Science.gov

Sample records for pdgf-cc induces tissue

  1. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat

    PubMed Central

    Seki, Takahiro; Hosaka, Kayoko; Lim, Sharon; Fischer, Carina; Honek, Jennifer; Yang, Yunlong; Andersson, Patrik; Nakamura, Masaki; Näslund, Erik; Ylä-Herttuala, Seppo; Sun, Meili; Iwamoto, Hideki; Li, Xuri; Liu, Yizhi; Samani, Nilesh J.; Cao, Yihai

    2016-01-01

    Cold- and β3-adrenoceptor agonist-induced sympathetic activation leads to angiogenesis and UCP1-dependent thermogenesis in mouse brown and white adipose tissues. Here we show that endothelial production of PDGF-CC during white adipose tissue (WAT) angiogenesis regulates WAT browning. We find that genetic deletion of endothelial VEGFR2, knockout of the Pdgf-c gene or pharmacological blockade of PDGFR-α impair the WAT-beige transition. We further show that PDGF-CC stimulation upregulates UCP1 expression and acquisition of a beige phenotype in differentiated mouse WAT-PDGFR-α+ progenitor cells, as well as in human WAT-PDGFR-α+ adipocytes, supporting the physiological relevance of our findings. Our data reveal a paracrine mechanism by which angiogenic endothelial cells modulate adipocyte metabolism, which may provide new targets for the treatment of obesity and related metabolic diseases. PMID:27492130

  2. Vasoprotective effect of PDGF-CC mediated by HMOX1 rescues retinal degeneration.

    PubMed

    He, Chang; Zhao, Chen; Kumar, Anil; Lee, Chunsik; Chen, Mingquan; Huang, Lijuan; Wang, Jing; Ren, Xiangrong; Jiang, Yida; Chen, Wei; Wang, Bin; Gao, Zhiqin; Zhong, Zheng; Huang, Zijing; Zhang, Fan; Huang, Bing; Ding, Hao; Ju, Rong; Tang, Zhongshu; Liu, Yizhi; Cao, Yihai; Li, Xuri; Liu, Xialin

    2014-10-14

    Blood vessel degeneration is critically involved in nearly all types of degenerative diseases. Therefore strategies to enhance blood vessel protection and survival are highly needed. In this study, using different animal models and cultured cells, we show that PDGF-CC is a potent vascular protective and survival factor. PDGF-CC deficiency by genetic deletion exacerbated blood vessel regression/degeneration in various animal models. Importantly, treatment with PDGF-CC protein not only increased the survival of retinal blood vessels in a model of oxygen-induced blood vessel regression but also markedly rescued retinal and blood vessel degeneration in a disease model of retinitis pigmentosa. Mechanistically, we revealed that heme oxygenase-1 (HMOX1) activity is critically required for the vascular protective/survival effect of PDGF-CC, because blockade of HMOX1 completely abolished the protective effect of PDGF-CC in vitro and in vivo. We further found that both PDGF receptors, PDGFR-β and PDGFR-α, are required for the vasoprotective effect of PDGF-CC. Thus our data show that PDGF-CC plays a pivotal role in maintaining blood vessel survival and may be of therapeutic value in treating various types of degenerative diseases.

  3. Tissue engineering chamber promotes adipose tissue regeneration in adipose tissue engineering models through induced aseptic inflammation.

    PubMed

    Peng, Zhangsong; Dong, Ziqing; Chang, Qiang; Zhan, Weiqing; Zeng, Zhaowei; Zhang, Shengchang; Lu, Feng

    2014-11-01

    Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin- perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34-/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction.

  4. Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.

    PubMed

    Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B

    2014-09-01

    Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology.

  5. Thyroxine Induced Resorption of Xenopus Laevis Tail Tissue in Vitro.

    ERIC Educational Resources Information Center

    Scadding, Steven R.

    1984-01-01

    A simple method of studying thyroxine-induced resorption of tadpole tails in vitro is described. This procedure demonstrates that resorption is dependent on thyroxine and requires protein synthesis. It introduces students to the use of tissue culture methods. (Author)

  6. Laser-induced tissue fluorescence in radiofrequency tissue-fusion characterization

    NASA Astrophysics Data System (ADS)

    Su, Lei; Fonseca, Martina B.; Arya, Shobhit; Kudo, Hiromi; Goldin, Robert; Hanna, George B.; Elson, Daniel S.

    2014-01-01

    Heat-induced tissue fusion is an important procedure in modern surgery and can greatly reduce trauma, complications, and mortality during minimally invasive surgical blood vessel anastomosis, but it may also have further benefits if applied to other tissue types such as small and large intestine anastomoses. We present a tissue-fusion characterization technology using laser-induced fluorescence spectroscopy, which provides further insight into tissue constituent variations at the molecular level. In particular, an increase of fluorescence intensity in 450- to 550-nm range for 375- and 405-nm excitation suggests that the collagen cross-linking in fused tissues increased. Our experimental and statistical analyses showed that, by using fluorescence spectral data, good fusion could be differentiated from other cases with an accuracy of more than 95%. This suggests that the fluorescence spectroscopy could be potentially used as a feedback control method in online tissue-fusion monitoring.

  7. Laser-induced tissue fluorescence in radiofrequency tissue-fusion characterization.

    PubMed

    Su, Lei; Fonseca, Martina B; Arya, Shobhit; Kudo, Hiromi; Goldin, Robert; Hanna, George B; Elson, Daniel S

    2014-01-01

    Heat-induced tissue fusion is an important procedure in modern surgery and can greatly reduce trauma, complications, and mortality during minimally invasive surgical blood vessel anastomosis, but it may also have further benefits if applied to other tissue types such as small and large intestine anastomoses. We present a tissue-fusion characterization technology using laser-induced fluorescence spectroscopy, which provides further insight into tissue constituent variations at the molecular level. In particular, an increase of fluorescence intensity in 450- to 550-nm range for 375- and 405-nm excitation suggests that the collagen cross-linking in fused tissues increased. Our experimental and statistical analyses showed that, by using fluorescence spectral data, good fusion could be differentiated from other cases with an accuracy of more than 95%. This suggests that the fluorescence spectroscopy could be potentially used as a feedback control method in online tissue-fusion monitoring.

  8. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  9. Thymus epithelium induces tissue-specific tolerance

    PubMed Central

    1993-01-01

    Most current models of T cell development include a positive selection step in the thymus that occurs when T cells interact with thymic epithelium and a negative selection step after encounters with bone marrow-derived cells. We show here that developing T cells are tolerized when they recognize antigens expressed by thymic epithelium, that the tolerance is tissue specific, and that it can occur by deletion of the reactive T cells. PMID:8459209

  10. Momentum induced by laser-tissue interaction

    SciTech Connect

    Dingus, R.S.

    1993-01-01

    Impulsive momentum is imparted to residual tissue during pulsed-laser ablation because the moss ablated is generally ejected with a sizable velocity. Accurate measurements of the impulse are possible, which can provide an important monitor of the ablation process. Simple models can be used to predict the impulse under a variety of conditions; in some cases, complex radiation-hydrodynamic code calculations are required. In this paper, this modeling is discussed along with the dependence of momentum on the pulsed heating and target conditions. Momentum measurement techniques are discussed briefly. The behavior is explained in terms of dimensionless parameters and the impulse coupling coefficient as a function of incident fluence, which has a well defined threshold as well as a maximum. Complications in the mixed liquid-vapor phase are also addressed.

  11. Momentum induced by laser-tissue interaction

    SciTech Connect

    Dingus, R.S.

    1993-04-01

    Impulsive momentum is imparted to residual tissue during pulsed-laser ablation because the moss ablated is generally ejected with a sizable velocity. Accurate measurements of the impulse are possible, which can provide an important monitor of the ablation process. Simple models can be used to predict the impulse under a variety of conditions; in some cases, complex radiation-hydrodynamic code calculations are required. In this paper, this modeling is discussed along with the dependence of momentum on the pulsed heating and target conditions. Momentum measurement techniques are discussed briefly. The behavior is explained in terms of dimensionless parameters and the impulse coupling coefficient as a function of incident fluence, which has a well defined threshold as well as a maximum. Complications in the mixed liquid-vapor phase are also addressed.

  12. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    PubMed

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

  13. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    PubMed

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy. PMID:27446642

  14. Photothermal lesions in soft tissue induced by optical fiber microheaters

    PubMed Central

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-01-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy. PMID:27446642

  15. Gruneisen-stress induced ablation of biological tissue

    SciTech Connect

    Dingus, R.S.; Scammon, R.J.

    1991-01-01

    The objective of biomedical applications of lasers is frequently to remove tissue in a controlled manner. However, for ablation induced by thermal- or photo-decomposition, damage to surrounding tissue may be excessive in some instances. Tissue can also be ablated by a hydrodynamic process referred to as front surface spallation, in which a thin layer next to a free surface is heated to levels, below vaporization but, so rapidly that it cannot undergo thermal expansion during laser heating. This generates a stress pulse, which propagates away from the heated region, with an initial amplitude that can be calculated using the Grueneisen coefficient. As the pulse reflects from the free surface, a tensile tail can develop of sufficient amplitude, exceeding the material strength, that a layer will be spalled off, taking much of the laser-deposited energy with it. Because tissue is generally a low strength material, this process has the potential of producing controlled ablation with reduced damage to the remaining tissue. However, to achieve these conditions, the laser pulse length, absorption depth and fluence must be properly tailored. This paper presents hydrodynamic calculations and analytical modeling relating to both stress- and thermal-induced ablation as a function of laser and tissue properties to illustrate the potential benefits of stress induced ablation. Also, guidance is given for tailoring the exposure parameters to enhance front surface spallation. 8 refs., 6 figs.

  16. Laser-induced autofluorescence measurements on brain tissues.

    PubMed

    Pascu, Alexandru; Romanitan, Mihaela Oana; Delgado, Josè-Maria; Danaila, Leon; Pascu, Mihail-Lucian

    2009-12-01

    It was demonstrated that comparison of the autofluorescence spectra induced with laser radiation in ultraviolet and visible allows the identification of brain tumor tissues and normal tissues as well as the difference between them. The measurements were performed on homogenates to ensure an optimal reproducibility of the results. We conclude that the autofluorescence spectra of the tumor samples are close to those measured for normal tissues, but there are differences between them that allow distinguishing the tumor from the normal tissue. One difference is that for each pair of tumor/normal tissue samples, the peak autofluorescence for the normal tissue is shifted with respect to that for the tumor-typically between 10 and 20 nm; overall autofluorescence intensity is also different for the components of the same pair, the difference being in the range 15%-30%. A parameter that can also be used is the variation of the ratio of some fluorescence intensity peaks between normal and tumor tissue samples. Measurements of this parameter yielded variations ranging between 10% and 40%. Another conclusion of the study is that in vitro experiments show that it is mandatory to use pairs of samples (normal/tumor tissue) taken from the same patient. The results show that, after further experimental in vitro tests, the method may be adapted to real-time intraoperative conditions by measuring the autofluorescence of the tumor and of the adjacent normal tissue.

  17. ALA-induced PpIX fluorescence in epileptogenic tissue

    NASA Astrophysics Data System (ADS)

    Kleen, Jonathan K.; Valdes, Pablo A.; Harris, Brent T.; Holmes, Gregory L.; Paulsen, Keith D.; Roberts, David W.

    2011-03-01

    Astrogliotic tissue displays markedly increased levels of ALA-induced PpIX fluorescence, making it useful for fluorescence-guided resection in glioma surgery. In patients with temporal lobe epilepsy (TLE) and corresponding animal models, there are areas of astrogliosis that often co-localize with the epileptic focus, which can be resected to eliminate seizures in the majority of treated patients. If this epileptogenic tissue can exhibit PpIX fluorescence that is sufficiently localized, it could potentially help identify margins in epilepsy surgery. We tested the hypothesis that ALA-induced PpIX fluorescence could visually accentuate epileptogenic tissue, using an established animal model of chronic TLE. An acute dose of pilocarpine was used to induce chronic seizure activity in a rat. This rat and a normal control were given ALA, euthanized, and brains examined post-mortem for PpIX fluorescence and neuropathology. Preliminary evidence indicates increased PpIX fluorescence in areas associated with chronic epileptic changes and seizure generation in TLE, including the hippocampus and parahippocampal areas. In addition, strong PpIX fluorescence was clearly observed in layer II of the piriform cortex, a region known for epileptic reorganization and involvement in the generation of seizures in animal studies. We are further investigating whether ALA-induced PpIX fluorescence can consistently identify epileptogenic zones, which could warrant the extension of this technique to clinical studies for use as an adjuvant guidance technology in the resection of epileptic tissue.

  18. Imaging for assessment of radiation-induced normal tissue effects

    PubMed Central

    Jeraj, Robert; Cao, Yue; Ten Haken, Randall K.; Hahn, Carol; Marks, Lawrence

    2010-01-01

    Imaging can provide quantitative assessment of radiation-induced normal tissue effects. Identifying an early sign of normal tissue damage with imaging would have the potential to predict organ dysfunction, thereby allowing re-optimization of treatment strategies based upon individual patients’ risks and benefits. Early detection with non-invasive imaging may enable interventions to mitigate therapy-associated injury prior to its clinical manifestation. Further, successive imaging may provide an objective assessment of the impact of such mitigation therapies. However, many problems make application of imaging to normal tissue assessment challenging, and further work is required to establish imaging biomarkers as surrogate endpoints of clinical outcome. The performance of clinical trials where normal tissue injury is a clearly defined endpoint would greatly aid in realization of these goals. PMID:20171509

  19. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  20. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles

    PubMed Central

    Meka, Archana; Bakthavatchalu, Vasudevan; Sathishkumar, Sabapathi; Lopez, M. Cecilia; Verma, Raj K.; Wallet, Shannon M.; Bhattacharyya, Indraneel; Boyce, Brendan F.; Handfield, Martin; Lamont, Richard J.; Baker, Henry V.; Ebersole, Jeffrey L.; Lakshmyya, Kesavalu N.

    2010-01-01

    Introduction Porphyromonas gingivalis has been associated with subgingival biofilms in adult periodontitis. However, the molecular mechanisms of its contribution to chronic gingival inflammation and loss of periodontal structural integrity remain unclear. The objectives of this investigation were to examine changes in the host transcriptional profiles during a P. gingivalis infection using a murine calvarial model of inflammation and bone resorption. Methods P. gingivalis FDC 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip® arrays to provide a molecular profile of the events that occur following infection of these tissues. Results After P. gingivalis infection, 5517 and 1900 probe sets in the infected soft tissues and calvarial bone, respectively, were differentially expressed (P ≤ 0.05) and up-regulated. Biological pathways significantly impacted by P. gingivalis infection in tissues and calvarial bone included cell adhesion (immune system) molecules, Toll-like receptors, B cell receptor signaling, TGF-β cytokine family receptor signaling, and MHC class II antigen processing pathways resulting in proinflammatory, chemotactic effects, T cell stimulation, and down regulation of antiviral and T cell chemotactic effects. P. gingivalis-induced inflammation activated osteoclasts, leading to local bone resorption. Conclusion This is the first in vivo evidence that localized P. gingivalis infection differentially induces transcription of a broad array of host genes that differed between inflamed soft tissues and calvarial bone. PMID:20331794

  1. Zebrafish fin regeneration after cryoinjury-induced tissue damage

    PubMed Central

    Chassot, Bérénice; Pury, David

    2016-01-01

    ABSTRACT Although fin regeneration following an amputation procedure has been well characterized, little is known about the impact of prolonged tissue damage on the execution of the regenerative programme in the zebrafish appendages. To induce histolytic processes in the caudal fin, we developed a new cryolesion model that combines the detrimental effects of freezing/thawing and ischemia. In contrast to the common transection model, the damaged part of the fin was spontaneously shed within two days after cryoinjury. The remaining stump contained a distorted margin with a mixture of dead material and healthy cells that concomitantly induced two opposing processes of tissue debris degradation and cellular proliferation, respectively. Between two and seven days after cryoinjury, this reparative/proliferative phase was morphologically featured by displaced fragments of broken bones. A blastemal marker msxB was induced in the intact mesenchyme below the damaged stump margin. Live imaging of epithelial and osteoblastic transgenic reporter lines revealed that the tissue-specific regenerative programmes were initiated after the clearance of damaged material. Despite histolytic perturbation during the first week after cryoinjury, the fin regeneration resumed and was completed without further alteration in comparison to the simple amputation model. This model reveals the powerful ability of the zebrafish to restore the original appendage architecture after the extended histolysis of the stump. PMID:27215324

  2. Exercise induces autophagy in peripheral tissues and in the brain.

    PubMed

    He, Congcong; Sumpter, Rhea; Levine, Beth

    2012-10-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We found that BCL2 AAA mice could not run on a treadmill as long as wild-type mice, and did not undergo exercise-mediated increases in skeletal glucose muscle uptake. Unlike wild-type mice, the BCL2 AAA mice failed to reverse high-fat diet-induced glucose intolerance after 8 weeks of exercise training, possibly due to defects in signaling pathways that regulate muscle glucose uptake and metabolism during exercise. Together, these findings suggested a hitherto unknown important role of autophagy in mediating exercise-induced metabolic benefits. In the present addendum, we show that treadmill exercise also induces autophagy in the cerebral cortex of adult mice. This observation raises the intriguing question of whether autophagy may in part mediate the beneficial effects of exercise in neurodegeneration, adult neurogenesis and improved cognitive function.

  3. Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells.

    PubMed

    Yamashita, Akihiro; Liu, Shiying; Woltjen, Knut; Thomas, Bradley; Meng, Guoliang; Hotta, Akitsu; Takahashi, Kazutoshi; Ellis, James; Yamanaka, Shinya; Rancourt, Derrick E

    2013-01-01

    Safety is the foremost issue in all human cell therapies, but human induced pluripotent stem cells (iPSCs) currently lack a useful safety indicator. Studies in chimeric mice have demonstrated that certain lines of iPSCs are tumorigenic; however a similar screen has not been developed for human iPSCs. Here, we show that in vitro cartilage tissue engineering is an excellent tool for screening human iPSC lines for tumorigenic potential. Although all human embryonic stem cells (ESCs) and most iPSC lines tested formed cartilage safely, certain human iPSCs displayed a pro-oncogenic state, as indicated by the presence of secretory tumors during cartilage differentiation in vitro. We observed five abnormal iPSC clones amoungst 21 lines derived from five different reprogramming methods using three cellular origins. We conclude that in vitro cartilage tissue engineering is a useful approach to identify abnormal human iPSC lines.

  4. Tissue Crowding Induces Caspase-Dependent Competition for Space

    PubMed Central

    Levayer, Romain; Dupont, Carole; Moreno, Eduardo

    2016-01-01

    Summary Regulation of tissue size requires fine tuning at the single-cell level of proliferation rate, cell volume, and cell death. Whereas the adjustment of proliferation and growth has been widely studied [1, 2, 3, 4, 5], the contribution of cell death and its adjustment to tissue-scale parameters have been so far much less explored. Recently, it was shown that epithelial cells could be eliminated by live-cell delamination in response to an increase of cell density [6]. Cell delamination was supposed to occur independently of caspase activation and was suggested to be based on a gradual and spontaneous disappearance of junctions in the delaminating cells [6]. Studying the elimination of cells in the midline region of the Drosophila pupal notum, we found that, contrary to what was suggested before, Caspase 3 activation precedes and is required for cell delamination. Yet, using particle image velocimetry, genetics, and laser-induced perturbations, we confirmed [6] that local tissue crowding is necessary and sufficient to drive cell elimination and that cell elimination is independent of known fitness-dependent competition pathways [7, 8, 9]. Accordingly, activation of the oncogene Ras in clones was sufficient to compress the neighboring tissue and eliminate cells up to several cell diameters away from the clones. Mechanical stress has been previously proposed to contribute to cell competition [10, 11]. These results provide the first experimental evidences that crowding-induced death could be an alternative mode of super-competition, namely mechanical super-competition, independent of known fitness markers [7, 8, 9], that could promote tumor growth. PMID:26898471

  5. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis.

    PubMed

    Tanaka, Miyako; Ikeda, Kenji; Suganami, Takayoshi; Komiya, Chikara; Ochi, Kozue; Shirakawa, Ibuki; Hamaguchi, Miho; Nishimura, Satoshi; Manabe, Ichiro; Matsuda, Takahisa; Kimura, Kumi; Inoue, Hiroshi; Inagaki, Yutaka; Aoe, Seiichiro; Yamasaki, Sho; Ogawa, Yoshihiro

    2014-09-19

    In obesity, a paracrine loop between adipocytes and macrophages augments chronic inflammation of adipose tissue, thereby inducing systemic insulin resistance and ectopic lipid accumulation. Obese adipose tissue contains a unique histological structure termed crown-like structure (CLS), where adipocyte-macrophage crosstalk is known to occur in close proximity. Here we show that Macrophage-inducible C-type lectin (Mincle), a pathogen sensor for Mycobacterium tuberculosis, is localized to macrophages in CLS, the number of which correlates with the extent of interstitial fibrosis. Mincle induces obesity-induced adipose tissue fibrosis, thereby leading to steatosis and insulin resistance in liver. We further show that Mincle in macrophages is crucial for CLS formation, expression of fibrosis-related genes and myofibroblast activation. This study indicates that Mincle, when activated by an endogenous ligand released from dying adipocytes, is involved in adipose tissue remodelling, thereby suggesting that sustained interactions between adipocytes and macrophages within CLS could be a therapeutic target for obesity-induced ectopic lipid accumulation.

  6. Placental ischemia induces changes in gene expression in chorionic tissue

    PubMed Central

    Garrett, Michael R.; Granger, Joey P.

    2014-01-01

    Preeclampsia is a serious and common hypertensive complication of pregnancy, affecting ~5 to 8 % of pregnancies. The underlying cause of preeclampsia is believed to be placental ischemia, which causes secretion of pathogenic factors into the maternal circulation. While a number of these factors have been identified, it is likely that others remain to be elucidated. Here, we have utilized a relevant preclinical rodent model of placental ischemia-induced hypertension, the reduced uterine perfusion pressure (RUPP) model, to determine the effect of chronic placental ischemia on the underlying chorionic tissue and placental villi. Tissue from control and RUPP rats were isolated on gestational day 19 and mRNA from these tissues was subjected to microarray analysis to determine differential gene expression. At a statistical cutoff of p <0.05, some 2,557 genes were differentially regulated between the two groups. Interestingly, only a small subset (22) of these genes exhibited changes of greater than 50 % versus control, a large proportion of which were subsequently confirmed using qRT-PCR analysis. Network analysis indicated a strong effect on inflammatory pathways, including those involving NF-κB and inflammatory cytokines. Of the most differentially expressed genes, the predominant gene classes were extracellular remodeling proteins, pro-inflammatory proteins, and a coordinated upregulation of the prolactin genes. The functional implications of these novel factors are discussed. PMID:24668059

  7. Wound-Induced Polyploidy Is Required for Tissue Repair

    PubMed Central

    Losick, Vicki P.

    2016-01-01

    Significance: All organs suffer wounds to some extent during an animal's lifetime and to compensate for cell loss, tissues often rely on cell division. However, many organs are made up of differentiated cells with only a limited capacity to divide. It is not well understood how cells are replaced in the absence of cell division. Recent Advances: Recent studies in the model organism Drosophila melanogaster have proven that wound-induced polyploidy (WIP) is an essential mechanism to replace tissue mass and restore tissue integrity in the absence of cell division. In this repair mechanism, preexisting differentiated cells increase their DNA content and cell size by becoming polyploid. Critical Issues: Cells within mammalian organs such as the liver, heart, and cornea have also been observed to increase their DNA ploidy in response to injury, suggesting that WIP may be an evolutionarily conserved mechanism to compensate for cell loss. Future Directions: The Hippo signal transduction pathway is required for differentiated cells to initiate WIP in Drosophila. Continued studies in Drosophila will help to identify other signaling pathways required for WIP as well as the conserved mechanisms that polyploid cells may play during wound repair in all organisms. PMID:27274437

  8. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    PubMed

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  9. Engineering bone tissue substitutes from human induced pluripotent stem cells

    PubMed Central

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-01-01

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease. PMID:23653480

  10. Engineering bone tissue substitutes from human induced pluripotent stem cells.

    PubMed

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-05-21

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.

  11. Laser induced heat source distribution in bio-tissues

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Fan, Shifu; Zhao, Youquan

    2006-09-01

    During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.

  12. Bubble-Induced Color Doppler Feedback for Histotripsy Tissue Fractionation.

    PubMed

    Miller, Ryan M; Zhang, Xi; Maxwell, Adam D; Cain, Charles A; Xu, Zhen

    2016-03-01

    Histotripsy therapy produces cavitating bubble clouds to increasingly fractionate and eventually liquefy tissue using high-intensity ultrasound pulses. Following cavitation generated by each pulse, coherent motion of the cavitation residual nuclei can be detected using metrics formed from ultrasound color Doppler acquisitions. In this paper, three experiments were performed to investigate the characteristics of this motion as real-time feedback on histotripsy tissue fractionation. In the first experiment, bubble-induced color Doppler (BCD) and particle image velocimetry (PIV) analysis monitored the residual cavitation nuclei in the treatment region in an agarose tissue phantom treated with two-cycle histotripsy pulses at [Formula: see text] using a 500-kHz transducer. Both BCD and PIV results showed brief chaotic motion of the residual nuclei followed by coherent motion first moving away from the transducer and then rebounding back. Velocity measurements from both PIV and BCD agreed well, showing a monotonic increase in rebound time up to a saturation point for increased therapy dose. In a second experiment, a thin layer of red blood cells (RBC) was added to the phantom to allow quantification of the fractionation of the RBC layer to compare with BCD metrics. A strong linear correlation was observed between the fractionation level and the time to BCD peak rebound velocity over histotripsy treatment. Finally, the correlation between BCD feedback and histotripsy tissue fractionation was validated in ex vivo porcine liver evaluated histologically. BCD metrics showed strong linear correlation with fractionation progression, suggesting that BCD provides useful quantitative real-time feedback on histotripsy treatment progression.

  13. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties

    PubMed Central

    Glass, Katherine A.; Link, Jarrett M.; Brunger, Jonathan M.; Moutos, Franklin T.; Gersbach, Charles A.; Guilak, Farshid

    2014-01-01

    The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis. PMID:24767790

  14. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties.

    PubMed

    Glass, Katherine A; Link, Jarrett M; Brunger, Jonathan M; Moutos, Franklin T; Gersbach, Charles A; Guilak, Farshid

    2014-07-01

    The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis. PMID:24767790

  15. Heating in vascular tissue and flow-through tissue phantoms induced by focused ultrasound

    NASA Astrophysics Data System (ADS)

    Huang, Jinlan

    High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one's ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis

  16. Sonication induced silk fibroin cryogels for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Kadakia, P. U.; Jain, E.; Hixon, K. R.; Eberlin, C. T.; Sell, S. A.

    2016-05-01

    In this study, we report a method to form macroporous silk fibroin (SF) scaffolds through a combination of ultrasonication followed by cryogelation at subzero temperatures. The resultant sonication induced SF cryogels encompassed larger pore sizes (151 ± 56 μm) and higher mechanical stability (127.15 ± 24.71 kPa) than their hydrogel counterparts made at room temperature. Furthermore, the addition of dopants like Manuka honey and bone char in SF cryogels did not affect cryogel synthesis but decreased the pore size in a concentration dependent manner. With no crack propagation at 50% strain and promising stability under cyclic loads, mineralization and cellular infiltration potential were analyzed for bone tissue engineering purposes. Although the scaffolds showed limited mineralization, encouraging cellular infiltration results yield promise for other tissue engineering applications. The use of mild processing conditions, a simplistic procedure, and the lack of organic solvents or chemical cross-linkers renders the combination of sonication and cryogelation as an attractive fabrication technique for 3D SF macroporous scaffolds.

  17. Spaceflight environment induces mitochondrial oxidative damage in ocular tissue.

    PubMed

    Mao, Xiao W; Pecaut, Michael J; Stodieck, Louis S; Ferguson, Virginia L; Bateman, Ted A; Bouxsein, Mary; Jones, Tamako A; Moldovan, Maria; Cunningham, Christopher E; Chieu, Jenny; Gridley, Daila S

    2013-10-01

    A recent report shows that more than 30% of the astronauts returning from Space Shuttle missions or the International Space Station (ISS) were diagnosed with eye problems that can cause reduced visual acuity. We investigate here whether spaceflight environment-associated retinal damage might be related to oxidative stress-induced mitochondrial apoptosis. Female C57BL/6 mice were flown in the space shuttle Atlantis (STS-135), and within 3-5 h of landing, the spaceflight and ground-control mice, similarly housed in animal enclosure modules (AEMs) were euthanized and their eyes were removed for analysis. Changes in expression of genes involved in oxidative stress, mitochondrial and endothelial cell biology were examined. Apoptosis in the retina was analyzed by caspase-3 immunocytochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Levels of 4-hydroxynonenal (4-HNE) protein, an oxidative specific marker for lipid peroxidation were also measured. Evaluation of spaceflight mice and AEM ground-control mice showed that expression of several genes playing central roles in regulating the mitochondria-associated apoptotic pathway were significantly altered in mouse ocular tissue after spaceflight compared to AEM ground-control mice. In addition, the mRNA levels of several genes, which are responsible for regulating the production of reactive oxygen species were also significantly up-regulated in spaceflight samples compared to AEM ground-control mice. Further more, the level of HNE protein was significantly elevated in the retina after spaceflight compared to controls. Our results also revealed that spaceflight conditions induced significant apoptosis in the retina especially inner nuclear layer (INL) and ganglion cell layer (GCL) compared to AEM ground controls. The data provided the first evidence that spaceflight conditions induce oxidative damage that results in mitochondrial apoptosis in the retina. This data suggest

  18. Particulate matter phagocytosis induces tissue factor in differentiating macrophages.

    PubMed

    Milano, M; Dongiovanni, P; Artoni, A; Gatti, S; Rosso, L; Colombo, F; Bollati, V; Maggioni, M; Mannucci, P M; Bertazzi, P A; Fargion, S; Valenti, L

    2016-01-01

    Airborne exposure to particulate matter with diameter < 10 mcM (PM10) has been linked to an increased risk of thromboembolic events, but the mechanisms are not completely understood. The aim of this study was to evaluate the effect of PM10 phagocytosis on the release of procoagulant molecules in human differentiating macrophages, and that of PM10 inhalation in an experimental model in rats. Human monocytes were separated from the peripheral blood by the lymphoprep method, differentiated in vitro and treated with standard PM10 or vehicle. Sprague-Dawley rats were instilled intratracheally with PM10 or vehicle alone. The outcome was expression of proinflammatory genes and of tissue factor (TF). In human differentiating macrophages, PM10 exposure upregulated inflammatory genes, but most consistently induced TF mRNA and protein levels, but not TF protein inhibitor, resulting in increased TF membrane expression and a procoagulant phenotype. Differentiation towards the anti-inflammatory M2 phenotype inhibited PM10 -mediated TF expression. TF induction required phagocytosis of PM10 , whereas phagocytosis of inert particles was less effective. PM10 phagocytosis was associated with a gene expression profile consistent with intracellular retention of iron, inducing oxidative stress. Both PM10 and iron activated the stress kinases ERK1/2 pathway, involved in the induction of TF expression. In rats, alveolar exposure to PM10 was associated with pulmonary recruitment of inflammatory cells and resulted in local, but not systemic, induction of TF expression, which was sufficient to increase circulating TF levels. In conclusion, TF induction by differentiating lung macrophages, activated following phagocytosis, contributes to the increased risk of thromboembolic complications associated with PM10 exposure.

  19. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    SciTech Connect

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro; Iwakura, Tomohiko; Obana, Masanori; Takai, Mika; Mohri, Tomomi; Nonen, Shinpei; Maeda, Makiko; Azuma, Junichi

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.

  20. Cold exposure induces alterations in porcine triiodothyronine tissue distribution

    SciTech Connect

    Quesada, M.H.; Reed, H.L.; Hesslink, R.; Licauco, G.; Castro, S.; Homer, L.; Young, B. Univ. of Alberta, Edmonton )

    1991-03-11

    Evidence suggests that thyroid hormone plays an active role in modulation of tissue metabolism in response to cold challenge. In an attempts to identify tissues that may have increased capacity for triiodothyronine (T{sub 3}) and be actively involved in the thermogenic process, the authors investigated the T{sub 3} tissue distribution in 5 month old swine exposed to cold (4C) (N = 5) for three weeks, compared with controls at a thermoneutral temperature (20C) (N = 4). Both groups were injected I.V. with ({sup 125}I)T{sub 3} three hours before sacrifice. ({sup 125}I)T{sub 3} was organically extracted from heart, kidney, thyroid gland, adrenal, brain, 4 different types of striated muscles and fat tissues and counted to determine the CPM/gm of tissue. Serum total T{sub 3} and free T{sub 3} were elevated. The bulk of the tissue/serum ratios of cold exposed swine compared with controls were unchanged. However, calculation of the T{sub 3} organ pools revealed that the majority was elevated 2 to 3 times over control. Increases in tissue distribution volume (TVD) occurred in hip fat. Body and organ weights tended to increase but not to a significant degree except for the thyroid gland, which increased 66% over the average control value. The physiological significance of the cold associated augmented organ pool and the increased TCD in hip fat needs to be explored.

  1. Hypoxia-Inducible Factor 1α Induces Fibrosis and Insulin Resistance in White Adipose Tissue ▿ §

    PubMed Central

    Halberg, Nils; Khan, Tayeba; Trujillo, Maria E.; Wernstedt-Asterholm, Ingrid; Attie, Alan D.; Sherwani, Shariq; Wang, Zhao V.; Landskroner-Eiger, Shira; Dineen, Sean; Magalang, Ulysses J.; Brekken, Rolf A.; Scherer, Philipp E.

    2009-01-01

    Adipose tissue can undergo rapid expansion during times of excess caloric intake. Like a rapidly expanding tumor mass, obese adipose tissue becomes hypoxic due to the inability of the vasculature to keep pace with tissue growth. Consequently, during the early stages of obesity, hypoxic conditions cause an increase in the level of hypoxia-inducible factor 1α (HIF1α) expression. Using a transgenic model of overexpression of a constitutively active form of HIF1α, we determined that HIF1α fails to induce the expected proangiogenic response. In contrast, we observed that HIF1α initiates adipose tissue fibrosis, with an associated increase in local inflammation. “Trichrome- and picrosirius red-positive streaks,” enriched in fibrillar collagens, are a hallmark of adipose tissue suffering from the early stages of hypoxia-induced fibrosis. Lysyl oxidase (LOX) is a transcriptional target of HIF1α and acts by cross-linking collagen I and III to form the fibrillar collagen fibers. Inhibition of LOX activity by β-aminoproprionitrile treatment results in a significant improvement in several metabolic parameters and further reduces local adipose tissue inflammation. Collectively, our observations are consistent with a model in which adipose tissue hypoxia serves as an early upstream initiator for adipose tissue dysfunction by inducing a local state of fibrosis. PMID:19546236

  2. Atorvastatin neutralises the thrombin-induced tissue factor expresion in endothelial cells via geranylgeranyl pyrophosphate.

    PubMed

    Martínez-Sales, Vicenta; Vila, Virtudes; Ferrando, Marcos; Reganon, Edelmiro

    2011-01-01

    Statins may have beneficial effects in atherogenesis given their antithrombotic properties involving non-lipid mechanisms that modify endothelial function of tissue factor induction by thrombin. In this study, we investigate the effect of atorvastatin on tissue factor (TF) activity in thrombin-stimulated endothelial cells and its regulation through mevalonate or its derivatives. First subculture of human umbilical endothelial cells was used for this study. Cells were treated with thrombin and atorvastatin for different time intervals and dosage. Tissue factor activity was measured as Factor Xa generation induced by Tissue Factor-Factor VIIa complex on confluent cells. Our results show that atorvastatin prevents the thrombin-induced up-regulation of tissue factor activity in a concentration-dependent manner. Mevalonate and geranylgeranyl pyrophosphate reversed this inhibitory effect of atorvastatin on tissue factor activity, while the presence of farnesyl pyrophosphate did not prevent the atorvastatin effect on thrombin-induced tissue factor activity. Rho-kinase inhibitor did not affect the thrombin stimulation of tissue factor activity. High amount of hydrophobic isoprenoid groups decreases the thrombin-induced TF activity and may promote endothelial cell anti-thrombotic action. Rho kinase pathways do not have a major role in the thrombin-mediated TF activity. The inhibitory effect of atorvastatin on thrombin-induced TF activity was partially reversed by MVA and GGPP but not FPP.

  3. Facial Soft Tissue Measurement in Microgravity-induces Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas; Cole, Richard; Pavela, James; Garcia, Kathleen; Sargsyan, Ashot

    2014-01-01

    Fluid shifts are a well-known phenomenon in microgravity, and one result is facial edema. Objective measurement of tissue thickness in a standardized location could provide a correlate with the severity of the fluid shift. Previous studies of forehead tissue thickness (TTf) suggest that when exposed to environments that cause fluid shifts, including hypergravity, head-down tilt, and high-altitude/lowpressure, TTf changes in a consistent and measurable fashion. However, the technique in past studies is not well described or standardized. The International Space Station (ISS) houses an ultrasound (US) system capable of accurate sub-millimeter measurements of TTf. We undertook to measure TTf during long-duration space flight using a new accurate, repeatable and transferable technique. Methods: In-flight and post-flight B-mode ultrasound images of a single astronaut's facial soft tissues were obtained using a Vivid-q US system with a 12L-RS high-frequency linear array probe (General Electric, USA). Strictly mid-sagittal images were obtained involving the lower frontal bone, the nasofrontal angle, and the osseo-cartilaginous junction below. Single images were chosen for comparison that contained identical views of the bony landmarks and identical acoustical interface between the probe and skin. Using Gingko CADx DICOM viewing software, soft tissue thickness was measured at a right angle to the most prominent point of the inferior frontal bone to the epidermis. Four independent thickness measurements were made. Conclusions: Forehead tissue thickness measurement by ultrasound in microgravity is feasible, and our data suggest a decrease in tissue thickness upon return from microgravity environment, which is likely related to the cessation of fluid shifts. Further study is warranted to standardize the technique with regard to the individual variability of the local anatomy in this area.

  4. Mobilization of tissue cadmium in mice and calves and reversal of cadmium induced tissue damage in calves by zinc

    SciTech Connect

    Reddy, C.S.; Mohammad, F.K.; Ganjam, V.K.; Martino, M.A.; Brown, E.M.

    1987-08-01

    Earlier studies demonstrated that simultaneous dietary Zn supplementation to calves fed Cd, significantly decreased the accumulation of Cd in liver, kidney and muscle. However, studies are lacking in evaluating the effectiveness of zinc in reducing Cd-burden in animals with pre-existing tissue Cd-load, a situation encountered in chronic Cd intoxication. This study examined the effects of oral Zn (AnO) on tissue Cd levels in mice. N-acetylcysteine (NAC) and sodium sulfate (SS) were also used to evaluate the effects of providing organic and inorganic sources of sulfur on tissue Cd levels. Following demonstration of reduced Cd levels in tissues of mice receiving antidotal Zn, subsequent investigation was aimed at studying the reversal of Cd-induced changes by Zn. The authors also examined whether Cd-induced reduction in epididymal 5 ..cap alpha..-reductase activity could explain previously reported low levels of circulating dihydrotestosterone (DHT) following Cd treatment. The ability of Zn to reverse the inhibition of 5 ..cap alpha..-reductase activity by Cd was also examined.

  5. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure

    PubMed Central

    Llobet, Enrique; Martínez-Moliner, Verónica; Moranta, David; Dahlström, Käthe M.; Regueiro, Verónica; Tomás, Anna; Cano, Victoria; Pérez-Gutiérrez, Camino; Frank, Christian G.; Fernández-Carrasco, Helena; Insua, José Luis; Salminen, Tiina A.; Garmendia, Junkal; Bengoechea, José A.

    2015-01-01

    The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern. PMID:26578797

  6. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure.

    PubMed

    Llobet, Enrique; Martínez-Moliner, Verónica; Moranta, David; Dahlström, Käthe M; Regueiro, Verónica; Tomás, Anna; Cano, Victoria; Pérez-Gutiérrez, Camino; Frank, Christian G; Fernández-Carrasco, Helena; Insua, José Luis; Salminen, Tiina A; Garmendia, Junkal; Bengoechea, José A

    2015-11-17

    The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.

  7. Laser-induced autofluorescence of oral cavity hard tissues

    NASA Astrophysics Data System (ADS)

    Borisova, E. G.; Uzunov, Tz. T.; Avramov, L. A.

    2007-03-01

    In current study oral cavity hard tissues autofluorescence was investigated to obtain more complete picture of their optical properties. As an excitation source nitrogen laser with parameters - 337,1 nm, 14 μJ, 10 Hz (ILGI-503, Russia) was used. In vitro spectra from enamel, dentine, cartilage, spongiosa and cortical part of the periodontal bones were registered using a fiber-optic microspectrometer (PC2000, "Ocean Optics" Inc., USA). Gingival fluorescence was also obtained for comparison of its spectral properties with that of hard oral tissues. Samples are characterized with significant differences of fluorescence properties one to another. It is clearly observed signal from different collagen types and collagen-cross links with maxima at 385, 430 and 480-490 nm. In dentine are observed only two maxima at 440 and 480 nm, related also to collagen structures. In samples of gingival and spongiosa were observed traces of hemoglobin - by its re-absorption at 545 and 575 nm, which distort the fluorescence spectra detected from these anatomic sites. Results, obtained in this study are foreseen to be used for development of algorithms for diagnosis and differentiation of teeth lesions and other problems of oral cavity hard tissues as periodontitis and gingivitis.

  8. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure.

    PubMed

    Llobet, Enrique; Martínez-Moliner, Verónica; Moranta, David; Dahlström, Käthe M; Regueiro, Verónica; Tomás, Anna; Cano, Victoria; Pérez-Gutiérrez, Camino; Frank, Christian G; Fernández-Carrasco, Helena; Insua, José Luis; Salminen, Tiina A; Garmendia, Junkal; Bengoechea, José A

    2015-11-17

    The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern. PMID:26578797

  9. Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver

    PubMed Central

    Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.

    2013-01-01

    Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377

  10. Simulating Chemical-Induced Injury Using Virtual Hepatic Tissues

    EPA Science Inventory

    Chemical-induced liver injury involves a dynamic sequence of events that span multiple levels of biological organization. Current methods for testing the toxicity of a single chemical can cost millions of dollars, take up to two years and sacrifice thousands of animals. It is dif...

  11. [Tissue-induced changes of the extracorporeal shockwave].

    PubMed

    Gerdesmeyer, L; Schräbler, S; Mittelmeier, W; Rechl, H

    2002-07-01

    Extracorporeal shock wave therapy has been applied very frequently for more than 2 decades. Excellent results in clinical application and research led to widespread use of this noninvasive procedure. Until now the actual mode of action and biochemical pathways after extracorporeal shock wave therapy (ESWT) remain unknown. A small number of technical parameters could be determined after improved technical methods and sensor devices had been designed. It is also still unclear how these technical findings apply to the clinical setting. Therefore, we investigated the influence of musculocutaneous tissue on shock wave focus. A tissue thickness of 15 mm significantly influenced focus characteristics. We found distinct spreading and slight lateral deviation of the focus. In the same way, the peak positive pressure was significantly reduced after the shock waves had passed the musculocutaneous model. The study demonstrates that in vitro results could not be transferred directly to clinical or in vivo conditions. The clinical application of extracorporeal shock waves should be modified in intensity and number of shock waves depending on individual anatomic conditions, indication, and location.

  12. Laser-induced contained-vaporization in tissue

    SciTech Connect

    Dingus, R.S.

    1992-03-01

    When a transparent liquid or solid medium is present in front of an opaque target being irradiated by an intense laser beam, then the expansion of hot vapors generated (at the interface between the medium and the target) by the irradiant heating of the target is restrained by the medium. The tamping effect of the overlying liquid or solid can cause a much larger fraction of the deposited energy to go into kinetic energy, which leads to enhanced tissue disruption, compared to when a gas or vacuum is in front of the target. Condensable vapors and high thermal conductivity in the surrounding material facilitate rapid energy transport out of the vapor, which can cause a major reduction in the tamping enhancements. This contained-vaporization process is likely important in laser-medical applications such as, for example, laser angioplasty and laser lithotripsy. The work enhancement by the process is probably advantageous for lithotripsy in providing the necessary energy to break urinary stones; however, for angioplasty, the enhancement may provide little aid in removing plaque but may cause significant damage to arterial walls. If gas could be introduced into the artery proceeding irradiation of the plaque, then the enhancements could be avoided. In summary, careful management of the tamping conditions during tissue irradiations in the clinical applications of lasers should lead to significant improvements in the overall desired outcome.

  13. Laser-induced contained-vaporization in tissue

    SciTech Connect

    Dingus, R.S.

    1992-01-01

    When a transparent liquid or solid medium is present in front of an opaque target being irradiated by an intense laser beam, then the expansion of hot vapors generated (at the interface between the medium and the target) by the irradiant heating of the target is restrained by the medium. The tamping effect of the overlying liquid or solid can cause a much larger fraction of the deposited energy to go into kinetic energy, which leads to enhanced tissue disruption, compared to when a gas or vacuum is in front of the target. Condensable vapors and high thermal conductivity in the surrounding material facilitate rapid energy transport out of the vapor, which can cause a major reduction in the tamping enhancements. This contained-vaporization process is likely important in laser-medical applications such as, for example, laser angioplasty and laser lithotripsy. The work enhancement by the process is probably advantageous for lithotripsy in providing the necessary energy to break urinary stones; however, for angioplasty, the enhancement may provide little aid in removing plaque but may cause significant damage to arterial walls. If gas could be introduced into the artery proceeding irradiation of the plaque, then the enhancements could be avoided. In summary, careful management of the tamping conditions during tissue irradiations in the clinical applications of lasers should lead to significant improvements in the overall desired outcome.

  14. Probing Field-Induced Tissue Polarization Using Transillumination Fluorescent Imaging

    PubMed Central

    Caldwell, Bryan J.; Wellner, Marcel; Mitrea, Bogdan G.; Pertsov, Arkady M.; Zemlin, Christian W.

    2010-01-01

    Despite major successes of biophysical theories in predicting the effects of electrical shocks within the heart, recent optical mapping studies have revealed two major discrepancies between theory and experiment: 1), the presence of negative bulk polarization recorded during strong shocks; and 2), the unexpectedly small surface polarization under shock electrodes. There is little consensus as to whether these differences result from deficiencies of experimental techniques, artifacts of tissue damage, or deficiencies of existing theories. Here, we take advantage of recently developed near-infrared voltage-sensitive dyes and transillumination optical imaging to perform, for the first time that we know of, noninvasive probing of field effects deep inside the intact ventricular wall. This technique removes some of the limitations encountered in previous experimental studies. We explicitly demonstrate that deep inside intact myocardial tissue preparations, strong electrical shocks do produce considerable negative bulk polarization previously inferred from surface recordings. We also demonstrate that near-threshold diastolic field stimulation produces activation of deep myocardial layers 2–6 mm away from the cathodal surface, contrary to theory. Using bidomain simulations we explore factors that may improve the agreement between theory and experiment. We show that the inclusion of negative asymmetric current can qualitatively explain negative bulk polarization in a discontinuous bidomain model. PMID:20923639

  15. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  16. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  17. Tissue Regeneration and Stem Cell Distribution in Adriamycin Induced Glomerulopathy

    PubMed Central

    Zickri, Maha Baligh; Fattah, Marwa Mohamed Abdel; Metwally, Hala Gabr

    2012-01-01

    Background and Objectives Glomerulosclerosis develops secondary to various kidney diseases. It was postulated that adriamycin (ADR) induce chronic glomerulopathy. Treatment combinations for one year did not significantly modify renal function in resistant focal segmental glomerulosclerosis (FSGS). Recurrence of FSGS after renal transplantation impacts long-term graft survival and limits access to transplantation. The present study aimed at investigating the relation between the possible therapeutic effect of human mesenchymal stem cells (HMSCs), isolated from cord blood on glomerular damage and their distribution by using ADR induced nephrotoxicity as a model in albino rat. Methods and Results Thirty three male albino rats were divided into control group, ADR group where rats were given single intraperitoneal (IP) injection of 5 mg/kg adriamycin. The rats were sacrificed 10, 20 and 30 days following confirmation of glomerular injury. In stem cell therapy group, rats were injected with HMSCs following confirmation of renal injury and sacrificed 10, 20 and 30 days after HMSCs therapy. Kidney sections were exposed to histological, histochemical, immunohistochemical, morphometric and serological studies. In response to SC therapy multiple Malpighian corpuscles (MC) appeared with patent Bowman's space (Bs) 10 and 20 days following therapy. One month following therapy no remarkable shrunken glomeruli were evident. Glomerular area and serum creatinine were significantly different in ADR group in comparison to control and SC therapy groups. Conclusions ADR induced glomerulosclerosis regressed in response to cord blood HMSC therapy. A reciprocal relation was recorded between the extent of renal regeneration and the distribution of undifferentiated mesenchymal stem cells. PMID:24298364

  18. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model

    PubMed Central

    Soejima, T.; Murakami, H.; Noguchi, K.; Shiba, N.; Nagata, K.

    2016-01-01

    Objectives The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10

  19. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    PubMed

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment.

  20. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue.

    PubMed

    Rangraz, Parisa; Behnam, Hamid; Tavakkoli, Jahan

    2014-01-01

    High-intensity focused ultrasound induces focalized tissue coagulation by increasing the tissue temperature in a tight focal region. Several methods have been proposed to monitor high-intensity focused ultrasound-induced thermal lesions. Currently, ultrasound imaging techniques that are clinically used for monitoring high-intensity focused ultrasound treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation, and elastography-based methods. On the contrary, the efficacy of two-dimensional Nakagami parametric imaging based on the distribution of the ultrasound backscattered signals to quantify properties of soft tissue has recently been evaluated. In this study, ultrasound radio frequency echo signals from ex vivo tissue samples were acquired before and after high-intensity focused ultrasound exposures and then their Nakagami parameter and scaling parameter of Nakagami distribution were estimated. These parameters were used to detect high-intensity focused ultrasound-induced thermal lesions. Also, the effects of changing the acoustic power of the high-intensity focused ultrasound transducer on the Nakagami parameters were studied. The results obtained suggest that the Nakagami distribution's scaling and Nakagami parameters can effectively be used to detect high-intensity focused ultrasound-induced thermal lesions in tissue ex vivo. These parameters can also be used to understand the degree of change in tissue caused by high-intensity focused ultrasound exposures, which could be interpreted as a measure of degree of variability in scatterer concentration in various parts of the high-intensity focused ultrasound lesion. PMID:24264647

  1. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    PubMed Central

    Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs. PMID:25324981

  2. Nanog expression in heart tissues induced by acute myocardial infarction.

    PubMed

    Luo, Huanhuan; Li, Qiong; Pramanik, Jogen; Luo, Jiankai; Guo, Zhikun

    2014-10-01

    Nanog is a potential stem cell marker and is considered a regeneration factor during tissue repair. In the present study, we investigated expression patterns of nanog in the rat heart after acute myocardial infarction by semi-quantitative RT-PCR, immunohistochemistry and Western blot analyses. Our results show that nanog at both mRNA and protein levels is positively expressed in myocardial cells, fibroblasts and small round cells in different myocardial zones at different stages after myocardial infarction, showing a spatio-temporal and dynamic change. After myocardial infarction, the nanog expression in fibroblasts and small round cells in the infarcted zone (IZ) is much stronger than that in the margin zone (MZ) and remote infarcted zone (RIZ). From day 7 after myocardial infarction, the fibroblasts and small cells strongly expressed nanog protein in the IZ, and a few myocardial cells in the MZ and the RIZ and the numbers of nanog-positive fibroblasts and small cells reached the highest peak at 21 days after myocardial infarction, but in this period the number of nanog-positive myocardial cells decreased gradually. At 28 days after myocardial infarction, the numbers of all nanog-positive cells decreased into a low level. Therefore, our data suggest that all myocardial cells, fibroblasts and small round cells are involved in myocardial reconstruction after cardiac infarction. The nanog-positive myocardial cells may respond to early myocardial repair, and the nanog-positive fibroblasts and small round cells are the main source for myocardial reconstruction after cardiac infarction.

  3. Dissecting the molecular mechanism of ionizing radiation-induced tissue damage in the feather follicle.

    PubMed

    Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao

    2014-01-01

    Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage.

  4. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  5. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation. PMID:27325693

  6. Gamma-Glutamyl Cysteine Attenuates Tissue Damage and Enhances Tissue Regeneration in a rat Model of Lead-Induced Nephrotoxicity.

    PubMed

    Salama, Samir A; Arab, Hany H; Maghrabi, Ibrahim A; Hassan, Memy H; AlSaeed, Mohammed S

    2016-09-01

    Lead is a biohazardous metal that is commonly involved in human illness including renal injury. Although it is a non-redox reactive metal, lead-induced renal injury is largely based on oxidative stress. The current work aimed at exploring the possible protective effect of γ-glutamyl cysteine (γGC) against lead-induced renal injury. Rats were allocated to normal and γGC control groups, lead-treated group, and lead and γGC-treated group. γGC alleviated lead-induced renal injury as evidenced by attenuation of histopathological aberration, amelioration of oxidative injury as demonstrated by significant reduction in lipid and protein oxidation, elevation of total antioxidant capacity, and glutathione level. The activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) was significantly elevated. γGC significantly decreased levels of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β and the activity of the apoptotic marker caspase-3. In addition, γGC reduced kidney lead content, enhanced weight gain, and improved renal function as demonstrated by reduced serum levels of urea and creatinine. Importantly, γGC upregulated proliferating cell nuclear antigen (PCNA) expression, denoting enhanced renal regenerative capacity. Together, our findings highlight evidence for alleviating effects of γGC against lead-induced renal injury that is potentially mediated through diminution of oxidative tissue injury, reduction of inflammatory response, attenuation of apoptosis, and enhancement of renal regenerative capacity.

  7. Chemical modification of normal tissue damage induced by photodynamic therapy.

    PubMed Central

    Sigdestad, C. P.; Fingar, V. H.; Wieman, T. J.; Lindberg, R. D.

    1996-01-01

    One of the limitations of successful use of photodynamic therapy (PDT) employing porphyrins is the acute and long-term cutaneous photosensitivity. This paper describes results of experiments designed to test the effects of two radiation protective agents (WR-2721, 500 mg kg-1 or WR-3689, 700 mg kg-1) on murine skin damage induced by PDT. C3H mice were shaved and depilated three days prior to injection with the photosensitiser, Photofrin (5 or 10 mg kg-1). Twenty-four hours later, the mice were injected intraperitoneally with a protector 30 min prior to Argon dye laser (630 nm) exposure. The skin response was followed for two weeks post irradiation using an arbitrary response scale. A light dose response as well as a drug dose response was obtained. The results indicate that both protectors reduced the skin response to PDT, however WR-2721 was demonstrated to be the most effective. The effect of the protectors on vascular stasis after PDT was determined using a fluorescein dye exclusion assay. In mice treated with Photofrin (5 mg kg-1), and 630 nm light (180 J cm-2) pretreatment with either WR-2721 or WR-3689 resulted in significant protection of the vascular effects of PDT. These studies document the ability of the phosphorothioate class of radiation protective agents to reduce the effects of light on photosensitized skin. They do so in a drug dose-dependent fashion with maximum protection at the highest drug doses. PMID:8763855

  8. Human tissue mast cells are an inducible reservoir of persistent HIV infection.

    PubMed

    Sundstrom, J Bruce; Ellis, Jane E; Hair, Gregory A; Kirshenbaum, Arnold S; Metcalfe, Dean D; Yi, Hong; Cardona, Adriana C; Lindsay, Michael K; Ansari, Aftab A

    2007-06-15

    We have proposed that, unlike other HIV-vulnerable cell lineages, progenitor mast cells (prMCs), cultured in vitro from undifferentiated bone marrow-derived CD34(+) pluripotent progenitors (PPPs), are susceptible to infection during a limited period of their ontogeny. As infected prMCs mature in culture, they lose expression of viral chemokine coreceptors necessary for viral entry and develop into long-lived, latently infected mature tissue mast cells (MCs), resistant to new infection. In vivo recruitment of prMCs to different tissue compartments occurs in response to tissue injury, growth, and remodeling or allergic inflammation, allowing populations of circulating and potentially HIV-susceptible prMCs to spread persistent infection to diverse tissue compartments. In this report, we provide in vivo evidence to confirm this model by demonstrating that HIV-infected women have both circulating prMCs and placental tissue MCs (PLMCs) that harbor inducible infectious HIV even after highly active antiretroviral therapy (HAART) during pregnancy. Furthermore, infectious virus, capable of infecting alloactivated fetal cord blood mononuclear cells (CBMCs), could be induced in isolated latently infected PLMCs after weeks in culture in vitro. These data provide the first in vivo evidence that tissue MCs, developed from infected circulating prMCs, comprise a long-lived inducible reservoir of persistent HIV in infected persons during HAART.

  9. Temporal Effects of Mechanical Loading on Deformation-Induced Damage in Skeletal Muscle Tissue

    PubMed Central

    Stekelenburg, A.; Strijkers, G. J.; Rijpkema, J. J. M.; Baaijens, F. P. T.; Bader, D. L.; Nicolay, K.; Oomens, C. W. J.

    2010-01-01

    Mechanical loading of soft tissues covering bony prominences can cause skeletal muscle damage, ultimately resulting in a severe pressure ulcer termed deep tissue injury. Recently, by means of an experimental-numerical approach, it was shown that local tissue deformations cause tissue damage once a deformation threshold is exceeded. In the present study, the effects of load exposure time and intermittent load relief on the development of deformation-induced muscle damage were investigated. The data showed that a 2 h loading period caused more damage than 10 min loading. Intermittent load reliefs of 2 min during a 2 h loading period had minimal effect on the evolution of skeletal muscle damage. In addition, a local deformation threshold for damage was found, which was similar for each of the loading regimes applied in this study. For short loading periods, these results imply that local tissue deformations determine whether muscle damage will develop and the exposure time influences the amount of tissue damage. Temporary load reliefs were inefficient in reducing deformation-induced damage, but may still influence the development of ischemia-induced damage during longer loading periods. PMID:20232152

  10. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    PubMed

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation.

  11. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    PubMed

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. PMID:26220361

  12. In vivo monitoring of external pressure induced hemodynamics in skin tissue using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Wang, Hequn; Wang, Ruikang K.

    2015-03-01

    Characterization of the relationship between external pressure and blood flow is important in the examination of pressure-induced disturbance in tissue microcirculation. Optical coherence tomography (OCT) angiography is a promising imaging technique, capable of providing the noninvasive extraction of functional vessels within the skin tissue with capillary-scale resolution. Here, we present a feasibility study of OCT angiography to monitor effect of external pressures on blood perfusion in human skin tissue in vivo. Graded external pressure is loaded normal to the surface of the nailfold tissue of a healthy human. The incremental loading is applied step by step and then followed by an immediate release. Concurrent OCT imaging of the nailfold is performed during the pre/post loading. Blood perfusion images including baseline (at pre-loading) and corresponding tissue strain maps are calculated from 3D OCT dataset obtained at the different applied pressures, allowing visualization of capillary perfusion events at stressed nailfold tissue. The results indicate that the perfusion progressively decreases with the constant increase of tissue strain. Reactive hyperemia is occurred right after the removal of the pressure corresponding to quick drop of the increased strain. The perfusion is returned to the baseline level after a few minutes. These findings suggest that OCT microangiography may have great potential for quantitatively assessing tissue microcirculation in the locally pressed tissue in vivo.

  13. FGF receptor antagonism does not affect adipose tissue development in nutritionally induced obesity.

    PubMed

    Scroyen, Ilse; Vranckx, Christine; Lijnen, Henri Roger

    2014-01-01

    The fibroblast growth factor (FGF)-FGF receptor (FGFR) system plays a role in angiogenesis and maintenance of vascular integrity, but its potential role in adipose tissue related angiogenesis and development is still unknown. Administration of SSR, a low molecular weight inhibitor of multiple FGFRs, did not significantly affect body weight nor weight of subcutaneous or gonadal (GON) fat, as compared with pair-fed control mice. Adipocyte hypertrophy and reduced adipocyte density were only observed in GON adipose tissues of treated mice. Adipose tissue angiogenesis was not affected by SSR treatment, as normalized blood vessel density was comparable in adipose tissues of both groups. Blocking the FGF-FGFR system in vivo does not markedly affect adipose tissue development in mice with nutritionally induced obesity.

  14. Critical illness induces alternative activation of M2 macrophages in adipose tissue

    PubMed Central

    2011-01-01

    Introduction We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. Methods We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. Results Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. Conclusions Unlike obesity, critical illness evokes adipose tissue

  15. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking

    PubMed Central

    Makris, Eleftherios A.; Responte, Donald J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in

  16. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking.

