffmann, Karl-Heinz

    2018-04-01

    The paper is concerned with a problem of diffraction type. The study starts with equations of complex (radiative and conductive) heat transfer in a multicomponent domain with Fresnel matching conditions at the interfaces. Applying the diffusion, P1, approximation yields a pair of coupled nonlinear PDEs describing the radiation intensity and temperature for each component of the domain. Matching conditions for these PDEs, imposed at the interfaces between the domain components, are derived. The unique solvability of the obtained problem is proven, and numerical experiments are conducted.

  16. Modeling persistence of motion in a crowded environment: The diffusive limit of excluding velocity-jump processes

    NASA Astrophysics Data System (ADS)

    Gavagnin, Enrico; Yates, Christian A.

    2018-03-01

    Persistence of motion is the tendency of an object to maintain motion in a direction for short time scales without necessarily being biased in any direction in the long term. One of the most appropriate mathematical tools to study this behavior is an agent-based velocity-jump process. In the absence of agent-agent interaction, the mean-field continuum limit of the agent-based model (ABM) gives rise to the well known hyperbolic telegraph equation. When agent-agent interaction is included in the ABM, a strictly advective system of partial differential equations (PDEs) can be derived at the population level. However, no diffusive limit of the ABM has been obtained from such a model. Connecting the microscopic behavior of the ABM to a diffusive macroscopic description is desirable, since it allows the exploration of a wider range of scenarios and establishes a direct connection with commonly used statistical tools of movement analysis. In order to connect the ABM at the population level to a diffusive PDE at the population level, we consider a generalization of the agent-based velocity-jump process on a two-dimensional lattice with three forms of agent interaction. This generalization allows us to take a diffusive limit and obtain a faithful population-level description. We investigate the properties of the model at both the individual and population levels and we elucidate some of the models' key characteristic features. In particular, we show an intrinsic anisotropy inherent to the models and we find evidence of a spontaneous form of aggregation at both the micro- and macroscales.

  17. Active acoustical impedance using distributed electrodynamical transducers.

    PubMed

    Collet, M; David, P; Berthillier, M

    2009-02-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency.

  18. Survey of meshless and generalized finite element methods: A unified approach

    NASA Astrophysics Data System (ADS)

    Babuška, Ivo; Banerjee, Uday; Osborn, John E.

    In the past few years meshless methods for numerically solving partial differential equations have come into the focus of interest, especially in the engineering community. This class of methods was essentially stimulated by difficulties related to mesh generation. Mesh generation is delicate in many situations, for instance, when the domain has complicated geometry; when the mesh changes with time, as in crack propagation, and remeshing is required at each time step; when a Lagrangian formulation is employed, especially with nonlinear PDEs. In addition, the need for flexibility in the selection of approximating functions (e.g., the flexibility to use non-polynomial approximating functions), has played a significant role in the development of meshless methods. There are many recent papers, and two books, on meshless methods; most of them are of an engineering character, without any mathematical analysis.In this paper we address meshless methods and the closely related generalized finite element methods for solving linear elliptic equations, using variational principles. We give a unified mathematical theory with proofs, briefly address implementational aspects, present illustrative numerical examples, and provide a list of references to the current literature.The aim of the paper is to provide a survey of a part of this new field, with emphasis on mathematics. We present proofs of essential theorems because we feel these proofs are essential for the understanding of the mathematical aspects of meshless methods, which has approximation theory as a major ingredient. As always, any new field is stimulated by and related to older ideas. This will be visible in our paper.

  19. Robust, heat-resistant and multifunctional superhydrophobic coating of carbon microflowers with molybdenum trioxide nanoparticles.

    PubMed

    Wu, Yang; Zhao, Meiyun; Guo, Zhiguang

    2017-11-15

    Superhydrophobic materials have triggered large interest due to their widespread applications, such as self-cleaning, corrosion resistance, anti-icing, and oil/water separation. However, suffering from weak mechanical strength, plenty of superhydrophobic materials are limited in practical application. Herein, we prepared hierarchical carbon microflowers (CMF) dispersed with molybdenum trioxide (MoO 3 ) nanoparticles (MoO 3 /CMF) via a two-step preparation method. Taking advantage of high-adhesion epoxy resin and the modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES), the modified MoO 3 /CMF (PDES-MoO 3 /CMF) coating on various substrates shows great waterproof ability, excellent chemical stability, good mechanical durability, and self-cleaning property. More significantly, the prepared PDES-MoO 3 /CMF powder with high thermal stability (250°C) can be used for oil/water separation due to its special flower-like structure and superhydrophobicity/superoleophilicity. All of these advantages endow the superhydrophobic powders with huge potential in the practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Numerical Simulations of Reacting Flows Using Asynchrony-Tolerant Schemes for Exascale Computing

    NASA Astrophysics Data System (ADS)

    Cleary, Emmet; Konduri, Aditya; Chen, Jacqueline

    2017-11-01

    Communication and data synchronization between processing elements (PEs) are likely to pose a major challenge in scalability of solvers at the exascale. Recently developed asynchrony-tolerant (AT) finite difference schemes address this issue by relaxing communication and synchronization between PEs at a mathematical level while preserving accuracy, resulting in improved scalability. The performance of these schemes has been validated for simple linear and nonlinear homogeneous PDEs. However, many problems of practical interest are governed by highly nonlinear PDEs with source terms, whose solution may be sensitive to perturbations caused by communication asynchrony. The current work applies the AT schemes to combustion problems with chemical source terms, yielding a stiff system of PDEs with nonlinear source terms highly sensitive to temperature. Examples shown will use single-step and multi-step CH4 mechanisms for 1D premixed and nonpremixed flames. Error analysis will be discussed both in physical and spectral space. Results show that additional errors introduced by the AT schemes are negligible and the schemes preserve their accuracy. We acknowledge funding from the DOE Computational Science Graduate Fellowship administered by the Krell Institute.

  1. Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Perdikaris, Paris; Karniadakis, George Em

    2016-10-01

    We develop efficient numerical methods for fractional order PDEs, and employ them to investigate viscoelastic constitutive laws for arterial wall mechanics. Recent simulations using one-dimensional models [1] have indicated that fractional order models may offer a more powerful alternative for modeling the arterial wall response, exhibiting reduced sensitivity to parametric uncertainties compared with the integer-calculus-based models. Here, we study three-dimensional (3D) fractional PDEs that naturally model the continuous relaxation properties of soft tissue, and for the first time employ them to simulate flow structure interactions for patient-specific brain aneurysms. To deal with the high memory requirements and in order to accelerate the numerical evaluation of hereditary integrals, we employ a fast convolution method [2] that reduces the memory cost to O (log ⁡ (N)) and the computational complexity to O (Nlog ⁡ (N)). Furthermore, we combine the fast convolution with high-order backward differentiation to achieve third-order time integration accuracy. We confirm that in 3D viscoelastic simulations, the integer order models strongly depends on the relaxation parameters, while the fractional order models are less sensitive. As an application to long-time simulations in complex geometries, we also apply the method to modeling fluid-structure interaction of a 3D patient-specific compliant cerebral artery with an aneurysm. Taken together, our findings demonstrate that fractional calculus can be employed effectively in modeling complex behavior of materials in realistic 3D time-dependent problems if properly designed efficient algorithms are employed to overcome the extra memory requirements and computational complexity associated with the non-local character of fractional derivatives.

  2. Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms

    PubMed Central

    Perdikaris, Paris; Karniadakis, George Em

    2017-01-01

    We develop efficient numerical methods for fractional order PDEs, and employ them to investigate viscoelastic constitutive laws for arterial wall mechanics. Recent simulations using one-dimensional models [1] have indicated that fractional order models may offer a more powerful alternative for modeling the arterial wall response, exhibiting reduced sensitivity to parametric uncertainties compared with the integer-calculus-based models. Here, we study three-dimensional (3D) fractional PDEs that naturally model the continuous relaxation properties of soft tissue, and for the first time employ them to simulate flow structure interactions for patient-specific brain aneurysms. To deal with the high memory requirements and in order to accelerate the numerical evaluation of hereditary integrals, we employ a fast convolution method [2] that reduces the memory cost to O(log(N)) and the computational complexity to O(N log(N)). Furthermore, we combine the fast convolution with high-order backward differentiation to achieve third-order time integration accuracy. We confirm that in 3D viscoelastic simulations, the integer order models strongly depends on the relaxation parameters, while the fractional order models are less sensitive. As an application to long-time simulations in complex geometries, we also apply the method to modeling fluid–structure interaction of a 3D patient-specific compliant cerebral artery with an aneurysm. Taken together, our findings demonstrate that fractional calculus can be employed effectively in modeling complex behavior of materials in realistic 3D time-dependent problems if properly designed efficient algorithms are employed to overcome the extra memory requirements and computational complexity associated with the non-local character of fractional derivatives. PMID:29104310

  3. The Cauchy problem for the Pavlov equation

    NASA Astrophysics Data System (ADS)

    Grinevich, P. G.; Santini, P. M.; Wu, D.

    2015-10-01

    Commutation of multidimensional vector fields leads to integrable nonlinear dispersionless PDEs that arise in various problems of mathematical physics and have been intensively studied in recent literature. This report aims to solve the scattering and inverse scattering problem for integrable dispersionless PDEs, recently introduced just at a formal level, concentrating on the prototypical example of the Pavlov equation, and to justify an existence theorem for global bounded solutions of the associated Cauchy problem with small data. An essential part of this work was made during the visit of the three authors to the Centro Internacional de Ciencias in Cuernavaca, Mexico in November-December 2012.

  4. Non-autonomous Hénon--Heiles systems

    NASA Astrophysics Data System (ADS)

    Hone, Andrew N. W.

    1998-07-01

    Scaling similarity solutions of three integrable PDEs, namely the Sawada-Kotera, fifth order KdV and Kaup-Kupershmidt equations, are considered. It is shown that the resulting ODEs may be written as non-autonomous Hamiltonian equations, which are time-dependent generalizations of the well-known integrable Hénon-Heiles systems. The (time-dependent) Hamiltonians are given by logarithmic derivatives of the tau-functions (inherited from the original PDEs). The ODEs for the similarity solutions also have inherited Bäcklund transformations, which may be used to generate sequences of rational solutions as well as other special solutions related to the first Painlevé transcendent.

  5. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of solutions of continuous time wavelet numerical methods for the nonlinear aerosol dynamics are proved by using Schauder's fixed point theorem and the variational technique. Optimal error estimates are derived for both continuous and discrete time wavelet Galerkin schemes. We further derive reliable and efficient a posteriori error estimate which is based on stable multiresolution wavelet bases and an adaptive space-time algorithm for efficient solution of linear parabolic differential equations. The adaptive space refinement strategies based on the locality of corresponding multiresolution processes are proved to converge. At last, we develop efficient numerical methods by combining the wavelet methods proposed in previous parts and the splitting technique to solve the spatial aerosol dynamic equations. Wavelet methods along the particle size direction and the upstream finite difference method along the spatial direction are alternately used in each time interval. Numerical experiments are taken to show the effectiveness of our developed methods.

  6. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    ERIC Educational Resources Information Center

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  7. The convergence of the order sequence and the solution function sequence on fractional partial differential equation

    NASA Astrophysics Data System (ADS)

    Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.

    2018-03-01

    One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).

  8. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana

    2012-11-15

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazinemore » did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. -- Highlights: ► Atrazine stimulates cAMP accumulation in pituitary and Leydig cells. ► Atrazine also stimulates PRL and androgens secretion. ► Stimulatory effects of atrazine were abolished in cells with IBMX-inhibited PDEs. ► Atrazine specificity toward cAMP-specific PDEs was indicated by no changes in cGMP. ► Rolipram, a specific PDE4 inhibitor, also prevents stimulatory effects of atrazine. ► Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific PDE4.« less

  9. Repeated and chronic administration of Vardenafil or Sildenafil differentially affects emotional and socio-sexual behavior in mice.

    PubMed

    Dadomo, H; Parmigiani, S; Nicolini, Y; Freschini, S; Gioiosa, L; Patrelli, T S; Palanza, P; Volpi, R

    2013-09-15

    Selective phosphodiesterases (PDEs) inhibitors have been widely studied as therapeutic agents for treatment of various human diseases, including cardiotonics, vasodilators, smooth muscle relaxants, antidepressants, antithrombotics, antiasthmatics, and agents for improving learning and memory. Although Sildenafil(®) and Vardenafil(®) have similar chemical formulae, the same target and interact with many of the same residues at the active site of phosphodiesterse-5 (PDE-5), they exhibit both in vitro and in vivo some important functional differences that could differentially affect behavior. Therefore we assessed whether repeated and chronic administration of Vardenafil and Sildenafil at a dose based upon human treatment can differentially affect aggressive, social, emotional and sexual behavior. To this aim, the effects of Sildenafil (10mg/kg) or Vardenafil (2mg/kg) (t.i.w., for 5 weeks) were observed in CD1 subordinate male mice in a low aggression and social subordination context. The results show that Sildenafil increased competitive aggression, environmental and social exploration, and reduced anxiety like behaviors as compared to controls, whereas Vardenafil had a significant major effect on appetitive and consummatory aspect of sexual behavior. This demonstrates that Sildenafil and Vardenafil, although being structurally and functionally similar, are characterized by different neuro-behavioral actions and can have differential therapeutic potentials. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis.

    PubMed

    Ren, Gai-Xian; Fan, Sai; Guo, Xiao-Peng; Chen, Shiyun; Sun, Yi-Cheng

    2016-01-01

    Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  11. Comprehensive Approaches to Multiphase Flows in Geophysics - Application to nonisothermal, nonhomogenous, unsteady, large-scale, turbulent dusty clouds I. Hydrodynamic and Thermodynamic RANS and LES Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Dartevelle

    2005-09-05

    The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either amore » spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of thermodynamics and fulfills the necessary requirements for a well-posed initial-value problem. In the next manuscripts, we will further develop specific closures for multiphase RANS, LES, and hybrid-LES.« less

  12. Minimal string theories and integrable hierarchies

    NASA Astrophysics Data System (ADS)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context. We then present evidence that the conjectured type II theories have smooth non-perturbative solutions, connecting two perturbative asymptotic regimes, in a 't Hooft limit. Our technique also demonstrates evidence for new minimal string theories that are not apparent in a perturbative analysis.

  13. Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation

    NASA Technical Reports Server (NTRS)

    Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.

  14. Chaste: An Open Source C++ Library for Computational Physiology and Biology

    PubMed Central

    Mirams, Gary R.; Arthurs, Christopher J.; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Corrias, Alberto; Davit, Yohan; Dunn, Sara-Jane; Fletcher, Alexander G.; Harvey, Daniel G.; Marsh, Megan E.; Osborne, James M.; Pathmanathan, Pras; Pitt-Francis, Joe; Southern, James; Zemzemi, Nejib; Gavaghan, David J.

    2013-01-01

    Chaste — Cancer, Heart And Soft Tissue Environment — is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to ‘re-invent the wheel’ with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials. PMID:23516352

  15. On the dynamics of approximating schemes for dissipative nonlinear equations

    NASA Technical Reports Server (NTRS)

    Jones, Donald A.

    1993-01-01

    Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of approximating schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between approximations of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given approximating scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of approximating schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such approximations also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under approximation. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that approximations generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.

  16. Impacts of variable thermal conductivity on stagnation point boundary layer flow past a Riga plate with variable thickness using generalized Fourier's law

    NASA Astrophysics Data System (ADS)

    Shah, S.; Hussain, S.; Sagheer, M.

    2018-06-01

    This article explores the problem of two-dimensional, laminar, steady and boundary layer stagnation point slip flow over a Riga plate. The incompressible upper-convected Maxwell fluid has been considered as a rheological fluid model. The heat transfer characteristics are investigated with generalized Fourier's law. The fluid thermal conductivity is assumed to be temperature dependent in this study. A system of partial differential equations governing the flow of an upper-convected Maxwell fluid, heat and mass transfer using generalized Fourier's law is developed. The main objective of the article is to inspect the impacts of pertinent physical parameters such as the stretching ratio parameter (0 ⩽ A ⩽ 0.3) , Deborah number (0 ⩽ β ⩽ 0.6) , thermal relaxation parameter (0 ⩽ γ ⩽ 0.5) , wall thickness parameter (0.1 ⩽ α ⩽ 3.5) , slip parameter (0 ⩽ R ⩽ 1.5) , thermal conductivity parameter (0.1 ⩽ δ ⩽ 1.0) and modified Hartmann number (0 ⩽ Q ⩽ 3) on the velocity and temperature profiles. Suitable local similarity transformations have been used to get a system of non-linear ODEs from the governing PDEs. The numerical solutions for the dimensionless velocity and temperature distributions have been achieved by employing an effective numerical method called the shooting method. It is seen that the velocity profile shows the reduction in the velocity for the higher values of viscoelastic parameter and the thermal relaxation parameter. In addition, to enhance the reliability at the maximum level of the obtained numerical results by shooting method, a MATLAB built-in solver bvp4c has also been utilized.

