Science.gov

Sample records for pdz domain proteins

  1. A molecular-properties-based approach to understanding PDZ domain proteins and PDZ ligands

    PubMed Central

    Giallourakis, Cosmas; Cao, Zhifang; Green, Todd; Wachtel, Heather; Xie, Xiaohui; Lopez-Illasaca, Marco; Daly, Mark; Rioux, John; Xavier, Ramnik

    2006-01-01

    PDZ domain-containing proteins and their interaction partners are mutated in numerous human diseases and function in complexes regulating epithelial polarity, ion channels, cochlear hair cell development, vesicular sorting, and neuronal synaptic communication. Among several properties of a collection of documented PDZ domain–ligand interactions, we discovered embedded in a large-scale expression data set the existence of a significant level of co-regulation between PDZ domain-encoding genes and these ligands. From this observation, we show how integration of expression data, a comparative genomics catalog of 899 mammalian genes with conserved PDZ-binding motifs, phylogenetic analysis, and literature mining can be utilized to infer PDZ complexes. Using molecular studies we map novel interaction partners for the PDZ proteins DLG1 and CARD11. These results provide insight into the diverse roles of PDZ–ligand complexes in cellular signaling and provide a computational framework for the genome-wide evaluation of PDZ complexes. PMID:16825666

  2. Predicting PDZ domain mediated protein interactions from structure

    PubMed Central

    2013-01-01

    Background PDZ domains are structural protein domains that recognize simple linear amino acid motifs, often at protein C-termini, and mediate protein-protein interactions (PPIs) in important biological processes, such as ion channel regulation, cell polarity and neural development. PDZ domain-peptide interaction predictors have been developed based on domain and peptide sequence information. Since domain structure is known to influence binding specificity, we hypothesized that structural information could be used to predict new interactions compared to sequence-based predictors. Results We developed a novel computational predictor of PDZ domain and C-terminal peptide interactions using a support vector machine trained with PDZ domain structure and peptide sequence information. Performance was estimated using extensive cross validation testing. We used the structure-based predictor to scan the human proteome for ligands of 218 PDZ domains and show that the predictions correspond to known PDZ domain-peptide interactions and PPIs in curated databases. The structure-based predictor is complementary to the sequence-based predictor, finding unique known and novel PPIs, and is less dependent on training–testing domain sequence similarity. We used a functional enrichment analysis of our hits to create a predicted map of PDZ domain biology. This map highlights PDZ domain involvement in diverse biological processes, some only found by the structure-based predictor. Based on this analysis, we predict novel PDZ domain involvement in xenobiotic metabolism and suggest new interactions for other processes including wound healing and Wnt signalling. Conclusions We built a structure-based predictor of PDZ domain-peptide interactions, which can be used to scan C-terminal proteomes for PDZ interactions. We also show that the structure-based predictor finds many known PDZ mediated PPIs in human that were not found by our previous sequence-based predictor and is less dependent on

  3. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  4. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.

  5. Ligand binding by PDZ domains.

    PubMed

    Chi, Celestine N; Bach, Anders; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context.

  6. The PDZ Domain of the LIM Protein Enigma Binds to β-Tropomyosin

    PubMed Central

    Guy, Pamela M.; Kenny, Daryn A.; Gill, Gordon N.

    1999-01-01

    PDZ and LIM domains are modular protein interaction motifs present in proteins with diverse functions. Enigma is representative of a family of proteins composed of a series of conserved PDZ and LIM domains. The LIM domains of Enigma and its most related family member, Enigma homology protein, bind to protein kinases, whereas the PDZ domains of Enigma and family member actin-associated LIM protein bind to actin filaments. Enigma localizes to actin filaments in fibroblasts via its PDZ domain, and actin-associated LIM protein binds to and colocalizes with the actin-binding protein α-actinin-2 at Z lines in skeletal muscle. We show that Enigma is present at the Z line in skeletal muscle and that the PDZ domain of Enigma binds to a skeletal muscle target, the actin-binding protein tropomyosin (skeletal β-TM). The interaction between Enigma and skeletal β-TM was specific for the PDZ domain of Enigma, was abolished by mutations in the PDZ domain, and required the PDZ-binding consensus sequence (Thr-Ser-Leu) at the extreme carboxyl terminus of skeletal β-TM. Enigma interacted with isoforms of tropomyosin expressed in C2C12 myotubes and formed an immunoprecipitable complex with skeletal β-TM in transfected cells. The association of Enigma with skeletal β-TM suggests a role for Enigma as an adapter protein that directs LIM-binding proteins to actin filaments of muscle cells. PMID:10359609

  7. A systematic, family-wide investigation reveals that ~30% of mammalian PDZ domains engage in PDZ-PDZ interactions

    PubMed Central

    Chang, Bryan H.; Gujral, Taranjit S.; Karp, Ethan S.; BuKhalid, Raghida; Grantcharova, Viara P.; MacBeath, Gavin

    2012-01-01

    Summary PDZ domains are independently folded modules that typically mediate protein-protein interactions by binding to the C-termini of their target proteins. In a few instances, however, PDZ domains have been reported to dimerize with other PDZ domains. To investigate this noncanonical binding mode further, we used protein microarrays comprising virtually every mouse PDZ domain to systematically query all possible PDZ-PDZ pairs. We then used fluorescence polarization to retest and quantify novel interactions and co-affinity purification to test biophysically validated interactions in the context of their full-length proteins. Overall, we discovered 37 PDZ-PDZ interactions involving 46 PDZ domains (~30% of all PDZ domains tested), revealing that dimerization is a more frequently used binding mode than was previously appreciated. This suggests that many PDZ domains evolved to form multiprotein complexes by simultaneously interacting with more than one ligand. PMID:21944753

  8. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-04-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.

  9. ALP/Enigma PDZ-LIM domain proteins in the heart.

    PubMed

    Zheng, Ming; Cheng, Hongqiang; Banerjee, Indroneal; Chen, Ju

    2010-04-01

    Actinin-associated LIM protein (ALP) and Enigma are two subfamilies of Postsynaptic density 95, discs large and zonula occludens-1 (PDZ)-Lin-11, Isl1 and Mec-3 (LIM) domain containing proteins. ALP family members have one PDZ and one LIM domain, whereas Enigma proteins contain one PDZ and three LIM domains. Four ALP and three Enigma proteins have been identified in mammals, each having multiple splice variants and unique expression patterns. Functionally, these proteins bind through their PDZ domains to alpha-actinin and bind through their LIM domains or other internal protein interaction domains to other proteins, including signaling molecules. ALP and Enigma proteins have been implicated in cardiac and skeletal muscle structure, function and disease, neuronal function, bipolar disorder, tumor growth, platelet and epithelial cell motility and bone formation. This review will focus on recent advances in the biological roles of ALP/Enigma PDZ-LIM domain proteins in cardiac muscle and provide insights into mechanisms by which mutations in these proteins are related to human cardiac disease.

  10. TRP1 interacting PDZ-domain protein GIPC forms oligomers and is localized to intracellular vesicles in human melanocytes.

    PubMed

    Kedlaya, Rajendra H; Bhat, Kumar M R; Mitchell, Julie; Darnell, Steven J; Setaluri, Vijayasaradhi

    2006-10-15

    PDZ proteins coordinate assembly of protein complexes that participate in diverse biological processes. GIPC is a multifunctional PDZ protein that interacts with several soluble and membrane proteins. Unlike most PDZ proteins, GIPC contains single PDZ domain and the mechanisms by which GIPC mediates its actions remain unclear. We investigated the possibility that in lieu of multiple PDZ domains, GIPC forms multimers. Here, we demonstrate that GIPC can bind to itself and that the PDZ domain is involved in GIPC-GIPC interaction. Gel filtration, sucrose gradient centrifugation and chemical cross-linking showed that whereas bulk of cytosolic GIPC was present as monomer, oligomers with an estimated molecular mass corresponding to GIPC homotrimer were readily detectable in the membrane fraction. Modeling of GIPC PDZ domain showed feasibility of trimerization. Immunogold electron microscopy showed that GIPC is present in clusters near vesicles. Our data suggest that oligomers of GIPC mediate its functions in melanocytes.

  11. TRP1 interacting PDZ-domain protein GIPC forms oligomers and is localized to intracellular vesicles in human melanocytes

    PubMed Central

    Kedlaya, Rajendra H.; Bhat, Kumar M.R.; Mitchell, Julie; Darnell, Steven J.; Setaluri, Vijayasaradhi

    2010-01-01

    PDZ proteins coordinate assembly of protein complexes that participate in diverse biological processes. GIPC is a multifunctional PDZ protein that interacts with several soluble and membrane proteins. Unlike most PDZ proteins, GIPC contains single PDZ domain and the mechanisms by which GIPC mediates its actions remain unclear. We investigated the possibility that in lieu of multiple PDZ domains, GIPC forms multimers. Here, we demonstrate that GIPC can bind to itself and that the PDZ domain is involved in GIPC–GIPC interaction. Gel filtration, sucrose gradient centrifugation and chemical cross-linking showed that whereas bulk of cytosolic GIPC was present as monomer, oligomers with an estimated molecular mass corresponding to GIPC homotrimer were readily detectable in the membrane fraction. Modeling of GIPC PDZ domain showed feasibility of trimerization. Immunogold electron microscopy showed that GIPC is present in clusters near vesicles. Our data suggest that oligomers of GIPC mediate its functions in melanocytes. PMID:16962991

  12. Solid-state nanopore analysis of the PDZ2 protein domain

    NASA Astrophysics Data System (ADS)

    Freedman, Kevin; Haq, Raza; Jurgens, Maike; Mulero, Rafael; Prabhu, Anmiv; Jemth, Per; Edel, Joshua; Kim, Minjun

    2010-03-01

    The PDZ2 protein domain plays a significant role in biology; specifically as a ubiquitous binding domain for a variety of proteins found in organisms from bacteria to humans. PDZ2 and a single-point mutant were characterized using nanopores to help elucidate the structure-function relationship of this protein and provide a framework for more complex studies involving protein folding/binding. The translocation properties and unfolding of this domain was interrogated by the ionic-current blockade method using a single digit nanometer solid-state pore. By conducting these experiments under a wide variety of fluidic conditions, significantly different ionic current blockades were recorded and provided a method for sensing the folding/unfolding characteristics of the PDZ2 protein domain and its single-point mutant.

  13. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13.

    PubMed

    Sotelo, Natalia S; Schepens, Jan T G; Valiente, Miguel; Hendriks, Wiljan J A J; Pulido, Rafael

    2015-05-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from scaffolding and regulatory proteins. Here, we review the current knowledge on PTEN-PDZ domain interactions and tumor suppressor networks, describe methodology suitable to analyze these interactions, and report the binding of PTEN and the PDZ domain-containing protein tyrosine phosphatase PTPN13. Yeast two-hybrid and GST pull-down analyses showed that PTEN binds to PDZ2/PTPN13 domain in a manner that depends on the specific PTPN13 PDZ domain arrangement involving the interdomain region between PDZ1 and PDZ2. Furthermore, a specific binding profile of PTEN to PDZ2/PTPN13 domain was observed by mutational analysis of the PTEN PDZ-BM. Our results disclose a PDZ-mediated physical interaction of PTEN and PTPN13 with potential relevance in tumor suppression and cell homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. High-resolution crystal structure of the PDZ1 domain of human protein tyrosine phosphatase PTP-Bas.

    PubMed

    Lee, Sang-Ok; Lee, Mi-Kyung; Ku, Bonsu; Bae, Kwang-Hee; Lee, Sang Chul; Lim, Heon M; Kim, Seung Jun; Chi, Seung-Wook

    2016-09-23

    Protein tyrosine phosphatase-Basophil (PTP-Bas) is a membrane-associated protein tyrosine phosphatase with five PDZ domains and is involved in apoptosis, tumorigenesis, and insulin signaling. The interaction between PTP-Bas and tandem-PH-domain-containing protein 1/2 (TAPP1/2) plays an essential role in the regulation of insulin signaling. Despite its high sequence homology with the other PDZ domains, only the PDZ1 domain of PTP-Bas showed distinct binding specificity for TAPP1/2. Although the interaction between PTP-Bas PDZ1 and TAPP1/2 is a therapeutic target for diabetes, the structural basis for the interaction has not been elucidated. In the present study, we determined the crystal structure of the PTP-Bas PDZ1 domain at 1.6 Å resolution. In addition, we calculated the structural models of complexes of PTP-Bas PDZ1 and the C-terminal peptides of TAPP1/2 (referred to as TAPP1p/2p). Structural comparison with the PTP-Bas PDZ2/RA-GEF2 peptide complex revealed a structural basis for distinct binding specificity of PTP-Bas PDZ1 for TAPP1p/2p peptides. Our high-resolution crystal structure of PTP-Bas PDZ1 will serve as a useful template for rational structure-based design of novel anti-diabetes therapeutics.

  15. ENH, containing PDZ and LIM domains, heart/skeletal muscle-specific protein, associates with cytoskeletal proteins through the PDZ domain.

    PubMed

    Nakagawa, N; Hoshijima, M; Oyasu, M; Saito, N; Tanizawa, K; Kuroda, S

    2000-06-07

    The Enigma homologue protein (ENH), containing an N-terminal PDZ domain and three C-terminal LIM domains, is a heart and skeletal muscle-specific protein that has been shown to preferentially interact with protein kinase C beta (PKCbeta) through the LIM domains (Kuroda et al., J. Biol. Chem. 271, 31029-31032, 1996). We here demonstrate that ENH is colocalized with a cytoskeletal protein alpha-actinin in the Z-disk region of rat neonatal cardiomyocytes. Pull-down assays using the glutathione-S-transferase-fusion system also showed the interaction of the PDZ domain of ENH with actin and alpha-actinin. Furthermore, by combined use of the in silico and conventional cDNA cloning methods, we have isolated three ENH-related clones from a mouse heart-derived cDNA library: mENH1 (591 amino acid residues) corresponding to rat ENH, mENH2 (337 residues), and mENH3 (239 residues); the latter two containing only a single PDZ domain. Deciphering their cDNA sequences, these mENH1-3 mRNAs appear to be generated from a single mENH gene by alternative splicing. Northern blot analyses using human cancer cells and mouse embryos have shown expression of each mENH mRNA to vary considerably among the cell types and during the developmental stage. Together with a recent finding that PKCbeta is markedly activated in the cardiac hypertrophic signaling, these results suggest that ENH1 plays an important role in the heart development by scaffolding PKCbeta to the Z-disk region and that ENH2 and ENH3 negatively modulate the scaffolding activity of ENH1.

  16. Subtype-specific roles of phospholipase C-β via differential interactions with PDZ domain proteins.

    PubMed

    Kim, Jung Kuk; Lim, Seyoung; Kim, Jinho; Kim, Sanguk; Kim, Jae Ho; Ryu, Sung Ho; Suh, Pann-Ghill

    2011-01-01

    Since we first identified the PLC-β isozyme, enormous studies have been conducted to investigate the functional roles of this protein (Min et al., 1993; Suh et al.,1988). It is now well-known that the four PLC-β subtypes are major effector molecules in GPCR-mediated signaling, especially for intracellular Ca2+ signaling. Nonetheless, it is still poorly understood why multiple PLC-β subtype exist. Most cells express multiple subtypes of PLC-β in different combinations, and each subtype is involved in somewhat different signaling pathways. Therefore, studying the differential roles of each PLC-β subtype is a very interesting issue. In this regard, we focus here on PDZ domain proteins which are novel PLC-β interacting proteins. As scaffolders, PDZ domain proteins recruit various target proteins ranging from membrane receptors to cytoskeletal proteins to assemble highly organized signaling complexes; this can give rise to efficiency and diversity in cellular signaling. Because PLC-β subtypes have different PDZ-binding motifs, it is possible that they are engaged with different PDZ domain proteins, and in turn participate in distinct physiological responses. To date, several PDZ domain proteins, such as the NHERF family, Shank2, and Par-3, have been reported to selectively interact with certain PLC-β subtypes and GPCRs. Systematic predictions of potential binding partners also suggests differential binding properties between PLC-β subtypes. Furthermore, we elucidated parallel signaling processes for multiple PLC-β subtypes, which still perform distinct functions resulting from differential interactions with PDZ domain proteins within a single cell. Therefore, these results highlight the novel function of PDZ domain proteins as intermediaries in subtype-specific role of PLC-β in GPCR-mediated signaling. Future studies will focus on the physiological meanings of this signaling complex formation by different PDZ domain proteins and PLC-β subtypes. It has been

  17. GIPC, a PDZ domain containing protein, interacts specifically with the C terminus of RGS-GAIP

    PubMed Central

    De Vries, Luc; Lou, Xiaojing; Zhao, Grace; Zheng, Bin; Farquhar, Marilyn Gist

    1998-01-01

    We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Gαi subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPC–a soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins. PMID:9770488

  18. GIPC, a PDZ domain containing protein, interacts specifically with the C terminus of RGS-GAIP.

    PubMed

    De Vries, L; Lou, X; Zhao, G; Zheng, B; Farquhar, M G

    1998-10-13

    We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Galphai subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPC-a soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins.

  19. Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle.

    PubMed

    Passier, R; Richardson, J A; Olson, E N

    2000-04-01

    In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.

  20. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions.

    PubMed

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E; Levesque, Brié; Pedersen, Stine B; Bartels, Lina; Wapenaar, Hannah; Ye, Fei; Zhang, Mingjie; Bowen, Mark E; Strømgaard, Kristian

    2017-09-15

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effect of phosphorylation on PSD-95, we used semisynthetic strategies to introduce phosphorylated amino acids at four positions within the PDZ domains and examined the effects on interactions with a large set of binding partners. We observed complex effects on affinity. Most notably, phosphorylation at Y397 induced a significant increase in affinity for stargazin, as confirmed by NMR and single molecule FRET. Additionally, we compared the effects of phosphorylation to phosphomimetic mutations, which revealed that phosphomimetics are ineffective substitutes for tyrosine phosphorylation. Our strategy to generate site-specifically phosphorylated PDZ domains provides a detailed understanding of the role of phosphorylation in the regulation of PSD-95 interactions.

  1. Noncanonical Role of the PDZ4 Domain of the Adaptor Protein PDZK1 in the Regulation of the Hepatic High Density Lipoprotein Receptor Scavenger Receptor Class B, Type I (SR-BI)*

    PubMed Central

    Tsukamoto, Kosuke; Wales, Thomas E.; Daniels, Kathleen; Pal, Rinku; Sheng, Ren; Cho, Wonhwa; Stafford, Walter; Engen, John R.; Krieger, Monty; Kocher, Olivier

    2013-01-01

    The four PDZ (PDZ1 to PDZ4) domain-containing adaptor protein PDZK1 controls the expression, localization, and function of the HDL receptor scavenger receptor class B, type I (SR-BI), in hepatocytes in vivo. This control depends on both the PDZ4 domain and the binding of SR-BI's cytoplasmic C terminus to the canonical peptide-binding sites of either the PDZ1 or PDZ3 domain (no binding to PDZ2 or PDZ4). Using transgenic mice expressing in the liver domain deletion (ΔPDZ2 or ΔPDZ3), domain replacement (PDZ2→1), or target peptide binding-negative (PDZ4(G389P)) mutants of PDZK1, we found that neither PDZ2 nor PDZ3 nor the canonical target peptide binding activity of PDZ4 were necessary for hepatic SR-BI regulatory activity. Immunohistochemical studies established that the localization of PDZK1 on hepatocyte cell surface membranes in vivo is dependent on its PDZ4 domain and the presence of SR-BI. Analytical ultracentrifugation and hydrogen deuterium exchange mass spectrometry suggested that the requirement of PDZ4 for localization and SR-BI regulation is not due to PDZ4-mediated oligomerization or induction of conformational changes in the PDZ123 portion of PDZK1. However, surface plasmon resonance analysis showed that PDZ4, but not the other PDZ domains, can bind vesicles that mimic the plasma membrane. Thus, PDZ4 may potentiate PDZK1's regulation of SR-BI by promoting its lipid-mediated attachment to the cytoplasmic membrane. Our results show that not all of the PDZ domains of a multi-PDZ domain-containing adaptor protein are required for its biological activities and that both canonical target peptide binding and noncanonical (peptide binding-independent) capacities of PDZ domains may be employed by a single such adaptor for optimal in vivo activity. PMID:23720744

  2. PDZ domain protein GIPC interacts with the cytoplasmic tail of melanosomal membrane protein gp75 (tyrosinase-related protein-1).

    PubMed

    Liu, T F; Kandala, G; Setaluri, V

    2001-09-21

    Tyrosinase and tyrosinase-related proteins (TRPs) are a family of melanosomal membrane proteins involved in mammalian pigmentation. Whereas the melanogenic functions of TRPs are localized in their amino-terminal domains that reside within the lumen of melanosomes, the sorting and targeting of these proteins to melanosomes is mediated by signals in their cytoplasmic domains. To identify proteins that interact with the cytoplasmic tail of gp75 (TRP-1), the most abundant melanosomal membrane protein, we performed yeast two-hybrid screening of a melanocyte cDNA library. Here, we show that the cytoplasmic domain of gp75 interacts with a PDZ domain-containing protein. The gp75-interacting protein is identical to GIPC, an RGS (regulator of G protein signaling)/GAIP-interacting protein, and to SEMCAP-1, a transmembrane semaphorin-binding protein. Carboxyl-terminal amino acid residues, Ser-Val-Val, of gp75 are necessary and sufficient for interaction of gp75 with the single PDZ domain in GIPC. Although endogenous and transfected GIPCs bind efficiently to transiently expressed gp75, only a small amount of GIPC is found associated with gp75 at steady state. Using a strategy to selectively synchronize the biosynthesis of endogenous gp75, we demonstrate that only newly synthesized gp75 associates with GIPC, primarily in the juxtanuclear Golgi region. Our data suggest that GIPC/SEMCAP-1 plays a role in biosynthetic sorting of proteins, specifically gp75, to melanosomes.

  3. Molecular characterization and ligand binding specificity of the PDZ domain-containing protein GIPC3 from Schistosoma japonicum

    PubMed Central

    2012-01-01

    Background Schistosomiasis is a serious global health problem that afflicts more than 230 million people in 77 countries. Long-term mass treatments with the only available drug, praziquantel, have caused growing concerns about drug resistance. PSD-95/Dlg/ZO-1 (PDZ) domain-containing proteins are recognized as potential targets for the next generation of drug development. However, the PDZ domain-containing protein family in parasites has largely been unexplored. Methods We present the molecular characteristics of a PDZ domain-containing protein, GIPC3, from Schistosoma japonicum (SjGIPC3) according to bioinformatics analysis and experimental approaches. The ligand binding specificity of the PDZ domain of SjGIPC3 was confirmed by screening an arbitrary peptide library in yeast two-hybrid (Y2H) assays. The native ligand candidates were predicted by Tailfit software based on the C-terminal binding specificity, and further validated by Y2H assays. Results SjGIPC3 is a single PDZ domain-containing protein comprised of 328 amino acid residues. Structural prediction revealed that a conserved PDZ domain was presented in the middle region of the protein. Phylogenetic analysis revealed that SjGIPC3 and other trematode orthologues clustered into a well-defined cluster but were distinguishable from those of other phyla. Transcriptional analysis by quantitative RT-PCR revealed that the SjGIPC3 gene was relatively highly expressed in the stages within the host, especially in male adult worms. By using Y2H assays to screen an arbitrary peptide library, we confirmed the C-terminal binding specificity of the SjGIPC3-PDZ domain, which could be deduced as a consensus sequence, -[SDEC]-[STIL]-[HSNQDE]-[VIL]*. Furthermore, six proteins were predicted to be native ligand candidates of SjGIPC3 based on the C-terminal binding properties and other biological information; four of these were confirmed to be potential ligands using the Y2H system. Conclusions In this study, we first

  4. The structure of the Tiam1 PDZ domain/ phospho-syndecan1 complex reveals a ligand conformation that modulates protein dynamics.

    PubMed

    Liu, Xu; Shepherd, Tyson R; Murray, Ann M; Xu, Zhen; Fuentes, Ernesto J

    2013-03-05

    PDZ (PSD-95/Dlg/ZO-1) domains are protein-protein interaction modules often regulated by ligand phosphorylation. Here, we investigated the specificity, structure, and dynamics of Tiam1 PDZ domain/ligand interactions. We show that the PDZ domain specifically binds syndecan1 (SDC1), phosphorylated SDC1 (pSDC1), and SDC3 but not other syndecan isoforms. The crystal structure of the PDZ/SDC1 complex indicates that syndecan affinity is derived from amino acids beyond the four C-terminal residues. Remarkably, the crystal structure of the PDZ/pSDC1 complex reveals a binding pocket that accommodates the phosphoryl group. Methyl relaxation experiments of PDZ/SCD1 and PDZ/pSDC1 complexes reveal that PDZ-phosphoryl interactions dampen dynamic motions in a distal region of the PDZ domain by decoupling them from the ligand-binding site. Our data are consistent with a selection model by which specificity and phosphorylation regulate PDZ/syndecan interactions and signaling events. Importantly, our relaxation data demonstrate that PDZ/phospho-ligand interactions regulate protein dynamics and their coupling to distal sites.