    PubMed

    Makris, Eleftherios A; Responte, Donald J; Paschos, Nikolaos K; Hu, Jerry C; Athanasiou, Kyriacos A

    2014-11-11

    The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼ 16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in

  17. GADD34 suppresses lipopolysaccharide-induced sepsis and tissue injury through the regulation of macrophage activation

    PubMed Central

    Ito, S; Tanaka, Y; Oshino, R; Okado, S; Hori, M; Isobe, K-I

    2016-01-01

    Growth arrest and DNA damage inducible protein 34 (GADD34) is induced by various cellular stresses, such as DNA damage, endoplasmic reticulum stress, and amino-acid deprivation. Although the major roles of GADD34 are regulating ER stress responses and apoptosis, a recent study suggested that GADD34 is linked to innate immune responses. In this report, we investigated the roles of GADD34 in inflammatory responses against bacterial infection. To explore the effects of GADD34 on systemic inflammation in vivo, we employed a lipopolysaccharide (LPS)-induced murine sepsis model and assessed the lethality, serum cytokine levels, and tissue injury in the presence or absence of GADD34. We found that GADD34 deficiency increased the lethality and serum cytokine levels in LPS-induced sepsis. Moreover, GADD34 deficiency enhanced tissue destruction, cell death, and pro-inflammatory cytokine expression in LPS-induced acute liver injury. Pro-inflammatory cytokine production after LPS stimulation is regulated by the Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway. In vitro experiments revealed that GADD34 suppressed pro-inflammatory cytokine production by macrophages through dephosphorylation of IKKβ. In conclusion, GADD34 attenuates LPS-induced sepsis and acute tissue injury through suppressing macrophage activation. Targeting this anti-inflammatory role of GADD34 may be a promising area for the development of therapeutic agents to regulate inflammatory disorders. PMID:27171261

  18. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles.

    PubMed

    Oh, Jin Sun; Kwon, Yong Seok; Lee, Kyung Ho; Jeong, Woowon; Chung, Sang Kug; Rhee, Kyehan

    2014-01-01

    Drug delivery into neurological tissue is challenging because of the low tissue permeability. Ultrasound incorporating microbubbles has been applied to enhance drug delivery into these tissues, but the effects of a streaming flow by microbubble oscillation on drug perfusion have not been elucidated. In order to clarify the physical effects of steady streaming on drug delivery, an experimental study on dye perfusion into a tissue model was performed using microbubbles excited by acoustic waves. The surface concentration and penetration length of the drug were increased by 12% and 13%, respectively, with streaming flow. The mass of dye perfused into a tissue phantom for 30s was increased by about 20% in the phantom with oscillating bubbles. A computational model that considers fluid structure interaction for streaming flow fields induced by oscillating bubbles was developed, and mass transfer of the drug into the porous tissue model was analyzed. The computed flow fields agreed with the theoretical solutions, and the dye concentration distribution in the tissue agreed well with the experimental data. The computational results showed that steady streaming with a streaming velocity of a few millimeters per second promotes mass transfer into a tissue.

  19. Circadian disruption-induced microRNAome deregulation in rat mammary gland tissues

    PubMed Central

    Kochan, David Z.; Ilnytskyy, Yaroslav; Golubov, Andrey; Deibel, Scott H.; McDonald, Robert J.; Kovalchuk, Olga

    2015-01-01

    Breast cancer is the most common malignancy affecting women worldwide, and evidence is mounting that circadian-disruption-induced breast cancer is a warranted concern. Although studies on the role of epigenetics have provided valuable insights, and although epigenetics has been increasingly recognized in the etiology of breast cancer, relatively few studies have investigated the epigenetic link between circadian disruption (CD) and breast cancer. Using a proven photoperiod-shifting paradigm, differing degrees of CD, various tissue-extraction time points, and Illumina sequencing, we investigated the effect of CD on miRNA expression in the mammary tissues of a rodent model system. To our knowledge, our results are the first to illustrate CD-induced changes in miRNA expressions in mammary tissues. Furthermore, it is likely that these miRNA expression changes exhibit varying time frames of plasticity linked to both the degree of CD and length of reentrainment, and that the expression changes are influenced by the light and dark phases of the 24-hour circadian cycle. Of the differentially expressed miRNAs identified in the present study, all but one have been linked to breast cancer, and many have predicted circadian-relevant targets that play a role in breast cancer development. Based on the analysis of protein levels in the same tissues, we also propose that the initiation and development of CD-induced breast cancer may be linked to an interconnected web of increased NF-κB activity and increased levels of Tudor-SN, STAT3, and BCL6, with aberrant CD-induced downregulation of miR-127 and miR-146b potentially contributing to this dynamic. This study provides direct evidence that CD induces changes in miRNA levels in mammary tissues with potentially malignant consequences, thus indicating that the role of miRNAs in CD-induced breast cancer should not be dismissed. PMID:26097876

  20. Circadian disruption-induced microRNAome deregulation in rat mammary gland tissues.

    PubMed

    Kochan, David Z; Ilnytskyy, Yaroslav; Golubov, Andrey; Deibel, Scott H; McDonald, Robert J; Kovalchuk, Olga

    2015-01-01

    Breast cancer is the most common malignancy affecting women worldwide, and evidence is mounting that circadian-disruption-induced breast cancer is a warranted concern. Although studies on the role of epigenetics have provided valuable insights, and although epigenetics has been increasingly recognized in the etiology of breast cancer, relatively few studies have investigated the epigenetic link between circadian disruption (CD) and breast cancer. Using a proven photoperiod-shifting paradigm, differing degrees of CD, various tissue-extraction time points, and Illumina sequencing, we investigated the effect of CD on miRNA expression in the mammary tissues of a rodent model system. To our knowledge, our results are the first to illustrate CD-induced changes in miRNA expressions in mammary tissues. Furthermore, it is likely that these miRNA expression changes exhibit varying time frames of plasticity linked to both the degree of CD and length of reentrainment, and that the expression changes are influenced by the light and dark phases of the 24-hour circadian cycle. Of the differentially expressed miRNAs identified in the present study, all but one have been linked to breast cancer, and many have predicted circadian-relevant targets that play a role in breast cancer development. Based on the analysis of protein levels in the same tissues, we also propose that the initiation and development of CD-induced breast cancer may be linked to an interconnected web of increased NF-κB activity and increased levels of Tudor-SN, STAT3, and BCL6, with aberrant CD-induced downregulation of miR-127 and miR-146b potentially contributing to this dynamic. This study provides direct evidence that CD induces changes in miRNA levels in mammary tissues with potentially malignant consequences, thus indicating that the role of miRNAs in CD-induced breast cancer should not be dismissed.

  1. Circadian disruption-induced microRNAome deregulation in rat mammary gland tissues.

    PubMed

    Kochan, David Z; Ilnytskyy, Yaroslav; Golubov, Andrey; Deibel, Scott H; McDonald, Robert J; Kovalchuk, Olga

    2015-01-01

    Breast cancer is the most common malignancy affecting women worldwide, and evidence is mounting that circadian-disruption-induced breast cancer is a warranted concern. Although studies on the role of epigenetics have provided valuable insights, and although epigenetics has been increasingly recognized in the etiology of breast cancer, relatively few studies have investigated the epigenetic link between circadian disruption (CD) and breast cancer. Using a proven photoperiod-shifting paradigm, differing degrees of CD, various tissue-extraction time points, and Illumina sequencing, we investigated the effect of CD on miRNA expression in the mammary tissues of a rodent model system. To our knowledge, our results are the first to illustrate CD-induced changes in miRNA expressions in mammary tissues. Furthermore, it is likely that these miRNA expression changes exhibit varying time frames of plasticity linked to both the degree of CD and length of reentrainment, and that the expression changes are influenced by the light and dark phases of the 24-hour circadian cycle. Of the differentially expressed miRNAs identified in the present study, all but one have been linked to breast cancer, and many have predicted circadian-relevant targets that play a role in breast cancer development. Based on the analysis of protein levels in the same tissues, we also propose that the initiation and development of CD-induced breast cancer may be linked to an interconnected web of increased NF-κB activity and increased levels of Tudor-SN, STAT3, and BCL6, with aberrant CD-induced downregulation of miR-127 and miR-146b potentially contributing to this dynamic. This study provides direct evidence that CD induces changes in miRNA levels in mammary tissues with potentially malignant consequences, thus indicating that the role of miRNAs in CD-induced breast cancer should not be dismissed. PMID:26097876

  2. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  3. Effects of Tissue Stiffness, Ultrasound Frequency, and Pressure on Histotripsy-induced Cavitation Bubble Behavior

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 microns. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness causes a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest. PMID:25715732

  4. Re-assessment of chronic radio-induced tissue damage in a rat hindlimb model

    PubMed Central

    PHULPIN, BÉRENGÈRE; DOLIVET, GILLES; MARIE, PIERRE-YVES; POUSSIER, SYLVAIN; GALLET, PATRICE; LEROUX, AGNÈS; GRAFF, PIERRE; GROUBACH, FREDERIQUE; BRAVETTI, PIERRE; MERLIN, JEAN-LOUIS; TRAN, NGUYEN

    2010-01-01

    Radiotherapy is successfully used to treat neoplastic lesions, but may adversely affect normal tissues within the irradiated volume. However, additional clinical and para-clinical data are required for a comprehensive understanding of the pathogenesis of this damage. We assessed a rat model using clinical records and medical imaging to gain a better understanding of irradiation-induced tissue damage. The hindlimbs of the rats in this model were irradiated with a single dose of 30 or 50 Gy. Sequential analysis was based on observation records of stage and planar scintigraphy. Additional radiography, radiohistology and histology studies were performed to detect histological alterations. All animals developed acute and late effects, with an increased severity after a dose of 50 Gy. The bone uptake of 99mTc-HDP was significantly decreased in a dose- and time-dependent manner. Histologically, significant tissue damage was observed. After the 50 Gy irradiation, the animals developed lesions characteristic of osteoradionecrosis (ORN). Radiographic and histological studies provided evidence of lytic bone lesions. Our rat model developed tissue damage characteristic of radiation injury after a single 30 Gy irradiation and tissue degeneration similar to that which occurs during human ORN after a 50 Gy irradiation. The development of this animal model is an essential step in exploring the pathogenesis of irradiation-induced tissue damage, and may be used to test the efficacy of new treatments. PMID:22993575

  5. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    PubMed Central

    Kilroy, Gail; Carter, Lauren E.; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a low or high fat diet for 16 weeks. Indirect calorimetry, body composition, glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution and lipolysis were also analyzed. Results Enlarged adipocytes in obese Siah2KO mice are not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis and crown-like structures are reduced in the Siah2KO adipose tissue and Siah2KO adipocytes are more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increases expression of PPARγ target genes involved in lipid metabolism and decreases expression of proinflammatory adipokines regulated by PPARγ. Conclusions Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. PMID:26380945

  6. Effect of cryo-induced microcracks on microindentation of hydrated cortical bone tissue

    SciTech Connect

    Yin Ling; Venkatesan, Sudharshan; Webb, Daryl; Kalyanasundaram, Shankar; Qin Qinghua

    2009-08-15

    Microcracks accumulate in cortical bone tissue as a consequence of everyday cyclic loading. However, it remains unclear to what extent microdamage accumulation contributes to an increase in fracture risk. A cryo-preparation technique was applied to induce microcracks in cortical bone tissue. Microcracks with lengths up to approximately 20 {mu}m, which were initiated mainly on the boundaries of haversian canals, were observed with cryo-scanning electron microscopy. A microindentation technique was applied to study the mechanical loading effect on the microcracked hydrated bone tissue. The microindentation patterns were section-scanned using confocal laser scanning microscopy to understand the deformation and bone damage mechanisms made by mechanical loading. The results show that there was no significant difference with respect to microhardness between the original and microcracked hydrated cortical bone tissues (ANOVA, p > 0.05). The cryo-induced microcracks in the bone tissue were not propagated further under the mechanical loads applied. The deformation mechanism of the microcracked cortical bone tissue was plastic deformation, not brittle fracture.

  7. Resolvin D1 prevents smoking-induced emphysema and promotes lung tissue regeneration

    PubMed Central

    Kim, Kang-Hyun; Park, Tai Sun; Kim, You-Sun; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2016-01-01

    Purpose Emphysema is an irreversible disease that is characterized by destruction of lung tissue as a result of inflammation caused by smoking. Resolvin D1 (RvD1), derived from docosahexaenoic acid, is a novel lipid that resolves inflammation. The present study tested whether RvD1 prevents smoking-induced emphysema and promotes lung tissue regeneration. Materials and methods C57BL/6 mice, 8 weeks of age, were randomly divided into four groups: control, RvD1 only, smoking only, and smoking with RvD1 administration. Four different protocols were used to induce emphysema and administer RvD1: mice were exposed to smoking for 4 weeks with poly(I:C) or to smoking only for 24 weeks, and RvD1 was injected within the smoking exposure period to prevent regeneration or after completion of smoking exposure to assess regeneration. The mean linear intercept and inflammation scores were measured in the lung tissue, and inflammatory cells and cytokines were measured in the bronchoalveolar lavage fluid. Results Measurements of mean linear intercept showed that RvD1 significantly attenuated smoking-induced lung destruction in all emphysema models. RvD1 also reduced smoking-induced inflammatory cell infiltration, which causes the structural derangements observed in emphysema. In the 4-week prevention model, RvD1 reduced the smoking-induced increase in eosinophils and interleukin-6 in the bronchoalveolar lavage fluid. In the 24-week prevention model, RvD1 also reduced the increased neutrophils and total cell counts induced by smoking. Conclusion RvD1 attenuated smoking-induced emphysema in vivo by reducing inflammation and promoting tissue regeneration. This result suggests that RvD1 may be useful in the prevention and treatment of emphysema. PMID:27313451

  8. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  9. Probing collagen/enzyme mechanochemistry in native tissue with dynamic, enzyme-induced creep.

    PubMed

    Zareian, Ramin; Church, Kelli P; Saeidi, Nima; Flynn, Brendan P; Beale, John W; Ruberti, Jeffrey W

    2010-06-15

    Mechanical strain or stretch of collagen has been shown to be protective of fibrils against both thermal and enzymatic degradation. The details of this mechanochemical relationship could change our understanding of load-bearing tissue formation, growth, maintenance, and disease in vertebrate animals. However, extracting a quantitative relationship between strain and the rate of enzymatic degradation is extremely difficult in bulk tissue due to confounding diffusion effects. In this investigation, we develop a dynamic, enzyme-induced creep assay and diffusion/reaction rate scaling arguments to extract a lower bound on the relationship between strain and the cutting rate of bacterial collagenase (BC) at low strains. The assay method permits continuous, forced probing of enzyme-induced strain which is very sensitive to degradation rate differences between specimens at low initial strain. The results, obtained on uniaxially loaded strips of bovine corneal tissue (0.1, 0.25, or 0.5 N), demonstrate that small differences in strain alter the enzymatic cutting rate of the BC substantially. It was estimated that a change in tissue elongation of only 1.5% (at approximately 5% strain) reduces the maximum cutting rate of the enzyme by more than half. Estimation of the average load per monomer in the tissue strips indicates that this protective "cutoff" occurs when the collagen monomers are transitioning from an entropic to an energetic mechanical regime. The continuous tracking of the enzymatic cleavage rate as a function of strain during the initial creep response indicates that the decrease in the cleavage rate of the BC is nonlinear (initially steep between 4.5 and 6.5% and then flattens out from 6.5 to 9.5%). The high sensitivity to strain at low strain implies that even lightly loaded collagenous tissue may exhibit significant strain protection. The dynamic, enzyme-induced creep assay described herein has the potential to permit the rapid characterization of collagen

  10. Objective Assessment of Endogenous Collagen In Vivo during Tissue Repair by Laser Induced Fluorescence

    PubMed Central

    Prabhu, Vijendra; Rao, Satish B. S.; Fernandes, Edward Mark; Rao, Anuradha C. K.; Prasad, Keerthana; Mahato, Krishna K.

    2014-01-01

    Collagen, a triple helical protein with the primary role of mechanical function, provides tensile strength to the skin, and plays a pivotal task in tissue repair. During tissue regeneration, collagen level increases gradually and therefore, monitoring of such changes in vivo by laser induced fluorescence was the main objective behind the present study. In order to accomplish this, 15 mm diameter excisional wounds were created on six to eight week old Swiss albino mice. The collagen deposition accelerated upon irradiation of single exposure of 2 J/cm2 He-Ne laser dose immediately after wounding was recorded by laser induced autofluorescence in vivo along with un-illuminated and un-wounded controls. Autofluorescence spectra were recorded for each animal of the experimental groups on 0, 5, 10, 30, 45 and 60 days post-wounding, by exciting the granulation tissue/skin with 325 nm He-Cd laser. The variations in the average collagen intensities from the granulation tissue/skin of mice were inspected as a function of age and gender. Further, the spectral findings of the collagen synthesis in wound granulation tissue/un-wounded skin tissues were validated by Picro-Sirius red- polarized light microscopy in a blinded manner through image analysis of the respective collagen birefringence. The in vivo autofluorescence studies have shown a significant increase in collagen synthesis in laser treated animals as compared to the un-illuminated controls. Image analysis of the collagen birefringence further authenticated the ability of autofluorescence in the objective monitoring of collagen in vivo. Our results clearly demonstrate the potential of laser induced autofluorescence in the monitoring of collegen synthesis during tissue regeneration, which may have clinical implications. PMID:24874229

  11. Objective assessment of endogenous collagen in vivo during tissue repair by laser induced fluorescence.

    PubMed

    Prabhu, Vijendra; Rao, Satish B S; Fernandes, Edward Mark; Rao, Anuradha C K; Prasad, Keerthana; Mahato, Krishna K

    2014-01-01

    Collagen, a triple helical protein with the primary role of mechanical function, provides tensile strength to the skin, and plays a pivotal task in tissue repair. During tissue regeneration, collagen level increases gradually and therefore, monitoring of such changes in vivo by laser induced fluorescence was the main objective behind the present study. In order to accomplish this, 15 mm diameter excisional wounds were created on six to eight week old Swiss albino mice. The collagen deposition accelerated upon irradiation of single exposure of 2 J/cm2 He-Ne laser dose immediately after wounding was recorded by laser induced autofluorescence in vivo along with un-illuminated and un-wounded controls. Autofluorescence spectra were recorded for each animal of the experimental groups on 0, 5, 10, 30, 45 and 60 days post-wounding, by exciting the granulation tissue/skin with 325 nm He-Cd laser. The variations in the average collagen intensities from the granulation tissue/skin of mice were inspected as a function of age and gender. Further, the spectral findings of the collagen synthesis in wound granulation tissue/un-wounded skin tissues were validated by Picro-Sirius red- polarized light microscopy in a blinded manner through image analysis of the respective collagen birefringence. The in vivo autofluorescence studies have shown a significant increase in collagen synthesis in laser treated animals as compared to the un-illuminated controls. Image analysis of the collagen birefringence further authenticated the ability of autofluorescence in the objective monitoring of collagen in vivo. Our results clearly demonstrate the potential of laser induced autofluorescence in the monitoring of collegen synthesis during tissue regeneration, which may have clinical implications. PMID:24874229

  12. Long-term allergen exposure induces adipose tissue inflammation and circulatory system injury.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen

    2016-05-01

    The purpose of this study was to study whether allergen exposure can induce inflammation and lower the anti-inflammation levels in serum and in adipose tissues, and further develop cardiovascular injury. Our data showed that heart rate was significantly higher in the OVA-challenged mice compared to control mice. Moreover, there were higher expressions of pro-inflammation genes in the OVA-challenged mice in adipose tissues, and the expressions of anti-inflammation genes were lower. The levels of inflammation mediators were associated in serum and adipose tissues. The level of circulatory injury lactate dehydrogenase was significantly associated with the levels of E-selectin, resistin and adiponectin in the serum. The hematoxylin and eosin and immunohistochemistry stains indicated the OVA-challenged mice had higher levels of inflammation. In summary, the current study demonstrated allergen exposure can cause cardiovascular injury, and inflammatory mediators in adipose tissues play an important role in the pathogenesis of cardiovascular injury.

  13. Membrane potential perturbations induced in tissue cells by pulsed electric fields

    SciTech Connect

    Cooper, M.S.

    1995-09-01

    Pulsed electric fields directly influence the electrophysiology of tissue cells by transiently perturbing their transmembrane potential. To determine the magnitude and time course of this interaction, electronic cable theory was used to calculate the membrane potential perturbations induced in tissue cells by a spatially uniform, pulsed electric field. Analytic solutions were obtained that predict shifts in membrane potential along the length of cells as a function of time in response to an electrical pulse. For elongated tissue cells, or groups of tissue cells that are couple electronically by gap junctions, significant hyperpolarizations and depolarizations can result form millisecond applications of electric fields with strengths on the order of 10--100 mV/cm. The results illustrate the importance of considering cellular cable parameters in assessing the effects of transient electric fields on biological systems, as well as in predicting the efficacy of pulsed electric fields in medical treatments.

  14. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells

    PubMed Central

    Lee, Jung-Hwan; Seo, Seog-Jin

    2016-01-01

    The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks. PMID:26989423

  15. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator

    NASA Astrophysics Data System (ADS)

    Tsirka, Stella E.; Gualandris, Anna; Amaral, David G.; Strickland, Sidney

    1995-09-01

    NEURONAL degeneration in the hippocampus, a region of the brain important for acquisition of memory in humans, occurs in various pathological conditions, including Alzheimer's disease, brain ischaemia and epilepsy. When neuronal activity is stimulated in the adult rat and mouse hippocampus, tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to the active protease plasmin, is transcriptionally induced1,2. The activity of tPA in neural tissue is correlated with neurite outgrowth3, regeneration4 and migration5, suggesting that it might be involved in neuronal plasticity. Here we show that tPA is produced primarily by microglia in the hippocampus. Using excitotoxins to induce neuronal cell loss, we demonstrate that tPA-deficient mice are resistant to neuronal degeneration. These mice are also less susceptible to pharmacologically induced seizures than wild-type mice. These findings identify a role for tPA in neuronal degeneration and seizure.

  16. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator.

    PubMed

    Tsirka, S E; Gualandris, A; Amaral, D G; Strickland, S

    1995-09-28

    Neuronal degeneration in the hippocampus, a region of the brain important for acquisition of memory in humans, occurs in various pathological conditions, including Alzheimer's disease, brain ischaemia and epilepsy. When neuronal activity is stimulated in the adult rat and mouse hippocampus, tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to the active protease plasmin, is transcriptionally induced. The activity of tPA in neural tissue is correlated with neurite outgrowth, regeneration and migration, suggesting that it might be involved in neuronal plasticity. Here we show that tPA is produced primarily by microglia in the hippocampus. Using excitotoxins to induce neuronal cell loss, we demonstrate that tPA-deficient mice are resistant to neuronal degeneration. These mice are also less susceptible to pharmacologically induced seizures than wild-type mice. These findings identify a role for tPA in neuronal degeneration and seizure.

  17. Fatigue-induced damage in glutaraldehyde-preserved heart valve tissue.

    PubMed

    Broom, N D

    1978-08-01

    Glutaraldehyde-preserved porcine mitral leaflet tissue has been subjected to extended accelerated fatigue loading in Ringer's solution containing 0.15% glutaraldehyde. Five tissue test pieces were subjected to cyclic tensile stresses of 50 and 200 Gm. per square millimeter and to 300 million to 800 million accumulated fatigue cycles. Tissue disruption occurred in each of the fatigued test pieces. Tensile loading, apart from reducing the acuteness of the collagen waveform and thereby decreasing tissue compliance, does not contribute significantly to the disruption process nor its rate of occurrence. Compressive flexure occurring during the unloading half of the fatigue cycle, however, does induce damage in the tissue. Mechanisms involved in the disruptive processes have been identified by conducting simultaneous morphologic and stress/strain observations on both the fatigued and unfatigued tissues in their wet functional condition. This vulnerability of the preserved tissue to compressive flexure could well affect the long-term durability of the glutaraldehyde-preserved heterograft valve, and this possibility is discussed in relation to the clinical use of these valves.

  18. FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration.

    PubMed

    Nacu, Eugeniu; Gromberg, Elena; Oliveira, Catarina R; Drechsel, David; Tanaka, Elly M

    2016-04-27

    In salamanders, grafting of a left limb blastema onto a right limb stump yields regeneration of three limbs, the normal limb and two 'supernumerary' limbs. This experiment and other research have shown that the juxtaposition of anterior and posterior limb tissue plus innervation are necessary and sufficient to induce complete limb regeneration in salamanders. However, the cellular and molecular basis of the requirement for anterior-posterior tissue interactions were unknown. Here we have clarified the molecular basis of the requirement for both anterior and posterior tissue during limb regeneration and supernumerary limb formation in axolotls (Ambystoma mexicanum). We show that the two tissues provide complementary cross-inductive signals that are required for limb outgrowth. A blastema composed solely of anterior tissue normally regresses rather than forming a limb, but activation of hedgehog (HH) signalling was sufficient to drive regeneration of an anterior blastema to completion owing to its ability to maintain fibroblast growth factor (FGF) expression, the key signalling activity responsible for blastema outgrowth. In blastemas composed solely of posterior tissue, HH signalling was not sufficient to drive regeneration; however, ectopic expression of FGF8 together with endogenous HH signalling was sufficient. In axolotls, FGF8 is expressed only in the anterior mesenchyme and maintenance of its expression depends on sonic hedgehog (SHH) signalling from posterior tissue. Together, our findings identify key anteriorly and posteriorly localized signals that promote limb regeneration and show that these single factors are sufficient to drive non-regenerating blastemas to complete regeneration with full elaboration of skeletal elements.

  19. P-Selectin Induces the Expression of Tissue Factor on Monocytes

    NASA Astrophysics Data System (ADS)

    Celi, Alessandro; Pellegrini, Giuliana; Lorenzet, Roberto; de Blasi, Antonio; Ready, Neal; Ready, Neal; Furie, Barbara C.; Furie, Bruce

    1994-09-01

    P-selectin on activated platelets and stimulated endothelial cells mediates cell adhesion with monocytes and neutrophils. Since activated platelets induce tissue factor on mononuclear leukocytes, we examined the effect of P-selectin on the expression of tissue factor activity in monocytes. Purified P-selectin stimulated tissue factor expression on mononuclear leukocytes in a dose-dependent manner. Chinese hamster ovary (CHO) cells expressing P-selectin stimulated tissue factor procoagulant activity in purified monocytes, whereas untransfected CHO cells and CHO cells expressing E-selectin did not. Anti-P-selectin antibodies inhibited the effects of purified P-selectin and CHO cells expressing P-selectin on monocytes. Incubation of CHO cells expressing P-selectin with monocytes leads to the development of tissue factor mRNA in monocytes and to the expression of tissue factor antigen on the monocyte surface. These results indicate that P-selectin upregulates the expression of tissue factor on monocytes as well as mediates the binding of platelets and endothelial cells with monocytes and neutrophils. The binding of P-selectin to monocytes in the area of vascular injury may be a component of a mechanism that initiates thrombosis.

  20. Heat shock inhibits lipopolysaccharide-induced tissue factor activity in human whole blood

    PubMed Central

    Sucker, Christoph; Zacharowski, Kai; Thielmann, Matthias; Hartmann, Matthias

    2007-01-01

    Background During gram-negative sepsis, lipopolysaccharide (LPS) induces tissue factor expression on monocytes. The resulting disseminated intravascular coagulation leads to tissue ischemia and worsens the prognosis of septic patients. There are indications, that fever reduces the mortality of sepsis, the effect on tissue factor activity on monocytes is unknown. Therefore, we investigated whether heat shock modulates LPS-induced tissue factor activity in human blood. Methods Whole blood samples and leukocyte suspensions, respectively, from healthy probands (n = 12) were incubated with LPS for 2 hours under heat shock conditions (43°C) or control conditions (37°C), respectively. Subsequent to further 3 hours of incubation at 37°C the clotting time, a measure of tissue factor expression, was determined. Cell integrity was verified by trypan blue exclusion test and FACS analysis. Results Incubation of whole blood samples with LPS for 5 hours at normothermia resulted in a significant shortening of clotting time from 357 ± 108 sec to 82 ± 8 sec compared to samples incubated without LPS (n = 12; p < 0.05). This LPS effect was mediated by tissue factor, as inhibition with active site-inhibited factor VIIa (ASIS) abolished the effect of LPS on clotting time. Blockade of protein synthesis using cycloheximide demonstrated that LPS exerted its procoagulatory effect via an induction of tissue factor expression. Upon heat shock treatment, the LPS effect was blunted: clotting times were 312 ± 66 s in absence of LPS and 277 ± 65 s in presence of LPS (n = 8; p > 0.05). Similarly, heat shock treatment of leukocyte suspensions abolished the LPS-induced tissue factor activity. Clotting time was 73 ± 31 s, when cells were treated with LPS (100 ng/mL) under normothermic conditions, and 301 ± 118 s, when treated with LPS (100 ng/mL) and heat shock (n = 8, p < 0.05). Control experiments excluded cell damage as a potential cause of the observed heat shock effect. Conclusion Heat

  1. Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    PubMed Central

    Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.

    2013-01-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag−/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019

  2. Thymoquinone ameliorates testicular tissue inflammation induced by chronic administration of oral sodium nitrite.

    PubMed

    Alyoussef, A; Al-Gayyar, M M H

    2016-06-01

    Although sodium nitrite has been widely used as food preservative, building bases of scientific evidence about nitrite continues to oppose the general safety in human health. Moreover, thymoquinone (TQ) has therapeutic potential as antioxidant, anti-inflammatory, antibacterial and anticancer. Therefore, we investigated the effects of both sodium nitrite and TQ on testicular tissues of rats. Forty adult male Sprague Dawley rats were used. They received either 80 mg kg(-1) sodium nitrite or 50 mg kg(-1) TQ daily for twelve weeks. Serum testosterone was measured. Testis were weighed and the testicular tissue homogenates were used for measurements of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-4, IL-6, IL10, caspase-3, caspase-8 and caspase-9. Sodium nitrite resulted in significant reduction in serum testosterone concentration and elevation in testis weight and Gonado-Somatic Index. We found significant reduction in testicular tissues levels of IL-4 and IL-10 associated with elevated levels of TNF-α, IL-1β, IL-6, caspase-3, caspase-8 and caspase-9. In conclusion, chronic oral sodium nitrite induced changes in the weight of rat testis accompanied by elevation in the testicular tissue level of oxidative stress markers and inflammatory cytokines. TQ attenuated sodium nitrite-induced testicular tissue damage through blocking oxidative stress, restoration of normal inflammatory cytokines balance and blocking of apoptosis.

  3. In vivo near-infrared spectral detection of pressure-induced changes in breast tissue

    NASA Astrophysics Data System (ADS)

    Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.; Kogel, Christine; Poplack, Steven P.

    2003-07-01

    A diffuse near-infrared tomography system was used to measure dynamic changes in the absolute optical properties of the human breast that were induced through pressure applied to the tissue surface. Results from five subjects show that absorption and scattering coefficients changed measurably when pressure was increased and that these relative changes correlated with the subjects' body-mass index, indicating that the effect depends on tissue composition. Fitting the absolute absorption and scattering coefficients at six wavelengths to the molar absorption spectra of the three predominant chromophores revealed that both the average total hemoglobin and oxygen saturation increased by 10%, while water concentration decreased by more than 12%. These changes indicate that the pressure-induced variation is likely due to water displacement and vascular volume increase in the region being imaged, for mild application of pressure to the breast. These results suggest that the pressure applied during optical measurements of tissue may alter the tissue physiology, and care should be taken to factor this effect into the design of optical medical instrumentation. In addition, the technique provides a unique approach to measuring tissue elastic changes in vivo in the female breast and may offer a new method for dynamic contrast imaging based on elasto-optical measurements.

  4. Stem Cell Therapies for the Treatment of Radiation-Induced Normal Tissue Side Effects

    PubMed Central

    Benderitter, Marc; Caviggioli, Fabio; Chapel, Alain; Coppes, Robert P.; Guha, Chandan; Klinger, Marco; Malard, Olivier; Stewart, Fiona; Tamarat, Radia; Luijk, Peter Van

    2014-01-01

    Abstract Significance: Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the irradiated tissue bed. Recent Advances: Preclinical studies presented in this review provide encouraging proof of concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin complications are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue regeneration. Critical Issues: While therapeutic efficacy has been demonstrated in a variety of animal models and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. Future Directions: Follow-up studies will need to identify the best possible stem cell types for the treatment of early and late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes, identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the irradiated microenvironment. Antioxid. Redox Signal. 21: 338–355. PMID:24147585

  5. Resistin induces lipolysis and suppresses adiponectin secretion in cultured human visceral adipose tissue.

    PubMed

    Chen, Neng; Zhou, Lingmei; Zhang, Zixiang; Xu, Jiaying; Wan, Zhongxiao; Qin, Liqiang

    2014-11-01

    Resistin is an adipokine secreted from adipose tissue, which is likely involved in the development of obesity and insulin resistance via its interaction with other organs, as well as affecting adipose tissue function. The impact of resistin treatment on lipolysis and adiponectin secretion in human visceral adipose tissue is currently unknown. Mesenteric adipose tissue samples were obtained from 14 male subjects [age 54±6 yr, body mass index (BMI) 23.59±0.44 kg/m(2)] undergoing abdominal surgeries. Adipose tissues were cultured and treated with resistin (100 ng/mL, 24h) in the absence or presence of different signaling inhibitors: H89 (1 μM), PD98059 (25 μM) and SB201290 (20 μM) for glycerol and non-esterified fatty acid (NEFA) measurement. Adiponectin level from media at 24 h was also measured via ELISA. Adipose tissue minces after resistin incubation (100 ng/mL, 24 h) were also collected for further Western blotting analysis. Resistin resulted in significant induction of glycerol (3.62±0.57 vs. 5.30±1.11 mmol/L/g tissue, p<0.05) and NEFA (5.99±1.06 vs. 8.48±1.57 mmol/L/g tissue, p<0.05) release at 24 h. H89 and PD98059 partially inhibited resistin induced glycerol and NEFA release, while SB201290 has no such effect. Resistin induced the phosphorylation of p-HSL at serine 563, PKA at ~62 kDa and ERK1/2 as measured by Western blotting. Resistin led to significant reduction of the secretion of adiponectin (38.16±10.43 vs. 21.81±4.21 ng/mL/g tissue, p<0.05). Our current findings implicate that resistin might play a significant role in obesity related pathologies in various tissues via its effect on adipose tissue function.

  6. Process-induced extracellular matrix alterations affect the mechanisms of soft tissue repair and regeneration

    PubMed Central

    Xu, Hui; Sandor, Maryellen; Lombardi, Jared

    2013-01-01

    Extracellular matrices derived from animal tissues for human tissue repairs are processed by various methods of physical, chemical, or enzymatic decellularization, viral inactivation, and terminal sterilization. The mechanisms of action in tissue repair vary among bioscaffolds and are suggested to be associated with process-induced extracellular matrix modifications. We compared three non-cross-linked, commercially available extracellular matrix scaffolds (Strattice, Veritas, and XenMatrix), and correlated extracellular matrix alterations to in vivo biological responses upon implantation in non-human primates. Structural evaluation showed significant differences in retaining native tissue extracellular matrix histology and ultrastructural features among bioscaffolds. Tissue processing may cause both the condensation of collagen fibers and fragmentation or separation of collagen bundles. Calorimetric analysis showed significant differences in the stability of bioscaffolds. The intrinsic denaturation temperature was measured to be 51°C, 38°C, and 44°C for Strattice, Veritas, and XenMatrix, respectively, demonstrating more extracellular matrix modifications in the Veritas and XenMatrix scaffolds. Consequently, the susceptibility to collagenase degradation was increased in Veritas and XenMatrix when compared to their respective source tissues. Using a non-human primate model, three bioscaffolds were found to elicit different biological responses, have distinct mechanisms of action, and yield various outcomes of tissue repair. Strattice permitted cell repopulation and was remodeled over 6 months. Veritas was unstable at body temperature, resulting in rapid absorption with moderate inflammation. XenMatrix caused severe inflammation and sustained immune reactions. This study demonstrates that extracellular matrix alterations significantly affect biological responses in soft tissue repair and regeneration. The data offer useful insights into the rational design of

  7. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  8. New bone formation in nude mouse calvaria induced by canine prostate tissue.

    PubMed

    LeRoy, Bruce E; Bahnson, Robert R; Rosol, Thomas J

    2002-11-29

    Osteoblastic metastases are common in patients with advanced prostate cancer. The pathophysiology of the new bone formation at metastatic sites is not currently known, but it is hypothesized that growth factors secreted by the prostate may be involved. Unfortunately, most rodent models of prostate cancer with metastasis to bone are osteolytic and not osteoblastic. Significant osteolysis by tumor cells at metastatic sites also may lead to fractures or bone instability. Misinterpretation of new periosteal bone due to bone instability as tumor-cell osteo-induction is another disadvantage of the osteolytic models. To circumvent these problems, we have developed a model system of new bone formation in the calvaria of nude mice stimulated by normal canine prostate tissue. Collagenase-digested normal prostate tissue was implanted adjacent to the calvaria of nude mice. Calvaria were examined at 2 weeks post-implantation for changes in the bone microenvironment by histology, calcein uptake at sites of bone mineralization, and tartrate-resistant acid phosphatase staining for osteoclasts. The prostate tissue remained viable and induced abundant new woven bone formation on the adjacent periosteal surface. In some cases new bone formation also was induced on the distant or concave calvarial periosteum. The new bone stained intensely with calcein, which demonstrated mineralization of the bone matrix. The new bone formation on prostate-implanted calvaria significantly increased (1.7-fold) the thickness of the calvaria compared with control calvaria. New bone formation was not induced in calvaria of mice implanted with normal canine kidney, urinary bladder, spleen, or skeletal muscle tissue, or mice with surgically-induced disruption of the periosteum. Osteoclast numbers in the medullary spaces and periosteum of calvaria were mildly increased (61%) in mice with implanted prostate tissue. In conclusion, this animal model will be useful for investigating the roles of prostate

  9. Measurement of mechanical properties of homogeneous tissue with ultrasonically induced shear waves

    NASA Astrophysics Data System (ADS)

    Greenleaf, James F.; Chen, Shigao

    2007-03-01

    Fundamental mechanical properties of tissue are altered by many diseases. Regional and systemic diseases can cause changes in tissue properties. Liver stiffness is caused by cirrhosis and fibrosis. Vascular wall stiffness and tone are altered by smoking, diabetes and other diseases. Measurement of tissue mechanical properties has historically been done with palpation. However palpation is subjective, relative, and not quantitative or reproducible. Elastography in which strain is measured due to stress application gives a qualitative estimate of Young's modulus at low frequency. We have developed a method that takes advantage of the fact that the wave equation is local and shear wave propagation depends only on storage and loss moduli in addition to density, which does not vary much in soft tissues. Our method is called shearwave dispersion ultrasonic velocity measurement (SDUV). The method uses ultrasonic radiation force to produce repeated motion in tissue that induces shear waves to propagate. The shear wave propagation speed is measured with pulse echo ultrasound as a function of frequency of the shear wave. The resulting velocity dispersion curve is fit with a Voight model to determine the elastic and viscous moduli of the tissue. Results indicate accurate and precise measurements are possible using this "noninvasive biopsy" method. Measurements in beef along and across the fibers are consistent with the literature values.

  10. Utilizing Murine Inducible Telomerase Alleles in the Studies of Tissue Degeneration/Regeneration and Cancer

    PubMed Central

    Shingu, Takashi; Jaskelioff, Mariela; Yuan, Liang; Ding, Zhihu; Protopopov, Alexei; Kost-Alimova, Maria; Hu, Jian

    2015-01-01

    Telomere dysfunction-induced loss of genome integrity and its associated DNA damage signaling and checkpoint responses are well-established drivers that cause tissue degeneration during ageing. Cancer, with incidence rates greatly increasing with age, is characterized by short telomere lengths and high telomerase activity. To study the roles of telomere dysfunction and telomerase reactivation in ageing and cancer, the protocol shows how to generate two murine inducible telomerase knock-in alleles 4-Hydroxytamoxifen (4-OHT)-inducible TERT-Estrogen Receptor (mTERT-ER) and Lox-Stopper-LoxTERT (LSL-mTERT). The protocol describes the procedures to induce telomere dysfunction and reactivate telomerase activity in mTERT-ER and LSL-mTERT mice in vivo. The representative data show that reactivation of telomerase activity can ameliorate the tissue degenerative phenotypes induced by telomere dysfunction. In order to determine the impact of telomerase reactivation on tumorigenesis, we generated prostate tumor model G4 PB-Cre4 PtenL/L p53L/L LSL-mTERTL/L and thymic T-cell lymphoma model G4 Atm-/- mTERTER/ER. The representative data show that telomerase reactivation in the backdrop of genomic instability induced by telomere dysfunction can greatly enhance tumorigenesis. The protocol also describes the procedures used to isolate neural stem cells (NSCs) from mTERT-ER and LSL-mTERT mice and reactivate telomerase activity in NSCs in vitro. The representative data show that reactivation of telomerase can enhance the self-renewal capability and neurogenesis in vitro. Finally, the protocol describes the procedures for performing telomere FISH (Fluorescence In Situ Hybridization) on both mouse FFPE (Formalin Fixed and Paraffin Embedded) brain tissues and metaphase chromosomes of cultured cells. PMID:25938254

  11. Thermal effects in tissues induced by interstitial irradiation of near infrared laser with a cylindrical diffuser

    NASA Astrophysics Data System (ADS)

    Le, Kelvin; Johsi, Chet; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Towner, Rheal A.; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT), using non-invasive laser irradiation, has resulted in promising outcomes in the treatment of late-stage cancer patients. However, the tissue absorption of laser light limits the clinical applications of LIT in patients with dark skin, or with deep tumors. The present study is designed to investigate the thermal effects of interstitial irradiation using an 805-nm laser with a cylindrical diffuser, in order to overcome the limitations of the non-invasive mode of treatment. Cow liver and rat tumors were irradiated using interstitial fiber. The temperature increase was monitored by thermocouples that were inserted into the tissue at different sites around the cylinder fiber. Three-dimensional temperature distribution in target tissues during and after interstitial laser irradiation was also determined by Proton Resonance Frequency. The preliminary results showed that the output power of laser and the optical parameters of the target tissue determined the light distribution in the tissue. The temperature distributions varied in the tissue according to the locations relative to the active tip of the cylindrical diffuser. The temperature increase is strongly related to the laser power and irradiation time. Our results using thermocouples and optical sensors indicated that the PRF method is reliable and accurate for temperature determination. Although the inhomogeneous biological tissues could result in temperature fluctuation, the temperature trend still can be reliable enough for the guidance of interstitial irradiation. While this study provides temperature profiles in tumor tissue during interstitial irradiation, the biological effects of the irradiation remain unclear. Future studies will be needed, particularly in combination with the application of immunostimulant for inducing tumor-specific immune responses in the treatment of metastatic tumors.

  12. Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.)

    PubMed Central

    Bednarek, Piotr T; Orłowska, Renata; Koebner, Robert MD; Zimny, Janusz

    2007-01-01

    Background When plant tissue is passaged through in vitro culture, many regenerated plants appear to be no longer clonal copies of their donor genotype. Among the factors that affect this so-called tissue culture induced variation are explant genotype, explant tissue origin, medium composition, and the length of time in culture. Variation is understood to be generated via a combination of genetic and/or epigenetic changes. A lack of any phenotypic variation between regenerants does not necessarily imply a concomitant lack of genetic (or epigenetic) change, and it is therefore of interest to assay the outcomes of tissue culture at the genotypic level. Results A variant of methylation sensitive AFLP, based on the isoschizomeric combinations Acc65I/MseI and KpnI/MseI was applied to analyze, at both the sequence and methylation levels, the outcomes of regeneration from tissue culture in barley. Both sequence mutation and alteration in methylation pattern were detected. Two sets of regenerants from each of five DH donor lines were compared. One set was derived via androgenesis, and the other via somatic embryogenesis, developed from immature embryos. These comparisons delivered a quantitative assessment of the various types of somaclonal variation induced. The average level of variation was 6%, of which almost 1.7% could be accounted for by nucleotide mutation, and the remainder by changes in methylation state. The nucleotide mutation rates and the rate of epimutations were substantially similar between the andro- and embryo-derived sets of regenerants across all the donors. Conclusion We have developed an AFLP based approach that is capable of describing the qualitative and quantitative characteristics of the tissue culture-induced variation. We believe that this approach will find particular value in the study of patterns of inheritance of somaclonal variation, since non-heritable variation is of little interest for the improvement of plant species which are sexually

  13. Ultrastructural effects on gill tissues induced in red tilapia Oreochromis sp. by a waterborne lead exposure.

    PubMed

    Aldoghachi, Mohammed A; Azirun, Mohd Sofian; Yusoff, Ismail; Ashraf, Muhammad Aqeel

    2016-09-01

    Experiments on hybrid red tilapia Oreochromis sp. were conducted to assess histopathological effects induced in gill tissues of 96 h exposure to waterborne lead (5.5 mg/L). These tissues were investigated by light and scanning electron microscopy. Results showed that structural design of gill tissues was noticeably disrupted. Major symptoms were changes of epithelial cells, fusion in adjacent secondary lamellae, hypertrophy and hyperplasia of chloride cells and coagulate necrosis in pavement cells with disappearance of its microridges. Electron microscopic X-ray microanalysis of fish gills exposed to sublethal lead revealed that lead accumulated on the surface of the gill lamella. This study confirmed that lead exposure incited a difference of histological impairment in fish, supporting environmental watch over aquatic systems when polluted by lead. PMID:27579014

  14. Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells.

    PubMed

    Suwandi, Jessica S; Toes, René E M; Nikolic, Tatjana; Roep, Bart O

    2015-01-01

    Current immunosuppressive therapy acts systemically, causing collateral damage and does not necessarily cope with the cause of rheumatoid arthritis. Tissue specific immune modulation may restore tolerance in patients with autoimmune diseases such as RA, but desires knowledge on relevant target autoantigens. We present the case of type 1 diabetes as prototype autoimmune disease with established autoantigens to set the stage for tissue-specific immune modulation using tolerogenic dendritic cells pulsed with autoantigen in RA. This approach induces autoantigen-specific regulatory T cells that exert their tissue-specific action through a combination of linked suppression and infectious tolerance, introducing a legacy of targeted, localised immune regulation in the proximity of the lesion. Several trials are in progress in RA employing various types of tolerogenic DCs. With knowledge on mode of action and confounding effects of concomitant immunosuppressive therapy, this strategy may provide novel immune intervention that may also prevent RA in high-risk subjects. PMID:26458178

  15. Laser-induced heat diffusion limited tissue coagulation as a laser therapy mode

    NASA Astrophysics Data System (ADS)

    Lubashevsky, Ihor A.; Priezzhev, Alexander V.; Gafiychuk, Vasyl V.

    2000-11-01

    Previously we have developed a free boundary model for local thermal coagulation induced by laser light absorption when the tissue region affected directly by laser light is sufficiently small and heat diffusion into the surrounding tissue governs the necrosis growth. In the present paper keeping in mind the obtained results we state the point of view on the necrosis formation under these conditions as the basis of an individual laser therapy mode exhibiting specific properties. In particular, roughly speaking, the size of the resulting necrosis domain is determined by the physical characteristics of the tissue and its response to local heating, and by the applicator form rather than the treatment duration and the irradiation power.

  16. Laser-induced heat diffusion limited tissue coagulation as a laser therapy mode

    NASA Astrophysics Data System (ADS)

    Lubashevsky, Ihor A.; Priezzhev, Alexander V.; Gafiychuk, Vasyl V.

    2000-06-01

    Previously we have developed a free boundary model for local thermal coagulation induced by laser light absorption when the tissue region affected directly by laser light is sufficiently small and heat diffusion into the surrounding tissue governs the necrosis growth. In the present paper keeping in mind the obtained results we state the point of view on the necrosis formation under these conditions as the basis of an individual layer therapy mode exhibiting specific properties. In particular, roughly speaking, the size of the resulting necrosis domain is determined by the physical characteristics of the tissue and its response to local heating, and by the applicator form rather than the treatment duration and the irradiation power.

  17. Mutant hypoxia inducible factor-1α improves angiogenesis and tissue perfusion in ischemic rabbit skeletal muscle.

    PubMed

    Li, Mingyan; Liu, Cheng; Bin, Jianping; Wang, Yuegang; Chen, Jianwei; Xiu, Jiancheng; Pei, Jingxian; Lai, Yanxian; Chen, Dongdong; Fan, Caixia; Xie, Jiajia; Tao, Yu; Wu, Pingsheng

    2011-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It regulates genes involved in angiogenesis, but is inactivated rapidly by normoxia. Ad-HIF-1α-Trip was constructed by transforming Pro402, Pro564, and Asn803 in HIF-1α to alanine in order to delay degradation and create a constitutive transcriptional activator. In this study, we investigated whether Ad-HIF-1α-Trip could induce functional mature angiogenesis and the possible mechanisms involved. We found that Ad-HIF-1α-Trip increased the expression of multiple angiogenic genes in cultured HMVEC-Ls, including VEGF, PLGF, PAI-1, and PDGF. In a rabbit model of acute hind limb ischemia, Ad-HIF-1α-Trip improved tissue perfusion and collateral vessels, as measured by contrast-enhanced ultrasound (CEU), CT angiography, and vascular casting. Ad-HIF-1α-Trip also produced more histologically identifiable capillaries, which were verified by immunostaining, compared with controls. Interestingly, inhibition of CBP/p300 by curcumin prevented HIF-1α from inducing the expression of several angiogenic genes. The present study suggests that Ad-HIF-1α-Trip can induce mature angiogenesis and improve tissue perfusion in ischemic rabbit skeletal muscle. CBP/p300, which interacts with the transactivation domains of HIF-1α, is important for HIF-1α-induced transcription of angiogenic genes. PMID:20937289

  18. Schisandrin B protects against solar irradiation-induced oxidative stress in rat skin tissue.

    PubMed

    Lam, Philip Y; Yan, Chung Wai; Chiu, Po Yee; Leung, Hoi Yan; Ko, Kam Ming

    2011-04-01

    Schisandrin B (Sch B) and schisandrin C (Sch C), but not schisandrin A and dimethyl diphenyl bicarboxylate, protected rat skin tissue against solar irradiation-induced oxidative injury, as evidenced by a reversal of solar irradiation-induced changes in cellular reduced glutathione and α-tocopherol levels, as well as antioxidant enzyme activities and malondialdehyde production. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production in rat skin microsomes. Taken together, Sch B or Sch C, by virtue of its pro-oxidant action and the subsequent eliciting of a glutathione antioxidant response, may prevent photo-aging of skin.

  19. Long-range ordered vorticity patterns in living tissue induced by cell division

    PubMed Central

    Rossen, Ninna S.; Tarp, Jens M.; Mathiesen, Joachim; Jensen, Mogens H.; Oddershede, Lene B.

    2014-01-01

    In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range dynamics induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the conditions during vessel formation or around blood clots. Cell divisions induce long-range, well-ordered vortex patterns extending several cell diameters away from the division site, in spite of the system’s low Reynolds number. Our experimental results are reproduced by a hydrodynamic continuum model simulating division as a local pressure increase corresponding to a local tension decrease. Such long-range physical communication may be crucial for embryonic development and for healing tissue, for instance around blood clots. PMID:25483750

  20. Quasi-static elastography and its application in investigation of focused ultrasound induced tissue lesions

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Ling, Tao; Shen, Yong; Wang, Yan; Zheng, Hairong; Li, Faqi

    2012-10-01

    Monitoring of Focused Ultrasound (FUS) therapy has always been a key factor for a successful therapy. Although B-mode ultrasound has long been used for monitoring FUS therapy, the gray scale changes can not precisely reflect the lesion formation inside the tissue, while MR thermometry is considered to be too expensive. In this study, elastography had been performed using a commercial ultrasound system to investigate lesions produced by FUS irradiation in vitro. Several motion detection algorithms had been performed to improve the motion detection accuracy in the elastography. The effects of different algorithms on the motion detection accuracy were compared. Experimental results on the FUS induced lesion in swine muscle were introduced. The results indicated that lesions induced by small dosage of FUS inside the tissue can be successfully detected, which has a profound clinical meaning for the monitoring of FUS therapy.

  1. Analysis of laser-induced fluorescence spectra of in vitro plant tissue cultures

    NASA Astrophysics Data System (ADS)

    Muñoz-Muñoz, Ana Celia; Gutiérrez-Pulido, Humberto; Rodríguez-Domínguez, José Manuel; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín; Cervantes-Martínez, Jesús

    2007-04-01

    We demonstrate the effectiveness of laser-induced fluorescence (LIF) for monitoring the development and stress detection of in vitro tissue cultures in a nondestructive and noninvasive way. The changes in LIF spectra caused by the induction of organogenesis, the increase of the F690/F740 ratio as a result of the stress originated in the organogenic explants due to shoot emergence, and the relationship between fluorescence spectra and shoot development were detected by LIF through closed containers of Saintpaulia ionantha.

  2. Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections.

    PubMed

    Boi, Giovanna; Scalia, Carla Rossana; Gendusa, Rossella; Ronchi, Susanna; Cattoretti, Giorgio

    2016-01-01

    Drying of the tissue section, partial or total, during immunostaining negatively affects both the staining of tissue antigens and the ability to remove previously deposited antibody layers, particularly during sequential rounds of de-staining and re-staining for multiple antigens. The cause is a progressive loss of the protein-associated water up to the removal of the non-freezable water, a step which abolishes the immunoavailability of the epitope. In order to describe and prevent these adverse effects, we tested, among other substances, sugars, which are known to protect unicellular organisms from freezing and dehydration, and stabilize drugs and reagents in solid state form in medical devices. Disaccharides (lactose, sucrose) prevented the air drying-induced antigen masking and protected tissue-bound antigens and antibodies from air drying-induced damage. Complete removal of the bound antibody layers by chemical stripping was permitted if lactose was present during air drying. Lactose, sucrose and other disaccharides prevent air drying artifacts, allow homogeneous, consistent staining and the reuse of formalin-fixed, paraffin-embedded tissue sections for repeated immunostaining rounds by guaranteeing constant staining quality in suboptimal hydration conditions.

  3. HZE particle radiation induces tissue-specific and p53-dependent mutagenesis in transgenic animals

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R.

    2001-01-01

    Transgenic animals, with the integrated target gene, provide a unique approach for measuring and characterizing mutations in any tissue of the animal. We are using the plasmid-based lacZ transgenic mice with different p53 genetic background to examine radiation-induced genetic damage resulting from exposure to heavy particle radiation. We measured lacZ mutation frequencies (MF) in the brain and spleen tissues at various times after exposing animals to an acute dose of 1 Gy of 1GeV/amu iron particles. MF in the spleen of p53+/+ animals increased up to 2.6-fold above spontaneous levels at 8 weeks post irradiation. In contrast, brain MF from the same animals increased 1.7-fold above controls in the same period. In the p53-/- animals, brain MF increased to 2.2-fold above spontaneous levels at 1 week after treatment, but returned to control levels thereafter. Radiation also induced alterations in the spectrum of mutants in both tissues, accompanied by changes in the frequency of mutants with deletions extending past the transgene into mouse genomic DNA. Our results indicate that the accumulation of transgene MF after radiation exposure is dependant on the tissue examined as well as the p53 genetic background of the animals.

  4. ATP-Induced Inflammation Drives Tissue-Resident Th17 Cells in Metabolically Unhealthy Obesity.

    PubMed

    Pandolfi, Julieta B; Ferraro, Ariel A; Sananez, Inés; Gancedo, Maria C; Baz, Plácida; Billordo, Luis A; Fainboim, Leonardo; Arruvito, Lourdes

    2016-04-15

    Obesity-induced inflammation is conducted by a metabolic pathway, which eventually causes activation of specialized immune cells and leads to an unresolved inflammatory response within the tissue. For this reason, it is critically important to determine how hypertrophic fat tissue alters T cell balance to drive inflammation. In this study, we identify the purinergic signaling as a novel mechanism driving the adaptive Th17 response in human visceral adipose tissue (VAT) of metabolically unhealthy obese patients. We demonstrate that ATP acting via the P2X7 receptor pathway promotes a Th17 polarizing microenvironment with high levels of IL-1β, IL-6, and IL-17 in VAT explants from lean donors. Moreover, in vitro blockade of the P2X7 receptor abrogates the levels of these cytokines. These findings are consistent with a greater frequency of Th17 cells in tissue from metabolically unhealthy obese donors, revealed not only by the presence of a baseline Th17-promoting milieu, but also by the higher expression of steadily recognized Th17 markers, such as RORC, IL-17 cytokine, and IL-23R, in comparison with metabolically healthy obese and lean donors. In addition, we demonstrate that CD39 expression on CD4(+)effector T cells represents a novel Th17 marker in the inflamed VAT, which also confers protection against ATP-induced cell death. The manipulation of the purinergic signaling might represent a new therapeutic target to shift the CD4(+)T cell balance under inflammatory conditions.

  5. Heat-induced changes of the optical properties of liver tissue

    NASA Astrophysics Data System (ADS)

    Ritz, Joerg-Peter; Roggan, Andre; Isbert, Christoph M.; Albrecht, Dirk; Germer, Christoph-Thomas; Mueller, Gerhard J.; Buhr, Heinz-Johannes

    1998-01-01

    For prediction of the effectiveness of laser-induced thermotherapy of liver metastases and for the understanding and optimal use of laser applications in medicine, especially for dosimetrical questions, the knowledge of the specific optical properties and their thermo-induced changes is important. In our study we were able to evaluate the optical properties of human liver tissue and metastatic tissue. Furthermore, we investigated the dynamic temperature behavior between 45 degree(s)C and 80 degree(s)C at three different exposure times using a double-integrating sphere system. We found significant differences between normal and metastatic tissue resulting in a higher optical penetration depth in the tumorous tissue. During the coagulation the absorption coefficient, anisotropy and optical penetration depth decreased significantly in the temperature range from 45 degree(s)C to 65 degree(s)C, whereas the scattering coefficient increased. Above and below this temperature range the changes of the optical properties were not significant. The coagulation rate differed between the exposure times.

  6. Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections.

    PubMed

    Boi, Giovanna; Scalia, Carla Rossana; Gendusa, Rossella; Ronchi, Susanna; Cattoretti, Giorgio

    2016-01-01

    Drying of the tissue section, partial or total, during immunostaining negatively affects both the staining of tissue antigens and the ability to remove previously deposited antibody layers, particularly during sequential rounds of de-staining and re-staining for multiple antigens. The cause is a progressive loss of the protein-associated water up to the removal of the non-freezable water, a step which abolishes the immunoavailability of the epitope. In order to describe and prevent these adverse effects, we tested, among other substances, sugars, which are known to protect unicellular organisms from freezing and dehydration, and stabilize drugs and reagents in solid state form in medical devices. Disaccharides (lactose, sucrose) prevented the air drying-induced antigen masking and protected tissue-bound antigens and antibodies from air drying-induced damage. Complete removal of the bound antibody layers by chemical stripping was permitted if lactose was present during air drying. Lactose, sucrose and other disaccharides prevent air drying artifacts, allow homogeneous, consistent staining and the reuse of formalin-fixed, paraffin-embedded tissue sections for repeated immunostaining rounds by guaranteeing constant staining quality in suboptimal hydration conditions. PMID:26487185

  7. Constitutive expression and structural diversity of inducible isoform of nitric oxide synthase in human tissues.

    PubMed

    Park, C S; Park, R; Krishna, G

    1996-01-01

    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) plays a major role in immune responses to bacteria and tumors, and the gene is induced by endotoxin and cytokines. However, we have detected iNOS cDNA sequences expressed constitutively at low level from human retinal, cerebellar and skeletal muscle tissues using northern-blot and RT-PCR analyses. In northern-blot analysis, two types (4.5 kb and 4.2 kb) of iNOS mRNA have been observed in retinal tissue, whereas only one type of mRNA was observed in cerebellum (4.5 kb) and skeletal muscle (4.2 kb). This result indicates that the presence of differential expression and/or structural diversity of the iNOS gene in various tissues, and some cells can express iNOS gene constitutively. We have also demonstrated a structural diversity formed by alternative splicing in the open reading frame sequence of the iNOS cDNA cloned from retinal tissue, which may reflect functional differences of iNOS gene.

  8. Formaldehyde exposure induces autophagy in testicular tissues of adult male rats.

    PubMed

    Han, Shui-Ping; Zhou, Dang-Xia; Lin, Pu; Qin, Zhen; An, Lu; Zheng, Lie-Rui; Lei, Li

    2015-03-01

    Formaldehyde, a ubiquitous environmental pollutant, has long been suspected of causing adverse male reproductive effects. However, the molecular and cellular mechanisms underlying this phenomenon remain elusive. The overall aim of this study is to clarify the role of autophagy in male reproductive injuries induced by formaldehyde exposure, by which we can further understand the molecular mechanism of spermatogenesis and develop new targets for prevention and treatment of male infertility. In this study, electron microscopy, Western blot, and RT-PCR analysis were used to detect autophagy in testicular tissues. Moreover, testicular weights, histopathology, and morphometry were used to evaluate the reproductive injuries of formaldehyde exposure. We found that formaldehyde exposure-induced autophagy in testicular tissues was dose dependent. Increasing autophagosomes in spermatogenetic cells was observed by electron microscopy in formaldehyde exposure group. In addition, RT-PCR and Western blot analysis showed the transcription levels of the LC3-II, as well as the conversion from LC3-I to LC3-II, an indicator of autophagy, significantly increased in testicular tissue of formaldehyde exposure group in a dose dependent manner when compared with those in control group. Furthermore, the alterations of autophage were basically consistent with the changes in testicular weight and morphologic findings. In summary, formaldehyde exposure triggered autophagy, and autophagy may be a scathing factor responsible for male reproductive impairment induced by formaldehyde.