  17. Selection of Polynomial Chaos Bases via Bayesian Model Uncertainty Methods with Applications to Sparse Approximation of PDEs with Stochastic Inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagiannis, Georgios; Lin, Guang

    2014-02-15

    Generalized polynomial chaos (gPC) expansions allow the representation of the solution of a stochastic system as a series of polynomial terms. The number of gPC terms increases dramatically with the dimension of the random input variables. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs if the evaluations of the system are expensive, the evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solution, both in spacial and random domains, by coupling Bayesianmore » model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spacial points via (1) Bayesian model average or (2) medial probability model, and their construction as functions on the spacial domain via spline interpolation. The former accounts the model uncertainty and provides Bayes-optimal predictions; while the latter, additionally, provides a sparse representation of the solution by evaluating the expansion on a subset of dominating gPC bases when represented as a gPC expansion. Moreover, the method quantifies the importance of the gPC bases through inclusion probabilities. We design an MCMC sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed method is suitable for, but not restricted to, problems whose stochastic solution is sparse at the stochastic level with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the good performance of the proposed method and make comparisons with others on 1D, 14D and 40D in random space elliptic stochastic partial differential equations.« less

  18. Modeling methods of MEMS micro-speaker with electrostatic working principle

    NASA Astrophysics Data System (ADS)

    Tumpold, D.; Kaltenbacher, M.; Glacer, C.; Nawaz, M.; Dehé, A.

    2013-05-01

    The market for mobile devices like tablets, laptops or mobile phones is increasing rapidly. Device housings get thinner and energy efficiency is more and more important. Micro-Electro-Mechanical-System (MEMS) loudspeakers, fabricated in complementary metal oxide semiconductor (CMOS) compatible technology merge energy efficient driving technology with cost economical fabrication processes. In most cases, the fabrication of such devices within the design process is a lengthy and costly task. Therefore, the need for computer modeling tools capable of precisely simulating the multi-field interactions is increasing. The accurate modeling of such MEMS devices results in a system of coupled partial differential equations (PDEs) describing the interaction between the electric, mechanical and acoustic field. For the efficient and accurate solution we apply the Finite Element (FE) method. Thereby, we fully take the nonlinear effects into account: electrostatic force, charged moving body (loaded membrane) in an electric field, geometric nonlinearities and mechanical contact during the snap-in case between loaded membrane and stator. To efficiently handle the coupling between the mechanical and acoustic fields, we apply Mortar FE techniques, which allow different grid sizes along the coupling interface. Furthermore, we present a recently developed PML (Perfectly Matched Layer) technique, which allows limiting the acoustic computational domain even in the near field without getting spurious reflections. For computations towards the acoustic far field we us a Kirchhoff Helmholtz integral (e.g, to compute the directivity pattern). We will present simulations of a MEMS speaker system based on a single sided driving mechanism as well as an outlook on MEMS speakers using double stator systems (pull-pull-system), and discuss their efficiency (SPL) and quality (THD) towards the generated acoustic sound.

  19. A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS

  20. Two-Dimensional Modeling of Heat and Moisture Dynamics in Swedish Roads: Model Set up and Parameter Sensitivity

    NASA Astrophysics Data System (ADS)

    Rasul, H.; Wu, M.; Olofsson, B.

    2017-12-01

    Modelling moisture and heat changes in road layers is very important to understand road hydrology and for better construction and maintenance of roads in a sustainable manner. In cold regions due to the freezing/thawing process in the partially saturated material of roads, the modeling task will become more complicated than simple model of flow through porous media without freezing/thawing pores considerations. This study is presenting a 2-D model simulation for a section of highway with considering freezing/thawing and vapor changes. Partial deferential equations (PDEs) are used in formulation of the model. Parameters are optimized from modelling results based on the measured data from test station on E18 highway near Stockholm. Impacts of phase change considerations in the modelling are assessed by comparing the modeled soil moisture with TDR-measured data. The results show that the model can be used for prediction of water and ice content in different layers of the road and at different seasons. Parameter sensitivities are analyzed by implementing a calibration strategy. In addition, the phase change consideration is evaluated in the modeling process, by comparing the PDE model with another model without considerations of freezing/thawing in roads. The PDE model shows high potential in understanding the moisture dynamics in the road system.

  1. Climate science in the tropics: waves, vortices and PDEs

    NASA Astrophysics Data System (ADS)

    Khouider, Boualem; Majda, Andrew J.; Stechmann, Samuel N.

    2013-01-01

    Clouds in the tropics can organize the circulation on planetary scales and profoundly impact long range seasonal forecasting and climate on the entire globe, yet contemporary operational computer models are often deficient in representing these phenomena. On the other hand, contemporary observations reveal remarkably complex coherent waves and vortices in the tropics interacting across a bewildering range of scales from kilometers to ten thousand kilometers. This paper reviews the interdisciplinary contributions over the last decade through the modus operandi of applied mathematics to these important scientific problems. Novel physical phenomena, new multiscale equations, novel PDEs, and numerical algorithms are presented here with the goal of attracting mathematicians and physicists to this exciting research area.

  2. On the hierarchy of partially invariant submodels of differential equations

    NASA Astrophysics Data System (ADS)

    Golovin, Sergey V.

    2008-07-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  3. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1989-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.

  4. Solution of differential equations by application of transformation groups

    NASA Technical Reports Server (NTRS)

    Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.

    1968-01-01

    Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.

  5. Model's sparse representation based on reduced mixed GMsFE basis methods

    NASA Astrophysics Data System (ADS)

    Jiang, Lijian; Li, Qiuqi

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.

  6. Model's sparse representation based on reduced mixed GMsFE basis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a largemore » number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.« less

  7. Efficient Nonlinear Low-Order Models for Atmospheric and Climate Dynamics

    NASA Astrophysics Data System (ADS)

    Grady, Kevin A.

    The governing equations of atmospheric and climate dynamics present enormous mathematical challenges when studied analytically. Following the pioneering work of Kolmogorov, Lorenz, and Obukhov, a popular approach to handle these difficult partial differential equations (PDEs) is to approximate them with finite systems of ordinary differential equations (ODEs), called low-order models (LOMs). One such LOM is the celebrated Lorenz (1963) model of just three ODEs, but attempts to extend it to larger, more realistic models of atmospheric dynamics have sometimes led to LOMs exhibiting unphysical behavior, such as a lack of energy conservation in the dissipationless limit. These behaviors can be avoided by constructing LOMs using 3-mode nonlinear dynamical systems known in mechanics as Volterra gyrostats, the simplest one being equivalent to the Lorenz model. Gyrostatic LOMs guarantee energy conservation, suggesting they may offer a general framework for deriving efficient LOMs for atmospheric and climate dynamics. This study explores the use of gyrostatic LOMs in three important related problems of atmospheric dynamics. The first is 2D Rayleigh-Benard convection (RBC), where an algorithm for studying gyrostatic LOMs was developed. Before now this had to be done manually, limiting the LOMs that could be studied as well as their size. This algorithm permits the study of LOMs larger than previously possible as well as their conservation properties. It was used here to demonstrate that all physically sound LOMs for this problem from recent publications have a gyrostatic form. The second problem is the interplay of buoyancy and shear in the formation of rolls versus cells in mesoscale shallow convection (MSC). A gyrostatic LOM for 3D RBC with the ability to parameterize buoyancy and shear was developed using an adopted version of the algorithm for 2D RBC. This model was run for hundreds of different combinations of buoyancy and shear, with the results generally matching those of other observational and modeling studies. The third problem is convection driven by internal heating, where the algorithm developed for 2D RBC was applied to derive several gyrostatic LOMs. In general these LOMs were shown to match reasonably well with the actual physics of this problem.

  8. Differential geometry based solvation model II: Lagrangian formulation.

    PubMed

    Chen, Zhan; Baker, Nathan A; Wei, G W

    2011-12-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of computation, thanks to the equivalence of the Laplace-Beltrami operator in the two representations. The coupled partial differential equations (PDEs) are solved with an iterative procedure to reach a steady state, which delivers desired solvent-solute interface and electrostatic potential for problems of interest. These quantities are utilized to evaluate the solvation free energies and protein-protein binding affinities. A number of computational methods and algorithms are described for the interconversion of Lagrangian and Eulerian representations, and for the solution of the coupled PDE system. The proposed approaches have been extensively validated. We also verify that the mean curvature flow indeed gives rise to the minimal molecular surface and the proposed variational procedure indeed offers minimal total free energy. Solvation analysis and applications are considered for a set of 17 small compounds and a set of 23 proteins. The salt effect on protein-protein binding affinity is investigated with two protein complexes by using the present model. Numerical results are compared to the experimental measurements and to those obtained by using other theoretical methods in the literature. © Springer-Verlag 2011

  9. Differential geometry based solvation model II: Lagrangian formulation

    PubMed Central

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-01-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation model. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory (SPT) of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The minimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and Poisson-Boltzmann equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of computation, thanks to the equivalence of the Laplace-Beltrami operator in the two representations. The coupled partial differential equations (PDEs) are solved with an iterative procedure to reach a steady state, which delivers desired solvent-solute interface and electrostatic potential for problems of interest. These quantities are utilized to evaluate the solvation free energies and protein-protein binding affinities. A number of computational methods and algorithms are described for the interconversion of Lagrangian and Eulerian representations, and for the solution of the coupled PDE system. The proposed approaches have been extensively validated. We also verify that the mean curvature flow indeed gives rise to the minimal molecular surface (MMS) and the proposed variational procedure indeed offers minimal total free energy. Solvation analysis and applications are considered for a set of 17 small compounds and a set of 23 proteins. The salt effect on protein-protein binding affinity is investigated with two protein complexes by using the present model. Numerical results are compared to the experimental measurements and to those obtained by using other theoretical methods in the literature. PMID:21279359

  10. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less

  11. Reciprocal links among differential parenting, perceived partiality, and self-worth: a three-wave longitudinal study.

    PubMed

    Shebloski, Barbara; Conger, Katherine J; Widaman, Keith F

    2005-12-01

    This study examined reciprocal links between parental differential treatment, siblings' perception of partiality, and self-worth with 3 waves of data from 384 adolescent sibling dyads. Results suggest that birth-order status was significantly associated with self-worth and perception of maternal and paternal differential treatment. There was a consistent across-time effect of self-worth on perception of parental partiality for later born siblings, but not earlier born siblings, and a consistent effect of differential treatment on perception of partiality for earlier born but not later born siblings. The results contribute new insight into the associations between perception of differential parenting and adolescents' adjustment and the role of birth order. Copyright 2006 APA, all rights reserved).

  12. Geometric and Topological Methods for Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Cardona, Alexander; Contreras, Iván.; Reyes-Lega, Andrés. F.

    2013-05-01

    Introduction; 1. A brief introduction to Dirac manifolds Henrique Bursztyn; 2. Differential geometry of holomorphic vector bundles on a curve Florent Schaffhauser; 3. Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles Sylvie Paycha; 4. Introduction to Feynman integrals Stefan Weinzierl; 5. Iterated integrals in quantum field theory Francis Brown; 6. Geometric issues in quantum field theory and string theory Luis J. Boya; 7. Geometric aspects of the standard model and the mysteries of matter Florian Scheck; 8. Absence of singular continuous spectrum for some geometric Laplacians Leonardo A. Cano García; 9. Models for formal groupoids Iván Contreras; 10. Elliptic PDEs and smoothness of weakly Einstein metrics of Hölder regularity Andrés Vargas; 11. Regularized traces and the index formula for manifolds with boundary Alexander Cardona and César Del Corral; Index.

  13. SIAM Conference on Parallel Processing for Scientific Computing, 4th, Chicago, IL, Dec. 11-13, 1989, Proceedings

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack (Editor); Messina, Paul (Editor); Sorensen, Danny C. (Editor); Voigt, Robert G. (Editor)

    1990-01-01

    Attention is given to such topics as an evaluation of block algorithm variants in LAPACK and presents a large-grain parallel sparse system solver, a multiprocessor method for the solution of the generalized Eigenvalue problem on an interval, and a parallel QR algorithm for iterative subspace methods on the CM2. A discussion of numerical methods includes the topics of asynchronous numerical solutions of PDEs on parallel computers, parallel homotopy curve tracking on a hypercube, and solving Navier-Stokes equations on the Cedar Multi-Cluster system. A section on differential equations includes a discussion of a six-color procedure for the parallel solution of elliptic systems using the finite quadtree structure, data parallel algorithms for the finite element method, and domain decomposition methods in aerodynamics. Topics dealing with massively parallel computing include hypercube vs. 2-dimensional meshes and massively parallel computation of conservation laws. Performance and tools are also discussed.

  14. Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data

    NASA Astrophysics Data System (ADS)

    Vaibhav, V.

    2011-04-01

    The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.

  15. Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Li, Junmin

    2017-07-01

    In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.

  16. AdS6 solutions of type II supergravity

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Fazzi, Marco; Passias, Achilleas; Rosa, Dario; Tomasiello, Alessandro

    2014-11-01

    Very few AdS6 × M 4 supersymmetric solutions are known: one in massive IIA, and two IIB solutions dual to it. The IIA solution is known to be unique; in this paper, we use the pure spinor approach to give a classification for IIB supergravity. We reduce the problem to two PDEs on a two-dimensional space Σ. M 4 is then a fibration of S 2 over Σ; the metric and fluxes are completely determined in terms of the solution to the PDEs. The results seem likely to accommodate near-horizon limits of ( p, q)-fivebrane webs studied in the literature as a source of CFT5's. We also show that there are no AdS6 solutions in eleven-dimensional supergravity.

  17. Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries.

    PubMed

    Richardson, Megan; Lambers, James V

    2016-01-01

    This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.

  18. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    NASA Astrophysics Data System (ADS)

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  19. Mathematical Methods for Physics and Engineering Third Edition Paperback Set

    NASA Astrophysics Data System (ADS)

    Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.

    2006-06-01

    Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.

  20. Spatial complexity of solutions of higher order partial differential equations

    NASA Astrophysics Data System (ADS)

    Kukavica, Igor

    2004-03-01

    We address spatial oscillation properties of solutions of higher order parabolic partial differential equations. In the case of the Kuramoto-Sivashinsky equation ut + uxxxx + uxx + u ux = 0, we prove that for solutions u on the global attractor, the quantity card {x epsi [0, L]:u(x, t) = lgr}, where L > 0 is the spatial period, can be bounded by a polynomial function of L for all \\lambda\\in{\\Bbb R} . A similar property is proven for a general higher order partial differential equation u_t+(-1)^{s}\\partial_x^{2s}u+ \\sum_{k=0}^{2s-1}v_k(x,t)\\partial_x^k u =0 .

  1. On the Solution of Elliptic Partial Differential Equations on Regions with Corners

    DTIC Science & Technology

    2015-07-09

    In this report we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations . We observe...that when the problems are formulated as the boundary integral equations of classical potential theory, the solutions are representable by series of...efficient numerical algorithms. The results are illustrated by a number of numerical examples. On the solution of elliptic partial differential equations on

  2. Algebraic Construction of Exact Difference Equations from Symmetry of Equations

    NASA Astrophysics Data System (ADS)

    Itoh, Toshiaki

    2009-09-01

    Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.

  3. Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2006-03-01

    Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.