  5. The Structure of the Tiam1 PDZ Domain/Phospho-Syndecan1 Complex Reveals a Ligand Conformation that Modulates Protein Dynamics

    PubMed Central

    Liu, Xu; Shepherd, Tyson R.; Murray, Ann M.; Xu, Zhen; Fuentes, Ernesto J.

    2014-01-01

    SUMMARY PDZ (PSD-95/Dlg/ZO-1) domains are protein-protein interaction modules often regulated by ligand phosphorylation. Here, we investigated the specificity, structure, and dynamics of Tiam1 PDZ domain/ligand interactions. We show that the PDZ domain specifically binds syndecan1 (SDC1), phosphorylated SDC1 (pSDC1), and SDC3 but not other syndecan isoforms. The crystal structure of the PDZ/SDC1 complex indicates that syndecan affinity is derived from amino acids beyond the four C-terminal residues. Remarkably, the crystal structure of the PDZ/pSDC1 complex reveals a binding pocket that accommodates the phosphoryl group. Methyl relaxation experiments of PDZ/SCD1 and PDZ/pSDC1 complexes reveal that PDZ-phosphoryl interactions dampen dynamic motions in a distal region of the PDZ domain by decoupling them from the ligand-binding site. Our data are consistent with a selection model by which specificity and phosphorylation regulate PDZ/syndecan interactions and signaling events. Importantly, our relaxation data demonstrate that PDZ/phospho-ligand interactions regulate protein dynamics and their coupling to distal sites. PMID:23395182

  6. The neuronal RhoA GEF, Tech, interacts with the synaptic multi-PDZ-domain-containing protein, MUPP1.

    PubMed

    Estévez, Marcel A; Henderson, Jennifer A; Ahn, David; Zhu, Xin-Ran; Poschmann, Gereon; Lübbert, Hermann; Marx, Ruth; Baraban, Jay M

    2008-08-01

    Tech is a RhoA guanine nucleotide exchange factor (GEF) that is highly enriched in hippocampal and cortical neurons. To help define its function, we have conducted studies aimed at identifying partner proteins that bind to its C-terminal PDZ ligand motif. Yeast two hybrid studies using the Tech C-terminal segment as bait identified MUPP1, a protein that contains 13 PDZ domains and has been localized to the post-synaptic compartment, as a candidate partner protein for Tech. Co-transfection of Tech and MUPP1 in human embryonic kidney 293 cells confirmed that these full-length proteins interact in a PDZ-dependent fashion. Furthermore, we confirmed that endogenous Tech co-precipitates with MUPP1, but not PSD-95, from hippocampal and cortical extracts prepared from rat brain. In addition, immunostaining of primary cortical cultures revealed co-localization of MUPP1 and Tech puncta in the vicinity of synapses. In assessing which PDZ domains of MUPP1 mediate binding to Tech, we found that Tech can bind to either PDZ domain 10 or 13 of MUPP1 as mutation of both these domains is needed to disrupt their interaction. Taken together, these findings demonstrate that Tech binds to MUPP1 and suggest that it regulates RhoA signaling pathways in the vicinity of synapses.

  7. Post-translational modifications modulate ligand recognition by the third PDZ domain of the MAGUK protein PSD-95.

    PubMed

    Murciano-Calles, Javier; Corbi-Verge, Carles; Candel, Adela M; Luque, Irene; Martinez, Jose C

    2014-01-01

    The relative promiscuity of hub proteins such as postsynaptic density protein-95 (PSD-95) can be achieved by alternative splicing, allosteric regulation, and post-translational modifications, the latter of which is the most efficient method of accelerating cellular responses to environmental changes in vivo. Here, a mutational approach was used to determine the impact of phosphorylation and succinimidation post-translational modifications on the binding affinity of the postsynaptic density protein-95/discs large/zonula occludens-1 (PDZ3) domain of PSD-95. Molecular dynamics simulations revealed that the binding affinity of this domain is influenced by an interplay between salt-bridges linking the α3 helix, the β2-β3 loop and the positively charged Lys residues in its high-affinity hexapeptide ligand KKETAV. The α3 helix is an extra structural element that is not present in other PDZ domains, which links PDZ3 with the following SH3 domain in the PSD-95 protein. This regulatory mechanism was confirmed experimentally via thermodynamic and NMR chemical shift perturbation analyses, discarding intra-domain long-range effects. Taken together, the results presented here reveal the molecular basis of the regulatory role of the α3 extra-element and the effects of post-translational modifications of PDZ3 on its binding affinity, both energetically and dynamically.

  8. The Src Homology 3 Domain Is Required for Junctional Adhesion Molecule Binding to the Third PDZ Domain of the Scaffolding Protein ZO-1

    SciTech Connect

    Nomme, Julian; Fanning, Alan S.; Caffrey, Michael; Lye, Ming F.; Anderson, James M.; Lavie, Arnon

    2012-01-20

    Tight junctions are cell-cell contacts that regulate the paracellular flux of solutes and prevent pathogen entry across cell layers. The assembly and permeability of this barrier are dependent on the zonula occludens (ZO) membrane-associated guanylate kinase (MAGUK) proteins ZO-1, -2, and -3. MAGUK proteins are characterized by a core motif of protein-binding domains that include a PDZ domain, a Src homology 3 (SH3) domain, and a region of homology to guanylate kinase (GUK); the structure of this core motif has never been determined for any MAGUK. To better understand how ZO proteins organize the assembly of protein complexes we have crystallized the entire PDZ3-SH3-GUK core motif of ZO-1. We have also crystallized this core motif in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A) to determine how the activity of different domains is coordinated. Our study shows a new feature for PDZ class II ligand binding that implicates the two highly conserved Phe{sup -2} and Ser{sup -3} residues of JAM. Our x-ray structures and NMR experiments also show for the first time a role for adjacent domains in the binding of ligands to PDZ domains in the MAGUK proteins family.

  9. A structural portrait of the PDZ domain family.

    PubMed

    Ernst, Andreas; Appleton, Brent A; Ivarsson, Ylva; Zhang, Yingnan; Gfeller, David; Wiesmann, Christian; Sidhu, Sachdev S

    2014-10-23

    PDZ (PSD-95/Discs-large/ZO1) domains are interaction modules that typically bind to specific C-terminal sequences of partner proteins and assemble signaling complexes in multicellular organisms. We have analyzed the existing database of PDZ domain structures in the context of a specificity tree based on binding specificities defined by peptide-phage binding selections. We have identified 16 structures of PDZ domains in complex with high-affinity ligands and have elucidated four additional structures to assemble a structural database that covers most of the branches of the PDZ specificity tree. A detailed comparison of the structures reveals features that are responsible for the diverse specificities across the PDZ domain family. Specificity differences can be explained by differences in PDZ residues that are in contact with the peptide ligands, but these contacts involve both side-chain and main-chain interactions. Most PDZ domains bind peptides in a canonical conformation in which the ligand main chain adopts an extended β-strand conformation by interacting in an antiparallel fashion with a PDZ β-strand. However, a subset of PDZ domains bind peptides with a bent main-chain conformation and the specificities of these non-canonical domains could not be explained based on canonical structures. Our analysis provides a structural portrait of the PDZ domain family, which serves as a guide in understanding the structural basis for the diverse specificities across the family.

  10. Crystallographic and Nuclear Magnetic Resonance Evaluation of the Impact of Peptide Binding to the Second PDZ Domain of Protein Tyrosine Phosphatase 1E

    SciTech Connect

    J Zhang; P Sapienza; H Ke; A Chang; S Hengel; H Wang; G Phillips Jr.; A Lee

    2011-12-31

    PDZ (PSD95/Discs large/ZO-1) domains are ubiquitous protein interaction motifs found in scaffolding proteins involved in signal transduction. Despite the fact that many PDZ domains show a limited tendency to undergo structural change, the PDZ family has been associated with long-range communication and allostery. One of the PDZ domains studied most in terms of structure and biophysical properties is the second PDZ ('PDZ2') domain from protein tyrosine phosphatase 1E (PTP1E, also known as PTPL1). Previously, we showed through NMR relaxation studies that binding of the RA-GEF2 C-terminal peptide substrate results in long-range propagation of side-chain dynamic changes in human PDZ2 [Fuentes, E. J., et al. (2004) J. Mol. Biol. 335, 1105-1115]. Here, we present the first X-ray crystal structures of PDZ2 in the absence and presence of RA-GEF2 ligand, determined to resolutions of 1.65 and 1.3 {angstrom}, respectively. These structures deviate somewhat from previously determined NMR structures and indicate that very minor structural changes in PDZ2 accompany peptide binding. NMR residual dipolar couplings confirm the crystal structures to be accurate models of the time-averaged atomic coordinates of PDZ2. The impact on side-chain dynamics was further tested with a C-terminal peptide from APC, which showed results nearly identical to those of RA-GEF2. Thus, allosteric transmission in PDZ2 induced by peptide binding is conveyed purely and robustly by dynamics. {sup 15}N relaxation dispersion measurements did not detect appreciable populations of a kinetic structural intermediate. Collectively, for ligand binding to PDZ2, these data support a lock-and-key binding model from a structural perspective and an allosteric model from a dynamical perspective, which together suggest a complex energy landscape for functional transitions within the ensemble.

  11. The PDZ3 domain of the cellular scaffolding protein MAGI-1 interacts with the Coxsackievirus and adenovirus receptor (CAR).

    PubMed

    Yan, Ran; Sharma, Priyanka; Kolawole, Abimbola O; Martin, Sterling C T; Readler, James M; Kotha, Poornima L N; Hostetler, Heather A; Excoffon, Katherine J D A

    2015-04-01

    The Coxsackievirus and adenovirus receptor (CAR) is an essential cellular protein that is involved in cell-cell adhesion, protein trafficking, and viral infection. The major isoform of CAR is selectively sorted to the basolateral membrane of polarized epithelial cells where it co-localizes with the cellular scaffolding protein membrane-associated guanylate kinase with inverted domain structure-1 (MAGI-1). Previously, we demonstrated CAR interacts with MAGI-1 through a PDZ-domain dependent interaction. Here, we show that the PDZ3 domain of MAGI-1 is exclusively responsible for the high affinity interaction between the seven exon isoform of CAR and MAGI-1 using yeast-two-hybrid analysis and confirming this interaction biochemically and in cellular lysates by in vitro pull down assay and co-immunoprecipitation. The high affinity interaction between the PDZ3 domain and CAR C-terminus was measured by fluorescence resonance energy transfer. Further, we investigated the biological relevance of this high affinity interaction between CAR and the PDZ3 domain of MAGI-1 and found that it does not alter CAR-mediated adenovirus infection. By contrast, interruption of this high affinity interaction altered the localization of MAGI-1 indicating that CAR is able to traffic MAGI-1 to cell junctions. These data deepen the molecular understanding of the interaction between CAR and MAGI-1 and indicate that although CAR plays a role in trafficking PDZ-based scaffolding proteins to cellular junctions, association with a high affinity intracellular binding partner does not significantly alter adenovirus binding and entry via CAR.

  12. Peptide binding properties of the three PDZ domains of Bazooka (Drosophila Par-3).

    PubMed

    Yu, Cao Guo; Tonikian, Raffi; Felsensteiner, Corinna; Jhingree, Jacquelyn R; Desveaux, Darrell; Sidhu, Sachdev S; Harris, Tony J C

    2014-01-01

    The Par complex is a conserved cell polarity regulator. Bazooka/Par-3 is scaffold for the complex and contains three PDZ domains in tandem. PDZ domains can act singly or synergistically to bind the C-termini of interacting proteins. Sequence comparisons among Drosophila Baz and its human and C. elegans Par-3 counterparts indicate a divergence of the peptide binding pocket of PDZ1 and greater conservation for the pockets of PDZ2 and PDZ3. However, it is unclear whether the domains from different species share peptide binding preferences, or if their tandem organization affects their peptide binding properties. To investigate these questions, we first used phage display screens to identify unique peptide binding profiles for each single PDZ domain of Baz. Comparisons with published phage display screens indicate that Baz and C. elegans PDZ2 bind to similar peptides, and that the peptide binding preferences of Baz PDZ3 are more similar to C. elegans versus human PDZ3. Next we quantified the peptide binding preferences of each Baz PDZ domain using single identified peptides in surface plasmon resonance assays. In these direct binding studies, each peptide had a binding preference for a single PDZ domain (although the peptide binding of PDZ2 was weakest and the least specific). PDZ1 and PDZ3 bound their peptides with dissociation constants in the nM range, whereas PDZ2-peptide binding was in the µM range. To test whether tandem PDZ domain organization affects peptide binding, we examined a fusion protein containing all three PDZ domains and their normal linker regions. The binding strengths of the PDZ-specific peptides to single PDZ domains and to the PDZ domain tandem were indistinguishable. Thus, the peptide binding pockets of each PDZ domain in Baz are not obviously affected by the presence of neighbouring PDZ domains, but act as isolated modules with specific in vitro peptide binding preferences.

  13. Solution structure of Q388A3 PDZ domain from Trypanosoma brucei.

    PubMed

    Mei, Song; Dong, Yuanqiu; Zhang, Jiahai; Zhang, Xuecheng; Tu, Xiaoming

    2016-05-01

    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins and regulate multiple biological processes. So far, no PDZ domain in Trypanosoma brucei, an eukaryotic parasite causing sleeping sickness, has been studied. Q388A3, conserved in the related kinetoplastid parasites, is a 1634-residue protein containing a PDZ domain at its C-terminus. In this work, the solution structure of Q388A3 PDZ domain was solved by NMR spectroscopy. Q388A3 PDZ domain adopts a PDZ-like fold composed by a five-stranded β-sheet capped by two α-helices, which is similar to the PDZ domains from HtrA family proteins. Meanwhile, Q388A3 PDZ domain shows some structural features quite different from HtrA PDZ domain.

  14. Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1.

    PubMed

    Noda, Yumi; Horikawa, Saburo; Furukawa, Tetsushi; Hirai, Keiji; Katayama, Yoshifumi; Asai, Tomoki; Kuwahara, Michio; Katagiri, Koko; Kinashi, Tatsuo; Hattori, Masakazu; Minato, Nagahiro; Sasaki, Sei

    2004-06-18

    Targeted positioning of water channel aquaporin-2 (AQP2) strictly regulates body water homeostasis. Trafficking of AQP2 to the apical membrane is critical to the reabsorption of water in renal collecting ducts. Controlled apical positioning of AQP2 suggests the existence of proteins that interact with AQP2. A biochemical search for AQP2-interacting proteins led to the identification of PDZ-domain containing protein, signal-induced proliferation-associated gene-1 (SPA-1) which is a GTPase-activating protein (GAP) for Rap1. The distribution of SPA-1 coincided with that of AQP2 in renal collecting ducts. The site of colocalization was concomitantly relocated by hydration status. AQP2 trafficking to the apical membrane was inhibited by the SPA-1 mutant lacking Rap1GAP activity and by the constitutively active mutant of Rap1. AQP2 trafficking was impaired in SPA-1-deficient mice. Our results show that SPA-1 directly binds to AQP2 and regulates at least in part AQP2 trafficking.

  15. A tripartite nuclear localization signal in the PDZ-domain protein L-periaxin.

    PubMed

    Sherman, D L; Brophy, P J

    2000-02-18

    The murine Periaxin gene encodes two PDZ-domain proteins in myelin-forming Schwann cells of the vertebrate peripheral nervous system (Dytrych, L., Sherman, D. L., Gillespie, C. S., and Brophy, P. J. (1998) J. Biol. Chem. 273, 5794-5800). Here we show that L-periaxin is targeted to the nucleus of embryonic Schwann cells. Subsequently, the protein redistributes to the plasma membrane processes of the myelinating Schwann cell where it is believed to function in a signaling complex. In contrast, L-periaxin remains in the nucleus when expressed ectopically in oligodendrocytes, the myelin-forming glia of the central nervous system. The nuclear localization signal (NLS) is basic and tripartite and comprises three signals that act synergistically. Nuclear targeting of L-periaxin is energy-dependent and is inhibited by cell-cell contact. These data show that L-periaxin is a member of a growing family of proteins that can shuttle between the nucleus and cortical signaling/adherence complexes.

  16. The Coxsackievirus and adenovirus receptor (CAR) forms a complex with the PDZ domain-containing protein ligand-of-numb protein-X (LNX).

    PubMed

    Sollerbrant, Kerstin; Raschperger, Elisabeth; Mirza, Momina; Engstrom, Ulla; Philipson, Lennart; Ljungdahl, Per O; Pettersson, Ralf F

    2003-02-28

    The Coxsackievirus and adenovirus receptor (CAR) functions as a virus receptor, but its primary biological function is unknown. A yeast two-hybrid screen was used to identify Ligand-of-Numb protein-X (LNX) as a binding partner to the intracellular tail of CAR. LNX harbors several protein-protein interacting domains, including four PDZ domains, and was previously shown to bind to and regulate the expression level of the cell-fate determinant Numb. CAR was able to bind LNX both in vivo and in vitro. Efficient binding to LNX required not only the consensus PDZ domain binding motif in the C terminus of CAR but also upstream sequences. The CAR binding region in LNX was mapped to the second PDZ domain. CAR and LNX were also shown to colocalize in vivo in mammalian cells. We speculate that CAR and LNX are part of a larger protein complex that might have important functions at discrete subcellular localizations in the cell.

  17. A model for regulation by SynGAP-α1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density

    PubMed Central

    Walkup, Ward G; Mastro, Tara L; Schenker, Leslie T; Vielmetter, Jost; Hu, Rebecca; Iancu, Ariella; Reghunathan, Meera; Bannon, Barry Dylan; Kennedy, Mary B

    2016-01-01

    SynGAP is a Ras/Rap GTPase-activating protein (GAP) that is a major constituent of postsynaptic densities (PSDs) from mammalian forebrain. Its α1 isoform binds to all three PDZ (PSD-95, Discs-large, ZO-1) domains of PSD-95, the principal PSD scaffold, and can occupy as many as 15% of these PDZ domains. We present evidence that synGAP-α1 regulates the composition of the PSD by restricting binding to the PDZ domains of PSD-95. We show that phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Polo-like kinase-2 (PLK2) decreases its affinity for the PDZ domains by several fold, which would free PDZ domains for occupancy by other proteins. Finally, we show that three critical postsynaptic signaling proteins that bind to the PDZ domains of PSD-95 are present in higher concentration in PSDs isolated from mice with a heterozygous deletion of synGAP. DOI: http://dx.doi.org/10.7554/eLife.16813.001 PMID:27623146

  18. Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures.

    PubMed

    Ye, Fei; Zhang, Mingjie

    2013-10-01

    PDZ domains are highly abundant protein-protein interaction modules and are often found in multidomain scaffold proteins. PDZ-domain-containing scaffold proteins regulate multiple biological processes, including trafficking and clustering receptors and ion channels at defined membrane regions, organizing and targeting signalling complexes at specific cellular compartments, interfacing cytoskeletal structures with membranes, and maintaining various cellular structures. PDZ domains, each with ~90-amino-acid residues folding into a highly similar structure, are best known to bind to short C-terminal tail peptides of their target proteins. A series of recent studies have revealed that, in addition to the canonical target-binding mode, many PDZ-target interactions involve amino acid residues beyond the regular PDZ domain fold, which we refer to as extensions. Such extension sequences often form an integral structural and functional unit with the attached PDZ domain, which is defined as a PDZ supramodule. Correspondingly, PDZ-domain-binding sequences from target proteins are frequently found to require extension sequences beyond canonical short C-terminal tail peptides. Formation of PDZ supramodules not only affords necessary binding specificities and affinities demanded by physiological functions of PDZ domain targets, but also provides regulatory switches to be built in the PDZ-target interactions. At the 20th anniversary of the discovery of PDZ domain proteins, we try to summarize structural features and target-binding properties of such PDZ supramodules emerging from studies in recent years.

  19. Genome-Wide Analysis of PDZ Domain Binding Reveals Inherent Functional Overlap within the PDZ Interaction Network

    PubMed Central

    te Velthuis, Aartjan J. W.; Sakalis, Philippe A.; Fowler, Donald A.; Bagowski, Christoph P.

    2011-01-01

    Binding selectivity and cross-reactivity within one of the largest and most abundant interaction domain families, the PDZ family, has long been enigmatic. The complete human PDZ domain complement (the PDZome) consists of 267 domains and we applied here a Bayesian selectivity model to predict hundreds of human PDZ domain interactions, using target sequences of 22,997 non-redundant proteins. Subsequent analysis of these binding scores shows that PDZs can be divided into two genome-wide clusters that coincide well with the division between canonical class 1 and 2 PDZs. Within the class 1 PDZs we observed binding overlap at unprecedented levels, mediated by two residues at positions 1 and 5 of the second α-helix of the binding pocket. Eight PDZ domains were subsequently selected for experimental binding studies and to verify the basics of our predictions. Overall, the PDZ domain class 1 cross-reactivity identified here implies that auxiliary mechanisms must be in place to overcome this inherent functional overlap and to minimize cross-selectivity within the living cell. Indeed, when we superimpose PDZ domain binding affinities with gene ontologies, network topology data and the domain position within a PDZ superfamily protein, functional overlap is minimized and PDZ domains position optimally in the binding space. We therefore propose that PDZ domain selectivity is achieved through cellular context rather than inherent binding specificity. PMID:21283644

  20. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins.

    PubMed

    Kirubakaran, Palani; Pfeiferová, Lucie; Boušová, Kristýna; Bednarova, Lucie; Obšilová, Veronika; Vondrášek, Jiří

    2016-10-01

    Artificial multidomain proteins with enhanced structural and functional properties can be utilized in a broad spectrum of applications. The design of chimeric fusion proteins utilizing protein domains or one-domain miniproteins as building blocks is an important advancement for the creation of new biomolecules for biotechnology and medical applications. However, computational studies to describe in detail the dynamics and geometry properties of two-domain constructs made from structurally and functionally different proteins are lacking. Here, we tested an in silico design strategy using all-atom explicit solvent molecular dynamics simulations. The well-characterized PDZ3 and SH3 domains of human zonula occludens (ZO-1) (3TSZ), along with 5 artificial domains and 2 types of molecular linkers, were selected to construct chimeric two-domain molecules. The influence of the artificial domains on the structure and dynamics of the PDZ3 and SH3 domains was determined using a range of analyses. We conclude that the artificial domains can function as allosteric modulators of the PDZ3 and SH3 domains. Proteins 2016; 84:1358-1374. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Family-wide investigation of PDZ domain-mediated protein–protein interactions implicates β-catenin in maintaining the integrity of tight junctions

    PubMed Central

    Gujral, Taranjit S.; Karp, Ethan S.; Chan, Marina; Chang, Bryan H.; MacBeath, Gavin

    2013-01-01

    Summary β-catenin is a multifunctional protein that plays a critical role in cell–cell contacts and signal transduction. β-catenin has previously been shown to interact with PDZ domain-containing proteins through its C-terminus. Using protein microarrays comprising 206 mouse PDZ domains, we identified 26 PDZ domain-mediated interactions with β-catenin and subsequently confirmed them both in vitro and in cellular lysates. Many of the newly discovered interactions involved proteins with annotated roles in the formation or maintenance of tight junctions. We found that four tight junction-associated PDZ proteins – Scrib, Magi-1, Pard3, and ZO-3 – co-localize with β-catenin at the plasma membrane in MDCK epithelial cells. Disrupting these interactions, either by RNAi, overexpression of isolated PDZ domains, or overexpression of the C-terminus of β-catenin, altered localization of the full-length proteins, weakened tight junctions, and decreased cellular adhesion. These results suggest a novel role for β-catenin as a scaffold to establish the location and function of tight junction-associated proteins. PMID:23790492

  2. Zasp52, a Core Z-disc Protein in Drosophila Indirect Flight Muscles, Interacts with α-Actinin via an Extended PDZ Domain

    PubMed Central

    Liao, Kuo An; González-Morales, Nicanor

    2016-01-01

    Z-discs are organizing centers that establish and maintain myofibril structure and function. Important Z-disc proteins are α-actinin, which cross-links actin thin filaments at the Z-disc and Zasp PDZ domain proteins, which directly interact with α-actinin. Here we investigate the biochemical and genetic nature of this interaction in more detail. Zasp52 is the major Drosophila Zasp PDZ domain protein, and is required for myofibril assembly and maintenance. We show by in vitro biochemistry that the PDZ domain plus a C-terminal extension is the only area of Zasp52 involved in the interaction with α-actinin. In addition, site-directed mutagenesis of 5 amino acid residues in the N-terminal part of the PDZ domain, within the PWGFRL motif, abolish binding to α-actinin, demonstrating the importance of this motif for α-actinin binding. Rescue assays of a novel Zasp52 allele demonstrate the crucial importance of the PDZ domain for Zasp52 function. Flight assays also show that a Zasp52 mutant suppresses the α-actinin mutant phenotype, indicating that both proteins are core structural Z-disc proteins required for optimal Z-disc function. PMID:27783625

  3. Systematic Analysis of Bacterial Effector-Postsynaptic Density 95/Disc Large/Zonula Occludens-1 (PDZ) Domain Interactions Demonstrates Shigella OspE Protein Promotes Protein Kinase C Activation via PDLIM Proteins*

    PubMed Central

    Yi, Chae-ryun; Allen, John E.; Russo, Brian; Lee, Soo Young; Heindl, Jason E.; Baxt, Leigh A.; Herrera, Bobby Brooke; Kahoud, Emily; MacBeath, Gavin; Goldberg, Marcia B.