  9. Differentiation of bone mesenchymal stem cells into hepatocyte-like cells induced by liver tissue homogenate.

    PubMed

    Xing, X K; Feng, H G; Yuan, Z Q

    2016-01-01

    This study investigated the efficacy and feasibility of inducing the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro using Sprague Dawley rats, as a model of hepatocyte generation for cell transplantation. BMSCs were isolated and grown using the adherent method and exposed to 5 or 10% liver tissue homogenate, before being collected for analysis after 0, 7, 14, and 21 days. Immunofluorescence and western blotting were employed to detect the liver-specific markers a-fetoprotein (AFP) and albumin (ALB). Supernatant urea content was also measured to verify that differentiation had been induced. After 7 days in the presence of 10% liver tissue homogenate, BMSCs demonstrated hepatocyte-like morphological characteristics, and with prolonged culture time, liver-specific markers were gradually produced at levels indicating cell maturation. AFP expression peaked at 14 days then began to decrease, while both urea and ALB levels increased with induction time. Overall, marker expression in the 5% homogenate group was less than or equal to the 10% group at each time point. Thus, in a rat model, liver tissue homogenate obtained from partial hepatectomy can induce the differentiation of BMSCs into hepatocyte-like cells. This method is simple, feasible, and has remarkable real-world application potential. PMID:27525848

  10. Dynamics of wound healing signaling as a potential therapeutic target for radiation-induced tissue damage.

    PubMed

    Chung, Yih-Lin; Pui, Newman N M

    2015-01-01

    We hypothesized the histone deacetylase inhibitor phenylbutyrate (PB) has beneficial effects on radiation-induced injury by modulating the expression of DNA repair and wound healing genes. Hamsters received a radiosurgical dose of radiation (40 Gy) to the cheek and were treated with varying PB dosing regimens. Gross alteration of the irradiated cheeks, eating function, histological changes, and gene expression during the course of wound healing were compared between treatment groups. Pathological analysis showed decreased radiation-induced mucositis, facilitated epithelial cell growth, and preventing ulcerative wound formation, after short-term PB treatment, but not after vehicle or sustained PB. The radiation-induced wound healing gene expression profile exhibited a sequential transition from the inflammatory and DNA repair phases to the tissue remodeling phase in the vehicle group. Sustained PB treatment resulted in a prolonged wound healing gene expression profile and delayed the wound healing process. Short-term PB shortened the duration of inflammatory cytokine expression, triggered repeated pulsed expression of cell cycle and DNA repair-regulating genes, and promoted earlier oscillatory expression of tissue remodeling genes. Distinct gene expression patterns between sustained and short-term treatment suggest dynamic profiling of wound healing gene expression can be an important part of a biological therapeutic strategy to mitigate radiation-related tissue injury.

  11. Aloe vera affects changes induced in pulmonary tissue of mice caused by cigarette smoke inhalation.

    PubMed

    Koul, Ashwani; Bala, Shashi; Yasmeen; Arora, Neha

    2015-09-01

    This study was undertaken to determine the influence of Aloe vera (AV) on changes induced in pulmonary tissue of cigarette smoke (CS) inhaling mice. CS inhalation for 4 weeks caused pulmonary damage as evident by histoarchitectural alterations and enhanced serum and tissue lactate dehydrogenase (LDH) activities. CS inhalation also led to increased mucin production as revealed by mucicarmine and Alcian Blue-Periodic Acid Schiff (AB-PAS) staining. Studies on bronchoalveolar lavage fluid (balf) of CS exposed animals revealed structural changes in phospholipids and increase in surface tension when compared with control counterparts. These changes were accompanied by enhanced nitric oxide (NO) levels, citrulline levels, peroxidative damage, and differential modulation of antioxidant defense system. AV administration (seven weeks, 500 mg/kg b.w. daily) to CS inhaling mice led to modulation of CS induced pulmonary changes as revealed by lesser degree of histoarchitectural alterations, lesser mucin production, decreased NO levels, citrulline levels, peroxidative damage, and serum LDH activity. AV treatment to CS inhaling mice was associated with varying response to antioxidant defense system, however balf of CS + AV treated animals did not exhibit appreciable changes when compared with that of CS exposed animals. These observations suggest that AV has the potential to modulate CS induced changes in the pulmonary tissue which could have implications in management of CS associated pulmonary diseases, however, further investigations are required to explore its complete mechanism of action.

  12. Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction.

    PubMed

    Pfeiffer, Susanne; Krüger, Jacqueline; Maierhofer, Anna; Böttcher, Yvonne; Klöting, Nora; El Hajj, Nady; Schleinitz, Dorit; Schön, Michael R; Dietrich, Arne; Fasshauer, Mathias; Lohmann, Tobias; Dreßler, Miriam; Stumvoll, Michael; Haaf, Thomas; Blüher, Matthias; Kovacs, Peter

    2016-01-01

    Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity. PMID:27346320

  13. ROS and Sympathetically Mediated Mitochondria Activation in Brown Adipose Tissue Contribute to Methamphetamine-Induced Hyperthermia

    PubMed Central

    Sanchez-Alavez, Manuel; Conti, Bruno; Wood, Malcolm R.; Bortell, Nikki; Bustamante, Eduardo; Saez, Enrique; Fox, Howard S.; Marcondes, Maria Cecilia Garibaldi

    2013-01-01

    Methamphetamine (Meth) abuse has been shown to induce alterations in mitochondrial function in the brain as well as to induce hyperthermia, which contributes to neurotoxicity and Meth-associated mortality. Brown adipose tissue (BAT), a thermogenic site known to be important in neonates, has recently regained importance since being identified in significant amounts and in correlation with metabolic balance in human adults. Given the high mitochondrial content of BAT and its role in thermogenesis, we aimed to investigate whether BAT plays any role in the development of Meth-induced hyperthermia. By ablating or denervating BAT, we identified a partial contribution of this organ to Meth-induced hyperthermia. BAT ablation decreased temperature by 0.5°C and reduced the length of hyperthermia by 1 h, compared to sham-operated controls. BAT denervation also affected the development of hyperthermia in correlation with decreased the expression of electron transport chain molecules, and increase on PCG1a levels, but without affecting Meth-induced uncoupling protein 1 upregulation. Furthermore, in isolated BAT cells in culture, Meth, but not Norepinephrine, induced H2O2 upregulation. In addition, we found that in vivo Reactive Oxygen Species (ROS) play a role in Meth hyperthermia. Thus, sympathetically mediated mitochondrial activation in the BAT and Meth-induced ROS are key components to the development of hyperthermia in Meth abuse. PMID:23630518

  14. Detection and characterization of chemical-induced abnormal tissue and rat tumors at different stages using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Jassemnejad, Baha; Crull, Jason; Knobbe, Edward T.; Nordquist, Robert E.

    1996-04-01

    Fluorescence spectroscopy of diseased tissues, including chemical-induced rat liver, kidney and testis lesions, as well as murine mammary tumor, was studied. The rat liver, kidney and testis tissues were excited by radiation of 350 and 366 nm, which appeared to provide the optimal differentiation between normal and lesion tissues; the tumor tissues were excited by both 350 nm and 775 nm wavelengths. In comparison with normal liver tissue, at (lambda) ex equals 366 nm, the fluorescent spectrum of liver lesion showed a clear red shift around the emission peak of 470 nm, the major native fluorescent peak of organized tissue. When excited by 350 nm wavelength, all the chemically induced lesion tissues (liver, kidney and testis) appeared to cause a significant reduction of emission intensity at the 470 nm peak. While the 775 nm excitation did not reveal any significant difference among tumor, muscle and skin tissues, the 350 nm excitation did provide some interesting features among the tumor tissues at different stages. Compared with muscle tissue, the viable tumor showed an overall reduction of emission intensity around 470 nm. In addition, the viable tumor tissue showed a secondary emission peak at 390 nm with necrotic tumor tissue having a reduced intensity. The histology of both viable and necrotic tumor tissue was examined and appeared to correlate with the results of the fluorescent spectroscopy observation.

  15. FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration.

    PubMed

    Nacu, Eugeniu; Gromberg, Elena; Oliveira, Catarina R; Drechsel, David; Tanaka, Elly M

    2016-05-19

    In salamanders, grafting of a left limb blastema onto a right limb stump yields regeneration of three limbs, the normal limb and two 'supernumerary' limbs. This experiment and other research have shown that the juxtaposition of anterior and posterior limb tissue plus innervation are necessary and sufficient to induce complete limb regeneration in salamanders. However, the cellular and molecular basis of the requirement for anterior-posterior tissue interactions were unknown. Here we have clarified the molecular basis of the requirement for both anterior and posterior tissue during limb regeneration and supernumerary limb formation in axolotls (Ambystoma mexicanum). We show that the two tissues provide complementary cross-inductive signals that are required for limb outgrowth. A blastema composed solely of anterior tissue normally regresses rather than forming a limb, but activation of hedgehog (HH) signalling was sufficient to drive regeneration of an anterior blastema to completion owing to its ability to maintain fibroblast growth factor (FGF) expression, the key signalling activity responsible for blastema outgrowth. In blastemas composed solely of posterior tissue, HH signalling was not sufficient to drive regeneration; however, ectopic expression of FGF8 together with endogenous HH signalling was sufficient. In axolotls, FGF8 is expressed only in the anterior mesenchyme and maintenance of its expression depends on sonic hedgehog (SHH) signalling from posterior tissue. Together, our findings identify key anteriorly and posteriorly localized signals that promote limb regeneration and show that these single factors are sufficient to drive non-regenerating blastemas to complete regeneration with full elaboration of skeletal elements. PMID:27120163

  16. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice

    PubMed Central

    Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim

    2016-01-01

    Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384

  17. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    PubMed

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage. PMID:20047045

  18. Changes in white and brown adipose tissue microRNA expression in cold-induced mice.

    PubMed

    Tao, Cong; Huang, Shujuan; Wang, Yajun; Wei, Gang; Zhang, Yang; Qi, Desheng; Wang, Yanfang; Li, Kui

    2015-07-31

    There are two classic adipose tissues in mammals, white adipose tissue (WAT) and brown adipose tissue (BAT). It has been well known that browning of WAT can be induced by cold exposure. In this study, to identify the novel cold responsive key miRNAs that are involved in browning, mice were housed at 6 °C for 10 days, and deep sequencing of the miRNAs of WAT and BAT was performed. Our data showed that WAT and BAT displayed distinct expression profiles due to their different locations, morphology and biological function. A total of 27 BAT and 29 WAT differentially expressed (DE) miRNAs were identified in response to cold stimulation, respectively (fold change >2 and false discovery rate (FDR) <0.05), of which, 9 were overlapped in both adipose tissues. Furthermore, the potential target genes of the DE miRNAs from BAT and WAT were predicted computationally, and the KEGG pathway analysis revealed the enrichment pathways in cold stimulated adipose tissues. The expression pattern of miR-144-3p/Bmpr1b/Phlda1 and miR-146a-5p/Sphk2 were further measured by qPCR. Finally, we found that miR-146a-5p was significantly induced during the primary adipogenesis caused by BAT differentiation, whereas miR-144-3p was decreased. Our study identifies for the first time the novel miRNAs involved in browning of WAT by sequencing and expands the therapeutic approaches for combating metabolic diseases.

  19. High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals

    SciTech Connect

    Niemantsverdriet, Maarten; Goethem, Marc-Jan van; Bron, Reinier; Hogewerf, Wytse; Brandenburg, Sytze; Langendijk, Johannes A.; Luijk, Peter van; Coppes, Robert P.

    2012-07-15

    Purpose: Radiotherapy using high linear energy transfer (LET) radiation is aimed at efficiently killing tumor cells while minimizing dose (biological effective) to normal tissues to prevent toxicity. It is well established that high LET radiation results in lower cell survival per absorbed dose than low LET radiation. However, whether various mechanisms involved in the development of normal tissue damage may be regulated differentially is not known. Therefore the aim of this study was to investigate whether two actions related to normal tissue toxicity, p53-induced apoptosis and expression of the profibrotic gene PAI-1 (plasminogen activator inhibitor 1), are differentially induced by high and low LET radiation. Methods and Materials: Cells were irradiated with high LET carbon ions or low LET photons. Cell survival assays were performed, profibrotic PAI-1 expression was monitored by quantitative polymerase chain reaction, and apoptosis was assayed by annexin V staining. Activation of p53 by phosphorylation at serine 315 and serine 37 was monitored by Western blotting. Transfections of plasmids expressing p53 mutated at serines 315 and 37 were used to test the requirement of these residues for apoptosis and expression of PAI-1. Results: As expected, cell survival was lower and induction of apoptosis was higher in high -LET irradiated cells. Interestingly, induction of the profibrotic PAI-1 gene was similar with high and low LET radiation. In agreement with this finding, phosphorylation of p53 at serine 315 involved in PAI-1 expression was similar with high and low LET radiation, whereas phosphorylation of p53 at serine 37, involved in apoptosis induction, was much higher after high LET irradiation. Conclusions: Our results indicate that diverse mechanisms involved in the development of normal tissue damage may be differentially affected by high and low LET radiation. This may have consequences for the development and manifestation of normal tissue damage.

  20. Genetic Dissection of Tissue-Specific Apolipoprotein E Function for Hypercholesterolemia and Diet-Induced Obesity

    PubMed Central

    Schlein, Christian; Heeren, Joerg

    2015-01-01

    ApoE deficiency in mice (Apoe−/−) results in severe hypercholesterolemia and atherosclerosis. In diet-induced obesity, Apoe−/− display steatohepatitis but reduced accumulation of triacylglycerides and enhanced insulin sensitivity in white adipose tissue (WAT). Although the vast majority of apoE is expressed by hepatocytes apoE is also abundantly expressed in WAT. As liver and adipose tissue play important roles for metabolism, this study aims to outline functions of both hepatocyte- and adipocyte-derived apoE separately by investigating a novel mouse model of tissue-specific apoE deficiency. Therefore we generated transgenic mice carrying homozygous floxed Apoe alleles. Mice lacking apoE either in hepatocytes (ApoeΔHep) or in adipose tissue (ApoeΔAT) were fed experimental diets. ApoeΔHep exhibited slightly higher body weights, adiposity and liver weights on diabetogenic high fat diet (HFD). Accordingly, hepatic steatosis and markers of inflammation were more pronounced compared to controls. Hypercholesterolemia evoked by lipoprotein remnant accumulation was present in ApoeΔHep mice fed a Western type diet (WTD). Lipidation of VLDL particles and tissue uptake of VLDL were disturbed in ApoeΔHep while the plasma clearance rate remained unaltered. ApoeΔAT did not display any detectable phenotype, neither on HFD nor on WTD. In conclusion, our novel conditional apoE deletion model has proven here the role of hepatocyte apoE for VLDL production and diet-induced dyslipidemia. Specific deletion of apoE in adipocytes cannot reproduce the adipose phenotype of global Apoe−/− mice, suggesting that apoE produced in other cell types than hepatocytes or adipocytes explains the lean and insulin-sensitive phenotype described for Apoe−/− mice. PMID:26695075

  1. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    PubMed

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or

  2. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity

    PubMed Central

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or

  3. Role of tissue factor in a mouse model of thrombotic microangiopathy induced by antiphospholipid antibodies

    PubMed Central

    Seshan, Surya V.; Franzke, Claus-Werner; Redecha, Patricia; Monestier, Marc; Mackman, Nigel

    2009-01-01

    Using different mouse monoclonal and human antiphospholipid (aPL) antibodies, we developed a new animal model of renal injury that shares many features with thrombotic microangiopathy (TMA). We found that more than 1 mechanism/signaling pathway is involved in glomerular injury induced by aPL antibodies in this model. Both complement-dependent and complement-independent pathways were identified that lead to glomerular endothelial cell damage and renal function impairment. We also found that C5a-C5aR interaction is a crucial step for the activation of the coagulation cascade and glomerular injury induced by complement-activating antibodies. In addition, our studies demonstrated complement-independent mechanisms in which reactivity with β2 glycoprotein I (β2GPI) plays an important role in aPL-induced glomerular damage and renal failure. Independently of the mechanism responsible for aPL-induced TMA, mice that express low levels of tissue factor (TF) were protected from glomerular injury. That genetic reduction of TF prevents renal injury induced by different aPL antibodies indicates that TF is a common mediator of glomerular damage and a possible target for selective pharmacologic intervention. Treatment with pravastatin, which down-regulates glomerular TF synthesis, prevents aPL-induced TMA in this mouse model, thus emphasizing that targeting TF might be a good therapeutic intervention in patients with TMA. PMID:19535796

  4. Tissue transglutaminase is involved in mechanical load-induced osteogenic differentiation of human ligamentum flavum cells.

    PubMed

    Chao, Yuan-Hung; Huang, Shih-Yung; Yang, Ruei-Cheng; Sun, Jui-Sheng

    2016-07-01

    Mechanical load-induced osteogenic differentiation might be the key cellular event in the calcification and ossification of ligamentum flavum. The aim of this study was to investigate the influence of tissue transglutaminase (TGM2) on mechanical load-induced osteogenesis of ligamentum flavum cells. Human ligamentum flavum cells were obtained from 12 patients undergoing lumbar spine surgery. Osteogenic phenotypes of ligamentum flavum cells, such as alkaline phosphatase (ALP), Alizarin red-S stain, and gene expression of osteogenic makers were evaluated following the administration of mechanical load and BMP-2 treatment. The expression of TGM2 was evaluated by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) analysis. Our results showed that mechanical load in combination with BMP-2 enhanced calcium deposition and ALP activity. Mechanical load significantly increased ALP and OC gene expression on day 3, whereas BMP-2 significantly increased ALP, OPN, and Runx2 on day 7. Mechanical load significantly induced TGM2 gene expression and enzyme activity in human ligamentum flavum cells. Exogenous TGM2 increased ALP and OC gene expression; while, inhibited TG activity significantly attenuated mechanical load-induced and TGM2-induced ALP activity. In summary, mechanical load-induced TGM2 expression and enzyme activity is involved in the progression of the calcification of ligamentum flavum.

  5. Low Levels of NDRG1 in Nerve Tissue Are Predictive of Severe Paclitaxel-Induced Neuropathy

    PubMed Central

    Sundar, Raghav; Jeyasekharan, Anand D.; Pang, Brendan; Soong, Richie Chuan Teck; Kumarakulasinghe, Nesaretnam Barr; Ow, Samuel Guan Wei; Ho, Jingshan; Lim, Joline Si Jing; Tan, David Shao Peng; Wilder-Smith, Einar P. V.; Bandla, Aishwarya; Tan, Stacey Sze Hui; Asuncion, Bernadette Reyna; Fazreen, Zul; Hoppe, Michal Marek; Putti, Thomas Choudary; Poh, Lay Mui; Goh, Boon Cher; Lee, Soo-Chin

    2016-01-01

    Introduction Sensory peripheral neuropathy caused by paclitaxel is a common and dose limiting toxicity, for which there are currently no validated predictive biomarkers. We investigated the relationship between the Charcot-Marie-Tooth protein NDRG1 and paclitaxel-induced neuropathy. Methods/Materials Archived mammary tissue specimen blocks of breast cancer patients who received weekly paclitaxel in a single centre were retrieved and NDRG1 immunohistochemistry was performed on normal nerve tissue found within the sample. The mean nerve NDRG1 score was defined by an algorithm based on intensity of staining and percentage of stained nerve bundles. NDRG1 scores were correlated with paclitaxel induced neuropathy Results 111 patients were studied. 17 of 111 (15%) developed severe paclitaxel-induced neuropathy. The mean nerve NDRG1 expression score was 5.4 in patients with severe neuropathy versus 7.7 in those without severe neuropathy (p = 0.0019). A Receiver operating characteristic (ROC) curve analysis of the mean nerve NDRG1 score revealed an area under the curve of 0.74 (p = 0.0013) for the identification of severe neuropathy, with a score of 7 being most discriminative. 13/54 (24%) subjects with an NDRG1 score < = 7 developed severe neuropathy, compared to only 4/57 (7%) in those with a score >7 (p = 0.017). Conclusion Low NDRG1 expression in nerve tissue present within samples of surgical resection may identify subjects at risk for severe paclitaxel-induced neuropathy. Since nerve biopsies are not routinely feasible for patients undergoing chemotherapy for early breast cancer, this promising biomarker strategy is compatible with current clinical workflow. PMID:27716814

  6. [Cryobiology and pathologic lesions induced by freezing-thawing processes in prostatic tissue. Second part].

    PubMed

    Escudero Barrilero, Angel; Arias Fúnez, Fernando; Patrón Rodríguez, Rafael Rodríguez; García González, Ricardo; Cuesta Roca, Carmen

    2004-12-01

    Cryosurgery is an emerging technology consisting on controlled freezing of tissues. Good results, maintained in the long-term, have been referred in the treatment of prostate adenocarcinoma. A role as possible substitute of partial nephrectomy in the treatment of renal adenocarcinomas smaller than 4-5 cm is under research. There is no discussion that freezing destroys cellular machinery and triggers several events the final result of which is cell death by necrosis and apoptosis. The decrease of temperature makes extracellular liquid crystallize and creates a hyperosmotic environment, which induces water to go out of the cell producing intracellular dehydration. Intracellular ice is created with fast freezing speeds being attributed the most destructive effect on biological tissues with irreparable damage. In blood vessels, it directly induces endothelial cell death and mechanical lesions of the endothelium; the consequence is the formation of thrombi that obstruct the lumen of the vessel. In the post-thawing phase there is an increase in free radicals formation and neutrophil activity, which induces cellular membrane lipids peroxidation and new endothelium lesions. Tissue destruction is determined by: minimal temperature achieved, freezing speeds, freezing phase duration, number of freezing-thawing cycles provided, and distance to the freezing focus. As we move away from the freezing focus cells are affected in different ways, and there are several mechanisms proposed to explain the lethal action induced by temperatures higher than--40 degrees C. In our series pathologic findings were: necrosis, hemorrhagic areas either developed or not, fibrosis, hyalinization and increases in the relative number of hematic capillaries, microscopic calcifications, basal cells hyperplasia, and transitional or squamous metaplasia. Residual cancer is localized in the areas less affected by freezing. It should be emphasize the scarce morbimortality associated with the procedure. It

  7. Changes in white adipose tissue metabolism induced by resveratrol in rats

    PubMed Central

    2011-01-01

    Background A remarkable range of biological functions have been ascribed to resveratrol. Recently, this polyphenol has been shown to have body fat lowering effects. The aim of the present study was to assess some of the potential underlying mechanisms of action which take place in adipose tissue. Methods Sixteen male Sprague-Dawley rats were randomly divided into two groups: control and treated with 30 mg resveratrol/kg body weight/d. All rats were fed an obesogenic diet and after six weeks of treatment white adipose tissues were dissected. Lipoprotein lipase activity was assessed by fluorimetry, acetyl-CoA carboxylase by radiometry, and malic enzyme, glucose-6P-dehydrogenase and fatty acid synthase by spectrophotometry. Gene expression levels of acetyl-CoA carboxylase, fatty acid synthase, lipoprotein lipase, hormone-sensitive lipase, adipose triglyceride lipase, PPAR-gamma, SREBP-1c and perilipin were assessed by Real time RT-PCR. The amount of resveratrol metabolites in adipose tissue was measured by chromatography. Results There was no difference in the final body weight of the rats; however, adipose tissues were significantly decreased in the resveratrol-treated group. Resveratrol reduced the activity of lipogenic enzymes, as well as that of heparin-releasable lipoprotein lipase. Moreover, a significant reduction was induced by this polyphenol in hormone-sensitive lipase mRNA levels. No significant changes were observed in other genes. Total amount of resveratrol metabolites in adipose tissue was 2.66 ± 0.55 nmol/g tissue. Conclusions It can be proposed that the body fat-lowering effect of resveratrol is mediated, at least in part, by a reduction in fatty acid uptake from circulating triacylglycerols and also in de novo lipogenesis. PMID:21569266

  8. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    NASA Technical Reports Server (NTRS)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  9. Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Sobol, Emil; Baum, Olga; Razansky, Daniel

    2014-12-01

    Tissue modification under laser radiation is emerging as one of the advanced applications of lasers in medicine, with treatments ranging from reshaping and regeneration of cartilage to normalization of the intraocular pressure. Laser-induced structural alterations can be studied using conventional microscopic techniques applied to thin specimen. Yet, development of non-invasive imaging methods for deep tissue monitoring of structural alterations under laser radiation is of great importance, especially for attaining efficient feedback during the procedures. We developed a fast scanning biomicroscopy system that can simultaneously deliver both optoacoustic and pulse-echo ultrasound contrast from intact tissues and show that both modalities allow manifesting the laser-induced changes in cartilage and sclera. Furthermore, images of the sclera samples reveal a crater developing around the center of the laser-irradiated spot as well as a certain degree of thickening within the treated zone, presumably due to pore formation. Finally, we were able to observe selective impregnation of magnetite nanoparticles into the cartilage, thus demonstrating a possible contrast enhancement approach for studying specific treatment effects. Overall, the new imaging approach holds promise for development of noninvasive feedback control systems that could guarantee efficacy and safety of laser-based medical procedures.

  10. Computer-aided tissue characterization using ultrasound-induced thermal effects: analytical formulation and in-vitro animal study

    NASA Astrophysics Data System (ADS)

    Daoud, Mohammad I.; Mousavi, Parvin; Imani, Farhad; Rohling, Robert; Abolmaesumi, Purang

    2011-03-01

    Ultrasound radio-frequency (RF) time series analysis provides an effective tissue characterization method to differentiate between healthy and cancerous prostate tissues. In this paper, an analytical model is presented that partially describes the variations in tissue acoustic properties that accompany ultrasound RF time series acquisition procedures. These ultrasound-induced effects, which depend on tissue mechanical and thermophysical properties, are hypothesized to be among the major contributors to the tissue typing capabilities of the RF time series analysis. The model is used to derive two tissue characterization features. The two features are used with a support vector machine classifier to characterize three animal tissue types: chicken breast, bovine liver, and bovine steak. Accuracy values as high as 90% are achieved when the proposed features are employed to differentiate these tissue types. The proposed model may provide a framework to optimize the ultrasound RF time series analysis for future clinical procedures.

  11. Extended metAFLP approach in studies of tissue culture induced variation (TCIV) in triticale.

    PubMed

    Machczyńska, Joanna; Orłowska, Renata; Zimny, Janusz; Bednarek, Piotr Tomasz

    2014-01-01

    We present the development of the theoretical background of the metAFLP approach which allows for partition of complex variation into sequence changes, de novo methylation and demethylation of the regenerants derived via in vitro tissue culture methods in the case of triticale. It was demonstrated that, independent of whether andro- or embryogenesis was used for plant regeneration, the level of sequence changes identified between regenerants is about 10 %. Moreover, DNA demethylation prevails over de novo methylation of the regenerants compared to the donor plant. The metAFLP approach allows for the evaluation of numerous quantitative characteristics. For instance, one may quantify the number of sites unaffected by tissue culture approaches, global site DNA methylation etc. It is suggested that the approach could be useful for breeders in order to control plant material uniformity or for the evaluation of modified in vitro tissue culture approaches allowing for control of the (epi)mutation level. The extended metAFLP approach presented here delivers sufficient background for the evaluation of software that could facilitate analyses of the tissue culture induced variation. PMID:25242884

  12. Morphologic study of changes of collagenous tissue in the amnion and cervix during prostaglandin-induced abortion and delivery.

    PubMed

    Manabe, Y; Yoshida, Y

    1990-07-01

    Marked dissociation of the cervical collagenous tissue during prostaglandin-induced abortion is well recognized, but the response of collagenous tissue of the amnion to prostaglandin treatment is not known. A morphologic study of amniotic collagenous tissue was performed after prostaglandin-induced abortion and prostaglandin-induced term delivery. The collagenous fibers of the amnion were found to be closely packed with no ground substances and formed in a thick layer. Cervical collagenous tissue of the same patients showed a marked dissociation of fibers and abundant ground substance. The fetus was often delivered within a complete sac at midtrimester. These findings suggest differences in collagenous tissue responses to prostaglandin treatment between the amnion and cervix. PMID:2375370

  13. A High Linoleic Acid Diet does not Induce Inflammation in Mouse Liver or Adipose Tissue.

    PubMed

    Vaughan, Roger A; Garrison, Richard L; Stamatikos, Alexis D; Kang, Minsung; Cooper, Jamie A; Paton, Chad M

    2015-11-01

    Recently, the pro-inflammatory effects of linoleic acid (LNA) have been re-examined. It is now becoming clear that relatively few studies have adequately assessed the effects of LNA, independent of obesity. The purpose of this work was to compare the effects of several fat-enriched but non-obesigenic diets on inflammation to provide a more accurate assessment of LNA's ability to induce inflammation. Specifically, 8-week-old male C57Bl/6 mice were fed either saturated (SFA), monounsaturated (MUFA), LNA, or alpha-linolenic acid enriched diets (50 % Kcal from fat, 22 % wt/wt) for 4 weeks. Chow and high-fat, hyper-caloric diets were used as negative and positive controls, respectively. Expression of pro-inflammatory and pro-coagulant markers from epididymal fat, liver, and plasma were measured along with food intake and body weights. Mice fed the high SFA, MUFA, and high-fat diets exhibited increased pro-inflammatory markers in liver and adipose tissue; however, mice fed LNA for four weeks did not display significant changes in pro-inflammatory or pro-coagulant markers in epididymal fat, liver, or plasma. The present study demonstrates that LNA alone is insufficient to induce inflammation. Instead, it is more likely that hyper-caloric diets are responsible for diet-induced inflammation possibly due to adipose tissue remodeling.

  14. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut.

    PubMed

    Sonnenberg, Gregory F; Monticelli, Laurel A; Elloso, M Merle; Fouser, Lynette A; Artis, David

    2011-01-28

    Fetal CD4(+) lymphoid tissue inducer (LTi) cells play a critical role in the development of lymphoid tissues. Recent studies identified that LTi cells persist in adults and are related to a heterogeneous population of innate lymphoid cells that have been implicated in inflammatory responses. However, whether LTi cells contribute to protective immunity remains poorly defined. We demonstrate that after infection with Citrobacter rodentium, CD4(+) LTi cells were a dominant source of interleukin-22 (IL-22) early during infection. Infection-induced CD4(+) LTi cell responses were IL-23 dependent, and ablation of IL-23 impaired innate immunity. Further, depletion of CD4(+) LTi cells abrogated infection-induced expression of IL-22 and antimicrobial peptides, resulting in exacerbated host mortality. LTi cells were also found to be essential for host protective immunity in lymphocyte-replete hosts. Collectively these data demonstrate that adult CD4(+) LTi cells are a critical source of IL-22 and identify a previously unrecognized function for CD4(+) LTi cells in promoting innate immunity in the intestine.

  15. Ethylene regulation of wound-induced ribonuclease in turnip root tissue.

    PubMed

    Sacher, J A; Engstrom, D; Broomfield, D

    1979-01-01

    Exogenous ethylene enhances the synthesis of wound-induced ribonuclease (RNase) (EC2.7.7.16) in tissue discs of white turnip (Brassica rapa L. var. rapa (L.) Tell.). The half-maximal concentration is <0.01 μl/l ehtylene. Maximal response was obtained with either continuous ethylene treatment, or a 90-min pulse of ethylene followed by flushing with 1500 cm(3) of air/min at standard pressure or 500 cm(3)/min at hypobaric pressure for the remainder of the experiments. Addition of ethylene at 60-75 min after cutting had no effect on RNase activity. Also the effect of ethylene in enhancing RNase decreased about linearly when addition of ethylene was delayed for tissue discs. Since actinomycin-D inhibition of RNase synthesis, observed earlier, is also limited to the initial 45-60 min after cutting, these results are consistent with the view that ethylene is acting at transcription.

  16. Inhibitory effect of tea polyphenols on local tissue damage induced by snake venoms.

    PubMed

    Pithayanukul, P; Leanpolchareanchai, J; Bavovada, R

    2010-01-01

    The methanolic extract of fresh tea leaves of Camellia sinensis L. (Theaceae) (CS) was assayed for its potential to inhibit enzymes with hydrolytic activity in Naja naja kaouthia Lesson (Elapidae) and Calloselasma rhodostoma Kuhl (Viperidae) venoms. These snake venom enzymes are responsible for the early effects of envenomation, such as local tissue damage and inflammation. The CS extract inhibited phospholipase A(2), proteases, hyaluronidase and L-amino acid oxidase in both venoms by in vitro neutralization and inhibited the hemorrhagic and the dermonecrotic activities of the venoms in vivo. It is suggested that the inhibitory potential of the CS extract against local tissue damage induced by snake venoms may be attributed to complexation and chelation between the venom proteins and the phenolic contents of the extract.

  17. Effect of Nrf2 on rat ovarian tissues against atrazine-induced anti-oxidative response.

    PubMed

    Zhao, Fan; Li, Kun; Zhao, Lijing; Liu, Jian; Suo, Qi; Zhao, Jing; Wang, Hebin; Zhao, Shuhua

    2014-01-01

    The environmental persistence and bioaccumulation of herbicide atrazine may pose a significant threat to human health. In this experiment, Wistar rats were treated by 5, 25 and 125 mg·kg(-1) atrazine respectively for 28 days, and the oxidative stress responses as well as the activations of Nrf2 signaling pathway in ovarian tissues induced by atrazine were observed. The results showed that after be treated by atrazine, the proportion of atretic follicles in the rat ovary were increased, the contents of NO and MDA in the tissue homogenates were increased, the over-expressed Nrf2 transferred into the nuclei and played an antioxidant role by up-regulated the expression of II phase detoxifying enzymes such as HO1 and NQO1 and the expression of antioxidant enzymes such as CAT, SOD and GSH-PX.

  18. Tissue stiffness induced by prolonged immobilization of the rat knee joint and relevance of AGEs (pentosidine).

    PubMed

    Lee, Sachiko; Sakurai, Takashi; Ohsako, Masafumi; Saura, Ryuichi; Hatta, Hideo; Atomi, Yoriko

    2010-12-01

    Joints, connective tissues consisting of extracellular matrix (ECM) with few blood vessels, transfer tension to the skeleton in response to environmental demand. Therefore, joint immobilization decreases active and passive mechanical stress, resulting in increased joint stiffness and tissue degeneration; however, the cause of joint stiffness is obscure. Using a rat knee immobilization model, we examined the relationship between range of motion (ROM) and cell numbers and ECM cross-links by accumulation of advanced glycation end products, pentosidine, in the posterior joint capsule of immobilized joints during 16 weeks of immobilization. The left knee joint was immobilized by internal fixation and compared with the non-immobilized right leg. As early as 2 weeks of immobilization, joint ROM and torque significantly decreased and in parallel, disordered alignment of collagen fiber bundles significantly increased, compared with non-immobilized joints. Those changes continued until 16 weeks of immobilization. Significant increases in pentosidine-positive areas after 8 weeks and significantly decreased cell numbers after 16 weeks of immobilization were also observed compared to the contralateral side. A significant negative correlation between tissue stiffness measured by restriction of ROM and accumulation of pentosidine was observed. This study is the first to show that immobilization of knee joints induces articular contracture associated with sequential changes of ECM alignment, influencing ROM and later pentosidine accumulation and decreased cell numbers during the 16-week immobilization period. Pentosidine appears to be an indicator toward a chronic tissue stiffness leading to decreased cell number rather than a cause of ROM restriction induced by joint immobilization.

  19. Androgen Withdrawal Fails to Induce Detectable Tissue Hypoxia in the Rat Prostate

    PubMed Central

    Regter, Sietze; Hedayati, Mohammad; Zhang, Yonggang; Zhou, Haoming; Dalrymple, Susan; Koch, Cameron J.; Isaacs, John T.; DeWeese, Theodore L.

    2015-01-01

    BACKGROUND It has been reported that significant hypoxia may occur in the rat prostate following androgen deprivation (AD). It is well known that hypoxia substantially reduces radiation sensitivity of cells both in vitro and in vivo. Given that contemporary management of men with intermediate and high-risk prostate cancer includes the use of neoadjuvant androgen suppression and radiation, AD-induced hypoxia in the prostate could result in suboptimal therapeutic results. Given this concern, we fully investigate possible AD-induced hypoxia in the ventral prostate (VP) of adult rats by two independent methods. METHODS Tissue pO2 levels in the VP of adult Spraque-Dawley rats were evaluated prior to and at various time points following castration by two independent techniques. First, an Oxylab tissue oxygen monitor with a 240 μm probe was used for quantitative monitoring of global VP oxygenation. Second, fluorescence immunohistochemistry using the hypoxia marker EF5, known to be metabolically activated by hypoxic cells, was used to evaluate cell-to-cell variation in hypoxia at various days post-castration. RESULTS Neither the oxygen probe nor EF5 method demonstrate any substantive change in pO2 levels in the rat VP at any time point post-castration. CONCLUSIONS We find no evidence that the rat VP becomes hypoxic at any point following castration using an animal model that closely mimics the human prostate. These data are in contrast to previous reports suggesting prostatic hypoxia occurs following AD and provide assurance that our present therapeutic strategy of neoadjuvant AD followed by radiation is not compromised by AD-induced tissue hypoxia. PMID:24677180

  20. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    SciTech Connect

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  1. Structure-function relationships in radiation-induced cell and tissue lesions: special references to the contributions of scanning electron microscopy and hematopoietic tissue responses

    SciTech Connect

    Seed, T.M.

    1987-03-01

    Contributions of scanning electron microscopy to the field of radiation biology are briefly reviewed and presented in terms of an overall goal to identify and characterize the structural features of radiation-induced lesions in vital cell and tissue targets. In the context of lesion production, the major radiation-elicited response sequences, the types and nature of measured end points, and governing temporal and radiobiological parameters are discussed and illustrated by using results derived from both in vitro cell systems and in vivo studies that measured tissue responses from various organ systems (respiratory, digestive, circulatory, and central nervous systems). Work in our laboratory on the nature of early and late hematopathologic tissue responses (aplastic anemia and myeloid leukemia) induced by protracted radiation exposure and the bridging effect of repair processes relative to the expression of these pathologies is highlighted.

  2. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  3. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  4. Analysis of laser-induced fluorescence spectra of in vitro plant tissue cultures.

    PubMed

    Muñoz-Muñoz, Ana Celia; Gutiérrez-Pulido, Humberto; Rodríguez-Domínguez, José Manuel; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín; Cervantes-Martínez, Jesús

    2007-04-10

    We demonstrate the effectiveness of laser-induced fluorescence (LIF) for monitoring the development and stress detection of in vitro tissue cultures in a nondestructive and noninvasive way. The changes in LIF spectra caused by the induction of organogenesis, the increase of the F690/F740 ratio as a result of the stress originated in the organogenic explants due to shoot emergence, and the relationship between fluorescence spectra and shoot development were detected by LIF through closed containers of Saintpaulia ionantha. PMID:17384731

  5. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    PubMed Central

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  6. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    PubMed

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  7. Proton-induces and x-ray induced fluorescence analysis of scoliotic tissue

    SciTech Connect

    Panessa-Warren, B J; Kraner, H W; Jones, K W; Weiss, L S

    1980-02-01

    Adolescent idiopathic scoliosis is characterized by a curvature or assymetry of the spine which may become progressively more severe, with clinical symptoms appearing just prior to, or during, puberty. The incidence for scoliosis in the age group from 12 to 14 years of age has been reported as high as 8 to 10%, with more than 80% of the cases occurring in females. Although pathologic changes exist in muscles from both sides of the spinal curvature, and no statistically significant side differences have been reported, morphologic changes suggest that the concanve side is the most affected. This paper reports our preliminary data on the elemental composition of individual muscle fibers derived from convex, concave and gluteal scoliotic muscle, and erythrocytes from scoliotic and normal patients, analyzed by proton induced x-ray emission (PIXE) and x-ray fluorescence spectroscopy (XRF). A new type of specimen holder was designed for this study which offers low x-ray background, minimal absorption and maintenance of a moist environment around the specimen.

  8. Wave trains induced by circularly polarized electric fields in cardiac tissues.

    PubMed

    Feng, Xia; Gao, Xiang; Tang, Juan-Mei; Pan, Jun-Ting; Zhang, Hong

    2015-01-01

    Clinically, cardiac fibrillation caused by spiral and turbulent waves can be terminated by globally resetting electric activity in cardiac tissues with a single high-voltage electric shock, but it is usually associated with severe side effects. Presently, a promising alternative uses wave emission from heterogeneities induced by a sequence of low-voltage uniform electric field pulses. Nevertheless, this method can only emit waves locally near obstacles in turbulent waves and thereby requires multiple obstacles to globally synchronize myocardium and thus to terminate fibrillation. Here we propose a new approach using wave emission from heterogeneities induced by a low-voltage circularly polarized electric field (i.e., a rotating uniform electric field). We find that, this approach can generate circular wave trains near obstacles and they propagate outwardly. We study the characteristics of such circular wave trains and further find that, the higher-frequency circular wave trains can effectively suppress spiral turbulence.

  9. Wave trains induced by circularly polarized electric fields in cardiac tissues

    PubMed Central

    Feng, Xia; Gao, Xiang; Tang, Juan-Mei; Pan, Jun-Ting; Zhang, Hong

    2015-01-01

    Clinically, cardiac fibrillation caused by spiral and turbulent waves can be terminated by globally resetting electric activity in cardiac tissues with a single high-voltage electric shock, but it is usually associated with severe side effects. Presently, a promising alternative uses wave emission from heterogeneities induced by a sequence of low-voltage uniform electric field pulses. Nevertheless, this method can only emit waves locally near obstacles in turbulent waves and thereby requires multiple obstacles to globally synchronize myocardium and thus to terminate fibrillation. Here we propose a new approach using wave emission from heterogeneities induced by a low-voltage circularly polarized electric field (i.e., a rotating uniform electric field). We find that, this approach can generate circular wave trains near obstacles and they propagate outwardly. We study the characteristics of such circular wave trains and further find that, the higher-frequency circular wave trains can effectively suppress spiral turbulence. PMID:26302781

  10. Optical tracking of acoustic radiation force impulse-induced dynamics in a tissue-mimicking phantom

    PubMed Central

    Bouchard, Richard R.; Palmeri, Mark L.; Pinton, Gianmarco F.; Trahey, Gregg E.; Streeter, Jason E.; Dayton, Paul A.

    2009-01-01

    Optical tracking was utilized to investigate the acoustic radiation force impulse (ARFI)-induced response, generated by a 5-MHz piston transducer, in a translucent tissue-mimicking phantom. Suspended 10-μm microspheres were tracked axially and laterally at multiple locations throughout the field of view of an optical microscope with 0.5-μm displacement resolution, in both dimensions, and at frame rates of up to 36 kHz. Induced dynamics were successfully captured before, during, and after the ARFI excitation at depths of up to 4.8 mm from the phantom’s proximal boundary. Results are presented for tracked axial and lateral displacements resulting from on-axis and off-axis (i.e., shear wave) acquisitions; these results are compared to matched finite element method modeling and independent ultrasonically based empirical results and yielded reasonable agreement in most cases. A shear wave reflection, generated by the proximal boundary, consistently produced an artifact in tracked displacement data later in time (i.e., after the initial ARFI-induced displacement peak). This tracking method provides high-frame-rate, two-dimensional tracking data and thus could prove useful in the investigation of complex ARFI-induced dynamics in controlled experimental settings. PMID:19894849

  11. Tissue-type plasminogen activator is not required for kainate-induced motoneuron death in vitro.

    PubMed

    Vandenberghe, W; Van Den Bosch, L; Robberecht, W

    1998-08-24

    Spinal motoneurons are highly vulnerable to kainate both in vivo and in vitro. Tissue-type plasminogen activator (tPA) and plasmin have recently been shown to mediate kainate-induced neuronal death in the mouse hippocampus in vivo. The aim of the present study was to determine whether tPA also mediates the kainate-induced death of motoneurons in vitro. A motoneuron-enriched neuronal population was isolated from the ventral spinal cord of wild-type (WT) and tPA-deficient (tPA-/-) mouse embryos. WT and tPA-/- neurons were cultured on WT and tPA-/- spinal glial feeder layers, respectively. WT and tPA-/- co-cultures were morphologically indistinguishable. Expression of tPA in WT co-cultures was demonstrated using RT-PCR. WT and tPA-/- co-cultures were exposed to kainate for 24 h. The neurotoxic effect of kainate did not differ significantly between WT and tPA-/- cultures. The plasmin inhibitor alpha2-antiplasmin did not protect WT neurons against kainate-induced injury. These results indicate that the plasmin system is not a universal mediator of kainate-induced excitotoxicity.

  12. [Characteristics of brain tissue damage in kaolin-induced infantile rat hydrocephalus].

    PubMed

    Okuyama, T; Hashi, K; Okada, T; Sasaki, S

    1986-01-01

    Experimental hydrocephalus was induced by an intracisternal injection of 4% or 40% kaolin suspension in 2 days old Wistar rats. They were examined histologically and microangiographically 2 weeks after the injection of kaolin. Hydrocephalic rats were classified into 2 groups, severe hydrocephalic group A and mild hydrocephalic group B. In group A, a marked enlargement of the entire ventricular system with a thinning of the cerebral mantle was observed. On the other hand, the dilatation of the fourth ventricle was more pronounced compared with the other ventricles in group B. In group A, a spongy appearance of brain tissue was observed in the periventricular white matter accompanied with an intracerebral cavity. In these edematous areas, the lack of carbon black perfusion was apparent indicating an occurrence of microcirculatory disturbances. These microcirculatory disturbances and mechanical compression to the cerebral parenchyma may produce defective brain tissue (intracerebral cavity formation). The ependymal cell walls and subependymal glial cell layers were well preserved in spite of the damaged periventricular white matter. In group A, kaolin was present in the fourth ventricle and Sylvian aqueduct. Subependymal gliosis containing macrophages and newly produced blood vessels were observed in the region between the periventricular brain tissue and kaolin granules. These findings indicate that kaolin may produce changes in the ependymal cell and cerebral parenchyma as well as fibrosis and meningitis in the subarachnoid space. PMID:3964487

  13. Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder

    PubMed Central

    Kim, Aram; Yu, Hwan Yeul; Heo, Jinbeom; Song, Miho; Shin, Jung-Hyun; Lim, Jisun; Yoon, Soo-Jung; Kim, YongHwan; Lee, Seungun; Kim, Seong Who; Oh, Wonil; Choi, Soo Jin; Shin, Dong-Myung; Choo, Myung-Soo

    2016-01-01

    Abuse of the hallucinogenic drug ketamine promotes the development of lower urinary tract symptoms that resemble interstitial cystitis. The pathophysiology of ketamine-induced cystitis (KC) is largely unknown and effective therapies are lacking. Here, using a KC rat model, we show the therapeutic effects of human umbilical cord-blood (UCB)-derived mesenchymal stem cells (MSCs). Daily injection of ketamine to Sprague-Dawley rats for 2-weeks resulted in defective bladder function, indicated by irregular voiding frequency, increased maximum contraction pressure, and decreased intercontraction intervals and bladder capacity. KC bladders were characterized by severe mast-cell infiltration, tissue fibrosis, apoptosis, upregulation of transforming growth factor-β signaling related genes, and phosphorylation of Smad2 and Smad3 proteins. A single administration of MSCs (1 × 106) into bladder tissue not only significantly ameliorated the aforementioned bladder voiding parameters, but also reversed the characteristic histological and gene-expression alterations of KC bladder. Treatment with the antifibrotic compound N-acetylcysteine also alleviated the symptoms and pathological characteristics of KC bladder, indicating that the antifibrotic capacity of MSC therapy underlies its benefits. Thus, this study for the first-time shows that MSC therapy might help to cure KC by protecting against tissue fibrosis in a KC animal model and provides a foundation for clinical trials of MSC therapy. PMID:27481042

  14. Hypertension induces tissue-specific gene suppression of a fatty acid binding protein in rat aorta.

    PubMed Central

    Sarzani, R; Claffey, K P; Chobanian, A V; Brecher, P

    1988-01-01

    The effect of hypertension on the expression of a fatty acid binding protein localized in the rat aorta was studied. The presence of rat heart fatty acid binding protein (hFABP) was documented in aortic tissue by using a cDNA probe and polyclonal antibodies. Hypertension was induced in groups of rats by implantation of deoxycorticosterone acetate in conjunction with 1% salt in the drinking water (deoxycorticosterone/salt). By the third week of this treatment a marked reduction (by a factor of 20) in the expression of hFABP mRNA in aorta was found, concomitant with a reduction in immunologically detectable protein, suggesting transcriptional regulation. This effect was tissue specific, since no change in the normal amounts of hFABP mRNA in heart, skeletal muscle, or kidney was found. This reduction in aortic hFABP mRNA was also found in mildly hypertensive uninephrectomized rats given salt but no deoxycorticosterone and in normotensive rats given deoxycorticosterone but no excess salt intake. A marked decrease in aortic hFABP mRNA also was observed in the Goldblatt two kidney-one clip hypertensive model, and administration of angiotensin II for 6 days by osmotic minipump also caused a reduction. These findings suggest that hFABP is under complex regulation in aortic tissue and is suppressed by arterial hypertension. Images PMID:3174661

  15. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples

    NASA Astrophysics Data System (ADS)

    Samek, O.; Beddows, D. C. S.; Telle, H. H.; Kaiser, J.; Liška, M.; Cáceres, J. O.; Gonzáles Ureña, A.

    2001-06-01

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the analysis of important minerals and the accumulation of potentially toxic elements in calcified tissue, to trace e.g. the influence of environmental exposure, and other medical or biological factors. This theme was exemplified for quantitative detection and mapping of Al, Pb and Sr in representative samples, including teeth (first teeth of infants, second teeth of children and teeth of adults) and bones (tibia and femur). In addition to identifying and quantifying major and trace elements in the tissues, one- and two-dimensional profiles and maps were generated. Such maps (a) provide time/concentration relations, (b) allow to follow mineralisation of the hydroxyapatite matrix and the migration of the elements within it and (c) enable to identify disease states, such as caries in teeth. In order to obtain quantitative calibration, reference samples in the form of pressed pellets with calcified tissue-equivalent material (majority compound of pellets is CaCO 3) were used whose physical properties closely resembled hydroxyapatite. Compounds of Al, Sr and Pb were added to the pellets, containing atomic concentrations in the range 100-10 000 ppm relative to the Ca content of the matrix. Analytical results based on this calibration against artificial samples for the trace elements under investigation agree with literature values, and with our atomic absorption spectroscopy (AAS) cross-validation measurements.

  16. Wound-induced changes in mRNA populations in tomato pericarp tissue

    SciTech Connect

    Henstrand, J.M.; Handa, A.K.

    1987-04-01

    Immature green tomato pericarp tissue was wounded by cutting into small pieces. At various intervals, ethylene production was monitored and the corresponding tissue harvested for mRNA extraction. Poly (A)/sup +/ RNA was fractionated from total RNA using oligo (dT)-cellulose chromatography and was translated in vitro in a rabbit reticulocyte lysate system using /sup 35/S-methionine. Labeled products were subjected to one and two dimensional polyacrylamide gel electrophoresis (PAGE) to analyze wound-induced changes in mRNA populations. Analyses of autoradiograms of corresponding single dimension SDS-PAGE showed changes in at least 12 major polypeptides with 6 declining (18, 19, 24, 36, 44, 69 kD) and 6 increasing (21, 41, 46, 54, 75, > 94 kD) after wounding. Among the polypeptides resolved (over 200) on two dimensional PAGE, at least 15 showed dramatic increases in the wounded tissue. Results indicate that wounding of tomato pericarp causes induction of synthesis and accumulation of several mRNA species while inhibiting production of relatively few mRNA species.

  17. Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder.

    PubMed

    Kim, Aram; Yu, Hwan Yeul; Heo, Jinbeom; Song, Miho; Shin, Jung-Hyun; Lim, Jisun; Yoon, Soo-Jung; Kim, YongHwan; Lee, Seungun; Kim, Seong Who; Oh, Wonil; Choi, Soo Jin; Shin, Dong-Myung; Choo, Myung-Soo

    2016-01-01

    Abuse of the hallucinogenic drug ketamine promotes the development of lower urinary tract symptoms that resemble interstitial cystitis. The pathophysiology of ketamine-induced cystitis (KC) is largely unknown and effective therapies are lacking. Here, using a KC rat model, we show the therapeutic effects of human umbilical cord-blood (UCB)-derived mesenchymal stem cells (MSCs). Daily injection of ketamine to Sprague-Dawley rats for 2-weeks resulted in defective bladder function, indicated by irregular voiding frequency, increased maximum contraction pressure, and decreased intercontraction intervals and bladder capacity. KC bladders were characterized by severe mast-cell infiltration, tissue fibrosis, apoptosis, upregulation of transforming growth factor-β signaling related genes, and phosphorylation of Smad2 and Smad3 proteins. A single administration of MSCs (1 × 10(6)) into bladder tissue not only significantly ameliorated the aforementioned bladder voiding parameters, but also reversed the characteristic histological and gene-expression alterations of KC bladder. Treatment with the antifibrotic compound N-acetylcysteine also alleviated the symptoms and pathological characteristics of KC bladder, indicating that the antifibrotic capacity of MSC therapy underlies its benefits. Thus, this study for the first-time shows that MSC therapy might help to cure KC by protecting against tissue fibrosis in a KC animal model and provides a foundation for clinical trials of MSC therapy. PMID:27481042

  18. Laser-induced breakdown spectroscopy: a new approach for nanoparticle's mapping and quantification in organ tissue.

    PubMed

    Sancey, Lucie; Motto-Ros, Vincent; Kotb, Shady; Wang, Xiaochun; Lux, François; Panczer, Gérard; Yu, Jin; Tillement, Olivier

    2014-01-01

    Emission spectroscopy of laser-induced plasma was applied to elemental analysis of biological samples. Laser-induced breakdown spectroscopy (LIBS) performed on thin sections of rodent tissues: kidneys and tumor, allows the detection of inorganic elements such as (i) Na, Ca, Cu, Mg, P, and Fe, naturally present in the body and (ii) Si and Gd, detected after the injection of gadolinium-based nanoparticles. The animals were euthanized 1 to 24 hr after intravenous injection of particles. A two-dimensional scan of the sample, performed using a motorized micrometric 3D-stage, allowed the infrared laser beam exploring the surface with a lateral resolution less than 100 μm. Quantitative chemical images of Gd element inside the organ were obtained with sub-mM sensitivity. LIBS offers a simple and robust method to study the distribution of inorganic materials without any specific labeling. Moreover, the compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of the same biological tissue with different types of response: elemental, molecular, or cellular.

  19. Castration induced browning in subcutaneous white adipose tissue in male mice.

    PubMed

    Hashimoto, Osamu; Noda, Tatsuya; Morita, Atsushi; Morita, Masahiro; Ohtsuki, Hirofumi; Sugiyama, Makoto; Funaba, Masayuki

    2016-09-30

    We demonstrated that castration enhanced the expression of uncoupling protein 1 (Ucp1), a thermogenic protein, in brown adipose tissue (BAT) and subcutaneous (sc) white adipose tissue (WAT) in male mice. Castration of male mice increased body temperature and reduced body weight gain compared with those of sham-operated mice. BAT Ucp1 mRNA expression in castrated male mice was significantly higher than that in sham-operated mice. Histologically, cells with multilocular fat droplets were observed in the castrated inguinal scWAT. Immunohistochemical staining revealed that these cells positively reacted with the anti-Ucp1 antibody. The Ucp1-positive area near the inguinal lymph node in the castrated WAT was extensive compared with that of the sham-operated WAT. Castration-induced Ucp1 up-regulation in scWAT was suppressed by high-fat diet feeding. These findings suggest that thermogenesis by BAT activation and scWAT browning contribute to castration-induced inhibition of body weight gain. However, considering that the effect of castration was blunted by high-fat diet consumption, thermogenesis stimulation in response to castration is inhibited by chronic over-nutrition. PMID:27608598

  20. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity.

    PubMed

    Puhlmann, Markus; Weinreich, David M; Farma, Jeffrey M; Carroll, Nancy M; Turner, Ewa M; Alexander, H Richard

    2005-09-30

    IL-1beta is a pleotropic cytokine that may mediate increased procoagulant activity and permeability in endothelial tissue during inflammatory conditions. The procoagulant effects of IL-1beta are mediated through induction of tissue factor (TF) but its alterations on vascular permeability are not well characterized. We found that IL-1beta induced a rapid and dose-dependent increase in TF activity in human umbilical vein endothelial cells (ECs) under routine culture conditions. However, IL-1beta caused a rapid and marked increase in permeability across confluent EC monolayers using a two-compartment in vitro model only in the presence of factor VIII-deficient plasma that was completely abrogated by neutralizing anti-TF antibody pre-treatment. In vitro permeability was associated with loss of EC surface expression of VE-cadherin and contraction of F-actin cytoskeletal elements that resulted in EC intercellular gap formation. These data demonstrate that IL-1beta induces marked changes in permeability across activated endothelium via a TF dependent mechanism and suggest that modulation of TF activity may represent a strategy to treat various acute and chronic inflammatory conditions mediated by this cytokine.

  1. Heat-induced changes in the mechanics of a collagenous tissue: isothermal, isotonic shrinkage.

    PubMed

    Chen, S S; Wright, N T; Humphrey, J D

    1998-06-01

    We present data from isothermal, isotonic-shrinkage tests wherein bovine chordae tendineae were subjected to well-defined constant temperatures (from 65 to 90 degrees C), durations of heating (from 180 to 3600 s), and isotonic uniaxial stresses during heating (from 100 to 650 kPa). Tissue response during heating and "recovery" at 37 degrees C following heating was evaluated in terms of the axial shrinkage, a gross indicator of underlying heat-induced denaturation. There were three key findings. First, scaling the heating time via temperature and load-dependent characteristic times for the denaturation process collapsed all shrinkage data to a single curve, and thereby revealed a time-temperature-load equivalency. Second, the characteristic times exhibited an Arrhenius-type behavior with temperature wherein the slopes were nearly independent of applied load--this suggested that applied loads during heating affect the activation entropy, not energy. Third, all specimens exhibited a time-dependent, partial recovery when returned to 37 degrees C following heating, but the degree of recovery decreased with increases in the load imposed during heating. These new findings on heat-induced changes in tissue behavior will aid in the design of improved clinical heating protocols and provide guidance for the requisite constitutive formulations. PMID:10412406

  2. Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle's Mapping and Quantification in Organ Tissue

    PubMed Central

    Sancey, Lucie; Motto-Ros, Vincent; Kotb, Shady; Wang, Xiaochun; Lux, François; Panczer, Gérard; Yu, Jin; Tillement, Olivier

    2014-01-01

    Emission spectroscopy of laser-induced plasma was applied to elemental analysis of biological samples. Laser-induced breakdown spectroscopy (LIBS) performed on thin sections of rodent tissues: kidneys and tumor, allows the detection of inorganic elements such as (i) Na, Ca, Cu, Mg, P, and Fe, naturally present in the body and (ii) Si and Gd, detected after the injection of gadolinium-based nanoparticles. The animals were euthanized 1 to 24 hr after intravenous injection of particles. A two-dimensional scan of the sample, performed using a motorized micrometric 3D-stage, allowed the infrared laser beam exploring the surface with a lateral resolution less than 100 μm. Quantitative chemical images of Gd element inside the organ were obtained with sub-mM sensitivity. LIBS offers a simple and robust method to study the distribution of inorganic materials without any specific labeling. Moreover, the compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of the same biological tissue with different types of response: elemental, molecular, or cellular. PMID:24962015

  3. Circadian-disruption-induced gene expression changes in rodent mammary tissues

    PubMed Central

    Kochan, David Z.; Ilnytskyy, Yaroslav; Golubov, Andrey; Deibel, Scott H.; McDonald, Robert J.; Kovalchuk, Olga

    2016-01-01

    Evidence is mounting that circadian disruption (CD) is a potential carcinogen in breast cancer development. However, despite the growing concern, to our knowledge, no studies have attempted a genome-wide analysis of CD-induced gene expression changes in mammary tissues. Using a rodent model system, a proven photoperiod-shifting paradigm, varying degrees of CD, and Illumina sequencing, we performed an exploratory genome-wide mRNA analysis in mammary tissues. Even though our analysis did not identify any significant patterns in mRNA levels based on the degree of CD, and the majority of groups did not show changes in gene expression on a large-scale, one group (two-week chronic ZT19) displayed 196 differentially expressed genes, 51 of which have been linked to breast cancer. Through gene-specific pathway analysis, the data illustrate that CD may promote breast cancer development through downregulation of DNA repair and p53 signaling pathways, thus promoting genomic instability and cancer development. Although these results have to be interpreted with caution because only a single group illustrated drastic changes in transcript levels, they indicate that chronic CD may directly induce changes in gene expression on a large-scale with potentially malignant consequences. PMID:27014724

  4. Non-lymphoid tissue lesions induced by or associated with herpesvirus.

    PubMed

    Weiland, L H

    1988-09-01

    The members of herpesvirus group are variable in their effects on tissues of the human body. This results in a wide variety of clinical diseases and syndromes. Some produce impressive pathological lesions. Those produced by the viruses with tropism for ectodermally derived cells include herpes simplex virus and varicella zoster virus are well recognized by practically all medical specialists and even by those who are not medically oriented. Cytomegalovirus has tropism for epithelial cells that are ectodermally derived. Epstein-Barr virus (EBV) and human lymphotropic virus induce profound changes in the proliferative capabilities of lymphoid tissues. The non-lymphoid lesions induced by EBV are unique and fascinating. Leading the list is nasopharyngeal carcinoma (NPC), not all of which seem related to EBV. Only the non-keratinizing NPC has a convincing relationship to the virus. Other unusual lesions with suggested association with EBV are salivary glands tumors (benign and malignant) and undifferentiated thymic carcinomas. Both malignant lymphoepithelial lesions (anaplastic carcinoma) of salivary glands and anaplastic carcinoma of the thymus have microscopic similarity to undifferentiated NPC.