  4. Parallel Algorithms for Computational Models of Geophysical Systems

    NASA Astrophysics Data System (ADS)

    Carrillo Ledesma, A.; Herrera, I.; de la Cruz, L. M.; Hernández, G.; Grupo de Modelacion Matematica y Computacional

    2013-05-01

    Mathematical models of many systems of interest, including very important continuous systems of Earth Sciences and Engineering, lead to a great variety of partial differential equations (PDEs) whose solution methods are based on the computational processing of large-scale algebraic systems. Furthermore, the incredible expansion experienced by the existing computational hardware and software has made amenable to effective treatment problems of an ever increasing diversity and complexity, posed by scientific and engineering applications. Parallel computing is outstanding among the new computational tools and, in order to effectively use the most advanced computers available today, massively parallel software is required. Domain decomposition methods (DDMs) have been developed precisely for effectively treating PDEs in paralle. Ideally, the main objective of domain decomposition research is to produce algorithms capable of 'obtaining the global solution by exclusively solving local problems', but up-to-now this has only been an aspiration; that is, a strong desire for achieving such a property and so we call it 'the DDM-paradigm'. In recent times, numerically competitive DDM-algorithms are non-overlapping, preconditioned and necessarily incorporate constraints which pose an additional challenge for achieving the DDM-paradigm. Recently a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm, was developed. To derive them a new discretization method, which uses a non-overlapping system of nodes (the derived-nodes), was introduced. This discretization procedure can be applied to any boundary-value problem, or system of such equations. In turn, the resulting system of discrete equations can be treated using any available DDM-algorithm. In particular, two of the four DVS-algorithms mentioned above were obtained by application of the well-known and very effective algorithms BDDC and FETI-DP; these will be referred to as the DVS-BDDC and DVS-FETI-DP algorithms. The other two, which will be referred to as the DVS-PRIMAL and DVS-DUAL algorithms, were obtained by application of two new algorithms that had not been previously reported in the literature. As said before, the four DVS-algorithms constitute a group of preconditioned and constrained algorithms that, for the first time, fulfill the DDM-paradigm. Both, BDDC and FETI-DP, are very well-known; and both are highly efficient. Recently, it was established that these two methods are closely related and its numerical performance is quite similar. On the other hand, through numerical experiments, we have established that the numerical performances of each one of the members of DVS-algorithms group (DVS-BDDC, DVS-FETI-DP, DVS-PRIMAL and DVS-DUAL) are very similar too. Furthermore, we have carried out comparisons of the performances of the standard versions of BDDC and FETI-DP with DVS-BDDC and DVS-FETI-DP, and in all such numerical experiments the DVS algorithms have performed significantly better.

  5. Concurrent Engineering through Product Data Standards

    DTIC Science & Technology

    1991-05-01

    standards, represents the power of a new industrial revolution . The role of the NIST National PDES testbed, technical leadership and a testing-based foundation for the development of STEP, is described.

  6. Escript: Open Source Environment For Solving Large-Scale Geophysical Joint Inversion Problems in Python

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy

    2014-05-01

    The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for inversion and appropriate solution schemes in escript. We will also give a brief introduction into escript's open framework for defining and solving geophysical inversion problems. Finally we will show some benchmark results to demonstrate the computational scalability of the inversion method across a large number of cores and compute nodes in a parallel computing environment. References: - L. Gross et al. (2013): Escript Solving Partial Differential Equations in Python Version 3.4, The University of Queensland, https://launchpad.net/escript-finley - L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306 - T. Poulet, L. Gross, D. Georgiev, J. Cleverley (2012): escript-RT: Reactive transport simulation in Python using escript, Computers & Geosciences, Volume 45, 168-176. http://dx.doi.org/10.1016/j.cageo.2011.11.005.

  7. Birkhoff Normal Form for Some Nonlinear PDEs

    NASA Astrophysics Data System (ADS)

    Bambusi, Dario

    We consider the problem of extending to PDEs Birkhoff normal form theorem on Hamiltonian systems close to nonresonant elliptic equilibria. As a model problem we take the nonlinear wave equation with Dirichlet boundary conditions on [0,π] g is an analytic skewsymmetric function which vanishes for u=0 and is periodic with period 2π in the x variable. We prove, under a nonresonance condition which is fulfilled for most g's, that for any integer M there exists a canonical transformation that puts the Hamiltonian in Birkhoff normal form up to a reminder of order M. The canonical transformation is well defined in a neighbourhood of the origin of a Sobolev type phase space of sufficiently high order. Some dynamical consequences are obtained. The technique of proof is applicable to quite general semilinear equations in one space dimension.

  8. Finding higher symmetries of differential equations using the MAPLE package DESOLVII

    NASA Astrophysics Data System (ADS)

    Vu, K. T.; Jefferson, G. F.; Carminati, J.

    2012-04-01

    We present and describe, with illustrative examples, the MAPLE computer algebra package DESOLVII, which is a major upgrade of DESOLV. DESOLVII now includes new routines allowing the determination of higher symmetries (contact and Lie-Bäcklund) for systems of both ordinary and partial differential equations. Catalogue identifier: ADYZ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYZ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 858 No. of bytes in distributed program, including test data, etc.: 112 515 Distribution format: tar.gz Programming language: MAPLE internal language Computer: PCs and workstations Operating system: Linux, Windows XP and Windows 7 RAM: Depends on the type of problem and the complexity of the system (small ≈ MB, large ≈ GB) Classification: 4.3, 5 Catalogue identifier of previous version: ADYZ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 682 Does the new version supersede the previous version?: Yes Nature of problem: There are a number of approaches one may use to find solutions to systems of differential equations. These include numerical, perturbative, and algebraic methods. Unfortunately, approximate or numerical solution methods may be inappropriate in many cases or even impossible due to the nature of the system and hence exact methods are important. In their own right, exact solutions are valuable not only as a yardstick for approximate/numerical solutions but also as a means of elucidating the physical meaning of fundamental quantities in systems. One particular method of finding special exact solutions is afforded by the work of Sophus Lie and the use of continuous transformation groups. The power of Lie's group theoretic method lies in its ability to unify a number of ad hoc integration methods through the use of symmetries, that is, continuous groups of transformations which leave the differential system “unchanged”. These symmetry groups may then be used to find special solutions. Solutions found in this manner are called similarity or invariant solutions. The method of finding symmetry transformations initially requires the generation of a large overdetermined system of linear, homogeneous, coupled PDEs. The integration of this system is usually reasonably straightforward requiring the (often elementary) integration of equations by splitting the system according to dependency on different orders and degrees of the dependent variable/s. Unfortunately, in the case of contact and Lie-Bäcklund symmetries, the integration of the determining system becomes increasingly more difficult as the order of the symmetry is increased. This is because the symmetry generating functions become dependent on higher orders of the derivatives of the dependent variables and this diminishes the overall resulting “separable” differential conditions derived from the main determining system. Furthermore, typical determining systems consist of tens to hundreds of equations and this, combined with standard mechanical solution methods, makes the process well suited to automation using computer algebra systems. The new MAPLE package DESOLVII, which is a major upgrade of DESOLV, now includes routines allowing the determination of higher symmetries (contact and Lie-Bäcklund) for systems of both ordinary and partial differential equations. In addition, significant improvements have been implemented to the algorithm for PDE solution. Finally, we have made some improvements in the overall automated process so as to improve user friendliness by reducing user intervention where possible. Solution method: See “Nature of problem” above. Reasons for new version: New and improved functionality. New functionality - can now compute generalised symmetries. Much improved efficiency (speed and memory use) of existing routines. Restrictions: Sufficient memory may be required for complex systems. Running time: Depends on the type of problem and the complexity of the system (small ≈ seconds, large ≈ hours).

  9. Construction and accuracy of partial differential equation approximations to the chemical master equation.

    PubMed

    Grima, Ramon

    2011-11-01

    The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.

  10. Stepwise Analysis of Differential Item Functioning Based on Multiple-Group Partial Credit Model.

    ERIC Educational Resources Information Center

    Muraki, Eiji

    1999-01-01

    Extended an Item Response Theory (IRT) method for detection of differential item functioning to the partial credit model and applied the method to simulated data using a stepwise procedure. Then applied the stepwise DIF analysis based on the multiple-group partial credit model to writing trend data from the National Assessment of Educational…

  11. A resilient domain decomposition polynomial chaos solver for uncertain elliptic PDEs

    NASA Astrophysics Data System (ADS)

    Mycek, Paul; Contreras, Andres; Le Maître, Olivier; Sargsyan, Khachik; Rizzi, Francesco; Morris, Karla; Safta, Cosmin; Debusschere, Bert; Knio, Omar

    2017-07-01

    A resilient method is developed for the solution of uncertain elliptic PDEs on extreme scale platforms. The method is based on a hybrid domain decomposition, polynomial chaos (PC) framework that is designed to address soft faults. Specifically, parallel and independent solves of multiple deterministic local problems are used to define PC representations of local Dirichlet boundary-to-boundary maps that are used to reconstruct the global solution. A LAD-lasso type regression is developed for this purpose. The performance of the resulting algorithm is tested on an elliptic equation with an uncertain diffusivity field. Different test cases are considered in order to analyze the impacts of correlation structure of the uncertain diffusivity field, the stochastic resolution, as well as the probability of soft faults. In particular, the computations demonstrate that, provided sufficiently many samples are generated, the method effectively overcomes the occurrence of soft faults.

  12. Time Parallel Solution of Linear Partial Differential Equations on the Intel Touchstone Delta Supercomputer

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Fijany, A.; Barhen, J.

    1993-01-01

    Evolutionary partial differential equations are usually solved by decretization in time and space, and by applying a marching in time procedure to data and algorithms potentially parallelized in the spatial domain.

  13. Efficient stabilization and acceleration of numerical simulation of fluid flows by residual recombination

    NASA Astrophysics Data System (ADS)

    Citro, V.; Luchini, P.; Giannetti, F.; Auteri, F.

    2017-09-01

    The study of the stability of a dynamical system described by a set of partial differential equations (PDEs) requires the computation of unstable states as the control parameter exceeds its critical threshold. Unfortunately, the discretization of the governing equations, especially for fluid dynamic applications, often leads to very large discrete systems. As a consequence, matrix based methods, like for example the Newton-Raphson algorithm coupled with a direct inversion of the Jacobian matrix, lead to computational costs too large in terms of both memory and execution time. We present a novel iterative algorithm, inspired by Krylov-subspace methods, which is able to compute unstable steady states and/or accelerate the convergence to stable configurations. Our new algorithm is based on the minimization of the residual norm at each iteration step with a projection basis updated at each iteration rather than at periodic restarts like in the classical GMRES method. The algorithm is able to stabilize any dynamical system without increasing the computational time of the original numerical procedure used to solve the governing equations. Moreover, it can be easily inserted into a pre-existing relaxation (integration) procedure with a call to a single black-box subroutine. The procedure is discussed for problems of different sizes, ranging from a small two-dimensional system to a large three-dimensional problem involving the Navier-Stokes equations. We show that the proposed algorithm is able to improve the convergence of existing iterative schemes. In particular, the procedure is applied to the subcritical flow inside a lid-driven cavity. We also discuss the application of Boostconv to compute the unstable steady flow past a fixed circular cylinder (2D) and boundary-layer flow over a hemispherical roughness element (3D) for supercritical values of the Reynolds number. We show that Boostconv can be used effectively with any spatial discretization, be it a finite-difference, finite-volume, finite-element or spectral method.

  14. Elastohydrodynamic synchronization of adjacent beating flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Lauga, Eric; Pesci, Adriana I.; Proctor, Michael R. E.

    2016-11-01

    It is now well established that nearby beating pairs of eukaryotic flagella or cilia typically synchronize in phase. A substantial body of evidence supports the hypothesis that hydrodynamic coupling between the active filaments, combined with waveform compliance, provides a robust mechanism for synchrony. This elastohydrodynamic mechanism has been incorporated into bead-spring models in which the beating flagella are represented by microspheres tethered by radial springs as they are driven about orbits by internal forces. While these low-dimensional models reproduce the phenomenon of synchrony, their parameters are not readily relatable to those of the filaments they represent. More realistic models, which reflect the underlying elasticity of the axonemes and the active force generation, take the form of fourth-order nonlinear partial differential equations (PDEs). While computational studies have shown the occurrence of synchrony, the effects of hydrodynamic coupling between nearby filaments governed by such continuum models have been examined theoretically only in the regime of interflagellar distances d large compared to flagellar length L . Yet in many biological situations d /L ≪1 . Here we present an asymptotic analysis of the hydrodynamic coupling between two extended filaments in the regime d /L ≪1 and find that the form of the coupling is independent of the microscopic details of the internal forces that govern the motion of the individual filaments. The analysis is analogous to that yielding the localized induction approximation for vortex filament motion, extended to the case of mutual induction. In order to understand how the elastohydrodynamic coupling mechanism leads to synchrony of extended objects, we introduce a heuristic model of flagellar beating. The model takes the form of a single fourth-order nonlinear PDE whose form is derived from symmetry considerations, the physics of elasticity, and the overdamped nature of the dynamics. Analytical and numerical studies of this model illustrate how synchrony between a pair of filaments is achieved through the asymptotic coupling.

  15. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo

    NASA Astrophysics Data System (ADS)

    Bui-Thanh, T.; Girolami, M.

    2014-11-01

    We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint technique. Various numerical results up to 1025 parameters are presented to demonstrate the ability of the RMHMC method in exploring the geometric structure of the problem to propose (almost) uncorrelated/independent samples that are far away from each other, and yet the acceptance rate is almost unity. The results also suggest that for the PDE models considered the proposed fixed metric RMHMC can attain almost as high a quality performance as the original RMHMC, i.e. generating (almost) uncorrelated/independent samples, while being two orders of magnitude less computationally expensive.

  16. Mathematical Modelling of Continuous Biotechnological Processes

    ERIC Educational Resources Information Center

    Pencheva, T.; Hristozov, I.; Shannon, A. G.

    2003-01-01

    Biotechnological processes (BTP) are characterized by a complicated structure of organization and interdependent characteristics. Partial differential equations or systems of partial differential equations are used for their behavioural description as objects with distributed parameters. Modelling of substrate without regard to dispersion…

  17. High Fidelity Simulations of Large-Scale Wireless Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onunkwo, Uzoma; Benz, Zachary

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulationsmore » (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.« less

  18. Fault Tolerant Optimal Control.

    DTIC Science & Technology

    1982-08-01

    subsystem is modelled by deterministic or stochastic finite-dimensional vector differential or difference equations. The parameters of these equations...is no partial differential equation that must be solved. Thus we can sidestep the inability to solve the Bellman equation for control problems with x...transition models and cost functionals can be reduced to the search for solutions of nonlinear partial differential equations using ’verification

  19. Differential geometry techniques for sets of nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Estabrook, Frank B.

    1990-01-01

    An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.

  20. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  1. Algebraic and geometric structures of analytic partial differential equations

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2016-11-01

    We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.

  2. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1992-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.

  3. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. On new classes of solutions of nonlinear partial differential equations in the form of convergent special series

    NASA Astrophysics Data System (ADS)

    Filimonov, M. Yu.

    2017-12-01

    The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.

  5. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  6. On implicit abstract neutral nonlinear differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br; O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  7. Oscillation of certain higher-order neutral partial functional differential equations.

    PubMed

    Li, Wei Nian; Sheng, Weihong

    2016-01-01

    In this paper, we study the oscillation of certain higher-order neutral partial functional differential equations with the Robin boundary conditions. Some oscillation criteria are established. Two examples are given to illustrate the main results in the end of this paper.

  8. Pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations

    NASA Astrophysics Data System (ADS)

    Al-Islam, Najja Shakir

    In this Dissertation, the existence of pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations is established. For that, (Al-Islam [4]) is first studied and then obtained under some suitable assumptions. That is, the existence of pseudo almost periodic solutions to a hyperbolic second-order partial differential equation with delay. The second-order partial differential equation (1) represents a mathematical model for the dynamics of gas absorption, given by uxt+a x,tux=Cx,t,u x,t , u0,t=4 t, 1 where a : [0, L] x RR , C : [0, L] x R x RR , and ϕ : RR are (jointly) continuous functions ( t being the greatest integer function) and L > 0. The results in this Dissertation generalize those of Poorkarimi and Wiener [22]. Secondly, a generalization of the above-mentioned system consisting of the non-linear hyperbolic second-order partial differential equation uxt+a x,tux+bx,t ut+cx,tu=f x,t,u, x∈ 0,L,t∈ R, 2 equipped with the boundary conditions ux,0 =40x, u0,t=u 0t, uxx,0=y 0x, x∈0,L, t∈R, 3 where a, b, c : [0, L ] x RR and f : [0, L] x R x RR are (jointly) continuous functions is studied. Under some suitable assumptions, the existence and uniqueness of pseudo almost periodic solutions to particular cases, as well as the general case of the second-order hyperbolic partial differential equation (2) are studied. The results of all studies contained within this text extend those obtained by Aziz and Meyers [6] in the periodic setting.