    2014-01-01

    Diseases caused by many Gram-negative bacterial pathogens depend on the activities of bacterial effector proteins that are delivered into eukaryotic cells via specialized secretion systems. Effector protein function largely depends on specific subcellular targeting and specific interactions with cellular ligands. PDZ domains are common domains that serve to provide specificity in protein-protein interactions in eukaryotic systems. We show that putative PDZ-binding motifs are significantly enriched among effector proteins delivered into mammalian cells by certain bacterial pathogens. We use PDZ domain microarrays to identify candidate interaction partners of the Shigella flexneri effector proteins OspE1 and OspE2, which contain putative PDZ-binding motifs. We demonstrate in vitro and in cells that OspE proteins interact with PDLIM7, a member of the PDLIM family of proteins, which contain a PDZ domain and one or more LIM domains, protein interaction domains that participate in a wide variety of functions, including activation of isoforms of protein kinase C (PKC). We demonstrate that activation of PKC during S. flexneri infection is attenuated in the absence of PDLIM7 or OspE proteins and that the OspE PDZ-binding motif is required for wild-type levels of PKC activation. These results are consistent with a model in which binding of OspE to PDLIM7 during infection regulates the activity of PKC isoforms that bind to the PDLIM7 LIM domain. PMID:25124035

  4. Application of Wavelet Transform for PDZ Domain Classification

    PubMed Central

    Daqrouq, Khaled; Alhmouz, Rami; Balamesh, Ahmed; Memic, Adnan

    2015-01-01

    PDZ domains have been identified as part of an array of signaling proteins that are often unrelated, except for the well-conserved structural PDZ domain they contain. These domains have been linked to many disease processes including common Avian influenza, as well as very rare conditions such as Fraser and Usher syndromes. Historically, based on the interactions and the nature of bonds they form, PDZ domains have most often been classified into one of three classes (class I, class II and others - class III), that is directly dependent on their binding partner. In this study, we report on three unique feature extraction approaches based on the bigram and trigram occurrence and existence rearrangements within the domain's primary amino acid sequences in assisting PDZ domain classification. Wavelet packet transform (WPT) and Shannon entropy denoted by wavelet entropy (WE) feature extraction methods were proposed. Using 115 unique human and mouse PDZ domains, the existence rearrangement approach yielded a high recognition rate (78.34%), which outperformed our occurrence rearrangements based method. The recognition rate was (81.41%) with validation technique. The method reported for PDZ domain classification from primary sequences proved to be an encouraging approach for obtaining consistent classification results. We anticipate that by increasing the database size, we can further improve feature extraction and correct classification. PMID:25860375

  5. CD93 interacts with the PDZ domain-containing adaptor protein GIPC: implications in the modulation of phagocytosis.

    PubMed

    Bohlson, Suzanne S; Zhang, Mingyu; Ortiz, Christopher E; Tenner, Andrea J

    2005-01-01

    CD93 was originally identified as a myeloid cell-surface marker and subsequently associated with an ability to modulate phagocytosis of suboptimally opsonized immunoglobulin G and complement particles in vitro. Recent studies using mice deficient in CD93 have demonstrated that this molecule modulates phagocytosis of apoptotic cells in vivo. To investigate signal transduction mechanisms mediated by CD93, CD93 cytoplasmic tail (CYTO)-binding proteins were identified in a yeast two-hybrid screen. Fifteen of 34 positive clones contained a splice variant or a partial cDNA encoding GIPC, a PSD-95/Dlg/ZO-1 (PDZ) domain-containing protein, shown previously to regulate cytoskeletal dynamics. A single clone of the N-terminal kinase-like protein p105 and an uncharacterized stem cell transcript also showed specificity for binding to the CYTO by yeast two-hybrid. Using the yeast two-hybrid system and an in vitro glutathione S-transferase fusion protein-binding assay, the binding of GIPC to the CYTO was shown to involve a newly identified class I PDZ-binding domain in the CD93 carboxyl terminus. Four positively charged amino acids in the juxtamembrane domain of CD93 were shown to be critical in stabilizing these interactions. Treatment of human monocytes with a cell-permeable peptide encoding the C-terminal 11 amino acids of CD93 resulted in an enhancement of phagocytosis, supporting the hypothesis that this protein-protein interaction domain is involved in the modulation of phagocytosis. These protein interactions may participate as molecular switches in modulating cellular phagocytic activity.

  6. The PDZ-Domain Protein Whirlin Facilitates Mechanosensory Signaling in Mammalian Proprioceptors

    PubMed Central

    Simon, Christian M.; Simon, Anna; Doobar, Staceyann; Steel, Karen P.; Banks, Robert W.; Mentis, George Z.

    2015-01-01

    Mechanoreception is an essential feature of many sensory modalities. Nevertheless, the mechanisms that govern the conversion of a mechanical force to distinct patterns of action potentials remain poorly understood. Proprioceptive mechanoreceptors reside in skeletal muscle and inform the nervous system of the position of body and limbs in space. We show here that Whirlin/Deafness autosomal recessive 31 (DFNB31), a PDZ-scaffold protein involved in vestibular and auditory hair cell transduction, is also expressed by proprioceptive sensory neurons (pSNs) in dorsal root ganglia in mice. Whirlin localizes to the peripheral sensory endings of pSNs and facilitates pSN afferent firing in response to muscle stretch. The requirement of Whirlin in both proprioceptors and hair cells suggests that accessory mechanosensory signaling molecules define common features of mechanoreceptive processing across sensory systems. PMID:25698744

  7. PDZ domain containing protein 1 (PDZK1), a modulator of membrane proteins, is regulated by the nuclear receptor THRβ.

    PubMed

    Ferreira, Celio; Prestin, Katharina; Hussner, Janine; Zimmermann, Uwe; Meyer Zu Schwabedissen, Henriette E

    2017-09-18

    Genome wide association studies revealed single nucleotide polymorphisms (SNP) located within the promoter of PDZ domain containing protein 1 (PDZK1) to be associated with serum uric acid levels. Since modulation of transporters and particularly of membrane proteins involved in uric acid handling by PDZK1 has previously been reported, the aim of this study was to analyze the impact of the polymorphisms rs1967017, rs1471633, and rs12129861 on promoter activity and thereby transcription of PDZK1. Cell-based reporter gene assays showed transactivation of the PDZK1-promoter by triiodothyronine mediated by thyroid hormone receptors (THR) α and β. In silico analysis verified localization of the polymorphism rs1967017 within the most likely THR binding site whose deletion reduced THR-mediated transactivation. Furthermore, our study shows regulation of PDZK1 by thyroid hormones, thereby providing a mechanistic basis for the previously reported associations between thyroid hormone status and uric acid homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A syntenin-like protein with postsynaptic density protein (PDZ) domains produced by black tiger shrimp Penaeus monodon in response to white spot syndrome virus infection.

    PubMed

    Bangrak, Phuwadol; Graidist, Potchanapond; Chotigeat, Wilaiwan; Supamattaya, Kidchakan; Phongdara, Amornrat

    2002-04-24

    We report the isolation and characterization of products from a subtractive cDNA library from the haemolymph of Penaeus monodon experimentally infected with white spot syndrome virus (WSSV). One cDNA derived from up-regulated mRNA was identified. A homology search indicated similarity to the putative protein syntenin (TE8). The nearly complete nucleotide sequence of TE8 was obtained by rapid amplification of cDNA (RACE). Its putative protein product contained a tandem repeat of PDZ domains (postsynaptic density protein or PSD-95, DlgA and ZO-1). We propose that TE8 may function as an adapter that couples PDZ-binding protein(s) in a signaling pathway involved in the shrimp response to WSSV.

  9. The PDZ-Ligand and Src-Homology Type 3 Domains of Epidemic Avian Influenza Virus NS1 Protein Modulate Human Src Kinase Activity during Viral Infection

    PubMed Central

    Bavagnoli, Laura; Dundon, William G.; Garbelli, Anna; Zecchin, Bianca; Milani, Adelaide; Parakkal, Geetha; Baldanti, Fausto; Paolucci, Stefania; Volmer, Romain; Tu, Yizeng; Wu, Chuanyue; Capua, Ilaria; Maga, Giovanni

    2011-01-01

    The Non-structural 1 (NS1) protein of avian influenza (AI) viruses is important for pathogenicity. Here, we identify a previously unrecognized tandem PDZ-ligand (TPL) domain in the extreme carboxy terminus of NS1 proteins from a subset of globally circulating AI viruses. By using protein arrays we have identified several human PDZ-cellular ligands of this novel domain, one of which is the RIL protein, a known regulator of the cellular tyrosine kinase Src. We found that the AI NS1 proteins bind and stimulate human Src tyrosine kinase, through their carboxy terminal Src homology type 3-binding (SHB) domain. The physical interaction between NS1 and Src and the ability of AI viruses to modulate the phosphorylation status of Src during the infection, were found to be influenced by the TPL arrangement. These results indicate the potential for novel host-pathogen interactions mediated by the TPL and SHB domains of AI NS1 protein. PMID:22110760

  10. Extensions of PDZ domains as important structural and functional elements.

    PubMed

    Wang, Conan K; Pan, Lifeng; Chen, Jia; Zhang, Mingjie

    2010-08-01

    'Divide and conquer' has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions 'extensions'. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results ( http://bcz102.ust.hk/pdzex/ ). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.

  11. The Tiam1 PDZ domain couples to Syndecan1 and promotes cell-matrix adhesion.

    PubMed

    Shepherd, Tyson R; Klaus, Suzi M; Liu, Xu; Ramaswamy, S; DeMali, Kris A; Fuentes, Ernesto J

    2010-05-21

    The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a "model" peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer. (c) 2010 Elsevier Ltd. All rights reserved.

  12. The Tiam1 PDZ Domain Couples to Syndecan1 and Promotes Cell-Matrix Adhesion

    PubMed Central

    Shepherd, Tyson R.; Klaus, Suzi M.; Liu, Xu; Ramaswamy, S.; DeMali, Kris A.; Fuentes, Ernesto J.

    2017-01-01

    The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a “model” peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer. PMID:20361982

  13. The Tiam1 PDZ Domain Couples to Syndecan1 and Promotes Cell-Matrix Adhesion

    SciTech Connect

    Shepherd, Tyson R; Klaus, Suzi M; Liu, Xu; Ramaswamy, S; DeMali, Kris A; Fuentes, Ernesto J

    2010-08-12

    The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a 'model' peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer.

  14. Computational Design of the Tiam1 PDZ Domain and Its Ligand Binding.

    PubMed

    Mignon, David; Panel, Nicolas; Chen, Xingyu; Fuentes, Ernesto J; Simonson, Thomas

    2017-05-09

    PDZ domains direct protein-protein interactions and serve as models for protein design. Here, we optimized a protein design energy function for the Tiam1 and Cask PDZ domains that combines a molecular mechanics energy, Generalized Born solvent, and an empirical unfolded state model. Designed sequences were recognized as PDZ domains by the Superfamily fold recognition tool and had similarity scores comparable to natural PDZ sequences. The optimized model was used to redesign the two PDZ domains, by gradually varying the chemical potential of hydrophobic amino acids; the tendency of each position to lose or gain a hydrophobic character represents a novel hydrophobicity index. We also redesigned four positions in the Tiam1 PDZ domain involved in peptide binding specificity. The calculated affinity differences between designed variants reproduced experimental data and suggest substitutions with altered specificities.

  15. Rewiring of PDZ Domain-Ligand Interaction Network Contributed to Eukaryotic Evolution

    PubMed Central

    Kim, Jinho; Kim, Inhae; Yang, Jae-Seong; Shin, Young-Eun; Hwang, Jihye; Park, Solip; Choi, Yoon Sup; Kim, Sanguk

    2012-01-01

    PDZ domain-mediated interactions have greatly expanded during metazoan evolution, becoming important for controlling signal flow via the assembly of multiple signaling components. The evolutionary history of PDZ domain-mediated interactions has never been explored at the molecular level. It is of great interest to understand how PDZ domain-ligand interactions emerged and how they become rewired during evolution. Here, we constructed the first human PDZ domain-ligand interaction network (PDZNet) together with binding motif sequences and interaction strengths of ligands. PDZNet includes 1,213 interactions between 97 human PDZ proteins and 591 ligands that connect most PDZ protein-mediated interactions (98%) in a large single network via shared ligands. We examined the rewiring of PDZ domain-ligand interactions throughout eukaryotic evolution by tracing changes in the C-terminal binding motif sequences of the PDZ ligands. We found that interaction rewiring by sequence mutation frequently occurred throughout evolution, largely contributing to the growth of PDZNet. The rewiring of PDZ domain-ligand interactions provided an effective means of functional innovations in nervous system development. Our findings provide empirical evidence for a network evolution model that highlights the rewiring of interactions as a mechanism for the development of new protein functions. PDZNet will be a valuable resource to further characterize the organization of the PDZ domain-mediated signaling proteome. PMID:22346764

  16. The role of protein kinase A regulation of the E6 PDZ-binding domain during the differentiation-dependent life cycle of human papillomavirus type 18.

    PubMed

    Delury, Craig P; Marsh, Elizabeth K; James, Claire D; Boon, Siaw Shi; Banks, Lawrence; Knight, Gillian L; Roberts, Sally

    2013-09-01

    Human papillomavirus (HPV) E6 proteins of high-risk alpha types target a select group of PSD95/DLG1/ZO1 (PDZ) domain-containing proteins by using a C-terminal PDZ-binding motif (PBM), an interaction that can be negatively regulated by phosphorylation of the E6 PBM by protein kinase A (PKA). Here, we have mutated the canonical PKA recognition motif that partially overlaps with the E6 PBM in the HPV18 genome (E6153PKA) and compared the effect of this mutation on the HPVl8 life cycle in primary keratinocytes with the wild-type genome and with a second mutant genome that lacks the E6 PBM (E6ΔPDZ). Loss of PKA recognition of E6 was associated with increased growth of the genome-containing cells relative to cells carrying the wild-type genome, and upon stratification, a more hyperplastic phenotype, with an increase in the number of S-phase competent cells in the upper suprabasal layers, while the opposite was seen with the E6ΔPDZ genome. Moreover, the growth of wild-type genome-containing cells was sensitive to changes in PKA activity, and these changes were associated with increased phosphorylation of the E6 PBM. In marked contrast to E6ΔPDZ genomes, the E6153PKA mutation exhibited no deleterious effects on viral genome amplification or expression of late proteins. Our data suggest that the E6 PBM function is differentially regulated by phosphorylation in the HPV18 life cycle. We speculate that perturbation of protein kinase signaling pathways could lead to changes in E6 PBM function, which in turn could have a bearing on tumor promotion and progression.

  17. The Role of Protein Kinase A Regulation of the E6 PDZ-Binding Domain during the Differentiation-Dependent Life Cycle of Human Papillomavirus Type 18

    PubMed Central

    Delury, Craig P.; Marsh, Elizabeth K.; James, Claire D.; Boon, Siaw Shi; Banks, Lawrence; Knight, Gillian L.

    2013-01-01

    Human papillomavirus (HPV) E6 proteins of high-risk alpha types target a select group of PSD95/DLG1/ZO1 (PDZ) domain-containing proteins by using a C-terminal PDZ-binding motif (PBM), an interaction that can be negatively regulated by phosphorylation of the E6 PBM by protein kinase A (PKA). Here, we have mutated the canonical PKA recognition motif that partially overlaps with the E6 PBM in the HPV18 genome (E6153PKA) and compared the effect of this mutation on the HPVl8 life cycle in primary keratinocytes with the wild-type genome and with a second mutant genome that lacks the E6 PBM (E6ΔPDZ). Loss of PKA recognition of E6 was associated with increased growth of the genome-containing cells relative to cells carrying the wild-type genome, and upon stratification, a more hyperplastic phenotype, with an increase in the number of S-phase competent cells in the upper suprabasal layers, while the opposite was seen with the E6ΔPDZ genome. Moreover, the growth of wild-type genome-containing cells was sensitive to changes in PKA activity, and these changes were associated with increased phosphorylation of the E6 PBM. In marked contrast to E6ΔPDZ genomes, the E6153PKA mutation exhibited no deleterious effects on viral genome amplification or expression of late proteins. Our data suggest that the E6 PBM function is differentially regulated by phosphorylation in the HPV18 life cycle. We speculate that perturbation of protein kinase signaling pathways could lead to changes in E6 PBM function, which in turn could have a bearing on tumor promotion and progression. PMID:23804647

  18. The PDZ domain as a complex adaptive system.

    PubMed

    Kurakin, Alexei; Swistowski, Andrzej; Wu, Susan C; Bredesen, Dale E

    2007-09-26

    Specific protein associations define the wiring of protein interaction networks and thus control the organization and functioning of the cell as a whole. Peptide recognition by PDZ and other protein interaction domains represents one of the best-studied classes of specific protein associations. However, a mechanistic understanding of the relationship between selectivity and promiscuity commonly observed in the interactions mediated by peptide recognition modules as well as its functional meaning remain elusive. To address these questions in a comprehensive manner, two large populations of artificial and natural peptide ligands of six archetypal PDZ domains from the synaptic proteins PSD95 and SAP97 were generated by target-assisted iterative screening (TAIS) of combinatorial peptide libraries and by synthesis of proteomic fragments, correspondingly. A comparative statistical analysis of affinity-ranked artificial and natural ligands yielded a comprehensive picture of known and novel PDZ ligand specificity determinants, revealing a hitherto unappreciated combination of specificity and adaptive plasticity inherent to PDZ domain recognition. We propose a reconceptualization of the PDZ domain in terms of a complex adaptive system representing a flexible compromise between the rigid order of exquisite specificity and the chaos of unselective promiscuity, which has evolved to mediate two mutually contradictory properties required of such higher order sub-cellular organizations as synapses, cell junctions, and others--organizational structure and organizational plasticity/adaptability. The generalization of this reconceptualization in regard to other protein interaction modules and specific protein associations is consistent with the image of the cell as a complex adaptive macromolecular system as opposed to clockwork.

  19. Characterization of big bang, a novel gene encoding for PDZ domain-containing proteins that are dynamically expressed throughout Drosophila development.

    PubMed

    Kim, Sabrina Y; Renihan, Maia K; Boulianne, Gabrielle L

    2006-06-01

    PDZ (PSD-95, Discs-large, ZO-1) domain proteins often function as scaffolding proteins and have been shown to play important roles in diverse cellular processes such as the establishment and maintenance of cell polarity, and signal transduction. Here, we report the identification and cloning of a novel Drosophila melanogaster gene that is predicted to produce several different PDZ domain-containing proteins through alternative promoter usage and alternative splicing. This gene, that we have named big bang (bbg), was first identified as C96-GAL4, a GAL4 enhancer trap line that was generated in our lab. To further characterize bbg, its expression pattern was examined in ovaries, embryos, and late third instar larvae using UAS reporter gene constructs, in situ hybridization, or immunocytochemistry. In addition, the expression of alternatively spliced transcripts was examined in more detail using in situ hybridization. We find that during embryogenesis bbg is predominantly expressed in the developing gut, but it is also expressed in external sensory organs found in the epidermis. In the late third instar larva, bbg is expressed along the presumptive wing margin in the wing disc, broadly in the eye disc, and in other imaginal discs as well as in the brain. The expression patterns observed are dynamic and specific during development, suggesting that like other genes that encode for several different PDZ domain protein isoforms, bbg likely plays important roles in multiple developmental processes.

  20. The impact of extra-domain structures and post-translational modifications in the folding/misfolding behaviour of the third PDZ domain of MAGUK neuronal protein PSD-95.

    PubMed

    Murciano-Calles, Javier; Marin-Argany, Marta; Cobos, Eva S; Villegas, Sandra; Martinez, Jose C

    2014-01-01

    The modulation of binding affinities and specificities by post-translational modifications located out from the binding pocket of the third PDZ domain of PSD-95 (PDZ3) has been reported recently. It is achieved through an intra-domain electrostatic network involving some charged residues in the β2-β3 loop (were a succinimide modification occurs), the α3 helix (an extra-structural element that links the PDZ3 domain with the following SH3 domain in PSD-95, and contains the phosphorylation target Tyr397), and the ligand peptide. Here, we have investigated the main structural and thermodynamic aspects that these structural elements and their related post-translational modifications display in the folding/misfolding pathway of PDZ3 by means of site-directed mutagenesis combined with calorimetry and spectroscopy. We have found that, although all the assayed mutations generate proteins more prone to aggregation than the wild-type PDZ3, those directly affecting the α3 helix, like the E401R substitution or the truncation of the whole α3 helix, increase the population of the DSC-detected intermediate state and the misfolding kinetics, by organizing the supramacromolecular structures at the expense of the two β-sheets present in the PDZ3 fold. However, those mutations affecting the β2-β3 loop, included into the prone-to-aggregation region composed by a single β-sheet comprising β2 to β4 chains, stabilize the trimeric intermediate previously shown in the wild-type PDZ3 and slow-down aggregation, also making it partly reversible. These results strongly suggest that the α3 helix protects to some extent the PDZ3 domain core from misfolding. This might well constitute the first example where an extra-element, intended to link the PDZ3 domain to the following SH3 in PSD-95 and in other members of the MAGUK family, not only regulates the binding abilities of this domain but it also protects PDZ3 from misfolding and aggregation. The influence of the post

  1. The Impact of Extra-Domain Structures and Post-Translational Modifications in the Folding/Misfolding Behaviour of the Third PDZ Domain of MAGUK Neuronal Protein PSD-95

    PubMed Central

    Cobos, Eva S.; Villegas, Sandra; Martinez, Jose C.

    2014-01-01

    The modulation of binding affinities and specificities by post-translational modifications located out from the binding pocket of the third PDZ domain of PSD-95 (PDZ3) has been reported recently. It is achieved through an intra-domain electrostatic network involving some charged residues in the β2–β3 loop (were a succinimide modification occurs), the α3 helix (an extra-structural element that links the PDZ3 domain with the following SH3 domain in PSD-95, and contains the phosphorylation target Tyr397), and the ligand peptide. Here, we have investigated the main structural and thermodynamic aspects that these structural elements and their related post-translational modifications display in the folding/misfolding pathway of PDZ3 by means of site-directed mutagenesis combined with calorimetry and spectroscopy. We have found that, although all the assayed mutations generate proteins more prone to aggregation than the wild-type PDZ3, those directly affecting the α3 helix, like the E401R substitution or the truncation of the whole α3 helix, increase the population of the DSC-detected intermediate state and the misfolding kinetics, by organizing the supramacromolecular structures at the expense of the two β-sheets present in the PDZ3 fold. However, those mutations affecting the β2–β3 loop, included into the prone-to-aggregation region composed by a single β-sheet comprising β2 to β4 chains, stabilize the trimeric intermediate previously shown in the wild-type PDZ3 and slow-down aggregation, also making it partly reversible. These results strongly suggest that the α3 helix protects to some extent the PDZ3 domain core from misfolding. This might well constitute the first example where an extra-element, intended to link the PDZ3 domain to the following SH3 in PSD-95 and in other members of the MAGUK family, not only regulates the binding abilities of this domain but it also protects PDZ3 from misfolding and aggregation. The influence of the post

  2. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove

    SciTech Connect

    Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola; Purkiss, Andrew G.; Thompson, Barry J.; McDonald, Neil Q.

    2015-03-01

    This study characterizes the interaction between the carboxy-terminal (ERLI) motif of the essential polarity protein Crb and the Pals1/Stardust PDZ-domain protein. Structures of human Pals1 PDZ with and without a Crb peptide are described, explaining the highly conserved nature of the ERLI motif and revealing a sterically blocked peptide-binding groove in the absence of ligand. Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction.