  5. Quantitative Ultrasonic Evaluation of Radiation-Induced Late Tissue Toxicity: Pilot Study of Breast Cancer Radiotherapy

    SciTech Connect

    Liu Tian; Zhou Jun; Yoshida, Emi J.; Woodhouse, Shermian A.; Schiff, Peter B.; Wang, Tony J.C.; Lu Zhengfeng; Pile-Spellman, Eliza; Zhang Pengpeng; Kutcher, Gerald J.

    2010-11-01

    Purpose: To investigate the use of advanced ultrasonic imaging to quantitatively evaluate normal-tissue toxicity in breast-cancer radiation treatment. Methods and Materials: Eighteen breast cancer patients who received radiation treatment were enrolled in an institutional review board-approved clinical study. Radiotherapy involved a radiation dose of 50.0 to 50.4 Gy delivered to the entire breast, followed by an electron boost of 10.0 to 16.0 Gy delivered to the tumor bed. Patients underwent scanning with ultrasound during follow-up, which ranged from 6 to 94 months (median, 22 months) postradiotherapy. Conventional ultrasound images and radio-frequency (RF) echo signals were acquired from treated and untreated breasts. Three ultrasound parameters, namely, skin thickness, Pearson coefficient, and spectral midband fit, were computed from RF signals to measure radiation-induced changes in dermis, hypodermis, and subcutaneous tissue, respectively. Ultrasound parameter values of the treated breast were compared with those of the untreated breast. Ultrasound findings were compared with clinical assessment using Radiation Therapy Oncology Group (RTOG) late-toxicity scores. Results: Significant changes were observed in ultrasonic parameter values of the treated vs. untreated breasts. Average skin thickness increased by 27.3%, from 2.05 {+-} 0.22mm to 2.61 {+-} 0.52mm; Pearson coefficient decreased by 31.7%, from 0.41 {+-} 0.07 to 0.28 {+-} 0.05; and midband fit increased by 94.6%, from -0.92 {+-} 7.35 dB to 0.87 {+-} 6.70 dB. Ultrasound evaluations were consistent with RTOG scores. Conclusions: Quantitative ultrasound provides a noninvasive, objective means of assessing radiation-induced changes to the skin and subcutaneous tissue. This imaging tool will become increasingly valuable as we continue to improve radiation therapy technique.

  6. Severe Burn Injury Induces Thermogenically Functional Mitochondria in Murine White Adipose Tissue.

    PubMed

    Porter, Craig; Herndon, David N; Bhattarai, Nisha; Ogunbileje, John O; Szczesny, Bartosz; Szabo, Csaba; Toliver-Kinsky, Tracy; Sidossis, Labros S

    2015-09-01

    Chronic cold exposure induces functionally thermogenic mitochondria in the inguinal white adipose tissue (iWAT) of mice. Whether this response occurs in pathophysiological states remains unclear. The purpose of this study was to determine the impact of severe burn trauma on iWAT mitochondrial function in mice. Male BALB/c mice (10-12 weeks) received full-thickness scald burns to ∼30% of the body surface area. Inguinal white adipose tissue was harvested from mice at 1, 4, 10, 20, and 40 days postinjury. Total and uncoupling protein 1 (UCP1)-dependent mitochondrial thermogenesis were determined in iWAT. Citrate synthase activity was determined as a proxy of mitochondrial abundance. Immunohistochemistry was performed to assess iWAT morphology and UCP1 expression. Uncoupling protein 1-dependent respiration was significantly greater at 4 and 10 days after burn compared with sham, peaking at 20 days after burn (P < 0.001). Citrate synthase activity was threefold greater at 4, 10, 20, and 40 days after burn versus sham (P < 0.05). Per mitochondrion, UCP1 function increased after burn trauma (P < 0.05). After burn trauma, iWAT exhibited numerous multilocular lipid droplets that stained positive for UCP1. The current findings demonstrate the induction of thermogenically competent mitochondria within rodent iWAT in a model of severe burn trauma. These data identify a specific pathology that induces the browning of white adipose tissue in vivo and may offer a mechanistic explanation for the chronic hypermetabolism observed in burn victims.

  7. Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in the tissue layers of the gastrointestinal tract.

    PubMed

    Loh, C S; Vernon, D; MacRobert, A J; Bedwell, J; Bown, S G; Brown, S B

    1993-09-01

    The accumulation of endogenous porphyrins in rats following systemic administration of 5-aminolaevulinic acid (ALA) has been examined to assess the photosensitization characteristics of this technique for photodynamic therapy (PDT) and chemical extraction assays with fluorescence and absorbance detection of the porphyrin content have been carried out. We compared the results obtained using quantitative microfluorimetry on normal gastric and colonic tissues in rats at 0.5, 1, 2, 4 and 6 h and chemically induced duodenal tumours 2 and 4.5 h after intravenous administration of ALA at a dose of 200 mg kg-1. With chemical extraction followed by high performance liquid chromatography analysis, protoporphyrin IX (PpIX) was found to be the predominant porphyrin present, reaching peak levels of several microgrammes per gramme at 2-4 h in each type of tissue; a small amount of coproporphyrin was detected at 0.5 and 2 h in normal gastric mucosa and duodenal tumour respectively. Both the extraction assay and quantitative microfluorimetry showed that the porphyrin fluorescence builds up rapidly in the mucosal layers of the colon and stomach, reaching a maximum at 2 h, whereas lower fluorescence levels were found with a slower rate of accumulation in the corresponding muscularis layers. A significant PpIX content was found in the duodenal tumour, with a maximum of 7.1 micrograms g-1 4.5 h after ALA administration. We conclude that systemic administration of ALA can induce effective tissue sensitization with protoporphyrin IX and appears to be a promising technique for PDT.

  8. Hypoxia-Induced miR-210 Modulates Tissue Response to Acute Peripheral Ischemia

    PubMed Central

    Zaccagnini, Germana; Maimone, Biagina; Di Stefano, Valeria; Fasanaro, Pasquale; Greco, Simona; Perfetti, Alessandra; Capogrossi, Maurizio C.; Gaetano, Carlo

    2014-01-01

    Abstract Aims: Peripheral artery disease is caused by the restriction or occlusion of arteries supplying the leg. Better understanding of the molecular mechanisms underpinning tissue response to ischemia is urgently needed to improve therapeutic options. The aim of this study is to investigate hypoxia-induced miR-210 regulation and its role in a mouse model of hindlimb ischemia. Results: miR-210 expression was induced by femoral artery dissection. To study the role of miR-210, its function was inhibited by the systemic administration of a miR-210 complementary locked nucleic acid (LNA)-oligonucleotide (anti-miR-210). In the ischemic skeletal muscle, anti-miR-210 caused a marked decrease of miR-210 compared with LNA-scramble control, while miR-210 target expression increased accordingly. Histological evaluation of acute tissue damage showed that miR-210 inhibition increased both apoptosis at 1 day and necrosis at 3 days. Capillary density decrease caused by ischemia was significantly more pronounced in anti-miR-210-treated mice; residual limb perfusion decreased accordingly. To investigate the molecular mechanisms underpinning the increased damage triggered by miR-210 blockade, we tested the impact of anti-miR-210 treatment on the transcriptome. Gene expression analysis highlighted the deregulation of mitochondrial function and redox balance. Accordingly, oxidative damage was more severe in the ischemic limb of anti-miR-210-treated mice and miR-210 inhibition increased oxidative metabolism. Further, oxidative-stress resistant p66Shc-null mice displayed decreased tissue damage following ischemia. Innovation: This study identifies miR-210 as a crucial element in the adaptive mechanisms to acute peripheral ischemia. Conclusions: The physiopathological significance of miR-210 is context dependent. In the ischemic skeletal muscle it seems to be cytoprotective, regulating oxidative metabolism and oxidative stress. Antioxid. Redox Signal. 21, 1177–1188. PMID:23931770

  9. Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats.

    PubMed

    Prasath, Gopalan Sriram; Sundaram, Chinnakrishnan Shanmuga; Subramanian, Sorimuthu Pillai

    2013-10-01

    Persistent hyperglycemia is associated with chronic oxidative stress which contributes to the development and progression of diabetes-associated complications. The sensitivity of pancreatic β-cells to oxidative stress has been attributed to their low content of antioxidants compared with other tissues. Bioactive compounds with potent antidiabetic properties have been shown to ameliorate hyperglycemia mediated oxidative stress. Recently, we have reported that oral administration of fisetin (10 mg/Kg b.w.), a bioflavonoid found to be present in strawberries, persimmon, to STZ-induced experimental diabetic rats significantly improved normoglycemia. The present study was aimed to evaluate the antioxidant potential of fisetin in both in vitro and in vivo. Diabetes was induced by single intraperitoneal injection of streptozotocin (50 mg/kg body weight). Fisetin was administered orally for 30 days. At the end of the study, all animals were killed. Blood samples were collected for the biochemical estimations. The antioxidant status was evaluated. Histological examinations were performed on pancreatic tissues. Fisetin treatment showed a significant decline in the levels of blood glucose, glycosylated hemoglobin (HbA1c), NF-kB p65 unit (in pancreas) and IL-1β (plasma), serum nitric oxide (NO) with an elevation in plasma insulin. The treatment also improved the antioxidant status in pancreas as well as plasma of diabetic rats indicating the antioxidant potential of fisetin. In addition, the results of DPPH and ABTS assays substantiate the free radical scavenging activity of fisetin. Histological studies of the pancreas also evidenced the tissue protective nature of fisetin. It is concluded that, fisetin possesses antioxidant and anti-inflammatory property and may be considered as an adjunct for the treatment of diabetes.

  10. Effect of 3-methylcholanthrene-induced increases in ascorbic acid levels on tissue. beta. -glucuronidase activity in rats

    SciTech Connect

    Calabrese, E.J.; Barrett, T.J.; Leonard, D.A.; Horton, H.M.; Kenyon, E.M.

    1988-01-01

    The interrelationship between tissue ascorbic acid levels and tissue ..beta..-glucuronidase activity was examined in rats injected with 3-methylcholanthrene, an agent which induces ascorbic acid synthesis in rats. Six Fisher 344 rats were dosed intraperitoneally (IP) with 30 mg/kg of 3-methylcholanthrene. Ascorbic acid levels and ..beta..-glucuronidase (..beta..-G) activity were determined for lung, liver and kidney tissues. In a follow-up study, rats were dosed for three consecutive days with 3-methylcholanthrene. Controls in both groups were dosed IP with Emulphor (EL-620). Animals were sacrificed one week after the final dosage and lung, liver and kidney tissues were examined.

  11. NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction

    PubMed Central

    Katkar, Gajanan D.; Sundaram, Mahalingam S.; NaveenKumar, Somanathapura K.; Swethakumar, Basavarajaiah; Sharma, Rachana D.; Paul, Manoj; Vishalakshi, Gopalapura J.; Devaraja, Sannaningaiah; Girish, Kesturu S.; Kemparaju, Kempaiah

    2016-01-01

    Indian Echis carinatus bite causes sustained tissue destruction at the bite site. Neutrophils, the major leukocytes in the early defence process, accumulate at the bite site. Here we show that E. carinatus venom induces neutrophil extracellular trap (NET) formation. The NETs block the blood vessels and entrap the venom toxins at the injection site, promoting tissue destruction. The stability of NETs is attributed to the lack of NETs-degrading DNase activity in E. carinatus venom. In a mouse tail model, mice co-injected with venom and DNase 1, and neutropenic mice injected with the venom, do not develop NETs, venom accumulation and tissue destruction at the injected site. Strikingly, venom-induced mice tail tissue destruction is also prevented by the subsequent injection of DNase 1. Thus, our study suggests that DNase 1 treatment may have a therapeutic potential for preventing the tissue destruction caused by snake venom. PMID:27093631

  12. Do seed VLCFAs trigger spongy tissue formation in Alphonso mango by inducing germination?

    PubMed

    Shivashankar, Seshadri; Sumathi, Manoharan

    2015-06-01

    Spongy tissue is a physiological disorder in Alphonso mango caused by the inception of germination-associated events during fruit maturation on the tree, rendering the fruit inedible. Inter-fruit competition during active fruit growth is a major contributing factor for the disorder which leads to reduced fat content in spongy tissue affected fruits. This study was, therefore, carried out to determine the possible association between seed fats and ST formation. The study of the fat content during fruit growth showed that it increased gradually from 40 percent fruit maturity. At 70 percent maturity, however, there was a sudden increase of fat content of whole fruit, leading to acute competition and resulting in differential allocation of resources among developing fruits. As a result, the seed in spongy-tissue-affected mature ripe fruit showed a marked drop in the levels of fats and the two very long chain fatty acids (VLCFAs), tetracosanoic acid and hexacosanoic acid together with an increase of linolenic acid and a fall in oleic acid contents, which are known to be key determinants for the initiation of pre-germination events in seed. Subsequently, a rise in the level of cytokinin and gibberellins in ST seed associated with a fall in abscisic acid level clearly signalled the onset of germination. Concurrently, a significant reduction in the ratio of linolenic acid/linoleic acid in pulp led to the loss of membrane integrity, cell death and the eventual formation of spongy tissue. Based on the above, it is concluded that a significant reduction in the biosynthesis of VLCFAs in seeds during fruit growth might trigger pre-germination events followed by a cascade of biochemical changes in the pulp, leading to lipid peroxidation and membrane injury in pulp culminating in ST development. Thus, this study presents crucial experimental evidence to highlight the critical role played by VLCFAs in inducing ST formation in Alphonso mango during the pre-harvest phase of fruit

  13. Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing

    PubMed Central

    Moutos, Franklin T.; Glass, Katherine A.; Compton, Sarah A.; Ross, Alison K.; Gersbach, Charles A.; Estes, Bradley T.

    2016-01-01

    Biological resurfacing of entire articular surfaces represents an important but challenging strategy for treatment of cartilage degeneration that occurs in osteoarthritis. Not only does this approach require anatomically sized and functional engineered cartilage, but the inflammatory environment within an arthritic joint may also inhibit chondrogenesis and induce degradation of native and engineered cartilage. The goal of this study was to use adult stem cells to engineer anatomically shaped, functional cartilage constructs capable of tunable and inducible expression of antiinflammatory molecules, specifically IL-1 receptor antagonist (IL-1Ra). Large (22-mm-diameter) hemispherical scaffolds were fabricated from 3D woven poly(ε-caprolactone) (PCL) fibers into two different configurations and seeded with human adipose-derived stem cells (ASCs). Doxycycline (dox)-inducible lentiviral vectors containing eGFP or IL-1Ra transgenes were immobilized to the PCL to transduce ASCs upon seeding, and constructs were cultured in chondrogenic conditions for 28 d. Constructs showed biomimetic cartilage properties and uniform tissue growth while maintaining their anatomic shape throughout culture. IL-1Ra–expressing constructs produced nearly 1 µg/mL of IL-1Ra upon controlled induction with dox. Treatment with IL-1 significantly increased matrix metalloprotease activity in the conditioned media of eGFP-expressing constructs but not in IL-1Ra–expressing constructs. Our findings show that advanced textile manufacturing combined with scaffold-mediated gene delivery can be used to tissue engineer large anatomically shaped cartilage constructs that possess controlled delivery of anticytokine therapy. Importantly, these cartilage constructs have the potential to provide mechanical functionality immediately upon implantation, as they will need to replace a majority, if not the entire joint surface to restore function. PMID:27432980

  14. Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing.

    PubMed

    Moutos, Franklin T; Glass, Katherine A; Compton, Sarah A; Ross, Alison K; Gersbach, Charles A; Guilak, Farshid; Estes, Bradley T

    2016-08-01

    Biological resurfacing of entire articular surfaces represents an important but challenging strategy for treatment of cartilage degeneration that occurs in osteoarthritis. Not only does this approach require anatomically sized and functional engineered cartilage, but the inflammatory environment within an arthritic joint may also inhibit chondrogenesis and induce degradation of native and engineered cartilage. The goal of this study was to use adult stem cells to engineer anatomically shaped, functional cartilage constructs capable of tunable and inducible expression of antiinflammatory molecules, specifically IL-1 receptor antagonist (IL-1Ra). Large (22-mm-diameter) hemispherical scaffolds were fabricated from 3D woven poly(ε-caprolactone) (PCL) fibers into two different configurations and seeded with human adipose-derived stem cells (ASCs). Doxycycline (dox)-inducible lentiviral vectors containing eGFP or IL-1Ra transgenes were immobilized to the PCL to transduce ASCs upon seeding, and constructs were cultured in chondrogenic conditions for 28 d. Constructs showed biomimetic cartilage properties and uniform tissue growth while maintaining their anatomic shape throughout culture. IL-1Ra-expressing constructs produced nearly 1 µg/mL of IL-1Ra upon controlled induction with dox. Treatment with IL-1 significantly increased matrix metalloprotease activity in the conditioned media of eGFP-expressing constructs but not in IL-1Ra-expressing constructs. Our findings show that advanced textile manufacturing combined with scaffold-mediated gene delivery can be used to tissue engineer large anatomically shaped cartilage constructs that possess controlled delivery of anticytokine therapy. Importantly, these cartilage constructs have the potential to provide mechanical functionality immediately upon implantation, as they will need to replace a majority, if not the entire joint surface to restore function. PMID:27432980

  15. Lipopolysaccharide induces catecholamine production in mesenteric adipose tissue of rats previously exposed to immobilization stress.

    PubMed

    Vargovic, P; Laukova, M; Ukropec, J; Manz, G; Kvetnansky, R

    2016-07-01

    Catecholamines (CAs) are mainly produced by sympathoadrenal system but their de novo production has been also observed in adipose tissue cells. The aim of this work was to investigate whether immune challenge induced by lipopolysaccharide (LPS) modulates biosynthesis of CAs in mesenteric adipose tissue (MWAT), as well as whether previous exposure to immobilization (IMO) stress could modulate this process. Sprague-Dawley rats were exposed to single (2 h) or repeated (2 h/7 days) IMO and afterwards injected with LPS (i.p., 100 μg/kg body weight) and sacrificed 3 h later. LPS did not alter CA biosynthesis in MWAT in control rats. Single and repeated IMO elevated CAs and expression of CA biosynthetic enzymes in MWAT, including adipocyte and stromal/vascular fractions (SVF). Repeated IMO followed by LPS treatment led to the up-regulation of CA-biosynthetic enzymes expression, elevation of CAs in SVF but depletion of norepinephrine and epinephrine in adipocyte fraction. Prior IMO caused a marked LPS-induced macrophage infiltration in MWAT as evaluated by F4/80 expression. A positive correlation between expression of tyrosine hydroxylase and F4/80 suggests macrophages as the main source of LPS-induced CA production in MWAT. Furthermore, prior exposure to the single or repeated IMO differently affected immune responses following LPS treatment by modulation of inflammatory cytokine expression. These data suggest that stress might be a significant modulator of immune response in MWAT via stimulation of the macrophage infiltration associated with cytokine response and de novo production of CAs. PMID:27314578

  16. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration

    PubMed Central

    Li, Na; Parrish, Marcus; Chan, Tze Khee; Yin, Lu; Rai, Prashant; Yoshiyuki, Yamada; Abolhassani, Nona; Tan, Kong Bing; Kiraly, Orsolya; Chow, Vincent TK; Engelward, Bevin P.

    2016-01-01

    Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe Influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of two weeks in vivo. We show that influenza induces DNA damage both when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage, persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67 positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DSB repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome. PMID:25809161

  17. Method And Apparatus For Examining A Tissue Using The Spectral Wing Emission Therefrom Induced By Visible To Infrared Photoexcitation.

    DOEpatents

    Alfano, Robert R.; Demos, Stavros G.; Zhang, Gang

    2003-12-16

    Method and an apparatus for examining a tissue using the spectral wing emission therefrom induced by visible to infrared photoexcitation. In one aspect, the method is used to characterize the condition of a tissue sample and comprises the steps of (a) photoexciting the tissue sample with substantially monochromatic light having a wavelength of at least 600 nm; and (b) using the resultant far red and near infrared spectral wing emission (SW) emitted from the tissue sample to characterize the condition of the tissue sample. In one embodiment, the substantially monochromatic photoexciting light is a continuous beam of light, and the resultant steady-state far red and near infrared SW emission from the tissue sample is used to characterize the condition of the tissue sample. In another embodiment, the substantially monochromatic photoexciting light is a light pulse, and the resultant time-resolved far red and near infrared SW emission emitted from the tissue sample is used to characterize the condition of the tissue sample. In still another embodiment, the substantially monochromatic photoexciting light is a polarized light pulse, and the parallel and perpendicular components of the resultant polarized time-resolved SW emission emitted from the tissue sample are used to characterize the condition of the tissue sample.

  18. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes.

    PubMed

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  19. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    PubMed Central

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K.; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  20. Effect of Urtica dioica L. (Urticaceae) on testicular tissue in STZ-induced diabetic rats.

    PubMed

    Ghafari, S; Balajadeh, B Kabiri; Golalipour, M J

    2011-08-15

    Urtica dioica L. (Stinging nettle) has already been known for a long time as a medicinal plant in the world. This histopathological and morphometrical study was conducted to determine the effects of the hydroalcoholic extract of Urtica dioica leaves on testis of streptozotocin-induced diabetic rats. Eighteen male Wistar rats were allocated to equally normal, diabetic and treatment groups. Hyperglycemia was induced by Streptozotocin (80 mg kg(-1)) in animals of diabetic and treatment groups. One week after STZ injection (80 mg kg(-1)), the rats of treatment group received the extract of U. dioica (100 mg/kg/day) IP for 28 days. After 5 weeks of study, all the rats were sacrificed and testes were removed and fixed in bouin and after tissue processing stained with H and E technique. Tubular cell disintegration, sertoli and spermatogonia cell vacuolization and decrease in sperm concentration in seminiferous tubules were seen in diabetic and treatment groups group in comparison with control. External Seminiferous Tubular Diameter (STD) and Seminiferous Epithelial Height (SEH) significantly reduced (p < 0.05) in the diabetic rats compared with controls and these parameters in the treatment group were similar to diabetics animals. This study showed that hydroalcoholic extract of Urtica dioica leaves, after induction of diabetes; has no treatment effect on seminiferous tubules alterations in streptozotocin-induced diabetic rats. PMID:22545354

  1. Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue

    PubMed Central

    Li, Alessandro Quattrini; Freschi, Giancarlo; Russo, Giulia Lo

    2013-01-01

    Background: In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims at evaluating the histological and ultrastructural changes induced by ultrasound cavitation on the different cell components of human skin. Methods: Control and ultrasound-treated ex vivo abdominal full-thickness skin samples and skin biopsies from patients pretreated with or without ultrasound cavitation were studied histologically, morphometrically, and ultrastructurally to evaluate possible changes in adipocyte size and morphology. Adipocyte apoptosis and triglyceride release were also assayed. Clinical evaluation of the effects of 4 weekly ultrasound vs sham treatments was performed by plicometry. Results: Compared with the sham-treated control samples, ultrasound cavitation induced a statistically significant reduction in the size of the adipocytes (P < 0.001), the appearance of micropores and triglyceride leakage and release in the conditioned medium (P < 0.05 at 15 min), or adipose tissue interstitium, without appreciable changes in microvascular, stromal, and epidermal components and in the number of apoptotic adipocytes. Clinically, the ultrasound treatment caused a significant reduction of abdominal fat. Conclusions: This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes. PMID:25289235

  2. Curcumin Protects against Cadmium-Induced Vascular Dysfunction, Hypertension and Tissue Cadmium Accumulation in Mice

    PubMed Central

    Kukongviriyapan, Upa; Pannangpetch, Patchareewan; Kukongviriyapan, Veerapol; Donpunha, Wanida; Sompamit, Kwanjit; Surawattanawan, Praphassorn

    2014-01-01

    Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd)—induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L) in drinking water for eight weeks. Curcumin (50 or 100 mg/kg) was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS) protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd. PMID:24662163

  3. Ischemia-induced neuronal expression of the microglia attracting chemokine Secondary Lymphoid-tissue Chemokine (SLC).

    PubMed

    Biber, K; Sauter, A; Brouwer, N; Copray, S C; Boddeke, H W

    2001-04-15

    Recently, it has been demonstrated that Secondary Lymphoid-tissue Chemokine (SLC) is constitutively expressed in secondary lymphoid organs and controls the homing of naive T-cells and mature dendritic cells. By screening cDNA isolated from ischemic mouse brain, we found expression of SLC mRNA 6 h up to 4 days after the onset of ischemia. In situ hybridization combined with immunohistochemistry showed neurons expressing SLC mRNA in the ischemic area of the cortex. SLC mRNA expression was also found in cultured neurones after various treatments known to induce neuronal death, but not in cultured glial cells. Stimulation with SLC induced intracellular calcium transients and chemotaxis in cultured microglia. Since mRNA encoding CXCR3, an alternative receptor for SLC, but no CCR7 mRNA was found in microglia, we suggest that the effects of SLC on microglia are mediated by CXCR3. This assumption was corroborated by cross-desensitization experiments using IP-10 as a ligand for CXCR3. The inducible expression of SLC in neurones acting on microglia suggests a new and important role of SLC in the neuroimmune system. We propose that SLC is part of a neurone-microglia signaling system which is related to pathological conditions of the brain like ischemia.

  4. Bacterial cell wall-induced arthritis: chemical composition and tissue distribution of four Lactobacillus strains.

    PubMed

    Simelyte, E; Rimpiläinen, M; Lehtonen, L; Zhang, X; Toivanen, P

    2000-06-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls were resistant to lysozyme degradation, whereas the L. fermentum cell wall was lysozyme sensitive. Muramic acid was observed in the liver, spleen, and lymph nodes in considerably larger amounts after injection of an arthritogenic L. casei cell wall than following injection of a nonarthritogenic L. fermentum cell wall. The L. casei cell wall also persisted in the tissues longer than the L. fermentum cell wall. The present results, taken together with those published previously, underline the possibility that the chemical structure of peptidoglycan is important in determining the arthritogenicity of the bacterial cell wall. PMID:10816508

  5. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  6. Overexpression of TNF-α converting enzyme promotes adipose tissue inflammation and fibrosis induced by high fat diet.

    PubMed

    Matsui, Yuki; Tomaru, Utano; Miyoshi, Arina; Ito, Tomoki; Fukaya, Shinji; Miyoshi, Hideaki; Atsumi, Tatsuya; Ishizu, Akihiro

    2014-12-01

    Obesity is a state in which chronic low-grade inflammation persists in adipose tissues. Pro-inflammatory cytokines, including TNF-α, produced by adipose tissues have been implicated as active participants in the development of obesity-related diseases. Since TNF-α converting enzyme (TACE) is the major factor that induces soluble TNF-α, TACE has been noted as a pivotal regulator in this field. To reveal the role of TACE in adipose tissue inflammation, TACE-transgenic (TACE-Tg) and wild type (WT) mice were fed with high fat diet (HFD) or control diet for 16 weeks. At 13 weeks after the beginning of the diet, serum TNF-α and macrophage-related cytokine/chemokine levels were elevated in TACE-Tg mice fed with HFD (Tg-HFD mice), and the number of the so-called crown-like adipocyte was significantly increased in adipose tissues of Tg-HFD mice at the end of the experiment. Although macrophage infiltration was not detected in the adipose tissues at this time, fibrosis was observed around the crown-like adipocytes. These findings suggested that TACE overexpression induced macrophage infiltration and subsequent fibrosis in adipose tissues under HFD regimen. The collective evidence suggested that TACE could be a therapeutic target of HFD-induced obesity-related adipose tissue inflammation.

  7. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-04-07

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  8. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  9. Investigation of optimal method for inducing harmonic motion in tissue using a linear ultrasound phased array--a simulation study.

    PubMed

    Heikkilä, Janne; Hynynen, Kullervo

    2006-04-01

    Many noninvasive ultrasound techniques have been developed to explore mechanical properties of soft tissues. One of these methods, Localized Harmonic Motion Imaging (LHMI), has been proposed to be used for ultrasound surgery monitoring. In LHMI, dynamic ultrasound radiation-force stimulation induces displacements in a target that can be measured using pulse-echo imaging and used to estimate the elastic properties of the target. In this initial, simulation study, the use of a one-dimensional phased array is explored for the induction of the tissue motion. The study compares three different dual-frequency and amplitude-modulated single-frequency methods for the inducing tissue motion. Simulations were computed in a homogeneous soft-tissue volume. The Rayleigh integral was used in the simulations of the ultrasound fields and the tissue displacements were computed using a finite-element method (FEM). The simulations showed that amplitude-modulated sonication using a single frequency produced the largest vibration amplitude of the target tissue. These simulations demonstrate that the properties of the tissue motion are highly dependent on the sonication method and that it is important to consider the full three-dimensional distribution of the ultrasound field for controlling the induction of tissue motion.

  10. Pentoxifylline inhibits hypoxia-induced upregulation of tumor cell tissue factor and vascular endothelial growth factor.

    PubMed

    Amirkhosravi, A; Meyer, T; Warnes, G; Amaya, M; Malik, Z; Biggerstaff, J P; Siddiqui, F A; Sherman, P; Francis, J L

    1998-10-01

    Tissue factor (TF), the membrane glycoprotein that initiates blood coagulation, is constitutively expressed by many tumor cells and is implicated in peri-tumor fibrin deposition and hypercoagulability in cancer. Upregulation of tumor TF correlates with enhanced metastatic potential. Furthermore, TF has been colocalized with VEGF in breast cancer, specially at sites of early angiogenesis. There are no data on the effect of hypoxia on tumor cell TF expression. Since hypoxia is known to stimulate VEGF production, we studied whether this also induces tumor cell TF expression. Confluent monolayers of A375 melanoma, MCF-7 breast carcinoma and A549 lung carcinoma were cultured in either 95% air, 5% CO2 (normoxic) or 95% N2, 5% CO2 (hypoxic; 25-30 mmHg) for 24 h. Procoagulant activity (PCA) was measured by amidolytic and clotting assays, surface TF antigen by flow cytometry, early apoptosis by annexin V binding and VEGF levels in culture supernatants by ELISA. Hypoxia significantly increased tumor cell PCA in all three cell lines tested and TF antigen on A375 cells was increased four-fold (P <0.05). Pentoxifylline (PTX), a methylxanthine derivative, significantly inhibited the hypoxia-induced increase in PCA as well as VEGF release in all three cell lines tested. In A375 cells, PTX significantly inhibited TF antigen expression by both normoxic and hypoxic cells. Hypoxia induced a slight (5%) but not significant, increase in early apoptosis. Intravenous injection of hypoxic A375 cells into nude rats produced more pronounced thrombocytopenia (n = 5, P <0.01) and more lung metastases (n = 3, P <0.05) compared to normoxic cells. We conclude that hypoxia increases TF expression by malignant cells which enhances tumor cell-platelet binding and hematogenous metastasis. Hypoxia-induced upregulation of TF appears to parallel that of VEGF, although the mechanism remains unclear.

  11. Pentoxifylline inhibits hypoxia-induced upregulation of tumor cell tissue factor and vascular endothelial growth factor.

    PubMed

    Amirkhosravi, A; Meyer, T; Warnes, G; Amaya, M; Malik, Z; Biggerstaff, J P; Siddiqui, F A; Sherman, P; Francis, J L

    1998-10-01

    Tissue factor (TF), the membrane glycoprotein that initiates blood coagulation, is constitutively expressed by many tumor cells and is implicated in peri-tumor fibrin deposition and hypercoagulability in cancer. Upregulation of tumor TF correlates with enhanced metastatic potential. Furthermore, TF has been colocalized with VEGF in breast cancer, specially at sites of early angiogenesis. There are no data on the effect of hypoxia on tumor cell TF expression. Since hypoxia is known to stimulate VEGF production, we studied whether this also induces tumor cell TF expression. Confluent monolayers of A375 melanoma, MCF-7 breast carcinoma and A549 lung carcinoma were cultured in either 95% air, 5% CO2 (normoxic) or 95% N2, 5% CO2 (hypoxic; 25-30 mmHg) for 24 h. Procoagulant activity (PCA) was measured by amidolytic and clotting assays, surface TF antigen by flow cytometry, early apoptosis by annexin V binding and VEGF levels in culture supernatants by ELISA. Hypoxia significantly increased tumor cell PCA in all three cell lines tested and TF antigen on A375 cells was increased four-fold (P <0.05). Pentoxifylline (PTX), a methylxanthine derivative, significantly inhibited the hypoxia-induced increase in PCA as well as VEGF release in all three cell lines tested. In A375 cells, PTX significantly inhibited TF antigen expression by both normoxic and hypoxic cells. Hypoxia induced a slight (5%) but not significant, increase in early apoptosis. Intravenous injection of hypoxic A375 cells into nude rats produced more pronounced thrombocytopenia (n = 5, P <0.01) and more lung metastases (n = 3, P <0.05) compared to normoxic cells. We conclude that hypoxia increases TF expression by malignant cells which enhances tumor cell-platelet binding and hematogenous metastasis. Hypoxia-induced upregulation of TF appears to parallel that of VEGF, although the mechanism remains unclear. PMID:9798977

  12. Deferoxamine reduces tissue damage during endotoxin-induced mastitis in dairy cows.

    PubMed

    Lauzon, K; Zhao, X; Lacasse, P

    2006-10-01

    The protective effects of 3 antioxidants on polymorphonuclear neutrophil-induced damage to mammary cells were evaluated in vivo using an endotoxin-induced mastitis model. Fifteen healthy, midlactation cows with no history of clinical Escherichia coli mastitis were randomly assigned to 1 of the 3 treatment groups corresponding to each modulator to be evaluated, that is, deferoxamine, catechin, and glutathione ethyl ester. Each cow had 1 quarter infused with saline and 1 quarter infused with the selected modulator; a third quarter was infused with lipopolysaccharides (LPS), whereas the fourth quarter received a combination of LPS and the modulator. Infusion of LPS caused acute mastitis as determined by visual observations and by large increases in milk somatic cell count, BSA, and proteolytic activity. These parameters were not affected by antioxidant administration. The extent of cell damage was evaluated by measuring milk levels of lactate dehydrogenase and N-acetyl-beta-D-glucosaminidase activity. Levels of these parameters were several times higher after LPS administration. Intramammary infusions of catechin or glutathione ethyl ester did not exert any protective effect, whereas infusion of deferoxamine, a chelator of iron, decreased milk lactate dehydrogenase and NA-Gase activity, suggesting a protective effect against neutrophil-induced damage. The protective effect of deferoxamine was also evidenced by a lower milk level of haptoglobin. The proteolytic activity of mastitic milk was not influenced by the presence of deferoxamine. Overall, our results suggest that local infusion of deferoxamine may be an effective tool to protect mammary tissue against neutrophil-induced oxidative stress during bovine mastitis. PMID:16960060

  13. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung

    PubMed Central

    Hwang, Ji Young; Randall, Troy D.; Silva-Sanchez, Aaron

    2016-01-01

    Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity. PMID:27446088

  14. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  15. Ultrasound for noninvasive control of laser-induced tissue heating and coagulation

    NASA Astrophysics Data System (ADS)

    Kleffner, Bernhard; Kriegerowski, Martin; Oltrup, Theo; Bende, Thomas; Jean, Benedikt J.

    1996-05-01

    The application of lasers to achieve localized thermal tissue damage is a common technique in minimally invasive surgery. Currently, there is no control during these treatments. In glaucoma therapy the laser energy applied and the beam direction are estimated prior to treatment, according to clinical experience and anatomic norm values. This lack of on-line control may limit success and lead to side effects. Precision and efficiency of treatment could be improved markedly by analysis of spatially resolved, temperature-dependent data obtained by Ultrasound Reflectometry. Thermally induced changes, as well as their localization were detected qualitatively in B-scan. Quantification was achieved by integration of high frequency RF-signals with the following resolution: spatial 50 micrometers , temporal 200 microsecond(s) , temperature 0.5 degree(s). The presented method is suitable for a non-invasive on-line therapy control.

  16. Early detection of dysplasia in colon and bladder tissue using laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Rava, Richard P.; Richards-Kortum, Rebecca R.; Fitzmaurice, Maryann; Cothren, Robert M., Jr.; Petras, Robert; Sivak, Michael J., Jr.; Levine, Howard H.

    1991-06-01

    Laser induced fluorescence has been explored as an early detection scheme for two clinically important examples of neoplasia: colorectal dysplasia and transitional cell carcinoma in the urinary bladder. In both, it is desirable to detect microscopic and biochemical changes of pre-cancer in order to identify patients at risk for developing invasive carcinoma. This paper will compare the fluorescence obtained from these two pre-cancerous conditions, and discuss the connection between the fluorescence and the morphological/molecular changes occurring in the tissue. The similarities and differences in the fluorescence will be compared to determine the general features of pre-cancerous changes that might be utilized for detection of the disease.

  17. Comparison of lung alveolar and tissue cells in silica-induced inflammation.

    PubMed

    Sjöstrand, M; Absher, P M; Hemenway, D R; Trombley, L; Baldor, L C

    1991-01-01

    The silicon dioxide mineral, cristobalite (CRS) induces inflammation involving both alveolar cells and connective tissue compartments. In this study, we compared lung cells recovered by whole lung lavage and by digestion of lung tissue from rats at varying times after 8 days of exposure to aerosolized CRS. Control and exposed rats were examined between 2 and 36 wk after exposure. Lavaged cells were obtained by bronchoalveolar lavage with phosphate-buffered saline. Lung wall cells were prepared via collagenase digestion of lung tissue slices. Cells from lavage and lung wall were separated by Percoll density centrifugation. The three upper fractions, containing mostly macrophages, were cultured, and the conditioned medium was assayed for effect on lung fibroblast growth and for activity of the lysosomal enzyme, N-acetyl-beta-D-glucosaminidase. Results demonstrated that the cells separated from the lung walls exhibited different reaction patterns compared with those cells recovered by lavage. The lung wall cells exhibited a progressive increase in the number of macrophages and lymphocytes compared with a steady state in cells of the lung lavage. This increase in macrophages apparently was due to low density cells, which showed features of silica exposure. Secretion of a fibroblast-stimulating factor was consistently high by lung wall macrophages, whereas lung lavage macrophages showed inconsistent variations. The secretion of NAG was increased in lung lavage macrophages, but decreased at most observation times in lung wall macrophages. No differences were found among cells in the different density fractions regarding fibroblast stimulation and enzyme secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Arsenic-induced biochemical and genotoxic effects and distribution in tissues of Sprague-Dawley rats

    PubMed Central

    Patlolla, Anita K.; Todorov, Todor I.; Tchounwou, Paul B.; van der Voet, Gijsbert; Centeno, Jose A.

    2012-01-01

    Arsenic (As) is a well documented human carcinogen. However, its mechanisms of toxic action and carcinogenic potential in animals have not been conclusive. In this research, we investigated the biochemical and genotoxic effects of As and studied its distribution in selected tissues of Sprague-Dawley rats. Four groups of six male rats, each weighing approximately 60 ± 2 g, were injected intraperitoneally, once a day for 5 days with doses of 5, 10, 15, 20 mg/kg bw of arsenic trioxide. A control group was also made of 6 animals injected with distilled water. Following anaesthetization, blood was collected and enzyme analysis was performed by spectrophotometry following standard protocols. At the end of experimentation, the animals were sacrificed, and the lung, liver, brain and kidney were collected 24 h after the fifth day treatment. Chromosome and micronuclei preparation was obtained from bone marrow cells. Arsenic exposure significantly increased (p<0.05) the activities of plasma alanine aminotransferase-glutamate pyruvate transaminase (ALT/GPT), and aspartate aminotransferase-glutamate oxaloacetate transaminase (AST/GOT), as well as the number of structural chromosomal aberrations (SCA) and frequency of micronuclei (MN) in the bone marrow cells. In contrast, the mitotic index in these cells was significantly reduced (p<0.05). These findings indicate that aminotransferases are candidate biomarkers for arsenic-induced hepatotoxicity. Our results also demonstrate that As has a strong genotoxic potential, as measured by the bone marrow SCA and MN tests in Sprague-Dawley rats. Total arsenic concentrations in tissues were measured by inductively coupled plasma mass spectrometry (ICP-MS). A dynamic reaction cell (DRC) with hydrogen gas was used to eliminate the ArCl interference at mass 75, in the measurement of total As. Total As doses in tissues tended to correlate with specific exposure levels. PMID:23175155

  19. The effect of temperature dependent tissue parameters on acoustic radiation force induced displacements

    NASA Astrophysics Data System (ADS)

    Suomi, Visa; Han, Yang; Konofagou, Elisa; Cleveland, Robin O.

    2016-10-01

    Multiple ultrasound elastography techniques rely on acoustic radiation force (ARF) in monitoring high-intensity focused ultrasound (HIFU) therapy. However, ARF is dependent on tissue attenuation and sound speed, both of which are also known to change with temperature making the therapy monitoring more challenging. Furthermore, the viscoelastic properties of tissue are also temperature dependent, which affects the displacements induced by ARF. The aim of this study is to quantify the temperature dependent changes in the acoustic and viscoelastic properties of liver and investigate their effect on ARF induced displacements by using both experimental methods and simulations. Furthermore, the temperature dependent viscoelastic properties of liver are experimentally measured over a frequency range of 0.1–200 Hz at temperatures reaching 80 °C, and both conventional and fractional Zener models are used to fit the data. The fractional Zener model was found to fit better with the experimental viscoelasticity data with respect to the conventional model with up to two orders of magnitude lower sum of squared errors (SSE). The characteristics of experimental displacement data were also seen in the simulations due to the changes in attenuation coefficient and lesion development. At low temperatures before thermal ablation, attenuation was found to affect the displacement amplitude. At higher temperature, the decrease in displacement amplitude occurs approximately at 60–70 °C due to the combined effect of viscoelasticity changes and lesion growth overpowering the effect of attenuation. The results suggest that it is necessary to monitor displacement continuously during HIFU therapy in order to ascertain when ablation occurs.

  20. Protective effects of different antioxidants against cadmium induced oxidative damage in rat testis and prostate tissues.

    PubMed

    Jahan, Sarwat; Zahra, Asia; Irum, Umaira; Iftikhar, Natasha; Ullah, Hizb

    2014-08-01

    The present study was performed to determine the effects of different antioxidants on testicular histopathology and oxidative damage induced by cadmium (Cd) in rat testis and prostate. Twenty five rats were equally divided into five groups (n = 5/group). The control group was injected subcutaneously with saline while the Cd alone treated group received a subcutaneous injection of 0.2 mg/kg CdCl(2). Other groups were treated with sulphoraphane (25 µg/rat), vitamin E (75 mg/kg), and Ficus Religiosa plant extract (100 mg/kg) orally along with subcutaneous injections of 0.2 mg/kg CdCl(2) for fifteen days. Oxidative damage in the testicular and prostate tissues were assessed by the estimation of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and glutathione reductase (GSR) activity. Lipid peroxidation (TBARS), protein estimation, and histomorphology were also assessed. Cadmium exposure caused a significant decrease in antioxidant enzymes like CAT, POD, SOD, GSR, protein concentrations, and a marked increase in TBARS activity in rat testis and prostate. Histological examination of adult male rat testes showed a disruption in the arrangement of seminiferous tubules along with a reduction in the number of germ cells, Leydig cells, tunica albuginea thickness, diameter of seminiferous tubules, and height of germinal epithelium. Co-treatment with vitamin E, sulphoraphane, and Ficus religiosa were found to be effective in reversing Cd induced toxicity, representing potential therapeutic options to protect the reproductive tissues from the detrimental effects of Cd toxicity. PMID:24758558

  1. Zinc asparaginate supplementation induces redistribution of toxic trace elements in rat tissues and organs

    PubMed Central

    Skalny, Andrey A.; Medvedeva, Yulia S.; Alchinova, Irina B.; Karganov, Mikhail Yu.; Ajsuvakova, Olga P.; Skalny, Anatoly V.; Nikonorov, Alexandr A.

    2015-01-01

    The primary objective of the current study was the investigation of the influence of zinc asparaginate supplementation for 7 and 14 days on toxic metal and metalloid content in rat organs and tissues. Rats obtained zinc asparaginate in doses of 5 and 15 mg/kg/day for 7 and 14 days. At the end of the experiment rat tissues and organs (liver, kidney, heart, m. gastrocnemius, serum, and hair) were collected for subsequent analysis. Estimation of Zn, Al, As, Li, Ni, Sn, Sr content in the harvested organs was performed using inductively coupled plasma mass spectrometry at NexION 300D. The obtained data showed that intragastric administration of zinc significantly increased liver, kidney and serum zinc concentrations. Seven-day zinc treatment significantly affected the toxic trace element content in the animals’ organs. Zinc supplementation significantly decreased particularly liver aluminium, nickel, and tin content, whereas lead tended to increase. Zinc-induced changes in kidney metal content were characterized by elevated lithium and decreased nickel concentration. Zinc-induced alteration of myocardical toxic element content was multidirectional. Muscle aluminium and lead concentration were reduced in response to zinc supplementation. At the same time, serum and hair toxic element concentrations remained relatively stable after 7-day zinc treatment. Zinc asparaginate treatment of 14 days significantly depressed liver and elevated kidney lithium content, whereas a significant zinc-associated decrease was detected in kidney strontium content. Zinc supplementation for 14 days resulted also in multidirectional changes in the content of heart toxic elements. At the same time, significant zinc-associated decrease in muscle lithium and nickel levels was observed. Fourteen-day zinc treatment resulted in significantly increased serum arsenic and tin concentrations, whereas hair trace element content remained relatively stable. Generally, the obtained data indicate a

  2. Development of vascular tissue and stress inducible hybrid-synthetic promoters through dof-1 motifs rearrangement.

    PubMed

    Ranjan, Rajiv; Dey, Nrisingha

    2012-07-01

    A Caulimovirus-based hybrid-promoter, EFCFS, was derived by fusing the distal region (-227 to -54, FUAS) of Figwort mosaic virus full-length transcript promoter (F20) with the core promoter (-151 to +12, FS3CP) domain of Figwort mosaic virus sub-genomic transcript promoter (FS3). The hybrid-promoter (EFCFS) showed enhanced activity compared to the CaMV35S, F20 and FS3 promoters; while it showed equivalent activity with that of the CAMV35S(2) promoter in both transient protoplast (Nicotiana tabacum cv. Xanthi Brad) and transgenic plants (Nicotiana tabacum; Samsun NN). Further, we have engineered the EFCFS promoter sequence by inserting additional copies of the stress-inducible 'AAAG' cis-motif (Dof-1) to generate a set of three hybrid-synthetic promoters namely; EFCFS-HS-1, EFCFS-HS-2 and EFCFS-HS-3-containing 10, 11 and 13 'AAAG' motif, respectively. Transgenic plants expressing these hybrid synthetic promoters coupled to the GUS reporter were developed and their transcriptional activities were compared with F20, FS3, 35S and 35S(2) promoters, respectively. The relative levels of uidA-mRNA accumulation in transgenic plants driven by above promoters individually were compared by qRT-PCR. Localization of GUS reporter activity in plant tissue was assayed by histochemical approach. CLSM-based study revealed that hybrid-synthetic promoters namely; EFCFS-HS-1, EFCFS-HS-2 and EFCFS-HS-3 showed enhanced activity in vascular tissue compared to the CaMV35S promoter. In the presence of abiotic stress elicitors, salicylic acid and jasmonic acid, the EFCFS-HS-1 promoters showed enhanced activity compared to the 35S promoter. Newly derived hybrid-synthetic promoter/s with enhanced activity and stress inducibility could become efficient tools for advancement of plant biotechnology.

  3. Zinc asparaginate supplementation induces redistribution of toxic trace elements in rat tissues and organs.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Yu; Ajsuvakova, Olga P; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The primary objective of the current study was the investigation of the influence of zinc asparaginate supplementation for 7 and 14 days on toxic metal and metalloid content in rat organs and tissues. Rats obtained zinc asparaginate in doses of 5 and 15 mg/kg/day for 7 and 14 days. At the end of the experiment rat tissues and organs (liver, kidney, heart, m. gastrocnemius, serum, and hair) were collected for subsequent analysis. Estimation of Zn, Al, As, Li, Ni, Sn, Sr content in the harvested organs was performed using inductively coupled plasma mass spectrometry at NexION 300D. The obtained data showed that intragastric administration of zinc significantly increased liver, kidney and serum zinc concentrations. Seven-day zinc treatment significantly affected the toxic trace element content in the animals' organs. Zinc supplementation significantly decreased particularly liver aluminium, nickel, and tin content, whereas lead tended to increase. Zinc-induced changes in kidney metal content were characterized by elevated lithium and decreased nickel concentration. Zinc-induced alteration of myocardical toxic element content was multidirectional. Muscle aluminium and lead concentration were reduced in response to zinc supplementation. At the same time, serum and hair toxic element concentrations remained relatively stable after 7-day zinc treatment. Zinc asparaginate treatment of 14 days significantly depressed liver and elevated kidney lithium content, whereas a significant zinc-associated decrease was detected in kidney strontium content. Zinc supplementation for 14 days resulted also in multidirectional changes in the content of heart toxic elements. At the same time, significant zinc-associated decrease in muscle lithium and nickel levels was observed. Fourteen-day zinc treatment resulted in significantly increased serum arsenic and tin concentrations, whereas hair trace element content remained relatively stable. Generally, the obtained data indicate a

  4. The metabolic disturbances of isoproterenol induced myocardial infarction in rats based on a tissue targeted metabonomics.

    PubMed

    Liu, Yue-tao; Jia, Hong-mei; Chang, Xing; Ding, Gang; Zhang, Hong-wu; Zou, Zhong-Mei

    2013-11-01

    Myocardial infarction (MI) is a leading cause of morbidity and mortality but the precise mechanism of its pathogenesis remains obscure. To achieve the most comprehensive screening of the entire metabolome related to isoproterenol (ISO) induced-MI, we present a tissue targeted metabonomic study using an integrated approach of ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) and proton nuclear magnetic resonance (1H NMR). Twenty-two metabolites were detected as potential biomarkers related to the formation of MI, and the levels of pantothenic acid (), lysoPC(18:0) (), PC(18:4(6Z,9Z,12Z,15Z)/18:0) (), taurine (), lysoPC(20:3(8Z,11Z,14Z)) (), threonine (), alanine (), creatine (), phosphocreatine (), glucose 1-phosphate (), glycine (), xanthosine (), creatinine () and glucose () were decreased significantly, while the concentrations of histamine (), L-palmitoylcarnitine (), GSSG (), inosine (), arachidonic acid (), linoelaidic acid (), 3-methylhistamine () and glycylproline () were increased significantly in the MI rats compared with the control group. The identified potential biomarkers were involved in twelve metabolic pathways and achieved the most entire metabolome contributing to the injury of the myocardial tissue. Five pathways, including taurine and hypotaurine metabolism, glycolysis, arachidonic acid metabolism, glycine, serine and threonine metabolism and histidine metabolism, were significantly influenced by ISO-treatment according to MetPA analysis and suggested that the most prominent changes included inflammation, interference of calcium dynamics, as well as alterations of energy metabolism in the pathophysiologic process of MI. These findings provided a unique perspective on localized metabolic information of ISO induced-MI, which gave us new insights into the pathogenesis of MI, discovery of targets for clinical diagnosis and treatment.

  5. Induced pluripotent stem cells from human placental chorion for perinatal tissue engineering applications.

    PubMed

    Jiang, Guihua; Di Bernardo, Julie; DeLong, Cynthia J; Monteiro da Rocha, André; O'Shea, K Sue; Kunisaki, Shaun M

    2014-09-01

    The reliable derivation of induced pluripotent stem cells (iPSCs) from a noninvasive autologous source at birth would facilitate the study of patient-specific in vitro modeling of congenital diseases and would enhance ongoing efforts aimed at developing novel cell-based treatments for a wide array of fetal and pediatric disorders. Accordingly, we have successfully generated iPSCs from human fetal chorionic somatic cells extracted from term pregnancies by ectopic expression of OCT4, SOX2, KLF4, and cMYC. The isolated parental somatic cells exhibited an immunophenotypic profile consistent with that of chorionic mesenchymal stromal cells (CMSCs). CMSC-iPSCs maintained pluripotency in feeder-free systems for more than 15 passages based on morphology, immunocytochemistry, and gene expression studies and were capable of embryoid body formation with spontaneous trilineage differentiation. CMSC-iPSCs could be selectively differentiated in vitro into various germ layer derivatives, including neural stem cells, beating cardiomyocytes, and definitive endoderm. This study demonstrates the feasibility of term placental chorion as a novel noninvasive alternative to dermal fibroblasts and cord blood for human perinatal iPSC derivation and may provide additional insights regarding the reprogramming capabilities of extra-embryonic tissues as they relate to developmental ontogeny and perinatal tissue engineering applications.

  6. Nitrite Induces the Extravasation of Iron Oxide Nanoparticles in Hypoxic Tumor Tissue

    PubMed Central

    Mistry, Nilesh; Stokes, Ashley M; Van Gambrell, James; Quarles, Christopher Chad

    2014-01-01

    Nitrite undergoes reconversion to nitric oxide (NO) under conditions characteristic of the tumor microenvironment, such as hypoxia and low pH. This selective conversion of nitrite into NO in tumor tissue has led to the possibility of using nitrite to enhance drug delivery and radiation response. In this work we propose to serially characterize the vascular response of brain tumor bearing rats to nitrite using contrast-enhanced R2* mapping. Imaging is performed using a multi-echo gradient echo sequence at baseline, post iron-oxide nanoparticle injection, and post-nitrite injection, while the animal is breathing air. The results indicate that nitrite sufficiently increases vascular permeability in C6 gliomas such that the iron oxide nanoparticles accumulate within the tumor tissue. When animals breathed 100% oxygen, the contrast agent remained within the vasculature indicating that the conversion of nitrite to nitric oxide occurs in the presence of hypoxia within the tumor. The hypoxia-dependent, nitrite-induced extravasation of iron-oxide nanoparticles observed herein has implications for the enhancement of conventional and nanotherapeutic drug delivery. PMID:24470164

  7. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering.

    PubMed

    Heo, Jiseung; Koh, Rachel H; Shim, Whuisu; Kim, Hwan D; Yim, Hyun-Gu; Hwang, Nathaniel S

    2016-04-01

    A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure. RF is a biocompatible vitamin B2 that showed minimal cytotoxicity compared to conventionally utilized photo-initiator. Furthermore, collagen photo-crosslinking with RF improved mechanical properties and delayed enzyme-triggered degradation of collagen scaffolds. RF-induced photo-crosslinked collagen scaffolds encapsulated with fibrochondrocytes resulted in reduced scaffold contraction and enhanced gene expression levels for the collagen II and aggrecan. Additionally, hyaluronic acid (HA) incorporation into photo-crosslinked collagen scaffold showed an increase in its retention. Based on these results, we demonstrate that photo-crosslinked collagen-HA hydrogels can be potentially applied in the scaffold-based meniscus tissue engineering.

  8. Distribution of ethanol-induced protein adducts in vivo: relationship to tissue injury.

    PubMed

    Niemelä, O

    2001-12-15

    Generation of oxygen free radicals and reactive aldehydes as a result of excessive ethanol consumption has been well established. Recent studies in human alcoholics and in experimental animal models have indicated that acetaldehyde, the first metabolite of ethanol, and the aldehydic products of lipid peroxidation can bind to proteins in tissues forming stable adducts. The demonstration of such adducts in zone 3 hepatocytes in alcoholics with an early phase of histological liver damage indicates that adduct formation may have an important role in the sequence of events leading to alcoholic liver disease. There may be interference with cellular functions, stimulation of fibrogenesis, and immunological responses. Autoantibodies towards distinct types of adducts have been shown to be associated with the severity of liver disease in alcoholic patients. High fat diet and/or iron supplementation combined with ethanol may increase the amount of aldehyde-derived epitopes and promote fibrogenesis in the liver. Recently, ethanol-derived protein modifications have also been found from other tissues exposed to ethanol and acetaldehyde, including rat brain after lifelong ethanol administration, pancreas, and rat muscle. Elevated adduct levels also occur in erythrocytes of alcoholics, which may be related to ethanol-induced morphological aberrations in hematopoiesis.

  9. Nutrition-/diet-induced changes in gene expression in white adipose tissue.

    PubMed

    Al-Hasani, Hadi; Joost, Hans-Georg

    2005-12-01

    Nutrients regulate metabolic fluxes and homeostasis through transcriptional and translational control of enzyme concentrations and allosteric modulation of enzyme activity. Dietary omega-3 polyunsaturated fatty acids (PUFAs) have been shown to exert a variety of beneficial health effects such as reducing adiposity and increasing insulin sensitivity in rodents. It is now clear that PUFAs regulate fundamental adipose cell and liver functions through modulation of activity and abundance of key transcription factors that act as nutrient sensors, including peroxisome proliferator-activated receptors (PPARalpha/delta/gamma), sterol regulatory element binding proteins (SREBP-1/2), and liver X receptors (LXRalpha/beta). However, in the state of obesity, where adipose tissue shows elevated storage of triglycerides, many lipogenic genes that are essential for adipose cell function including PPARgamma, SREBP-1c, CCAAT-enhancer binding protein alpha and stearoyl-CoA desaturase-1 are downregulated, apparently due to desensitization of the very same crucial nutrient sensors. This chapter will summarize recent studies of PUFA- and obesity-induced changes in gene expression in white adipose tissue.

  10. Ion-induced electron production in tissue-like media and DNA damage mechanisms

    NASA Astrophysics Data System (ADS)

    Surdutovich, E.; Obolensky, O. I.; Scifoni, E.; Pshenichnov, I.; Mishustin, I.; Solov'yov, A. V.; Greiner, W.

    2009-01-01

    This work is the first stage in the development of an inclusive approach to calculation of the DNA damage caused by irradiation of biological tissue by ion/proton beams. The project starts with an analysis of ionization caused by the projectiles and the characteristics of secondary electrons produced in tissue-like media. We consider interactions with the medium on a microscopic level and this allows us to obtain the energy spectrum and abundance of secondary electrons as functions of the projectile’s kinetic energy. The physical information obtained in this analysis is related to biological processes responsible for the DNA damage induced by the projectile. In particular, we consider double strand breaks of DNA caused by secondary electrons and free radicals, and local heating in the ion’s track. The heating may enhance the biological effectiveness of electron/free radical nteractions with the DNA and may even be considered as an independent mechanism of DNA damage. Numerical estimates are performed for the case of carbon-ion beams. The obtained dose-depth curves are compared with results of the MCHIT model based on the GEANT4 toolkit.

  11. Developmental and tissue-specific expression of JIP-23, a jasmonate-inducible protein of barley.

    PubMed

    Hause, B; Demus, U; Teichmann, C; Parthier, B; Wasternack, C

    1996-07-01

    Developmental expression of a 23 kDa jasmonate-induced protein (JIP-23) of barley leaves (Hordeum vulgare cv. Salome) was studied by measuring the time-dependent accumulation of transcript and protein during germination. Tissue-specific expression of JIP-23 was analyzed immunocytochemically and by in situ hybridizations, respectively. During seed germination JIP-23 mRNA was found to accumulate transiently with a maximum at 32 h, whereas the protein was steadily detectable after the onset of expression. The occurrence of new isoforms of JIP-23 during germination in comparison to jasmonate-treated leaves suggests, that the JIP-23 gene family of barley is able to express different subsets of isoforms dependent on the developmental stage. JIP-23 and its transcript were found mainly in the scutellum, the scutellar nodule and in lower parts of the primary leaf of 6 days old seedings. All these tissues exhibited high levels of endogenous jasmonates. In situ hybridization revealed specific accumulation of JIP-23 mRNA in companion cells of the phloem in the nodule plate of the scutellum. In accordance with that, JIP-23 was detected immunocytochemically in phloem cells of the root as well as of the scutellar nodule and in parenchymatic cells of the scutellum. The cell type-specific occurrence of JIP-23 was restricted to cells, which are known to be highly stressed osmotically by active solute transport. This observation suggests, that the expression of this protein might be a response to osmotic stress during development. PMID:8819310

  12. Supplementation with Astragalus polysaccharides alters Aeromonas-induced tissue-specific cellular immune response.

    PubMed

    Abuelsaad, Abdelaziz S A

    2014-01-01

    Members of the genus Aeromonas inhabit various aquatic environments and are responsible for a number of intestinal and extra-intestinal infections in humans as well as other animals. Astragalus species are used in Chinese traditional medicine as antiperspirant, antihypertensive, diuretic and tonic treatments and have been used for treatment of patients with leukemia and uterine cancers. The present study was aimed to investigate immunomodulatory effect of Astragalus polysaccharides (APS) treatment on Aeromonas hydrophila-infected mice. The present data showed that APS-treatment ameliorated neutrophils phagocytic activity and reactive oxygen species (ROS) production in intestinal tissues of infected mice. Moreover, APS treatment induced a highly significantly (P < 0.001) increase in the number of CD4(+) T cells in the intestinal tissues and thymus, however, number of CD4(+) T cells in the spleens of infected mice not significantly changed with APS treatment. On the other hand, APS-treatment caused a very highly significant (P < 0.001) decrease in the number of CD8(+) T cells in the spleens and thymus of infected mice. In conclusion, the present data suggested that APS treatment reduced ROS production, downmodulated neutrophils activity, and increased CD4(+)/CD8(+) T cells ratio in A. hydrophila-infected mice.