  9. Reversible effects of oxygen partial pressure on genes associated with placental angiogenesis and differentiation in primary-term cytotrophoblast cell culture.

    PubMed

    Debiève, F; Depoix, C; Gruson, D; Hubinont, C

    2013-09-01

    Timely regulated changes in oxygen partial pressure are important for placental formation. Disturbances could be responsible for pregnancy-related diseases like preeclampsia and intrauterine growth restriction. We aimed to (i) determine the effect of oxygen partial pressure on cytotrophoblast differentiation; (ii) measure mRNA expression and protein secretion from genes associated with placental angiogenesis; and (iii) determine the reversibility of these effects at different oxygen partial pressures. Term cytotrophoblasts were incubated at 21% and 2.5% O2 for 96 hr, or were switched between the two oxygen concentrations after 48 hr. Real-time PCR and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate cell fusion and differentiation, measuring transcript levels for those genes involved in cell fusion and placental angiogenesis, including VEGF, PlGF, VEGFR1, sVEGFR1, sENG, INHA, and GCM1. Cytotrophoblasts underwent fusion and differentiation in 2.5% O2 . PlGF expression was inhibited while sVEGFR1 expression increased. VEGF and sENG mRNA expressions increased in 2.5% compared to 21% O2 , but no protein was detected in the cell supernatants. Finally, GCM1 mRNA expression increased during trophoblast differentiation at 21% O2 , but was inhibited at 2.5% O2 . These mRNA expression effects were reversed by returning the cells to 21% O2 . Thus, low-oxygen partial pressure does not inhibit term-cytotrophoblast cell fusion and differentiation in vitro. Lowering the oxygen partial pressure from 21% to 2.5% caused normal-term trophoblasts to reversibly modify their expression of genes associated with placental angiogenesis. This suggests that modifications observed in pregnancy diseases such as preeclampsia or growth retardation are probably due to an extrinsic effect on trophoblasts. Copyright © 2013 Wiley Periodicals, Inc.

  10. Lattice Boltzmann model for high-order nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  11. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    PubMed

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  12. Entropy and convexity for nonlinear partial differential equations

    PubMed Central

    Ball, John M.; Chen, Gui-Qiang G.

    2013-01-01

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768

  13. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  14. Entropy and convexity for nonlinear partial differential equations.

    PubMed

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  15. Differential phase measurements of D-region partial reflections

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Sechrist, C. F., Jr.

    1972-01-01

    Differential phase partial reflection measurements were used to deduce D region electron density profiles. The phase difference was measured by taking sums and differences of amplitudes received on an array of crossed dipoles. The reflection model used was derived from Fresnel reflection theory. Seven profiles obtained over the period from 13 October 1971 to 5 November 1971 are presented, along with the results from simultaneous measurements of differential absorption. Some possible sources of error and error propagation are discussed. A collision frequency profile was deduced from the electron concentration calculated from differential phase and differential absorption.

  16. Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.

    DTIC Science & Technology

    1983-12-01

    numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for

  17. A boundary value approach for solving three-dimensional elliptic and hyperbolic partial differential equations.

    PubMed

    Biala, T A; Jator, S N

    2015-01-01

    In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.

  18. Canonical coordinates for partial differential equations

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1988-01-01

    Necessary and sufficient conditions are found under which operators of the form Sigma (m, j=1) x (2) sub j + X sub O can be made constant coefficient. In addition, necessary and sufficient conditions are derived which classify those linear partial differential operators that can be moved to the Kolmogorov type.

  19. Canonical coordinates for partial differential equations

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    Necessary and sufficient conditions are found under which operators of the form Sigma(m, j=1) X(2)sub j + X sub 0 can be made constant coefficient. In addition, necessary and sufficient conditions are derived which classify those linear partial differential operators that can be moved to the Kolmogorov type.

  20. Modeling biological gradient formation: combining partial differential equations and Petri nets.

    PubMed

    Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J

    2016-01-01

    Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.

  1. Parallel discrete-event simulation schemes with heterogeneous processing elements.

    PubMed

    Kim, Yup; Kwon, Ikhyun; Chae, Huiseung; Yook, Soon-Hyung

    2014-07-01

    To understand the effects of nonidentical processing elements (PEs) on parallel discrete-event simulation (PDES) schemes, two stochastic growth models, the restricted solid-on-solid (RSOS) model and the Family model, are investigated by simulations. The RSOS model is the model for the PDES scheme governed by the Kardar-Parisi-Zhang equation (KPZ scheme). The Family model is the model for the scheme governed by the Edwards-Wilkinson equation (EW scheme). Two kinds of distributions for nonidentical PEs are considered. In the first kind computing capacities of PEs are not much different, whereas in the second kind the capacities are extremely widespread. The KPZ scheme on the complex networks shows the synchronizability and scalability regardless of the kinds of PEs. The EW scheme never shows the synchronizability for the random configuration of PEs of the first kind. However, by regularizing the arrangement of PEs of the first kind, the EW scheme is made to show the synchronizability. In contrast, EW scheme never shows the synchronizability for any configuration of PEs of the second kind.

  2. αAMG based on Weighted Matching for Systems of Elliptic PDEs Arising From Displacement and Mixed Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ambra, P.; Vassilevski, P. S.

    2014-05-30

    Adaptive Algebraic Multigrid (or Multilevel) Methods (αAMG) are introduced to improve robustness and efficiency of classical algebraic multigrid methods in dealing with problems where no a-priori knowledge or assumptions on the near-null kernel of the underlined matrix are available. Recently we proposed an adaptive (bootstrap) AMG method, αAMG, aimed to obtain a composite solver with a desired convergence rate. Each new multigrid component relies on a current (general) smooth vector and exploits pairwise aggregation based on weighted matching in a matrix graph to define a new automatic, general-purpose coarsening process, which we refer to as “the compatible weighted matching”. Inmore » this work, we present results that broaden the applicability of our method to different finite element discretizations of elliptic PDEs. In particular, we consider systems arising from displacement methods in linear elasticity problems and saddle-point systems that appear in the application of the mixed method to Darcy problems.« less

  3. Phosphodiesterases regulate airway smooth muscle function in health and disease.

    PubMed

    Krymskaya, Vera P; Panettieri, Reynold A

    2007-01-01

    On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.

  4. Testing for Differential Item Functioning with Measures of Partial Association

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2009-01-01

    Differential item functioning (DIF) occurs when an item on a test or questionnaire has different measurement properties for one group of people versus another, irrespective of mean differences on the construct. There are many methods available for DIF assessment. The present article is focused on indices of partial association. A family of average…

  5. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  6. Magnetic Evidence for a Partially Differentiated Carbonaceous Chondrite Parent Body and Possible Implications for Asteroid 21 Lutetia

    NASA Astrophysics Data System (ADS)

    Weiss, Benjamin; Carporzen, L.; Elkins-Tanton, L.; Shuster, D. L.; Ebel, D. S.; Gattacceca, J.; Binzel, R. P.

    2010-10-01

    The origin of remanent magnetization in the CV carbonaceous chondrite Allende has been a longstanding mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Here we report that Allende's magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a > 20 microtesla field 8-9 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been the generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos (Weiss et al. 2010), suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core (Elkins-Tanton et al. 2010). This suggests that asteroids with differentiated interiors could be present today but masked under chondritic surfaces. In fact, CV chondrites are spectrally similar to many members of the Eos asteroid family whose spectral diversity has been interpreted as evidence for a partially differentiated parent asteroid (Mothe-Diniz et al. 2008). CV chondrite spectral and polarimetric data also resemble those of asteroid 21 Lutetia (e.g., Belskaya et al. 2010), recently encountered by the Rosetta spacecraft. Ground-based measurements of Lutetia indicate a high density of 2.4-5.1 g cm-3 (Drummond et al. 2010), while radar data seem to rule out a metallic surface composition (Shepard et al. 2008). If Rosetta spacecraft measurements confirm a high density and a CV-like surface composition for Lutetia, then we propose Lutetia may be an example of a partially differentiated carbonaceous chondrite parent body. Regardless, the very existence of primitive achondrites, which contain evidence of both relict chondrules and partial melting, are prima facie evidence for the formation of partially differentiated bodies.

  7. Differential Curing In Fiber/Resin Laminates

    NASA Technical Reports Server (NTRS)

    Webster, Charles N.

    1989-01-01

    Modified layup schedule counteracts tendency toward delamination. Improved manufacturing process resembles conventional process, except prepregs partially cured laid on mold in sequence in degree of partial cure decreases from mold side to bag side. Degree of partial cure of each layer at time of layup selected by controlling storage and partial-curing temperatures of prepreg according to Arrhenius equation for rate of gel of resin as function of temperature and time from moment of mixing. Differential advancement of cure in layers made large enough to offset effect of advance bag-side heating in oven or autoclave. Technique helps prevent entrapment of volatile materials during manufacturing of fiber/resin laminates.

  8. Mathematical Metaphors: Problem Reformulation and Analysis Strategies

    NASA Technical Reports Server (NTRS)

    Thompson, David E.

    2005-01-01

    This paper addresses the critical need for the development of intelligent or assisting software tools for the scientist who is working in the initial problem formulation and mathematical model representation stage of research. In particular, examples of that representation in fluid dynamics and instability theory are discussed. The creation of a mathematical model that is ready for application of certain solution strategies requires extensive symbolic manipulation of the original mathematical model. These manipulations can be as simple as term reordering or as complicated as discovery of various symmetry groups embodied in the equations, whereby Backlund-type transformations create new determining equations and integrability conditions or create differential Grobner bases that are then solved in place of the original nonlinear PDEs. Several examples are presented of the kinds of problem formulations and transforms that can be frequently encountered in model representation for fluids problems. The capability of intelligently automating these types of transforms, available prior to actual mathematical solution, is advocated. Physical meaning and assumption-understanding can then be propagated through the mathematical transformations, allowing for explicit strategy development.

  9. Analytical study of magnetohydrodynamic propulsion stability

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh Jamalabadi, M. Y.

    2014-09-01

    In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.

  10. A homotopy analysis method for the nonlinear partial differential equations arising in engineering

    NASA Astrophysics Data System (ADS)

    Hariharan, G.

    2017-05-01

    In this article, we have established the homotopy analysis method (HAM) for solving a few partial differential equations arising in engineering. This technique provides the solutions in rapid convergence series with computable terms for the problems with high degree of nonlinear terms appearing in the governing differential equations. The convergence analysis of the proposed method is also discussed. Finally, we have given some illustrative examples to demonstrate the validity and applicability of the proposed method.

  11. PDES Application Protocol Suite for Composites (PAS-C). Functional Needs Report for the PAS-C Program

    DTIC Science & Technology

    1991-09-01

    103 A2352344 Layup Cover Sheets/Inspect ............................. 103 A2352345 Perform Automated Tape Laying operations...A2352345 Perform Automated Tape Laying operations/Inspect The tape is layed in 3-12 inch strips along the surface of the bond mold. The NC program is

  12. The development of the deterministic nonlinear PDEs in particle physics to stochastic case

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Mahmoud A. E.; Sohaly, M. A.

    2018-06-01

    In the present work, accuracy method called, Riccati-Bernoulli Sub-ODE technique is used for solving the deterministic and stochastic case of the Phi-4 equation and the nonlinear Foam Drainage equation. Also, the control on the randomness input is studied for stability stochastic process solution.

  13. Parent Ratings of ADHD Symptoms: Generalized Partial Credit Model Analysis of Differential Item Functioning across Gender

    ERIC Educational Resources Information Center

    Gomez, Rapson

    2012-01-01

    Objective: Generalized partial credit model, which is based on item response theory (IRT), was used to test differential item functioning (DIF) for the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.), inattention (IA), and hyperactivity/impulsivity (HI) symptoms across boys and girls. Method: To accomplish this, parents completed…

  14. An electric-analog simulation of elliptic partial differential equations using finite element theory

    USGS Publications Warehouse

    Franke, O.L.; Pinder, G.F.; Patten, E.P.

    1982-01-01

    Elliptic partial differential equations can be solved using the Galerkin-finite element method to generate the approximating algebraic equations, and an electrical network to solve the resulting matrices. Some element configurations require the use of networks containing negative resistances which, while physically realizable, are more expensive and time-consuming to construct. ?? 1982.

  15. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.

    PubMed

    Baranwal, Vipul K; Pandey, Ram K; Singh, Om P

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

  16. Isolation of stress responsive Psb A gene from rice (Oryza sativa l.) using differential display.

    PubMed

    Tyagi, Aruna; Chandra, Arti

    2006-08-01

    Differential display (DD) experiments were performed on drought-tolerant rice (Oryza sativa L.) genotype N22 to identify both upregulated and downregulated partial cDNAs with respect to moisture stress. DNA polymorphism was detected between drought-stressed and control leaf tissues on the DD gels. A partial cDNA showing differential expression, with respect to moisture stress was isolated from the gel. Northern blotting analysis was performed using this cDNA as a probe and it was observed that mRNA corresponding to this transcript was accumulated to high level in rice leaves under water deficit stress. At the DNA sequence level, the partial cDNA showed homology with psb A gene encoding for Dl protein.

  17. Ideal cycle analysis of a regenerative pulse detonation engine for power production

    NASA Astrophysics Data System (ADS)

    Bellini, Rafaela

    Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one--dimensional Chapman--Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich -- von Neumann -- Doring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone. This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p--v and T--s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction can be obtained as a function of fuel-oxidizer ratio. The Humphrey and ZND cycles are studied in comparison with the Brayton cycle for different fuel-air mixtures such as methane, propane and hydrogen. The validity and limitations of the ZND and Humphrey cycles related to the detonation process are discussed and the criteria for the selection of the best model for the PDE cycle are explained. It is seen that the ZND cycle is a more appropriate representation of the PDE cycle. Next, the thermal and electrical power generation efficiencies for the PDE are compared with those of the deflagration based Brayton cycle. While the Brayton cycle shows an efficiency of 0 at a compressor pressure ratio of 1, the thermal efficiency for the ZND cycle starts out at 42% for hydrogen--air and then climbs to a peak of 66% at a compression ratio of 7 before falling slowly for higher compression ratios. The Brayton cycle efficiency rises above the PDEs for compression ratios above 23. This finding supports the theoretical advantage of PDEs over the gas turbines because PDEs only require a fan or only a few compressor stages, thereby eliminating the need for heavy compressor machinery, making the PDEs less complex and therefore more cost effective than other engines. Lastly, a regeneration study is presented to analyze how the use of exhaust gases can improve the performance of the system. The thermal efficiencies for the regenerative ZND cycle are compared with the efficiencies for the non--regenerative cycle. For a hydrogen--air mixture the thermal efficiency increases from 52%, for a cycle without regeneration, to 78%, for the regenerative cycle. The efficiency is compared with the Carnot efficiency of 84% which is the maximum possible theoretical efficiency of the cycle. When compared to the Brayton cycle thermal efficiencies, the regenerative cycle shows efficiencies that are always higher for the pressure ratio studied of 5 ≤ pic ≤ 25, where pi c the compressor pressure ratio of the cycle. This observation strengthens the idea of using regeneration on PDEs.

  18. Generalized Lie symmetry approach for fractional order systems of differential equations. III

    NASA Astrophysics Data System (ADS)

    Singla, Komal; Gupta, R. K.

    2017-06-01

    The generalized Lie symmetry technique is proposed for the derivation of point symmetries for systems of fractional differential equations with an arbitrary number of independent as well as dependent variables. The efficiency of the method is illustrated by its application to three higher dimensional nonlinear systems of fractional order partial differential equations consisting of the (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov system, (3 + 1)-dimensional Burgers system, and (3 + 1)-dimensional Navier-Stokes equations. With the help of derived Lie point symmetries, the corresponding invariant solutions transform each of the considered systems into a system of lower-dimensional fractional partial differential equations.