  3. High-throughput screen for small molecule inhibitors of Mint1-PDZ domains.

    PubMed

    Chen, Xuesong; Longgood, Jamie C; Michnoff, Carolyn; Wei, Shuguang; Frantz, Doug E; Bezprozvanny, Llya

    2007-12-01

    Several hundred PDZ (postsynaptic density-95, Drosophila disks-large, ZO-1) domain-containing proteins have been identified in the human genome. PDZ domains play a critical role in organization and function of cellular signaling pathways. Thus, small molecule inhibitors of PDZ domain association with their targets have wide potential applications as research and therapeutic agents. PDZ domains typically bind to a carboxyl-terminal tail of the target protein. Here we describe a high-throughput screening (HTS) assay for small molecule inhibitors of association between Mint1-PDZ domains and N-type Ca2+ channel carboxyl-terminal peptide (NC peptide). The performance of a homogeneous time-resolved fluorescence resonance energy transfer (HTRF) and an amplified luminescent proximity homogeneous assay (ALPHA) were systematically compared in parallel pilot HTS experiments with glutathione S-transferase-Mint1-PDZ1/2 protein and biotinylated NC peptide. Both of the two assays showed similar sensitivities in our target protein assay. Using HTRF-based assay we screened a library of 100,000 small molecule compounds and identified a number of potential "hits." The activity of isolated "hits" was confirmed by ALPHA assay. However, further evaluation revealed that isolated "hits" most likely act as "promiscuous binders," not as specific Mint-PDZ inhibitors, and that additional screening will be required to identify the true Mint-PDZ inhibitors. The assays described provided an example of HTS for a small molecule inhibitor of Mint-PDZ domain that can be easily adapted to other PDZ domain-mediated interactions.

  4. Structure-based design of PDZ ligands as inhibitors of 5-HT(2A) receptor/PSD-95 PDZ1 domain interaction possessing anti-hyperalgesic activity.

    PubMed

    Vogrig, Alexandre; Dorr, Liam; Bouzidi, Naoual; Boucherle, Benjamin; Wattiez, Anne-Sophie; Cassier, Elisabeth; Vallon, Gary; Ripoche, Isabelle; Abrunhosa-Thomas, Isabelle; Marin, Philippe; Nauton, Lionel; Thery, Vincent; Courteix, Christine; Lian, Lu-Yun; Ducki, Sylvie

    2013-10-18

    Disrupting the interaction between the PDZ protein PSD-95 and the C-terminal domain of the 5-HT2A serotonin receptor has been shown to reduce hyperalgesia in a rodent model of neuropathic pain. Here, we designed and synthesized PDZ ligands capable of binding to the first PDZ domain (PDZ1) of the PSD-95 protein and evaluated their biological activity in vitro and in vivo. A series of substituted indoles was identified by docking simulations, and six novel analogues were synthesized. Three analogues displayed strong interactions with the first PDZ domain (PDZ1) of PDZ-95 in (1)H-(15)N heteronuclear single-quantum coherence (HSQC) experiments and two of them were able to inhibit the interaction between PSD-95 and the 5-HT2A receptor in vitro. We identified compound 8b as the analogue able to significantly suppress mechanical hyperalgesia in an experimental model of traumatic neuropathic pain in the rat. This effect was suppressed by the coadministration of the 5-HT2A receptor antagonist M100907, consistent with an inhibitory effect upon 5-HT2A receptor/PSD-95 interaction. Finally, we determined an NMR-restraint driven model structure for the PSD95 PDZ1/8b complex, which confirms that indole 8b binds to the putative PDZ-ligand binding site.

  5. Nucleo-cytoplasmic functions of the PDZ-LIM protein family: new insights in organ development

    PubMed Central

    Krcmery, Jennifer; Camarata, Troy; Kulisz, Andre; Simon, Hans-Georg

    2010-01-01

    Summary Recent work on the PDZ-LIM protein family has revealed important activities at the cellular level, mediating signals between the nucleus and the cytoskeleton, with significant impact on organ development. We review and integrate current knowledge about the PDZ-LIM protein family and propose a new functional role, sequestering nuclear factors in the cytoplasm. Characterized by their PDZ and LIM domains, the PDZ-LIM family is comprised of evolutionarily conserved proteins found throughout the animal kingdom, from worms to humans. Combining two functional domains in one protein, PDZ-LIM proteins have wide-ranging and multi-compartmental cell functions during development and homeostasis while, in contrast, misregulation can lead to cancer formation and progression. New emerging roles include interactions with integrins, T-box transcription factors, and receptor tyrosine kinases. Facilitating the assembly of protein complexes, PDZ-LIM proteins can act as signal modulators, influence actin dynamics, regulate cell architecture and control gene transcription. PMID:20091751

  6. Role of PDZ Proteins in Regulating Trafficking, Signaling, and Function of GPCRs: Means, Motif, and Opportunity

    PubMed Central

    Romero, Guillermo; von Zastrow, Mark; Friedman, Peter A.

    2016-01-01

    PDZ proteins, named for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1), constitute a family of 200–300 recognized members. These cytoplasmic adapter proteins are capable of assembling a variety of membrane-associated proteins and signaling molecules in short-lived functional units. Here, we review PDZ proteins that participate in the regulation of signaling, trafficking, and function of G protein-coupled receptors. Salient structural features of PDZ proteins that allow them to recognize targeted GPCRs are considered. Scaffolding proteins harboring PDZ domains may contain single or multiple PDZ modules and may also include other protein–protein interaction modules. PDZ proteins may impact receptor signaling by diverse mechanisms that include retaining the receptor at the cell membrane, thereby increasing the duration of ligand binding, as well as importantly influencing GPCR internalization, trafficking, recycling, and intracellular sorting. PDZ proteins are also capable of modifying the assembled complex of accessory proteins such as β-arrestins that themselves regulate GPCR signaling. Additionally, PDZ proteins may modulate GPCR signaling by altering the G protein to which the receptor binds, or affect other regulatory proteins that impact GTPase activity, protein kinase A, phospholipase C, or modify downstream signaling events. Small molecules targeting the PDZ protein-GPCR interaction are being developed and may become important and selective drug candidates. PMID:21907913

  7. Insights into the C-terminal Peptide Binding Specificity of the PDZ Domain of Neuronal Nitric-oxide Synthase: CHARACTERIZATION OF THE INTERACTION WITH THE TIGHT JUNCTION PROTEIN CLAUDIN-3.

    PubMed

    Merino-Gracia, Javier; Costas-Insua, Carlos; Canales, María Ángeles; Rodríguez-Crespo, Ignacio

    2016-05-27

    Neuronal nitric-oxide synthase, unlike its endothelial and inducible counterparts, displays a PDZ (PSD-95/Dlg/ZO-1) domain located at its N terminus involved in subcellular targeting. The C termini of various cellular proteins insert within the binding groove of this PDZ domain and determine the subcellular distribution of neuronal NOS (nNOS). The molecular mechanisms underlying these interactions are poorly understood because the PDZ domain of nNOS can apparently exhibit class I, class II, and class III binding specificity. In addition, it has been recently suggested that the PDZ domain of nNOS binds with very low affinity to the C termini of target proteins, and a necessary simultaneous lateral interaction must take place for binding to occur. We describe herein that the PDZ domain of nNOS can behave as a bona fide class III PDZ domain and bind to C-terminal sequences with acidic residues at the P-2 position with low micromolar binding constants. Binding to C-terminal sequences with a hydrophobic residue at the P-2 position plus an acidic residue at the P-3 position (class II) can also occur, although interactions involving residues extending up to the P-7 position mediate this type of binding. This promiscuous behavior also extends to its association to class I sequences, which must display a Glu residue at P-3 and a Thr residue at P-2 By means of site-directed mutagenesis and NMR spectroscopy, we have been able to identify the residues involved in each specific type of binding and rationalize the mechanisms used to recognize binding partners. Finally, we have analyzed the high affinity association of the PDZ domain of nNOS to claudin-3 and claudin-14, two tight junction tetraspan membrane proteins that are essential components of the paracellular barrier. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein.

    PubMed

    Takahashi, K; Nakanishi, H; Miyahara, M; Mandai, K; Satoh, K; Satoh, A; Nishioka, H; Aoki, J; Nomoto, A; Mizoguchi, A; Takai, Y

    1999-05-03

    We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").

  9. Small-molecule inhibitors of AF6 PDZ-mediated protein-protein interactions.

    PubMed

    Vargas, Carolyn; Radziwill, Gerald; Krause, Gerd; Diehl, Anne; Keller, Sandro; Kamdem, Nestor; Czekelius, Constantin; Kreuchwig, Annika; Schmieder, Peter; Doyle, Declan; Moelling, Karin; Hagen, Volker; Schade, Markus; Oschkinat, Hartmut

    2014-07-01

    PDZ (PSD-95, Dlg, ZO-1) domains are ubiquitous interaction modules that are involved in many cellular signal transduction pathways. Interference with PDZ-mediated protein-protein interactions has important implications in disease-related signaling processes. For this reason, PDZ domains have gained attention as potential targets for inhibitor design and, in the long run, drug development. Herein we report the development of small molecules to probe the function of the PDZ domain from human AF6 (ALL1-fused gene from chromosome 6), which is an essential component of cell-cell junctions. These compounds bind to AF6 PDZ with substantially higher affinity than the peptide (Ile-Gln-Ser-Val-Glu-Val) derived from its natural ligand, EphB2. In intact cells, the compounds inhibit the AF6-Bcr interaction and interfere with epidermal growth factor (EGF)-dependent signaling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein.

    PubMed Central

    Nemoto, Y; De Camilli, P

    1999-01-01

    Synaptojanin 1 is an inositol 5'-phosphatase highly enriched in nerve terminals with a putative role in recycling of synaptic vesicles. We have previously described synaptojanin 2, which is more broadly expressed as multiple alternatively spliced forms. Here we have identified and characterized a novel mitochondrial outer membrane protein, OMP25, with a single PDZ domain that specifically binds to a unique motif in the C-terminus of synaptojanin 2A. This motif is encoded by the exon sequence specific to synaptojanin 2A. OMP25 mRNA is widely expressed in rat tissues. OMP25 is localized to the mitochondrial outer membrane via the C-terminal transmembrane region, with the PDZ domain facing the cytoplasm. Overexpression of OMP25 results in perinuclear clustering of mitochondria in transfected cells. This effect is mimicked by enforced expression of synaptojanin 2A on the mitochondrial outer membrane, but not by the synaptojanin 2A mutants lacking the inositol 5'-phosphatase domain. Our findings provide evidence that OMP25 mediates recruitment of synaptojanin 2A to mitochondria and that modulation of inositol phospholipids by synaptojanin 2A may play a role in maintenance of the intracellular distribution of mitochondria. PMID:10357812

  11. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain

    SciTech Connect

    Singh, Chingakham R.; Lovell, Scott; Mehzabeen, Nurjahan; Chowdhury, Wasimul Q.; Geanes, Eric S.; Battaile, Kevin P.; Roelofs, Jeroen

    2014-03-25

    The proteasome-assembly chaperone Nas2 binds to the proteasome subunit Rpt5 using its PDZ domain. The structure of the Nas2 PDZ domain has been determined. The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.

  12. Alteration of the C-terminal ligand specificity of the erbin PDZ domain by allosteric mutational effects.

    PubMed

    Murciano-Calles, Javier; McLaughlin, Megan E; Erijman, Ariel; Hooda, Yogesh; Chakravorty, Nishant; Martinez, Jose C; Shifman, Julia M; Sidhu, Sachdev S

    2014-10-23

    Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered specificity for the most C-terminal position (position 0) where a Val is strongly preferred by the wild-type domain. We constructed a library of PDZ domains by randomizing residues in direct contact with position 0 and in a loop that is close to but does not contact position 0. We used phage display to select for PDZ variants that bind to 19 peptide ligands differing only at position 0. To verify that each obtained PDZ domain exhibited the correct binding specificity, we selected peptide ligands for each domain. Despite intensive efforts, we were only able to evolve Erbin PDZ domain variants with selectivity for the aliphatic C-terminal side chains Val, Ile and Leu. Interestingly, many PDZ domains with these three distinct specificities contained identical amino acids at positions that directly contact position 0 but differed in the loop that does not contact position 0. Computational modeling of the selected PDZ domains shows how slight conformational changes in the loop region propagate to the binding site and result in different binding specificities. Our results demonstrate that second-sphere residues could be crucial in determining protein binding specificity.

  13. Proteome scanning to predict PDZ domain interactions using support vector machines

    PubMed Central

    2010-01-01

    Background PDZ domains mediate protein-protein interactions involved in important biological processes through the recognition of short linear motifs in their target proteins. Two recent independent studies have used protein microarray or phage display technology to detect PDZ domain interactions with peptide ligands on a large scale. Several computational predictors of PDZ domain interactions have been developed, however they are trained using only protein microarray data and focus on limited subsets of PDZ domains. An accurate predictor of genomic PDZ domain interactions would allow the proteomes of organisms to be scanned for potential binders. Such an application would require an accurate and precise predictor to avoid generating too many false positive hits given the large amount of possible interactors in a given proteome. Once validated these predictions will help to increase the coverage of current PDZ domain interaction networks and further our understanding of the roles that PDZ domains play in a variety of biological processes. Results We developed a PDZ domain interaction predictor using a support vector machine (SVM) trained with both protein microarray and phage display data. In order to use the phage display data for training, which only contains positive interactions, we developed a method to generate artificial negative interactions. Using cross-validation and a series of independent tests, we showed that our SVM successfully predicts interactions in different organisms. We then used the SVM to scan the proteomes of human, worm and fly to predict binders for several PDZ domains. Predictions were validated using known genomic interactions and published protein microarray experiments. Based on our results, new protein interactions potentially associated with Usher and Bardet-Biedl syndromes were predicted. A comparison of performance measures (F1 measure and FPR) for the SVM and published predictors demonstrated our SVM's improved accuracy and

  14. Sorting Nexin 27 Protein Regulates Trafficking of a p21-activated Kinase (PAK) Interacting Exchange Factor (β-Pix)-G Protein-coupled Receptor Kinase Interacting Protein (GIT) Complex via a PDZ Domain Interaction*

    PubMed Central

    Valdes, Julie L.; Tang, Jingrong; McDermott, Mark I.; Kuo, Jean-Cheng; Zimmerman, Seth P.; Wincovitch, Stephen M.; Waterman, Clare M.; Milgram, Sharon L.; Playford, Martin P.

    2011-01-01

    Sorting nexin 27 (SNX27) is a 62-kDa protein localized to early endosomes and known to regulate the intracellular trafficking of ion channels and receptors. In addition to a PX domain, SNX27 is the only sorting family member that contains a PDZ domain. To identify novel SNX27-PDZ binding partners, we performed a proteomic screen in mouse principal kidney cortical collecting duct cells using a GST-SNX27 fusion construct as bait. We found that β-Pix (p21-activated kinase-interactive exchange factor), a guanine nucleotide exchange factor for the Rho family of small GTPases known to regulate cell motility directly interacted with SNX27. The association of β-Pix and SNX27 is specific for β-Pix isoforms terminating in the type-1 PDZ binding motif (ETNL). In the same screen we also identified Git1/2 as a potential SNX27 interacting protein. The interaction between SNX27 and Git1/2 is indirect and mediated by β-Pix. Furthermore, we show recruitment of the β-Pix·Git complex to endosomal sites in a SNX27-dependent manner. Finally, migration assays revealed that depletion of SNX27 from HeLa and mouse principal kidney cortical collecting duct cells significantly decreases cell motility. We propose a model by which SNX27 regulates trafficking of β-Pix to focal adhesions and thereby influences cell motility. PMID:21926430

  15. Sorting nexin 27 protein regulates trafficking of a p21-activated kinase (PAK) interacting exchange factor (β-Pix)-G protein-coupled receptor kinase interacting protein (GIT) complex via a PDZ domain interaction.

    PubMed

    Valdes, Julie L; Tang, Jingrong; McDermott, Mark I; Kuo, Jean-Cheng; Zimmerman, Seth P; Wincovitch, Stephen M; Waterman, Clare M; Milgram, Sharon L; Playford, Martin P

    2011-11-11

    Sorting nexin 27 (SNX27) is a 62-kDa protein localized to early endosomes and known to regulate the intracellular trafficking of ion channels and receptors. In addition to a PX domain, SNX27 is the only sorting family member that contains a PDZ domain. To identify novel SNX27-PDZ binding partners, we performed a proteomic screen in mouse principal kidney cortical collecting duct cells using a GST-SNX27 fusion construct as bait. We found that β-Pix (p21-activated kinase-interactive exchange factor), a guanine nucleotide exchange factor for the Rho family of small GTPases known to regulate cell motility directly interacted with SNX27. The association of β-Pix and SNX27 is specific for β-Pix isoforms terminating in the type-1 PDZ binding motif (ETNL). In the same screen we also identified Git1/2 as a potential SNX27 interacting protein. The interaction between SNX27 and Git1/2 is indirect and mediated by β-Pix. Furthermore, we show recruitment of the β-Pix·Git complex to endosomal sites in a SNX27-dependent manner. Finally, migration assays revealed that depletion of SNX27 from HeLa and mouse principal kidney cortical collecting duct cells significantly decreases cell motility. We propose a model by which SNX27 regulates trafficking of β-Pix to focal adhesions and thereby influences cell motility.

  16. PDZ binding to the BAR domain of PICK1 is elucidated by coarse-grained molecular dynamics

    PubMed Central

    He, Yi; Liwo, Adam; Weinstein, Harel; Scheraga, Harold A.

    2010-01-01

    A key regulator of AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor traffic, PICK1 is also known to interact with over 40 other proteins, including receptors, transporters, and ionic channels, and to be active mostly as a homodimer. The current lack of a complete PICK1 structure determined at atomic resolution hinders the elucidation of its functional mechanisms. Here, we identify interactions between the component PDZ and BAR domains of PICK1 by calculating possible binding sites for the PDZ domain of PICK1, PICK1-PDZ, to the homology-modeled crescent-shaped dimer of the PICK1-BAR domain using multiplexed replica-exchange molecular dynamics (MREMD) and canonical molecular dynamics (MD) simulations with the coarse-grained UNRES force field. The MREMD results show that the preferred binding site for the single PDZ domain is the concave cavity of the BAR dimer. A second possible binding site is near the N-terminus of the BAR domain that is linked directly to the PDZ domain. Subsequent short MD simulations, used to determine how the PICK1-PDZ domain moves to the preferred binding site on the BAR domain of PICK1, revealed that initial hydrophobic interactions drive the progress of the simulated binding. Thus, the concave face of the BAR dimer accommodates the PDZ domain first by weak hydrophobic interactions, and then the PDZ domain slides to the center of the concave face, where more favorable hydrophobic interactions take over. PMID:21050858

  17. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove

    PubMed Central

    Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola; Purkiss, Andrew G.; Thompson, Barry J.; McDonald, Neil Q.

    2015-01-01

    Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction. PMID:25760605

  18. Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling

    NASA Astrophysics Data System (ADS)

    Egea-Jimenez, Antonio Luis; Gallardo, Rodrigo; Garcia-Pino, Abel; Ivarsson, Ylva; Wawrzyniak, Anna Maria; Kashyap, Rudra; Loris, Remy; Schymkowitz, Joost; Rousseau, Frederic; Zimmermann, Pascale

    2016-07-01

    PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics.

  19. Optimizing Dvl PDZ domain inhibitor by exploring chemical space

    NASA Astrophysics Data System (ADS)

    Shan, Jufang; Zheng, Jie J.

    2009-01-01

    Because of advances in the high-throughput screening technology, identification of a hit that can bind to a target protein has become a relatively easy task; however, in the process of drug discovery, the following hit-to-lead and lead optimization still remain challenging. In a typical hit-to-lead and lead optimization process, the analogues of the most promising hits are synthesized for the development of structure-activity relationship (SAR) analysis, and in turn, in the effort of optimization of lead compounds, such analysis provides guidance for the further synthesis. The synthesis processes are usually long and labor-intensive. In silico searching has becoming an alternative approach to explore SAR especially with millions of compounds ready to be screened and most of them can be easily obtained. Here, we report our discovery of 15 new Dishevelled PDZ domain inhibitors by using such an approach. In our studies, we first developed a pharmacophore model based on NSC668036, an inhibitor previously identified in our laboratory; based on the model, we then screened the ChemDiv database by using an algorithm that combines similarity search and docking procedures; finally, we selected potent inhibitors based on docking analysis and examined them by using NMR spectroscopy. NMR experiments showed that all the 15 compounds we chose bound to the PDZ domain tighter than NSC668036.

  20. PDZ Binding Domains, Structural Disorder and Phosphorylation: A Menage-a-trois Tailing Dcp2 mRNA Decapping Enzymes.

    PubMed

    Gunawardana, Dilantha

    2016-01-01

    Diverse cellular activities are mediated through the interaction of protein domains and their binding partners. One such protein domain widely distributed in the higher metazoan world is the PDZ domain, which facilitates abundant protein-protein interactions. The PDZ domain-PDZ binding domain interaction has been implicated in several pathologies including Alzheimer's disease, Parkinson's disease and Down syndrome. PDZ domains bind to C-terminal peptides/proteins which have either of the following combinations: S/T-X-hydrophobic-COOH for type I, hydrophobic-Xhydrophobic- COOH for type II, and D/E-X-hydrophobic-COOH for type III, although hydrophobicity in the termini form the key characteristic of the PDZ-binding domains. We identified and characterized a Dcp2 type mRNA decapping enzyme from Arabidopsis thaliana, a protein containing a putative PDZ-binding domain using mutagenesis and protein biochemistry. Now we are using bioinformatics to study the Cterminal end of mRNA decapping enzymes from complex metazoans with the aim of (1) identifying putative PDZ-binding domains (2) Correlating structural disorder with PDZ binding domains and (3) Demonstrating the presence of phosphorylation sites in C-terminal extremities of Dcp2 type mRNA decapping enzymes. It is proposed here that the trinity of PDZbinding domains, structural disorder and phosphorylation-susceptible sites are a feature of the Dcp2 family of decapping enzymes and perhaps is a wider trick in protein evolution where scaffolding/tethering is a requirement for localization and function. It is critical though laboratory-based supporting evidence is sought to back-up this bioinformatics exploration into tail regions of mRNA decapping enzymes.

  1. The roles of PDZ-containing proteins in PLC-beta-mediated signaling.

    PubMed

    Suh, P G; Hwang, J I; Ryu, S H; Donowitz, M; Kim, J H

    2001-10-19

    Mammalian phospholipase C-beta isozymes are activated by a heterotrimeric GTP-binding protein linked to various cell surface receptors. Recent reports suggest that PDZ domain proteins play a significant role of PDZ-containing proteins in the regulation of mammalian PLC-beta isozymes. PDZ-containing proteins mediate the clustering of receptors and signaling molecules and thereby regulate agonist-induced signal transduction in polarized cells such as neuronal and epithelial cells. NORPA, a Drosophila PLC-beta, is known to be a component of a signaling complex that includes TRP and rhodopsin through interaction with INAD, a PDZ-containing protein. Mammalian PLC-beta1 and -beta2 isoforms interact with a PDZ-containing protein NHERF which is coupled to Trp4, a Ca(2+) channel. In addition, PLC-beta3 specifically interacts with E3KARP, another protein closely related to NHERF, through its C-terminal PDZ-binding motif. E3KARP up-regulates the PLC-beta3 activation coupled to muscarinic receptor. In this review, the role of signaling complexes mediated by PDZ-containing proteins in the regulation of PLC-beta isoforms will be discussed.

  2. Prevalence, Specificity and Determinants of Lipid-Interacting PDZ Domains from an In-Cell Screen and In Vitro Binding Experiments

    PubMed Central

    Kashyap, Rudra; Polanowska, Jolanta; Betzi, Stéphane; Lembo, Frédérique; Vermeiren, Elke; Chiheb, Driss; Lenfant, Nicolas; Morelli, Xavier; Borg, Jean-Paul; Reboul, Jérôme; Zimmermann, Pascale

    2013-01-01

    Background PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs), important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. Methodology/Principal Findings We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR) experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. Conclusions/Significance Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands. PMID:23390500

  3. Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions

    NASA Astrophysics Data System (ADS)

    Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens

    2013-12-01

    Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with R osetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several R osetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions.

  4. A functional network of the tumor suppressors APC, hDlg, and PTEN, that relies on recognition of specific PDZ-domains.