  13. Plasma jet-induced tissue oxygenation: potentialities for new therapeutic strategies

    NASA Astrophysics Data System (ADS)

    Collet, G.; Robert, E.; Lenoir, A.; Vandamme, M.; Darny, T.; Dozias, S.; Kieda, C.; Pouvesle, J. M.

    2014-02-01

    The lack of oxygen is a major reason for the resistance of tumor cells to treatments such as radiotherapies. A large number of recent publications on non-thermal plasma applications in medicine report cell behavior modifications and modulation of soluble factors. This in vivo study tested whether such modifications can lead to vascular changes in response to plasma application. Two in situ optical-based methods were used simultaneously, in real time, to assess the effect of non-thermal plasma on tissue vasculature. Tissue oxygen partial pressure (pO2) was measured using a time-resolved luminescence-based optical probe, and the microvascular erythrocyte flow was determined by laser Doppler flowmetry. When plasma treatment was applied on mouse skin, a rapid pO2 increase (up to 4 times) was subcutaneously measured and correlated with blood flow improvement. Such short duration, i.e. 5 min, plasma-induced effects were shown to be locally restricted to the treated area and lasted over 120 min. Further investigations should elucidate the molecular mechanisms of these processes. However, improvement of oxygenation and perfusion open new opportunities for tumor treatments in combination with radiotherapy, and for tumor blood vessel normalization based strategies.

  14. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells.

    PubMed

    Gui, Liqiong; Dash, Biraja C; Luo, Jiesi; Qin, Lingfeng; Zhao, Liping; Yamamoto, Kota; Hashimoto, Takuya; Wu, Hongwei; Dardik, Alan; Tellides, George; Niklason, Laura E; Qyang, Yibing

    2016-09-01

    Derivation of functional vascular smooth muscle cells (VSMCs) from human induced pluripotent stem cells (hiPSCs) to generate tissue-engineered blood vessels (TEBVs) holds great potential in treating patients with vascular diseases. Herein, hiPSCs were differentiated into alpha-smooth muscle actin (α-SMA) and calponin-positive VSMCs, which were seeded onto polymer scaffolds in bioreactors for vascular tissue growth. A functional TEBV with abundant collagenous matrix and sound mechanics resulted, which contained cells largely positive for α-SMA and smooth muscle myosin heavy chain (SM-MHC). Moreover, when hiPSC-derived TEBV segments were implanted into nude rats as abdominal aorta interposition grafts, they remained unruptured and patent with active vascular remodeling, and showed no evidence of teratoma formation during a 2-week proof-of-principle study. Our studies represent the development of the first implantable TEBVs based on hiPSCs, and pave the way for developing autologous or allogeneic grafts for clinical use in patients with vascular disease. PMID:27336184

  15. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator.

    PubMed

    Gualandris, A; Jones, T E; Strickland, S; Tsirka, S E

    1996-04-01

    Tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to active plasmin, is produced in the rat and mouse hippocampus and participates in neuronal plasticity. To help define the role of tPA in the nervous system, we have analyzed the regulation of its expression in the neuronal cell line PC12. In control cultures, tPA activity is exclusively cell-associated, and no activity is measurable in the culture medium. When the cells are treated with depolarizing agents, such as KCI, tPA activity becomes detectable in the medium. The increased secreted tPA activity is not accompanied by an increase in tPA mRNA levels, and it is not blocked by protein synthesis inhibitors. In contrast, tPA release is abolished by Ca2+ channel blockers, suggesting that chemically induced membrane depolarization stimulates the secretion of preformed enzyme. Moreover, KCI has a similar effect in vivo when administered to the murine brain via an osmotic pump: tPA activity increases along the CA2-CA3 regions and dentate gyrus of the hippocampal formation. These results demonstrate a neuronal activity-dependent secretory mechanism that can rapidly increase the amount of tPA in neuronal tissue.

  16. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.

    PubMed

    Oliveira, D C; Isaias, R M S; Fernandes, G W; Ferreira, B G; Carneiro, R G S; Fuzaro, L

    2016-01-01

    Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance. PMID:26620152

  17. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.

    PubMed

    Oliveira, D C; Isaias, R M S; Fernandes, G W; Ferreira, B G; Carneiro, R G S; Fuzaro, L

    2016-01-01

    Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance.

  18. Basic study of intrinsic elastography: Relationship between tissue stiffness and propagation velocity of deformation induced by pulsatile flow

    NASA Astrophysics Data System (ADS)

    Nagaoka, Ryo; Iwasaki, Ryosuke; Arakawa, Mototaka; Kobayashi, Kazuto; Yoshizawa, Shin; Umemura, Shin-ichiro; Saijo, Yoshifumi

    2015-07-01

    We proposed an estimation method for a tissue stiffness from deformations induced by arterial pulsation, and named this proposed method intrinsic elastography (IE). In IE, assuming that the velocity of the deformation propagation in tissues is closely related to the stiffness, the propagation velocity (PV) was estimated by spatial compound ultrasound imaging with a high temporal resolution of 1 ms. However, the relationship between tissue stiffness and PV has not been revealed yet. In this study, the PV of the deformation induced by the pulsatile pump was measured by IE in three different poly(vinyl alcohol) (PVA) phantoms of different stiffnesses. The measured PV was compared with the shear wave velocity (SWV) measured by shear wave imaging (SWI). The measured PV has trends similar to the measured SWV. These results obtained by IE in a healthy male show the possibility that the mechanical properties of living tissues could be evaluated by IE.

  19. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis

    PubMed Central

    Razzoli, Maria; Frontini, Andrea; Gurney, Allison; Mondini, Eleonora; Cubuk, Cankut; Katz, Liora S.; Cero, Cheryl; Bolan, Patrick J.; Dopazo, Joaquin; Vidal-Puig, Antonio; Cinti, Saverio; Bartolomucci, Alessandro

    2015-01-01

    Background Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity. Methods We used wt and triple β1,β2,β3−Adrenergic Receptors knockout (β-less) mice exposed to a model of chronic subordination stress (CSS) at either room temperature (22 °C) or murine thermoneutrality (30 °C). A combined behavioral, physiological, molecular, and immunohistochemical analysis was conducted to determine stress-induced modulation of energy balance and BAT structure and function. Immortalized brown adipocytes were used for in vitro assays. Results Departing from our initial observation that βARs are dispensable for cold-induced BAT browning, we demonstrated that under physiological conditions promoting low adaptive thermogenesis and BAT activity (e.g. thermoneutrality or genetic deletion of the βARs), exposure to CSS acted as a stimulus for BAT activation and thermogenesis, resulting in resistance to diet-induced obesity despite the presence of hyperphagia. Conversely, in wt mice acclimatized to room temperature, and therefore characterized by sustained BAT function, exposure to CSS increased vulnerability to obesity. Exposure to CSS enhanced the sympathetic innervation of BAT in wt acclimatized to thermoneutrality and in β-less mice. Despite increased sympathetic innervation suggesting adrenergic-mediated browning, norepinephrine did not promote browning in βARs knockout brown adipocytes, which led us to identify an alternative sympathetic/brown adipocytes purinergic pathway in the BAT. This pathway is downregulated under conditions of low adaptive thermogenesis requirements, is induced by stress, and elicits activation

  20. Effect of quercetin against lindane induced alterations in the serum and hepatic tissue lipids in wistar rats

    PubMed Central

    Padma, Viswanadha Vijaya; Lalitha, Gurusamy; Shirony, Nicholson Puthanveedu; Baskaran, Rathinasamy

    2012-01-01

    Objective To assess the effect of quercetin (flavonoid) against lindane induced alterations in lipid profile of wistar rats. Methods Rats were administered orally with lindane (100 mg/kg body weight) and quercetin (10 mg/kg body weight) for 30 days. After the end of treatment period lipid profile was estimated in serum and tissue. Results Elevated levels of serum cholesterol, triglycerides, low density lipoprotein (LDL), very Low Density Lipoprotein (VLDL) and tissue triglycerides, cholesterol with concomitant decrease in serum HDL and tissue phospholipids were decreased in lindane treated rats were found to be significantly decreased in the quercetin and lindane co-treated rats. Conclusions Our study suggests that quercetin has hypolipidemic effect and offers protection against lindane induced toxicity in liver by restoring the altered levels of lipids. The quercetin cotreatment along with lindane for 30 days reversed these biochemical alterations in lipids induced by lindane. PMID:23569870

  1. Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo

    PubMed Central

    2012-01-01

    Background The rate of microscopic incomplete resections of gastrointestinal cancers including pancreatic cancer has not changed considerably over the past years. Future intra-operative applications of tissue tolerable plasmas (TTP) could help to address this problem. Plasma is generated by feeding energy, like electrical discharges, to gases. The development of non-thermal atmospheric plasmas displaying spectra of temperature within or just above physiological ranges allows biological or medical applications of plasmas. Methods We have investigated the effects of tissue tolerable plasmas (TTP) on the human pancreatic cancer cell line Colo-357 and PaTu8988T and the murine cell line 6606PDA in vitro (Annexin-V-FITC/DAPI-Assay and propidium iodide DNA staining assay) as well as in the in vivo tumour chorio-allantoic membrane (TUM-CAM) assay using Colo-357. Results TTP of 20 seconds (s) induced a mild elevation of an experimental surface temperature of 23.7 degree Celsius up to 26.63+/−0.40 degree Celsius. In vitro TTP significantly (p=0.0003) decreased cell viability showing the strongest effects after 20s TTP. Also, TTP effects increased over time levelling off after 72 hours (30.1+/−4.4% of dead cells (untreated control) versus 78.0+/−9.6% (20s TTP)). However, analyzing these cells for apoptosis 10s TTP revealed the largest proportion of apoptotic cells (34.8+/−7.2%, p=0.0009 versus 12.3+/−6.6%, 20s TTP) suggesting non-apoptotic cell death in the majority of cells after 20s TTP. Using solid Colo-357 tumours in the TUM-CAM model TUNEL-staining showed TTP-induced apoptosis up to a depth of tissue penetration (DETiP) of 48.8+/−12.3μm (20s TTP, p<0.0001). This was mirrored by a significant (p<0.0001) reduction of Ki-67+ proliferating cells (80.9+/−13.2% versus 37.7+/−14.6%, p<0.0001) in the top cell layers as well as typical changes on HE specimens. The bottom cell layers were not affected by TTP. Conclusions Our data suggest possible future intra

  2. Time- and space-resolved spectroscopic characterization of laser-induced swine muscle tissue plasma

    NASA Astrophysics Data System (ADS)

    Camacho, J. J.; Diaz, L.; Martinez-Ramirez, S.; Caceres, J. O.

    2015-09-01

    The spatial-temporal evolution of muscle tissue sample plasma induced by a high-power transversely excited atmospheric (TEA) CO2 pulsed laser at vacuum conditions (0.1-0.01 Pa) has been investigated using high-resolution optical emission spectroscopy (OES) and imaging methods. The induced plasma shows mainly electronically excited neutral Na, K, C, Mg, H, Ca, N and O atoms, ionized C+, C2 +, C3 +, Mg+, Mg2 +, N+, N2 +, Ca+, O+ and O2 + species and molecular band systems of CN(B2Σ+-X2Σ+), C2(d3Πg-a3Πu), CH(B2Σ--X2Π; A2Δ-X2Π), NH(A3Π-X3Σ-), OH(A2Σ+-X2 Σ+), and CaOH(B2Σ+-X2Σ+; A2Π-X2Σ+). Time-resolved two-dimensional emission spectroscopy is used to study the expanded distribution of different species ejected during ablation. Spatial and temporal variations of different atoms and ionic excited species are reported. Plasma parameters such as electron density and temperature were measured from the spatio-temporal analysis of different species. Average velocities of some plasma species were estimated.

  3. Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology

    PubMed Central

    Massey, Veronica L.; Beier, Juliane I.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Arteel, Gavin E.

    2015-01-01

    Both Alcoholic Liver Disease (ALD) and alcohol-related susceptibility to acute lung injury are estimated to account for the highest morbidity and mortality related to chronic alcohol abuse and, thus, represent a focus of intense investigation. In general, alcohol-induced derangements to both organs are considered to be independent and are often evaluated separately. However, the liver and lung share many general responses to damage, and specific responses to alcohol exposure. For example, both organs possess resident macrophages that play key roles in mediating the immune/inflammatory response. Additionally, alcohol-induced damage to both organs appears to involve oxidative stress that favors tissue injury. Another mechanism that appears to be shared between the organs is that inflammatory injury to both organs is enhanced by alcohol exposure. Lastly, altered extracellular matrix (ECM) deposition appears to be a key step in disease progression in both organs. Indeed, recent studies suggest that early subtle changes in the ECM may predispose the target organ to an inflammatory insult. The purpose of this chapter is to review the parallel mechanisms of liver and lung injury in response to alcohol consumption. This chapter will also explore the potential that these mechanisms are interdependent, as part of a gut-liver-lung axis. PMID:26437442

  4. TLR2-induced IL-10 production impairs neutrophil recruitment to infected tissues during neonatal bacterial sepsis.

    PubMed

    Andrade, Elva B; Alves, Joana; Madureira, Pedro; Oliveira, Liliana; Ribeiro, Adília; Cordeiro-da-Silva, Anabela; Correia-Neves, Margarida; Trieu-Cuot, Patrick; Ferreira, Paula

    2013-11-01

    Sepsis is the third most common cause of neonatal death, with Group B Streptococcus (GBS) being the leading bacterial agent. The pathogenesis of neonatal septicemia is still unsolved. We described previously that host susceptibility to GBS infection is due to early IL-10 production. In this study, we investigated whether triggering TLR2 to produce IL-10 is a risk factor for neonatal bacterial sepsis. We observed that, in contrast to wild-type (WT) pups, neonatal TLR2-deficient mice were resistant to GBS-induced sepsis. Moreover, if IL-10 signaling were blocked in WT mice, they also were resistant to sepsis. This increased survival rate was due to an efficient recruitment of neutrophils to infected tissues that leads to bacterial clearance, thus preventing the development of sepsis. To confirm that IL-10 produced through TLR2 activation prevents neutrophil recruitment, WT pups were treated with the TLR2 agonist Pam3CSK4 prior to nebulization with the neutrophil chemotactic agent LTB4. Neutrophil recruitment into the neonatal lungs was inhibited in pups treated with Pam3CSK4. However, the migration was restored in Pam3CSK4-treated pups when IL-10 signaling was blocked (either by anti-IL-10R mAb treatment or by using IL-10-deficient mice). Our findings highlight that TLR2-induced IL-10 production is a key event in neonatal susceptibility to bacterial sepsis.

  5. BST-2/tetherin is overexpressed in mammary gland and tumor tissues in MMTV-induced mammary cancer

    PubMed Central

    Jones, Philip H.; Mahauad-Fernandez, Wadie D.; Madison, M. Nia; Okeoma, Chioma M.

    2014-01-01

    BST-2 restricts MMTV replication, but once infection has established, MMTV modulates BST-2 levels. MMTV-directed BST-2 modulation is tissue-specific and dependent on infection and neoplastic transformation status of cells. In the lymphoid compartment of infected mice, BST-2 expression is first upregulated and then significantly downregulated regardless of absence or presence of mammary tumors. However, in mammary gland tissues, upregulation of BST-2 expression is dependent on the presence of mammary tumors and tumor tissues themselves have high BST-2 levels. Elevated BST-2 expression in these tissues is not attributable to IFN since levels of IFNα and IFNγ negatively correlate with BST-2. Importantly, soluble factors released by tumor cells suppress IFNα and IFNγ but induce BST-2. These data suggest that overexpression of BST-2 in carcinoma tissues could not be attributed to IFNs but to a yet to be determined factor that upregulates BST-2 once oncogenesis is initiated. PMID:23806386

  6. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    SciTech Connect

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan

    2014-05-15

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75

  7. Responses of brown adipose tissue to diet-induced obesity, exercise, dietary restriction and ephedrine treatment.

    PubMed

    Slocum, Nikki; Durrant, Jessica R; Bailey, David; Yoon, Lawrence; Jordan, Holly; Barton, Joanna; Brown, Roger H; Clifton, Lisa; Milliken, Tula; Harrington, Wallace; Kimbrough, Carie; Faber, Catherine A; Cariello, Neal; Elangbam, Chandikumar S

    2013-07-01

    Drug-induced weight loss in humans has been associated with undesirable side effects not present in weight loss from lifestyle interventions (caloric restriction or exercise). To investigate the mechanistic differences of weight loss by drug-induced and lifestyle interventions, we examined the gene expression (mRNA) in brown adipose tissue (BAT) and conducted histopathologic assessments in diet-induced obese (DIO) mice given ephedrine (18 mg/kg/day orally), treadmill exercise (10 m/min, 1-h/day), and dietary restriction (DR: 26% dietary restriction) for 7 days. Exercise and DR mice lost more body weight than controls and both ephedrine and exercise reduced percent body fat. All treatments reduced BAT and liver lipid accumulation (i.e., cytoplasmic lipids in brown adipocytes and hepatocytes) and increased oxygen consumption (VO2 ml/kg/h) compared with controls. Mitochondrial biogenesis/function-related genes (TFAM, NRF1 and GABPA) were up-regulated in the BAT of all groups. UCP-1 was up-regulated in exercise and ephedrine groups, whereas MFSD2A was up-regulated in ephedrine and DR groups. PGC-1α up-regulation was observed in exercise and DR groups but not in ephedrine group. In all experimental groups, except for ephedrine, fatty acid transport and metabolism genes were up-regulated, but the magnitude of change was higher in the DR group. PRKAA1 was up-regulated in all groups but not significantly in the ephedrine group. ADRß3 was slightly up-regulated in the DR group only, whereas ESRRA remained unchanged in all groups. Although our data suggest a common pathway of BAT activation elicited by ephedrine treatment, exercise or DR, mRNA changes were indicative of additional nutrient-sensing pathways in exercise and DR.

  8. Anti-Human Tissue Factor Antibody Ameliorated Intestinal Ischemia Reperfusion-Induced Acute Lung Injury in Human Tissue Factor Knock-In Mice

    PubMed Central

    Mura, Marco; Li, Li; Cypel, Marcelo; Soderman, Avery; Picha, Kristen; Yang, Jing; Liu, Mingyao

    2008-01-01

    Background Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. Methodology/Principal Findings Human tissue factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. Conclusions This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies. PMID:18231608

  9. beta3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet.

    PubMed

    Darimont, Christian; Turini, Marco; Epitaux, Micheline; Zbinden, Irène; Richelle, Myriam; Montell, Eulàlia; Ferrer-Martinez, Andreu; Macé, Katherine

    2004-08-17

    BACKGROUND: Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of beta3-adrenoceptor (beta3-AR) agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective beta3-AR agonist (ZD7114) could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet. METHODS: Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the beta3-AR agonist ZD7114 (1 mg/kg per day) or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study. RESULTS: In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG) and diacylglycerol (DAG) accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet. CONCLUSIONS: These results show that activation of the beta3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with beta3-AR activation. PMID:15507149

  10. β3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet

    PubMed Central

    Darimont, Christian; Turini, Marco; Epitaux, Micheline; Zbinden, Irène; Richelle, Myriam; Montell, Eulàlia; Ferrer-Martinez, Andreu; Macé, Katherine

    2004-01-01

    Background Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of β3-adrenoceptor (β3-AR) agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective β3-AR agonist (ZD7114) could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet. Methods Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the β3-AR agonist ZD7114 (1 mg/kg per day) or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study. Results In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG) and diacylglycerol (DAG) accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet. Conclusions These results show that activation of the β3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with β3-AR activation. PMID:15507149

  11. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells.

    PubMed

    Chandrakanthan, Vashe; Yeola, Avani; Kwan, Jair C; Oliver, Rema A; Qiao, Qiao; Kang, Young Chan; Zarzour, Peter; Beck, Dominik; Boelen, Lies; Unnikrishnan, Ashwin; Villanueva, Jeanette E; Nunez, Andrea C; Knezevic, Kathy; Palu, Cintia; Nasrallah, Rabab; Carnell, Michael; Macmillan, Alex; Whan, Renee; Yu, Yan; Hardy, Philip; Grey, Shane T; Gladbach, Amadeus; Delerue, Fabien; Ittner, Lars; Mobbs, Ralph; Walkley, Carl R; Purton, Louise E; Ward, Robyn L; Wong, Jason W H; Hesson, Luke B; Walsh, William; Pimanda, John E

    2016-04-19

    Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor-AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.

  12. Brown adipose tissue of mice with GTG-induced obesity: altered circadian control.

    PubMed

    Eley, J; Himms-Hagen, J

    1989-06-01

    The effect of feeding a "cafeteria" diet and of feeding a restricted amount of chow on brown adipose tissue (BAT) of lean and gold thioglucose (GTG)-obese mice was studied at various times of the day and night. Objectives were to find out 1) whether our previous finding of diet-induced growth of BAT of the GTG-obese mouse without thermogenic activation could be explained by a transient stimulation at a time of day not studied and 2) whether lack of stimulation of BAT thyroxine 5'-deiodinase (TD) by diet seen previously in lean mice and rats could be explained by a transient increase at times of day not studied. A transient activation of BAT thermogenesis, indicated by an increase in mitochondrial GDP binding, occurs immediately after cafeteria food is presented to the GTG-obese mouse, but the effect of diet is absent at other times. This transient stimulation of BAT in the GTG-obese mouse may be sufficient to produce the tissue growth observed. A circadian rhythm in GDP binding occurred in both lean and obese mice, whether they were eating chow or the cafeteria diet. Restricted feeding suppressed BAT mitochondrial GDP binding in lean mice but did not suppress any further the low level in GTG-obese mice. A circadian rhythm in TD activity in BAT also occurred in lean and obese mice, but no effect of cafeteria diet or of restricted feeding on this enzyme was detected at any time of day, except for a brief increase in obese mice at 0500.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Identification of Erwinia amylovora Genes Induced during Infection of Immature Pear Tissue

    PubMed Central

    Zhao, Youfu; Blumer, Sara E.; Sundin, George W.

    2005-01-01

    The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In this study, we used a modified in vivo expression technology system to identify E. amylovora genes that are activated during infection of immature pear tissue, a process that requires the major pathogenicity factors of this organism. We identified 394 unique pear fruit-induced (pfi) genes on the basis of sequence similarity to known genes and separated them into nine putative function groups including host-microbe interactions (3.8%), stress response (5.3%), regulation (11.9%), cell surface (8.9%), transport (13.5%), mobile elements (1.0%), metabolism (20.3%), nutrient acquisition and synthesis (15.5%), and unknown or hypothetical proteins (19.8%). Known virulence genes, including hrp/hrc components of the type III secretion system, the major effector gene dspE, type II secretion, levansucrase (lsc), and regulators of levansucrase and amylovoran biosynthesis, were upregulated during pear tissue infection. Known virulence factors previously identified in E. (Pectobacterium) carotovora and Pseudomonas syringae were identified for the first time in E. amylovora and included HecA hemagglutinin family adhesion, Peh polygalacturonase, new effector HopPtoCEA, and membrane-bound lytic murein transglycosylase MltEEA. An insertional mutation within hopPtoCEA did not result in reduced virulence; however, an mltEEA knockout mutant was reduced in virulence and growth in immature pears. This study suggests that E. amylovora utilizes a variety of strategies during plant infection and to overcome the stressful and poor nutritional environment of its plant hosts. PMID:16291682

  14. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep

    PubMed Central

    Lan, Xianyong; Cretney, Evan C.; Kropp, Jenna; Khateeb, Karam; Berg, Mary A.; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E.; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller’s grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues. PMID:23577020

  15. Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep.

    PubMed

    Carey Satterfield, M; Dunlap, Kathrin A; Keisler, Duane H; Bazer, Fuller W; Wu, Guoyao

    2012-10-01

    The global incidence of human obesity has more than doubled over the past three decades. An ovine model of obesity was developed to determine effects of maternal obesity and arginine supplementation on maternal, placental, and fetal parameters of growth, health, and well being. One-hundred-twenty days prior to embryo transfer, ewes were fed either ad libitum (n = 10) to induce obesity or 100% National Research Council-recommended nutrient requirements (n = 10) as controls. Embryos from superovulated ewes with normal body condition were transferred to the uterus of control-fed and obese ewes on day 5.5 post-estrus to generate genetically similar singleton pregnancies. Beginning on day 100 of gestation, obese ewes received intravenous administration of saline or L-arginine-HCl three times daily (81 mg arginine/kg body weight/day) to day 125, whereas control-fed ewes received saline. Fetal growth was assessed at necropsy on day 125. Maternal obesity increased (1) percentages of maternal and fetal carcass lipids and (2) concentrations of leptin, insulin, glucose, glutamate, leucine, lysine and threonine in maternal plasma while reducing (1) concentrations of progesterone, glycine and serine in maternal plasma and (2) amniotic and allantoic fluid volumes. Administration of L-arginine to obese ewes increased arginine and ornithine concentrations in maternal and fetal plasma, amniotic fluid volume, protein content in maternal carcass, and fetal brown adipose tissue (+60%), while reducing maternal lipid content and circulating leptin levels. Fetal or placental weight did not differ among treatments. Results indicate that arginine treatment beneficially reduces maternal adiposity and enhances fetal brown adipose tissue development in obese ewes.

  16. Investigating the recovery period of rat brain tissue after electrolytic and 980-nm laser induced lesions

    NASA Astrophysics Data System (ADS)

    Bozkulak, Ozguncem; Tabakoglu, H. Ozgur; Aksoy, Ayla; Canbeyli, Resit; Bilgin, Nes'e.; Kurtkaya, Ozlem; Sav, Aydin; Gulsoy, Murat

    2003-10-01

    The effects of 980-nm diode laser and electrolytic lesions in Wistar rat brain tissue were observed by immunohistochemical staining for CD68 marker and Hematoxylin-Eosin (H&E). Bilateral lesions; laser lesions (2W/2sec) in the right hemispheres, and electrolytic lesions (1.5mA/20sec) in the left hemispheres were done through in vivo stereotaxic neurosurgical procedure. Subjects were classified into three groups due to the recovery period. Subjects in Group I, II, and III were sacrificed after 0, 2 and 7 days of recovery period respectively. After saline perfusion their brains were dislocated, and paraffin embedded sections were taken. One section for H&E and one for CD68 were cut consecutively in 3μm thickness by examining the lesion in every 30-μm thickness. CD68 was found more efficient marker than H&E in observing the after-effects of both types of lesions. The total damage of laser was smaller than that of electrosurgical unit. The shape of the ablated area in laser induced lesions was more spherical than that of electrosurgical unit. The number of macrophages increased as the recovery period increased for all subjects. Group III showed the highest number of macrophages in three, and the number of macrophages around electrolytic lesion is nearly 1.5 times higher than that of laser lesion. The remarkable ablating ability, the damage zone created and the healing of nearby tissue clearly showed that the 980-nm diode laser is an effective and useful alternative to electrosurgical unit in neurosurgery.

  17. Gene expression profile comparison in the penile tissue of diabetes and cavernous nerve injury-induced erectile dysfunction rat model

    PubMed Central

    Kam, Sung Chul; Lee, Sang Hoon; Jeon, Ju Hong; So, Insuk; Chae, Mee Ree; Park, Jong Kwan

    2016-01-01

    Purpose To investigate the effects of cavernous nerve injury (CNI) on gene expression profiles in the cavernosal tissue of a CNI-induced erectile dysfunction (ED) model and to provide a basis for future investigations to discover potential target genes for ED treatment. Materials and Methods Young adult rats were divided randomly into 2 groups: sham operation and bilateral CN resection. At 12 weeks after CNI we measured erectile responses and performed microarray experiments and gene set enrichment analysis to reveal gene signatures that were enriched in the CNI-induced ED model. Alterations in gene signatures were compared with those in the diabetes-induced ED model. The diabetic-induced ED data is taken from GSE2457. Results The mean ratio of intracavernosal pressure/blood pressure for the CNI group (0.54±0.4 cmH2O) was significantly lower than that in the sham operation group (0.73±0.8 cmH2O, p<0.05). Supervised and unsupervised clustering analysis showed that the diabetes- and CNI-induced ED cavernous tissues had different gene expression profiles from normal cavernous tissues. We identified 46 genes that were upregulated and 77 genes that were downregulated in both the CNI- and diabetes-induced ED models. Conclusions Our genome-wide and computational studies provide the groundwork for understanding complex mechanisms and molecular signature changes in ED. PMID:27437539

  18. Engineering personalized neural tissue by combining induced pluripotent stem cells with fibrin scaffolds.

    PubMed

    Montgomery, Amy; Wong, Alix; Gabers, Nicole; Willerth, Stephanie M

    2015-02-01

    Induced pluripotent stem cells (iPSCs) are generated from adult somatic cells through the induction of key transcription factors that restore the ability to become any cell type found in the body. These cells are of interest for tissue engineering due to their potential for developing patient-specific therapies. As the technology for generating iPSCs advances, it is important to concurrently investigate protocols for the efficient differentiation of these cells to desired downstream phenotypes in combination with biomaterial scaffolds as a way of engineering neural tissue. For such applications, the generation of neurons within three dimensional fibrin scaffolds has been well characterized as a cell-delivery platform for murine embryonic stem cells (ESCs) but has not yet been applied to murine iPSCs. Given that iPSCs have been reported to differentiate less effectively than ESCs, a key objective of this investigation is to maximize the proportion of iPSC-derived neurons in fibrin through the choice of differentiation protocol. To this end, this study compares two EB-mediated protocols for generating neurons from murine iPSCs and ESCs: an 8 day 4-/4+ protocol using soluble retinoic acid in the last 4 days and a 6 day 2-/4+ protocol using soluble retinoic acid and the small molecule sonic hedgehog agonist purmorphamine in the last 4 days. EBs were then seeded in fibrin scaffolds for 14 days to allow further differentiation into neurons. EBs generated by the 2-/4+ protocol yielded a higher percentage of neurons compared to those from the 4-/4+ protocol for both iPSCs and ESCs. The results demonstrate the successful translation of the fibrin-based cell-delivery platform for use with murine iPSCs and furthermore that the proportion of neurons generated from murine iPSC-derived EBs seeded in fibrin can be maximized using the 2-/4+ differentiation protocol. Together, these findings validate the further exploration of 3D fibrin-based scaffolds as a method of delivering

  19. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  20. BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity Only at Subthermoneutrality

    PubMed Central

    Boon, Mariëtte R.; van den Berg, Sjoerd A. A.; Wang, Yanan; van den Bossche, Jan; Karkampouna, Sofia; Bauwens, Matthias; De Saint-Hubert, Marijke; van der Horst, Geertje; Vukicevic, Slobodan; de Winther, Menno P. J.; Havekes, Louis M.; Jukema, J. Wouter; Tamsma, Jouke T.; van der Pluijm, Gabri; van Dijk, Ko Willems; Rensen, Patrick C. N.

    2013-01-01

    Background/Aims Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP-1 and is a promising target to combat hyperlipidemia and obesity. BAT is densely innervated by the sympathetic nervous system, which increases BAT differentiation and activity upon cold exposure. Recently, Bone Morphogenetic Protein 7 (BMP7) was identified as an inducer of BAT differentiation. We aimed to elucidate the role of sympathetic activation in the effect of BMP7 on BAT by treating mice with BMP7 at varying ambient temperature, and assessed the therapeutic potential of BMP7 in combating obesity. Methods and Results High-fat diet fed lean C57Bl6/J mice were treated with BMP7 via subcutaneous osmotic minipumps for 4 weeks at 21°C or 28°C, the latter being a thermoneutral temperature in which sympathetic activation of BAT is largely diminished. At 21°C, BMP7 increased BAT weight, increased the expression of Ucp1, Cd36 and hormone-sensitive lipase in BAT, and increased total energy expenditure. BMP7 treatment markedly increased food intake without affecting physical activity. Despite that, BMP7 diminished white adipose tissue (WAT) mass, accompanied by increased expression of genes related to intracellular lipolysis in WAT. All these effects were blunted at 28°C. Additionally, BMP7 resulted in extensive ‘browning’ of WAT, as evidenced by increased expression of BAT markers and the appearance of whole clusters of brown adipocytes via immunohistochemistry, independent of environmental temperature. Treatment of diet-induced obese C57Bl6/J mice with BMP7 led to an improved metabolic phenotype, consisting of a decreased fat mass and liver lipids as well as attenuated dyslipidemia and hyperglycemia. Conclusion Together, these data show that BMP7-mediated recruitment and activation of BAT only occurs at subthermoneutral temperature, and is thus likely dependent on sympathetic activation of BAT, and that BMP7 may be a promising tool to

  1. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice.

    PubMed

    Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun

    2016-01-01

    Cold exposure or β₃-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β₃-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1-5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation. PMID:27223282

  2. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice

    PubMed Central

    Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun

    2016-01-01

    Cold exposure or β3-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β3-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1–5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation. PMID:27223282

  3. Protective Effects of Green Tea Extract against Hepatic Tissue Injury in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Abolfathi, Ali Akbar; Mohajeri, Daryoush; Rezaie, Ali; Nazeri, Mehrdad

    2012-01-01

    Although diabetic hepatopathy is potentially less common, it may be appropriate for addition to the list of target organ conditions related to diabetes. This study was designed to evaluate the hepatoprotective properties of green tea extract (GTE) in STZ-induced diabetes in rats. Wistar rats were made diabetic through single injection of STZ (75 mg/kg i.p.). The rats were randomly divided into four groups of 10 animals each: Group 1, healthy control; Group 2, nondiabetics treated with GTE administered orally (1.5%, w/v); Group 3, diabetics; Group 4, diabetics treated with GTE (1.5%, w/v) for 8 weeks. Serum biomarkers were assessed to determine hepatic injury. Malondialdehyde (MDA) and reduced glutathione (GSH) contents were measured to assess free radical activity in the liver tissue. Hepatic antioxidant activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) were also determined. The biochemical findings were matched with histopathological verifications. Liver MDA content and serum levels of ALT, AST, ALP, and bilirubin in Group 3 significantly increased compared to Group 1 (P < 0.05) and significantly decreased in Group 4 compared to Group 3 (P < 0.05). Serum albumin level and GSH, SOD, CAT, and GSH-Px contents of the liver in Group 3 were significantly decreased compared to Group 1 (P < 0.05) and were significantly increased in Group 4 compared to Group 3 (P < 0.05). Histopathologically, the changes were in the same direction with biochemical findings. This study proved the hepatoprotective activity of GTE in experimentally induced diabetic rats. PMID:22956978

  4. Molecular response of 4T1-induced mouse mammary tumours and healthy tissues to zinc treatment.

    PubMed

    Sztalmachova, Marketa; Gumulec, Jaromir; Raudenska, Martina; Polanska, Hana; Holubova, Monika; Balvan, Jan; Hudcova, Kristyna; Knopfova, Lucia; Kizek, Rene; Adam, Vojtech; Babula, Petr; Masarik, Michal

    2015-04-01

    Breast cancer patients negative for the nuclear oestrogen receptor α have a particularly poor prognosis. Therefore, the 4T1 cell line (considered as a triple-negative model) was chosen to induce malignancy in mice. The aim of the present study was to assess if zinc ions, provided in excess, may significantly modify the process of mammary oncogenesis. Zn(II) ions were chosen because of their documented antitumour effects. Zn(II) is also known to induce the expression of metallothioneins (MT) and glutathion (GSH). A total dose of zinc sulphate per one gram of mouse weight used in the experiment was 0.15 mg. We studied the expression of MT1, MT2, TP53 and MTF-1 genes and also examined the effect of the tumour on antioxidant capacity. Tumour-free mice had significantly higher expression levels of the studied genes (p<0.003). Significant differences were also revealed in the gene expression between the tissues (p<0.001). The highest expression levels were observed in the liver. As compared to brain, lung and liver, significantly lower concentrations of MT protein were found in the primary tumour; an inverse trend was observed in the concentration of Zinc(II). In non-tumour mice, the amount of hepatic hydrosulphuryl groups significantly increased by the exposure to Zn(II), but the animals with tumour induction showed no similar trend. The primary tumour size of zinc-treated animals was 20% smaller (p=0.002); however, no significant effect on metastasis progression due to the zinc treatment was discovered. In conclusion, Zn(II) itself may mute the growth of primary breast tumours especially at their early stages.

  5. Digital image analysis of striated skeletal muscle tissue injury during reperfusion after induced ischemia

    NASA Astrophysics Data System (ADS)

    Rosero Salazar, Doris Haydee; Salazar Monsalve, Liliana

    2015-01-01

    Conditions such as surgical procedures or vascular diseases produce arterial ischemia and reperfusion injuries, which generate changes in peripheral tissues and organs, for instance, in striated skeletal muscle. To determine such changes, we conducted an experimental method in which 42 male Wistar rat were selected, to be undergone to tourniquet application on the right forelimb and left hind limb, to induce ischemia during one and three hours, followed by reperfusion periods starting at one hour and it was prolonged up to 32 days. Extensor carpi radialis longus and soleus respectively, were obtained to be processed for histochemical and morphometric analysis. By means of image processing and detection of regions of interest, variations of areas occupied by muscle fibers and intramuscular extracellular matrix (IM-ECM) throughout reperfusion were observed. In extensor carpi radialis longus, results shown reduction in the area occupied by muscle fibers; this change is significant between one hour and three hours ischemia followed by 16 hours, 48 hours and 32 days reperfusión (p˂0.005). To compare only periods of reperfusión that continued to three hours ischemia, were found significant differences, as well. For area occupied by IM-ECM, were identified increments in extensor carpi radialis longus by three hours ischemia and eight to 16 days reperfusion; in soleus, was observed difference by one hour ischemia with 42 hours reperfusion, and three hours ischemia followed by four days reperfusion (p˂0.005). Skeletal muscle develops adaptive changes in longer reperfusion, to deal with induced injury. Descriptions beyond 32 days reperfusion, can determine recovering normal pattern.

  6. Inducible Brown Adipose Tissue, or Beige Fat, Is Anabolic for the Skeleton

    PubMed Central

    Rahman, Sima; Lu, Yalin; Czernik, Piotr J.; Rosen, Clifford J.; Enerback, Sven

    2013-01-01

    It is known that insulin resistance and type 2 diabetes mellitus are associated with increased fractures and that brown adipose tissue (BAT) counteracts many if not all of the symptoms associated with type 2 diabetes. By the use of FoxC2AD+/Tg mice, a well-established model for induction of BAT, or beige fat, we present data extending the beneficial action of beige fat to also include a positive effect on bone. FoxC2AD+/Tg mice are lean and insulin-sensitive and have high bone mass due to increased bone formation associated with high bone turnover. Inducible BAT is linked to activation of endosteal osteoblasts whereas osteocytes have decreased expression of the Sost transcript encoding sclerostin and elevated expression of Rankl. Conditioned media (CM) collected from forkhead box c2 (FOXC2)-induced beige adipocytes activated the osteoblast phenotype and increased levels of phospho-AKT and β-catenin in recipient cells. In osteocytes, the same media decreased Sost expression. Immunodepletion of CM with antibodies against wingless related MMTV integration site 10b (WNT10b) and insulin-like growth factor binding protein 2 (IGFBP2) resulted in the loss of pro-osteoblastic activity, and the loss of increase in the levels of phospho-AKT and β-catenin. Conversely, CM derived from cells overexpressing IGFBP2 or WNT10b restored osteoblastic activity in recipient cells. In conclusion, beige fat secretes endocrine/paracrine activity that is beneficial for the skeleton. PMID:23696565

  7. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    PubMed

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  8. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro

    PubMed Central

    Funk, Juergen; Robbins, Justin B.; Crogan-Grundy, Candace; Presnell, Sharon C.; Singer, Thomas; Roth, Adrian B.

    2016-01-01

    Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI). This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM). Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level. PMID:27387377

  9. Autologous subcutaneous adipose tissue transplants improve adipose tissue metabolism and reduce insulin resistance and fatty liver in diet-induced obesity rats.

    PubMed

    Torres-Villalobos, Gonzalo; Hamdan-Pérez, Nashla; Díaz-Villaseñor, Andrea; Tovar, Armando R; Torre-Villalvazo, Ivan; Ordaz-Nava, Guillermo; Morán-Ramos, Sofía; Noriega, Lilia G; Martínez-Benítez, Braulio; López-Garibay, Alejandro; Torres-Landa, Samuel; Ceballos-Cantú, Juan C; Tovar-Palacio, Claudia; Figueroa-Juárez, Elizabeth; Hiriart, Marcia; Medina-Santillán, Roberto; Castillo-Hernández, Carmen; Torres, Nimbe

    2016-09-01

    Long-term dietary and pharmacological treatments for obesity have been questioned, particularly in individuals with severe obesity, so a new approach may involve adipose tissue transplants, particularly autologous transplants. Thus, the aim of this study was to evaluate the metabolic effects of autologous subcutaneous adipose tissue (SAT) transplants into two specific intraabdominal cavity sites (omental and retroperitoneal) after 90 days. The study was performed using two different diet-induced obesity (DIO) rat models: one using a high-fat diet (HFD) and the other using a high-carbohydrate diet (HCHD). Autologous SAT transplant reduced hypertrophic adipocytes, improved insulin sensitivity, reduced hepatic lipid content, and fasting serum-free fatty acids (FFAs) concentrations in the two DIO models. In addition, the reductions in FFAs and glycerol were accompanied by a greater reduction in lipolysis, assessed via the phosphorylation status of HSL, in the transplanted adipose tissue localized in the omentum compared with that localized in the retroperitoneal compartment. Therefore, the improvement in hepatic lipid content after autologous SAT transplant may be partially attributed to a reduction in lipolysis in the transplanted adipose tissue in the omentum due to the direct drainage of FFAs into the liver. The HCHD resulted in elevated fasting and postprandial serum insulin levels, which were dramatically reduced by the autologous SAT transplant. In conclusion, the specific intraabdominal localization of the autologous SAT transplant improved the carbohydrate and lipid metabolism of adipose tissue in obese rats and selectively corrected the metabolic parameters that are dependent on the type of diet used to generate the DIO model. PMID:27582062

  10. Autologous subcutaneous adipose tissue transplants improve adipose tissue metabolism and reduce insulin resistance and fatty liver in diet-induced obesity rats.

    PubMed

    Torres-Villalobos, Gonzalo; Hamdan-Pérez, Nashla; Díaz-Villaseñor, Andrea; Tovar, Armando R; Torre-Villalvazo, Ivan; Ordaz-Nava, Guillermo; Morán-Ramos, Sofía; Noriega, Lilia G; Martínez-Benítez, Braulio; López-Garibay, Alejandro; Torres-Landa, Samuel; Ceballos-Cantú, Juan C; Tovar-Palacio, Claudia; Figueroa-Juárez, Elizabeth; Hiriart, Marcia; Medina-Santillán, Roberto; Castillo-Hernández, Carmen; Torres, Nimbe

    2016-09-01

    Long-term dietary and pharmacological treatments for obesity have been questioned, particularly in individuals with severe obesity, so a new approach may involve adipose tissue transplants, particularly autologous transplants. Thus, the aim of this study was to evaluate the metabolic effects of autologous subcutaneous adipose tissue (SAT) transplants into two specific intraabdominal cavity sites (omental and retroperitoneal) after 90 days. The study was performed using two different diet-induced obesity (DIO) rat models: one using a high-fat diet (HFD) and the other using a high-carbohydrate diet (HCHD). Autologous SAT transplant reduced hypertrophic adipocytes, improved insulin sensitivity, reduced hepatic lipid content, and fasting serum-free fatty acids (FFAs) concentrations in the two DIO models. In addition, the reductions in FFAs and glycerol were accompanied by a greater reduction in lipolysis, assessed via the phosphorylation status of HSL, in the transplanted adipose tissue localized in the omentum compared with that localized in the retroperitoneal compartment. Therefore, the improvement in hepatic lipid content after autologous SAT transplant may be partially attributed to a reduction in lipolysis in the transplanted adipose tissue in the omentum due to the direct drainage of FFAs into the liver. The HCHD resulted in elevated fasting and postprandial serum insulin levels, which were dramatically reduced by the autologous SAT transplant. In conclusion, the specific intraabdominal localization of the autologous SAT transplant improved the carbohydrate and lipid metabolism of adipose tissue in obese rats and selectively corrected the metabolic parameters that are dependent on the type of diet used to generate the DIO model.

  11. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis.

    PubMed

    Labbé, Sébastien M; Caron, Alexandre; Bakan, Inan; Laplante, Mathieu; Carpentier, André C; Lecomte, Roger; Richard, Denis

    2015-05-01

    The present study was designed to investigate the effects of cold on brown adipose tissue (BAT) energy substrate utilization in vivo using the positron emission tomography tracers [(18)F]fluorodeoxyglucose (glucose uptake), 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid [nonesterified fatty acid (NEFA) uptake], and [(11)C]acetate (oxidative activity). The measurements were performed in rats adapted to 27°C, which were acutely subjected to cold (10°C) for 2 and 6 hours, and in rats chronically adapted to 10°C for 21 days, which were returned to 27°C for 2 and 6 hours. Cold exposure (acutely and chronically) led to increases in BAT oxidative activity, which was accompanied by concomitant increases in glucose and NEFA uptake. The increases were particularly high in cold-adapted rats and largely readily reduced by the return to a warm environment. The cold-induced increase in oxidative activity was meaningfully blunted by nicotinic acid, a lipolysis inhibitor, which emphasizes in vivo the key role of intracellular lipid in BAT thermogenesis. The changes in BAT oxidative activity and glucose and NEFA uptakes were paralleled by inductions of genes involved in not only oxidative metabolism but also in energy substrate replenishment (triglyceride and glycogen synthesis). The capacity of BAT for energy substrate replenishment is remarkable.

  12. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.

    PubMed

    Mellibovsky, Leonardo; Prieto-Alhambra, Daniel; Mellibovsky, Fernando; Güerri-Fernández, Roberto; Nogués, Xavier; Randall, Connor; Hansma, Paul K; Díez-Perez, Adolfo

    2015-09-01

    Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids. PMID:25736591

  13. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-01-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications. PMID:27435424

  14. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular-fibrosis and tumor progression

    PubMed Central

    Laklai, Hanane; Miroshnikova, Yekaterina A.; Pickup, Michael W.; Collisson, Eric A.; Kim, Grace E.; Barrett, Alex S.; Hill, Ryan C.; Lakins, Johnathon N.; Schlaepfer, David D.; Mouw, Janna K.; LeBleu, Valerie S.; Roy, Nilotpal; Novitskiy, Sergey V.; Johansen, Julia S.; Poli, Valeria; Kalluri, Raghu; Iacobuzio-Donahue, Christine A.; Wood, Laura D.; Hebrok, Matthias; Hansen, Kirk; Moses, Harold L.; Weaver, Valerie M.

    2016-01-01

    Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality yet anti-stromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor β (TGF-β) signaling have elevated epithelial Stat3 activity and develop a stiffer, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several Kras-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby Stat3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial Stat3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated Stat3 associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors, and highlight Stat3 and mechanics as key drivers of this phenotype. PMID:27089513

  15. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression.

    PubMed

    Laklai, Hanane; Miroshnikova, Yekaterina A; Pickup, Michael W; Collisson, Eric A; Kim, Grace E; Barrett, Alex S; Hill, Ryan C; Lakins, Johnathon N; Schlaepfer, David D; Mouw, Janna K; LeBleu, Valerie S; Roy, Nilotpal; Novitskiy, Sergey V; Johansen, Julia S; Poli, Valeria; Kalluri, Raghu; Iacobuzio-Donahue, Christine A; Wood, Laura D; Hebrok, Matthias; Hansen, Kirk; Moses, Harold L; Weaver, Valerie M

    2016-05-01

    Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors and highlight STAT3 and mechanics as key drivers of this phenotype.

  16. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.

    PubMed

    Mellibovsky, Leonardo; Prieto-Alhambra, Daniel; Mellibovsky, Fernando; Güerri-Fernández, Roberto; Nogués, Xavier; Randall, Connor; Hansma, Paul K; Díez-Perez, Adolfo

    2015-09-01

    Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids.

  17. Diet-induced changes in subcutaneous adipose tissue blood flow in man: effect of beta-adrenoceptor inhibition.

    PubMed

    Simonsen, L; Bülow, J; Astrup, A; Madsen, J; Christensen, N J

    1990-06-01

    The effect of a carbohydrate-rich meal on subcutaneous adipose tissue blood flow was studied with and without continuous i.v. infusion of propranolol in healthy volunteers. The subcutaneous adipose tissue blood flow was measured with the 133Xe washout method in three different locations: the forearm, the thigh and the abdomen. The subjects were given a meal consisting of white bread, jam, honey and apple juice (about 2300 kJ). The meal induced a twofold increase in blood flow in the examined tissues. Propranolol abolished the flow increase in the thigh and the abdomen and reduced it in the forearm. This indicates that the mechanism for the flow increase is elicited by a stimulation of vascular beta-adrenoceptors in the subcutaneous adipose tissue, since the beta-adrenoceptor inhibition did not affect the overall metabolic and hormonal responses to the meal.

  18. Discrepancy between tissue factor activity and tissue factor expression in endotoxin-induced monocytes is associated with apoptosis and necrosis.

    PubMed

    Henriksson, Carola E; Klingenberg, Olav; Ovstebø, Reidun; Joø, Gun-Britt; Westvik, Ase-Brit; Kierulf, Peter

    2005-12-01

    Tissue factor (TF), the main initiator of blood coagulation, contributes to the manifestation of disseminated intravascular coagulation following septic shock in meningococcal infection. Since a direct relationship between disease severity and lipopolysaccharide (LPS) concentration in the circulation has been shown, we hypothesized that the procoagulant and cytotoxic effects of endotoxin also in vitro were related to its concentration. In vitro studies, however, have frequently used much higher LPS concentrations than those observed in clinical samples. Using elutriation-purified human monocytes, we observed that LPS up to 1000 ng/ml exerted a concentration-dependent increase in TF activity (tenase activity, fibrin formation in plasma). Although there was a dose-dependent increase in TF activity, there was not a concomitant increase in TF expression at LPS concentrations above 1 ng/ml (flow cytometry, Western blotting, TF mRNA). Flow cytometry revealed that this discrepancy between TF activity and TF expression at endotoxin concentrations above 1 ng/ml, coincided with an LPS dose-dependent increase in cell surface phosphatidylserine (PS), considered to promote coagulation. The increased PS expression was associated with an increased number of 7-AAD-positive cells indicating cell death. We conclude that enhancement of monocyte procoagulant activity in vitro by high concentrations of LPS may result from increased PS exposure due to apoptosis and necrosis. Therefore, the LPS concentrations used to examine monocyte procoagulant activity in vitro, should be carefully chosen.

  19. Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT

    SciTech Connect

    Stanescu, T.; Wachowicz, K.; Jaffray, D. A.

    2012-12-15

    Purpose: MR image geometric integrity is one of the building blocks of MRI-guided radiotherapy. In particular, tissue magnetic susceptibility-induced effects are patient-dependent and their behavior is difficult to assess and predict. In this study, the authors investigated in detail the characteristics of susceptibility ({chi}) distortions in the context of MRIgRT, including the case of two common MR-linac system configurations. Methods: The magnetic field distortions were numerically simulated for several imaging parameters and anatomical sites, i.e., brain, lung, pelvis (with air pockets), and prostate. The simulation process consisted of (a) segmentation of patient CT data into susceptibility relevant anatomical volumes (i.e., soft-tissue, bone and air/lung), (b) conversion of CT data into susceptibility masks by assigning bulk {chi} values to the structures defined at (a), (c) numerical computations of the local magnetic fields by using a finite difference algorithm, and (d) generation of the geometric distortion maps from the magnetic field distributions. For each patient anatomy, the distortions were quantified at the interfaces of anatomical structures with significantly different {chi} values. The analysis was performed for two specific orientations of the external main magnetic field (B{sub 0}) characteristic to the MR-linac systems, specifically along the z-axis for a bore MR scanner and in the (x,y)-plane for a biplanner magnet. The magnetic field local perturbations were reported in ppm. The metrics used to quantify the geometric distortions were the maximum, mean, and range of distortions. The numerical simulation algorithm was validated using phantom data measurements. Results: Susceptibility-induced distortions were determined for both quadratic and patient specific geometries. The numerical simulations showed a good agreement with the experimental data. The measurements were acquired at 1.5 and 3 T and with an encoding gradient varying between 3

  20. Antioxidant Attenuation of Atrazine Induced Histopathological Changes in Testicular Tissue of Goat In Vitro

    PubMed Central

    Sharma, R. K.; Fulia, Anju; Chauhan, P. K.

    2012-01-01

    During the present investigation the effect of α-tocopherol (100 μmolL-1) in prevention of testicular toxicity induced by atrazine in goat Capra hircus have been analyzed. Vitamin E (α-tocopherol) at dose level 100 μmolL-1 provides attenuation over the histopathological changes generated by pesticide atrazine (100 nmolml-1). Small pieces (approximately 1mm3) of testicular tissue were divided into three groups (one control group + two experimental groups). Experimental group (A) was supplemented with 100 nmolml-1 concentration of atrazine and experimental group (B) was supplemented with 100 nmolml-1 atrazine and 100 μmolL-1 concentrations of vitamin E (α-Tocopherol) and harvesting was carried out after 1, 4 and 8 hrs of exposure. Control was run along with all the experimental groups. In the experimental group (A) treated with atrazine at dose level 100 nmolml-1, revealed histomorphological alterations in the seminiferous tubule. After one hour of exposure duration small vacuoles in cytoplasm of the Sertoli cells and spermatogonia were observed. Chromolysis at pycnosis were also noticed in the spermatogonia and spermatids. In the experimental group (B) exposed with atrazine and simultaneously supplemented with Vitamin E also showed degeneration but it was milder as compared with experimental group treated with atrazine without antioxidant. Atrazine exposure induced a decline in diameter of spermatocytes from 10.51 ± 0.2052 μm in control to 7.915 ± 0.2972, 7.5 ± 0.211 and 7.14 ± 0.225 μm after exposure of 1, 4 and 8 hrs respectively but in case of atrazine supplemented with vitamin E [experimental group (B)], there was less decline in cell diameter that was 8.5 ± 0.1865, 8.1 ± 0.1201 and 7.8 ± 0.2066μm after exposure of 1, 4 and 8 hrs respectively. The result demonstrated that vitamin E delays the degenerative changes induced by atrazine. PMID:23293464

  1. Angiotensin II Levels in Gingival Tissues from Healthy Individuals, Patients with Nifedipine Induced Gingival Overgrowth and Non Responders on Nifedipine

    PubMed Central

    Balaji, Anitha; Balaji, Thodur Madapusi

    2015-01-01

    Context The Renin Angiotensin system has been implicated in the pathogenesis of Drug Induced Gingival Overgrowth (DIGO), a fibrotic condition, caused by Phenytoin, Nifedipine and Cyclosporine. Aim This study quantified Angiotensin II levels in gingival tissue samples obtained from healthy individuals, patients on Nifedipine manifesting/not manifesting drug induced gingival overgrowth. Materials and Methods Gingival tissue samples were obtained from healthy individuals (n=24), patients on nifidipine manifesting gingival overgrowth (n= 18) and patients on nifidipine not manifesting gingival overgrowth (n=8). Angiotensin II levels were estimated in the samples using a commercially available ELISA kit. Results Angiotensin II levels were significantly elevated in patients on Nifedipine manifesting gingival overgrowth compared to the other 2 groups (p<0.01). Conclusion The results of the study give an insight into the role played by Angiotensin II in the pathogenesis of drug induced gingival overgrowth. PMID:26436057

  2. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies.

    PubMed

    Tzatzalos, Evangeline; Abilez, Oscar J; Shukla, Praveen; Wu, Joseph C

    2016-01-15

    Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing.

  3. Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. grapevines

    PubMed Central

    2010-01-01

    Background Growth cessation, cold acclimation and dormancy induction in grapevines and other woody perennial plants native to temperate continental climates is frequently triggered by short photoperiods. The early induction of these processes by photoperiod promotes winter survival of grapevines in cold temperate zones. Examining the molecular processes, in particular the proteomic changes in the shoot, will provide greater insight into the signaling cascade that initiates growth cessation and dormancy induction. To begin understanding transduction of the photoperiod signal, Vitis riparia Michx. grapevines that had grown for 35 days in long photoperiod (long day, LD, 15 h) were subjected to either a continued LD or a short photoperiod (short day, SD, 13 h) treatment. Shoot tips (4-node shoot terminals) were collected from each treatment at 7 and 28 days of LD and SD for proteomic analysis via two-dimensional (2D) gel electrophoresis. Results Protein profiles were characterized in V. riparia shoot tips during active growth or SD induced growth cessation to examine physiological alterations in response to differential photoperiod treatments. A total of 1054 protein spots were present on the 2D gels. Among the 1054 proteins, 216 showed differential abundance between LD and SD (≥ two-fold ratio, p-value ≤ 0.05). After 7 days, 39 protein spots were more abundant in LD and 30 were more abundant in SD. After 28 days, 93 protein spots were more abundant in LD and 54 were more abundant in SD. MS/MS spectrometry was performed to determine the functions of the differentially abundant proteins. Conclusions The proteomics analysis uncovered a portion of the signal transduction involved in V. riparia grapevine growth cessation and dormancy induction. Different enzymes of the Calvin-Benson cycle and glutamate synthetase isoforms were more abundant either in LD or SD treatments. In LD tissues the significantly differentially more abundant proteins included flavonoid

  4. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    PubMed

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  5. Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues.

    PubMed

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  6. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    PubMed Central

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  7. Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity.

    PubMed

    Yoshida, Hiroki; Watanabe, Hideaki; Ishida, Akiko; Watanabe, Wataru; Narumi, Keiko; Atsumi, Toshiyuki; Sugita, Chihiro; Kurokawa, Masahiko

    2014-11-01

    Obese adipose tissue is characterized by increased macrophage infiltration, which results in chronic inflammation in adipose tissue and leads to obesity-related diseases such as type 2 diabetes mellitus and atherosclerosis. The regulation of macrophage infiltration into adipose tissue is an important strategy for preventing and treating obesity-related diseases. In this study, we report that naringenin, a citrus flavonoid, suppressed macrophage infiltration into adipose tissue induced by short-term (14 days) feeding of a high-fat diet in mice; although naringenin did not show any differences in high-fat diet-induced changes of serum biochemical parameters in this short administration period. Naringenin suppressed monocyte chemoattractant protein-1 (MCP-1) in adipose tissue, and this effect was mediated in part through inhibition of c-Jun NH2-terminal kinase pathway. Naringenin also inhibited MCP-1 expression in adipocytes, macrophages, and a co-culture of adipocytes and macrophages. Our results suggest a mechanism by which daily consumption of naringenin may exhibit preventive effects on obesity-related diseases.

  8. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity

    PubMed Central

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-01-01

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese. PMID:27271106

  9. Computational methods for describing the laser-induced mechanical response of tissue

    SciTech Connect

    Trucano, T.; McGlaun, J.M.; Farnsworth, A.

    1994-02-01

    Detailed computational modeling of laser surgery requires treatment of the photoablation of human tissue by high intensity pulses of laser light and the subsequent thermomechanical response of the tissue. Three distinct physical regimes must be considered to accomplish this: (1) the immediate absorption of the laser pulse by the tissue and following tissue ablation, which is dependent upon tissue light absorption characteristics; (2) the near field thermal and mechanical response of the tissue to this laser pulse, and (3) the potential far field (and longer time) mechanical response of witness tissue. Both (2) and (3) are dependent upon accurate constitutive descriptions of the tissue. We will briefly review tissue absorptivity and mechanical behavior, with an emphasis on dynamic loads characteristic of the photoablation process. In this paper our focus will center on the requirements of numerical modeling and the uncertainties of mechanical tissue behavior under photoablation. We will also discuss potential contributions that computational simulations can make in the design of surgical protocols which utilize lasers, for example, in assessing the potential for collateral mechanical damage by laser pulses.