  19. Solution of some types of differential equations: operational calculus and inverse differential operators.

    PubMed

    Zhukovsky, K

    2014-01-01

    We present a general method of operational nature to analyze and obtain solutions for a variety of equations of mathematical physics and related mathematical problems. We construct inverse differential operators and produce operational identities, involving inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations. Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are demonstrated.

  20. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. Part 2; Global Asymptotic Behavior of Time Discretizations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs.

  1. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. 2; Global Asymptotic Behavior of Time Discretizations; 2. Global Asymptotic Behavior of time Discretizations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.

  2. Concatenons as the solutions for non-linear partial differential equations

    NASA Astrophysics Data System (ADS)

    Kudryashov, N. A.; Volkov, A. K.

    2017-07-01

    New class of solutions for nonlinear partial differential equations is introduced. We call them the concaten solutions. As an example we consider equations for the description of wave processes in the Fermi-Pasta-Ulam mass chain and construct the concatenon solutions for these equation. Stability of the concatenon-type solutions is investigated numerically. Interaction between the concatenon and solitons is discussed.

  3. Hidden physics models: Machine learning of nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  4. Analytical solutions for coupling fractional partial differential equations with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Li; Nieto, Juan J.

    2017-11-01

    In this paper, we consider the analytical solutions of coupling fractional partial differential equations (FPDEs) with Dirichlet boundary conditions on a finite domain. Firstly, the method of successive approximations is used to obtain the analytical solutions of coupling multi-term time fractional ordinary differential equations. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the coupling FPDEs to the coupling multi-term time fractional ordinary differential equations. By applying the obtained analytical solutions to the resulting multi-term time fractional ordinary differential equations, the desired analytical solutions of the coupling FPDEs are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.

  5. Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk - A numerical approach

    NASA Astrophysics Data System (ADS)

    Ramzan, Muhammad; Chung, Jae Dong; Ullah, Naeem

    The aim of present exploration is to study the flow of micropolar nanofluid due to a rotating disk in the presence of magnetic field and partial slip condition. The governing coupled partial differential equations are reduced to nonlinear ordinary differential equations using appropriate transformations. The differential equations are solved numerically by using Maple dsolve command with option numeric which utilize Runge-Kutta fourth-fifth order Fehlberg technique. A comparison to previous study is also added to validate the present results. Moreover, behavior of different parameters on velocity, microrotation, temperature and concentration of nanofluid are presented via graphs and tables. It is noted that the slip effect and magnetic field decay the velocity and microrotation or spin component.

  6. The Uniform Convergence of Eigenfunction Expansions of Schrödinger Operator in the Nikolskii Classes {H}_{p}^{\\alpha }(\\bar{\\Omega })

    NASA Astrophysics Data System (ADS)

    Jamaludin, N. A.; Ahmedov, A.

    2017-09-01

    Many boundary value problems in the theory of partial differential equations can be solved by separation methods of partial differential equations. When Schrödinger operator is considered then the influence of the singularity of potential on the solution of the partial differential equation is interest of researchers. In this paper the problems of the uniform convergence of the eigenfunction expansions of the functions from corresponding to the Schrödinger operator with the potential from classes of Sobolev are investigated. The spectral function corresponding to the Schrödinger operator is estimated in closed domain. The isomorphism of the Nikolskii classes is applied to prove uniform convergence of eigenfunction expansions of Schrödinger operator in closed domain.

  7. Low-Degree Partial Melting Experiments of CR and H Chondrite Compositions: Implications for Asteroidal Magmatism Recorded in GRA 06128 and GRA 06129 T

    NASA Technical Reports Server (NTRS)

    Usui, T.; Jones, John H.; Mittlefehldt, D. W.

    2010-01-01

    Studies of differentiated meteorites have revealed a diversity of differentiation processes on their parental asteroids; these differentiation mechanisms range from whole-scale melting to partial melting without the core formation [e.g., 1]. Recently discovered paired achondrites GRA 06128 and GRA 06129 (hereafter referred to as GRA) represent unique asteroidal magmatic processes. These meteorites are characterized by high abundances of sodic plagioclase and alkali-rich whole-rock compositions, implying that they could originate from a low-degree partial melt from a volatile-rich oxidized asteroid [e.g., 2, 3, 4]. These conditions are consistent with the high abundances of highly siderophile elements, suggesting that their parent asteroid did not segregate a metallic core [2]. In this study, we test the hypothesis that low-degree partial melts of chondritic precursors under oxidizing conditions can explain the whole-rock and mineral chemistry of GRA based on melting experiments of synthesized CR- and H-chondrite compositions.

  8. The application of Legendre-tau approximation to parameter identification for delay and partial differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.

    1983-01-01

    Approximation schemes based on Legendre-tau approximation are developed for application to parameter identification problem for delay and partial differential equations. The tau method is based on representing the approximate solution as a truncated series of orthonormal functions. The characteristic feature of the Legendre-tau approach is that when the solution to a problem is infinitely differentiable, the rate of convergence is faster than any finite power of 1/N; higher accuracy is thus achieved, making the approach suitable for small N.

  9. A substrate selectivity and inhibitor design lesson from the PDE10-cAMP crystal structure: a computational study.

    PubMed

    Lau, Justin Kai-Chi; Li, Xiao-Bo; Cheng, Yuen-Kit

    2010-04-22

    Phosphodiesterases (PDEs) catalyze the hydrolysis of second messengers cAMP and cGMP in regulating many important cellular signals and have been recognized as important drug targets. Experimentally, a range of specificity/selectivity toward cAMP and cGMP is well-known for the individual PDE families. The study reported here reveals that PDEs might also exhibit selectivity toward conformations of the endogenous substrates cAMP and cGMP. Molecular dynamics simulations and free energy study have been applied to study the binding of the cAMP torsional conformers about the glycosyl bond in PDE10A2. The computational results elucidated that PDE10A2 is energetically more favorable in complex with the syn cAMP conformer (as reported in the crystal structure) and the binding of anti cAMP to PDE10A2 would lead to either a nonreactive configuration or significant perturbation on the catalytic pocket of the enzyme. This experimentally inaccessible information provides important molecular insights for the development of effective PDE10 ligands.

  10. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System

    PubMed Central

    Ercu, Maria; Klussmann, Enno

    2018-01-01

    A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases. PMID:29461511

  11. Pressure and Thrust Measurements of a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Nguyen, Namtran C.; Cutler, Andrew D.

    2008-01-01

    This paper describes the development of a small-scale, high-frequency pulsed detonation actuator. The device utilized a fuel mixture of H2 and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at approx.600 Hz, for the lambda/4 mode. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to specific impulse of 2611 s. This value is comparable to other H2-fueled pulsed detonation engines (PDEs) experiments. The injection and detonation frequency for this new experimental case was approx.600 Hz, and was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the model and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 lb/cu in, and compares favorably with other experiments, which typically have thrust-per-unit-volume values of approximately 0.01 lb/cu in.

  12. Trigonometric Integrals via Partial Fractions

    ERIC Educational Resources Information Center

    Chen, H.; Fulford, M.

    2005-01-01

    Parametric differentiation is used to derive the partial fractions decompositions of certain rational functions. Those decompositions enable us to integrate some new combinations of trigonometric functions.

  13. A delay differential model of ENSO variability: parametric instability and the distribution of extremes

    NASA Astrophysics Data System (ADS)

    Zaliapin, I.; Ghil, M.; Thompson, S.

    2007-12-01

    We consider a Delay Differential Equation (DDE) model for El-Nino Southern Oscillation (ENSO) variability. The model combines two key mechanisms that participate in the ENSO dynamics: delayed negative feedback and seasonal forcing. Descriptive and metric stability analyses of the model are performed in a complete 3D space of its physically relevant parameters. Existence of two regimes --- stable and unstable --- is reported. The domains of the regimes are separated by a sharp neutral curve in the parameter space. The detailed structure of the neutral curve become very complicated (possibly fractal), and individual trajectories within the unstable region become highly complex (possibly chaotic) as the atmosphere-ocean coupling increases. In the unstable regime, spontaneous transitions in the mean "temperature" (i.e., thermocline depth), period, and extreme annual values occur, for purely periodic, seasonal forcing. This indicates (via the continuous dependence theorem) the existence of numerous unstable solutions responsible for the complex dynamics of the system. In the stable regime, only periodic solutions are found. Our results illustrate the role of the distinct parameters of ENSO variability, such as strength of seasonal forcing vs. atmosphere ocean coupling and propagation period of oceanic waves across the Tropical Pacific. The model reproduces, among other phenomena, the Devil's bleachers (caused by period locking) documented in other ENSO models, such as nonlinear PDEs and GCMs, as well as in certain observations. We expect such behavior in much more detailed and realistic models, where it is harder to describe its causes as completely.

  14. Exp-function method for solving fractional partial differential equations.

    PubMed

    Zheng, Bin

    2013-01-01

    We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.

  15. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  16. Implementing a bar-code assisted medication administration system: effects on the dispensing process and user perceptions.

    PubMed

    Samaranayake, N R; Cheung, S T D; Cheng, K; Lai, K; Chui, W C M; Cheung, B M Y

    2014-06-01

    We assessed the effects of a bar-code assisted medication administration system used without the support of computerised prescribing (stand-alone BCMA), on the dispensing process and its users. The stand-alone BCMA system was implemented in one ward of a teaching hospital. The number of dispensing steps, dispensing time and potential dispensing errors (PDEs) were directly observed one month before and eight months after the intervention. Attitudes of pharmacy and nursing staff were assessed using a questionnaire (Likert scale) and interviews. Among 1291 and 471 drug items observed before and after the introduction of the technology respectively, the number of dispensing steps increased from five to eight and time (standard deviation) to dispense one drug item by one staff personnel increased from 0.8 (0.09) to 1.5 (0.12) min. Among 2828 and 471 drug items observed before and after the intervention respectively, the number of PDEs increased significantly (P<0.001). 'Procedural errors' and 'missing drug items' were the frequently observed PDEs in the after study. 'Perceived usefulness' and 'job relevance' of the technology decreased significantly (P=0.003 and P=0.004 respectively) among users who participated in the before (N=16) and after (N=16) questionnaires surveys. Among the interviewees, pharmacy staff felt that the system offered less benefit to the dispensing process (9/16). Nursing staff perceived the system as useful in improving the accuracy of drug administration (7/10). Implementing a stand-alone BCMA system may slow down and complicate the dispensing process. Nursing staff believe the stand-alone BCMA system could improve the drug administration process but pharmacy staff believes the technology would be more helpful if supported by computerised prescribing. However, periodical assessments are needed to identify weaknesses in the process after implementation, and all users should be educated on the benefits of using this technology. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. c-di-GMP Turn-Over in Clostridium difficile Is Controlled by a Plethora of Diguanylate Cyclases and Phosphodiesterases

    PubMed Central

    Bordeleau, Eric; Fortier, Louis-Charles; Malouin, François; Burrus, Vincent

    2011-01-01

    Clostridium difficile infections have become a major healthcare concern in the last decade during which the emergence of new strains has underscored this bacterium's capacity to cause persistent epidemics. c-di-GMP is a bacterial second messenger regulating diverse bacterial phenotypes, notably motility and biofilm formation, in proteobacteria such as Vibrio cholerae, Pseudomonas aeruginosa, and Salmonella. c-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a conserved GGDEF domain. It is degraded by phosphodiesterases (PDEs) that contain either an EAL or an HD-GYP conserved domain. Very little is known about the role of c-di-GMP in the regulation of phenotypes of Gram-positive or fastidious bacteria. Herein, we exposed the main components of c-di-GMP signalling in 20 genomes of C. difficile, revealed their prevalence, and predicted their enzymatic activity. Ectopic expression of 31 of these conserved genes was carried out in V. cholerae to evaluate their effect on motility and biofilm formation, two well-characterized phenotype alterations associated with intracellular c-di-GMP variation in this bacterium. Most of the predicted DGCs and PDEs were found to be active in the V. cholerae model. Expression of truncated versions of CD0522, a protein with two GGDEF domains and one EAL domain, suggests that it can act alternatively as a DGC or a PDE. The activity of one purified DGC (CD1420) and one purified PDE (CD0757) was confirmed by in vitro enzymatic assays. GTP was shown to be important for the PDE activity of CD0757. Our results indicate that, in contrast to most Gram-positive bacteria including its closest relatives, C. difficile encodes a large assortment of functional DGCs and PDEs, revealing that c-di-GMP signalling is an important and well-conserved signal transduction system in this human pathogen. PMID:21483756

  18. Relaxation of isolated guinea-pig trachea by apigenin, a constituent of celery, via inhibition of phosphodiesterase.

    PubMed

    Chen, Junn-Lain; Ko, Wun-Chang

    2017-09-15

    Apigenin, was reported to have vasodilatory effects by inhibiting Ca 2+ influx through both voltage- and receptor-operated calcium channels, but not by inhibiting cAMP- or cGMP-phosphodiesterases (PDEs) in rat thoracic aorta. However, apigenin was reported to inhibit PDE1, 2 and 3 in guinea-pig lung and heart. The aim of this study was to clarify that guinea-pig tracheal relaxation by apigenin whether via PDE inhibition. We isometrically recorded the tension of isolated guinea-pig tracheal segments on a polygraph. Antagonistic effects of apigenin against cumulative contractile agents or Ca 2+ induced contractions of the trachealis in normal or isotonic high-K + , Ca 2+ -free Krebs solution, respectively. Effects of apigenin (15 and 30μM) on the cumulative forskolin- and nitroprusside-induced relaxations to histamine (30μM)-induced precontraction were performed. The inhibitory effects of 30-300μM apigenin and 3-isobutyl-1-methylxanthine (IBMX, positive control) on the cAMP- and cGMP-PDEs were determined. Apigenin concentration-dependently but non-competitively inhibited cumulative histamine-, carbachol- or Ca 2+ -induced contractions in normal or in the depolarized (K + , 60mM) trachealis, suggesting that Ca 2+ influx through voltage-dependent calcium channels is inhibited. However, apigenin (15-30μM) parallel leftward shifted the concentration-response curves of forskolin and nitroprusside, and significantly increased the pD 2 values of these two cyclase activators. Both apigenin and IBMX, a reference drug, concentration (10-300μM)-dependently and significantly, but non-selectively inhibited the activities of cAMP- and cGMP-PDEs in the trachealis. In conclusion, the relaxant effect of apigenin may be due to inhibition of both enzyme activities and reduction of intracellular Ca 2+ by inhibiting Ca 2+ influx in the trachealis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Topics in spectral methods

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Turkel, E.

    1985-01-01

    After detailing the construction of spectral approximations to time-dependent mixed initial boundary value problems, a study is conducted of differential equations of the form 'partial derivative of u/partial derivative of t = Lu + f', where for each t, u(t) belongs to a Hilbert space such that u satisfies homogeneous boundary conditions. For the sake of simplicity, it is assumed that L is an unbounded, time-independent linear operator. Attention is given to Fourier methods of both Galerkin and pseudospectral method types, the Galerkin method, the pseudospectral Chebyshev and Legendre methods, the error equation, hyperbolic partial differentiation equations, and time discretization and iterative methods.

  20. Effect of evaporative surface cooling on thermographic assessment of burn depth

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Zawacki, B. E.

    1977-01-01

    Differences in surface temperature between evaporating and nonevaporating, partial- and full-thickness burn injuries were studied in 20 male, white guinea pigs. Evaporative cooling can disguise the temperature differential of the partial-thickness injury and lead to a false full-thickness diagnosis. A full-thickness burn with blister intact may retain enough heat to result in a false partial-thickness diagnosis. By the fourth postburn day, formation of a dry eschar may allow a surface temperature measurement without the complication of differential evaporation. For earlier use of thermographic information, evaporation effects must be accounted for or eliminated.