    PubMed

    Sotelo, Natalia S; Valiente, Miguel; Gil, Anabel; Pulido, Rafael

    2012-08-01

    APC and PTEN are tumor suppressor proteins that bind through their C-termini to the PDZ domain containing-hDlg scaffolding protein. We have found that co-expression of PTEN and hDlg enhanced the negative regulation of the PI3K/Akt pathway by PTEN, indicating the physiologic importance of these interactions. APC and PTEN share other PDZ domain containing-interacting partners, including the MAGI scaffolding proteins and the MAST family of protein kinases. Mutational analysis revealed that the C-terminal PDZ-binding motifs from APC and PTEN were differentially recognized by distinct PDZ domains. APC bound to the three PDZ domains from hDlg, whereas PTEN mainly bound to PDZ-2/hDlg. This indicates the existence of overlapping, but distinct PDZ-domain recognition patterns by APC and PTEN. Furthermore, a ternary complex formed by APC, PTEN, and hDlg was detected, suggesting that hDlg may serve as a platform to bring in proximity APC and PTEN tumor suppressor activities. In line with this, tumor-related mutations targeting the PDZ-2/hDlg domain diminished its interaction with APC and PTEN. Our results expand the PDZ-domain counterparts for the tumor suppressor APC, show that APC and PTEN share PDZ-domain partners but have individual molecular determinants for specific recognition of PDZ domains, and suggest the participation of the tumor suppressors APC, PTEN, and hDlg in PDZ-domain interaction networks which may be relevant in oncogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  5. Synergistic Effect of the PDZ and p85β-Binding Domains of the NS1 Protein on Virulence of an Avian H5N1 Influenza A Virus

    PubMed Central

    Fan, Shufang; Macken, Catherine A.; Li, Chengjun; Ozawa, Makoto; Goto, Hideo; Iswahyudi, N. F. N.; Nidom, Chairul A.; Chen, Hualan

    2013-01-01

    The influenza A virus NS1 protein affects virulence through several mechanisms, including the host's innate immune response and various signaling pathways. Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype continue to evolve through reassortment and mutations. Our recent phylogenetic analysis identified a group of HPAI H5N1 viruses with two characteristic mutations in NS1: the avian virus-type PDZ domain-binding motif ESEV (which affects virulence) was replaced with ESKV, and NS1-138F (which is highly conserved among all influenza A viruses and may affect the activation of the phosphatidylinositol 3-kinase [PI3K]/Akt signaling pathway) was replaced with NS1-138Y. Here, we show that an HPAI H5N1 virus (A/duck/Hunan/69/2004) encoding NS1-ESKV and NS1-138Y was confined to the respiratory tract of infected mice, whereas a mutant encoding NS1-ESEV and NS1-138F caused systemic infection and killed mice more efficiently. Mutation of either one of these sites had small effects on virulence. In addition, we found that the amino acid at NS1-138 affected not only the induction of the PI3K/Akt pathway but also the interaction of NS1 with cellular PDZ domain proteins. Similarly, the mutation in the PDZ domain-binding motif of NS1 altered its binding to cellular PDZ domain proteins and affected Akt phosphorylation. These findings suggest a functional interplay between the mutations at NS1-138 and NS1-229 that results in a synergistic effect on influenza virulence. PMID:23408626

  6. On the role of PDZ domain-encoding genes in Drosophila border cell migration.

    PubMed

    Aranjuez, George; Kudlaty, Elizabeth; Longworth, Michelle S; McDonald, Jocelyn A

    2012-11-01

    Cells often move as collective groups during normal embryonic development and wound healing, although the mechanisms governing this type of migration are poorly understood. The Drosophila melanogaster border cells migrate as a cluster during late oogenesis and serve as a powerful in vivo genetic model for collective cell migration. To discover new genes that participate in border cell migration, 64 out of 66 genes that encode PDZ domain-containing proteins were systematically targeted by in vivo RNAi knockdown. The PDZ domain is one of the largest families of protein-protein interaction domains found in eukaryotes. Proteins that contain PDZ domains participate in a variety of biological processes, including signal transduction and establishment of epithelial apical-basal polarity. Targeting PDZ proteins effectively assesses a larger number of genes via the protein complexes and pathways through which these proteins function. par-6, a known regulator of border cell migration, was a positive hit and thus validated the approach. Knockdown of 14 PDZ domain genes disrupted migration with multiple RNAi lines. The candidate genes have diverse predicted cellular functions and are anticipated to provide new insights into the mechanisms that control border cell movement. As a test of this concept, two genes that disrupted migration were characterized in more detail: big bang and the Dlg5 homolog CG6509. We present evidence that Big bang regulates JAK/STAT signaling, whereas Dlg5/CG6509 maintains cluster cohesion. Moreover, these results demonstrate that targeting a selected class of genes by RNAi can uncover novel regulators of collective cell migration.

  7. In vitro and in vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B type I (SR-BI) to the PDZ1 Domain of its Cytoplasmic Adaptor Protein PDZK1

    SciTech Connect

    O Kocher; G Birrane; K Tsukamoto; S Fenske; A Yesilaltay; R Pal; K Daniels; J Ladias; M Krieger

    2011-12-31

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys(14)-Xaa(4)-Asn(19)-Tyr-Gly-Phe-Phe-Leu(24)), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI ((503)VLQEAKL(509)). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (K(d)) of the K14A and F22A mutants were 3.2 and 4.0 ?M, respectively, similar to 2.6 ?M measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI ((505)QEAKL(509)) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10-20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1.

  8. Computational design of selective peptides to discriminate between similar PDZ domains in an oncogenic pathway.

    PubMed

    Zheng, Fan; Jewell, Heather; Fitzpatrick, Jeremy; Zhang, Jian; Mierke, Dale F; Grigoryan, Gevorg

    2015-01-30

    Reagents that target protein-protein interactions to rewire signaling are of great relevance in biological research. Computational protein design may offer a means of creating such reagents on demand, but methods for encoding targeting selectivity are sorely needed. This is especially challenging when targeting interactions with ubiquitous recognition modules--for example, PDZ domains, which bind C-terminal sequences of partner proteins. Here we consider the problem of designing selective PDZ inhibitor peptides in the context of an oncogenic signaling pathway, in which two PDZ domains (NHERF-2 PDZ2-N2P2 and MAGI-3 PDZ6-M3P6) compete for a receptor C-terminus to differentially modulate oncogenic activities. Because N2P2 has been shown to increase tumorigenicity and M3P6 to decreases it, we sought to design peptides that inhibit N2P2 without affecting M3P6. We developed a structure-based computational design framework that models peptide flexibility in binding yet is efficient enough to rapidly analyze tradeoffs between affinity and selectivity. Designed peptides showed low-micromolar inhibition constants for N2P2 and no detectable M3P6 binding. Peptides designed for reverse discrimination bound M3P6 tighter than N2P2, further testing our technology. Experimental and computational analysis of selectivity determinants revealed significant indirect energetic coupling in the binding site. Successful discrimination between N2P2 and M3P6, despite their overlapping binding preferences, is highly encouraging for computational approaches to selective PDZ targeting, especially because design relied on a homology model of M3P6. Still, we demonstrate specific deficiencies of structural modeling that must be addressed to enable truly robust design. The presented framework is general and can be applied in many scenarios to engineer selective targeting.

  9. Computational Design of Selective Peptides to Discriminate Between Similar PDZ Domains in an Oncogenic Pathway

    PubMed Central

    Zheng, Fan; Jewell, Heather; Fitzpatrick, Jeremy; Zhang, Jian; Mierke, Dale F.; Grigoryan, Gevorg

    2016-01-01

    Reagents that target protein-protein interactions to rewire signaling are of great relevance in biological research. Computational protein design may offer a means of creating such reagents on demand, but methods for encoding targeting selectivity are sorely needed. This is especially challenging when targeting interactions with ubiquitous recognition modules—e.g., PDZ domains, which bind C-terminal sequences of partner proteins. Here we consider the problem of designing selective PDZ inhibitor peptides in the context of an oncogenic signaling pathway, in which two PDZ domains (NHERF-2 PDZ2—N2P2 and MAGI-3 PDZ6—M3P6) compete for a receptor C-terminus to differentially modulate oncogenic activities. Because N2P2 increases tumorigenicity and M3P6 decreases it, we sought to design peptides that inhibit N2P2 without affecting M3P6. We developed a structure-based computational design framework that models peptide flexibility in binding, yet is efficient enough to rapidly analyze tradeoffs between affinity and selectivity. Designed peptides showed low-micromolar inhibition constants for N2P2 and no detectable M3P6 binding. Peptides designed for reverse discrimination bound M3P6 tighter than N2P2, further testing our technology. Experimental and computational analysis of selectivity determinants revealed significant indirect energetic coupling in the binding site. Successful discrimination between N2P2 and M3P6, despite their overlapping binding preferences, is highly encouraging for computational approaches to selective PDZ targeting, especially because design relied on a homology model of M3P6. Still, we demonstrate specific deficiencies of structural modeling that must be addressed to enable truly robust design. The presented framework is general and can be applied in many scenarios to engineer selective targeting. PMID:25451599

  10. Structural And Functional Analysis of the Ligand Specificity of the HtrA2/OmI PDZ Domain

    SciTech Connect

    Zhang, Y.; Appleton, B.A.; Wu, P.; Wiesmann, C.; Sidhu, S.S.

    2009-06-04

    The mitochondrial serine protease HtrA2/Omi helps to maintain mitochondrial function by handling misfolded proteins in the intermembrane space. In addition, HtrA2/Omi has been implicated as a proapoptotic factor upon release into the cytoplasm during the cell death cascade. The protein contains a C-terminal PDZ domain that packs against the protease active site and inhibits proteolytic activity. Engagement of the PDZ domain by peptide ligands has been shown to activate the protease and also has been proposed to mediate substrate recognition. We report a detailed structural and functional analysis of the human HtrA2/Omi PDZ domain using peptide libraries and affinity assays to define specificity, X-ray crystallography to view molecular details of PDZ-ligand interactions, and alanine-scanning mutagenesis to probe the peptide-binding groove. We show that the HtrA2/Omi PDZ domain recognizes both C-terminal and internal stretches of extended, hydrophobic polypeptides. High-affinity ligand recognition requires contacts with up to five hydrophobic side chains by distinct sites on the PDZ domain. However, no particular residue type is absolutely required at any position, and thus, the HtrA2/Omi PDZ domain appears to be a promiscuous module adapted to recognize unstructured, hydrophobic polypeptides. This type of specificity is consistent with the biological role of HtrA2/Omi in mitochondria, which requires the recognition of diverse, exposed stretches of hydrophobic sequences in misfolded proteins. The findings are less consistent with, but do not exclude, a role for the PDZ domain in targeting the protease to specific substrates during apoptosis.

  11. PDZ domain-containing 1 (PDZK1) protein regulates phospholipase C-β3 (PLC-β3)-specific activation of somatostatin by forming a ternary complex with PLC-β3 and somatostatin receptors.

    PubMed

    Kim, Jung Kuk; Kwon, Ohman; Kim, Jinho; Kim, Eung-Kyun; Park, Hye Kyung; Lee, Ji Eun; Kim, Kyung Lock; Choi, Jung Woong; Lim, Seyoung; Seok, Heon; Lee-Kwon, Whaseon; Choi, Jang Hyun; Kang, Byoung Heon; Kim, Sanguk; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-06-15

    Phospholipase C-β (PLC-β) is a key molecule in G protein-coupled receptor (GPCR)-mediated signaling. Many studies have shown that the four PLC-β subtypes have different physiological functions despite their similar structures. Because the PLC-β subtypes possess different PDZ-binding motifs, they have the potential to interact with different PDZ proteins. In this study, we identified PDZ domain-containing 1 (PDZK1) as a PDZ protein that specifically interacts with PLC-β3. To elucidate the functional roles of PDZK1, we next screened for potential interacting proteins of PDZK1 and identified the somatostatin receptors (SSTRs) as another protein that interacts with PDZK1. Through these interactions, PDZK1 assembles as a ternary complex with PLC-β3 and SSTRs. Interestingly, the expression of PDZK1 and PLC-β3, but not PLC-β1, markedly potentiated SST-induced PLC activation. However, disruption of the ternary complex inhibited SST-induced PLC activation, which suggests that PDZK1-mediated complex formation is required for the specific activation of PLC-β3 by SST. Consistent with this observation, the knockdown of PDZK1 or PLC-β3, but not that of PLC-β1, significantly inhibited SST-induced intracellular Ca(2+) mobilization, which further attenuated subsequent ERK1/2 phosphorylation. Taken together, our results strongly suggest that the formation of a complex between SSTRs, PDZK1, and PLC-β3 is essential for the specific activation of PLC-β3 and the subsequent physiologic responses by SST.

  12. PDZ Domain-containing 1 (PDZK1) Protein Regulates Phospholipase C-β3 (PLC-β3)-specific Activation of Somatostatin by Forming a Ternary Complex with PLC-β3 and Somatostatin Receptors*

    PubMed Central

    Kim, Jung Kuk; Kwon, Ohman; Kim, Jinho; Kim, Eung-Kyun; Park, Hye Kyung; Lee, Ji Eun; Kim, Kyung Lock; Choi, Jung Woong; Lim, Seyoung; Seok, Heon; Lee-Kwon, Whaseon; Choi, Jang Hyun; Kang, Byoung Heon; Kim, Sanguk; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-01-01

    Phospholipase C-β (PLC-β) is a key molecule in G protein-coupled receptor (GPCR)-mediated signaling. Many studies have shown that the four PLC-β subtypes have different physiological functions despite their similar structures. Because the PLC-β subtypes possess different PDZ-binding motifs, they have the potential to interact with different PDZ proteins. In this study, we identified PDZ domain-containing 1 (PDZK1) as a PDZ protein that specifically interacts with PLC-β3. To elucidate the functional roles of PDZK1, we next screened for potential interacting proteins of PDZK1 and identified the somatostatin receptors (SSTRs) as another protein that interacts with PDZK1. Through these interactions, PDZK1 assembles as a ternary complex with PLC-β3 and SSTRs. Interestingly, the expression of PDZK1 and PLC-β3, but not PLC-β1, markedly potentiated SST-induced PLC activation. However, disruption of the ternary complex inhibited SST-induced PLC activation, which suggests that PDZK1-mediated complex formation is required for the specific activation of PLC-β3 by SST. Consistent with this observation, the knockdown of PDZK1 or PLC-β3, but not that of PLC-β1, significantly inhibited SST-induced intracellular Ca2+ mobilization, which further attenuated subsequent ERK1/2 phosphorylation. Taken together, our results strongly suggest that the formation of a complex between SSTRs, PDZK1, and PLC-β3 is essential for the specific activation of PLC-β3 and the subsequent physiologic responses by SST. PMID:22528496

  13. Chemically-Modified Peptides Targeting the PDZ Domain of GIPC as a Therapeutic Approach for Cancer

    PubMed Central

    Patra, Chitta Ranjan; Rupasinghe, Chamila N.; Dutta, Shamit K; Bhattacharya, Santanu; Wang, Enfeng; Spaller, Mark R.; Mukhopadhyay, Debabrata

    2012-01-01

    GIPC (GAIP-interacting protein, C terminus) represents a new target class for the discovery of chemotherapeutics. While many of the current generation of anticancer agents function by directly binding to intracellular kinases or cell surface receptors, the disruption of cytosolic protein-protein interactions mediated by non-enzymatic domains is an underdeveloped avenue for inhibiting cancer growth. One such example is the PDZ domain of GIPC. Previously we developed a molecular probe, the cell permeable octapeptide CR1023 (N-myristoyl-PSQSSSEA), which diminished proliferation of pancreatic cancer cells. We have expanded upon that discovery using a chemical modification approach, and here report a series of cell permeable, side chain-modified lipopeptides that target the GIPC PDZ domain in vitro and in vivo. These peptides exhibit significant activity against pancreatic and breast cancers, both in vitro and in animal models. CR1166 (N-myristoyl-PSQSK(εN-4-bromobenzoyl)SK(εN-4-bromobenzoyl)A), bearing two halogenated aromatic units on alternate side chains, was found to be the most active compound, with pronounced down-regulation of EGFR/1GF-1R expression. We hypothesize that these organic acid-modified residues extend the productive reach of the peptide beyond the canonical binding pocket, which defines the limit of accessibility for the native proteinogenic sequences that the PDZ domain has evolved to recognize. Cell permeability is achieved with N-terminal lipidation using myristate, rather than a larger CPP (cell-penetrating peptide) sequence. This, in conjunction with optimization of targeting through side chain modification, has yielded an approach that will allow the discovery and development of next-generation cellular probes for GIPC PDZ as well as other PDZ domains. PMID:22292614

  14. Chemically modified peptides targeting the PDZ domain of GIPC as a therapeutic approach for cancer.

    PubMed

    Patra, Chitta Ranjan; Rupasinghe, Chamila N; Dutta, Shamit K; Bhattacharya, Santanu; Wang, Enfeng; Spaller, Mark R; Mukhopadhyay, Debabrata

    2012-04-20

    GIPC (GAIP-interacting protein, C terminus) represents a new target class for the discovery of chemotherapeutics. While many of the current generation of anticancer agents function by directly binding to intracellular kinases or cell surface receptors, the disruption of cytosolic protein-protein interactions mediated by non-enzymatic domains is an underdeveloped avenue for inhibiting cancer growth. One such example is the PDZ domain of GIPC. Previously we developed a molecular probe, the cell-permeable octapeptide CR1023 (N-myristoyl-PSQSSSEA), which diminished proliferation of pancreatic cancer cells. We have expanded upon that discovery using a chemical modification approach and here report a series of cell-permeable, side chain-modified lipopeptides that target the GIPC PDZ domain in vitro and in vivo. These peptides exhibit significant activity against pancreatic and breast cancers, both in cellular and animal models. CR1166 (N-myristoyl-PSQSK(εN-4-bromobenzoyl)SK(εN-4-bromobenzoyl)A), bearing two halogenated aromatic units on alternate side chains, was found to be the most active compound, with pronounced down-regulation of EGFR/1GF-1R expression. We hypothesize that these organic acid-modified residues extend the productive reach of the peptide beyond the canonical binding pocket, which defines the limit of accessibility for the native proteinogenic sequences that the PDZ domain has evolved to recognize. Cell permeability is achieved with N-terminal lipidation using myristate, rather than a larger CPP (cell-penetrating peptide) sequence. This, in conjunction with optimization of targeting through side chain modification, has yielded an approach that will allow the discovery and development of next-generation cellular probes for GIPC PDZ as well as for other PDZ domains.

  15. Chemically modified peptide scaffolds target the CFTR-associated ligand PDZ domain.

    PubMed

    Amacher, Jeanine F; Zhao, Ruizhi; Spaller, Mark R; Madden, Dean R

    2014-01-01

    PDZ domains are protein-protein interaction modules that coordinate multiple signaling and trafficking pathways in the cell and that include active therapeutic targets for diseases such as cancer, cystic fibrosis, and addiction. Our previous work characterized a PDZ interaction that restricts the apical membrane half-life of the cystic fibrosis transmembrane conductance regulator (CFTR). Using iterative cycles of peptide-array and solution-binding analysis, we targeted the PDZ domain of the CFTR-Associated Ligand (CAL), and showed that an engineered peptide inhibitor rescues cell-surface expression of the most common CFTR disease mutation ΔF508. Here, we present a series of scaffolds containing chemically modifiable side chains at all non-motif positions along the CAL PDZ domain binding cleft. Concordant equilibrium dissociation constants were determined in parallel by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance techniques, confirming robust affinity for each scaffold and revealing an enthalpically driven mode of inhibitor binding. Structural studies demonstrate a conserved binding mode for each peptide, opening the possibility of combinatorial modification. Finally, we diversified one of our peptide scaffolds with halogenated substituents that yielded modest increases in binding affinity. Overall, this work validates our approach and provides a stereochemical foundation for further CAL inhibitor design and screening.

  16. A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC.

    PubMed

    Blobe, G C; Liu, X; Fang, S J; How, T; Lodish, H F

    2001-10-26

    Transforming growth factor beta (TGF-beta) mediates its biological effects through three high-affinity cell surface receptors, the TGF-beta type I, type II, and type III receptors, and the Smad family of transcription factors. Although the functions of the type II and type I receptors are well established, the precise role of the type III receptor in TGF-beta signaling remains to be established. While expression cloning signaling molecules downstream of TGF-beta, we cloned GIPC (GAIP-interacting protein, C terminus), a PDZ domain-containing protein. GIPC binds a Class I PDZ binding motif in the cytoplasmic domain of the type III receptor resulting in regulation of expression of the type III receptor at the cell surface. Increased expression of the type III receptor mediated by GIPC enhanced cellular responsiveness to TGF-beta both in terms of inhibition of proliferation and in plasminogen-activating inhibitor (PAI)-based promoter gene induction assays. In all cases, deletion of the Class I PDZ binding motif of the type III receptor prevented the type III receptor from binding to GIPC and abrogated the effects of GIPC on type III receptor expressing cells. These results establish, for the first time, a protein that interacts with the cytoplasmic domain of the type III receptor, determine that expression of the type III receptor is regulated at the protein level and that increased expression of the type III receptor is sufficient to enhance TGF-beta signaling. These results further support an essential, non-redundant role for the type III receptor in TGF-beta signaling.

  17. A thermodynamic study of the third PDZ domain of MAGUK neuronal protein PSD-95 reveals a complex three-state folding behavior.

    PubMed

    Murciano-Calles, Javier; Martinez, Jose C; Marin-Argany, Marta; Villegas, Sandra; Cobos, Eva S

    2014-01-01

    The relevance of the C-terminal α helix of the PDZ3 domain of PSD95 in its unfolding process has been explored by achieving the thermodynamic characterization of a construct where the sequence of the nine residues corresponding to such motif has been deleted. Calorimetric traces at neutral pH require the application of a three-state model displaying three different equilibrium processes in which the intermediate state self-associates upon heating, being stable and populated in a wide temperature range. Temperature scans followed by circular dichroism, Fourier transform infrared spectroscopy and dynamic light scattering support the presence of such oligomeric-partially folded species. This study reveals that the deletion of the α3-helix sequence results in a more complex description of the domain unfolding.

  18. Insights into the C-terminal Peptide Binding Specificity of the PDZ Domain of Neuronal Nitric-oxide Synthase

    PubMed Central

    Merino-Gracia, Javier; Costas-Insua, Carlos; Canales, María Ángeles; Rodríguez-Crespo, Ignacio

    2016-01-01

    Neuronal nitric-oxide synthase, unlike its endothelial and inducible counterparts, displays a PDZ (PSD-95/Dlg/ZO-1) domain located at its N terminus involved in subcellular targeting. The C termini of various cellular proteins insert within the binding groove of this PDZ domain and determine the subcellular distribution of neuronal NOS (nNOS). The molecular mechanisms underlying these interactions are poorly understood because the PDZ domain of nNOS can apparently exhibit class I, class II, and class III binding specificity. In addition, it has been recently suggested that the PDZ domain of nNOS binds with very low affinity to the C termini of target proteins, and a necessary simultaneous lateral interaction must take place for binding to occur. We describe herein that the PDZ domain of nNOS can behave as a bona fide class III PDZ domain and bind to C-terminal sequences with acidic residues at the P−2 position with low micromolar binding constants. Binding to C-terminal sequences with a hydrophobic residue at the P−2 position plus an acidic residue at the P−3 position (class II) can also occur, although interactions involving residues extending up to the P−7 position mediate this type of binding. This promiscuous behavior also extends to its association to class I sequences, which must display a Glu residue at P−3 and a Thr residue at P−2. By means of site-directed mutagenesis and NMR spectroscopy, we have been able to identify the residues involved in each specific type of binding and rationalize the mechanisms used to recognize binding partners. Finally, we have analyzed the high affinity association of the PDZ domain of nNOS to claudin-3 and claudin-14, two tight junction tetraspan membrane proteins that are essential components of the paracellular barrier. PMID:27030110

  19. Similar and Distinct Properties of MUPP1 and Patj, Two Homologous PDZ Domain-Containing Tight-Junction Proteins ▿ †

    PubMed Central

    Adachi, Makoto; Hamazaki, Yoko; Kobayashi, Yuka; Itoh, Masahiko; Tsukita, Sachiko; Furuse, Mikio; Tsukita, Shoichiro

    2009-01-01

    MUPP1 and Patj are both composed of an L27 domain and multiple PDZ domains (13 and 10 domains, respectively) and are localized to tight junctions (TJs) in epithelial cells. Although Patj is known to be responsible for the organization of TJs and epithelial polarity, characterization of MUPP1 is lacking. In this study, we found that MUPP1 and Patj share several binding partners, including JAM1, ZO-3, Pals1, Par6, and nectins (cell-cell adhesion molecules at adherens junctions). MUPP1 and Patj exhibited similar subcellular distributions, and the mechanisms with which they localize to TJs also appear to overlap. Despite these similarities, functional studies have revealed that Patj is indispensable for the establishment of TJs and epithelial polarization, whereas MUPP1 is not. Thus, although MUPP1 and Patj share several molecular properties, their functions are entirely different. We present evidence that the signaling mediated by Pals1, which has a higher affinity for Patj than for MUPP1 and is involved in the activation of the Par6-aPKC complex, is of principal importance for the function of Patj in epithelial cells. PMID:19255144

  20. Roles of the PDZ domain-binding motif of the human papillomavirus type 16 E6 on the immortalization and differentiation of primary human foreskin keratinocytes.