  10. Targeted overexpression of inducible 6-phosphofructo-2-kinase in adipose tissue increases fat deposition but protects against diet-induced insulin resistance and inflammatory responses.

    PubMed

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S; Mashek, Douglas G; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-06-15

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues.

  11. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    SciTech Connect

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  12. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    PubMed

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.

  13. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.

    PubMed

    Albert, Verena; Svensson, Kristoffer; Shimobayashi, Mitsugu; Colombi, Marco; Muñoz, Sergio; Jimenez, Veronica; Handschin, Christoph; Bosch, Fatima; Hall, Michael N

    2016-03-01

    Activation of non-shivering thermogenesis (NST) in brown adipose tissue (BAT) has been proposed as an anti-obesity treatment. Moreover, cold-induced glucose uptake could normalize blood glucose levels in insulin-resistant patients. It is therefore important to identify novel regulators of NST and cold-induced glucose uptake. Mammalian target of rapamycin complex 2 (mTORC2) mediates insulin-stimulated glucose uptake in metabolic tissues, but its role in NST is unknown. We show that mTORC2 is activated in brown adipocytes upon β-adrenergic stimulation. Furthermore, mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice) are hypothermic, display increased sensitivity to cold, and show impaired cold-induced glucose uptake and glycolysis. Restoration of glucose uptake in BAT by overexpression of hexokinase II or activated Akt2 was sufficient to increase body temperature and improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT mediates temperature homeostasis via regulation of cold-induced glucose uptake. Our findings demonstrate the importance of glucose metabolism in temperature regulation. PMID:26772600

  14. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    PubMed

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation. PMID:26337939

  15. Minimal and inducible regulation of tissue factor pathway inhibitor-2 in human gliomas.

    PubMed

    Konduri, Santhi D; Osman, Francis Ali; Rao, Chilukuri N; Srinivas, Harish; Yanamandra, Niranjan; Tasiou, Anastasia; Dinh, Dzung H; Olivero, William C; Gujrati, Meena; Foster, Donald C; Kisiel, Walter; Kouraklis, Gregory; Rao, Jasti S

    2002-01-31

    Tissue factor pathway inhibitor-2 (TFPI-2), a serine protease inhibitor abundant in the extra cellular matrix, is highly expressed in non-invasive cells but undetectable levels in highly invasive human glioma cells. The mechanisms responsible for its transcriptional regulation are not well elucidated. In this study, we made several deletion constructs from a 3.6 kb genomic fragment from Hs683 cells containing the 5'-flanking region of the TFPI-2 gene, transiently transfected with these constructs into non-invasive (Hs683) and highly invasive (SNB19) human glioma cells, and assessed their expression by using a luciferase reporter gene. Three constructs showed high promoter activity (pTF5, -670 to +1; pTF6, -312 to +1; pTF2, -1511 to +1). Another construct, pTF8 (-81 to +1), showed no activity. PTF9, a variant of pTF5 in which a further 231 bp fragment (-312 to -81) was deleted, from the [-670 to +1] pTF5 region, also showed no promoter activity. Hence, (-312 to -81) this region is essential for the transcription of TFPI-2 in glioma cells. Sequencing of this promoter region revealed that it has a high G+C content, contains potential SP1 and AP1 binding motifs, and lacks canonical TATA and CAAT boxes immediately upstream of the major transcriptional initiation site, although CAAT boxes were found about -3000 bp upstream of the transcription start site. We also found a strong repressor in the region between -927 to -1181, upstream of the major transcriptional initiation site, followed by positive elements or enhancers between -1511 to -1181. These positive elements masked the silencer effect. Finally TFPI-2 was induced in Hs683 cells transfected with the pTF6 construct (-312 to +1) and stimulated with phorbol-12-myristate-13-acetate (PMA). We conclude that the -312 to +1 region is critical for the minimal and inducible regulation of TFPI-2 in non-invasive (Hs683) and highly invasive (SNB19) human glioma cell lines.

  16. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance.

    PubMed

    Lee, Byung-Cheol; Lee, Jongsoon

    2014-03-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  17. Mechanisms of bradykinin-induced expression of connective tissue growth factor and nephrin in podocytes.

    PubMed

    Abou Msallem, J; Chalhoub, H; Al-Hariri, M; Saad, L; Jaffa, M A; Ziyadeh, F N; Jaffa, A A

    2015-12-01

    Diabetic nephropathy (DN) is the main cause of morbidity and mortality in diabetes and is characterized by mesangial matrix deposition and podocytopathy, including podocyte loss. The risk factors and mechanisms involved in the pathogenesis of DN are still not completely defined. In the present study, we aimed to understand the cellular mechanisms through which activation of B2 kinin receptors contribute to the initiation and progression of DN. Stimulation of cultured rat podocytes with bradykinin (BK) resulted in a significant increase in ROS generation, and this was associated with a significant increase in NADPH oxidase (NOX)1 and NOX4 protein and mRNA levels. BK stimulation also resulted in a signicant increase in the phosphorylation of ERK1/2 and Akt, and this effect was inhibited in the presence of NOX1 and Nox4 small interfering (si)RNA. Furthermore, podocytes stimulated with BK resulted in a significant increase in protein and mRNA levels of connective tissue growth factor (CTGF) and, at the same time, a significant decrease in protein and mRNA levels of nephrin. siRNA targeted against NOX1 and NOX4 significantly inhibited the BK-induced increase in CTGF. Nephrin expression was increased in response to BK in the presence of NOX1 and NOX4 siRNA, thus implicating a role for NOXs in modulating the BK response in podocytes. Moreover, nephrin expression in response to BK was also significantly increased in the presence of siRNA targeted against CTGF. These findings provide novel aspects of BK signal transduction pathways in pathogenesis of DN and identify novel targets for interventional strategies.

  18. Fluorescence imaging and spectroscopy of ALA-induced protoporphyrin IX preferentially accumulated in tumor tissue

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert G.; Baumgartner, Reinhold; Beyer, Wolfgang; Knuechel, Ruth; Koerner, T. O.; Kriegmair, M.; Rick, Kai; Steinbach, Pia; Hofstetter, Alfons G.

    1995-12-01

    In a clinical pilot study performed on 104 patients suffering from bladder cancer it could be shown that intravesical instillation of a solution of 5-aminolevulinic acid (5-ALA) induces a tumorselective accumulation of Protoporphyrin IX (PPIX). Malignant lesions could be detected with a sensitivity of 97% and a specificity of 67%. The Kr+-laser as excitation light source could successfully be replaced by a filtered short arc Xe-lamp. Its emission wavelength band (375 nm - 440 nm) leads to an efficiency of 58% for PPIX- excitation compared to the laser. Two-hundred-sixty mW of output power at the distal end of a slightly modified cystoscope could be obtained. This is sufficient for recording fluorescence images with a target integrating color CCD-camera. Red fluorescence and blue remitted light are displayed simultaneously. Standard white light observation is possible with the same instrumentation. Pharmacokinetic measurements were performed on 18 patients after different routes of 5-ALA application (oral, inhalation and intravesical instillation). PPIX-fluorescence measurements were made on the skin and on the blood plasma. Pharmacokinetic of 5-ALA could be performed on blood plasma. Endoscopical florescence spectroscopy showed the high fluorescence contrast between tumor and normal tissue with a mean value of 10.7. Forthcoming clinical multicenter studies require an objective measure of the fluorescence intensity. Monte Carlo computer simulations showed that artifacts due to observation geometry and varying absorption can largely be reduced by ratioing fluorescence (red channel of camera) to remission (blue channel). Real time image ratioing provides false color images with a reliable fluorescence information.

  19. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues.

    PubMed

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-08-16

    It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  20. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions

    PubMed Central

    Dubey, Jitender P.; Ferreira, Leandra R.; Alsaad, Mohammad; Verma, Shiv K.; Alves, Derron A.; Holland, Gary N.; McConkey, Glenn A.

    2016-01-01

    Background The protozoan parasite Toxoplasma gondii is one of the most widely distributed and successful parasites. Toxoplasma gondii alters rodent behavior such that infected rodents reverse their fear of cat odor, and indeed are attracted rather than repelled by feline urine. The location of the parasite encysted in the brain may influence this behavior. However, most studies are based on the highly susceptible rodent, the mouse. Methodology/Principal Findings Latent toxoplasmosis was induced in rats (10 rats per T. gondii strains) of the same age, strain, and sex, after oral inoculation with oocysts (natural route and natural stage of infection) of 11 T. gondii strains of seven genotypes. Rats were euthanized at two months post inoculation (p.i.) to investigate whether the parasite genotype affects the distribution, location, tissue cyst size, or lesions. Tissue cysts were enumerated in different regions of the brains, both in histological sections as well in saline homogenates. Tissue cysts were found in all regions of the brain. The tissue cyst density in different brain regions varied extensively between rats with many regions highly infected in some animals. Overall, the colliculus was most highly infected although there was a large amount of variability. The cerebral cortex, thalamus, and cerebellum had higher tissue cyst densities and two strains exhibited tropism for the colliculus and olfactory bulb. Histologically, lesions were confined to the brain and eyes. Tissue cyst rupture was frequent with no clear evidence for reactivation of tachyzoites. Ocular lesions were found in 23 (25%) of 92 rat eyes at two months p.i. The predominant lesion was focal inflammation in the retina. Tissue cysts were seen in the sclera of one and in the optic nerve of two rats. The choroid was not affected. Only tissue cysts, not active tachyzoite infections, were detected. Tissue cysts were seen in histological sections of tongue of 20 rats but not in myocardium and leg

  1. Adipose Tissue Lipolysis Promotes Exercise-induced Cardiac Hypertrophy Involving the Lipokine C16:1n7-Palmitoleate*

    PubMed Central

    Foryst-Ludwig, Anna; Kreissl, Michael C.; Benz, Verena; Brix, Sarah; Smeir, Elia; Ban, Zsofia; Januszewicz, Elżbieta; Salatzki, Janek; Grune, Jana; Schwanstecher, Anne-Kathrin; Blumrich, Annelie; Schirbel, Andreas; Klopfleisch, Robert; Rothe, Michael; Blume, Katharina; Halle, Martin; Wolfarth, Bernd; Kershaw, Erin E.; Kintscher, Ulrich

    2015-01-01

    Endurance exercise training induces substantial adaptive cardiac modifications such as left ventricular hypertrophy (LVH). Simultaneously to the development of LVH, adipose tissue (AT) lipolysis becomes elevated upon endurance training to cope with enhanced energy demands. In this study, we investigated the impact of adipose tissue lipolysis on the development of exercise-induced cardiac hypertrophy. Mice deficient for adipose triglyceride lipase (Atgl) in AT (atATGL-KO) were challenged with chronic treadmill running. Exercise-induced AT lipolytic activity was significantly reduced in atATGL-KO mice accompanied by the absence of a plasma fatty acid (FA) increase. These processes were directly associated with a prominent attenuation of myocardial FA uptake in atATGL-KO and a significant reduction of the cardiac hypertrophic response to exercise. FA serum profiling revealed palmitoleic acid (C16:1n7) as a new molecular co-mediator of exercise-induced cardiac hypertrophy by inducing nonproliferative cardiomyocyte growth. In parallel, serum FA analysis and echocardiography were performed in 25 endurance athletes. In consonance, the serum C16:1n7 palmitoleate level exhibited a significantly positive correlation with diastolic interventricular septum thickness in those athletes. No correlation existed between linoleic acid (18:2n6) and diastolic interventricular septum thickness. Collectively, our data provide the first evidence that adipose tissue lipolysis directly promotes the development of exercise-induced cardiac hypertrophy involving the lipokine C16:1n7 palmitoleate as a molecular co-mediator. The identification of a lipokine involved in physiological cardiac growth may help to develop future lipid-based therapies for pathological LVH or heart failure. PMID:26260790

  2. Trypanosoma cruzi induces tissue disorganization and destruction of chorionic villi in an ex vivo infection model of human placenta.

    PubMed

    Duaso, J; Rojo, G; Cabrera, G; Galanti, N; Bosco, C; Maya, J D; Morello, A; Kemmerling, U

    2010-08-01

    Congenital Chagas' disease, endemic in Latin America and also present with lower frequency in other countries, is associated with premature labor, miscarriage, and placentitis. The mechanism of tissue invasion and infection of human placenta by the parasite Trypanosoma cruzi (T. cruzi) remains unclear. In order to explore some morphological aspects of this infection in the placenta, we incubated chorionic villous explants from normal human placentae ex vivo with the parasite and studied the resulting effects by immunohistochemical and histochemical methods. Infection of the chorionic villi with the parasite was confirmed by immunofluoresence and PCR. T. cruzi induces syncytiotrophoblast destruction and detachment, selective disorganization of basal lamina and disorganization of collagen I in the connective tissue of villous stroma. These effects are a function of the number of parasites used for the infection. Our results suggest a participation of the proteolytic activity of the parasite on the placental basal lamina and connective tissue in the mechanism of infection of the fetus by T. cruzi.

  3. Effect of supplemental folic acid on valproic acid-induced embryotoxicity and tissue zinc levels in vivo.

    PubMed

    Hansen, D K; Grafton, T F; Dial, S L; Gehring, T A; Siitonen, P H

    1995-11-01

    Valproic acid (VPA) is an anti-convulsant drug known to cause spina bifida in humans. Administration of the vitamin, folic acid, has been shown to decrease the recurrence and possibly also the occurrence of neural tube defects, primarily spina bifida, in humans. Additionally, treatment with a derivative (folinic acid) of folic acid has been reported to decrease the frequency of VPA-induced exencephaly in mice treated with the drug in vivo. A protective effect by folinic acid has not been observed in vitro. The purpose of this investigation was to reexamine the ability of folinic acid to decrease the incidence of VPA-induced neural tube defects in vivo. We also examined the effect of increased intake of folic acid on zinc levels in various maternal and embryonic tissues. Folinic acid, whether administered by intraperitoneal injection or in osmotic mini-pumps, did not decrease the number of mouse fetuses with VPA-induced exencephaly. Dietary supplementation with 10-20 times the daily required intake of folic acid in rodents also failed to decrease the embryotoxicity of VPA. Such dietary supplementation had no effect on zinc levels in maternal liver, brain, or kidney, nor in embryonic tissues. These results indicate that folic acid is not able to reverse the embryotoxicity induced by the anticonvulsant, that there is no apparent effect of high dietary folate intake on maternal or embryonic zinc levels and suggest that folate is probably not involved in the mechanism of VPA-induced embryotoxicity. PMID:8838251

  4. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation.

    PubMed

    Honda, Hiroe; Nagai, Yoshinori; Matsunaga, Takayuki; Okamoto, Naoki; Watanabe, Yasuharu; Tsuneyama, Koichi; Hayashi, Hiroaki; Fujii, Isao; Ikutani, Masashi; Hirai, Yoshikatsu; Muraguchi, Atsushi; Takatsu, Kiyoshi

    2014-12-01

    Inflammasome activation initiates the development of many inflammatory diseases, including obesity and type 2 diabetes. Therefore, agents that target discrete activation steps could represent very important drugs. We reported previously that ILG, a chalcone from Glycyrrhiza uralensis, inhibits LPS-induced NF-κB activation. Here, we show that ILG potently inhibits the activation of NLRP3 inflammasome, and the effect is independent of its inhibitory potency on TLR4. The inhibitory effect of ILG was stronger than that of parthenolide, a known inhibitor of the NLRP3 inflammasome. GL, a triterpenoid from G. uralensis, had similar inhibitory effects on NLRP3 activity, but high concentrations of GL were required. In contrast, activation of the AIM2 inflammasome was inhibited by GL but not by ILG. Moreover, GL inhibited NLRP3- and AIM2-activated ASC oligomerization, whereas ILG inhibited NLRP3-activated ASC oligomerization. Low concentrations of ILG were highly effective in IAPP-induced IL-1β production compared with the sulfonylurea drug glyburide. In vivo analyses revealed that ILG potently attenuated HFD-induced obesity, hypercholesterolemia, and insulin resistance. Furthermore, ILG treatment improved HFD-induced macrovesicular steatosis in the liver. Finally, ILG markedly inhibited diet-induced adipose tissue inflammation and IL-1β and caspase-1 production in white adipose tissue in ex vivo culture. These results suggest that ILG is a potential drug target for treatment of NLRP3 inflammasome-associated inflammatory diseases. PMID:25210146

  5. Macrophage activation-induced thymosin beta 4 production: a tissue repair mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophages play significant role in immunity which not only kill pathogens, produce cytokines but also clear dead tissues at the site of inflammation and stimulate wound healing. Much less is known how these cells contribute to tissue repair process. In course of our studies comparing the peptide...

  6. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    PubMed

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis.

  7. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease.

    PubMed

    Fuster, José J; Ouchi, Noriyuki; Gokce, Noyan; Walsh, Kenneth

    2016-05-27

    Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines.

  8. Nifedipine and phenytoin induce matrix synthesis, but not proliferation, in intact human gingival connective tissue ex vivo.

    PubMed

    Kim, Shawna S; Michelsons, Sarah; Creber, Kendal; Rieder, Michael J; Hamilton, Douglas W

    2015-12-01

    Drug-induced gingival enlargement (DIGE) is a fibrotic condition that can be caused by the antihypertensive drug nifedipine and the anti-seizure drug phenytoin, but the molecular etiology of this type of fibrosis is not well understood and the role of confounding factors such as inflammation remains to be fully investigated. The aim of this study was to develop an ex vivo gingival explant system to allow investigation of the effects of nifedipine and phenytoin alone on human gingival tissue. Comparisons were made to the histology of human DIGE tissue retrieved from individuals with DIGE. Increased collagen, fibronectin, and proliferating fibroblasts were evident, but myofibroblasts were not detected in DIGE samples caused by nifedipine and phenytoin. In healthy gingiva cultured in nifedipine or phenytoin-containing media, the number of cells positive for p-SMAD2/3 increased, concomitant with increased CCN2 and periostin immunoreactivity compared to untreated explants. Collagen content assessed through hydroxyproline assays was significantly higher in tissues cultured with either drug compared to control tissues, which was confirmed histologically. Matrix fibronectin levels were also qualitatively greater in tissues treated with either drug. No significant differences in proliferating cells were observed between any of the conditions. Our study demonstrates that nifedipine and phenytoin activate canonical transforming growth factor-beta signaling, CCN2 and periostin expression, as well as increase collagen density, but do not influence cell proliferation or induce myofibroblast differentiation. We conclude that in the absence of confounding variables, nifedipine and phenytoin alter matrix homeostasis in gingival tissue explants ex vivo, and drug administration is a significant factor influencing ECM accumulation in gingival enlargement. PMID:26296421

  9. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    NASA Astrophysics Data System (ADS)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina

  10. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis

    PubMed Central

    Herrera, Cristina; Macêdo, Jéssica Kele A.; Feoli, Andrés; Escalante, Teresa; Rucavado, Alexandra; Gutiérrez, José María; Fox, Jay W.

    2016-01-01

    The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM) and other extracellular matrix (ECM) proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs) or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms. PMID:27035343

  11. Detection of tissue origin of a 43 kDa diabetogenic protein from alloxan-induced diabetic rats

    PubMed Central

    Chauhan, Shivkumar D.; Nath, Nirmalendu M.; Tule, Vinay K.

    2009-01-01

    BACKGROUND: Earlier, we had found high levels of circulating immune complexes (CICs) in the serum of type 2 diabetes mellitus patients along with a novel 43 kDa protein. METHODS: Different tissues of alloxan-induced, diabetic, male albino rats (200–250 g in body weight) were collected for the present study. Tissue proteins were isolated and separated by 10% SDS-polyacrylamide gel electrophoresis (SDS-PAGE). A primary cell culture of polymorphonuclear neutrophils (PMNs) was used to evaluate the effects of the diabetogenic protein. Cell proliferative index, oxidant/antioxidant status, and ion-transporting ability were chosen as study parameters. RESULTS: SDS-PAGE of different tissues shows that the diabetic liver alone was the only tissue that contained the 43 kDa protein band compared to the normal liver. In vitro effects of the new liver protein on PMNs include significantly decreased cell proliferative activity, increased free radical levels, and decreased levels of antioxidant enzymes as well as ionic transporters. The new liver protein also exhibited protease activity when compared with standard trypsin. CONCLUSIONS: This study concluded that a novel 43 kDa protein obtained from the livers of alloxan-induced diabetic rats shows protease activity as well as antiproliferative activity. Also, this protein may act as a diabetogenic factor as it elicited a significantly gross elevation in the oxidant status level as well as in the levels of lysosomal enzymes and a decrease in the levels of antioxidative enzymes and ionic transporters of PMNs. PMID:20062560

  12. A phloem-limited fijivirus induces the formation of neoplastic phloem tissues that house virus multiplication in the host plant

    PubMed Central

    Shen, Jiangfeng; Chen, Xian; Chen, Jianping; Sun, Liying

    2016-01-01

    A number of phloem-limited viruses induce the development of tumours (enations) in the veins of host plants, but the relevance of tumour induction to the life cycle of those viruses is unclear. In this study, we performed molecular and structural analyses of tumours induced by rice black-streaked dwarf virus (RBSDV, genus Fijivirus) infection in maize plants. The transcript level of the maize cdc2 gene, which regulates the cell cycle, was highly elevated in tumour tissues. Two-dimensional electrophoresis identified 25 cellular proteins with altered accumulation in the tumour tissues. These proteins are involved in various metabolic pathways, including photosynthesis, redox, energy pathways and amino acid synthesis. Histological analysis indicated that the tumours predominantly originated from hyperplastic growth of phloem, but those neoplastic tissues have irregular structures and cell arrangements. Immunodetection assays and electron microscopy observations indicated that in the shoots, RBSDV is confined to phloem and tumour regions and that virus multiplication actively occurs in the tumour tissue, as indicated by the high accumulation of non-structural proteins and formation of viroplasms in the tumour cells. Thus, the induction of tumours by RBSDV infection provides a larger environment that is favourable for virus propagation in the host plant. PMID:27432466

  13. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    PubMed

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue.

  14. Efficacy of Honeycomb TCP-induced Microenvironment on Bone Tissue Regeneration in Craniofacial Area.

    PubMed

    Watanabe, Satoko; Takabatake, Kiyofumi; Tsujigiwa, Hidetsugu; Watanabe, Toshiyuki; Tokuyama, Eijiro; Ito, Satoshi; Nagatsuka, Hitoshi; Kimata, Yoshihiro

    2016-01-01

    Artificial bone materials that exhibit high biocompatibility have been developed and are being widely used for bone tissue regeneration. However, there are no biomaterials that are minimally invasive and safe. In a previous study, we succeeded in developing honeycomb β-tricalcium phosphate (β-TCP) which has through-and-through holes and is able to mimic the bone microenvironment for bone tissue regeneration. In the present study, we investigated how the difference in hole-diameter of honeycomb β-TCP (hole-diameter: 75, 300, 500, and 1600 μm) influences bone tissue regeneration histologically. Its osteoconductivity was also evaluated by implantation into zygomatic bone defects in rats. The results showed that the maximum bone formation was observed on the β-TCP with hole-diameter 300μm, included bone marrow-like tissue and the pattern of bone tissue formation similar to host bone. Therefore, the results indicated that we could control bone tissue formation by creating a bone microenvironment provided by β-TCP. Also, in zygomatic bone defect model with honeycomb β-TCP, the result showed there was osseous union and the continuity was reproduced between the both edges of resected bone and β-TCP, which indicated the zygomatic bone reproduction fully succeeded. It is thus thought that honeycomb β-TCP may serve as an excellent biomaterial for bone tissue regeneration in the head, neck and face regions, expected in clinical applications. PMID:27279797

  15. Efficacy of Honeycomb TCP-induced Microenvironment on Bone Tissue Regeneration in Craniofacial Area

    PubMed Central

    Watanabe, Satoko; Takabatake, Kiyofumi; Tsujigiwa, Hidetsugu; Watanabe, Toshiyuki; Tokuyama, Eijiro; Ito, Satoshi; Nagatsuka, Hitoshi; Kimata, Yoshihiro

    2016-01-01

    Artificial bone materials that exhibit high biocompatibility have been developed and are being widely used for bone tissue regeneration. However, there are no biomaterials that are minimally invasive and safe. In a previous study, we succeeded in developing honeycomb β-tricalcium phosphate (β-TCP) which has through-and-through holes and is able to mimic the bone microenvironment for bone tissue regeneration. In the present study, we investigated how the difference in hole-diameter of honeycomb β-TCP (hole-diameter: 75, 300, 500, and 1600 μm) influences bone tissue regeneration histologically. Its osteoconductivity was also evaluated by implantation into zygomatic bone defects in rats. The results showed that the maximum bone formation was observed on the β-TCP with hole-diameter 300μm, included bone marrow-like tissue and the pattern of bone tissue formation similar to host bone. Therefore, the results indicated that we could control bone tissue formation by creating a bone microenvironment provided by β-TCP. Also, in zygomatic bone defect model with honeycomb β-TCP, the result showed there was osseous union and the continuity was reproduced between the both edges of resected bone and β-TCP, which indicated the zygomatic bone reproduction fully succeeded. It is thus thought that honeycomb β-TCP may serve as an excellent biomaterial for bone tissue regeneration in the head, neck and face regions, expected in clinical applications. PMID:27279797

  16. Histotripsy-Induced Cavitation Cloud Initiation Thresholds in Tissues of Different Mechanical Properties

    PubMed Central

    Vlaisavljevich, Eli; Maxwell, Adam; Warnez, Matthew; Johnsen, Eric; Cain, Charles A.; Xu, Zhen

    2014-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation and maintenance of a cavitation bubble cloud to fractionate soft tissue. This paper studies how tissue properties impact the pressure threshold to initiate the cavitation bubble cloud. Our previous study showed that shock scattering off one or more initial bubbles, expanded to sufficient size in the focus, plays an important role in initiating a dense cavitation cloud. In this process, the shock scattering causes the positive pressure phase to be inverted, resulting in a scattered wave that has the opposite polarity of the incident shock. The inverted shock is superimposed on the incident negative pressure phase to form extremely high negative pressures, resulting in a dense cavitation cloud growing toward the transducer. We hypothesize that increased tissue stiffness impedes the expansion of initial bubbles, reducing the scattered tensile pressure, and thus requiring higher initial intensities for cloud initiation. To test this hypothesis, 5-cycle histotripsy pulses at pulse repetition frequencies (PRFs) of 10, 100, or 1000 Hz were applied by a 1-MHz transducer focused inside mechanically tunable tissue-mimicking agarose phantoms and various ex vivo porcine tissues covering a range of Young’s moduli. The threshold to initiate a cavitation cloud and resulting bubble expansion were recorded using acoustic backscatter detection and optical imaging. In both phantoms and ex vivo tissue, results demonstrated a higher cavitation cloud initiation threshold for tissues of higher Young’s modulus. Results also demonstrated a decrease in bubble expansion in phantoms of higher Young’s modulus. These results support our hypothesis, improve our understanding of the effect of histotripsy in tissues with different mechanical properties, and provide a rational basis to tailor acoustic parameters for fractionation of specific tissues. PMID:24474139

  17. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties.

    PubMed

    Vlaisavljevich, Eli; Maxwell, Adam; Warnez, Matthew; Johnsen, Eric; Cain, Charles A; Xu, Zhen

    2014-02-01

    Histotripsy is an ultrasound ablation method that depends on the initiation and maintenance of a cavitation bubble cloud to fractionate soft tissue. This paper studies how tissue properties impact the pressure threshold to initiate the cavitation bubble cloud. Our previous study showed that shock scattering off one or more initial bubbles, expanded to sufficient size in the focus, plays an important role in initiating a dense cavitation cloud. In this process, the shock scattering causes the positive pressure phase to be inverted, resulting in a scattered wave that has the opposite polarity of the incident shock. The inverted shock is superimposed on the incident negative pressure phase to form extremely high negative pressures, resulting in a dense cavitation cloud growing toward the transducer. We hypothesize that increased tissue stiffness impedes the expansion of initial bubbles, reducing the scattered tensile pressure, and thus requiring higher initial intensities for cloud initiation. To test this hypothesis, 5-cycle histotripsy pulses at pulse repetition frequencies (PRFs) of 10, 100, or 1000 Hz were applied by a 1-MHz transducer focused inside mechanically tunable tissue-mimicking agarose phantoms and various ex vivo porcine tissues covering a range of Young's moduli. The threshold to initiate a cavitation cloud and resulting bubble expansion were recorded using acoustic backscatter detection and optical imaging. In both phantoms and ex vivo tissue, results demonstrated a higher cavitation cloud initiation threshold for tissues of higher Young's modulus. Results also demonstrated a decrease in bubble expansion in phantoms of higher Young's modulus. These results support our hypothesis, improve our understanding of the effect of histotripsy in tissues with different mechanical properties, and provide a rational basis to tailor acoustic parameters for fractionation of specific tissues.

  18. Protective effect of green tea on lead-induced oxidative damage in rat's blood and brain tissue homogenates.

    PubMed

    Hamed, Enas A; Meki, Abdel-Raheim M A; Abd El-Mottaleb, Nashwa A

    2010-06-01

    Recent studies have shown that lead (Pb) could disrupt tissue prooxidant/antioxidant balance which lead to physiological dysfunction. Natural antioxidants are particularly useful in such situation. Current study was designed to investigate efficacy of green tea extract (GTE), on oxidative status in brain tissue and blood caused by chronic oral Pb administration in rats. Four groups of adult male rats (each 15 rats) were utilized: control group; GTE-group (oral 1.5% w/v GTE for 6 weeks); Pb-group (oral 0.4% lead acetate for 6 weeks), and Pb+GTE-group (1.5% GTE and 0.4% lead acetate for 6 weeks). Levels of prooxidant/antioxidant parameters [lipid peroxides (LPO), nitric oxides (NO), total antioxidant capacity (TAC), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD)] in plasma, erythrocytes, and brain tissue homogenate were measured using colorimetric methods. Pb concentrations in whole blood and brain tissue homogenate were measured by atomic absorption. In Pb-group, levels of LPO were higher while NO and GSH were lower in plasma, erythrocytes, and brain tissue than controls. TAC in plasma, SOD in erythrocytes, and GST in brain tissue homogenate were lower in Pb-group versus control. GTE co-administrated with Pb-reduced Pb contents, increased antioxidant status than Pb-group. In erythrocytes, Pb correlated positively with LPO and negatively with NO, GSH, SOD, and Hb. In brain tissue homogenate, Pb correlated positively with LPO and negatively with GSH. This study suggests that lead induce toxicity by interfering balance between prooxidant/antioxidant. Treatment of rats with GTE combined with Pb enhances antioxidant/ detoxification system which reduced oxidative stress. These observations suggest that GTE is a potential complementary agent in treatment of chronic lead intoxication.

  19. Mechanical Strain Using 2D and 3D Bioreactors Induces Osteogenesis: Implications for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    van Griensven, M.; Diederichs, S.; Roeker, S.; Boehm, S.; Peterbauer, A.; Wolbank, S.; Riechers, D.; Stahl, F.; Kasper, C.

    Fracture healing is a complicated process involving many growth factors, cells, and physical forces. In cases, where natural healing is not able, efforts have to be undertaken to improve healing. For this purpose, tissue engineering may be an option. In order to stimulate cells to form a bone tissue several factors are needed: cells, scaffold, and growth factors. Stem cells derived from bone marrow or adipose tissues are the most useful in this regard. The differentiation of the cells can be accelerated using mechanical stimulation. The first part of this chapter describes the influence of longitudinal strain application. The second part uses a sophisticated approach with stem cells on a newly developed biomaterial (Sponceram) in a rotating bed bioreactor with the administration of bone morphogenetic protein-2. It is shown that such an approach is able to produce bone tissue constructs. This may lead to production of larger constructs that can be used in clinical applications.

  20. Phosphorylation of ribosomal proteins induced by auxins in maize embryonic tissues. [Zea mays

    SciTech Connect

    Perez, L.; Aguilar, R.; Mendez, A.P.; de Jimenez, E.S.

    1990-11-01

    The effect of auxin on ribosomal protein phosphorylation of germinating maize (Zea mays) tissues was investigated. Two-dimensional gel electrophoresis and autoradiography of ({sup 32}P) ribosomal protein patterns for natural and synthetic auxin-treated tissues were performed. Both the rate of {sup 32}P incorporation and the electrophoretic patterns were dependent on {sup 32}P pulse length, suggesting that active protein phosphorylation-dephosphorylation occurred in small and large subunit proteins, in control as well as in auxin-treated tissues. The effect of ribosomal protein phosphorylation on in vitro translation was tested. Measurements of poly(U) translation rates as a function of ribosome concentration provided apparent K{sub m} values significantly different for auxin-treated and nontreated tissues. These findings suggest that auxin might exert some kind of translational control by regulating the phosphorylated status of ribosomal proteins.

  1. Histopathologic changes in liver and kidney tissues induced by carbaryl in Bufotes variabilis (Anura: Bufonidae).

    PubMed

    Çakıcı, Özlem

    2015-03-01

    The purpose of this work was to investigate for the first time histopathologic effects of carbaryl in liver and kidney tissues of Bufotes variabilis. After 96h following exposure to carbaryl (low dose: 0.05, medium dose: 0.1 and high dose: 0.2mg/g), the toads were euthanized and dissected. In liver tissue, vacuolization in hepatocytes, necrosis, mononuclear cell infiltration, an increase in melanomacrophage number, enlargement of sinusoids, hemorrhage and congestion were determined in exposed toads. In kidney tissue, mononuclear cell infiltration, hypertrophied Bowman's capsule cells, deformation, vacuolization, karyolysis and necrosis of renal tubule epithelium, brush border destruction, glomerular shrinkage, hemorrhage and fibrosis were observed in carbaryl-treated groups. According to this investigation, carbaryl caused histopathologic damages in liver and kidney tissues of B. variabilis. PMID:25573057

  2. Histopathologic changes in liver and kidney tissues induced by carbaryl in Bufotes variabilis (Anura: Bufonidae).

    PubMed

    Çakıcı, Özlem

    2015-03-01

    The purpose of this work was to investigate for the first time histopathologic effects of carbaryl in liver and kidney tissues of Bufotes variabilis. After 96h following exposure to carbaryl (low dose: 0.05, medium dose: 0.1 and high dose: 0.2mg/g), the toads were euthanized and dissected. In liver tissue, vacuolization in hepatocytes, necrosis, mononuclear cell infiltration, an increase in melanomacrophage number, enlargement of sinusoids, hemorrhage and congestion were determined in exposed toads. In kidney tissue, mononuclear cell infiltration, hypertrophied Bowman's capsule cells, deformation, vacuolization, karyolysis and necrosis of renal tubule epithelium, brush border destruction, glomerular shrinkage, hemorrhage and fibrosis were observed in carbaryl-treated groups. According to this investigation, carbaryl caused histopathologic damages in liver and kidney tissues of B. variabilis.

  3. Involvement of tissue plasminogen activator "tPA" in ethanol-induced locomotor sensitization and conditioned-place preference.

    PubMed

    Bahi, Amine; Dreyer, Jean-Luc

    2012-01-01

    Ethanol is one of the most abused drugs in the western societies. It is well established that mesolimbic dopaminergic neurons mediate the rewarding properties of ethanol. In our previous studies we have shown that the serine protease tissue plasminogen activator (tPA) is involved in the rewarding properties of morphine and amphetamine. In the current study, we investigated the role of tPA in ethanol-induced behavioral sensitization and conditioned-place preference (CPP). Ethanol treatment dose-dependently induced tPA enzymatic activity in the nucleus accumbens (NAc). In addition, ethanol-induced increase in tPA activity was completely inhibited by pre-treatment with the dopamine D1 and D2 receptor antagonists SCH23390 and raclopride respectively. Furthermore, ethanol-induced locomotor stimulation, behavioral sensitization and conditioned-place preference were enhanced following tPA over-expression in the NAc using a lentiviral vector. In contrast, tPA knock down in the NAc with specific shRNA blocked the rewarding properties of ethanol. The defect of locomotor stimulation in shRNA-injected mice was reversed by microinjections of exogenous recombinant tPA into the nucleus accumbens. Collectively, these results indicate, for the first time, that activation of tPA is effective in enhancing the rewarding effects of ethanol. Targeting the tissue plasminogen activator system would provide new therapeutic approaches to the treatment of alcoholism.

  4. Extract of grapefruit-seed reduces acute pancreatitis induced by ischemia/reperfusion in rats: possible implication of tissue antioxidants.

    PubMed

    Dembinski, A; Warzecha, Z; Konturek, S J; Ceranowicz, P; Dembinski, M; Pawlik, W W; Kusnierz-Cabala, B; Naskalski, J W

    2004-12-01

    Grapefruit seed extract (GSE) has been shown to exert antibacterial, antifungal and antioxidant activity possibly due to the presence of naringenin, the flavonoid with cytoprotective action on the gastric mucosa. No study so far has been undertaken to determine whether this GSE is also capable of preventing acute pancreatic damage induced by ischemia/reperfusion (I/R), which is known to result from reduction of anti-oxidative capability of pancreatic tissue, and whether its possible preventive effect involves an antioxidative action of this biocomponent. In this study carried out on rats with acute hemorrhagic pancreatitis induced by 30 min partial pancreatic ischemia followed by 6 h of reperfusion, the GSE or vehicle (vegetable glycerin) was applied intragastrically in gradually increasing amounts (50-500 microl) 30 min before I/R. Pretreatment with GSE decreased the extent of pancreatitis with maximal protective effect of GSE at the dose 250 microl. GSE reduced the pancreatitis-evoked increase in serum lipase and poly-C specific ribonuclease activity, and attenuated the marked fall in pancreatic blood flow and pancreatic DNA synthesis. GSE administered alone increased significantly pancreatic tissue content of lipid peroxidation products, malondialdehyde and 4-hydroxyalkens, and when administered before I/R, GSE reduced the pancreatitis-induced lipid peroxidation. We conclude that GSE exerts protective activity against I/R-induced pancreatitis probably due to the activation of antioxidative mechanisms in the pancreas and the improvement of pancreatic blood flow.

  5. Damage induced by pulsed IR laser radiation at transitions between different tissues

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Greber, Charlotte M.; Romano, Valerio; Forrer, Martin; Weber, Heinz P.

    1991-06-01

    Due to their strong absorption in water IR-lasers are excellent sources for precision cutting with minimal thermal damage in various fields of medicine. To understand the laser tissue interaction process one has to take into account the liquefaction of target material at the region of radiation impact. The dynamics of the created liquid may cause unexpected and undesirable effects for surgical laser applications. We studied the thermal damage along the walls of incision craters in terms of the elastic material properties and the dynamics of the drilling process. We show that the extension of thermally altered tissue is strongly influenced by the amount of hot liquefied tissue material remaining in the crater. When drilling into mechanically homogeneous materials this amount is essentially determined by the laser intensity used. However, when drilling through a composite structure consisting of various tissue types with different material properties, this is no longer the case. Even at low intensities, the damage zone varies substantially between the different layers. In our investigations we compared histologically and ultrastructurally the instantaneously created damage in the connective tissue and the subjacent skeletal muscle of skin after laser cutting, with long-time heating injuries. This comparison allows a differentiation between thermal and mechanical damage and an estimation of the minimum temperature created in the crater during the laser impact. The light microscopical examinations shows that the thermal damage in the connective tissue is about three times smaller than in the subjacent muscle layer. Comparative studies made with a composite structure consisting of the tissue substitutes gelatin and agar reveal that the unexpectedly large damage in the skeletal muscle layer is a result of the abrupt change of the elastic properties at the material transition. This discontinuity changes the ejection dynamics leading to a confinement of hot liquefied

  6. Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses

    NASA Astrophysics Data System (ADS)

    Woolley, Andrew J.; Desai, Himanshi A.; Otto, Kevin J.

    2013-04-01

    Objective. Brain-implanted microelectrode arrays show promise as future clinical devices. However, biological responses to various designs, compositions and locations of these implants have not been fully characterized, and may impact the long-term functionality of these devices. In order to improve our understanding of the tissue conditions at the interface of chronic brain-implanted microdevices, we proposed utilizing advanced histology and microscopy techniques to image implanted devices and surrounding tissue intact within brain slices. We then proposed utilizing these methods to examine whether depth within the cerebral cortex affected tissue conditions around implants. Approach. Histological data was collected from rodent brain slices containing intact, intracortical microdevices four weeks after implantation surgery. Thick tissue sections containing the chronic implants were processed with fluorescent antibody labels, and imaged in an optical clearing solution using laser confocal microscopy. Main Results. Tissue surrounding microdevices exhibited two major depth-related phenomena: a non-uniform microglial coating along the device length and a dense mass of cells surrounding the implant in cerebral cortical layers I and II. Detailed views of the monocyte-derived immune cells improve our understanding of the close and complex association that immune cells have with chronic brain implants, and illuminated a possible relationship between cortical depth and the intensity of a chronic monocyte response around penetrating microdevices. The dense mass of cells contained vimentin, a protein not typically expressed highly in CNS cells, evidence that non-CNS cells likely descended down the face of the penetrating devices from the pial surface. Significance. Image data of highly non-uniform and depth-dependent biological responses along a device provides novel insight into the complexity of the tissue response to penetrating brain-implanted microdevices. The presented

  7. Psychological stress promotes neutrophil infiltration in colon tissue through adrenergic signaling in DSS-induced colitis model.

    PubMed

    Deng, Que; Chen, Hongyu; Liu, Yanjun; Xiao, Fengjun; Guo, Liang; Liu, Dan; Cheng, Xiang; Zhao, Min; Wang, Xiaomeng; Xie, Shuai; Qi, Siyong; Yin, Zhaoyang; Gao, Jiangping; Chen, Xintian; Wang, Jiangong; Guo, Ning; Ma, Yuanfang; Shi, Ming

    2016-10-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition. Psychological stress has been postulated to affect the clinical symptoms and recurrence of IBD. The exact molecular mechanisms are not fully understood. In the present study, we demonstrate that psychological stress promotes neutrophil infiltration into colon tissues in dextran sulfate sodium (DSS)-induced colitis model. The psychological stress resulted in abnormal expression of the proinflammatory cytokines (IL-1β, IL-6, IL-17A, and IL-22) and neutrophil chemokines (CXCL1 and CXCL2) and overactivation of the STAT3 inflammatory signaling pathway. Under chronic unpredictable stress, the adrenergic nervous system was markedly activated, as the expression of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, in bone marrow and colonic epithelium was enhanced, especially in the myenteric ganglia. The β-AR agonist isoproterenol mimicked the effects of psychological stress on neutrophilia, neutrophil infiltration, and colonic damage in DSS-induced colitis. The β1-AR/β2-AR inhibitor propranolol reduced the numbers of the neutrophils in the circulation, suppressed neutrophil infiltration into colonic tissues, and attenuated the colonic tissue damage promoted by chronic stress. Propranolol also abolished stress-induced upregulation of proinflammatory cytokines and neutrophil chemokines. Our data reveal a close linkage between the β1-AR/β2-AR activation and neutrophil trafficking and also suggest the critical roles of adrenergic nervous system in exacerbation of inflammation and damage of colonic tissues in experimental colitis. The current study provides a new insight into the mechanisms underlying the association of psychological stress with excessive inflammatory response and pathophysiological consequences in IBD. The findings also suggest a potential application of neuroprotective agents to prevent relapsing immune activation in the treatment of IBD. PMID

  8. Psychological stress promotes neutrophil infiltration in colon tissue through adrenergic signaling in DSS-induced colitis model.

    PubMed

    Deng, Que; Chen, Hongyu; Liu, Yanjun; Xiao, Fengjun; Guo, Liang; Liu, Dan; Cheng, Xiang; Zhao, Min; Wang, Xiaomeng; Xie, Shuai; Qi, Siyong; Yin, Zhaoyang; Gao, Jiangping; Chen, Xintian; Wang, Jiangong; Guo, Ning; Ma, Yuanfang; Shi, Ming

    2016-10-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition. Psychological stress has been postulated to affect the clinical symptoms and recurrence of IBD. The exact molecular mechanisms are not fully understood. In the present study, we demonstrate that psychological stress promotes neutrophil infiltration into colon tissues in dextran sulfate sodium (DSS)-induced colitis model. The psychological stress resulted in abnormal expression of the proinflammatory cytokines (IL-1β, IL-6, IL-17A, and IL-22) and neutrophil chemokines (CXCL1 and CXCL2) and overactivation of the STAT3 inflammatory signaling pathway. Under chronic unpredictable stress, the adrenergic nervous system was markedly activated, as the expression of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, in bone marrow and colonic epithelium was enhanced, especially in the myenteric ganglia. The β-AR agonist isoproterenol mimicked the effects of psychological stress on neutrophilia, neutrophil infiltration, and colonic damage in DSS-induced colitis. The β1-AR/β2-AR inhibitor propranolol reduced the numbers of the neutrophils in the circulation, suppressed neutrophil infiltration into colonic tissues, and attenuated the colonic tissue damage promoted by chronic stress. Propranolol also abolished stress-induced upregulation of proinflammatory cytokines and neutrophil chemokines. Our data reveal a close linkage between the β1-AR/β2-AR activation and neutrophil trafficking and also suggest the critical roles of adrenergic nervous system in exacerbation of inflammation and damage of colonic tissues in experimental colitis. The current study provides a new insight into the mechanisms underlying the association of psychological stress with excessive inflammatory response and pathophysiological consequences in IBD. The findings also suggest a potential application of neuroprotective agents to prevent relapsing immune activation in the treatment of IBD.

  9. Silencing Egr1 Attenuates Radiation-induced Apoptosis in Normal Tissues while Killing Cancer Cells and Delaying Tumor Growth

    PubMed Central

    Zhao, Diana Yi; Jacobs, Keith M; Hallahan, Dennis E; Thotala, Dinesh

    2015-01-01

    Normal tissue toxicity reduces the therapeutic index of radiotherapy and decreases the quality of life for cancer survivors. Apoptosis is a key element of the radiation response in normal tissues like the hippocampus and small intestine, resulting in neurocognitive disorders and intestinal malabsorption. The Early Growth Response 1 (Egr1) transcription factor mediates radiation-induced apoptosis by activating the transcription of pro-apoptosis genes in response to ionizing radiation (IR). Therefore, we hypothesized that the genetic abrogation of Egr1 and the pharmacological inhibition of its transcriptional activity could attenuate radiation-induced apoptosis in normal tissues. We demonstrated that Egr1 null mice had less apoptosis in the hippocampus and intestine following irradiation as compared to their wild-type littermates. A similar result was achieved using Mithramycin A (MMA) to prevent binding of Egr1 to target promoters in the mouse intestine. Egr1 expression using shRNA dampened apoptosis and enhanced the clonogenic survival of irradiated HT22 hippocampal neuronal cells and IEC6 intestinal epithelial cells. Mechanistically, these events involved an abrogation of p53 induction by IR and an increase in the ratio of Bcl-2/Bax expression. In contrast, targeted silencing of Egr1 in two cancer cell lines (GL261 glioma cells, HCT116 colorectal cancer cells) was not radioprotective, since it reduced their growth while also sensitizing them to radiation-induced death. Further, Egr1 depletion delayed the growth of heterotopically implanted GL261 and HCT116 tumors. These results support the potential of silencing Egr1 in order to minimize the normal tissue complications associated with radiotherapy while enhancing tumor control. PMID:26206332

  10. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    PubMed Central

    2011-01-01

    Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/-) mice inhaled concentrated fine ambient PM (PM < 2.5 μm in aerodynamic diameter; PM2.5) or filtered air (FA) for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS) in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT) and brown adipose tissues (BAT), while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction. PMID:21745393

  11. Comparison of bone marrow tissue- and adipose tissue-derived mesenchymal stem cells in the treatment of sepsis in a murine model of lipopolysaccharide-induced sepsis.

    PubMed

    Ou, Hao; Zhao, Shangping; Peng, Yue; Xiao, Xuefei; Wang, Qianlu; Liu, Huaizeng; Xiao, Xianzhong; Yang, Mingshi

    2016-10-01

    Mesenchymal stem cells (MSCs) have been reported to regulate the systemic inflammatory response and sepsis-induced immunologic injury pre-clinically. However, whether MSCs from different sources elicit identical effects remains to be elucidated. The present study compared the effect of bone marrow‑derived MSCs (BMSCs) and adipose tissue-derived MSCs (ADMSCs) in a murine model of lipopolysaccharide (LPS)‑induced sepsis. SPF BALB/c mice were induced with an injection of LPS (10 mg/kg; 1 mg/ml) via the tail vein. To compare the effect of MSCs on the septic mice, either saline, BMSCs or ADMSCs were injected via the tail vein 5 min following the administration of LPS. The survival rates and body temperatures of the mice were observed regularly up to 48 h. The serum levels of pro‑inflammatory cytokines, including tumour necrosis factor‑α, interleukin (IL)‑6 and IL‑8, anti‑inflammatory cytokines, including IL‑2, IL‑4 and IL‑10, and biochemical markers, including lactate, creatinine, alanine aminotransferase and aspertate aminotransferase, were analyzed at 6 h. The BMSCs and ADMSCs significantly reduced mortality rates, body‑temperature fluctuations, serum levels of biochemical markers and the majority of cytokines. However, the levels of IL‑8 in the BMSC and ADMSC groups were increased and decreased, respectively. These findings suggested that BMSCs and ADMSCs ameliorated sepsis-associated organ injury and mortality, and had a similar regulatory effect on pro‑ and anti‑inflammatory cytokines despite the different MSC sources. Therefore, BMSCs and ADMSCs may serve as novel treatment modalities for sepsis. PMID:27600821

  12. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle*,**

    PubMed Central

    de Carlos, Samanta Portão; Dias, Alexandre Simões; Forgiarini, Luiz Alberto; Patricio, Patrícia Damiani; Graciano, Thaise; Nesi, Renata Tiscoski; Valença, Samuel; Chiappa, Adriana Meira Guntzel; Cipriano, Gerson; de Souza, Claudio Teodoro; Chiappa, Gaspar Rogério da Silva

    2014-01-01

    OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD. PMID:25210964

  13. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain.

    PubMed

    Daniel, Sheril; Limson, Janice L; Dairam, Amichand; Watkins, Gareth M; Daya, Santy

    2004-02-01

    Curcumin, the major constituent of turmeric is a known, naturally occurring antioxidant. The present study examined the ability of this compound to protect against lead-induced damage to hippocampal cells of male Wistar rats, as well as lipid peroxidation induced by lead and cadmium in rat brain homogenate. The thiobarbituric assay (TBA) was used to measure the extent of lipid peroxidation induced by lead and cadmium in rat brain homogenate. The results show that curcumin significantly protects against lipid peroxidation induced by both these toxic metals. Coronal brain sections of rats injected intraperitoneally with lead acetate (20 mg/kg) in the presence and absence of curcumin (30 mg/kg) were compared microscopically to determine the extent of lead-induced damage to the cells in the hippocampal CA1 and CA3 regions, and to establish the capacity of curcumin to prevent such damage. Lead-induced damage to the neurons was significantly curtailed in the rats injected with curcumin. Possible chelation of lead and cadmium by curcumin as its mechanism of neuroprotection against such heavy metal insult to the brain was investigated using electrochemical, ultraviolet spectrophotometric and infrared spectroscopic analyses. The results of the study show that there is an interaction between curcumin and both cadmium and lead, with the possible formation of a complex between the metal and this ligand. These results imply that curcumin could be used therapeutically to chelate these toxic metals, thus potentially reducing their neurotoxicity and tissue damage.

  14. Characterization of RAGE, HMGB1, and S100β in Inflammation-Induced Preterm Birth and Fetal Tissue Injury

    PubMed Central

    Buhimschi, Catalin S.; Baumbusch, Margaret A.; Dulay, Antonette T.; Oliver, Emily A.; Lee, Sarah; Zhao, Guomao; Bhandari, Vineet; Ehrenkranz, Richard A.; Weiner, Carl P.; Madri, Joseph A.; Buhimschi, Irina A.

    2009-01-01

    Immune activation represents an adaptive reaction triggered by both noxious exogenous (microbes) and endogenous [high mobility group box-1 protein (HMGB1), S100 calcium binding proteins] inducers of inflammation. Cell stress or necrosis lead the release of HMGB1 and S100 proteins in the extracellular compartment where they act as damage-associated molecular pattern molecules (or alarmins) by engaging the receptor for advanced glycation end-products (RAGE). Although the biology of RAGE is dictated by the accumulation of damage-associated molecular pattern molecules at sites of tissue injury, the role of RAGE in mediating antenatal fetal injury remains unknown. First, we studied the relationships at birth between the intensity of human fetal inflammation and sRAGE (an endogenous RAGE antagonist), HMGB1, and S100β protein. We found significantly lower sRAGE in human fetuses that mounted robust inflammatory responses. HMGB1 levels correlated significantly with levels of interleukin-6 and S100β in fetal circulation. We then evaluated the levels and areas of tissue expression of RAGE, HMGB1, and S100β in specific organs of mouse fetuses on E16. Using an animal model of endotoxin-induced fetal damage and preterm birth, we determined that inflammation induces a significant change in expression of RAGE and HMGB1, but not S100β, at sites of tissue damage. Our findings indicate that RAGE and HMGB1 may be important mediators of cellular injury in fetuses delivered in the setting of inflammation-induced preterm birth. PMID:19679874

  15. Detection of constitutive and inducible HSP70 proteins in formalin fixed human brain tissue.

    PubMed

    Preusse-Prange, A; Modrow, J-H; Schwark, T; von Wurmb-Schwark, N

    2014-02-01

    The investigation of formalin fixed and paraffin embedded tissue is a routine method in forensic histology. Since these samples are usually stored for decades they provide a unique tissue bank for different scientific issues. In the past, numerous studies were conducted using different kinds of paraffin embedded tissues. However, it is well known that formalin affects macromolecules and thus might hamper reliable and reproducible molecular experiments. The aim of this study was to find out if the treatment with formalin has a negative effect on different protein detection methods and additionally to define the dimension of those possible deleterious effects. We incubated brain tissue samples in formalin for up to three months. After incubation, the samples were analyzed using immunohistochemistry (IHC) and Western blotting to specifically detect and quantify members of the HSP70 superfamily (heat shock proteins). Our study shows that the Western blot analysis of formalin fixed tissues does not allow a reliable detection of proteins at all, while a reproducible detection by IHC was still possible after one month of incubation.

  16. BAFF knockout improves systemic inflammation via regulating adipose tissue distribution in high-fat diet-induced obesity.

    PubMed

    Kim, Do-Hwan; Do, Myoung-Sool

    2015-01-01

    Obesity is recognized as a chronic low-grade inflammatory state due to adipose tissue expansion being accompanied by an increase in the production of proinflammatory adipokines. Our group is the first to report that B-cell-activating factor (BAFF) is produced from adipocytes and functions as a proinflammatory adipokine. Here, we investigated how loss of BAFF influenced diet-induced obesity in mice by challenging BAFF(-/-) mice with a high-fat diet for 10 weeks. The results demonstrated that weight gain in BAFF(-/-) mice was >30% than in control mice, with a specific increase in the fat mass of the subcutaneous region rather than the abdominal region. Expression of lipogenic genes was examined by quantitative real-time PCR, and increased lipogenesis was observed in the subcutaneous adipose tissue (SAT), whereas lipogenesis in the epididymal adipose tissue (EAT) was reduced. A significant decrease in EAT mass resulted in the downregulation of inflammatory gene expression in EAT, and more importantly, overall levels of inflammatory cytokines in the circulation were reduced in obese BAFF(-/-) mice. We also observed that the macrophages recruited in the enlarged SAT were predominantly M2 macrophages. 3T3-L1 adipocytes were cultured with adipose tissue conditioned media (ATCM), demonstrating that EAT ATCM from BAFF(-/-) mice contains antilipogenic and anti-inflammatory properties. Taken together, BAFF(-/-) improved systemic inflammation by redistributing adipose tissue into subcutaneous regions. Understanding the mechanisms by which BAFF regulates obesity in a tissue-specific manner would provide therapeutic opportunities to target obesity-related chronic diseases. PMID:25591987

  17. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  18. BAFF knockout improves systemic inflammation via regulating adipose tissue distribution in high-fat diet-induced obesity.

    PubMed

    Kim, Do-Hwan; Do, Myoung-Sool

    2015-01-16

    Obesity is recognized as a chronic low-grade inflammatory state due to adipose tissue expansion being accompanied by an increase in the production of proinflammatory adipokines. Our group is the first to report that B-cell-activating factor (BAFF) is produced from adipocytes and functions as a proinflammatory adipokine. Here, we investigated how loss of BAFF influenced diet-induced obesity in mice by challenging BAFF(-/-) mice with a high-fat diet for 10 weeks. The results demonstrated that weight gain in BAFF(-/-) mice was >30% than in control mice, with a specific increase in the fat mass of the subcutaneous region rather than the abdominal region. Expression of lipogenic genes was examined by quantitative real-time PCR, and increased lipogenesis was observed in the subcutaneous adipose tissue (SAT), whereas lipogenesis in the epididymal adipose tissue (EAT) was reduced. A significant decrease in EAT mass resulted in the downregulation of inflammatory gene expression in EAT, and more importantly, overall levels of inflammatory cytokines in the circulation were reduced in obese BAFF(-/-) mice. We also observed that the macrophages recruited in the enlarged SAT were predominantly M2 macrophages. 3T3-L1 adipocytes were cultured with adipose tissue conditioned media (ATCM), demonstrating that EAT ATCM from BAFF(-/-) mice contains antilipogenic and anti-inflammatory properties. Taken together, BAFF(-/-) improved systemic inflammation by redistributing adipose tissue into subcutaneous regions. Understanding the mechanisms by which BAFF regulates obesity in a tissue-specific manner would provide therapeutic opportunities to target obesity-related chronic diseases.

  19. Protective Effect of Hydroalcoholic Extract of Tribulus Terrestris on Cisplatin Induced Renal Tissue Damage in Male Mice

    PubMed Central

    Raoofi, Amir; Khazaei, Mozafar; Ghanbari, Ali

    2015-01-01

    Background: According beneficial effects of Tribulus terrestris (TT) extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) induced renal tissue damage in male mice. Methods: Thirty mice were divided into five groups (n = 6). The first group (control) was treated with normal saline (0.9% NaCl) and experimental groups with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4) intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. Results: The data were analyzed using one-way analysis of variance followed by Tukey's post-hoc test, paired-sample t-test, Kruskal–Wallis and Mann–Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman's capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. Conclusions: The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice. PMID:25789143

  20. Flow-induced deformation of poroelastic tissues and gels: a new perspective on equilibrium pressure-flow-thickness relations.

    PubMed

    Quinn, Thomas M

    2013-01-01

    Hydrostatic pressure-driven flows through soft tissues and gels cause deformations of the solid network to occur, due to drag from the flowing fluid. This phenomenon occurs in many contexts including physiological flows and infusions through soft tissues, in mechanically stimulated engineered tissues, and in direct permeation measurements of hydraulic permeability. Existing theoretical descriptions are satisfactory in particular cases, but none provide a description which is easy to generalize for the design and interpretation of permeation experiments involving a range of different boundary conditions and gel properties. Here a theoretical description of flow-induced permeation is developed using a relatively simple approximate constitutive law for strain-dependent permeability and an assumed constant elastic modulus, using dimensionless parameters which emerge naturally. Analytical solutions are obtained for relationships between fundamental variables, such as flow rate and pressure drop, which were not previously available. Guidelines are provided for assuring that direct measurements of hydraulic permeability are performed accurately, and suggestions emerge for alternative measurement protocols. Insights obtained may be applied to interpretation of flow-induced deformation and related phenomena in many contexts.