  1. Solving Differential Equations in R: Package deSolve

    EPA Science Inventory

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  2. A higher order numerical method for time fractional partial differential equations with nonsmooth data

    NASA Astrophysics Data System (ADS)

    Xing, Yanyuan; Yan, Yubin

    2018-03-01

    Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 by directly approximating the integer-order derivative with some finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu [20] (2016), where k is the time step size. Under the assumption that the solution of the time fractional partial differential equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. However, in general the solution of the time fractional partial differential equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. In this paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 as in Gao et al. [11] (2014) by approximating the Hadamard finite-part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 < α < 1 for any fixed tn > 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

  3. Taguchi method for partial differential equations with application in tumor growth.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M; Arotăriţei, D; Popescu, Marilena

    2014-01-01

    The growth of tumors is a highly complex process. To describe this process, mathematical models are needed. A variety of partial differential mathematical models for tumor growth have been developed and studied. Most of those models are based on the reaction-diffusion equations and mass conservation law. A variety of modeling strategies have been developed, each focusing on tumor growth. Systems of time-dependent partial differential equations occur in many branches of applied mathematics. The vast majority of mathematical models in tumor growth are formulated in terms of partial differential equations. We propose a mathematical model for the interactions between these three cancer cell populations. The Taguchi methods are widely used by quality engineering scientists to compare the effects of multiple variables, together with their interactions, with a simple and manageable experimental design. In Taguchi's design of experiments, variation is more interesting to study than the average. First, Taguchi methods are utilized to search for the significant factors and the optimal level combination of parameters. Except the three parameters levels, other factors levels other factors levels would not be considered. Second, cutting parameters namely, cutting speed, depth of cut, and feed rate are designed using the Taguchi method. Finally, the adequacy of the developed mathematical model is proved by ANOVA. According to the results of ANOVA, since the percentage contribution of the combined error is as small. Many mathematical models can be quantitatively characterized by partial differential equations. The use of MATLAB and Taguchi method in this article illustrates the important role of informatics in research in mathematical modeling. The study of tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.

  4. Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains

    PubMed Central

    Povolotsky, Tatyana L.

    2015-01-01

    ABSTRACT The ubiquitous bacterial second messenger cyclic di-GMP (c-di-GMP) has recently become prominent as a trigger for biofilm formation in many bacteria. It is generated by diguanylate cyclases (DGCs; with GGDEF domains) and degraded by specific phosphodiesterases (PDEs; containing either EAL or HD-GYP domains). Most bacterial species contain multiples of these proteins with some having specific functions that are based on direct molecular interactions in addition to their enzymatic activities. Escherichia coli K-12 laboratory strains feature 29 genes encoding GGDEF and/or EAL domains, resulting in a set of 12 DGCs, 13 PDEs, and four enzymatically inactive “degenerate” proteins that act by direct macromolecular interactions. We present here a comparative analysis of GGDEF/EAL domain-encoding genes in 61 genomes of pathogenic, commensal, and probiotic E. coli strains (including enteric pathogens such as enteroaggregative, enterohemorrhagic, enteropathogenic, enterotoxigenic, and adherent and invasive Escherichia coli and the 2011 German outbreak O104:H4 strain, as well as extraintestinal pathogenic E. coli, such as uropathogenic and meningitis-associated E. coli). We describe additional genes for two membrane-associated DGCs (DgcX and DgcY) and four PDEs (the membrane-associated PdeT, as well as the EAL domain-only proteins PdeW, PdeX, and PdeY), thus showing the pangenome of E. coli to contain at least 35 GGDEF/EAL domain proteins. A core set of only eight proteins is absolutely conserved in all 61 strains: DgcC (YaiC), DgcI (YliF), PdeB (YlaB), PdeH (YhjH), PdeK (YhjK), PdeN (Rtn), and the degenerate proteins CsrD and CdgI (YeaI). In all other GGDEF/EAL domain genes, diverse point and frameshift mutations, as well as small or large deletions, were discovered in various strains. IMPORTANCE Our analysis reveals interesting trends in pathogenic Escherichia coli that could reflect different host cell adherence mechanisms. These may either benefit from or be counteracted by the c-di-GMP-stimulated production of amyloid curli fibers and cellulose. Thus, EAEC, which adhere in a “stacked brick” biofilm mode, have a potential for high c-di-GMP accumulation due to DgcX, a strongly expressed additional DGC. In contrast, EHEC and UPEC, which use alternative adherence mechanisms, tend to have extra PDEs, suggesting that low cellular c-di-GMP levels are crucial for these strains under specific conditions. Overall, our study also indicates that GGDEF/EAL domain proteins evolve rapidly and thereby contribute to adaptation to host-specific and environmental niches of various types of E. coli. PMID:26303830

  5. Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains.

    PubMed

    Povolotsky, Tatyana L; Hengge, Regine

    2016-01-01

    The ubiquitous bacterial second messenger cyclic di-GMP (c-di-GMP) has recently become prominent as a trigger for biofilm formation in many bacteria. It is generated by diguanylate cyclases (DGCs; with GGDEF domains) and degraded by specific phosphodiesterases (PDEs; containing either EAL or HD-GYP domains). Most bacterial species contain multiples of these proteins with some having specific functions that are based on direct molecular interactions in addition to their enzymatic activities. Escherichia coli K-12 laboratory strains feature 29 genes encoding GGDEF and/or EAL domains, resulting in a set of 12 DGCs, 13 PDEs, and four enzymatically inactive "degenerate" proteins that act by direct macromolecular interactions. We present here a comparative analysis of GGDEF/EAL domain-encoding genes in 61 genomes of pathogenic, commensal, and probiotic E. coli strains (including enteric pathogens such as enteroaggregative, enterohemorrhagic, enteropathogenic, enterotoxigenic, and adherent and invasive Escherichia coli and the 2011 German outbreak O104:H4 strain, as well as extraintestinal pathogenic E. coli, such as uropathogenic and meningitis-associated E. coli). We describe additional genes for two membrane-associated DGCs (DgcX and DgcY) and four PDEs (the membrane-associated PdeT, as well as the EAL domain-only proteins PdeW, PdeX, and PdeY), thus showing the pangenome of E. coli to contain at least 35 GGDEF/EAL domain proteins. A core set of only eight proteins is absolutely conserved in all 61 strains: DgcC (YaiC), DgcI (YliF), PdeB (YlaB), PdeH (YhjH), PdeK (YhjK), PdeN (Rtn), and the degenerate proteins CsrD and CdgI (YeaI). In all other GGDEF/EAL domain genes, diverse point and frameshift mutations, as well as small or large deletions, were discovered in various strains. Our analysis reveals interesting trends in pathogenic Escherichia coli that could reflect different host cell adherence mechanisms. These may either benefit from or be counteracted by the c-di-GMP-stimulated production of amyloid curli fibers and cellulose. Thus, EAEC, which adhere in a "stacked brick" biofilm mode, have a potential for high c-di-GMP accumulation due to DgcX, a strongly expressed additional DGC. In contrast, EHEC and UPEC, which use alternative adherence mechanisms, tend to have extra PDEs, suggesting that low cellular c-di-GMP levels are crucial for these strains under specific conditions. Overall, our study also indicates that GGDEF/EAL domain proteins evolve rapidly and thereby contribute to adaptation to host-specific and environmental niches of various types of E. coli. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. A general science-based framework for dynamical spatio-temporal models

    USGS Publications Warehouse

    Wikle, C.K.; Hooten, M.B.

    2010-01-01

    Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e. g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic nonlinearity and demonstrate that it accommodates many different classes of scientific-based parameterizations as special cases. The model is presented in a hierarchical Bayesian framework and is illustrated with examples from ecology and oceanography. ?? 2010 Sociedad de Estad??stica e Investigaci??n Operativa.

  7. Computational Analyses of Complex Flows with Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Bae, Kang-Sik

    The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.

  8. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Xiu; Zhou, Yuan

    2018-02-01

    Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln ⁡ f) x and u = 2(ln ⁡ f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.

  9. Boundary-fitted coordinate systems for numerical solution of partial differential equations - A review

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.

    1982-01-01

    A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.

  10. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  11. Shift-connected SIMD array architectures for digital optical computing systems, with algorithms for numerical transforms and partial differential equations

    NASA Astrophysics Data System (ADS)

    Drabik, Timothy J.; Lee, Sing H.

    1986-11-01

    The intrinsic parallelism characteristics of easily realizable optical SIMD arrays prompt their present consideration in the implementation of highly structured algorithms for the numerical solution of multidimensional partial differential equations and the computation of fast numerical transforms. Attention is given to a system, comprising several spatial light modulators (SLMs), an optical read/write memory, and a functional block, which performs simple, space-invariant shifts on images with sufficient flexibility to implement the fastest known methods for partial differential equations as well as a wide variety of numerical transforms in two or more dimensions. Either fixed or floating-point arithmetic may be used. A performance projection of more than 1 billion floating point operations/sec using SLMs with 1000 x 1000-resolution and operating at 1-MHz frame rates is made.

  12. An approximation theory for nonlinear partial differential equations with applications to identification and control

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kunisch, K.

    1982-01-01

    Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.

  13. Research on Nonlinear Dynamical Systems.

    DTIC Science & Technology

    1983-01-10

    Applied Math., to appear. [26] Variational inequalities and flow in porous media, LCDS’Lecture Notes, Brown University #LN 82-1, July 1982. [27] On...approximation schemes for parabolic and hyperbolic systems of partial differential equations, including higher order equations of elasticity based on the...51,58,59,63,64,69]. Finally, stability and bifurcation in parabolic partial differential equations is the focus of [64,65,67,72,73]. In addition to these broad

  14. Geometric properties of commutative subalgebras of partial differential operators

    NASA Astrophysics Data System (ADS)

    Zheglov, A. B.; Kurke, H.

    2015-05-01

    We investigate further algebro-geometric properties of commutative rings of partial differential operators, continuing our research started in previous articles. In particular, we start to explore the simplest and also certain known examples of quantum algebraically completely integrable systems from the point of view of a recent generalization of Sato's theory, developed by the first author. We give a complete characterization of the spectral data for a class of 'trivial' commutative algebras and strengthen geometric properties known earlier for a class of known examples. We also define a kind of restriction map from the moduli space of coherent sheaves with fixed Hilbert polynomial on a surface to an analogous moduli space on a divisor (both the surface and the divisor are part of the spectral data). We give several explicit examples of spectral data and corresponding algebras of commuting (completed) operators, producing as a by-product interesting examples of surfaces that are not isomorphic to spectral surfaces of any (maximal) commutative ring of partial differential operators of rank one. Finally, we prove that any commutative ring of partial differential operators whose normalization is isomorphic to the ring of polynomials k \\lbrack u,t \\rbrack is a Darboux transformation of a ring of operators with constant coefficients. Bibliography: 39 titles.

  15. Nonlinear Stochastic PDEs: Analysis and Approximations

    DTIC Science & Technology

    2016-05-23

    numerical performance. Main theoretical and experimental advances include: 1.Introduction of a number of effective approaches to numerical analysis of...Stokes and Euler SPDEs, quasi -geostrophic SPDE, Ginzburg-Landau SPDE and Duffing oscillator REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...compare their numerical performance. Main theoretical and experimental advances include: 1.Introduction of a number of effective approaches to

  16. On a Parabolic-Elliptic system with chemotaxis and logistic type growth

    NASA Astrophysics Data System (ADS)

    Galakhov, Evgeny; Salieva, Olga; Tello, J. Ignacio

    2016-10-01

    We consider a nonlinear PDEs system of two equations of Parabolic-Elliptic type with chemotactic terms. The system models the movement of a biological population ;u; towards a higher concentration of a chemical agent ;w; in a bounded and regular domain Ω ⊂RN for arbitrary N ∈ N. After normalization, the system is as follows

  17. Simulation Methods for Optics and Electromagnetics in Complex Geometries and Extreme Nonlinear Regimes with Disparate Scales

    DTIC Science & Technology

    2014-09-30

    software devel- oped with this project support. S1 Cork School 2013: I. UPPEcore Simulator design and usage, Simulation examples II. Nonlinear pulse...pulse propagation 08/28/13 — 08/02/13, University College Cork , Ireland S2 ACMS MURI School 2012: Computational Methods for Nonlinear PDEs describing

  18. 7 CFR 1000.76 - Payments by a handler operating a partially regulated distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., compute a Class I differential price by subtracting Class III price from the current month's Class I price... by which the Class I differential price exceeds the producer price differential, both prices to be... Class I differential price nor the adjusted producer price differential shall be less than zero; (3) For...

  19. UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy.

    PubMed

    Wang, Li; Burmeister, Brian T; Johnson, Keven R; Baillie, George S; Karginov, Andrei V; Skidgel, Randal A; O'Bryan, John P; Carnegie, Graeme K

    2015-05-01

    Hypertrophy increases the risk of heart failure and arrhythmia. Prevention or reversal of the maladaptive hypertrophic phenotype has thus been proposed to treat heart failure. Chronic β-adrenergic receptor (β-AR) stimulation induces cardiomyocyte hypertrophy by elevating 3',5'-cyclic adenosine monophosphate (cAMP) levels and activating downstream effectors such protein kinase A (PKA). Conversely, hydrolysis of cAMP by phosphodiesterases (PDEs) spatiotemporally restricts cAMP signaling. Here, we demonstrate that PDE4, but not PDE3, is critical in regulating cardiomyocyte hypertrophy, and may represent a potential target for preventing maladaptive hypertrophy. We identify a sequence within the upstream conserved region 1 of PDE4D, termed UCR1C, as a novel activator of PDE4 long isoforms. UCR1C activates PDE4 in complex with A-kinase anchoring protein (AKAP)-Lbc resulting in decreased PKA signaling facilitated by AKAP-Lbc. Expression of UCR1C in cardiomyocytes inhibits hypertrophy in response to chronic β-AR stimulation. This effect is partially due to inhibition of nuclear PKA activity, which decreases phosphorylation of the transcription factor cAMP response element-binding protein (CREB). In conclusion, PDE4 activation by UCR1C attenuates cardiomyocyte hypertrophy by specifically inhibiting nuclear PKA activity. Published by Elsevier Inc.

  20. Thermal evolution of a partially differentiated H chondrite parent body

    NASA Astrophysics Data System (ADS)

    Abrahams, J. N. H.; Bryson, J. F. J.; Weiss, B. P.; Nimmo, F.

    2016-12-01

    It has traditionally been assumed that planetesimals either melted entirely or remained completely undifferentiated as they accreted. The unmelted textures and cooling histories of chondrites have been used to argue that these meteorites originated from bodies that never differentiated. However, paleomagnetic measurements indicate that some chondrites (e.g., the H chondrite Portales Valley and several CV chondrites) were magnetized by a core dynamo magnetic field, implying that their parent bodies were partially differentiated. It has been unclear, however, whether planetesimal histories consistent with dynamo production can also be consistent with the diversity of chondrite cooling rates and ages. To address this, we modeled the thermal evolution of the H chondrite parent body, considering a variety of accretion histories and parent body radii. We considered partial differentiation using two-stage accretion involving the initial formation and differentiation of a small body, followed by the later addition of low thermal conductivity chondritic material that remains mostly unmelted. We were able to reproduce the measured thermal evolution of multiple H chondrites for a range of parent body parameters, including initial radii from 70-150 km, chondritic layer thicknesses from 50 km to over 100 km, and second stage accretion times of 2.5-3 Myr after solar system formation. Our predicted rates of core cooling and crystallization are consistent with dynamo generation by compositional convection beginning 60-200 Myr after solar system formation and lasting for at least tens of millions of years. This is consistent with magnetic studies of Portales Valley [Bryson et al., this meeting]. In summary, we find that thermal models of partial differentiation are consistent the radiometric ages, magnetization, and cooling rates of a diversity H chondrites.

  1. The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations

    PubMed Central

    Mitchell, William F.

    1998-01-01

    Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given. PMID:28009355

  2. The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations.

    PubMed

    Mitchell, William F

    1998-01-01

    Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given.

  3. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  4. Cellular Automata for Spatiotemporal Pattern Formation from Reaction-Diffusion Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Ohmori, Shousuke; Yamazaki, Yoshihiro

    2016-01-01

    Ultradiscrete equations are derived from a set of reaction-diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction-diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction-diffusion equations.

  5. A convex penalty for switching control of partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clason, Christian; Rund, Armin; Kunisch, Karl

    2016-01-19

    A convex penalty for promoting switching controls for partial differential equations is introduced; such controls consist of an arbitrary number of components of which at most one should be simultaneously active. Using a Moreau–Yosida approximation, a family of approximating problems is obtained that is amenable to solution by a semismooth Newton method. In conclusion, the efficiency of this approach and the structure of the obtained controls are demonstrated by numerical examples.