    PubMed

    Choi, Moonju; Lee, Sungjin; Choi, Taekyu; Lee, Choongho

    2014-04-01

    A number of PDZ domain-containing proteins have been identified as binding partners for the oncoprotein E6 of the high-risk type human papillomaviruses (HPVs). These include hDlg, hScrib, MAGI1, MAGI2, and MAGI3, MUPP1, 14-3-3zeta, Na/H exchange regulatory factor 1, PTPN13, TIP-2/GIPC, Tip-1, and PATJ. The PDZ domain-binding motif (-X-T-X-V) at the carboxy terminus of E6 is essential for targeting PDZ proteins for proteasomal degradation. However, contribution of degradation of PDZ proteins by E6 to HPV-induced oncogenesis is still controversial. In order to clarify potential roles of molecular interactions between high-risk HPV E6 and one of best characterized PDZ proteins, hDlg in HPV-induced transformation, we used a retroviral infection system to overexpress HPV16 E7 gene alone or together with either HPV16 E6 wild type or E6 mutant gene lacking the PDZ domain-binding motif and investigated the effect of mutating the PDZ domain-binding motif of E6 on the immortalization and differentiation of human foreskin keratinocytes (HFKs) by the high-risk type HPV E6 and E7. Although the PDZ domain-binding motif of E6 was found to be required for the efficient growth of HFKs, it was not necessary for the E6 and E7-induced immortalization of HFKs. Furthermore, the overexpression of E6 and E7 neither induced degradation nor altered cellular localization of hDlg in undifferentiated or differentiated HFKs. These data indicate that the PDZ domain-binding motif of E6 contributes to the efficient cellular growth through mechanisms other than degradation and changes in the subcellular localizations of hDlg.

  1. Different conformational dynamics of PDZ1 and PDZ2 in full-length EBP50 analyzed by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Park, Ji Young; Duc, Nguyen Minh; Kim, Dong Kyun; Lee, Su Youn; Li, Sheng; Seo, Min-Duk; Woods, Virgil L; Chung, Ka Young

    2015-08-01

    Ezrin-radixin-moesin-binding protein 50 (EBP50) is a scaffolding protein expressed in polarized epithelial cells in various organs, including the liver, kidney, and small intestine, in which it regulates the trafficking and targeting cellular proteins. EBP50 contains two postsynaptic density-95/disk-large/ZO-1 homology (PDZ) domains (e.g., PDZ1 and PDZ2) and an ezrin/radixin/moesin-binding (EB) domain. PDZ domains are one of the major scaffolding domains regulating protein-protein interactions with critical biological roles in cell polarity, migration, proliferation, recognition, and cell-cell interaction. PDZ1 and PDZ2 in EBP50 have different ligand selectivity, although several high-resolution structural studies of isolated PDZ1 and PDZ2 showed similar structures. We studied the conformations of full-length EBP50 and isolated PDZ1 and PDZ2 using hydrogen/deuterium exchange mass spectrometry (HDX-MS). The deuterium uptake profiles of isolated PDZ1 and PDZ2 were similar to those of full-length EBP50. Interestingly, PDZ1 was more dynamic than PDZ2, and these PDZ domains underwent different conformational changes upon ligand binding. These results might explain the differences in ligand-selectivity between PDZ1 and PDZ2.

  2. Discovery, structure-activity relationship studies, and crystal structure of nonpeptide inhibitors bound to the Shank3 PDZ domain.

    PubMed

    Saupe, Jörn; Roske, Yvette; Schillinger, Christian; Kamdem, Nestor; Radetzki, Silke; Diehl, Anne; Oschkinat, Hartmut; Krause, Gerd; Heinemann, Udo; Rademann, Jörg

    2011-08-01

    Shank is the central scaffolding protein of the postsynaptic density (PSD) protein complex found in cells of the central nervous system. Cellular studies indicate a prominent role of the protein in the organization of the PSD, in the development of neuronal morphology, in neuronal signaling, and in synaptic plasticity, thus linking Shank functions to the molecular basis of learning and memory. Mutations in the Shank gene have been found in several neuronal disorders including mental retardation, typical autism, and Asperger syndrome. Shank is linked to the PSD complex via its PDZ domain that binds to the C-terminus of guanylate-kinase-associated protein (GKAP). Here, small-molecule inhibitors of Shank3 PDZ domain are developed. A fluorescence polarization assay based on an identified high-affinity peptide is established, and tetrahydroquinoline carboxylates are identified as inhibitors of this protein-protein interaction. Chemical synthesis via a hetero-Diels-Alder strategy is employed for hit optimization, and structure-activity relationship studies are performed. Best hits possess K(i) values in the 10 μM range, and binding to the PDZ domain is confirmed by ¹H,¹⁵N HSQC NMR experiments. One of the hits crystallizes with the Shank3 PDZ domain. The structure, analyzed at a resolution of 1.85 Å, reveals details of the binding mode. Finally, binding to PDZ domains of PSD-95, syntrophin, and DVL3 was studied using ¹H,¹⁵N HSQC NMR spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Inter-channel scaffolding of presynaptic CaV2.2 via the C terminal PDZ ligand domain.

    PubMed

    Gardezi, Sabiha R; Li, Qi; Stanley, Elise F

    2013-05-15

    Calcium entry through CaV2.2 calcium channels clustered at the active zone (AZ) of the presynaptic nerve terminal gates synaptic vesicle (SV) fusion and the discharge of neurotransmitters, but the mechanism of channel scaffolding remains poorly understood. Recent studies have implicated the binding of a PDZ ligand domain (PDZ-LD) at the tip of the channel C terminal to a partner PDZ domain on RIM1/2, a synaptic vesicle-associated protein. To explore CaV2.2 scaffolding, we created intracellular region fusion proteins and used these to test for binding by 'fishing' for native CaV2.2 channels from cell lysates. Fusion proteins mimicking the distal half of the channel C terminal (C3strep) reliably captured CaV2.2 from whole brain crude membrane or purified synaptosome membrane lysates, whereas channel I-II loop or the distal half of the II-III loop proteins were negative. This capture could be replicated in a non-synaptic environment using CaV2.2 expressed in a cell line. The distal tip PDZ-LD, DDWC-COOH, was confirmed as the critical binding site by block of pull-down with mimetic peptides. Pull-down experiments using brain crude membrane lysates confirmed that RIM1/2 can bind to the DDWC PDZ-LD. However, robust CaV2.2 capture was observed from synaptosome membrane or in the cell line expression system with little or no RIM1/2 co-capture. Thus, we conclude that CaV2.2 channels can scaffold to each other via an interaction that involves the PDZ-LD by an inter-channel linkage bridged by an unknown protein.

  4. Long-Range Conformational Response of a PDZ Domain to Ligand Binding and Release: A Molecular Dynamics Study.

    PubMed

    Lu, Cheng; Knecht, Volker; Stock, Gerhard

    2016-02-09

    The binding of a ligand to a protein may induce long-range structural or dynamical changes in the biomacromolecule even at sites physically well separated from the binding pocket. A system for which such behavior has been widely discussed is the PDZ2 domain of human tyrosine phosphatase 1E. Here, we present results from equilibrium trajectories of the PDZ2 domain in the free and ligand-bound state, as well as nonequilibrium simulations of the relaxation of PDZ2 after removal of its peptide ligand. The study reveals changes in inter-residue contacts, backbone dihedral angles, and C(α) positions upon ligand release. Our findings show a long-range conformational response of the PDZ2 domain to ligand release in the form of a collective shift of the secondary structure elements α2, β2, β3, α1-β4, and the C terminal loop relative to the rest of the protein away from the N-terminus, and a shift of the loops β2-β3 and β1-β2 in the opposite direction. The shifts lead to conformational changes in the backbone, especially in the β2-β3 loop but also in the β5-α2 and the α2-β6 loop, and are accompanied by changes of inter-residue contacts mainly within the β2-β3 loop as well as between the α2 helix and other segments. The residues showing substantial changes of inter-residue contacts, backbone conformations, or C(α) positions are considered "key residues" for the long-range conformational response of PDZ2. By comparing these residues with various sets of residues highlighted by previous studies of PDZ2, we investigate the statistical correlation of the various approaches. Interestingly, we find a considerable correlation of our findings with several works considering structural changes but no significant correlations with approaches considering energy flow or networks based on inter-residue energies.

  5. Whirlin and PDZ Domain-containing 7 (PDZD7) Proteins Are Both Required to Form the Quaternary Protein Complex Associated with Usher Syndrome Type 2*

    PubMed Central

    Chen, Qian; Zou, Junhuang; Shen, Zuolian; Zhang, Weiping; Yang, Jun

    2014-01-01

    Usher syndrome (USH) is the leading genetic cause of combined hearing and vision loss. Among the three USH clinical types, type 2 (USH2) occurs most commonly. USH2A, GPR98, and WHRN are three known causative genes of USH2, whereas PDZD7 is a modifier gene found in USH2 patients. The proteins encoded by these four USH genes have been proposed to form a multiprotein complex, the USH2 complex, due to interactions found among some of these proteins in vitro, their colocalization in vivo, and mutual dependence of some of these proteins for their normal in vivo localizations. However, evidence showing the formation of the USH2 complex is missing, and details on how this complex is formed remain elusive. Here, we systematically investigated interactions among the intracellular regions of the four USH proteins using colocalization, yeast two-hybrid, and pull-down assays. We show that multiple domains of the four USH proteins interact among one another. Importantly, both WHRN and PDZD7 are required for the complex formation with USH2A and GPR98. In this USH2 quaternary complex, WHRN prefers to bind to USH2A, whereas PDZD7 prefers to bind to GPR98. Interaction between WHRN and PDZD7 is the bridge between USH2A and GPR98. Additionally, the USH2 quaternary complex has a variable stoichiometry. These findings suggest that a non-obligate, short term, and dynamic USH2 quaternary protein complex may exist in vivo. Our work provides valuable insight into the physiological role of the USH2 complex in vivo and informs possible reconstruction of the USH2 complex for future therapy. PMID:25406310

  6. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules

    PubMed Central

    Sangith, Nikhil; Srinivasaraghavan, Kannan; Sahu, Indrajit; Desai, Ankita; Medipally, Spandana; Somavarappu, Arun Kumar; Verma, Chandra; Venkatraman, Prasanna

    2014-01-01

    PSMD9 (Proteasome Macropain non-ATPase subunit 9), a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a) proteins with conserved C-termini may share common functions and (b) PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein), S14 (a ribosomal protein), CSH1 (a growth hormone), E12 (a transcription factor) and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM) at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions. PMID:25009770

  7. A binding site outside the canonical PDZ domain determines the specific interaction between Shank and SAPAP and their function

    PubMed Central

    Zeng, Menglong; Shang, Yuan; Guo, Tingfeng; He, Qinghai; Yung, Wing-Ho; Liu, Kai; Zhang, Mingjie

    2016-01-01

    Shank and SAPAP (synapse-associated protein 90/postsynaptic density-95–associated protein) are two highly abundant scaffold proteins that directly interact with each other to regulate excitatory synapse development and plasticity. Mutations of SAPAP, but not other reported Shank PDZ domain binders, share a significant overlap on behavioral abnormalities with the mutations of Shank both in patients and in animal models. The molecular mechanism governing the exquisite specificity of the Shank/SAPAP interaction is not clear, however. Here we report that a sequence preceding the canonical PDZ domain of Shank, together with the elongated PDZ BC loop, form another binding site for a sequence upstream of the SAPAP PDZ-binding motif, leading to a several hundred-fold increase in the affinity of the Shank/SAPAP interaction. We provide evidence that the specific interaction afforded by this newly identified site is required for Shank synaptic targeting and the Shank-induced synaptic activity increase. Our study provides a molecular explanation of how Shank and SAPAP dosage changes due to their gene copy number variations can contribute to different psychiatric disorders. PMID:27185935

  8. A PDZ protein regulates the distribution of the transmembrane semaphorin, M-SemF.

    PubMed

    Wang, L H; Kalb, R G; Strittmatter, S M

    1999-05-14

    M-SemF is a membrane-associated, neurally enriched member of the semaphorin family of axon guidance signals. We considered whether the cytoplasmic domain of M-SemF might possess a signaling function and/or might control the distribution of M-SemF on the cell surface. We identify a PDZ-containing neural protein as an M-SemF cytoplasmic domain-associated protein (SEMCAP-1). SEMCAP-2 is a closely related nonneuronal protein. SEMCAP-1 has recently also been identified as GIPC, by virtue of its interaction with the RGS protein GAIP in vitro (De Vries, L., Lou, X., Zhao, G., Zheng, B., and Farquhar, M. G. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12340-12345). Expression studies support the notion that SEMCAP-1(GIPC) interacts with M-SemF, but not GAIP, in brain. Lung SEMCAP-2 and SEMCAP-1(GIPC) are potential partners for both GAIP and M-SemF. The protein interaction requires the single PDZ domain of SEMCAP-1(GIPC) and the carboxyl-terminal four residues of M-SemF, ESSV. While SEMCAP-1(GIPC) also interacts with SemC, it does not interact with other proteins containing a class I PDZ binding motif, nor does M-SemF interact with other class I PDZ proteins. Co-expression of SEMCAP-1(GIPC) induces the redistribution of dispersed M-SemF into detergent-resistant aggregates in HEK293 cells. Thus, SEMCAP-1(GIPC) appears to regulate the subcellular distribution of M-SemF in brain, and SEMCAPs could link M-SemF to G protein signal transduction pathways.

  9. Accurate Prediction of the Dynamical Changes within the Second PDZ Domain of PTP1e

    PubMed Central

    Cilia, Elisa; Vuister, Geerten W.; Lenaerts, Tom

    2012-01-01

    Experimental NMR relaxation studies have shown that peptide binding induces dynamical changes at the side-chain level throughout the second PDZ domain of PTP1e, identifying as such the collection of residues involved in long-range communication. Even though different computational approaches have identified subsets of residues that were qualitatively comparable, no quantitative analysis of the accuracy of these predictions was thus far determined. Here, we show that our information theoretical method produces quantitatively better results with respect to the experimental data than some of these earlier methods. Moreover, it provides a global network perspective on the effect experienced by the different residues involved in the process. We also show that these predictions are consistent within both the human and mouse variants of this domain. Together, these results improve the understanding of intra-protein communication and allostery in PDZ domains, underlining at the same time the necessity of producing similar data sets for further validation of thses kinds of methods. PMID:23209399

  10. A regression framework incorporating quantitative and negative interaction data improves quantitative prediction of PDZ domain-peptide interaction from primary sequence.

    PubMed

    Shao, Xiaojian; Tan, Chris S H; Voss, Courtney; Li, Shawn S C; Deng, Naiyang; Bader, Gary D

    2011-02-01

    Predicting protein interactions involving peptide recognition domains is essential for understanding the many important biological processes they mediate. It is important to consider the binding strength of these interactions to help us construct more biologically relevant protein interaction networks that consider cellular context and competition between potential binders. We developed a novel regression framework that considers both positive (quantitative) and negative (qualitative) interaction data available for mouse PDZ domains to quantitatively predict interactions between PDZ domains, a large peptide recognition domain family, and their peptide ligands using primary sequence information. First, we show that it is possible to learn from existing quantitative and negative interaction data to infer the relative binding strength of interactions involving previously unseen PDZ domains and/or peptides given their primary sequence. Performance was measured using cross-validated hold out testing and testing with previously unseen PDZ domain-peptide interactions. Second, we find that incorporating negative data improves quantitative interaction prediction. Third, we show that sequence similarity is an important prediction performance determinant, which suggests that experimentally collecting additional quantitative interaction data for underrepresented PDZ domain subfamilies will improve prediction. The Matlab code for our SemiSVR predictor and all data used here are available at http://baderlab.org/Data/PDZAffinity.

  11. Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles.

    PubMed

    Naccache, Samia N; Hasson, Tama; Horowitz, Arie

    2006-08-22

    Myosin VI (myo6) is the only actin-based molecular motor that translocates along actin filaments toward the minus end. Myo6 participates in two steps of endocytic trafficking; it is recruited to both clathrin-coated pits and to ensuing uncoated endocytic vesicles (UCV). Although there is evidence suggesting that the PDZ adaptor protein GIPC/synectin is involved in the association of myo6 with UCV, the recruitment mechanism is unknown. We show that GIPC/synectin is required for both internalization of cell surface receptors and for coupling of myo6 to UCV. This coupling occurs via a mechanism wherein engagement of the GIPC/synectin PDZ domain by C termini of internalized receptors facilitates in trans myo6 binding to the GIPC/synectin C terminus located outside of the PDZ domain. Analysis of megalin, a prototypical GIPC/synectin-binding receptor, revealed that deletion of its PDZ-binding motif drastically reduced GIPC/synectin and myo6 recruitment to UCV. Furthermore, interaction with GIPC/synectin was required for megalin's function, as megalin was mistargeted in the renal proximal tubules of GIPC/synectin-null mice and these mice exhibited proteinuria, a condition consistent with defective megalin trafficking.

  12. The α-syntrophin PH and PDZ domains scaffold acetylcholine receptors, utrophin and neuronal nitric oxide synthase at the neuromuscular junction

    PubMed Central

    Adams, Marvin E.; Anderson, Kendra N.E.; Froehner, Stanley C.

    2010-01-01

    At the neuromuscular junction (NMJ), the dystrophin protein complex provides a scaffold that functions to stabilize acetylcholine receptor (AChR) clusters. Syntrophin, a key component of that scaffold, is a multi-domain adapter protein that links a variety of signaling proteins and ion channels to the dystrophin protein complex. Without syntrophin, utrophin and neuronal nitric oxide synthase μ (nNOSμ) fail to localize to the NMJ and the AChRs are distributed abnormally. Here we investigate the contribution of syntrophin domains to AChR distribution and to localization of utrophin and nNOSμ at the NMJ. Transgenic mice expressing α-syntrophin lacking portions of the first pleckstrin homology (PH) domain (ΔPH1a or ΔPH1b) or the entire PDZ domainPDZ) were bred onto the α-syntrophin null background. As expected the ΔPDZ transgene did not restore the NMJ localization of nNOS. The ΔPH1a transgene did restore postsynaptic nNOS but surprisingly did not restore sarcolemmal nNOS (although sarcolemmal aquaporin-4 was restored). Mice lacking the α-syntrophin PDZ domain, or either half of the PH1 domain were able to restore utrophin to the NMJ but did not correct the aberrant AChR distribution of the α-syntrophin knockout mice. However, mice expressing both the transgenic ΔPDZ and the transgenic ΔPH1a constructs did restore normal AChR distribution, demonstrating that both domains are required but need not be confined within the same protein to function. We conclude that the PH1 and PDZ domains of α-syntrophin work in concert to facilitate the localization of AChRs and nNOS at the NMJ. PMID:20720107

  13. The PDZ protein MPP2 interacts with c-Src in epithelial cells

    SciTech Connect

    Baumgartner, Martin; Weiss, Andreas; Fritzius, Thorsten; Heinrich, Jochen; Moelling, Karin

    2009-10-15

    c-Src is a non-receptor tyrosine kinase involved in regulating cell proliferation, cell migration and cell invasion and is tightly controlled by reversible phosphorylation on regulatory sites and through protein-protein interactions. The interaction of c-Src with PDZ proteins was recently identified as novel mechanism to restrict c-Src function. The objective of this study was to identify and characterise PDZ proteins that interact with c-Src to control its activity. By PDZ domain array screen, we identified the interaction of c-Src with the PDZ protein Membrane Protein Palmitoylated 2 (MPP2), a member of the Membrane-Associated Guanylate Kinase (MAGUK) family, to which also the Discs large (Dlg) tumour suppressor protein belongs. The function of MPP2 has not been established and the functional significance of the MPP2 c-Src interaction is not known. We found that in non-transformed breast epithelial MCF-10A cells, endogenous MPP2 associated with the cytoskeleton in filamentous structures, which partially co-localised with microtubules and c-Src. MPP2 and c-Src interacted in cells, where c-Src kinase activity promoted increased interaction of c-Src with MPP2. We furthermore found that MPP2 was able to negatively regulate c-Src kinase activity in cells, suggesting that the functional significance of the MPP2-c-Src interaction is to restrict Src activity. Consequently, the c-Src-dependent disorganisation of the cortical actin cytoskeleton of epithelial cells expressing c-Src was suppressed by MPP2. In conclusion we demonstrate here that MPP2 interacts with c-Src in cells to control c-Src activity and morphological function.

  14. High-energy water sites determine peptide binding affinity and specificity of PDZ domains.

    PubMed

    Beuming, Thijs; Farid, Ramy; Sherman, Woody

    2009-08-01

    PDZ domains have well known binding preferences for distinct C-terminal peptide motifs. For most PDZ domains, these motifs are of the form [S/T]-W-[I/L/V]. Although the preference for S/T has been explained by a specific hydrogen bond interaction with a histidine in the PDZ domain and the (I/L/V) is buried in a hydrophobic pocket, the mechanism for Trp specificity at the second to last position has thus far remained unknown. Here, we apply a method to compute the free energies of explicit water molecules and predict that potency gained by Trp binding is due to a favorable release of high-energy water molecules into bulk. The affinities of a series of peptides for both wild-type and mutant forms of the PDZ domain of Erbin correlate very well with the computed free energy of binding of displaced waters, suggesting a direct relationship between water displacement and peptide affinity. Finally, we show a correlation between the magnitude of the displaced water free energy and the degree of Trp-sensitivity among subtypes of the HTRA PDZ family, indicating a water-mediated mechanism for specificity of peptide binding.

  15. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.

    PubMed

    Zhang, Yi-Le; Han, Zhao-Feng; Sun, Ying-Pu

    2016-06-01

    The recognition and association between Ca(2+)/calmodulin-activated protein kinase II-α (CaMKIIα) and multi-PDZ domain protein 1 (MUPP1) plays an important role in sperm acrosome reaction and human fertilization, which is mediated by the binding of CaMKIIα's C-terminal tail to one or more PDZ domains of the scaffolding protein MUPP1. In this study, we attempt to identify the CaMKIIα-interacting MUPP1 PDZ domains and to design peptide ligands that can potently target and then competitively disrupt such interaction. Here, a synthetic biology approach was proposed to systematically characterize the structural basis, energetic property, dynamic behavior and biological implication underlying the intermolecular interactions between the C-terminal peptide of CaMKIIα and all the 13 PDZ domains of MUPP1. These domains can be grouped into four clusters in terms of their sequence, structure and physiochemical profile; different clusters appear to recognize different classes of PDZ-binding motifs. The cluster 3 includes two members, i.e. MUPP1 PDZ 5 and 11 domains, which were suggested to bind class II motif Φ-X-Φ(-COOH) of the C-terminal peptide SGAPSV(-COOH) of CaMKIIα. Subsequently, the two domains were experimentally measured as the moderate- and high-affinity binders of the peptide by using fluorescence titration (dissociation constants K d = 25.2 ± 4.6 and 0.47 ± 0.08 µM for peptide binding to PDZ 5 and 11, respectively), which was in line with theoretical prediction (binding free energies ΔG total = -7.6 and -9.2 kcal/mol for peptide binding to PDZ 5 and 11, respectively). A systematic mutation of SGAPSV(-COOH) residues suggested few favorable amino acids at different residue positions of the peptide, which were then combined to generate a number of potent peptide mutants for PDZ 11 domain. Consequently, two peptides (SIAPNV(-COOH) and SIVMNV(-COOH)) were identified to have considerably improved affinity with K d increase by ~tenfold relative to

  16. Connexin43 PDZ2 Binding Domain Mutants Create Functional Gap Junctions and Exhibit Altered Phosphorylation

    PubMed Central

    Jin, Chengshi; Martyn, Kendra D.; Kurata, Wendy E.; Warn-Cramer, Bonnie J.; Lau, Alan F.

    2010-01-01

    Connexin43 (Cx43) is the most abundantly expressed gap junction protein. The C-terminal tail of Cx43 is important for regulation of gap junctions via phosphorylation of specific tyrosine and serine residues and through interactions with cellular proteins. The C-terminus of Cx43 has been shown to interact with the PDZ2 domain of the tight and adherens junction associated zona occludens 1 (ZO-1) protein. Analysis of the PDZ2 binding domain of Cx43 indicated that positions −3 and −2, and the final hydrophobic amino acid at the C-terminus, are critical for ZO-1 binding. In addition, the C-termini of connexins 40 and 45, but not Cx32, interacted with ZO-1. To evaluate the functional significance of the Cx43-ZO-1 interaction, Cx43 wild type (Cx43wt) and mutants lacking either the C-terminal hydrophobic isoleucine (Cx43ΔI382) or the last five amino acids (Cx43Δ378–382), required for ZO-1 binding in vitro, were introduced into a Cx43-deficient MDCK cell line. In vitro binding studies and coimmunoprecipitation assays indicated that these Cx43 mutants failed to interact with ZO-1. Confocal and deconvolution microscopy revealed that a fraction of Cx43wt colocalized with ZO-1 at the plasma membrane. A similar colocalization pattern was observed for the Cx43ΔI382 and Cx43Δ378–382 mutants, which were translocated to the plasma membrane and formed functional gap junction channels. The wt and mutant Cx43 appeared to have similar turnover rates. However, the P2 and P3 phosphoisoforms of the Cx43 mutants were significantly reduced compared to Cx43wt. These studies indicated that the interaction of Cx43 with ZO-1 may contribute to the regulation of Cx43 phosphorylation. PMID:16247852

  17. Conserved tertiary couplings stabilize elements in the PDZ fold, leading to characteristic patterns of domain conformational flexibility.