  1. Comparative analysis of charged particle-induced autosomal mutations in murine cells and tissues

    NASA Astrophysics Data System (ADS)

    Kronenberg, Amy; Gauny, Stacey; Turker, Mitchell; Dan, Cristian; Kwoh, Ely

    Carcinogenesis requires the accumulation of mutations and most of these mutations of occur on autosomes. This study seeks to determine the effect of the tissue microenvironment on the frequency and types of autosomal mutations in epithelial cells exposed to the types of charged particles in space radiation environments. Epithelial cells are the principal cells at risk for the development of solid cancers in humans. Aprt heterozygous mice from a cross between C57BL/6 and DBA/2 mice (B6D2F1) are used for these studies. The tissue of interest here is the kidney. We evaluated the effects of Fe ion on cytotoxicity, mutant frequency, and mutant spectra in kidney epithelium exposed in vivo. In vitro studies use primary kidney clones from B6D2F1 mice. Animals or cells were exposed to graded doses (0-2 Gy) of 1 GeV/amu Fe ions at the NASA Space Radiation Laboratories at Brookhaven National Laboratory. Animals were given whole body exposure in plexiglas holders. Cells were irradiated in T-75 flasks as monolayers. Cytotoxicity for cells exposed as monolayers were performed immediately post-irradiation. In vitro mutation assays were performed after a 5-6 day expression period post-irradiation, at which time cells were seeded in standard medium supplemented with 2,6 diaminopurine to screen for Aprt mutants. Colony formation was assessed in parallel in standard medium. In contrast, mice were euthanized after 2-4 months post-irradiation (early) or 8-10 months post-irradiation (late) to determine the cytotoxic and mutagenic response to Fe ion irradiation. Once the kidneys were digested, the cytotoxicity and mutation assays were performed using the same methodology employed for cells in vitro. Individual Apr t mutant colonies were collected from separate flasks exposed in vitro to 2 Gy of Fe ions. A similar group of Aprt mutants were collected from separate, un-irradiated flasks Aprt mutant colonies were also collected from individual kidneys for un-irradiated mice and for mice

  2. Comparative analysis of charged particle-induced autosomal mutations in murine cells and tissues

    NASA Astrophysics Data System (ADS)

    Kronenberg, Amy; Gauny, Stacey; Turker, Mitchell; Dan, Cristian; Kwoh, Ely

    Carcinogenesis requires the accumulation of mutations and most of these mutations of occur on autosomes. This study seeks to determine the effect of the tissue microenvironment on the frequency and types of autosomal mutations in epithelial cells exposed to the types of charged particles in space radiation environments. Epithelial cells are the principal cells at risk for the development of solid cancers in humans. Aprt heterozygous mice from a cross between C57BL/6 and DBA/2 mice (B6D2F1) are used for these studies. The tissue of interest here is the kidney. We evaluated the effects of Fe ion on cytotoxicity, mutant frequency, and mutant spectra in kidney epithelium exposed in vivo. In vitro studies use primary kidney clones from B6D2F1 mice. Animals or cells were exposed to graded doses (0-2 Gy) of 1 GeV/amu Fe ions at the NASA Space Radiation Laboratories at Brookhaven National Laboratory. Animals were given whole body exposure in plexiglas holders. Cells were irradiated in T-75 flasks as monolayers. Cytotoxicity for cells exposed as monolayers were performed immediately post-irradiation. In vitro mutation assays were performed after a 5-6 day expression period post-irradiation, at which time cells were seeded in standard medium supplemented with 2,6 diaminopurine to screen for Aprt mutants. Colony formation was assessed in parallel in standard medium. In contrast, mice were euthanized after 2-4 months post-irradiation (early) or 8-10 months post-irradiation (late) to determine the cytotoxic and mutagenic response to Fe ion irradiation. Once the kidneys were digested, the cytotoxicity and mutation assays were performed using the same methodology employed for cells in vitro. Individual Apr t mutant colonies were collected from separate flasks exposed in vitro to 2 Gy of Fe ions. A similar group of Aprt mutants were collected from separate, un-irradiated flasks Aprt mutant colonies were also collected from individual kidneys for un-irradiated mice and for mice

  3. Inorganic arsenic in drinking water accelerates N-butyl-N-(4-hydroxybutyl)nitrosamine-induced bladder tissue damage in mice

    SciTech Connect

    Lin, Paul-Yann; Lin, Yung-Lun; Huang, Chin-Chin; Chen, Sin-Syu; Liu, Yi-Wen

    2012-02-15

    Epidemiological studies have revealed that exposure to an arsenic-contaminated environment correlates with the incidence of bladder cancer. Bladder cancer is highly recurrent after intravesical therapy, and most of the deaths from this disease are due to invasive metastasis. In our present study, the role of inorganic arsenic in bladder carcinogenesis is characterized in a mouse model. This work provides the first evidence that inorganic arsenic in drinking water promotes N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced bladder tissue damage, including the urothelium and submucosal layer. This damage to the bladder epithelium induced by BBN includes thickening of the submucosal layer, the loss of the glycosaminoglycan layer and an increase in both the deoxyguanosine oxidation and cytosine methylation levels in the DNA. Further, when 10 ppm inorganic arsenic is combined with BBN, the number of bladder submucosal capillaries is increased. In addition, inorganic arsenic also increases the deoxyguanosine oxidation level, alters the cytosine methylation state, decreases the activities of glutathione reductase and glucose-6-phosphate dehydrogenase, decreases the protein expression of NAD(P)H quinone oxidoreductase-1 (NQO-1) and increases the protein expression of specific protein 1 (Sp1) in bladder tissues. In summary, our data reveal that inorganic arsenic in drinking water promotes the BBN-induced pre-neoplastic damage of bladder tissue in mice, and that the 8-hydroxy-2′-deoxyguanosine, 5-methylcytosine, NQO-1 protein and Sp1 protein levels may be pre-neoplastic markers of bladder tumors. -- Highlights: ► The role of inorganic arsenic in bladder carcinogenesis is characterized in mice. ► We examine the changes in the histology and biochemistry of bladder tissues. ► Inorganic arsenic enhances BBN-induced DNA oxidation while decreases BBN-induced DNA methylation in the mouse bladder. ► Inorganic arsenic alters the activities of the anti-oxidant enzymes in

  4. Detection and Quantification of CWD Prions in Fixed Paraffin Embedded Tissues by Real-Time Quaking-Induced Conversion.

    PubMed

    Hoover, Clare E; Davenport, Kristen A; Henderson, Davin M; Pulscher, Laura A; Mathiason, Candace K; Zabel, Mark D; Hoover, Edward A

    2016-01-01

    Traditional diagnostic detection of chronic wasting disease (CWD) relies on immunodetection of misfolded CWD prion protein (PrP(CWD)) by western blotting, ELISA, or immunohistochemistry (IHC). These techniques require separate sample collections (frozen and fixed) which may result in discrepancies due to variation in prion tissue distribution and assay sensitivities that limit detection especially in early and subclinical infections. Here, we harness the power of real-time quaking induced conversion (RT-QuIC) to amplify, detect, and quantify prion amyloid seeding activity in fixed paraffin-embedded (FPE) tissue sections. We show that FPE RT-QuIC has greater detection sensitivity than IHC in tissues with low PrP(CWD) burdens, including those that are IHC-negative. We also employ amyloid formation kinetics to yield a semi-quantitative estimate of prion concentration in a given FPE tissue. We report that FPE RT-QuIC has the ability to enhance diagnostic and investigative detection of disease-associated PrP(RES) in prion, and potentially other, protein misfolding disease states. PMID:27157060

  5. R-spondin3 prevents mesenteric ischemia/reperfusion-induced tissue damage by tightening endothelium and preventing vascular leakage.

    PubMed

    Kannan, Lakshmi; Kis-Toth, Katalin; Yoshiya, Kazuhisa; Thai, To-Ha; Sehrawat, Seema; Mayadas, Tanya N; Dalle Lucca, Jurandir J; Tsokos, George C

    2013-08-27

    Inflammation and vascular injury triggered by ischemia/reperfusion (I/R) represent a leading cause of morbidity and mortality in a number of clinical settings. Wnt and its homolog partners R-spondins, in addition to regulating embryonic development have recently been demonstrated to serve as wound-healing agents in inflammation-associated conditions. Here we ask whether R-spondins could prevent inflammation-associated tissue damage in ischemic disorders and thus investigate the role of R-spondin3 (R-spo3) in a mouse model of mesenteric I/R. We demonstrate that R-spo3 ameliorates mesenteric I/R-induced local intestinal as well as remote lung damage by suppressing local and systemic cytokine response and deposition of IgM and complement in intestinal tissues. We also show that decreased inflammatory response is accompanied by tightening of endothelial cell junctions and reduction in vascular leakage. We conclude that R-spo3 stabilizes endothelial junctions and inhibits vascular leakage during I/R and thereby mitigates the inflammatory events and associated tissue damage. Our findings uniquely demonstrate a protective effect of R-spo3 in I/R-related tissue injury and suggest a mechanism by which it may have these effects. PMID:23942120

  6. Pancreatic-derived pathfinder cells enable regeneration of critically damaged adult pancreatic tissue and completely reverse streptozotocin-induced diabetes.

    PubMed

    Stevenson, Karen; Chen, Daxin; MacIntyre, Alan; McGlynn, Liane M; Montague, Paul; Charif, Rawiya; Subramaniam, Murali; George, W D; Payne, Anthony P; Davies, R Wayne; Dorling, Anthony; Shiels, Paul G

    2011-04-01

    We demonstrate that intravenous delivery of human, or rat, pancreas-derived pathfinder (PDP) cells can totally regenerate critically damaged adult tissue and restore normal function across a species barrier. We have used a mouse model of streptozotocin (STZ)-induced diabetes to demonstrate this. Normoglycemia was restored and maintained for up to 89 days following the induction of diabetes and subsequent intravenous delivery of PDP cells. Normal pancreatic histology also appeared to be restored, and treated diabetic animals gained body weight. Regenerated tissue was primarily of host origin, with few rat or human cells detectable by fluorescent in situ hybridization (FISH). Crucially, the insulin produced by these animals was overwhelmingly murine in origin and was both types I and II, indicative of a process of developmental recapitulation. These results demonstrate the feasibility of using intravenous administration of adult cells to regenerate damaged tissue. Critically, they enhance our understanding of the mechanisms relating to such repair and suggest a means for novel therapeutic intervention in loss of tissue and organ function with age.

  7. Correlation of intrahepatic light and temperature distribution in laser-induced thermotherapy of liver tumors and liver tissue

    NASA Astrophysics Data System (ADS)

    Ritz, Joerg-Peter; Isbert, Christoph M.; Roggan, Andre; Germer, Christoph-Thomas; Mueller, Gerhard J.; Buhr, Heinz-Johannes

    1999-01-01

    For prediction of the effectiveness of laser-induced thermotherapy (LITT) of liver metastases and for the planning of laser treatment it is indispensable to achieve knowledge about the intrahepatic light and temperature distribution in order to obtain data for an optimally adapted dosimetry. We evaluated the optical properties of normal and tumorous rabbit-liver ex-vivo using a double integrating sphere technique as well as a Monte-Carlo- simulation. These data were correlated with the measurement of the intrahepatic temperature distribution in-vivo during LITT. In our study we were able to show a positive correlation between ex-vivo results of optical properties and in-vivo results in temperature distribution. The absorption coefficient and scattering coefficients were significantly smaller in tumor tissue than in normal liver. This resulted in a higher optical penetration depth of the laser light into the tumor tissue (p < 0.01). Temperature measurement near the applicator was lower in tumor tissue, than that distant from the applicator (p < 0.01) corresponding to a higher temperature penetration depth. Both, higher optical and thermal penetration depth in the tumorous tissue was correlated with a significant increase in coagulation volume after LITT.

  8. Metabonomic analysis of liver tissue from BALB/c mice with d-galactosamine/lipopolysaccharide-induced acute hepatic failure

    PubMed Central

    2013-01-01

    Background Compared with biofluids, target tissues and organs more directly reflect the pathophysiological state of a disease process. In this study, a D-galactosamine (GalN) / lipopolysaccharide (LPS)-induced mouse model was constructed to investigate metabonomics of liver tissue and directly characterize metabolic changes in acute liver failure (ALF). Methods After pretreatment of liver tissue, gas chromatography coupled to time-of-flight mass spectrometry (GC/TOFMS) was used to separate and identify the liver metabolites. Partial least squares – discriminant analysis models were constructed to separate the ALF and control groups and to find those compounds whose liver levels differed significantly between the two groups. Results Distinct clustering was observed between the ALF and control mice. Fifty-eight endogenous metabolites were identified. Compared with the control mice, many metabolites, including sugars, amino acids, fatty acids, and organic acids, underwent significant changes in the ALF group, some of which differed from changes observed in plasma. Significant reduction of some important intermediate metabolites indicates that production of ketone bodies, the tricarboxylic acid and urea cycles, gluconeogenesis, glycolysis and pentose phosphate pathways are inhibited after GalN/LPS administration. Conclusions GC/TOFMS can be a powerful technique to perform metabonomic studies of liver tissue. GalN/LPS treatment can severely disturb substance metabolism in the liver, with different effects on metabolites compared with those observed in the plasma. PMID:23627910

  9. Detection and Quantification of CWD Prions in Fixed Paraffin Embedded Tissues by Real-Time Quaking-Induced Conversion

    PubMed Central

    Hoover, Clare E.; Davenport, Kristen A.; Henderson, Davin M.; Pulscher, Laura A.; Mathiason, Candace K.; Zabel, Mark D.; Hoover, Edward A.

    2016-01-01

    Traditional diagnostic detection of chronic wasting disease (CWD) relies on immunodetection of misfolded CWD prion protein (PrPCWD) by western blotting, ELISA, or immunohistochemistry (IHC). These techniques require separate sample collections (frozen and fixed) which may result in discrepancies due to variation in prion tissue distribution and assay sensitivities that limit detection especially in early and subclinical infections. Here, we harness the power of real-time quaking induced conversion (RT-QuIC) to amplify, detect, and quantify prion amyloid seeding activity in fixed paraffin-embedded (FPE) tissue sections. We show that FPE RT-QuIC has greater detection sensitivity than IHC in tissues with low PrPCWD burdens, including those that are IHC-negative. We also employ amyloid formation kinetics to yield a semi-quantitative estimate of prion concentration in a given FPE tissue. We report that FPE RT-QuIC has the ability to enhance diagnostic and investigative detection of disease-associated PrPRES in prion, and potentially other, protein misfolding disease states. PMID:27157060

  10. Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy

    NASA Astrophysics Data System (ADS)

    Terentyuk, Georgy S.; Maslyakova, Galina N.; Suleymanova, Leyla V.; Khlebtsov, Nikolai G.; Khlebtsov, Boris N.; Akchurin, Garif G.; Maksimova, Irina L.; Tuchin, Valery V.

    2009-03-01

    We describe an application of plasmonic silica/gold nanoshells to produce a controllable laser hyperthermia in tissues with the aim of the enhancement of cancer photothermal therapy. Laser irradiation parameters are optimized on the basis of preliminary experimental studies using a test-tube phantom and laboratory rats. Temperature distributions on the animal skin surface at hypodermic and intramuscular injection of gold nanoparticle suspensions and affectations by the laser radiation are measured in vivo with a thermal imaging system. The results of temperature measurements are compared with tissue histology.

  11. Shade-induced stem elongation in rice seedlings: Implication of tissue-specific phytohormone regulation.

    PubMed

    Liu, Huihui; Yang, Chuanwei; Li, Lin

    2016-07-01

    A better understanding of shade avoidance syndrome (SAS) is an urgent need because of its effect on energy reallocation. Leverage-related mechanism in crops is of potential economic interest for agricultural applications. Here we report the SAS phenotype at tissue level rice seedlings. Tissue-specific RNA-sequencing indicates auxin plays different roles between coleoptile and the first leaf. Phenotypes of wild type treated by gibberellin and brassinosteroid biosynthesis inhibitors and of related mutants suggest these two hormones positively regulate SAS. Our work reveals the diversity of hormone responses in different organs and different species in shade conditions. PMID:26888633

  12. Magnification of Cholesterol-Induced Membrane Resistance on the Tissue Level: Implications for Hypoxia.

    PubMed

    Shea, Ryan; Smith, Casey; Pias, Sally C

    2016-01-01

    High cellular membrane cholesterol is known to generate membrane resistance and reduce oxygen (O2) permeability. As such, cholesterol may contribute to the Warburg effect in tumor cells by stimulating intracellular hypoxia that cannot be detected from extracellular oxygen measurements. We probe the tissue-level impact of the phenomenon, asking whether layering of cells can magnify the influence of cholesterol, to modulate hypoxia in relation to capillary proximity. Using molecular dynamics simulations, we affirm that minimally hydrated, adjacent lipid bilayers have independent physical behavior. Combining this insight with published experimental data, we predict linearly increasing impact of membrane cholesterol on oxygen flux across cells layered in tissue. PMID:27526123

  13. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation.

    PubMed

    Stojkovic, Stefan; Kaun, Christoph; Basilio, Jose; Rauscher, Sabine; Hell, Lena; Krychtiuk, Konstantin A; Bonstingl, Cornelia; de Martin, Rainer; Gröger, Marion; Ay, Cihan; Holnthoner, Wolfgang; Eppel, Wolfgang; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-01-01

    Tissue factor (TF) is the primary trigger of coagulation. Elevated levels of TF are found in atherosclerotic plaques, and TF leads to thrombus formation when released upon plaque rupture. Interleukin (IL)-33 was previously shown to induce angiogenesis and inflammatory activation of endothelial cells (ECs). Here, we investigated the impact of IL-33 on TF in human ECs, as a possible new link between inflammation and coagulation. IL-33 induced TF mRNA and protein in human umbilical vein ECs and coronary artery ECs. IL-33-induced TF expression was ST2- and NF-κB-dependent, but IL-1-independent. IL-33 also increased cell surface TF activity in ECs and TF activity in ECs-derived microparticles. IL-33-treated ECs reduced coagulation time of whole blood and plasma but not of factor VII-deficient plasma. In human carotid atherosclerotic plaques (n = 57), TF mRNA positively correlated with IL-33 mRNA expression (r = 0.691, p < 0.001). In this tissue, IL-33 and TF protein was detected in ECs and smooth muscle cells by immunofluorescence. Furthermore, IL-33 and TF protein co-localized at the site of clot formation within microvessels in plaques of patients with symptomatic carotid stenosis. Through induction of TF in ECs, IL-33 could enhance their thrombotic capacity and thereby might impact on thrombus formation in the setting of atherosclerosis. PMID:27142573

  14. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation

    PubMed Central

    Stojkovic, Stefan; Kaun, Christoph; Basilio, Jose; Rauscher, Sabine; Hell, Lena; Krychtiuk, Konstantin A.; Bonstingl, Cornelia; de Martin, Rainer; Gröger, Marion; Ay, Cihan; Holnthoner, Wolfgang; Eppel, Wolfgang; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-01-01

    Tissue factor (TF) is the primary trigger of coagulation. Elevated levels of TF are found in atherosclerotic plaques, and TF leads to thrombus formation when released upon plaque rupture. Interleukin (IL)-33 was previously shown to induce angiogenesis and inflammatory activation of endothelial cells (ECs). Here, we investigated the impact of IL-33 on TF in human ECs, as a possible new link between inflammation and coagulation. IL-33 induced TF mRNA and protein in human umbilical vein ECs and coronary artery ECs. IL-33-induced TF expression was ST2- and NF-κB-dependent, but IL-1-independent. IL-33 also increased cell surface TF activity in ECs and TF activity in ECs-derived microparticles. IL-33-treated ECs reduced coagulation time of whole blood and plasma but not of factor VII-deficient plasma. In human carotid atherosclerotic plaques (n = 57), TF mRNA positively correlated with IL-33 mRNA expression (r = 0.691, p < 0.001). In this tissue, IL-33 and TF protein was detected in ECs and smooth muscle cells by immunofluorescence. Furthermore, IL-33 and TF protein co-localized at the site of clot formation within microvessels in plaques of patients with symptomatic carotid stenosis. Through induction of TF in ECs, IL-33 could enhance their thrombotic capacity and thereby might impact on thrombus formation in the setting of atherosclerosis. PMID:27142573

  15. The Polycomb Group Protein EED Interacts with YY1, and Both Proteins Induce Neural Tissue in Xenopus Embryos

    PubMed Central

    Satijn, David P. E.; Hamer, Karien M.; den Blaauwen, Jan; Otte, Arie P.

    2001-01-01

    Polycomb group (PcG) proteins form multimeric protein complexes which are involved in the heritable stable repression of genes. Previously, we identified two distinct human PcG protein complexes. The EED-EZH protein complex contains the EED and EZH2 PcG proteins, and the HPC-HPH PcG complex contains the HPC, HPH, BMI1, and RING1 PcG proteins. Here we show that YY1, a homolog of the Drosophila PcG protein pleiohomeotic (Pho), interacts specificially with the human PcG protein EED but not with proteins of the HPC-HPH PcG complex. Since YY1 and Pho are DNA-binding proteins, the interaction between YY1 and EED provides a direct link between the chromatin-associated EED-EZH PcG complex and the DNA of target genes. To study the functional significance of the interaction, we expressed the Xenopus homologs of EED and YY1 in Xenopus embryos. Both Xeed and XYY1 induce an ectopic neural axis but do not induce mesodermal tissues. In contrast, members of the HPC-HPH PcG complex do not induce neural tissue. The exclusive, direct neuralizing activity of both the Xeed and XYY1 proteins underlines the significance of the interaction between the two proteins. Our data also indicate a role for chromatin-associated proteins, such as PcG proteins, in Xenopus neural induction. PMID:11158321

  16. Time-imposed daily restricted feeding induces rhythmic expression of Fgf21 in white adipose tissue of mice.

    PubMed

    Oishi, Katsutaka; Konishi, Morichika; Murata, Yusuke; Itoh, Nobuyuki

    2011-08-26

    Fibroblast growth factor 21 (FGF21) is a key metabolic regulator that is induced by fasting and starvation, and its expression is thought to be regulated by the circadian clock in the liver. To evaluate the functional role of FGF21 in the circadian regulation of physiology and behavior, we examined the temporal expression profiles of Fgf21 and circadian clock genes in addition to behavioral activity rhythms under adlibitum feeding (ALF) and time-imposed restricted feeding (RF) in mice. Four hours of daily restricted feeding during the daytime induced over an 80-fold increase in feeding-dependent rhythmic Fgf21 mRNA expression in epididymal white adipose tissue (eWAT), although the expression levels were continuously increased 10-fold in the liver of wild-type (WT) mice. Refeeding subsequent to transient fasting revealed that refeeding but not fasting remarkably induces Fgf21 expression in eWAT, although fasting-induced hepatic Fgf21 expression is completely reversed by refeeding. The free-running period of locomotor activity rhythm under ALF and the food anticipatory activity (FAA) under RF remained intact in Fgf21 knockout (KO) mice, suggesting that FGF21 is dispensable for both the central clock in the suprachiasmatic nucleus (SCN) and the food-entrainable oscillator that governs the FAA. Temporal expression profiles of circadian genes such as mPer2 and BMAL1 were essentially identical in both tissues between WT and Fgf21 KO mice under RF. The physiological role of the refeeding-induced adipose Fgf21 expression remains to be elucidated.

  17. Plants as biofactories: glyphosate-induced production of shikimic acid and phenolic antioxidants in wounded carrot tissue.

    PubMed

    Becerra-Moreno, Alejandro; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2012-11-14

    The use of plants to produce chemical compounds with pharmaceutical and nutraceutical applications has intensified in recent years. In this regard, genetic engineering is the most commonly used tool to generate crop lines with enhanced concentrations of desirable chemicals. However, growing genetically modified plants is still limited because they are perceived as potential biological hazards that can create an ecological imbalance. The application of postharvest abiotic stresses on plants induces the accumulation of secondary metabolites and thus can be used as an alternative to genetic modification. The present project evaluated the feasibility of producing shikimic acid (SA) and phenolic compounds (PC) in wounded carrots ( Daucus carota ) treated with glyphosate. The spray application of a concentrated glyphosate solution on wounded carrot tissue increased the concentrations of SA and chlorogenic acid by ∼1735 and ∼5700%, respectively. The results presented herein demonstrate the potential of stressed carrot tissue as a biofactory of SA and PC.

  18. Controlled induction of DNA double-strand breaks in the mouse liver induces features of tissue ageing

    PubMed Central

    White, Ryan R.; Milholland, Brandon; de Bruin, Alain; Curran, Samuel; Laberge, Remi-Martin; van Steeg, Harry; Campisi, Judith; Maslov, Alexander Y.; Vijg, Jan

    2015-01-01

    DNA damage has been implicated in ageing, but direct evidence for a causal relationship is lacking, owing to the difficulty of inducing defined DNA lesions in cells and tissues without simultaneously damaging other biomolecules and cellular structures. Here we directly test whether highly toxic DNA double-strand breaks (DSBs) alone can drive an ageing phenotype using an adenovirus-based system based on tetracycline-controlled expression of the SacI restriction enzyme. We deliver the adenovirus to mice and compare molecular and cellular end points in the liver with normally aged animals. Treated, 3-month-old mice display many, but not all signs of normal liver ageing as early as 1 month after treatment, including ageing pathologies, markers of senescence, fused mitochondria and alterations in gene expression profiles. These results, showing that DSBs alone can cause distinct ageing phenotypes in mouse liver, provide new insights in the role of DNA damage as a driver of tissue ageing. PMID:25858675

  19. Controlled induction of DNA double-strand breaks in the mouse liver induces features of tissue ageing.

    PubMed

    White, Ryan R; Milholland, Brandon; de Bruin, Alain; Curran, Samuel; Laberge, Remi-Martin; van Steeg, Harry; Campisi, Judith; Maslov, Alexander Y; Vijg, Jan

    2015-01-01

    DNA damage has been implicated in ageing, but direct evidence for a causal relationship is lacking, owing to the difficulty of inducing defined DNA lesions in cells and tissues without simultaneously damaging other biomolecules and cellular structures. Here we directly test whether highly toxic DNA double-strand breaks (DSBs) alone can drive an ageing phenotype using an adenovirus-based system based on tetracycline-controlled expression of the SacI restriction enzyme. We deliver the adenovirus to mice and compare molecular and cellular end points in the liver with normally aged animals. Treated, 3-month-old mice display many, but not all signs of normal liver ageing as early as 1 month after treatment, including ageing pathologies, markers of senescence, fused mitochondria and alterations in gene expression profiles. These results, showing that DSBs alone can cause distinct ageing phenotypes in mouse liver, provide new insights in the role of DNA damage as a driver of tissue ageing. PMID:25858675

  20. Effective attenuation of atrazine-induced histopathological changes in testicular tissue by antioxidant N-phenyl-4-aryl-polyhydroquinolines.

    PubMed

    Chandak, Navneet; Bhardwaj, Jitender K; Zheleva-Dimitrova, Dimitrina; Kitanov, Gerassim; Sharma, Rajnesh K; Sharma, Pawan K; Saso, Luciano

    2015-01-01

    Some of the environmental toxicants acting as endocrine disruptors have been associated with health hazards in human and wildlife by modulating hormonal actions. Atrazine, a strong endocrine disruptor, induces detrimental effects on gonads in male and female, and causes impairment of fertility and developmental problems as well as sex alterations. Atrazine decreases the activities of antioxidant enzymes and thus responsible for oxidative stress. Natural antioxidants have shown ability to reduce/slow down the apoptotic effect of atrazine on testicular tissue. In the present study, some N-phenyl-4-aryl-polyhydroquinolines bearing phenolic or/and alkoxy group(s) (6a-6g) were synthesized and evaluated for antioxidant activity in four different assays. Three best compounds (6e-6g) were studied for their ameliorative effect on testicular tissue supplemented with atrazine in vitro.

  1. Loss of Nlrp3 Does Not Protect Mice from Western Diet-Induced Adipose Tissue Inflammation and Glucose Intolerance

    PubMed Central

    Ringling, Rebecca E.; Gastecki, Michelle L.; Woodford, Makenzie L.; Lum-Naihe, Kelly J.; Grant, Ryan W.; Pulakat, Lakshmi; Vieira-Potter, Victoria J.; Padilla, Jaume

    2016-01-01

    We tested the hypothesis that loss of Nlrp3 would protect mice from Western diet-induced adipose tissue (AT) inflammation and associated glucose intolerance and cardiovascular complications. Five-week old C57BL6J wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 24 weeks (n = 8/group). Contrary to our hypothesis that obesity-mediated white AT inflammation is Nlrp3-dependent, we found that Western diet-induced expression of AT inflammatory markers (i.e., Cd68, Cd11c, Emr1, Itgam, Lgals, Il18, Mcp1, Tnf, Ccr2, Ccl5 mRNAs, and Mac-2 protein) were not accompanied by increased caspase-1 cleavage, a hallmark feature of NLRP3 inflammasome activation. Furthermore, Nlrp3 null mice were not protected from Western diet-induced white or brown AT inflammation. Although Western diet promoted glucose intolerance in both WT and Nlrp3-/- mice, Nlrp3-/- mice were protected from Western diet-induced aortic stiffening. Additionally, Nlrp3-/- mice exhibited smaller cardiomyocytes and reduced cardiac fibrosis, independent of diet. Collectively, these findings suggest that presence of the Nlrp3 gene is not required for Western diet-induced AT inflammation and/or glucose intolerance; yet Nlrp3 appears to play a role in potentiating arterial stiffening, cardiac hypertrophy and fibrosis. PMID:27583382

  2. Loss of Nlrp3 Does Not Protect Mice from Western Diet-Induced Adipose Tissue Inflammation and Glucose Intolerance.

    PubMed

    Ringling, Rebecca E; Gastecki, Michelle L; Woodford, Makenzie L; Lum-Naihe, Kelly J; Grant, Ryan W; Pulakat, Lakshmi; Vieira-Potter, Victoria J; Padilla, Jaume

    2016-01-01

    We tested the hypothesis that loss of Nlrp3 would protect mice from Western diet-induced adipose tissue (AT) inflammation and associated glucose intolerance and cardiovascular complications. Five-week old C57BL6J wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 24 weeks (n = 8/group). Contrary to our hypothesis that obesity-mediated white AT inflammation is Nlrp3-dependent, we found that Western diet-induced expression of AT inflammatory markers (i.e., Cd68, Cd11c, Emr1, Itgam, Lgals, Il18, Mcp1, Tnf, Ccr2, Ccl5 mRNAs, and Mac-2 protein) were not accompanied by increased caspase-1 cleavage, a hallmark feature of NLRP3 inflammasome activation. Furthermore, Nlrp3 null mice were not protected from Western diet-induced white or brown AT inflammation. Although Western diet promoted glucose intolerance in both WT and Nlrp3-/- mice, Nlrp3-/- mice were protected from Western diet-induced aortic stiffening. Additionally, Nlrp3-/- mice exhibited smaller cardiomyocytes and reduced cardiac fibrosis, independent of diet. Collectively, these findings suggest that presence of the Nlrp3 gene is not required for Western diet-induced AT inflammation and/or glucose intolerance; yet Nlrp3 appears to play a role in potentiating arterial stiffening, cardiac hypertrophy and fibrosis. PMID:27583382

  3. Loss of Nlrp3 Does Not Protect Mice from Western Diet-Induced Adipose Tissue Inflammation and Glucose Intolerance.

    PubMed

    Ringling, Rebecca E; Gastecki, Michelle L; Woodford, Makenzie L; Lum-Naihe, Kelly J; Grant, Ryan W; Pulakat, Lakshmi; Vieira-Potter, Victoria J; Padilla, Jaume

    2016-01-01

    We tested the hypothesis that loss of Nlrp3 would protect mice from Western diet-induced adipose tissue (AT) inflammation and associated glucose intolerance and cardiovascular complications. Five-week old C57BL6J wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 24 weeks (n = 8/group). Contrary to our hypothesis that obesity-mediated white AT inflammation is Nlrp3-dependent, we found that Western diet-induced expression of AT inflammatory markers (i.e., Cd68, Cd11c, Emr1, Itgam, Lgals, Il18, Mcp1, Tnf, Ccr2, Ccl5 mRNAs, and Mac-2 protein) were not accompanied by increased caspase-1 cleavage, a hallmark feature of NLRP3 inflammasome activation. Furthermore, Nlrp3 null mice were not protected from Western diet-induced white or brown AT inflammation. Although Western diet promoted glucose intolerance in both WT and Nlrp3-/- mice, Nlrp3-/- mice were protected from Western diet-induced aortic stiffening. Additionally, Nlrp3-/- mice exhibited smaller cardiomyocytes and reduced cardiac fibrosis, independent of diet. Collectively, these findings suggest that presence of the Nlrp3 gene is not required for Western diet-induced AT inflammation and/or glucose intolerance; yet Nlrp3 appears to play a role in potentiating arterial stiffening, cardiac hypertrophy and fibrosis.

  4. Regulation of LPS-induced tissue factor expression in human monocytic THP-1 cells by curcumin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tissue factor (TF) is a transmembrane receptor, which initiates thrombotic episodes associated with various diseases. In addition to membrane-bound TF, we have discovered an alternatively spliced form of human TF mRNA. It was later confirmed that this form of TF mRNA expresses a soluble protein circ...

  5. TGF-{beta} antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, M.H.

    1997-04-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-{beta} antagonist, such as an anti-TGF-{beta} antibody or a TGF-{beta} latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  6. The formation of brown adipose tissue induced by transgenic over-expression of PPARγ2.

    PubMed

    Zhou, Ying; Yang, Jinzeng; Huang, Jinliang; Li, Ting; Xu, Dequan; Zuo, Bo; Hou, Liming; Wu, Wangjun; Zhang, Lin; Xia, Xiaoliang; Ma, Zhiyuan; Ren, Zhuqing; Xiong, Yuanzhu

    2014-04-18

    Brown adipose tissue (BAT) is specialized to dissipate energy as heat, therefore reducing fat deposition and counteracting obesity. Brown adipocytes arise from myoblastic progenitors during embryonic development by the action of transcription regulator PRDM16 binding to PPARγ, which promotes BAT-like phenotype in white adipose tissue. To investigate the capability of converting white adipose tissue to BAT or browning by PPARγ in vivo, we generated transgenic mice with over-expressed PPARγ2. The transgenic mice showed strong brown fat features in subcutaneous fat in morphology and histology. To provide molecular evidences on browning characteristics of the adipose tissue, we employed quantitative real-time PCR to determine BAT-specific gene expressions. The transgenic mice had remarkably elevated mRNA level of UCP1, Elovl3, PGC1α and Cebpα in subcutaneous fat. Compared with wild-type mice, UCP1 protein levels were increased significantly in transgenic mice. ATP concentration was slightly decreased in the subcutaneous fat of transgenic mice. Western blotting analysis also confirmed that phosphorylated AMPK and ACC proteins were significantly (P<0.01) increased in the transgenic mice. Therefore, this study demonstrated that over-expression of PPARγ2 in skeletal muscle can promote conversion of subcutaneous fat to brown fat formation, which can have beneficial effects on increasing energy metabolisms and combating obesity.

  7. Acoustically induced tissue displacement for shear wave elasticity imaging using MRI

    NASA Astrophysics Data System (ADS)

    Haworth, Kevin; Kripfgans, Oliver; Steele, Derek; Swanson, Scott; Sutin, Alexander; Sarvazyan, Armen

    2005-09-01

    Palpitation detects tissue abnormalities by exploiting the vast range of elastic properties found in vivo. The method is limited by tactile sensitivity and the inability to probe tissues at depth. Recent efforts seek to remove these limitation by developing a medical imaging modality based on radiation force shear wave excitation. Our approach uses an acoustic source to launch a shear wave in a tissue-mimicking phantom and MRI to record microscopic displacements. Gelatin (10% wt/vol) was used for the tissue-mimicking phantom. Results for in situ elasticity were obtained using an air-backed 10-cm-diam piezoelectric crystal. To correct for future in vivo beam aberrations, we also employ a high-pressure 1-bit time-reversal cavity. Frequency and pulse duration were selected to optimize the TRA system for acoustic output pressure. Shear wave displacements were recorded by MRI in 1-ms time increments in a complete basis that allowed for 3-D reconstruction and analysis. The Lamé coefficients are then derived from the shear wave velocity and attenuation.

  8. Drug-induced modulation of Tc-99m pyrophosphate tissue distribution: what is involved

    SciTech Connect

    Wahner, H.W.; Dewanjee, M.K.

    1981-06-01

    More than ten years after their introduction, Tc-99m-labeled phosphates and phosphonates (TcP) continue to be of interest to the investigator and to hold promise for new clinical applications in the future. Initially, TcP compounds were valued because of their bone-seeking properties. Emphasis shifted from bone to soft tissue when Bonte et al. introduced Tc-99m-labeled pyrophosphate (TcPPi) for myocardial infarct scanning. Detailed information about TcPPi uptake in ischemic and necrotic myocardial tissue at the subcellular level has accumulated. Therefore, understanding of the mechanism of TcPPi uptake in infarcted myocardium is more detailed than understanding of uptake by bone. A new, and potentially powerful, approach to the use of TcP is being proposed by Carr et al. The authors attempt to modulate favorably the tissue distribution of TcPPi by prior administration of drugs in pharmacological quantities. The authors demonstrate that uptake of TcPPi can be enhanced in the necrotic myocardium, uptake by bone can be reduced, and the lesion-to-blood ratio can be altered favorably when vitamin D/sub 3/ or desoxycorticosterone acetate (DOCA) is administered in pharmacological doses before the TcPPi injection. A short review is presented of background information helpful for interpreting the drug effects on TcPPi uptake in bone or necrotic myocardial tissue.

  9. TGF-.beta. antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, Mary H.

    1997-01-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-.beta. antagonist, such as an anti-TGF-.beta. antibody or a TGF-.beta. latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  10. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis

    PubMed Central

    Foolen, Jasper; Shiu, Jau-Ye; Mitsi, Maria; Zhang, Yang; Chen, Christopher S.; Vogel, Viola

    2016-01-01

    Generating and maintaining gradients of cell density and extracellular matrix (ECM) components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. ‘compact and adsorbed to collagen’ versus ‘extended and fibrillar’ fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin’s contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs) and floxed equivalents (Fnf/f MEFs), in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments). In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen

  11. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis.

    PubMed

    Foolen, Jasper; Shiu, Jau-Ye; Mitsi, Maria; Zhang, Yang; Chen, Christopher S; Vogel, Viola

    2016-01-01

    Generating and maintaining gradients of cell density and extracellular matrix (ECM) components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. 'compact and adsorbed to collagen' versus 'extended and fibrillar' fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin's contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs) and floxed equivalents (Fnf/f MEFs), in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments). In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen decoration of

  12. Dimethyl Fumarate Protects Pancreatic Islet Cells and Non-Endocrine Tissue in L-Arginine-Induced Chronic Pancreatitis

    PubMed Central

    Robles, Lourdes; Vaziri, Nosratola D.; Li, Shiri; Masuda, Yuichi; Takasu, Chie; Takasu, Mizuki; Vo, Kelly; Farzaneh, Seyed H.; Stamos, Michael J.; Ichii, Hirohito

    2014-01-01

    Background Chronic pancreatitis (CP) is a progressive disorder resulting in the destruction and fibrosis of the pancreatic parenchyma which ultimately leads to impairment of the endocrine and exocrine functions. Dimethyl Fumarate (DMF) was recently approved by FDA for treatment of patients with multiple sclerosis. DMF's unique anti-oxidant and anti-inflammatory properties make it an interesting drug to test on other inflammatory conditions. This study was undertaken to determine the effects of DMF on islet cells and non-endocrine tissue in a rodent model of L-Arginine-induced CP. Methods Male Wistar rats fed daily DMF (25 mg/kg) or vehicle by oral gavage were given 5 IP injections of L-Arginine (250 mg/100 g×2, 1 hr apart). Rats were assessed with weights and intra-peritoneal glucose tolerance tests (IPGTT, 2 g/kg). Islets were isolated and assessed for islet mass and viability with flow cytometry. Non-endocrine tissue was assessed for histology, myeloperoxidase (MPO), and lipid peroxidation level (MDA). In vitro assessments included determination of heme oxygenase (HO-1) protein expression by Western blot. Results Weight gain was significantly reduced in untreated CP group at 6 weeks. IPGTT revealed significant impairment in untreated CP group and its restoration with DMF therapy (P <0.05). Untreated CP rats had pancreatic atrophy, severe acinar architectural damage, edema, and fatty infiltration as well as elevated MDA and MPO levels, which were significantly improved by DMF treatment. After islet isolation, the volume of non-endocrine tissue was significantly smaller in untreated CP group. Although islet counts were similar in the two groups, islet viability was significantly reduced in untreated CP group and improved with DMF treatment. In vitro incubation of human pancreatic tissue with DMF significantly increased HO-1 expression. Conclusion Administration of DMF attenuated L-Arginine-induced CP and islet function in rats. DMF treatment could be a possible

  13. Altered expression of hypoxia-inducible factor-1α (HIF-1α) and its regulatory genes in gastric cancer tissues.

    PubMed

    Wang, Jihan; Ni, Zhaohui; Duan, Zipeng; Wang, Guoqing; Li, Fan

    2014-01-01

    Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α), the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED) was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3) were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.

  14. Altered Expression of Hypoxia-Inducible Factor-1α (HIF-1α) and Its Regulatory Genes in Gastric Cancer Tissues

    PubMed Central

    Wang, Jihan; Ni, Zhaohui; Duan, Zipeng; Wang, Guoqing; Li, Fan

    2014-01-01

    Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α), the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED) was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3) were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer. PMID:24927122

  15. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    PubMed Central

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the “non-hostile” colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7. PMID:25250017

  16. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance

    PubMed Central

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-01-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9−/−) macrophages. Fat-fed Tlr9−/− mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9−/− mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography–determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance. PMID:27051864

  17. Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis.

    PubMed Central

    Henderson, B; Poole, S; Wilson, M

    1996-01-01

    Cytokines are a diverse group of proteins and glycoproteins which have potent and wide-ranging effects on eukaryotic cell function and are now recognized as important mediators of tissue pathology in infectious diseases. It is increasingly recognized that for many bacterial species, cytokine induction is a major virulence mechanism. Until recent years, the only bacterial component known to stimulate cytokine synthesis was lipopolysaccharide (LPS). It is only within the past decade that it has been clearly shown that many components associated with the bacterial cell wall, including proteins, glycoproteins, lipoproteins, carbohydrates, and lipids, have the capacity to stimulate mammalian cells to produce a diverse array of cytokines. It has been established that many of these cytokine-inducing molecules act by mechanisms distinct from that of LPS, and thus their activities are not due to LPS contamination. Bacteria produce a wide range of virulence factors which cause host tissue pathology, and these diverse factors have been grouped into four families: adhesins, aggressins, impedins, and invasins. We suggest that the array of bacterial cytokine-inducing molecules represents a new class of bacterial virulence factor, and, by analogy with the known virulence families, we suggest the term "modulin" to describe these molecules, because the action of cytokines is to modulate eukaryotic cell behavior. This review summarizes our current understanding of cytokine biology in relation to tissue homeostasis and disease and concisely reviews the current literature on the cytokine-inducing molecules produced by gram-negative and gram-positive bacteria, with an emphasis on the cellular mechanisms responsible for cytokine induction. We propose that modulins, by controlling the host immune and inflammatory responses, maintain the large commensal flora that all multicellular organisms support. PMID:8801436

  18. Amifostine Induces Antioxidant Enzymatic Activities in Normal Tissues and a Transplantable Tumor That Can Affect Radiation Response

    SciTech Connect

    Grdina, David J. Murley, Jeffrey S.; Kataoka, Yasushi; Baker, Kenneth L.; Kunnavakkam, Rangesh; Coleman, Mitchell C.; Spitz, Douglas R.

    2009-03-01

    Purpose: To determine whether amifostine can induce elevated manganese superoxide dismutase (SOD2) in murine tissues and a transplantable SA-NH tumor, resulting in a delayed tumor cell radioprotective effect. Methods and Materials: SA-NH tumor-bearing C3H mice were treated with a single 400 mg/kg or three daily 50 mg/kg doses of amifostine administered intraperitoneally. At selected time intervals after the last injection, the heart, liver, lung, pancreas, small intestine, spleen, and SA-NH tumor were removed and analyzed for SOD2, catalase, and glutathione peroxidase (GPx) enzymatic activity. The effect of elevated SOD2 enzymatic activity on the radiation response of SA-NH cells was determined. Results: SOD2 activity was significantly elevated in selected tissues and a tumor 24 h after amifostine treatment. Catalase and GPx activities remained unchanged except for significant elevations in the spleen. GPx was also elevated in the pancreas. SA-NH tumor cells exhibited a twofold elevation in SOD2 activity and a 27% elevation in radiation resistance. Amifostine administered in three daily fractions of 50 mg/kg each also resulted in significant elevations of these antioxidant enzymes. Conclusions: Amifostine can induce a delayed radioprotective effect that correlates with elevated levels of SOD2 activity in SA-NH tumor. If limited to normal tissues, this delayed radioprotective effect offers an additional potential for overall radiation protection. However, amifostine-induced elevation of SOD2 activity in tumors could have an unanticipated deleterious effect on tumor responses to fractionated radiation therapy, given that the radioprotector is administered daily just before each 2-Gy fractionated dose.

  19. Hypoglycaemic and Tissue-Protective Effects of the Aqueous Extract of Persea Americana Seeds on Alloxan-Induced Albino Rats

    PubMed Central

    EZEJIOFOR, Anthonet Ndidi; OKORIE, Abednego; ORISAKWE, Orish Ebere

    2013-01-01

    Background: The tissue-protective potential of Persea americana necessitated a look into the histopathological effects of the plant extract on the pancreas, liver, and kidneys. This study was conceived and designed based on the gaps in the research that has been performed and what is known about the plant. The hypoglycaemic and tissue-protective effects of hot aqueous Persea americana (avocado pear) seed extracts on alloxan-induced albino rats were investigated. Methods: Persea americana seeds were extracted using hot water, and different concentrations of the extract were prepared. The effects of different concentrations (20, 30, 40 g/L) of the hot aqueous P. americana seed extract on alloxan-induced Wistar albino rats were compared with those of a reference drug, glibenclamide. The glucose level of the rats was measured daily, and the weight of the animal was monitored on a weekly basis for 21 days. The oral glucose tolerance test (OGTT) was performed at 0, 30, 60, 90 and 120 minutes, and the histopathologies of the liver, kidneys, and pancreas were investigated. Phytochemical analysis of P. americana seed extracts indicated the presence of glycosides, tannins, saponins, carbohydrates, flavonoids, and alkaloids. Results: The results showed that the extract possessed a significant hypoglycaemic (P < 0.05) effect and reversed the histopathological damage that occurred in alloxan-induced diabetic rats, comparable to the effects glibenclamide. The seeds of P. americana also had anti-diabetic and protective effects on some rat tissues such as the pancreas, kidneys, and liver. Conclusion: In conclusion, the present study provides a pharmacological basis for the folkloric use of the hot-water extract of P. americana seeds in the management of diabetes mellitus. PMID:24643349

  20. Galectin-3 Deficiency Accelerates High-Fat Diet–Induced Obesity and Amplifies Inflammation in Adipose Tissue and Pancreatic Islets

    PubMed Central

    Pejnovic, Nada N.; Pantic, Jelena M.; Jovanovic, Ivan P.; Radosavljevic, Gordana D.; Milovanovic, Marija Z.; Nikolic, Ivana G.; Zdravkovic, Nemanja S.; Djukic, Aleksandar L.; Arsenijevic, Nebojsa N.; Lukic, Miodrag L.

    2013-01-01

    Obesity-induced diabetes is associated with low-grade inflammation in adipose tissue and macrophage infiltration of islets. We show that ablation of galectin-3 (Gal-3), a galactoside-binding lectin, accelerates high-fat diet–induced obesity and diabetes. Obese LGALS3−/− mice have increased body weight, amount of total visceral adipose tissue (VAT), fasting blood glucose and insulin levels, homeostasis model assessment of insulin resistance, and markers of systemic inflammation compared with diet-matched wild-type (WT) animals. VAT of obese LGALS3−/− mice exhibited increased incidence of type 1 T and NKT lymphocytes and proinflammatory CD11c+CD11b+ macrophages and decreased CD4+CD25+FoxP3+ regulatory T cells and M2 macrophages. Pronounced mononuclear cell infiltrate, increased expression of NLRP3 inflammasome and interleukin-1β (IL-1β) in macrophages, and increased accumulation of advanced glycation end products (AGEs) and receptor for AGE (RAGE) expression were present in pancreatic islets of obese LGALS3−/− animals accompanied with elevated phosphorylated nuclear factor-κB (NF-κB) p65 and mature caspase-1 protein expression in pancreatic tissue and VAT. In vitro stimulation of LGALS3−/− peritoneal macrophages with lipopolysaccharide (LPS) and saturated fatty acid palmitate caused increased caspase-1–dependent IL-1β production and increased phosphorylation of NF-κB p65 compared with WT cells. Transfection of LGALS3−/− macrophages with NLRP3 small interfering RNA attenuated IL-1β production in response to palmitate and LPS plus palmitate. Obtained results suggest important protective roles for Gal-3 in obesity-induced inflammation and diabetes. PMID:23349493

  1. Galectin-3 deficiency accelerates high-fat diet-induced obesity and amplifies inflammation in adipose tissue and pancreatic islets.

    PubMed

    Pejnovic, Nada N; Pantic, Jelena M; Jovanovic, Ivan P; Radosavljevic, Gordana D; Milovanovic, Marija Z; Nikolic, Ivana G; Zdravkovic, Nemanja S; Djukic, Aleksandar L; Arsenijevic, Nebojsa N; Lukic, Miodrag L

    2013-06-01

    Obesity-induced diabetes is associated with low-grade inflammation in adipose tissue and macrophage infiltration of islets. We show that ablation of galectin-3 (Gal-3), a galactoside-binding lectin, accelerates high-fat diet-induced obesity and diabetes. Obese LGALS3(-/-) mice have increased body weight, amount of total visceral adipose tissue (VAT), fasting blood glucose and insulin levels, homeostasis model assessment of insulin resistance, and markers of systemic inflammation compared with diet-matched wild-type (WT) animals. VAT of obese LGALS3(-/-) mice exhibited increased incidence of type 1 T and NKT lymphocytes and proinflammatory CD11c(+)CD11b(+) macrophages and decreased CD4(+)CD25(+)FoxP3(+) regulatory T cells and M2 macrophages. Pronounced mononuclear cell infiltrate, increased expression of NLRP3 inflammasome and interleukin-1β (IL-1β) in macrophages, and increased accumulation of advanced glycation end products (AGEs) and receptor for AGE (RAGE) expression were present in pancreatic islets of obese LGALS3(-/-) animals accompanied with elevated phosphorylated nuclear factor-κB (NF-κB) p65 and mature caspase-1 protein expression in pancreatic tissue and VAT. In vitro stimulation of LGALS3(-/-) peritoneal macrophages with lipopolysaccharide (LPS) and saturated fatty acid palmitate caused increased caspase-1-dependent IL-1β production and increased phosphorylation of NF-κB p65 compared with WT cells. Transfection of LGALS3(-/-) macrophages with NLRP3 small interfering RNA attenuated IL-1β production in response to palmitate and LPS plus palmitate. Obtained results suggest important protective roles for Gal-3 in obesity-induced inflammation and diabetes. PMID:23349493

  2. The effect of interferon gamma on conventional fractionated radiation-induced damage and fibrosis in the pelvic tissue of rabbits

    PubMed Central

    Yang, Yunyi; Liu, Zi; Wang, Juan; Chai, Yanlan; Su, Jin; Shi, Fan; Wang, Jiquan; Che, Shao Min

    2016-01-01

    We aim to investigate the effect of interferon gamma (IFN-γ) on conventional fractionated radiation–induced damage and fibrosis in ureter and colorectal mucosa. Fifty-two rabbits were randomly divided into three groups comprising a conventional radiation group, an IFN-γ group, and a control group. X-rays were used to irradiate the pelvic tissues of the rabbits in the IFN-γ and conventional radiation groups. Five days after radiation exposure, the rabbits in the IFN-γ group were administered 250,000 U/kg IFN-γ intramuscularly once a week for 5 weeks. The rabbits in the conventional radiation group received 5.0 mL/kg saline. The rabbits were sacrificed at 4, 8, 12, and 16 weeks postradiation, and the rectal and ureteral tissues within the radiation areas were collected. The results showed that the morphology of rectal and ureteral tissues was changed by X-ray radiation. The degree of damage at 4, 8, and 12 weeks, but not at 16 weeks, postradiation was significantly different between the IFN-γ and conventional radiation groups. The expression of transforming growth factor beta 1 mRNA in the ureter and colorectal mucosa of the IFN-γ group was significantly lower than that in the conventional radiation group at 4, 8, 12, and 16 weeks postradiation, but it was still higher than that in the control group. There were significant differences in the expression of collagen III among the three groups. IFN-γ can inhibit the radiation-induced upregulation of transforming growth factor beta 1 mRNA and collagen III protein in the ureter and colorectal mucosa and attenuate radiation-induced damage and fibrosis. PMID:27274263

  3. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids

    PubMed Central

    2013-01-01

    Background Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. Results We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Conclusions Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of

  4. Differentiation of traumatic and heat-induced dental tissue fractures via SEM analysis.

    PubMed

    Campbell, Miranda N; Fairgrieve, Scott I

    2011-05-01

    Previous studies have examined the effects of heating on teeth; however, none have identified characteristics that allow analysts to differentiate traumatic from heat-induced fractures. This study examined our ability to discern notable differences in preincineration traumatic fractures and heat-induced fractures in postincineration dentition. Twelve anterior dental specimens were subjected to blunt force trauma while a second set were not. All 24 samples were then incinerated in a muffle furnace at a peak temperature (900°C) consistent with house fires. The specimens were subsequently examined with a scanning electron microscope to identify and compare heat-induced and traumatic fractures. The results obtained during examination yielded no differences between the features displayed by specimens that had been inflicted with preincineration trauma and those that did not. Unlike bone, distinguishing features for the differentiation of traumatic and heat-induced fractures could not be compiled. PMID:21521217

  5. Elemental analysis of tissue pellets for the differentiation of epidermal lesion and normal skin by laser-induced breakdown spectroscopy

    PubMed Central

    Moon, Youngmin; Han, Jung Hyun; Shin, Sungho; Kim, Yong-Chul; Jeong, Sungho

    2016-01-01

    By laser induced breakdown spectroscopy (LIBS) analysis of epidermal lesion and dermis tissue pellets of hairless mouse, it is shown that Ca intensity in the epidermal lesion is higher than that in dermis, whereas Na and K intensities have an opposite tendency. It is demonstrated that epidermal lesion and normal dermis can be differentiated with high selectivity either by univariate or multivariate analysis of LIBS spectra with an intensity ratio difference by factor of 8 or classification accuracy over 0.995, respectively. PMID:27231610

  6. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    PubMed

    Cashman, Timothy J; Josowitz, Rebecca; Johnson, Bryce V; Gelb, Bruce D; Costa, Kevin D

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  7. Radiation-Induced Oxidative Stress at Out-of-Field Lung Tissues after Pelvis Irradiation in Rats

    PubMed Central

    Najafi, Masoud; Fardid, Reza; Takhshid, Mohammad Ali; Mosleh-Shirazi, Mohammad Amin; Rezaeyan, Abol-Hassan; Salajegheh, Ashkan

    2016-01-01

    Objective The out-of-field/non-target effect is one of the most important phenomena of ionizing radiation that leads to molecular and cellular damage to distant non-irradiated tissues. The most important concern about this phenomenon is carcinogenesis many years after radiation treatment. In vivo mechanisms and consequences of this phenomenon are not known completely. Therefore, this study aimed to evaluate the oxidative damages to out-of-field lung tissues 24 and 72 hours after pelvic irradiation in rats. Materials and Methods In this experimentalinterventional study, Sprague-Dawleymale rats (n=49) were divided into seven groups (n=7/each group), including two groups of pelvis- exposed rats (out-of-field groups), two groups of whole bodyexposed rats (scatter groups), two groups of lung-exposed rats (direct irradiation groups), and one control sham group. Out- of-field groups were irradiated at a 2×2 cm area in the pelvis region with 3 Gy using 1.25 MeV cobalt-60 gamma-ray source, and subsequently, malondialdehyde (MDA) and glutathione (GSH) levels as well as superoxide dismutase (SOD) activity in out-of-field lung tissues were measured. Results were compared to direct irradiation, control and scatter groups at 24 and 72 hours after exposure. Data were analyzed using Mann-Whitney U test. Results SOD activity decreased in out-of-field lung tissue 24 and 72 hours after irradiation as compared with the controls and scatter groups. GSH level decreased 24 hours after exposure and increased 72 hours after exposure in the out-of-field groups as compared with the scatter groups. MDA level in out-of-field groups only increased 24 hours after irradiation. Conclusion Pelvis irradiation induced oxidative damage in distant lung tissue that led to a dramatic decrease in SOD activity. This oxidative stress was remarkable, but it was less durable as compared to direct irradiation. PMID:27602315

  8. Radiation-Induced Oxidative Stress at Out-of-Field Lung Tissues after Pelvis Irradiation in Rats

    PubMed Central

    Najafi, Masoud; Fardid, Reza; Takhshid, Mohammad Ali; Mosleh-Shirazi, Mohammad Amin; Rezaeyan, Abol-Hassan; Salajegheh, Ashkan

    2016-01-01

    Objective The out-of-field/non-target effect is one of the most important phenomena of ionizing radiation that leads to molecular and cellular damage to distant non-irradiated tissues. The most important concern about this phenomenon is carcinogenesis many years after radiation treatment. In vivo mechanisms and consequences of this phenomenon are not known completely. Therefore, this study aimed to evaluate the oxidative damages to out-of-field lung tissues 24 and 72 hours after pelvic irradiation in rats. Materials and Methods In this experimentalinterventional study, Sprague-Dawleymale rats (n=49) were divided into seven groups (n=7/each group), including two groups of pelvis- exposed rats (out-of-field groups), two groups of whole bodyexposed rats (scatter groups), two groups of lung-exposed rats (direct irradiation groups), and one control sham group. Out- of-field groups were irradiated at a 2×2 cm area in the pelvis region with 3 Gy using 1.25 MeV cobalt-60 gamma-ray source, and subsequently, malondialdehyde (MDA) and glutathione (GSH) levels as well as superoxide dismutase (SOD) activity in out-of-field lung tissues were measured. Results were compared to direct irradiation, control and scatter groups at 24 and 72 hours after exposure. Data were analyzed using Mann-Whitney U test. Results SOD activity decreased in out-of-field lung tissue 24 and 72 hours after irradiation as compared with the controls and scatter groups. GSH level decreased 24 hours after exposure and increased 72 hours after exposure in the out-of-field groups as compared with the scatter groups. MDA level in out-of-field groups only increased 24 hours after irradiation. Conclusion Pelvis irradiation induced oxidative damage in distant lung tissue that led to a dramatic decrease in SOD activity. This oxidative stress was remarkable, but it was less durable as compared to direct irradiation.

  9. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy

    PubMed Central

    Johnson, Bryce V.; Gelb, Bruce D.; Costa, Kevin D.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  10. CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts.

    PubMed

    Quan, Taihao; Qin, Zhaoping; Robichaud, Patrick; Voorhees, John J; Fisher, Gary J

    2011-08-01

    Dermal connective tissue collagen is the major structural protein in skin. Fibroblasts within the dermis are largely responsible for collagen production and turnover. We have previously reported that dermal fibroblasts, in aged human skin in vivo, express elevated levels of CCN1, and that CCN1 negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation (Quan et al. Am J Pathol 169:482-90, 2006, J Invest Dermatol 130:1697-706, 2010). In further investigations of CCN1 actions, we find that CCN1 alters collagen homeostasis by promoting expression of specific secreted proteins, which include matrix metalloproteinases and proinflammatory cytokines. We also find that CCN1-induced secretory proteins are elevated in aged human skin in vivo. We propose that CCN1 induces an "Age-Associated Secretory Phenotype", in dermal fibroblasts, which mediates collagen reduction and fragmentation in aged human skin.

  11. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance.

    PubMed

    Gautheron, Jérémie; Vucur, Mihael; Schneider, Anne T; Severi, Ilenia; Roderburg, Christoph; Roy, Sanchari; Bartneck, Matthias; Schrammen, Peter; Diaz, Mauricio Berriel; Ehling, Josef; Gremse, Felix; Heymann, Felix; Koppe, Christiane; Lammers, Twan; Kiessling, Fabian; Van Best, Niels; Pabst, Oliver; Courtois, Gilles; Linkermann, Andreas; Krautwald, Stefan; Neumann, Ulf P; Tacke, Frank; Trautwein, Christian; Green, Douglas R; Longerich, Thomas; Frey, Norbert; Luedde, Mark; Bluher, Matthias; Herzig, Stephan; Heikenwalder, Mathias; Luedde, Tom

    2016-01-01

    Receptor-interacting protein kinase 3 (RIPK3) mediates necroptosis, a form of programmed cell death that promotes inflammation in various pathological conditions, suggesting that it might be a privileged pharmacological target. However, its function in glucose homeostasis and obesity has been unknown. Here we show that RIPK3 is over expressed in the white adipose tissue (WAT) of obese mice fed with a choline-deficient high-fat diet. Genetic inactivation of Ripk3 promotes increased Caspase-8-dependent adipocyte apoptosis and WAT inflammation, associated with impaired insulin signalling in WAT as the basis for glucose intolerance. Similarly to mice, in visceral WAT of obese humans, RIPK3 is overexpressed and correlates with the body mass index and metabolic serum markers. Together, these findings provide evidence that RIPK3 in WAT maintains tissue homeostasis and suppresses inflammation and adipocyte apoptosis, suggesting that systemic targeting of necroptosis might be associated with the risk of promoting insulin resistance in obese patients. PMID:27323669

  12. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance

    PubMed Central

    Gautheron, Jérémie; Vucur, Mihael; Schneider, Anne T.; Severi, Ilenia; Roderburg, Christoph; Roy, Sanchari; Bartneck, Matthias; Schrammen, Peter; Diaz, Mauricio Berriel; Ehling, Josef; Gremse, Felix; Heymann, Felix; Koppe, Christiane; Lammers, Twan; Kiessling, Fabian; Van Best, Niels; Pabst, Oliver; Courtois, Gilles; Linkermann, Andreas; Krautwald, Stefan; Neumann, Ulf P.; Tacke, Frank; Trautwein, Christian; Green, Douglas R.; Longerich, Thomas; Frey, Norbert; Luedde, Mark; Bluher, Matthias; Herzig, Stephan; Heikenwalder, Mathias; Luedde, Tom

    2016-01-01

    Receptor-interacting protein kinase 3 (RIPK3) mediates necroptosis, a form of programmed cell death that promotes inflammation in various pathological conditions, suggesting that it might be a privileged pharmacological target. However, its function in glucose homeostasis and obesity has been unknown. Here we show that RIPK3 is over expressed in the white adipose tissue (WAT) of obese mice fed with a choline-deficient high-fat diet. Genetic inactivation of Ripk3 promotes increased Caspase-8-dependent adipocyte apoptosis and WAT inflammation, associated with impaired insulin signalling in WAT as the basis for glucose intolerance. Similarly to mice, in visceral WAT of obese humans, RIPK3 is overexpressed and correlates with the body mass index and metabolic serum markers. Together, these findings provide evidence that RIPK3 in WAT maintains tissue homeostasis and suppresses inflammation and adipocyte apoptosis, suggesting that systemic targeting of necroptosis might be associated with the risk of promoting insulin resistance in obese patients. PMID:27323669

  13. Changes of amino acid gradients in brain tissues induced by microwave irradiation and other means

    SciTech Connect

    Baxter, C.F.; Parsons, J.E.; Oh, C.C.; Wasterlain, C.G.; Baldwin, R.A. )

    1989-09-01

    Focused microwave irradiation to the head (FMI) has been used extensively by neurochemists for rapid inactivation of enzymatic activity in brain tissues and the preservation, for in vitro analysis, of in vivo substrate concentrations. Periodically the suitability of this technique for regional studies has been questioned. Evidence has now been obtained, on the basis of altered concentration gradients for GABA and taurine from the Substantia Nigra (SN) to an Adjacent Dorsal Area (ADJ), that FMI not only inactivates enzymes, but also facilitates rapid diffusion of small molecules from areas of high concentrations to adjacent areas of lower concentration. To a lesser extent, the implantation of plastic injection cannulas also decreased these concentration gradients. These results offer clear evidence that FMI is ill suited and unreliable for studies designed to map and compare the in vivo regional concentrations of diffusible organic molecules (such as amino acids) in brain tissues. Any invasive technique that compromises membrane barriers is likely to produce smaller similar effects.