  6. Numerical methods for large-scale, time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1979-01-01

    A survey of numerical methods for time dependent partial differential equations is presented. The emphasis is on practical applications to large scale problems. A discussion of new developments in high order methods and moving grids is given. The importance of boundary conditions is stressed for both internal and external flows. A description of implicit methods is presented including generalizations to multidimensions. Shocks, aerodynamics, meteorology, plasma physics and combustion applications are also briefly described.

  7. Spectral methods for time dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Turkel, E.

    1983-01-01

    The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.

  8. Stability analysis of multigrid acceleration methods for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Fay, John F.

    1990-01-01

    A calculation is made of the stability of various relaxation schemes for the numerical solution of partial differential equations. A multigrid acceleration method is introduced, and its effects on stability are explored. A detailed stability analysis of a simple case is carried out and verified by numerical experiment. It is shown that the use of multigrids can speed convergence by several orders of magnitude without adversely affecting stability.

  9. Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations

    NASA Astrophysics Data System (ADS)

    Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher

    2015-07-01

    Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.

  10. From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation.

    PubMed

    Norris, Scott A; Brenner, Michael P; Aziz, Michael J

    2009-06-03

    We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.

  11. PetIGA: A framework for high-performance isogeometric analysis

    DOE PAGES

    Dalcin, Lisandro; Collier, Nathaniel; Vignal, Philippe; ...

    2016-05-25

    We present PetIGA, a code framework to approximate the solution of partial differential equations using isogeometric analysis. PetIGA can be used to assemble matrices and vectors which come from a Galerkin weak form, discretized with Non-Uniform Rational B-spline basis functions. We base our framework on PETSc, a high-performance library for the scalable solution of partial differential equations, which simplifies the development of large-scale scientific codes, provides a rich environment for prototyping, and separates parallelism from algorithm choice. We describe the implementation of PetIGA, and exemplify its use by solving a model nonlinear problem. To illustrate the robustness and flexibility ofmore » PetIGA, we solve some challenging nonlinear partial differential equations that include problems in both solid and fluid mechanics. Lastly, we show strong scaling results on up to 4096 cores, which confirm the suitability of PetIGA for large scale simulations.« less

  12. On Partial Fraction Decompositions by Repeated Polynomial Divisions

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2017-01-01

    We present a method for finding partial fraction decompositions of rational functions with linear or quadratic factors in the denominators by means of repeated polynomial divisions. This method does not involve differentiation or solving linear equations for obtaining the unknown partial fraction coefficients, which is very suitable for either…

  13. A Model for the Oxidation of Carbon Silicon Carbide Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2004-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.

  14. Computer simulation of two-dimensional unsteady flows in estuaries and embayments by the method of characteristics : basic theory and the formulation of the numerical method

    USGS Publications Warehouse

    Lai, Chintu

    1977-01-01

    Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)

  15. Group theoretic approach for solving the problem of diffusion of a drug through a thin membrane

    NASA Astrophysics Data System (ADS)

    Abd-El-Malek, Mina B.; Kassem, Magda M.; Meky, Mohammed L. M.

    2002-03-01

    The transformation group theoretic approach is applied to study the diffusion process of a drug through a skin-like membrane which tends to partially absorb the drug. Two cases are considered for the diffusion coefficient. The application of one parameter group reduces the number of independent variables by one, and consequently the partial differential equation governing the diffusion process with the boundary and initial conditions is transformed into an ordinary differential equation with the corresponding conditions. The obtained differential equation is solved numerically using the shooting method, and the results are illustrated graphically and in tables.

  16. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  17. Long-term Stable Conservative Multiscale Methods for Vortex Flows

    DTIC Science & Technology

    2017-10-31

    Computational and Applied Mathematics and Engeneering, Eccomas 2016 (Crete, June, 2016) - M. A. Olshanskii, Scientific computing seminar of Math ...UMass Dartmouth (October 2015) - L. Rebholz, Applied Math Seminar Talk, University of Alberta (October 2015) - L. Rebholz, Colloquium Talk, Scientific...Colloquium, (November 2016) - L. Rebholz, Joint Math Meetings 2017, Special session on recent advances in numerical analysis of PDEs, Atlanta GA

  18. L1-Based Approximations of PDEs and Applications

    DTIC Science & Technology

    2012-09-05

    the analysis of the Navier-Stokes equations. The early versions of artificial vis- cosities being overly dissipative, the interest for these technique ...Guermond, and B. Popov. Stability analysis of explicit en- tropy viscosity methods for non-linear scalar conservation equations. Math. Comp., 2012... methods for solv- ing mathematical models of nonlinear phenomena such as nonlinear conservation laws, surface/image/data reconstruction problems

  19. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs

    DTIC Science & Technology

    2010-05-31

    Todor , Karhúnen-Loève Approximation of Random Fields by General- ized Fast Multipole Methods, Journal of Computational Physics 217(2006), 100–122. [19...20] R. Todor , Robust eigenvalue computation for smoothing operators, SIAM J. Num. Anal. 44(2006), 865–878. 29 [21] R. Todor and Ch. Schwab, Convergence

  20. Characterization of Transient Plasma Ignition Flame Kernel Growth for Varying Inlet Conditions

    DTIC Science & Technology

    2009-12-01

    unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Pulse detonation engines ( PDEs ) have the...Instruments NPS - Naval Postgraduate School PDC - Pulse Detonation Combustor PDE - Pulse Detonation Engine Phi The Greek letter Φ PSIA...produced little to no new chemical propulsion developments; only improvements to existing architectures. The Pulse Detonation Engine ( PDE ) is a

  1. N Termini of apPDE4 Isoforms Are Responsible for Targeting the Isoforms to Different Cellular Membranes

    ERIC Educational Resources Information Center

    Jang, Deok-Jin; Park, Soo-Won; Lee, Jin-A; Lee, Changhoon; Chae, Yeon-Su; Park, Hyungju; Kim, Min-Jeong; Choi, Sun-Lim; Lee, Nuribalhae; Kim, Hyoung; Kaang, Bong-Kiun

    2010-01-01

    Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the…

  2. Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.

    2011-03-01

    We discuss the class of equations ∑i,j=0mAij(u){∂iu}/{∂ti}∂+∑k,l=0nBkl(u){∂ku}/{∂xk}∂=C(u) where Aij( u), Bkl( u) and C( u) are functions of u( x, t) as follows: (i) Aij, Bkl and C are polynomials of u; or (ii) Aij, Bkl and C can be reduced to polynomials of u by means of Taylor series for small values of u. For these two cases the above-mentioned class of equations consists of nonlinear PDEs with polynomial nonlinearities. We show that the modified method of simplest equation is powerful tool for obtaining exact traveling-wave solution of this class of equations. The balance equations for the sub-class of traveling-wave solutions of the investigated class of equations are obtained. We illustrate the method by obtaining exact traveling-wave solutions (i) of the Swift-Hohenberg equation and (ii) of the generalized Rayleigh equation for the cases when the extended tanh-equation or the equations of Bernoulli and Riccati are used as simplest equations.

  3. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair

    PubMed Central

    Knott, Eric P.; Assi, Mazen; Rao, Sudheendra N. R.; Ghosh, Mousumi; Pearse, Damien D.

    2017-01-01

    A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic. PMID:28338622

  4. Metabolic benefits of inhibiting cAMP-PDEs with resveratrol.

    PubMed

    Chung, Jay H

    2012-10-01

    Calorie restriction (CR) extends lifespan in species ranging from yeast to mammals. There is evidence that CR also protects against aging-related diseases in non-human primates. This has led to an intense interest in the development of CR-mimetics to harness the beneficial effects of CR to treat aging-related diseases. One CR-mimetic that has received a great deal of attention is resveratrol. Resveratrol extends the lifespan of obese mice and protects against obesity-related diseases such as type 2 diabetes. The specific mechanism of resveratrol action has been difficult to elucidate because resveratrol has a promiscuous target profile. A recent finding indicates that the metabolic effects of resveratrol may result from competitive inhibition of cAMP-degrading phosphodiesterases (PDEs), which increases cAMP levels. The cAMP-dependent pathways activate AMP-activated protein kinase (AMPK), which is essential for the metabolic effects of resveratrol. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including protection against diet-induced obesity and an increase in mitochondrial function, physical stamina and glucose tolerance in mice. This discovery suggests that PDE inhibitors may be useful for treating metabolic diseases associated with aging.

  5. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    PubMed Central

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  6. The use of solution adaptive grids in solving partial differential equations

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Rai, M. M.

    1982-01-01

    The grid point distribution used in solving a partial differential equation using a numerical method has a substantial influence on the quality of the solution. An adaptive grid which adjusts as the solution changes provides the best results when the number of grid points available for use during the calculation is fixed. Basic concepts used in generating and applying adaptive grids are reviewed in this paper, and examples illustrating applications of these concepts are presented.

  7. Multirate Integration Properties of Waveform Relaxation with Applications to Circuit Simulation and Parallel Computation

    DTIC Science & Technology

    1985-11-18

    Greenberg and K. Sakallah at Digital Equipment Corporation, and C-F. Chen, L Nagel, and P. ,. Subrahmanyam at AT&T Bell Laboratories, both for providing...Circuit Theory McGraw-Hill, 1969. [37] R. Courant and D. Hilbert , Partial Differential Equations, Vol. 2 of Methods of Mathematical Physics...McGraw-Hill, N.Y., 1965. Page 161 [44) R. Courant and D. Hilbert , Partial Differential Equations, Vol. 2 of Methods of Mathematical Physics

  8. A Posteriori Finite Element Bounds for Sensitivity Derivatives of Partial-Differential-Equation Outputs. Revised

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael; Patera, Anthony T.; Peraire, Jaume

    1998-01-01

    We present a Neumann-subproblem a posteriori finite element procedure for the efficient and accurate calculation of rigorous, 'constant-free' upper and lower bounds for sensitivity derivatives of functionals of the solutions of partial differential equations. The design motivation for sensitivity derivative error control is discussed; the a posteriori finite element procedure is described; the asymptotic bounding properties and computational complexity of the method are summarized; and illustrative numerical results are presented.

  9. The Riemann-Lanczos equations in general relativity and their integrability

    NASA Astrophysics Data System (ADS)

    Dolan, P.; Gerber, A.

    2008-06-01

    The aim of this paper is to examine the Riemann-Lanczos equations and how they can be made integrable. They consist of a system of linear first-order partial differential equations that arise in general relativity, whereby the Riemann curvature tensor is generated by an unknown third-order tensor potential field called the Lanczos tensor. Our approach is based on the theory of jet bundles, where all field variables and all their partial derivatives of all relevant orders are treated as independent variables alongside the local manifold coordinates (xa) on the given space-time manifold M. This approach is adopted in (a) Cartan's method of exterior differential systems, (b) Vessiot's dual method using vector field systems, and (c) the Janet-Riquier theory of systems of partial differential equations. All three methods allow for the most general situations under which integrability conditions can be found. They give equivalent results, namely, that involutivity is always achieved at all generic points of the jet manifold M after a finite number of prolongations. Two alternative methods that appear in the general relativity literature to find integrability conditions for the Riemann-Lanczos equations generate new partial differential equations for the Lanczos potential that introduce a source term, which is nonlinear in the components of the Riemann tensor. We show that such sources do not occur when either of method (a), (b), or (c) are used.

  10. Quantitative evaluation method for differentiation of C2C12 myoblasts by ultrasonic microscopy

    NASA Astrophysics Data System (ADS)

    Takanashi, Kyoichi; Washiya, Mamoru; Ota, Kazuki; Yoshida, Sachiko; Hozumi, Naohiro; Kobayashi, Kazuto

    2017-07-01

    Cell differentiation was evaluated by ultrasonic microscopy. However, there were some regions that showed a lower acoustic impedance than the culture liquid. It was considered that, in such regions, the cells were not perfectly in contact with the film substrate. Hence, a waveform analysis was performed, and compensated acoustic impedances in such regions were in a reasonable range of values. By the same analysis, the displacements of partially floated cells were also successfully calculated. The elapsed day transitions of the compensated acoustic impedances and displacements were successfully evaluated. In the process of differentiation, actin fibers comprising the cytoskeleton are supposed to loosen in order to induce cellular fusion. In addition, the progress in cell differentiation accompanied by a change into a three-dimensional structure can partially be assessed by the displacement between a cell and a cultured film. Hence, we believe that cell differentiation can be evaluated using an ultrasonic microscope.

  11. An Improved Heaviside Approach to Partial Fraction Expansion and Its Applications

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2009-01-01

    In this note, we present an improved Heaviside approach to compute the partial fraction expansions of proper rational functions. This method uses synthetic divisions to determine the unknown partial fraction coefficients successively, without the need to use differentiation or to solve a system of linear equations. Examples of its applications in…

  12. Application of the Sumudu Transform to Discrete Dynamic Systems

    ERIC Educational Resources Information Center

    Asiru, Muniru Aderemi

    2003-01-01

    The Sumudu transform is an integral transform introduced to solve differential equations and control engineering problems. The transform possesses many interesting properties that make visualization easier and application has been demonstrated in the solution of partial differential equations, integral equations, integro-differential equations and…

  13. Effects of partial reinforcement and time between reinforced trials on terminal response rate in pigeon autoshaping.

    PubMed

    Gottlieb, Daniel A

    2006-03-01

    Partial reinforcement often leads to asymptotically higher rates of responding and number of trials with a response than does continuous reinforcement in pigeon autoshaping. However, comparisons typically involve a partial reinforcement schedule that differs from the continuous reinforcement schedule in both time between reinforced trials and probability of reinforcement. Two experiments examined the relative contributions of these two manipulations to asymptotic response rate. Results suggest that the greater responding previously seen with partial reinforcement is primarily due to differential probability of reinforcement and not differential time between reinforced trials. Further, once established, differences in responding are resistant to a change in stimulus and contingency. Secondary response theories of autoshaped responding (theories that posit additional response-augmenting or response-attenuating mechanisms specific to partial or continuous reinforcement) cannot fully accommodate the current body of data. It is suggested that researchers who study pigeon autoshaping train animals on a common task prior to training them under different conditions.

  14. Some Theoretical Aspects of Nonzero Sum Differential Games and Applications to Combat Problems

    DTIC Science & Technology

    1971-06-01

    the Equilibrium Solution . 7 Hamilton-Jacobi-Bellman Partial Differential Equations ............. .............. 9 Influence Function Differential...Linearly .......... ............ 18 Problem Statement .......... ............ 18 Formulation of LJB Equations, Influence Function Equations and the TPBVP...19 Control Lawe . . .. ...... ........... 21 Conditions for Influence Function Continuity along Singular Surfaces

  15. A partial differential equation for pseudocontact shift.

    PubMed

    Charnock, G T P; Kuprov, Ilya

    2014-10-07

    It is demonstrated that pseudocontact shift (PCS), viewed as a scalar or a tensor field in three dimensions, obeys an elliptic partial differential equation with a source term that depends on the Hessian of the unpaired electron probability density. The equation enables straightforward PCS prediction and analysis in systems with delocalized unpaired electrons, particularly for the nuclei located in their immediate vicinity. It is also shown that the probability density of the unpaired electron may be extracted, using a regularization procedure, from PCS data.

  16. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor. 2: Two-step method

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1986-01-01

    A two-step semidirect procedure is developed to accelerate the one-step procedure described in NASA TP-2529. For a set of constant coefficient model problems, the acceleration factor increases from 1 to 2 as the one-step procedure convergence rate decreases from + infinity to 0. It is also shown numerically that the two-step procedure can substantially accelerate the convergence of the numerical solution of many partial differential equations (PDE's) with variable coefficients.

  17. Nonlinear grid error effects on numerical solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1980-01-01

    Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.

  18. Exact Solutions for the Integrable Sixth-Order Drinfeld-Sokolov-Satsuma-Hirota System by the Analytical Methods.

    PubMed

    Manafian Heris, Jalil; Lakestani, Mehrdad

    2014-01-01

    We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.

  19. Parameter estimation problems for distributed systems using a multigrid method

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo; Dutt, Pravir

    1990-01-01

    The problem of estimating spatially varying coefficients of partial differential equations is considered from observation of the solution and of the right hand side of the equation. It is assumed that the observations are distributed in the domain and that enough observations are given. A method of discretization and an efficient multigrid method for solving the resulting discrete systems are described. Numerical results are presented for estimation of coefficients in an elliptic and a parabolic partial differential equation.