    PubMed

    Ho, Bosco K; Agard, David A

    2010-03-01

    Single-domain allostery has been postulated to occur through intramolecular pathways of signaling within a protein structure. We had previously investigated these pathways by introducing a local thermal perturbation and analyzed the anisotropic propagation of structural changes throughout the protein. Here, we develop an improved approach, the Rotamerically Induced Perturbation (RIP), that identifies strong couplings between residues by analyzing the pathways of heat-flow resulting from thermal excitation of rotameric rotations at individual residues. To explore the nature of these couplings, we calculate the complete coupling maps of 5 different PDZ domains. Although the PDZ domain is a well conserved structural fold that serves as a scaffold in many protein-protein complexes, different PDZ domains display unique patterns of conformational flexibility in response to ligand binding: some show a significant shift in a set of alpha-helices, while others do not. Analysis of the coupling maps suggests a simple relationship between the computed couplings and observed conformational flexibility. In domains where the alpha-helices are rigid, we find couplings of the alpha-helices to the body of the protein, whereas in domains having ligand-responsive alpha-helices, no couplings are found. This leads to a model where the alpha-helices are intrinsically dynamic but can be damped if sidechains interact at key tertiary contacts. These tertiary contacts correlate to high covariation contacts as identified by the statistical coupling analysis method. As these dynamic modules are exploited by various allosteric mechanisms, these tertiary contacts have been conserved by evolution.

  18. Cryptic protein-protein interaction motifs in the cytoplasmic domain of MHCI proteins.

    PubMed

    Frietze, Karla K; Pappy, Adlai L; Melson, Jack W; O'Driscoll, Emily E; Tyler, Carolyn M; Perlman, David H; Boulanger, Lisa M

    2016-07-19

    Major histocompatibility complex class I (MHCI) proteins present antigenic peptides for immune surveillance and play critical roles in nervous system development and plasticity. Most MHCI are transmembrane proteins. The extracellular domain of MHCI interacts with immunoreceptors, peptides, and co-receptors to mediate immune signaling. While the cytoplasmic domain also plays important roles in endocytic trafficking, cross-presentation of extracellularly derived antigens, and CTL priming, the molecular mediators of cytoplasmic signaling by MHCI remain largely unknown. Here we show that the cytoplasmic domain of MHCI contains putative protein-protein interaction domains known as PDZ (PSD95/disc large/zonula occludens-1) ligands. PDZ ligands are motifs that bind to PDZ domains to organize and mediate signaling at cell-cell contacts. PDZ ligands are short, degenerate motifs, and are therefore difficult to identify via sequence homology alone, but several lines of evidence suggest that putative PDZ ligand motifs in MHCI are under positive selective pressure. Putative PDZ ligands are found in all of the 99 MHCI proteins examined from diverse species, and are enriched in the cytoplasmic domain, where PDZ interactions occur. Both the position of the PDZ ligand and the class of ligand motif are conserved across species, as well as among genes within a species. Non-synonymous substitutions, when they occur, frequently preserve the motif. Of the many specific possible PDZ ligand motifs, a handful are strikingly and selectively overrepresented in MHCI's cytoplasmic domain, but not elsewhere in the same proteins. Putative PDZ ligands in MHCI encompass conserved serine and tyrosine residues that are targets of phosphorylation, a post-translational modification that can regulate PDZ interactions. Finally, proof-of-principle in vitro interaction assays demonstrate that the cytoplasmic domains of particular MHCI proteins can bind directly and specifically to PDZ1 and PDZ4&5 of MAGI

  19. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity.

    PubMed

    Roberts, Kyle E; Cushing, Patrick R; Boisguerin, Prisca; Madden, Dean R; Donald, Bruce R

    2012-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis (CF). The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators ("potentiators" and "correctors"), but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL), which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called "stabilizers") that rescue ΔF508-CFTR activity. To design the "stabilizers", we extended our structural ensemble-based computational protein redesign algorithm K* to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01) binds six-fold more tightly than the previous best hexamer (iCAL35), and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods.

  20. Protein Interacting with C-kinase 1 (PICK1) Binding Promiscuity Relies on Unconventional PSD-95/Discs-Large/ZO-1 Homology (PDZ) Binding Modes for Nonclass II PDZ Ligands*

    PubMed Central

    Erlendsson, Simon; Rathje, Mette; Heidarsson, Pétur O.; Poulsen, Flemming M.; Madsen, Kenneth L.; Teilum, Kaare; Gether, Ulrik

    2014-01-01

    PDZ domain proteins control multiple cellular functions by governing assembly of protein complexes. It remains unknown why individual PDZ domains can bind the extreme C terminus of very diverse binding partners and maintain selectivity. By employing NMR spectroscopy, together with molecular modeling, mutational analysis, and fluorescent polarization binding experiments, we identify here three structural mechanisms explaining why the PDZ domain of PICK1 selectively binds >30 receptors, transporters, and kinases. Class II ligands, including the dopamine transporter, adopt a canonical binding mode with promiscuity obtained via differential packing in the binding groove. Class I ligands, such as protein kinase Cα, depend on residues upstream from the canonical binding sequence that are likely to interact with flexible loop residues of the PDZ domain. Finally, we obtain evidence that the unconventional ligand ASIC1a has a dual binding mode involving a canonical insertion and a noncanonical internal insertion with the two C-terminal residues forming interactions outside the groove. Together with an evolutionary analysis, the data show how unconventional binding modes might evolve for a protein recognition domain to expand the repertoire of functionally important interactions. PMID:25023278

  1. The PDZ domain of TIP-2/GIPC interacts with the C-terminus of the integrin alpha5 and alpha6 subunits.

    PubMed

    El Mourabit, Haquima; Poinat, Patrice; Koster, Jan; Sondermann, Holger; Wixler, Viktor; Wegener, Elmar; Laplantine, Emmanuel; Geerts, Dirk; Georges-Labouesse, Elisabeth; Sonnenberg, Arnoud; Aumailley, Monique

    2002-03-01

    Different cDNA libraries were screened by the yeast two-hybrid system using as a bait the cytoplasmic sequence of integrin alpha6A or alpha6B subunits. Surprisingly, the same PDZ domain-containing protein, TIP-2/GIPC, was isolated with either of the variants, although their sequences are different. Direct interaction assays with the cytoplasmic domain of the integrin alpha1--7 subunits revealed that in addition to alpha6A and alpha6B, TIP-2/GIPC reacted also with alpha5, but not other alpha integrin subunits. The specificity of the interaction was confirmed by in vitro protein binding assays with purified peptides corresponding to integrin cytoplasmic domains. Further analysis with either truncation fragments of TIP-2/GIPC or mutated integrin cytoplasmic domains indicated that the interaction occurs between the PDZ domain of TIP-2/GIPC and a consensus PDZ domain-binding sequence, SDA, present at the C-terminus of the integrin alpha5 and alpha6A subunits. The integrin alpha6B subunit terminates with a different sequence, SYS, which may represent a new PDZ domain-binding motif.

  2. A C-terminal PDZ domain binding sequence is required for striatal distribution of the dopamine transporter

    PubMed Central

    Rickhag, Mattias; Hansen, Freja Herborg; Sørensen, Gunnar; Strandfelt, Kristine Nørgaard; Andresen, Bjørn; Gotfryd, Kamil; Madsen, Kenneth L.; Vestergaard-Klewe, Ib; Ammendrup-Johnsen, Ina; Eriksen, Jacob; Füchtbauer, Ernst-Martin; Gomeza, Jesus; Woldbye, David P.D.; Wörtwein, Gitta; Gether, Ulrik

    2013-01-01

    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling DAT levels in striatal nerve terminals remain poorly understood. DAT contains a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different DAT knock-in mice with disrupted PDZ-binding motifs (DAT-AAA and DAT+Ala) are characterized by dramatic loss of DAT expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from DAT-AAA mice, we find markedly reduced DAT surface levels and evidence for enhanced constitutive internalization. In DAT-AAA neurons, but not in wild type neurons, surface levels are rescued in part by expression of a dominant-negative dynamin mutation (K44A). Our findings suggest that PDZ domain interactions are critical for synaptic distribution of DAT in vivo and thereby for proper maintenance of dopamine homeostasis. PMID:23481388

  3. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain.

    PubMed

    Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J; Simonson, Thomas

    2017-01-01

    PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or "PB/LIE" free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  4. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    SciTech Connect

    S Truschel; D Sengupta; A Foote; A Heroux; M Macbeth; A Linstedt

    2011-12-31

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  5. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    SciTech Connect

    Truschel, S.T.; Heroux, A.; Sengupta, D.; Foote, A.; Macbeth, M. R.; Linstedt, A. D.

    2011-06-10

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  6. Crystal structure of the PDZ domain of mouse Dishevelled 1 and its interaction with CXXC5.

    PubMed

    Lee, Inhwan; Choi, Sooho; Yun, Ji-Hye; Seo, Seolhwa; Choi, Sehee; Choi, Kang-Yell; Lee, Weontae

    2016-12-05

    Dishevelled (Dvl) plays a crucial role in Wnt signaling by interacting with membrane-bound receptors and downstream molecules through its PDZ domain. CXXC5 is one of the key molecules that interacts with Dvl and negatively regulates the Wnt/β-catenin pathway in osteoblast differentiation. Recently, the Dvl-CXXC5 interaction has been identified as an excellent target for osteoporosis treatment. Therefore, it is desirable to have detailed structural information for the Dvl-CXXC5 interaction. Although solution structures of the Dvl1 PDZ domain have been reported, a high-resolution crystal structure would provide detailed sidechain information that is essential for drug development. Here, we determined the first crystal structure of the Dvl-1 PDZ domain at a resolution of 1.76 Å, and compared it with its previously reported solution structure. The Dvl1 PDZ domain crystal belonged to the space group H32 with unit-cell parameters a = b = 72.837, c = 120.616, α = ß = 90.00, γ = 120.00. The crystal structure of Dvl1 PDZ shared its topology with the previously reported structure determined by nuclear magnetic resonance (NMR); however, the crystal structure was quite different from the solution structure in both the secondary structural region and the ligand-binding pocket. Molecular modeling based on NMR and X-ray crystallographic data yielded detailed information about the Dvl1/CXXC5 interaction, which will be useful for designing inhibitors.

  7. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice

    PubMed Central

    2012-01-01

    Background Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. Results The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior. PMID:23268962

  8. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice.

    PubMed

    Nagura, Hitoshi; Ishikawa, Yasuyuki; Kobayashi, Katsunori; Takao, Keizo; Tanaka, Tomo; Nishikawa, Kouki; Tamura, Hideki; Shiosaka, Sadao; Suzuki, Hidenori; Miyakawa, Tsuyoshi; Fujiyoshi, Yoshinori; Doi, Tomoko

    2012-12-26

    Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.

  9. SAP97 Controls the Trafficking and Resensitization of the Beta-1-Adrenergic Receptor through Its PDZ2 and I3 Domains

    PubMed Central

    Nooh, Mohammed M.; Naren, Anjaparavanda P.; Kim, Sung-Jin; Xiang, Yang K.; Bahouth, Suleiman W.

    2013-01-01

    Previous studies have determined that the type-1 PDZ sequence at the extreme carboxy-terminus of the ß1-adrenergic receptor (ß1-AR) binds SAP97 and AKAP79 to organize a scaffold involved in trafficking of the ß1-AR. In this study we focused on characterizing the domains in SAP97 that were involved in recycling and resensitization of the ß1-AR in HEK-293 cells. Using a SAP97 knockdown and rescue strategy, we determined that PDZ-deletion mutants of SAP97 containing PDZ2 rescued the recycling and resensitization of the ß1-AR. Among the three PDZs of SAP97, PDZ2 displayed the highest affinity in binding to the ß1-AR. Expression of isolated PDZ2, but not the other PDZs, inhibited the recycling of the ß1-AR by destabilizing the macromolecular complex involved in trafficking and functional resensitization of the ß1-AR. In addition to its PDZs, SAP97 contains other protein interacting domains, such as the I3 sequence in the SRC homology-3 (SH3) domain, which binds to AKAP79. Deletion of I3 from SAP97 (ΔI3-SAP97) did not affect the binding of SAP97 to the ß1-AR. However, ΔI3-SAP97 could not rescue the recycling of the ß1-AR because it failed to incorporate AKAP79/PKA into the SAP97-ß1-AR complex. Therefore, bipartite binding of SAP97 to the ß1-AR and to AKAP79 is necessary for SAP97-mediated effects on recycling, externalization and functional resensitization of the ß1-AR. These data establish a prominent role for PDZ2 and I3 domains of SAP97 in organizing the ß1-adrenergic receptosome involved in connecting the ß1-AR to trafficking and signaling networks. PMID:23696820

  10. PDZ domain-binding motif regulates cardiomyocyte compartment-specific NaV1.5 channel expression and function.

    PubMed

    Shy, Diana; Gillet, Ludovic; Ogrodnik, Jakob; Albesa, Maxime; Verkerk, Arie O; Wolswinkel, Rianne; Rougier, Jean-Sébastien; Barc, Julien; Essers, Maria C; Syam, Ninda; Marsman, Roos F; van Mil, Anneke M; Rotman, Samuel; Redon, Richard; Bezzina, Connie R; Remme, Carol Ann; Abriel, Hugues

    2014-07-08

    Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease. © 2014 American Heart Association, Inc.

  11. Characterization of Syntenin, a Syndecan-binding PDZ Protein, as a Component of Cell Adhesion Sites and Microfilaments

    PubMed Central

    Zimmermann, Pascale; Tomatis, Daniela; Rosas, Marcela; Grootjans, Johan; Leenaerts, Iris; Degeest, Gisèle; Reekmans, Gunter; Coomans, Christien; David, Guido

    2001-01-01

    Syntenin is a PDZ protein that binds the cytoplasmic C-terminal FYA motif of the syndecans. Syntenin is widely expressed. In cell fractionation experiments, syntenin partitions between the cytosol and microsomes. Immunofluorescence microscopy localizes endogenous and epitope-tagged syntenin to cell adhesion sites, microfilaments, and the nucleus. Syntenin is composed of at least three domains. Both PDZ domains of syntenin are necessary to target reporter tags to the plasma membrane. The addition of a segment of 10 amino acids from the N-terminal domain of syntenin to these PDZ domains increases the localization of the tags to stress fibers and induces the formation of long, branching plasma membrane extensions. The addition of the complete N-terminal region, in contrast, reduces the localization of the tags to plasma membrane/adhesion sites and stress fibers, and reduces the morphotypical effects. Recombinant domains of syntenin with the highest plasma membrane localization display the lowest nuclear localization. Syndecan-1, E-cadherin, β-catenin, and α-catenin colocalize with syntenin at cell-cell contacts in epithelial cells, and coimmunoprecipitate with syntenin from extracts of these cells. These results suggest a role for syntenin in the composition of adherens junctions and the regulation of plasma membrane dynamics, and imply a potential role for syntenin in nuclear processes. PMID:11179419

  12. Roles of the PDZ-binding motif of HPV 16 E6 protein in oncogenic transformation of human cervical keratinocytes.

    PubMed

    Yoshimatsu, Yuki; Nakahara, Tomomi; Tanaka, Katsuyuki; Inagawa, Yuki; Narisawa-Saito, Mako; Yugawa, Takashi; Ohno, Shin-Ichi; Fujita, Masatoshi; Nakagama, Hitoshi; Kiyono, Tohru

    2017-07-01

    The high-risk human papillomavirus E6 proteins have been shown to interact with and lead to degradation of PDZ-domain-containing proteins through its carboxy-terminal motif. This PDZ-binding motif plays important roles in transformation of cultured cells and carcinogenesis of E6-transgenic mice. However, its biological effects on the natural host cells have not been elucidated. We have examined its roles in an in vitro carcinogenesis model for cervical cancer, in which E6 and E7 together with activated HRAS (HRAS(G)(12V) ) can induce tumorigenic transformation of normal human cervical keratinocytes. In this model, E6Δ151 mutant, which is defective in binding to PDZ domains, almost lost tumorigenic ability, whereas E6SAT mutant, which is defective in p53 degradation showed activity close to wild-type E6. Interestingly, we found decreased expression of PAR3 in E6-expressing cells independently of E6AP, which has not been previously recognized. Therefore, we knocked down several PDZ-domain containing proteins including PAR3 in human cervical keratinocytes expressing E7, HRAS(G)(12V) and E6Δ151 to examine whether depletion of these proteins can restore the tumorigenic ability. Single knockdown of SCRIB, MAGI1 or PAR3 significantly but partially restored the tumorigenic ability. The combinatorial knockdown of SCRIB and MAGI1 cooperatively restored the tumorigenic ability, and additional depletion of PAR3 further enhanced the tumorigenic ability surpassing that induced by wild-type E6. These data highlight the importance of the carboxy-terminal motif of the E6 protein and downregulation of PAR3 in tumorigenic transformation of human cervical keratinocytes. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth.

    PubMed

    Excoffon, Katherine J D Ashbourne; Hruska-Hageman, Alesia; Klotz, Michael; Traver, Geri L; Zabner, Joseph

    2004-09-01

    The coxsackie and adenovirus receptor (CAR) plays a role in viral infection, maintenance of the junction adhesion complex in polarized epithelia, and modulation of cellular growth properties. As a viral receptor, the C-terminus appears to play no role indicating that the major function of CAR is to tether the virus to the cell. By contrast, the C-terminus is known to play a role in cellular localization and probably has a significant function in CAR-mediated adhesion and cell growth properties. We hypothesized that the CAR PDZ (PSD-95/Disc-large/ZO-1) binding motif interacts with PDZ-domain-containing proteins to modulate the cellular phenotype. CAR was modified by deleting the last four amino acids (CARDeltaGSIV) and evaluated for cell-cell adhesion in polarized primary human airway epithelia and growth characteristics in stably transfected L-cells. Although ablation of the CAR PDZ-binding motif did not affect adenoviral infection, it did have a significant effect both on cell-cell adhesion and on cell growth. Expression of CARDeltaGSIV failed to increase the transepithelial resistance in polarized epithelia to the same degree as wild-type CAR and failed to act as a growth modulator in L-cells. Furthermore, we provide evidence for three new CAR interacting partners, including MAGI-1b, PICK1 and PSD-95. CAR appears to interact with several distinct PDZ-domain-containing proteins and may exert its biological function through these interactions.

  14. 5T4 interacts with TIP-2/GIPC, a PDZ protein, with implications for metastasis.

    PubMed

    Awan, Abida; Lucic, Melinda R; Shaw, David M; Sheppard, Freda; Westwater, Caroline; Lyons, Steve A; Stern, Peter L

    2002-01-25

    Overexpression of the 5T4 transmembrane glycoprotein can have marked effects on both the actin cytoskeleton and cell migration. Using a yeast two-hybrid approach, we describe a novel interaction between 5T4 and TIP-2/GIPC, a cytoplasmic interacting protein containing a PDZ domain. The cytoplasmic tail of 5T4 contains a class I PDZ-binding motif (Ser-Asp-Val) and we demonstrate that this region, in particular the terminal valine, is required for 5T4 interaction with TIP-2/GIPC. HeLa cells expressing hemagglutinin-tagged TIP-2/GIPC (HA-TIP-2/GIPC) have an altered distribution of endogenous 5T4, which colocalizes with HA-TIP-2/GIPC, thus supporting an interaction. Furthermore, TIP-2/GIPC can be coimmunoprecipitated with 5T4 from HeLa cell lysates. Identification of the 5T4 and TIP-2/GIPC interaction provides the first link between 5T4 and the actin cytoskeleton. Since other proteins, like 5T4, associate with TIP-2/GIPC and are linked with cancer, we explore the possibility that TIP-2/GIPC may be a common factor involved in the cancer process.

  15. Two Mutations Preventing PDZ-Protein Interactions of GluR1 Have Opposite Effects on Synaptic Plasticity

    ERIC Educational Resources Information Center

    Boehm, Jannic; Ehrlich, Ingrid; Hsieh, Helen; Malinow, Roberto

    2006-01-01

    The regulated trafficking of GluR1 contributes significantly to synaptic plasticity, but studies addressing the function of the GluR1 C-terminal PDZ-ligand domain in this process have produced conflicting results. Here, we resolve this conflict by showing that apparently similar C-terminal mutations of the GluR1 PDZ-ligand domain result in…

  16. The PDZ protein discs-large (DLG): the 'Jekyll and Hyde' of the epithelial polarity proteins.

    PubMed

    Roberts, Sally; Delury, Craig; Marsh, Elizabeth

    2012-10-01

    Discs-large (DLG) is a multi-PDZ domain-containing protein that belongs to the family of molecular scaffolding proteins known as membrane guanylate kinases or MAGUKs. DLG is a component of the Scribble polarity complex and genetic analyses of DLG in Drosophila have identified a role for the protein in several key biological processes including the regulation of apico-basal polarity of epithelial cells, as well as other polarity processes such as asymmetric cell division and cell invasion. Disturbance of DLG function leads to uncontrolled epithelial cell proliferation and neoplastic transformation, thereby defining DLG as a potential tumour suppressor. However, whether mammalian homologues of DLG (DLG1, DLG2, DLG3 and DLG4) also possess tumour suppressor functions is not known. In this minireview, we focus on the biological functions of DLG1 in human epithelial cells and on how the function of this MAGUK relates to its intracellular location. We examine some of the evidence that implies that DLG has both tumour suppressor and, paradoxically, oncogenic functions depending upon the precise cellular context. © 2012 The Authors Journal compilation © 2012 FEBS.

  17. Disrupting 5-HT2A Receptor/PDZ Protein Interactions Reduces Hyperalgesia and Enhances SSRI Efficacy in Neuropathic Pain

    PubMed Central

    Pichon, Xavier; Wattiez, Anne S; Becamel, Carine; Ehrlich, Ingrid; Bockaert, Joel; Eschalier, Alain; Marin, Philippe; Courteix, Christine

    2010-01-01

    Antidepressants are one of the first-line treatments for neuropathic pain. Despite the influence of serotonin (5-hydroxytryptamine, 5-HT) in pain modulation, selective serotonin reuptake inhibitors (SSRIs) are less effective than tricyclic antidepressants. Here, we show, in diabetic neuropathic rats, an alteration of the antihyperalgesic effect induced by stimulation of 5-HT2A receptors, which are known to mediate SSRI-induced analgesia. 5-HT2A receptor density was not changed in the spinal cord of diabetic rats, whereas postsynaptic density protein-95 (PSD-95), one of the PSD-95/disc large suppressor/zonula occludens-1 (PDZ) domain containing proteins interacting with these receptors, was upregulated. Intrathecal injection of a cell-penetrating peptidyl mimetic of the 5-HT2A receptor C-terminus, which disrupts 5-HT2A receptor–PDZ protein interactions, induced an antihyperalgesic effect in diabetic rats, which results from activation of 5-HT2A receptors by endogenous 5-HT. The peptide also enhanced antihyperalgesia induced by the SSRI fluoxetine. Its effects likely resulted from an increase in receptor responsiveness, because it revealed functional 5-HT2A receptor-operated Ca2+ responses in neurons, an effect mimicked by knockdown of PSD-95. Hence, 5-HT2A receptor/PDZ protein interactions might contribute to the resistance to SSRI-induced analgesia in painful diabetic neuropathy. Disruption of these interactions might be a valuable strategy to design novel treatments for neuropathic pain and to increase the effectiveness of SSRIs. PMID:20531396

  18. Crystallization and Preliminary Diffraction Analysis of the CAL PDZ Domain in Complex with a Selective Peptide Inhibitor

    SciTech Connect

    J Amacher; P Cushing; J Weiner; D Madden

    2011-12-31

    Cystic fibrosis (CF) is associated with loss-of-function mutations in the CF transmembrane conductance regulator (CFTR), which regulates epithelial fluid and ion homeostasis. The CFTR cytoplasmic C-terminus interacts with a number of PDZ (PSD-95/Dlg/ZO-1) proteins that modulate its intracellular trafficking and chloride-channel activity. Among these, the CFTR-associated ligand (CAL) has a negative effect on apical-membrane expression levels of the most common disease-associated mutant {Delta}F508-CFTR, making CAL a candidate target for the treatment of CF. A selective peptide inhibitor of the CAL PDZ domain (iCAL36) has recently been developed and shown to stabilize apical expression of {Delta}F508-CFTR, enhancing net chloride-channel activity, both alone and in combination with the folding corrector corr-4a. As a basis for structural studies of the CAL-iCAL36 interaction, a purification protocol has been developed that increases the oligomeric homogeneity of the protein. Here, the cocrystallization of the complex in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 35.9, b = 47.7, c = 97.3 {angstrom}, is reported. The crystals diffracted to 1.4 {angstrom} resolution. Based on the calculated Matthews coefficient (1.96 {angstrom}{sup 3} Da{sup -1}), it appears that the asymmetric unit contains two complexes.