  14. Changes in backscatter of liver tissue due to thermal coagulation induced by focused ultrasound.

    PubMed

    Shishitani, Takashi; Matsuzawa, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-08-01

    Ultrasonic imaging has advantages in its self-consistency in guiding and monitoring ultrasonic treatment such as high-intensity focused ultrasound (HIFU) treatment. Changes in ultrasonic backscatter of tissues due to HIFU treatment have been observed, but their mechanism is still under discussion. In this paper, ultrasonic backscatter of excised and degassed porcine liver tissue was observed before and after HIFU exposure using a diagnostic scanner, and its acoustic impedance was mapped using an ultrasonic microscope. The histology of its pathological specimen was also observed using an optical microscope. The observed decrease in backscatter intensity due to HIFU exposure was consistent with a spatial Fourier analysis of the histology, which also showed changes due to the exposure. The observed increase in acoustic impedance due to the exposure was also consistent with the histological change assuming that the increase was primarily caused by the increase in the concentration of hepatic cells.

  15. Weight loss-induced stress in subcutaneous adipose tissue is related to weight regain.

    PubMed

    Roumans, Nadia J T; Camps, Stefan G; Renes, Johan; Bouwman, Freek G; Westerterp, Klaas R; Mariman, Edwin C M

    2016-03-14

    Initial successful weight loss is often followed by weight regain after the dietary intervention. Compared with lean people, cellular stress in adipose tissue is increased in obese subjects. However, the relation between cellular stress and the risk for weight regain after weight loss is unclear. Therefore, we determined the expression levels of stress proteins during weight loss and weight maintenance in relation to weight regain. In vivo findings were compared with results from in vitro cultured human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. In total, eighteen healthy subjects underwent an 8-week diet programme with a 10-month follow-up. Participants were categorised as weight maintainers or weight regainers (WR) depending on their weight changes during the intervention. Abdominal subcutaneous adipose tissue biopsies were obtained before and after the diet and after the follow-up. In vitro differentiated SGBS adipocytes were starved for 96 h with low (0·55 mm) glucose. Levels of stress proteins were determined by Western blotting. WR showed increased expressions of β-actin, calnexin, heat shock protein (HSP) 27, HSP60 and HSP70. Changes of β-actin, HSP27 and HSP70 are linked to HSP60, a proposed key factor in weight regain after weight loss. SGBS adipocytes showed increased levels of β-actin and HSP60 after 96 h of glucose restriction. The increased level of cellular stress proteins in the adipose tissue of WR probably resides in the adipocytes as shown by in vitro experiments. Cellular stress accumulated in adipose tissue during weight loss may be a risk factor for weight regain. PMID:26759119

  16. Weight loss-induced stress in subcutaneous adipose tissue is related to weight regain.

    PubMed

    Roumans, Nadia J T; Camps, Stefan G; Renes, Johan; Bouwman, Freek G; Westerterp, Klaas R; Mariman, Edwin C M

    2016-03-14

    Initial successful weight loss is often followed by weight regain after the dietary intervention. Compared with lean people, cellular stress in adipose tissue is increased in obese subjects. However, the relation between cellular stress and the risk for weight regain after weight loss is unclear. Therefore, we determined the expression levels of stress proteins during weight loss and weight maintenance in relation to weight regain. In vivo findings were compared with results from in vitro cultured human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. In total, eighteen healthy subjects underwent an 8-week diet programme with a 10-month follow-up. Participants were categorised as weight maintainers or weight regainers (WR) depending on their weight changes during the intervention. Abdominal subcutaneous adipose tissue biopsies were obtained before and after the diet and after the follow-up. In vitro differentiated SGBS adipocytes were starved for 96 h with low (0·55 mm) glucose. Levels of stress proteins were determined by Western blotting. WR showed increased expressions of β-actin, calnexin, heat shock protein (HSP) 27, HSP60 and HSP70. Changes of β-actin, HSP27 and HSP70 are linked to HSP60, a proposed key factor in weight regain after weight loss. SGBS adipocytes showed increased levels of β-actin and HSP60 after 96 h of glucose restriction. The increased level of cellular stress proteins in the adipose tissue of WR probably resides in the adipocytes as shown by in vitro experiments. Cellular stress accumulated in adipose tissue during weight loss may be a risk factor for weight regain.

  17. Antimalarial and antioxidant activities of Indigofera oblongifolia on Plasmodium chabaudi-induced spleen tissue injury in mice.

    PubMed

    Lubbad, Mahmoud Y; Al-Quraishy, Saleh; Dkhil, Mohamed A

    2015-09-01

    Malaria is still one of the most common infectious diseases and leads to various public health problems worldwide. Medicinal plants are promising sources for identifying novel agents with potential antimalarial activity. This study aimed to investigate the antimalarial and the antioxidant activities of Indigofera oblongifolia on Plasmodium chabaudi-induced spleen tissue injury in mice. Mice were divided into five groups. The first group served as a vehicle control; the second, third, fourth, and fifth groups were infected with 1 × 10(6) P. chabaudi-parasitized erythrocytes. Mice of the last three groups were gavaged with 100 μl of I. oblongifolia leave extract (IOLE) at a dose of 100, 200, and 300 mg IOLE/kg, respectively, once daily for 7 days. IOLE was significantly able to lower the percentage of parasitemia. The most effective dose was the 100 mg IOLE/kg, which could reduce the parasitemia from about 38 to 12 %. The infection induced spleen injury. This was evidenced by disorganization of spleen white and red pulps, appearance of hemozoin granules and parasitized erythrocytes. These changes in spleen led to the increased histological score. Also, the infection increased the spleen oxidative damage where the levels of nitrite/nitrate, malondialdehyde, and catalase were significantly altered. All these infection-induced parameters were significantly improved during IOLE treatment. In addition, the mRNA expression of inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha were upregulated after infection with P. chabaudi, whereas IOLE significantly reduced the expression of these genes. Our results indicate that I. oblongifolia leaves extract exhibits a significant antimalarial and antioxidant effects, and protects host spleen tissue from injuries induced by P. chabaudi.

  18. Flow-Induced Axial Vascularization: The Arteriovenous Loop in Angiogenesis and Tissue Engineering.

    PubMed

    Leibig, Nico; Wietbrock, Johanna O; Bigdeli, Amir K; Horch, Raymund E; Kremer, Thomas; Kneser, Ulrich; Schmidt, Volker J

    2016-10-01

    Fabrication of a viable vascular network providing oxygen supply is identified as one crucial limiting factor to generate more complex three-dimensional constructs. The arteriovenous loop model provides initial blood supply and has a high angioinductive potency, making it suitable for vascularization of larger, tissue-engineered constructs. Also because of its angiogenic capabilities the arteriovenous loop is recently also used as a model to evaluate angiogenesis in vivo. This review summarizes the history of the arteriovenous loop model in research and its technical and surgical aspects. Through modifications of the isolation chamber and its containing matrices, tissue generation can be enhanced. In addition, matrices can be used as release systems for local application of growth factors, such as vascular endothelial growth factor and basic fibroblast growth factor, to affect vascular network formation. A special focus in this review is set on the assessment of angiogenesis in the arteriovenous loop model. This model provides good conditions for assessment of angiogenesis with the initial cell-free environment of the isolation chamber, which is vascularized by the arteriovenous loop. Because of the angiogenic capabilities of the arteriovenous loop model, different attempts were performed to create functional tissue in the isolation chamber for potential clinical application. Arteriovenous loops in combination with autologous bone marrow aspirate were already used to reconstruct large bone defects in humans. PMID:27673517

  19. Cavitation-induced damage in soft tissue phantoms by focused ultrasound bursts

    NASA Astrophysics Data System (ADS)

    Movahed, Pooya; Kreider, Wayne; Maxwell, Adam D.; Bailey, Michael R.; Hutchens, Shelby B.; Freund, Jonathan B.

    2015-11-01

    Cavitation in soft tissues, similar to that in purely hydrodynamic configurations, is thought to cause tissue injury in therapeutic ultrasound treatments. Our goal is to generalize bubble dynamics models to represent this phenomenon, which we pursue experimentally with observations in tissue-mimicking polyacrylamide and agarose phantoms and semi-analytic generalization of Rayleigh-Plesset-type bubble dynamics models. The phantoms were imaged with high-speed cameras while subjected to a series of multiple pressure wave bursts, of the kind being considered specifically for burst-wave lithotripsy (BWL). The experimental observations show bubble activation at multiple sites during the initial pulses. After multiple pulses, a further onset of cavitation is observed at some new locations suggesting material failure due to fatigue under cyclic loading. A nonlinear strain-energy with strain hardening is used to represent the elasticity of the surrounding medium. Griffith's fracture criterion is then applied in order to determine the onset of material damage. The damaged material is then represented as a Newtonian fluid. By assuming that such a decrease in the fracture toughness occurs under cyclic loading, the fatigue behavior observed in the experiments can be reproduced by our model. This work was supported by NIH grant NIDDK PO1-DK043881.

  20. Sepsis-induced coagulation in the baboon lung is associated with decreased tissue factor pathway inhibitor.

    PubMed

    Tang, Haiwang; Ivanciu, Lacramioara; Popescu, Narcis; Peer, Glenn; Hack, Erik; Lupu, Cristina; Taylor, Fletcher B; Lupu, Florea

    2007-09-01

    Increased tissue factor (TF)-dependent procoagulant activity in sepsis may be partly due to decreased expression or function of tissue factor pathway inhibitor (TFPI). To test this hypothesis, baboons were infused with live Escherichia coli and sacrificed after 2, 8, or 24 hours. Confocal and electron microscopy revealed increased leukocyte infiltration and fibrin deposition in the intravascular and interstitial compartments. Large amounts of TF were detected by immunostaining in leukocytes and platelet-rich microthrombi. TF induction was documented by quantitative reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and coagulation assays. Lung-associated TFPI antigen and mRNA decreased during sepsis, and TFPI activity diminished abruptly at 2 hours. Blocking antibodies against TFPI increased fibrin deposition in septic baboon lungs, suggesting that TF-dependent coagulation might be aggravated by reduced endothelial TFPI. Decreased TFPI activity coincided with the release of tissue plasminogen activator and the peak of plasmin generation, suggesting that TFPI could undergo proteolytic inactivation by plasmin. Enhanced plasmin produced in septic baboons by infusion of blocking antibodies against plasminogen activator inhibitor-1 led to decreased lung-associated TFPI and unforeseen massive fibrin deposition. We conclude that activation of TF-driven coagulation not adequately countered by TFPI may underlie the widespread thrombotic complications of sepsis.

  1. The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation.

    PubMed

    Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp

    2016-05-19

    Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling.

  2. Flow-Induced Axial Vascularization: The Arteriovenous Loop in Angiogenesis and Tissue Engineering.

    PubMed

    Leibig, Nico; Wietbrock, Johanna O; Bigdeli, Amir K; Horch, Raymund E; Kremer, Thomas; Kneser, Ulrich; Schmidt, Volker J

    2016-10-01

    Fabrication of a viable vascular network providing oxygen supply is identified as one crucial limiting factor to generate more complex three-dimensional constructs. The arteriovenous loop model provides initial blood supply and has a high angioinductive potency, making it suitable for vascularization of larger, tissue-engineered constructs. Also because of its angiogenic capabilities the arteriovenous loop is recently also used as a model to evaluate angiogenesis in vivo. This review summarizes the history of the arteriovenous loop model in research and its technical and surgical aspects. Through modifications of the isolation chamber and its containing matrices, tissue generation can be enhanced. In addition, matrices can be used as release systems for local application of growth factors, such as vascular endothelial growth factor and basic fibroblast growth factor, to affect vascular network formation. A special focus in this review is set on the assessment of angiogenesis in the arteriovenous loop model. This model provides good conditions for assessment of angiogenesis with the initial cell-free environment of the isolation chamber, which is vascularized by the arteriovenous loop. Because of the angiogenic capabilities of the arteriovenous loop model, different attempts were performed to create functional tissue in the isolation chamber for potential clinical application. Arteriovenous loops in combination with autologous bone marrow aspirate were already used to reconstruct large bone defects in humans.

  3. The Role of Oxidative Stress in Gastrointestinal Tract Tissues Induced by Arsenic Toxicity in Cocks.

    PubMed

    Guo, Ying; Zhao, Panpan; Guo, Guangyang; Hu, Zhibo; Tian, Li; Zhang, Kexin; Zhang, Wen; Xing, Mingwei

    2015-12-01

    Arsenic (As) is a widely distributed trace element which is known to be associated with numerous adverse effects on human beings and animals. Arsenic trioxide (As2O3) is an inorganic arsenical-containing toxic compound. The effect of excessive amounts of As2O3 exposure on gastrointestinal tract tissue damage in cocks is still unknown. This study was conducted to investigate the effect of As2O3 exposure on gastrointestinal tract tissue damage in cocks. In total, 72 1-day-old male Hyline cocks were randomly divided into four groups and fed either a commercial diet or an As2O3 supplement diet containing 7.5, 15, and 30 mg/kg As2O3. The experiment lasted for 90 days and gastrointestinal tract tissue samples (gizzard, glandular stomach, duodenum, jejunum, ileum, cecum, and rectum) were collected at 30, 60, and 90 days. Catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) activities; malondialdehyde (MDA) contents; and hydroxyl radical (OH·)-mediated inhibition were examined. Furthermore, the results demonstrated that MDA content in the gastrointestinal tract was increased, while the activities of CAT, GSH, and GSH-Px and the ability to resist OH· was decreased in the As2O3 treatment groups. Extensive damage was observed in the gastrointestinal tract. These findings indicated that As2O3 exposure caused oxidative damage in the gastrointestinal tract of cocks due to alterations in antioxidant enzyme activities and elevation of free radicals.

  4. Genetic and molecular analysis of Sn, a light-inducible, tissue specific regulatory gene in maize.

    PubMed

    Tonelli, C; Consonni, G; Dolfini, S F; Dellaporta, S L; Viotti, A; Gavazzi, G

    1991-03-01

    The Sn locus of maize is functionally similar to the R and B loci, in that Sn differentially controls the tissue-specific deposition of anthocyanin pigments in certain seedling and plant cells. We show that Sn shows molecular similarity to the R gene and have used R DNA probes to characterize several Sn alleles. Northern analysis demonstrates that all Sn alleles encode a 2.5 kb transcript, which is expressed in a tissue-specific fashion consistent with the distribution of anthocyanins. Expression of the Sn gene is light-regulated. However, the Sn: bol3 allele allows Sn mRNA transcription to occur in the dark, leading to pigmentation in dark-grown seedlings and cob integuments. We report the isolation of genomic and cDNA clones of the light-independent Sn: bol3 allele. Using Sn cDNA as a probe, the spatial and temporal expression of Sn has been examined. The cell-specific localization of Sn mRNA has been confirmed by in situ hybridization using labelled antisense RNA probes. According to its proposed regulatory role, expression of Sn precedes and, in turn, causes a coordinate and tissue-specific accumulation of mRNA of structural genes for pigment synthesis and deposition, such as A1 and C2. The functional and structural relationship between R, B, Lc and Sn is discussed in terms of an evolutionary derivation from a single ancestral gene which gave rise this diverse gene family by successive duplication events.

  5. Treatment of 3rd molar-induced periodontal defects with guided tissue regeneration.

    PubMed

    Oxford, G E; Quintero, G; Stuller, C B; Gher, M E

    1997-07-01

    Recent reports provide evidence of increased attachment levels when using guided tissue regeneration (GTR) techniques for the treatment of periodontal defects. Periodontal defects frequently occur at the distal aspect of mandibular 2nd molars which are next to mesioangular impacted 3rd molars that have oral communication. The purpose of this study was to determine whether the use of GTR can enhance probing attachment levels (PALs) following extraction of mesioangular impacted third molars. 12 patients with bilateral soft tissue impacted mandibular 3rd molars entered this split mouth study. After extractions, the previously exposed distal root surface of the 2nd molars were debrided. The defects on the randomly selected experimental sites were covered with expanded polytetraflouro-ethylene (e-PTFE) membrane and the tissue was replaced to cover the membrane. Membranes were removed after 6 weeks. Control sites were treated identically except no membrane was placed. GI, P1I, PD, PAL and BOP records were obtained at 0, 3 and 6 months. The use of barrier material did not provide statistically-significant differences in PAL when comparing experimental versus control sites. Nevertheless, PAL gain was consistently greater at 3 and 6 months when GTR techniques were used in sites with deep impactions. PMID:9226386

  6. The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation.

    PubMed

    Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp

    2016-05-19

    Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling. PMID:27203112

  7. Cigarette smoke-induced DNA adducts in the respiratory and nonrespiratory tissues of rats

    SciTech Connect

    Gairola, C.G.; Gupta, R.C. )

    1991-01-01

    Formation of DNA adducts is regarded as an essential initial step in the process of chemical carcinogenesis. To determine how chronic exposure to cigarette smoke affects the distribution of DNA adducts in selected respiratory and nonrespiratory tissues. The authors exposed male Sprague-Dawley rats daily to fresh mainstream smoke from the Univ. of Kentucky reference cigarettes (2R1) in a nose-only exposure system for 32 weeks. Blood carboxyhemoglobin, total particulate matter (TPM) intake, and pulmonary aryl hydrocarbon hydroxylase values indicated effective exposure of animals to cigarette smoke. DNA was extracted from three respiratory (larynx, trachea, and lung) and three nonrespiratory (liver, heart, and bladder) tissues and analyzed for DNA adducts by the {sup 32}P-postlabeling assay under conditions capable of detecting low levels of diverse aromatic/hydrophobic adducts. Data showed that the total DNA adducts in the lung, heart, and trachea, and larynx were increased by 10- to 20-fold in the smoke-exposed group. These data suggest selective formation of DNA adducts in the tissues.

  8. A mechanistic description of radiation-induced damage to normal tissue and its healing kinetics

    NASA Astrophysics Data System (ADS)

    Hanin, Leonid; Zaider, Marco

    2013-02-01

    We introduce a novel mechanistic model of the yield of tissue damage at the end of radiation treatment and of the subsequent healing kinetics. We find explicit expressions for the total number of functional proliferating cells as well as doomed (functional but non-proliferating) cells as a function of time post treatment. This leads to the possibility of estimating—for any given cohort of patients undergoing radiation therapy—the probability distribution of those kinetic parameters (e.g. proliferation rates) that determine times to injury onset and ensuing resolution. The model is suitable for tissues with simple duplication organization, meaning that functionally competent cells are also responsible for tissue renewal or regeneration following injury. An extension of the model to arbitrary temporal patterns of dose rate is presented. To illustrate the practical utility of the model, as well as its limitations, we apply it to data on the time course of urethral toxicity following fractionated radiation treatment and brachytherapy for prostate cancer.

  9. Hypoxis hemerocallidea Significantly Reduced Hyperglycaemia and Hyperglycaemic-Induced Oxidative Stress in the Liver and Kidney Tissues of Streptozotocin-Induced Diabetic Male Wistar Rats.

    PubMed

    Oguntibeju, Oluwafemi O; Meyer, Samantha; Aboua, Yapo G; Goboza, Mediline

    2016-01-01

    Background. Hypoxis hemerocallidea is a native plant that grows in the Southern African regions and is well known for its beneficial medicinal effects in the treatment of diabetes, cancer, and high blood pressure. Aim. This study evaluated the effects of Hypoxis hemerocallidea on oxidative stress biomarkers, hepatic injury, and other selected biomarkers in the liver and kidneys of healthy nondiabetic and streptozotocin- (STZ-) induced diabetic male Wistar rats. Materials and Methods. Rats were injected intraperitoneally with 50 mg/kg of STZ to induce diabetes. The plant extract-Hypoxis hemerocallidea (200 mg/kg or 800 mg/kg) aqueous solution was administered (daily) orally for 6 weeks. Antioxidant activities were analysed using a Multiskan Spectrum plate reader while other serum biomarkers were measured using the RANDOX chemistry analyser. Results. Both dosages (200 mg/kg and 800 mg/kg) of Hypoxis hemerocallidea significantly reduced the blood glucose levels in STZ-induced diabetic groups. Activities of liver enzymes were increased in the diabetic control and in the diabetic group treated with 800 mg/kg, whereas the 200 mg/kg dosage ameliorated hepatic injury. In the hepatic tissue, the oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), catalase, and total glutathione were reduced in the diabetic control group. However treatment with both doses improved the antioxidant status. The FRAP and the catalase activities in the kidney were elevated in the STZ-induced diabetic group treated with 800 mg/kg of the extract possibly due to compensatory responses. Conclusion. Hypoxis hemerocallidea demonstrated antihyperglycemic and antioxidant effects especially in the liver tissue. PMID:27403200

  10. Hypoxis hemerocallidea Significantly Reduced Hyperglycaemia and Hyperglycaemic-Induced Oxidative Stress in the Liver and Kidney Tissues of Streptozotocin-Induced Diabetic Male Wistar Rats

    PubMed Central

    Oguntibeju, Oluwafemi O.; Meyer, Samantha; Aboua, Yapo G.; Goboza, Mediline

    2016-01-01

    Background. Hypoxis hemerocallidea is a native plant that grows in the Southern African regions and is well known for its beneficial medicinal effects in the treatment of diabetes, cancer, and high blood pressure. Aim. This study evaluated the effects of Hypoxis hemerocallidea on oxidative stress biomarkers, hepatic injury, and other selected biomarkers in the liver and kidneys of healthy nondiabetic and streptozotocin- (STZ-) induced diabetic male Wistar rats. Materials and Methods. Rats were injected intraperitoneally with 50 mg/kg of STZ to induce diabetes. The plant extract-Hypoxis hemerocallidea (200 mg/kg or 800 mg/kg) aqueous solution was administered (daily) orally for 6 weeks. Antioxidant activities were analysed using a Multiskan Spectrum plate reader while other serum biomarkers were measured using the RANDOX chemistry analyser. Results. Both dosages (200 mg/kg and 800 mg/kg) of Hypoxis hemerocallidea significantly reduced the blood glucose levels in STZ-induced diabetic groups. Activities of liver enzymes were increased in the diabetic control and in the diabetic group treated with 800 mg/kg, whereas the 200 mg/kg dosage ameliorated hepatic injury. In the hepatic tissue, the oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), catalase, and total glutathione were reduced in the diabetic control group. However treatment with both doses improved the antioxidant status. The FRAP and the catalase activities in the kidney were elevated in the STZ-induced diabetic group treated with 800 mg/kg of the extract possibly due to compensatory responses. Conclusion. Hypoxis hemerocallidea demonstrated antihyperglycemic and antioxidant effects especially in the liver tissue. PMID:27403200

  11. An Intergenic Regulatory Region Mediates Drosophila Myc -Induced Apoptosis and Blocks Tissue Hyperplasia

    PubMed Central

    Zhang, Can; Tintó, Sergio Casas; Li, Guangyao; Lin, Nianwei; Chung, Michelle; Moreno, Eduardo; Moberg, Kenneth H.; Zhou, Lei

    2014-01-01

    Induction of cell autonomous apoptosis following oncogene-induced overproliferation is a major tumor-suppressive mechanism in vertebrates. However the detailed mechanism mediating this process remains enigmatic. In this study we demonstrate that dMyc-induced cell-autonomous apoptosis in the fruit fly Drosophila melanogaster relies on an intergenic sequence termed the IRER (Irradiation Responsive Enhancer Region). The IRER mediates expression of surrounding pro-apoptotic genes, and we use an in vivo reporter of the IRER chromatin state to gather evidence that epigenetic control of DNA accessibility within the IRER is an important determinant of the strength of this response to excess dMyc. In prior work we showed that the IRER also mediates P53-dependent induction of pro-apoptotic genes following DNA damage, and the chromatin conformation within IRER is regulated by Polycomb group-mediated histone modifications. dMyc-induced apoptosis and the P53-mediated DNA damage response thus overlap in a requirement for the IRER. The epigenetic mechanisms controlling IRER accessibility appear to set thresholds for the P53 and dMyc-induced expression of apoptotic genes in vivo and may have a profound impact on cellular sensitivity to oncogene-induced stress. PMID:24931167

  12. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B1

    PubMed Central

    Techapiesancharoenkij, Nirachara; Fiala, Jeannette L. A.; Navasumrit, Panida; Croy, Robert G.; Wogan, Gerald N.; Groopman, John D.; Ruchirawat, Mathuros; Essigmann, John M.

    2015-01-01

    Aflatoxin B1 (AFB1) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB1-DNA adducts in AFB1-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB1 and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4 h after AFB1 administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB1-induced hepatotoxicity. At 24 h after AFB1 administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB1-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB1 hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer. PMID:25450479

  13. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B1.

    PubMed

    Techapiesancharoenkij, Nirachara; Fiala, Jeannette L A; Navasumrit, Panida; Croy, Robert G; Wogan, Gerald N; Groopman, John D; Ruchirawat, Mathuros; Essigmann, John M

    2015-01-01

    Aflatoxin B1 (AFB1) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB1-DNA adducts in AFB1-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB1 and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4h after AFB1 administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB1-induced hepatotoxicity. At 24h after AFB1 administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB1-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB1 hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer. PMID:25450479

  14. Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus.

    PubMed

    Pawlak, Robert; Rao, B S Shankaranarayana; Melchor, Jerry P; Chattarji, Sumantra; McEwen, Bruce; Strickland, Sidney

    2005-12-13

    Repeated stress can impair function in the hippocampus, a brain structure essential for learning and memory. Although behavioral evidence suggests that severe stress triggers cognitive impairment, as seen in major depression or posttraumatic stress disorder, little is known about the molecular mediators of these functional deficits in the hippocampus. We report here both pre- and postsynaptic effects of chronic stress, manifested as a reduction in the number of NMDA receptors, dendritic spines, and expression of growth-associated protein-43 in the cornu ammonis 1 region. Strikingly, the stress-induced decrease in NMDA receptors coincides spatially with sites of plasminogen activation, thereby predicting a role for tissue plasminogen activator (tPA) in this form of stress-induced plasticity. Consistent with this possibility, tPA-/- and plasminogen-/- mice are protected from stress-induced decrease in NMDA receptors and reduction in dendritic spines. At the behavioral level, these synaptic and molecular signatures of stress-induced plasticity are accompanied by impaired acquisition, but not retrieval, of hippocampal-dependent spatial learning, a deficit that is not exhibited by the tPA-/- and plasminogen-/- mice. These findings establish the tPA/plasmin system as an important mediator of the debilitating effects of prolonged stress on hippocampal function at multiple levels of neural organization.

  15. Imaging of shear waves induced by Lorentz force in soft tissues.

    PubMed

    Grasland-Mongrain, P; Souchon, R; Cartellier, F; Zorgani, A; Chapelon, J Y; Lafon, C; Catheline, S

    2014-07-18

    This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 μm. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.

  16. Imaging of Shear Waves Induced by Lorentz Force in Soft Tissues

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, P.; Souchon, R.; Cartellier, F.; Zorgani, A.; Chapelon, J. Y.; Lafon, C.; Catheline, S.

    2014-07-01

    This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 μm. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.

  17. Wavelet-transform-based active imaging of cavitation bubbles in tissues induced by high intensity focused ultrasound.

    PubMed

    Liu, Runna; Xu, Shanshan; Hu, Hong; Huo, Rui; Wang, Supin; Wan, Mingxi

    2016-08-01

    Cavitation detection and imaging are essential for monitoring high-intensity focused ultrasound (HIFU) therapies. In this paper, an active cavitation imaging method based on wavelet transform is proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The Yang-Church model, which is a combination of the Keller-Miksis equation with the Kelvin-Voigt equation for the pulsations of gas bubbles in simple linear viscoelastic solids, is utilized to construct the bubble wavelet. Experiments with porcine muscles demonstrate that image quality is associated with the initial radius of the bubble wavelet and the scale. Moreover, the Yang-Church model achieves a somewhat better performance compared with the Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model. Furthermore, the pulse inversion (PI) technique is combined with bubble wavelet transform to achieve further improvement. The cavitation-to-tissue ratio (CTR) of the best tissue bubble wavelet transform (TBWT) mode image is improved by 5.1 dB compared with that of the B-mode image, while the CTR of the best PI-based TBWT mode image is improved by 7.9 dB compared with that of the PI-based B-mode image. This work will be useful for better monitoring of cavitation in HIFU-induced therapies.

  18. White adipose tissue re-growth after partial lipectomy in high fat diet induced obese wistar rats.

    PubMed

    Bueno, Allain Amador; Habitante, Carlos Alexandre; Oyama, Lila Missae; Estadella, Débora; Ribeiro, Eliane Beraldi; Oller do Nascimento, Cláudia Maria

    2011-01-01

    The effects of partial removal of epididymal (EPI) and retroperitoneal (RET) adipose tissues (partial lipectomy) on the triacylglycerol deposition of high fat diet induced obese rats were analyzed, aiming to challenge the hypothesized body fat regulatory system. Male 28-day-old wistar rats received a diet enriched with peanuts, milk chocolate and sweet biscuits during the experimental period. At the 90th day of life, rats were submitted to either lipectomy (L) or sham surgery. After 7 or 30 days, RET, EPI, liver, brown adipose tissue (BAT), blood and carcass were obtained and analyzed. Seven days following surgery, liver lipogenesis rate and EPI relative weight were increased in L. After 30 days, L, RET and EPI presented increased lipogenesis, lipolysis and percentage of small area adipocytes. L rats also presented increased liver malic enzyme activity, BAT lipogenesis, and triacylglycerol and corticosterone serum levels. The partial removal of visceral fat pads affected the metabolism of high fat diet obese rats, which leads to excised tissue re-growth and possibly compensatory growth of non-excised depots at a later time.

  19. Wavelet-transform-based active imaging of cavitation bubbles in tissues induced by high intensity focused ultrasound.

    PubMed

    Liu, Runna; Xu, Shanshan; Hu, Hong; Huo, Rui; Wang, Supin; Wan, Mingxi

    2016-08-01

    Cavitation detection and imaging are essential for monitoring high-intensity focused ultrasound (HIFU) therapies. In this paper, an active cavitation imaging method based on wavelet transform is proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The Yang-Church model, which is a combination of the Keller-Miksis equation with the Kelvin-Voigt equation for the pulsations of gas bubbles in simple linear viscoelastic solids, is utilized to construct the bubble wavelet. Experiments with porcine muscles demonstrate that image quality is associated with the initial radius of the bubble wavelet and the scale. Moreover, the Yang-Church model achieves a somewhat better performance compared with the Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model. Furthermore, the pulse inversion (PI) technique is combined with bubble wavelet transform to achieve further improvement. The cavitation-to-tissue ratio (CTR) of the best tissue bubble wavelet transform (TBWT) mode image is improved by 5.1 dB compared with that of the B-mode image, while the CTR of the best PI-based TBWT mode image is improved by 7.9 dB compared with that of the PI-based B-mode image. This work will be useful for better monitoring of cavitation in HIFU-induced therapies. PMID:27586712

  20. Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter.

    PubMed

    Zheng, Yi; Chen, Shigao; Tan, Wei; Kinnick, Randall; Greenleaf, James F

    2007-02-01

    A method using pulse echo ultrasound and the Kalman filter is developed for detecting submicron harmonic motion induced by ultrasonic radiation force. The method estimates the amplitude and phase of the motion at desired locations within a tissue region with high sensitivity. The harmonic motion generated by the ultrasound radiation force is expressed as extremely small oscillatory Doppler frequency shifts in the fast time (A-line) of ultrasound echoes, which are difficult to estimate. In slow time (repetitive ultrasound echoes) of the echoes, the motion also is presented as oscillatory phase shifts, from which the amplitude and phase of the harmonic motion can be estimated with the least mean squared error by Kalman filter. This technique can be used to estimate the traveling speed of a harmonic shear wave by tracking its phase changes during propagation. The shear wave propagation speed can be used to solve for the elasticity and viscosity of tissue as reported in our earlier study. Validation and in vitro experiments indicate that the method provides excellent estimations for very small (submicron) harmonic vibrations and has potential for noninvasive and quantitative stiffness measurements of tissues such as artery.

  1. Thymoquinone ameliorated elevated inflammatory cytokines in testicular tissue and sex hormones imbalance induced by oral chronic toxicity with sodium nitrite.

    PubMed

    Alyoussef, Abdullah; Al-Gayyar, Mohammed M H

    2016-07-01

    Scientific evidence illustrated the health hazards of exposure to nitrites for prolonged time. Nitrites affected several body organs due to oxidative, inflammatory and apoptosis properties. Furthermore, thymoquinone (TQ) had curative effects against many diseases. We tried to discover the impact of both sodium nitrite and TQ on inflammatory cytokines contents in testicular tissues and hormonal balance both in vivo and in vitro. Fifty adult male SD rats received 80mg/kg sodium nitrite and treated with either 25 or 50mg/kg TQ daily by oral-gavage for twelve weeks. Testis were removed for sperms' count. Testicular tissue homogenates were used for assessment of protein and gene expression of IL-1β, IL-6, TNF-α, Nrf2 and caspase-3. Serum samples were used for measurement of testosterone, LH, FSH and prolactin. Moreover, all the parameters were measured in human normal testis cell-lines, CRL-7002. Sodium nitrite produced significant decrease in serum testosterone associated with raised FSH, LH and prolactin. Moreover, sodium nitrite significantly elevated TNF-α, IL-1β, IL-6, caspase-3 and reduced Nrf2. TQ significantly reversed all these effects both in vivo and in vitro. In conclusion, TQ ameliorated testicular tissue inflammation and restored the normal balance of sex hormones induced by sodium nitrite both in vivo and in vitro. PMID:27038016

  2. Somaclonal Variation Is Induced De Novo via the Tissue Culture Process: A Study Quantifying Mutated Cells in Saintpaulia

    PubMed Central

    Sato, Mitsuru; Hosokawa, Munetaka; Doi, Motoaki

    2011-01-01

    Background The origin of somaclonal variation has not been questioned previously, i.e., “pre-existing mutations” in explants and “newly induced mutations” arising from the tissue culture process have not been distinguished. This is primarily because there has been no reliable molecular method for estimating or quantifying variation. Methodology/Principal Findings We adopted a petal-variegated cultivar of Saintpaulia ‘Thamires’ (Saintpaulia sp.) as the model plant. Based on the difference between the pre- and post-transposon excision sequence of the promoter region of flavonoid 3′, 5′-hydoroxylase (F3′5′H), we estimated mutated (transposon-excised) cell percentages using a quantitative real-time PCR. Mutated cell percentages in leaf laminae used as explants was 4.6 and 2.4% in highly or low variegation flower plants, respectively, although the occurrences of blue color mutants in their regenerants were more than 40%. Preexisting mutated cell percentages in cultured explants were considerably lower than the mutated plant percentage among total regenerants via tissue culture. Conclusions/Significance The estimation of mutated cell percentages became possible using the quantitative real-time PCR. The origins of mutations were successfully distinguished; it was confirmed that somaclonal variations are mainly caused by newly generated mutations arising from tissue culture process. PMID:21853148

  3. Lysozyme is an inducible marker of macrophage activation in murine tissues as demonstrated by in situ hybridization

    PubMed Central

    1991-01-01

    This study demonstrates the induction of lysozyme mRNA expression in situ in tissue macrophages (M phi) of mice following in vivo stimulation. The resting resident tissue M phi of most tissues do not contain enough lysozyme mRNA to be detected by in situ hybridization using 35S-labeled RNA probes. Following Bacille Calmette Guerin or Plasmodium yoelli infection, however, M phi recruited to liver and spleen hybridize strongly to the lysozyme probe. Within 24 h of infection, cells found in the marginal zone of the spleen begin to produce lysozyme mRNA. This response is also evoked by a noninfectious agent (intravenously injected sheep erythrocytes), and is possibly the result of an early phagocytic interaction. Later in the infection, other cells in the red and white pulp of the spleen, and cells in granulomas in the liver, become lysozyme-positive. Kupffer cells are rarely lysozyme-positive. Lysozyme mRNA levels in liver granulomas remain relatively constant during the infection, and lysozyme is produced by most granuloma cells. This contrasts with tumor necrosis factor alpha (TNF alpha) mRNA, which is produced by fewer cells in the granuloma, and which can be massively induced by lipopolysaccharide administration. The production of lysozyme, previously considered a constitutive function of M phi, is therefore an indicator of M phi activation in vivo, where immunologically specific and nonspecific stimuli both stimulate lysozyme production at high levels in subpopulations of cells occupying discrete anatomical locations. PMID:1940787

  4. Tissue-Specific Regulation of p38α-Mediated Inflammation in Con A-Induced Acute Liver Damage.

    PubMed

    Kang, Young Jun; Bang, Bo-Ram; Otsuka, Motoyuki; Otsu, Kinya

    2015-05-15

    Because p38α plays a critical role in inflammation, it has been an attractive target for the development of anti-inflammation therapeutics. However, p38α inhibitors showed side effects, including severe liver toxicity, that often prevailed over the benefits in clinical studies, and the mechanism of toxicity is not clear. In this study, we demonstrate that p38α regulates the inflammatory responses in acute liver inflammation in a tissue-specific manner, and liver toxicity by p38α inhibitors may be a result of the inhibition of protective activity of p38α in the liver. Genetic ablation of p38α in T and NKT cells protected mice from liver injury in Con A-induced liver inflammation, whereas liver-specific deletion of p38α aggravated liver pathology. We found that p38α deficiency in the liver increased the expression of chemokines to recruit more inflammatory cells, indicating that p38α in the liver plays a protective anti-inflammatory role during acute liver inflammation. Therefore, our results suggest that p38α regulates the inflammatory responses in a tissue-specific manner, and that the tissue-specific p38α targeting strategies can be used for the development of an effective anti-inflammation treatment with an improved side-effect profile.

  5. Thymoquinone ameliorated elevated inflammatory cytokines in testicular tissue and sex hormones imbalance induced by oral chronic toxicity with sodium nitrite.

    PubMed

    Alyoussef, Abdullah; Al-Gayyar, Mohammed M H

    2016-07-01

    Scientific evidence illustrated the health hazards of exposure to nitrites for prolonged time. Nitrites affected several body organs due to oxidative, inflammatory and apoptosis properties. Furthermore, thymoquinone (TQ) had curative effects against many diseases. We tried to discover the impact of both sodium nitrite and TQ on inflammatory cytokines contents in testicular tissues and hormonal balance both in vivo and in vitro. Fifty adult male SD rats received 80mg/kg sodium nitrite and treated with either 25 or 50mg/kg TQ daily by oral-gavage for twelve weeks. Testis were removed for sperms' count. Testicular tissue homogenates were used for assessment of protein and gene expression of IL-1β, IL-6, TNF-α, Nrf2 and caspase-3. Serum samples were used for measurement of testosterone, LH, FSH and prolactin. Moreover, all the parameters were measured in human normal testis cell-lines, CRL-7002. Sodium nitrite produced significant decrease in serum testosterone associated with raised FSH, LH and prolactin. Moreover, sodium nitrite significantly elevated TNF-α, IL-1β, IL-6, caspase-3 and reduced Nrf2. TQ significantly reversed all these effects both in vivo and in vitro. In conclusion, TQ ameliorated testicular tissue inflammation and restored the normal balance of sex hormones induced by sodium nitrite both in vivo and in vitro.

  6. Release of Tensile Strain on Engineered Human Tendon Tissue Disturbs Cell Adhesions, Changes Matrix Architecture, and Induces an Inflammatory Phenotype

    PubMed Central

    Bayer, Monika L.; Schjerling, Peter; Herchenhan, Andreas; Zeltz, Cedric; Heinemeier, Katja M.; Christensen, Lise; Krogsgaard, Michael; Gullberg, Donald; Kjaer, Michael

    2014-01-01

    Mechanical loading of tendon cells results in an upregulation of mechanotransduction signaling pathways, cell-matrix adhesion and collagen synthesis, but whether unloading removes these responses is unclear. We investigated the response to tension release, with regard to matrix proteins, pro-inflammatory mediators and tendon phenotypic specific molecules, in an in vitro model where tendon-like tissue was engineered from human tendon cells. Tissue sampling was performed 1, 2, 4 and 6 days after surgical de-tensioning of the tendon construct. When tensile stimulus was removed, integrin type collagen receptors showed a contrasting response with a clear drop in integrin subunit α11 mRNA and protein expression, and an increase in α2 integrin mRNA and protein levels. Further, specific markers for tendon cell differentiation declined and normal tendon architecture was disturbed, whereas pro-inflammatory molecules were upregulated. Stimulation with the cytokine TGF-β1 had distinct effects on some tendon-related genes in both tensioned and de-tensioned tissue. These findings indicate an important role of mechanical loading for cellular and matrix responses in tendon, including that loss of tension leads to a decrease in phenotypical markers for tendon, while expression of pro-inflammatory mediators is induced. PMID:24465881

  7. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα

    PubMed Central

    Yan, Ming; Audet-Walsh, Étienne; Manteghi, Sanaz; Rosa Dufour, Catherine; Walker, Benjamin; Baba, Masaya; St-Pierre, Julie; Giguère, Vincent; Pause, Arnim

    2016-01-01

    The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα). Together, the AMPK/PGC-1α/ERRα molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat. PMID:27151976

  8. CD11b regulates obesity-induced insulin resistance via limiting alternative activation and proliferation of adipose tissue macrophages

    PubMed Central

    Zheng, Chunxing; Yang, Qian; Xu, Chunliang; Cao, Jianchang; Jiang, Menghui; Chen, Qing; Cao, Gang; Han, Yanyan; Li, Fengying; Cao, Wei; Zhang, Liying; Zhang, Li; Shi, Yufang; Wang, Ying

    2015-01-01

    Obesity-associated inflammation is accompanied by the accumulation of adipose tissue macrophages (ATMs), which is believed to predispose obese individuals to insulin resistance. CD11b (integrin αM) is highly expressed on monocytes and macrophages and is critical for their migration and function. We found here that high-fat diet–induced insulin resistance was significantly reduced in CD11b-deficient mice. Interestingly, the recruitment of monocytes to adipose tissue is impaired when CD11b is deficient, although the cellularity of ATMs in CD11b-deficient mice is higher than that in wild-type mice. We further found that the increase in ATMs is caused mainly by their vigorous proliferation in the absence of CD11b. Moreover, the proliferation and alternative activation of ATMs are regulated by the IL-4/STAT6 axis, which is inhibited by CD11b through the activity of phosphatase SHP-1. Thus, CD11b plays a critical role in obesity-induced insulin resistance by limiting the proliferation and alternative activation of ATMs. PMID:26669445

  9. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    PubMed

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  10. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system

    PubMed Central

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism. PMID:26673120

  11. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system.

    PubMed

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-12-17

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.

  12. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα.

    PubMed

    Yan, Ming; Audet-Walsh, Étienne; Manteghi, Sanaz; Rosa Dufour, Catherine; Walker, Benjamin; Baba, Masaya; St-Pierre, Julie; Giguère, Vincent; Pause, Arnim

    2016-05-01

    The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα). Together, the AMPK/PGC-1α/ERRα molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat. PMID:27151976

  13. CCl4 induces tissue-type plasminogen activator in rat brain; protective effects of oregano, rosemary or vitamin E.

    PubMed

    Lavrentiadou, Sophia N; Tsantarliotou, Maria P; Zervos, Ioannis A; Nikolaidis, Efstathios; Georgiadis, Marios P; Taitzoglou, Ioannis A

    2013-11-01

    The high metabolic rate and relatively low antioxidant defenses of the lipid-rich brain tissue render it highly susceptible to reactive oxygen species (ROS) and oxidative stress, whereas the implication of ROS in the pathogenesis of several diseases in the central nervous system is well-established. The plasminogen activator (PA) system is a key modulator of extracellular proteolysis, extracellular matrix remodeling and neuronal cell signaling and has been implicated in the pathogenesis of these diseases. This study evaluates the role of tissue-type PA (t-PA) in oxidative stress and the protective role of dietary antioxidants in the rat brain. We used the CCl4 experimental model of ROS-induced lipid peroxidation and evaluated the antioxidant effect of oregano, rosemary or vitamin E. CCl4-treated Wistar rats exhibited elevated brain t-PA activity, which was decreased upon long-term administration of oregano, rosemary or vitamin E. PA inhibitor-1 (PAI-1) activity was also slightly elevated by CCl4, but this increase was not affected by the antioxidants. We hypothesize that the CCl4-induced t-PA activity indicates extracellular proteolytic activity that may be linked to neuronal cell death and brain damage. Vitamin E or antioxidants present in oregano or rosemary are effective in inhibiting t-PA elevation and can be considered as a potential protection against neuronal damage.

  14. A peptide antagonist of CD28 signaling attenuates toxic shock and necrotizing soft-tissue infection induced by Streptococcus pyogenes.

    PubMed

    Ramachandran, Girish; Tulapurkar, Mohan E; Harris, Kristina M; Arad, Gila; Shirvan, Anat; Shemesh, Ronen; Detolla, Louis J; Benazzi, Cinzia; Opal, Steven M; Kaempfer, Raymond; Cross, Alan S

    2013-06-15

    Staphylococcus aureus and group A Streptococcus pyogenes (GAS) express superantigen (SAg) exotoxin proteins capable of inducing lethal shock. To induce toxicity, SAgs must bind not only to the major histocompatibility complex II molecule of antigen-presenting cells and the variable β chain of the T-cell receptor but also to the dimer interface of the T-cell costimulatory receptor CD28. Here, we show that the CD28-mimetic peptide AB103 (originally designated "p2TA") protects mice from lethal challenge with streptococcal exotoxin A, as well as from lethal GAS bacterial infection in a murine model of necrotizing soft-tissue infection. Administration of a single dose of AB103 increased survival when given up to 5 hours after infection, reduced inflammatory cytokine expression and bacterial burden at the site of infection, and improved muscle inflammation in a dose-dependent manner, without compromising cellular and humoral immunity. Thus, AB103 merits further investigation as a potential therapeutic in SAg-mediated necrotizing soft-tissue infection.

  15. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice

    PubMed Central

    Poroyko, Valeriy A.; Carreras, Alba; Khalyfa, Abdelnaby; Khalyfa, Ahamed A.; Leone, Vanessa; Peris, Eduard; Almendros, Isaac; Gileles-Hillel, Alex; Qiao, Zhuanhong; Hubert, Nathaniel; Farré, Ramon; Chang, Eugene B.; Gozal, David

    2016-01-01

    Chronic sleep fragmentation (SF) commonly occurs in human populations, and although it does not involve circadian shifts or sleep deprivation, it markedly alters feeding behaviors ultimately promoting obesity and insulin resistance. These symptoms are known to be related to the host gut microbiota. Mice were exposed to SF for 4 weeks and then allowed to recover for 2 weeks. Taxonomic profiles of fecal microbiota were obtained prospectively, and conventionalization experiments were performed in germ-free mice. Adipose tissue insulin sensitivity and inflammation, as well as circulating measures of inflammation, were assayed. Effect of fecal water on colonic epithelial permeability was also examined. Chronic SF-induced increased food intake and reversible gut microbiota changes characterized by the preferential growth of highly fermentative members of Lachnospiraceae and Ruminococcaceae and a decrease of Lactobacillaceae families. These lead to systemic and visceral white adipose tissue inflammation in addition to altered insulin sensitivity in mice, most likely via enhanced colonic epithelium barrier disruption. Conventionalization of germ-free mice with SF-derived microbiota confirmed these findings. Thus, SF-induced metabolic alterations may be mediated, in part, by concurrent changes in gut microbiota, thereby opening the way for gut microbiome-targeted therapeutics aimed at reducing the major end-organ morbidities of chronic SF. PMID:27739530

  16. Modulation of tissue fatty acids by L-carnitine attenuates metabolic syndrome in diet-induced obese rats.

    PubMed

    Panchal, Sunil K; Poudyal, Hemant; Ward, Leigh C; Waanders, Jennifer; Brown, Lindsay

    2015-08-01

    Obesity and dyslipidaemia are metabolic defects resulting from impaired lipid metabolism. These impairments are associated with the development of cardiovascular disease and non-alcoholic fatty liver disease. Correcting the defects in lipid metabolism may attenuate obesity and dyslipidaemia, and reduce cardiovascular risk and liver damage. L-Carnitine supplementation was used in this study to enhance fatty acid oxidation so as to ameliorate diet-induced disturbances in lipid metabolism. Male Wistar rats (8-9 weeks old) were fed with either corn starch or high-carbohydrate, high-fat diets for 16 weeks. Separate groups were supplemented with L-carnitine (1.2% in food) on either diet for the last 8 weeks of the protocol. High-carbohydrate, high-fat diet-fed rats showed central obesity, dyslipidaemia, hypertension, impaired glucose tolerance, hyperinsulinaemia, cardiovascular remodelling and non-alcoholic fatty liver disease. L-Carnitine supplementation attenuated these high-carbohydrate, high-fat diet-induced changes, together with modifications in lipid metabolism including the inhibition of stearoyl-CoA desaturase-1 activity, reduced storage of short-chain monounsaturated fatty acids in the tissues with decreased linoleic acid content and trans fatty acids stored in retroperitoneal fat. Thus, L-carnitine supplementation attenuated the signs of metabolic syndrome through inhibition of stearoyl-CoA desaturase-1 activity, preferential β-oxidation of some fatty acids and increased storage of saturated fatty acids and relatively inert oleic acid in the tissues.

  17. Role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro

    SciTech Connect

    Blackman, C.F.; Benane, S.G.; Rabinowitz, J.R.; House, D.E.; Joines, W.T.

    1985-01-01

    Two independent laboratories have demonstrated that specific frequencies of electromagnetic radiation can cause a change in the efflux of calcium ions from brain tissue in vitro. Under a static magnetic field intensity of 38 microTesla (microT) due to the earth's magnetic field, 15- and 45-Hz electromagnetic signals (40 Vp-p/m in air) have been shown to induce a change in the efflux of calcium ions from the exposed tissues, while 1- and 30-Hz signals do not. The authors now show that the effective 15-Hz signal can be rendered ineffective when the net static magnetic field is reduced to 19 microT with Helmholtz coils. In addition, the ineffective 30-Hz signal becomes effective when the static magnetic field is changed to + or - 25.3 microT or to + or - 76 microT. These results demonstrate that the net intensity of the static magnetic field is an important variable. The results appear to describe a resonance-like relationship in which the extremely-low-frequency electromagnetic field that can induce a change in efflux is proportional to a product of the net magnetic field intensity and an index, 2n+1, where n=0,1.

  18. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    SciTech Connect

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  19. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats.

    PubMed

    Bhattacharya, Semantee; Gachhui, Ratan; Sil, Parames C

    2013-10-01

    Diabetic complications associated with increased oxidative stress can be suppressed by antioxidants. In the present study we investigated the antidiabetic and antioxidant effects of Kombucha (KT), a fermented black tea, in comparison to that of unfermented black tea (BT), in ALX-induced diabetic rats. ALX exposure lowered the body weight and plasma insulin by about 28.12% and 61.34% respectively and elevated blood glucose level and glycated Hb by about 3.79 and 3.73 folds respectively. The oxidative stress related parameters like lipid peroxidation end products (increased by 3.38, 1.7, 1.65, 1.94 folds respectively), protein carbonyl content (increased by 2.5, 2.35, 1.8, 3.26 folds respectively), glutathione content (decreased by 59.8%, 47.27%, 53.69%, 74.03% respectively), antioxidant enzyme activities were also altered in the pancreatic, hepatic, renal and cardiac tissues of diabetic animals. Results showed significant antidiabetic potential of the fermented beverage (150 mg lyophilized extract/kg bw for 14 days) as it effectively restored ALX-induced pathophysiological changes. Moreover, it could ameliorate DNA fragmentation and caspase-3 activation in the pancreatic tissue of diabetic rats. Although unfermented black tea is effective in the above pathophysiology, KT was found to be more efficient. This might be due to the formation of some antioxidant molecules during fermentation period.

  20. Developing scaffolds for tissue engineering using the Ca2+-induced cold gelation by an experimental design approach.

    PubMed

    Ribeiro, Artur J A M; Gomes, Andreia C; Cavaco-Paulo, Artur M

    2012-11-01

    The Ca(2+)-induced cold gelation technique was found suitable to prepare highly porous biodegradable scaffolds based on bovine serum albumin (BSA) and alpha-casein from bovine milk for tissue engineering. A 2(3) full factorial design was used to study the influence and impact of each factor on the several responses of the scaffolds. In vitro degradation (ID), swelling ratio (SR), porosity (PO), and pore size (PS) as well cytotoxicity (CT) were evaluated and shown to be dependent on the pH of sample preparation and on the amount of BSA and casein present, making these scaffolds tunable structures. Under optimized working conditions (4.19% of BSA, 0.69% of Casein, pH 7.07), the ID attained was 37.97%, the SR observed was 11.87, the PO was 82.11%, the PS measured was 180.63 μm at surface, and 175.91 μm at fracture, whereas maximum cell viability was 84% in comparison to controls. Moreover, the scaffold supported cell adhesion and proliferation. These results, consistent with the prediction by the experimental design approach, support the use of this methodology to develop tunable scaffolds for tissue engineering using the Ca(2+)-induced cold gelation.

  1. Effect of exercise on serum vitamin D and tissue vitamin D receptors in experimentally induced type 2 Diabetes Mellitus.

    PubMed

    Aly, Yosria E; Abdou, Azza S; Rashad, Mona M; Nassef, Menatallah M

    2016-09-01

    This work aimed to study the effect of swimming exercise on serum vitamin D level and tissue vitamin D receptors in experimentally induced type 2 Diabetes Mellitus. Sixty adult male rats were divided into control and diabetic groups. Each was further subdivided into sedentary and exercised subgroups. Diabetes Mellitus was induced by a single intraperitoneal dose of streptozotocin (50 mg/kg) dissolved in cold 0.01 M citrate buffer (pH 4.5). The exercised subgroups underwent swimming for 60 min, 5 times a week for 4 weeks. Serum glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), lipids, vitamin D and tissue Vitamin D receptors (VDR) were evaluated. Significant increase in serum glucose, insulin, HOMA-IR, cholesterol, triglycerides, and low density lipoprotein (LDL) levels in sedentary diabetic rats was detected. On the other hand, high density lipoprotein (HDL), free fatty acids, serum vitamin D and pancreatic, adipose, and muscular VDR showed a significant decrease in the same group. It is evident that all these parameters were reversed by swimming exercise indicating its beneficial role in type 2 Diabetes. In diabetic groups; serum vitamin D was found to be correlated negatively with serum glucose, insulin, HOMA, cholesterol, triglycerides, and LDL and positively correlated with HDL and tissue VDR. In conclusion, Disturbed vitamin D is associated with metabolic impairments in sedentary diabetic rats. Moderate swimming exercise is beneficial in improving these consequences through modulation of vitamin D status. Future studies could be designed to investigate the effect of the combination of vitamin D intake with exercise in diabetic patients. PMID:27504197

  2. The MeJA-inducible copper amine oxidase AtAO1 is expressed in xylem tissue and guard cells.

    PubMed

    Ghuge, Sandip A; Carucci, Andrea; Rodrigues-Pousada, Renato A; Tisi, Alessandra; Franchi, Stefano; Tavladoraki, Paraskevi; Angelini, Riccardo; Cona, Alessandra

    2015-01-01

    Copper amine oxidases oxidize the polyamine putrescine to 4-aminobutanal with the production of the plant signal molecule hydrogen peroxide (H2O2) and ammonia. The Arabidopsis (Arabidopsis thaliana) gene At4g14940 (AtAO1, previously referred to as ATAO1) encodes an apoplastic copper amine oxidase expressed in lateral root cap cells and developing xylem, especially in root protoxylem and metaxylem precursors. In our recent study, we demonstrated that AtAO1 expression is strongly induced in the root vascular tissues by the wound-signal hormone methyl jasmonate (MeJA). Furthermore, we also demonstrated that the H2O2 derived by the AtAO1-driven oxidation of putrescine, mediates the MeJA-induced early protoxylem differentiation in Arabidopsis roots. H2O2 may contribute to protoxylem differentiation by signaling developmental cell death and by acting as co-substrate in peroxidase-mediated cell wall stiffening and lignin polymerization. Here, by the means of AtAO1 promoter::green fluorescent protein-β-glucuronidase (AtAO1::GFP-GUS) fusion analysis, we show that a strong AtAO1 gene expression occurs also in guard cells of leaves and flowers. The high expression levels of AtAO1 in tissues or cell types regulating water supply and water loss may suggest a role of the encoded protein in water balance homeostasis, by modulating coordinated adjustments in anatomical and functional features of xylem tissue and guard cells during acclimation to adverse environmental conditions.

  3. Acute sleep fragmentation induces tissue-specific changes in cytokine gene expression and increases serum corticosterone concentration.

    PubMed

    Dumaine, Jennifer E; Ashley, Noah T

    2015-06-15

    Sleep deprivation induces acute inflammation and increased glucocorticosteroids in vertebrates, but effects from fragmented, or intermittent, sleep are poorly understood. Considering the latter is more representative of sleep apnea in humans, we investigated changes in proinflammatory (IL-1β, TNF-α) and anti-inflammatory (TGF-β1) cytokine gene expression in the periphery (liver, spleen, fat, and heart) and brain (hypothalamus, prefrontal cortex, and hippocampus) of a murine model exposed to varying intensities of sleep fragmentation (SF). Additionally, serum corticosterone was assessed. Sleep was disrupted in male C57BL/6J mice using an automated sleep fragmentation chamber that moves a sweeping bar at specified intervals (Lafayette Industries). Mice were exposed to bar sweeps every 20 s (high sleep fragmentation, HSF), 120 s (low sleep fragmentation, LSF), or the bar remained stationary (control). Trunk blood and tissue samples were collected after 24 h of SF. We predicted that HSF mice would exhibit increased proinflammatory expression, decreased anti-inflammatory expression, and elevated stress hormones in relation to LSF and controls. SF significantly elevated IL-1β gene expression in adipose tissue, heart (HSF only), and hypothalamus (LSF only) relative to controls. SF did not increase TNF-α expression in any of the tissues measured. HSF increased TGF-β1 expression in the hypothalamus and hippocampus relative to other groups. Serum corticosterone concentration was significantly different among groups, with HSF mice exhibiting the highest, LSF intermediate, and controls with the lowest concentration. This indicates that 24 h of SF is a potent inducer of inflammation and stress hormones in the periphery, but leads to upregulation of anti-inflammatory cytokines in the brain.

  4. Perilipin overexpression in white adipose tissue induces a brown fat-like phenotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Perilipin A (PeriA) exclusively locates on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Previously, we reported that adipocyte specific overexpression of PeriA caused resistance to diet-induced obesity and resulted in improved insulin sensitivity. In order...

  5. Heat-killed bacteria induce genome instability in mouse small intestine, liver and spleen tissues.

    PubMed

    Koturbash, Igor; Thomas, James E; Kovalchuk, Olga; Kovalchuk, Igor

    2009-06-15

    Bacterial infection has been associated with several malignancies, yet the exact mechanism of infection-associated carcinogenesis remains obscure. Furthermore, it is still not clear whether oncontransformation requires an active infection process, or merely the presence of inactivated bacteria remnants is enough to cause deleterious effects. Here, we analyzed whether or not consumption of non-pathogenic and pathogenic heat-killed Escherichia coli leads to changes in genome stabilit