  20. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

    2018-03-01

    The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

  1. DISCHARGE AND DEPTH BEHIND A PARTIALLY BREACHED DAM.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1987-01-01

    The role that the velocity-distribution correction factor plays in the determination of the flood discharge and corresponding flow depth behind a partially breached dam is investigated. Assumption of a uniformly progressive flow for an established dam-break flood in a rectangular channel of infinite extent leads to the formulation of a theoretical relation between the depth and velocity of flow expressed in differential form. Integrating this ordinary differential equation, one can express the velocity in terms of the depth.

  2. Introducing the Improved Heaviside Approach to Partial Fraction Decomposition to Undergraduate Students: Results and Implications from a Pilot Study

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    Partial fraction decomposition is a useful technique often taught at senior secondary or undergraduate levels to handle integrations, inverse Laplace transforms or linear ordinary differential equations, etc. In recent years, an improved Heaviside's approach to partial fraction decomposition was introduced and developed by the author. An important…

  3. Strongly nonlinear parabolic variational inequalities.

    PubMed

    Browder, F E; Brézis, H

    1980-02-01

    An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form partial differentialu/ partial differentialt + A(u) + g(u) = f with g nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.

  4. Anomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions

    PubMed

    Bologna; Tsallis; Grigolini

    2000-08-01

    We consider the d=1 nonlinear Fokker-Planck-like equation with fractional derivatives ( partial differential/ partial differentialt)P(x,t)=D( partial differential(gamma)/ partial differentialx(gamma))[P(x,t)](nu). Exact time-dependent solutions are found for nu=(2-gamma)/(1+gamma)(-infinity

  5. A Unified Introduction to Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Lutzer, Carl V.

    2006-01-01

    This article describes how a presentation from the point of view of differential operators can be used to (partially) unify the myriad techniques in an introductory course in ordinary differential equations by providing students with a powerful, flexible paradigm that extends into (or from) linear algebra. (Contains 1 footnote.)

  6. Rotating Detonation Engine Operation (Preprint)

    DTIC Science & Technology

    2012-01-01

    MdotH2 = mass flow of hydrogen MdotAir = mass flow of air PCB = Piezoelectric Pressure Sensor PDE = Pulsed Detonation Engine RDE = Rotating ...and unsteady thrust output of PDEs . One of the new designs was the Rotating Detonation Engine (RDE). An RDE operates by exhausting an initial...AFRL-RZ-WP-TP-2012-0003 ROTATING DETONATION ENGINE OPERATION (PREPRINT) James A. Suchocki and Sheng-Tao John Yu The Ohio State

  7. Overdetermined elliptic problems in topological disks

    NASA Astrophysics Data System (ADS)

    Mira, Pablo

    2018-06-01

    We introduce a method, based on the Poincaré-Hopf index theorem, to classify solutions to overdetermined problems for fully nonlinear elliptic equations in domains diffeomorphic to a closed disk. Applications to some well-known nonlinear elliptic PDEs are provided. Our result can be seen as the analogue of Hopf's uniqueness theorem for constant mean curvature spheres, but for the general analytic context of overdetermined elliptic problems.

  8. Nitric oxide-induced changes in endothelial expression of phosphodiesterases 2, 3, and 5.

    PubMed

    Schankin, Christoph J; Kruse, Lars S; Reinisch, Veronika M; Jungmann, Steffen; Kristensen, Julie C; Grau, Stefan; Ferrari, Uta; Sinicina, Inga; Goldbrunner, Roland; Straube, Andreas; Kruuse, Christina

    2010-03-01

    To investigate nitric oxide (NO)-mediated changes in expression of cyclic nucleotide degrading phosphodiesterases 2A (PDE2A), PDE3B, and PDE5A in human endothelial cells. Nitric oxide induces production of cyclic guanosine monophosphate (cGMP), which along with cyclic adenosine monophosphate (cAMP) is degraded by PDEs. NO donors and selective inhibitors of PDE3 and PDE5 induce migraine-like headache and play a role in endothelial dysfunction during stroke. The current study investigates possible NO modulation of cGMP-related PDEs relevant to headache induction in a cell line containing such PDEs. Real time polymerase chain reaction and Western blots were used to show expression of PDE2A, PDE3B, and PDE5A in a stable cell line of human brain microvascular endothelial cells. Effects of NO on PDE expression were analyzed at specific time intervals after continued DETA NONOate administration. This study shows the expression of PDE2A, PDE3B, and PDE5A mRNA and PDE3B and PDE5A protein in human cerebral endothelial cells. Long-term DETA NONOate administration induced an immediate mRNA up-regulation of PDE5A (1.9-fold, 0.5 hour), an early peak of PDE2A (1.4-fold, 1 and 2 hours) and later up-regulation of both PDE3B (1.6-fold, 4 hours) and PDE2A (1.7-fold, 8 hours and 1.2-fold after 24 hours). Such changes were, however, not translated into significant changes in protein expression indicating few, if any, functional effects. Long-term NO stimulation modulated PDE3 and PDE5 mRNA expression in endothelial cells. However, PDE3 and PDE5 protein levels were unaffected by NO. The presence of PDE3 or PDE5 in endothelial cells indicates that selective inhibitors may have functional effects in such cells. A complex interaction of cGMP and cAMP in response to NO administration may take place if the mRNA translates into active protein. Whether or not this plays a role in the headache mechanisms remains to be investigated.

  9. OPC-13013, a cyclic nucleotide phosphodiesterase type III, inhibitor, inhibits cell proliferation and transdifferentiation of cultured rat hepatic stellate cells.

    PubMed

    Shimizu, E; Kobayashi, Y; Oki, Y; Kawasaki, T; Yoshimi, T; Nakamura, H

    1999-01-01

    Activated hepatic stellate cells (HSC; lipocytes; Ito cells) proliferate and are responsible for extracellular matrix synthesis during hepatic fibrogenesis. During activation, HSC undergo transdifferentiation into myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA). Adenosine 3', 5'-cyclic monophosphate (cyclic AMP) is an ubiquitous intracellular signaling molecule, and is upregulated by the activation of adenylate cyclase and downregulated via hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). Recently, increased intracellular cyclic AMP has been shown to inhibit HSC activation. The aim of the current study was to determine the effects of inhibition of PDEs on cell proliferation and transdifferentiation in cultured rat HSC. Cell proliferation was determined by [3H]thymidine incorporation, and Western blot analysis was performed for detection of alpha-SMA, a phenotypic marker of transdifferentiation into myofibroblast. When the cells were exposed to 3-isobutyl-1-methylxanthine (IBMX; 50-1000 microM), a nonselective PDE inhibitor, serum-stimulated [3H]thymidine incorporation was suppressed in a dose-dependent manner with a maximum inhibition of 66% at a concentration of 500 microM OPC-13013 (1-60 microM), a selective PDE III isoenzyme inhibitor, induced a dose-dependent inhibitory effect on serum-stimulated DNA synthesis that reached a maximum inhibition of 95% at a concentration of 60 microM, while neither 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MMX), a PDE I isoenzyme inhibitor, nor Ro-20-1724, a PDE IV isoenzyme inhibitor, had an inhibitory effect. Western blot analysis revealed that IBMX or OPC-13013 decreased alpha-SMA expression, while other selective PDE isoenzyme inhibitors did not have a suppressive effect. IBMX, OPC-13013 or Ro-20-1724, but not 8-MMX augmented forskolin-induced increase in intracellular cyclic AMP levels although cyclic AMP levels were not affected by treatment with any of these PDE inhibitors alone. These data indicate that inhibition of PDEs, especially PDE III isoenzyme, can produce an inhibitory effect on HSC activation. The PDE III isoenzyme may contribute to the regulation of HSC activation during fibrogenesis. In addition, OPC-13013 may have the potential to inhibit initiation and progression of hepatic fibrosis by interfering with HSC activation.

  10. Role of Alternative Polyadenylation during Adipogenic Differentiation: An In Silico Approach

    PubMed Central

    Spangenberg, Lucía; Correa, Alejandro; Dallagiovanna, Bruno; Naya, Hugo

    2013-01-01

    Post-transcriptional regulation of stem cell differentiation is far from being completely understood. Changes in protein levels are not fully correlated with corresponding changes in mRNAs; the observed differences might be partially explained by post-transcriptional regulation mechanisms, such as alternative polyadenylation. This would involve changes in protein binding, transcript usage, miRNAs and other non-coding RNAs. In the present work we analyzed the distribution of alternative transcripts during adipogenic differentiation and the potential role of miRNAs in post-transcriptional regulation. Our in silico analysis suggests a modest, consistent, bias in 3′UTR lengths during differentiation enabling a fine-tuned transcript regulation via small non-coding RNAs. Including these effects in the analyses partially accounts for the observed discrepancies in relative abundance of protein and mRNA. PMID:24143171

  11. Homogeneous partial differential equations for superpositions of indeterminate functions of several variables

    NASA Astrophysics Data System (ADS)

    Asai, Kazuto

    2009-02-01

    We determine essentially all partial differential equations satisfied by superpositions of tree type and of a further special type. These equations represent necessary and sufficient conditions for an analytic function to be locally expressible as an analytic superposition of the type indicated. The representability of a real analytic function by a superposition of this type is independent of whether that superposition involves real-analytic functions or C^{\\rho}-functions, where the constant \\rho is determined by the structure of the superposition. We also prove that the function u defined by u^n=xu^a+yu^b+zu^c+1 is generally non-representable in any real (resp. complex) domain as f\\bigl(g(x,y),h(y,z)\\bigr) with twice differentiable f and differentiable g, h (resp. analytic f, g, h).

  12. Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.

    2005-09-01

    We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.

  13. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    PubMed

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evaluating Feynman integrals by the hypergeometry

    NASA Astrophysics Data System (ADS)

    Feng, Tai-Fu; Chang, Chao-Hsi; Chen, Jian-Bin; Gu, Zhi-Hua; Zhang, Hai-Bin

    2018-02-01

    The hypergeometric function method naturally provides the analytic expressions of scalar integrals from concerned Feynman diagrams in some connected regions of independent kinematic variables, also presents the systems of homogeneous linear partial differential equations satisfied by the corresponding scalar integrals. Taking examples of the one-loop B0 and massless C0 functions, as well as the scalar integrals of two-loop vacuum and sunset diagrams, we verify our expressions coinciding with the well-known results of literatures. Based on the multiple hypergeometric functions of independent kinematic variables, the systems of homogeneous linear partial differential equations satisfied by the mentioned scalar integrals are established. Using the calculus of variations, one recognizes the system of linear partial differential equations as stationary conditions of a functional under some given restrictions, which is the cornerstone to perform the continuation of the scalar integrals to whole kinematic domains numerically with the finite element methods. In principle this method can be used to evaluate the scalar integrals of any Feynman diagrams.

  15. Auto-Bäcklund transformations for a matrix partial differential equation

    NASA Astrophysics Data System (ADS)

    Gordoa, P. R.; Pickering, A.

    2018-07-01

    We derive auto-Bäcklund transformations, analogous to those of the matrix second Painlevé equation, for a matrix partial differential equation. We also then use these auto-Bäcklund transformations to derive matrix equations involving shifts in a discrete variable, a process analogous to the use of the auto-Bäcklund transformations of the matrix second Painlevé equation to derive a discrete matrix first Painlevé equation. The equations thus derived then include amongst other examples a semidiscrete matrix equation which can be considered to be an extension of this discrete matrix first Painlevé equation. The application of this technique to the auto-Bäcklund transformations of the scalar case of our partial differential equation has not been considered before, and so the results obtained here in this scalar case are also new. Other equations obtained here using this technique include a scalar semidiscrete equation which arises in the case of the second Painlevé equation, and which does not seem to have been thus derived previously.

  16. Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.; Mastin, C. W.

    1977-01-01

    A method is presented for automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multi-connected two-dimensional region containing any number of arbitrarily shaped bodies. No restrictions are placed on the shape of the boundaries, which may even be time-dependent, and the approach is not restricted in principle to two dimensions. With this procedure the numerical solution of a partial differential system may be done on a fixed rectangular field with a square mesh with no interpolation required regardless of the shape of the physical boundaries, regardless of the spacing of the curvilinear coordinate lines in the physical field, and regardless of the movement of the coordinate system in the physical plane. A number of examples of coordinate systems and application thereof to the solution of partial differential equations are given. The FORTRAN computer program and instructions for use are included.

  17. Solving Partial Differential Equations in a data-driven multiprocessor environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudiot, J.L.; Lin, C.M.; Hosseiniyar, M.

    1988-12-31

    Partial differential equations can be found in a host of engineering and scientific problems. The emergence of new parallel architectures has spurred research in the definition of parallel PDE solvers. Concurrently, highly programmable systems such as data-how architectures have been proposed for the exploitation of large scale parallelism. The implementation of some Partial Differential Equation solvers (such as the Jacobi method) on a tagged token data-flow graph is demonstrated here. Asynchronous methods (chaotic relaxation) are studied and new scheduling approaches (the Token No-Labeling scheme) are introduced in order to support the implementation of the asychronous methods in a data-driven environment.more » New high-level data-flow language program constructs are introduced in order to handle chaotic operations. Finally, the performance of the program graphs is demonstrated by a deterministic simulation of a message passing data-flow multiprocessor. An analysis of the overhead in the data-flow graphs is undertaken to demonstrate the limits of parallel operations in dataflow PDE program graphs.« less

  18. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    NASA Astrophysics Data System (ADS)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  19. A novel principle for partial agonism of liver X receptor ligands. Competitive recruitment of activators and repressors.

    PubMed

    Albers, Michael; Blume, Beatrix; Schlueter, Thomas; Wright, Matthew B; Kober, Ingo; Kremoser, Claus; Deuschle, Ulrich; Koegl, Manfred

    2006-02-24

    Partial, selective activation of nuclear receptors is a central issue in molecular endocrinology but only partly understood. Using LXRs as an example, we show here that purely agonistic ligands can be clearly and quantitatively differentiated from partial agonists by the cofactor interactions they induce. Although a pure agonist induces a conformation that is incompatible with the binding of repressors, partial agonists such as GW3965 induce a state where the interaction not only with coactivators, but also corepressors is clearly enhanced over the unliganded state. The activities of the natural ligand 22(R)-hydroxycholesterol and of a novel quinazolinone ligand, LN6500 can be further differentiated from GW3965 and T0901317 by their weaker induction of coactivator binding. Using biochemical and cell-based assays, we show that the natural ligand of LXR is a comparably weak partial agonist. As predicted, we find that a change in the coactivator to corepressor ratio in the cell will affect NCoR recruiting compounds more dramatically than NCoR-dissociating compounds. Our data show how competitive binding of coactivators and corepressors can explain the tissue-specific behavior of partial agonists and open up new routes to a rational design of partial agonists for LXRs.

  20. Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes.

    PubMed

    Sun, Wuping; Uchida, Kunitoshi; Takahashi, Nobuyuki; Iwata, Yuko; Wakabayashi, Shigeo; Goto, Tsuyoshi; Kawada, Teruo; Tominaga, Makoto

    2016-09-01

    Transient receptor potential vanilloid 2 (TRPV2) acts as a Ca(2+)-permeable non-selective cation channel that has been reported to be sensitive to temperature, mechanical force, and some chemicals. We recently showed that TRPV2 is critical for maintenance of the thermogenic function of brown adipose tissue in mice. However, the involvement of TRPV2 in the differentiation of brown adipocytes remains unexplored. We found that the expression of TRPV2 was dramatically increased during the differentiation of brown adipocytes. Non-selective TRPV2 agonists (2-aminoethoxydiphenyl borate and lysophosphatidylcholine) inhibited the differentiation of brown adipocytes in a dose-dependent manner during the early stage of differentiation of brown adipocytes. The inhibition was rescued by a TRPV2-selective antagonist, SKF96365 (SKF). Mechanical force, which activates TRPV2, also inhibited the differentiation of brown adipocytes in a strength-dependent manner, and the effect was reversed by SKF. In addition, the inhibition of adipocyte differentiation by either TRPV2 ligand or mechanical stimulation was significantly smaller in the cells from TRPV2KO mice. Moreover, calcineurin inhibitors, cyclosporine A and FK506, partially reversed TRPV2 activation-induced inhibition of brown adipocyte differentiation. Thus, we conclude that TRPV2 might be involved in the modulation of brown adipocyte differentiation partially via a calcineurin pathway.

Top