  19. The NHERF1 PDZ2 Domain Regulates PKA–RhoA–p38-mediated NHE1 Activation and Invasion in Breast Tumor Cells

    PubMed Central

    Cardone, Rosa A.; Bellizzi, Antonia; Busco, Giovanni; Weinman, Edward J.; Dell'Aquila, Maria E.; Casavola, Valeria; Azzariti, Amalia; Mangia, Anita; Paradiso, Angelo

    2007-01-01

    Understanding the signal transduction systems governing invasion is fundamental for the design of therapeutic strategies against metastasis. Na+/H+ exchanger regulatory factor (NHERF1) is a postsynaptic density 95/disc-large/zona occludens (PDZ) domain-containing protein that recruits membrane receptors/transporters and cytoplasmic signaling proteins into functional complexes. NHERF1 expression is altered in breast cancer, but its effective role in mammary carcinogenesis remains undefined. We report here that NHERF1 overexpression in human breast tumor biopsies is associated with metastatic progression, poor prognosis, and hypoxia-inducible factor-1α expression. In cultured tumor cells, hypoxia and serum deprivation increase NHERF1 expression, promote the formation of leading-edge pseudopodia, and redistribute NHERF1 to these pseudopodia. This pseudopodial localization of NHERF1 was verified in breast biopsies and in three-dimensional Matrigel culture. Furthermore, serum deprivation and hypoxia stimulate the Na+/H+ exchanger, invasion, and activate a protein kinase A (PKA)-gated RhoA/p38 invasion signal module. Significantly, NHERF1 overexpression was sufficient to induce these morphological and functional changes, and it potentiated their induction by serum deprivation. Functional experiments with truncated and binding groove-mutated PDZ domain constructs demonstrated that NHERF1 regulates these processes through its PDZ2 domain. We conclude that NHERF1 overexpression enhances the invasive phenotype in breast cancer cells, both alone and in synergy with exposure to the tumor microenvironment, via the coordination of PKA-gated RhoA/p38 signaling. PMID:17332506

  20. Biophysical Characterization of Interactions between the C-termini of Peripheral Nerve Claudins and the PDZ1 Domain of Zonula Occludens

    PubMed Central

    Wu, Jiawen; Peng, Dungeng; Zhang, Yang; Lu, Zhenwei; Voehler, Markus; Sanders, Charles R.; Li, Jun

    2015-01-01

    Our recent study has shown that cellular junctions in myelin and in the epi-/perineruium that encase nerve fibers regulate the permeability of the peripheral nerves. This permeability may affect propagation of the action potential. Direct interactions between the PDZ1 domain of zonula occludens (ZO1 or ZO2) and the C-termini of claudins are known to be crucial for the formation of tight junctions. Using the purified PDZ1 domain of ZO2 and a variety of C-terminal mutants of peripheral nerve claudins (claudin-1, claudin-2, claudin-3, claudin-5 in epi-/perineurium; claudin-19 in myelin), we have utilized NMR spectroscopy to determine specific roles of the 3 C-terminal claudin residues (position -2, -1, 0) for their interactions with PDZ1 of ZO2. In contrast to the canonical model that emphasizes the importance of residues at the -2 and 0 positions, our results demonstrate that, for peripheral nerve claudins, the residue at position -1 plays a critical role in association with PDZ1, while the side-chain of residue 0 plays a significant but lesser role. Surprisingly, claudin-19, the most abundant claudin in myelin, exhibited no binding to ZO2. These findings reveal that the binding mechanism of claudin/ZO in epi-/perineurium is distinct from the canonical interactions between non-ZO PDZ-containing proteins with their ligands. This observation provides the molecular basis for a strategy to develop drugs that target tight junctions in the epi-/perineurium of peripheral nerves. PMID:25712527

  1. The cellular distribution of Na+/H+ exchanger regulatory factor 1 is determined by the PDZ-I domain and regulates the malignant progression of breast cancer

    PubMed Central

    Du, Guifang; Gu, Yanan; Hao, Chengcheng; Yuan, Zhu; He, Junqi; Jiang, Wen G.; Cheng, Shan

    2016-01-01

    The oncogenic role of ectopic expression of Na+/H+ exchanger regulatory factor 1 (NHERF1) was recently suggested. Here, we show that NHERF1 was upregulated in high grades compared with low grades. Increased NHERF1 expression was correlated with poor prognosis and poor survival. NHERF1 expression was higher in the nucleus of cancer cells than in contiguous non- mammary epithelial cells. A novel mutation, namely NHERF1 Y24S, was identified in human breast cancer tissues and shown to correspond to a conserved residue in the PDZ-I domain of NHERF1. Truncation and mutation of the PDZ-I domain of NHERF1 increased the nuclear distribution of the NHERF1 protein, and this redistribution was associated with the malignant phenotype of breast cancer cells, including growth, migration, and adhesion. The present results suggest a role for NHERF1 in the progression of breast cancer mediated by the nuclear distribution of the NHERF1 protein, as determined by the truncation or key site mutation of the PDZ-I domain. PMID:27097111

  2. Functional dependence of neuroligin on a new non-PDZ intracellular domain

    PubMed Central

    Shipman, Seth L; Schnell, Eric; Hirai, Takaaki; Chen, Bo-Shiun; Roche, Katherine W; Nicoll, Roger A

    2011-01-01

    Neuroligins, a family of postsynaptic adhesion molecules, are important in synaptogenesis through a well-characterized trans-synaptic interaction with neurexin. In addition, neuroligins are thought to drive postsynaptic assembly through binding of their intracellular domain to PSD-95. However, there is little direct evidence to support the functional necessity of the neuroligin intracellular domain in postsynaptic development. We found that presence of endogenous neuroligin obscured the study of exogenous mutated neuroligin. We therefore used chained microRNAs in rat organotypic hippocampal slices to generate a reduced background of endogenous neuroligin. On this reduced background, we found that neuroligin function was critically dependent on the cytoplasmic tail. However, this function required neither the PDZ ligand nor any other previously described cytoplasmic binding domain, but rather required a previously unknown conserved region. Mutation of a single critical residue in this region inhibited neuroligin-mediated excitatory synaptic potentiation. Finally, we found a functional distinction between neuroligins 1 and 3. PMID:21532576

  3. Systematic family‐wide analysis of sodium bicarbonate cotransporter NBCn1/SLC4A7 interactions with PDZ scaffold proteins

    PubMed Central

    Lee, Hye Jeong; Kwon, Min Hyung; Lee, Soojung; Hall, Randy A.; Yun, C. Chris; Choi, Inyeong

    2014-01-01

    Abstract NBCn1 (SLC4A7) plays a role in transepithelial HCO3− movement and intracellular pH maintenance in many tissues. In this study, we searched PDZ proteins capable of binding to NBCn1. We screened a protein array membrane, on which 96 different class I PDZ protein peptides were blotted, with the C‐terminal domain of NBCn1 fused to GST. Thirteen proteins were identified in these screens: MAGI‐3, NHERF‐1, NHERF‐2, PSD‐95, chapsyn‐110, ERBIN, MALS‐1, densin‐180, syntrophins α1, β2, γ2, MUPP1, and PDZK1. After determining these binding partners, we analyzed the database of known and predicted protein interactions to obtain an NBCn1 interaction network. The network shows NBCn1 being physically and functionally associated with a variety of membrane and cytosolic proteins via the binding partners. We then focused on syntrophin γ2 to examine the molecular and functional interaction between NBCn1 and one of the identified binding partners in the Xenopus oocyte expression system. GST/NBCn1 pulled down syntrophin γ2 and conversely GST/syntrophin γ2 pulled down NBCn1. Moreover, syntrophin γ2 increased intracellular pH recovery, from acidification, mediated by NBCn1's Na/HCO3 cotransport. Syntrophin γ2 also increased an ionic conductance produced by NBCn1 channel‐like activity. Thus, syntrophin γ2 regulates NBCn1 activity. In conclusion, this study demonstrates that NBCn1 binds to many PDZ proteins, which in turn may allow the transporter to associate with other physiologically important proteins. PMID:24844638

  4. Regulation of Postsynaptic Stability by the L-type Calcium Channel CaV1.3 and its Interaction with PDZ Proteins

    PubMed Central

    Stanika, Ruslan I.; Flucher, Bernhard E.; Obermair, Gerald J.

    2015-01-01

    Alterations in dendritic spine morphology and postsynaptic structure are a hallmark of neurological disorders. Particularly spine pruning of striatal medium spiny neurons and aberrant rewiring of corticostriatal synapses have been associated with the pathology of Parkinson’s disease and L-DOPA induced dyskinesia, respectively. Owing to its low activation threshold the neuronal L-type calcium channel CaV1.3 is particularly critical in the control of neuronal excitability and thus in the calcium-dependent regulation of neuronal functions. CaV1.3 channels are located in dendritic spines and contain a C-terminal class 1 PDZ domain-binding sequence. Until today the postsynaptic PDZ domain proteins shank, densin-180, and erbin have been shown to interact with CaV1.3 channels and to modulate their current properties. Interestingly experimental evidence suggests an involvement of all three PDZ proteins as well as CaV1.3 itself in regulating dendritic and postsynaptic morphology. Here we briefly review the importance of CaV1.3 and its proposed interactions with PDZ proteins for the stability of dendritic spines. With a special focus on the pathology associated with Parkinson’s disease, we discuss the hypothesis that CaV1.3 L-type calcium channels may be critical modulators of dendritic spine stability. PMID:25966696

  5. Genetic Variants at the PDZ-Interacting Domain of the Scavenger Receptor Class B Type I Interact with Diet to Influence the Risk of Metabolic Syndrome in Obese Men and Women

    USDA-ARS?s Scientific Manuscript database

    The scaffolding protein PDZ domain containing 1 (PDZK1) regulates the HDL receptor scavenger receptor class B type I. However, the effect of PDZK1 genetic variants on lipids and metabolic syndrome (MetS) traits remains unknown. This study evaluated the association of 3 PDZK1 single nucleotide polymo...

  6. Regulation of synaptic development and function by the Drosophila PDZ protein Dyschronic.

    PubMed

    Jepson, James E C; Shahidullah, Mohammed; Liu, Die; le Marchand, Sylvain J; Liu, Sha; Wu, Mark N; Levitan, Irwin B; Dalva, Matthew B; Koh, Kyunghee

    2014-12-01

    Synaptic scaffold proteins control the localization of ion channels and receptors, and facilitate molecular associations between signaling components that modulate synaptic transmission and plasticity. Here, we define novel roles for a recently described scaffold protein, Dsychronic (DYSC), at the Drosophila larval neuromuscular junction. DYSC is the Drosophila homolog of whirlin/DFNB31, a PDZ domain protein linked to Usher syndrome, the most common form of human deaf-blindness. We show that DYSC is expressed presynaptically and is often localized adjacent to the active zone, the site of neurotransmitter release. Loss of DYSC results in marked alterations in synaptic morphology and cytoskeletal organization. Moreover, active zones are frequently enlarged and misshapen in dysc mutants. Electrophysiological analyses further demonstrate that dysc mutants exhibit substantial increases in both evoked and spontaneous synaptic transmission. We have previously shown that DYSC binds to and regulates the expression of the Slowpoke (SLO) BK potassium channel. Consistent with this, slo mutant larvae exhibit similar alterations in synapse morphology, active zone size and neurotransmission, and simultaneous loss of dysc and slo does not enhance these phenotypes, suggesting that dysc and slo act in a common genetic pathway to modulate synaptic development and output. Our data expand our understanding of the neuronal functions of DYSC and uncover non-canonical roles for the SLO potassium channel at Drosophila synapses. © 2014. Published by The Company of Biologists Ltd.

  7. An Exquisitely Specific PDZ/Target Recognition Revealed by the Structure of INAD PDZ3 in Complex with TRP Channel Tail.

    PubMed

    Ye, Fei; Liu, Wei; Shang, Yuan; Zhang, Mingjie

    2016-03-01

    The vast majority of PDZ domains are known to bind to a few C-terminal tail residues of target proteins with modest binding affinities and specificities. Such promiscuous PDZ/target interactions are not compatible with highly specific physiological functions of PDZ domain proteins and their targets. Here, we report an unexpected PDZ/target binding occurring between the scaffold protein inactivation no afterpotential D (INAD) and transient receptor potential (TRP) channel in Drosophila photoreceptors. The C-terminal 15 residues of TRP are required for the specific interaction with INAD PDZ3. The INAD PDZ3/TRP peptide complex structure reveals that only the extreme C-terminal Leu of TRP binds to the canonical αB/βB groove of INAD PDZ3. The rest of the TRP peptide, by forming a β hairpin structure, binds to a surface away from the αB/βB groove of PDZ3 and contributes to the majority of the binding energy. Thus, the INAD PDZ3/TRP channel interaction is exquisitely specific and represents a new mode of PDZ/target recognitions.

  8. Monitoring Protein-Protein Interactions between the Mammalian Integral Membrane Transporters and PDZ-interacting Partners Using a Modified Split-ubiquitin Membrane Yeast Two-hybrid System*S⃞

    PubMed Central

    Gisler, Serge M.; Kittanakom, Saranya; Fuster, Daniel; Wong, Victoria; Bertic, Mia; Radanovic, Tamara; Hall, Randy A.; Murer, Heini; Biber, Jürg; Markovich, Daniel; Moe, Orson W.; Stagljar, Igor

    2008-01-01

    PDZ-binding motifs are found in the C-terminal tails of numerous integral membrane proteins where they mediate specific protein-protein interactions by binding to PDZ-containing proteins. Conventional yeast two-hybrid screens have been used to probe protein-protein interactions of these soluble C termini. However, to date no in vivo technology has been available to study interactions between the full-length integral membrane proteins and their cognate PDZ-interacting partners. We previously developed a split-ubiquitin membrane yeast two-hybrid (MYTH) system to test interactions between such integral membrane proteins by using a transcriptional output based on cleavage of a transcription factor from the C terminus of membrane-inserted baits. Here we modified MYTH to permit detection of C-terminal PDZ domain interactions by redirecting the transcription factor moiety from the C to the N terminus of a given integral membrane protein thus liberating their native C termini. We successfully applied this “MYTH 2.0” system to five different mammalian full-length renal transporters and identified novel PDZ domain-containing partners of the phosphate (NaPi-IIa) and sulfate (NaS1) transporters that would have otherwise not been detectable. Furthermore this assay was applied to locate the PDZ-binding domain on the NaS1 protein. We showed that the PDZ-binding domain for PDZK1 on NaS1 is upstream of its C terminus, whereas the two interacting proteins, NHERF-1 and NHERF-2, bind at a location closer to the N terminus of NaS1. Moreover NHERF-1 and NHERF-2 increased functional sulfate uptake in Xenopus oocytes when co-expressed with NaS1. Finally we used MYTH 2.0 to demonstrate that the NaPi-IIa transporter homodimerizes via protein-protein interactions within the lipid bilayer. In summary, our study establishes the MYTH 2.0 system as a novel tool for interactive proteomics studies of membrane protein complexes. PMID:18407958

  9. Distinct Ligand Specificity of the Tiam1 and Tiam2 PDZ Domains†

    PubMed Central

    Shepherd, Tyson R.; Hard, Ryan L.; Murray, Ann M.; Pei, Dehua; Fuentes, Ernesto J.

    2011-01-01

    Guanine nucleotide exchange factor proteins of the Tiam family are activators of the Rho GTPase Rac1 and critical for cell morphology, adhesion, migration, and polarity. These proteins are modular and contain a variety of interaction domains, including a single post-synaptic density-95/discs large/zonula occludens-1 (PDZ) domain. Previous studies suggest that the specificities of the Tiam1 and Tiam2 PDZ domains are distinct. Here, we sought to conclusively define these specificities and determine their molecular origin. Using a combinatorial peptide library, we identified a consensus binding sequence for each PDZ domain. Analysis of these consensus sequences and binding assays with peptides derived from native proteins indicated that these two PDZ domains have overlapping, but distinct specificities. We also identified residues in two regions (S0 and S-2 pockets) of the Tiam1 PDZ domain that are important determinants of ligand specificity. Site-directed mutagenesis of four non-conserved residues in these two regions along with peptide binding analyses confirmed that these residues are crucial for ligand affinity and specificity. Furthermore, double-mutant cycle analysis of each region revealed energetic couplings that were dependent on the ligand being investigated. Remarkably, a Tiam1 PDZ domain quadruple mutant had the same specificity as the Tiam2 PDZ domain. Finally, analysis of Tiam-family PDZ domain sequences indicated that the PDZ domains segregate into four distinct families based on the residues studied here. Collectively, our data suggest that Tiam-family proteins have highly evolved PDZ-ligand interfaces with distinct specificities, and that they have disparate PDZ-dependent biological functions. PMID:21192692

  10. Structure-based optimization of salt-bridge network across the complex interface of PTPN4 PDZ domain with its peptide ligands in neuroglioma.

    PubMed

    Xiao, Xian; He, Qiang-Hua; Yu, Li-Yan; Wang, Song-Qing; Li, Yang; Yang, Hua; Zhang, Ai-Hua; Ma, Xiao-Hong; Peng, Yu-Jie; Chen, Bing

    2017-02-01

    The PTP non-receptor type 4 (PTPN4) is an important regulator protein in learning, spatial memory and cerebellar synaptic plasticity; targeting the PDZ domain of PTPN4 has become as attractive therapeutic strategy for human neuroglioma. Here, we systematically examined the complex crystal structures of PTPN4 PDZ domain with its known peptide ligands; a number of charged amino acid residues were identified in these ligands and in the peptide-binding pocket of PDZ domain, which can constitute a complicated salt-bridge network across the complex interface. Molecular dynamics (MD) simulations, binding free energy calculations and continuum model analysis revealed that the electrostatic effect plays a predominant role in domain-peptide binding, while other noncovalent interactions such as hydrogen bonds and hydrophobic forces are also responsible for the binding. The computational findings were then used to guide structure-based optimization of the interfacial salt-bridge network. Consequently, five peptides were rationally designed using the high-affinity binder Cyto8-RETEV (RETEV(-COOH)) as template, including four single-point mutants (i.e. Cyto8-mtxe0: RETEE(-COOH), Cyto8-mtxd-1: RETDV(-COOH), Cyto8-mtxd-3: RDTEV(-COOH) and Cyto8-mtxk-4: KETEV(-COOH)) and one double-point mutant (i.e. Cyto8-mtxd-1k-4: KETDV(-COOH)). Binding assays confirmed that three (Cyto8-mtxd-1, Cyto8-mtxk-4 and Cyto8-mtxd-1k-4) out of the five designed peptides exhibit moderately or considerably increased affinity as compared to the native peptide Cyto8-RETEV.

  11. A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1-PDZ-domain

    PubMed Central

    Sensoy, Ozge; Weinstein, Harel

    2015-01-01

    Helix-8 (Hx8) is a structurally conserved amphipathic helical motif in class-A GPCRs, adjacent to the C-terminal sequence that is responsible for PDZ-domain-recognition. The Hx8 segment in the dopamine D2 receptor (D2R) constitutes the C-terminal segment and we investigate its role in the function of D2R by studying the interaction with the PDZ-containing GIPC1 using homology models based on the X-ray structures of very closely related analogs: the D3R for the D2R model, and the PDZ domain of GIPC2 for GIPC1-PDZ. The mechanism of this interaction was investigated with all-atom unbiased molecular dynamics (MD) simulations that reveal the role of the membrane in maintaining the helical fold of Hx8, and with biased MD simulations to elucidate the energy drive for the interaction with the GIPC1-PDZ. We found that it becomes more favorable energetically for Hx8 to adopt the extended conformation observed in all PDZ-ligand complexes when it moves away from the membrane, and that C-terminus palmitoylation of D2R enhanced membrane penetration by the Hx8 backbone. De-palmitoylation enables Hx8 to move out into the aqueous environment for interaction with the PDZ domain. All-atom unbiased MD simulations of the full D2R-GIPC1 complex in sphingolipid/cholesterol membranes shows that the D2R carboxyl C-terminus samples the region of the conserved GFGL motif located on the carboxylate-binding loop of the GIPC1-PDZ, and the entire complex distances itself from the membrane interface. Together, these results outline a likely mechanism of Hx8 involvement in the interaction of the GPCR with PDZ-domains in the course of signaling. PMID:25592838

  12. A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1–PDZ-domain

    DOE PAGES

    Sensoy, Ozge; Weinstein, Harel

    2015-01-12

    Helix-8 (Hx8) is a structurally conserved amphipathic helical motif in class-A GPCRs, adjacent to the C-terminal sequence that is responsible for PDZ-domain-recognition. The Hx8 segment in the dopamine D2 receptor (D2R) constitutes the C-terminal segment and we investigate its role in the function of D2R by studying the interaction with the PDZ-containing GIPC1 using homology models based on the X-ray structures of very closely related analogs: the D3R for the D2R model, and the PDZ domain of GIPC2 for GIPC1–PDZ. The mechanism of this interaction was investigated with all-atom unbiased molecular dynamics (MD) simulations that reveal the role of themore » membrane in maintaining the helical fold of Hx8, and with biased MD simulations to elucidate the energy drive for the interaction with the GIPC1–PDZ. We found that it becomes more favorable energetically for Hx8 to adopt the extended conformation observed in all PDZ–ligand complexes when it moves away from the membrane, and that C-terminus palmitoylation of D2R enhanced membrane penetration by the Hx8 backbone. De-palmitoylation enables Hx8 to move out into the aqueous environment for interaction with the PDZ domain. All-atom unbiased MD simulations of the full D2R–GIPC1-PDZ complex in sphingolipid/cholesterol membranes show that the D2R carboxyl C-terminus samples the region of the conserved GFGL motif located on the carboxylate-binding loop of the GIPC1–PDZ, and the entire complex distances itself from the membrane interface. Altogether, these results outline a likely mechanism of Hx8 involvement in the interaction of the GPCR with PDZ-domains in the course of signaling.« less

  13. Inhalational anesthetics disrupt postsynaptic density protein-95, Drosophila disc large tumor suppressor, and zonula occludens-1 domain protein interactions critical to action of several excitatory receptor channels related to anesthesia

    PubMed Central

    Tao, Feng; Chen, Qiang; Sato, Yuko; Skinner, John; Tang, Pei; Johns, Roger A.

    2015-01-01

    Background We have shown previously that inhaled anesthetics disrupt the interaction between the second postsynaptic density protein-95, Drosophila disc large tumor suppressor, and zonula occludens-1 (PDZ) domain of postsynaptic density protein-95 (PSD-95) and the C-terminus of N-methyl-D-aspartate receptor subunits NR2A and NR2B. Our data indicate that PDZ domains may serve as a molecular target for inhaled anesthetics. However, the underlying molecular mechanisms remain to be illustrated. Methods Glutathione S-transferase pull-down assay, co-immunoprecipitation and yeast two-hybrid analysis were used to assess PDZ domain-mediated protein-protein interactions in different conditions. Nuclear magnetic resonance spectroscopy was used to investigate isoflurane-induced chemical shift changes in the PDZ1–3 domains of PSD-95. A surface plasmon resonance-based BIAcore assay was used to examine the ability of isoflurane to inhibit the PDZ domain-mediated protein-protein interactions in real time. Results Halothane and isoflurane dose dependently inhibited PDZ domain-mediated interactions between PSD-95 and Shaker-type potassium channel Kv1.4 and between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluA2 and its interacting proteins— glutamate receptor interacting protein or protein interacting with c kinase 1. However, halothane and isoflurane had no effect on PDZ domain-mediated interactions between γ-aminobutyric acid, type B receptor and its interacting proteins. The inhaled anesthetic isoflurane mostly affected the residues close to or in the peptide binding groove of PSD-95 PDZ1 and PDZ2 (especially PDZ2), while barely affecting the peptide binding groove of PSD-95 PDZ3. Conclusion These results suggest that inhaled anesthetics interfere with PDZ domain-mediated protein-protein interactions at several receptors important to neuronal excitation, anesthesia and pain processing. PMID:25654436

  14. Actin/alpha-actinin-dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL.

    PubMed

    Schulz, Torsten W; Nakagawa, Terunaga; Licznerski, Pawel; Pawlak, Verena; Kolleker, Alexander; Rozov, Andrei; Kim, Jinhyun; Dittgen, Tanjew; Köhr, Georg; Sheng, Morgan; Seeburg, Peter H; Osten, Pavel

    2004-09-29

    The efficacy of excitatory transmission in the brain depends to a large extent on synaptic AMPA receptors, hence the importance of understanding the delivery and recycling of the receptors at the synaptic sites. Here we report a novel regulation of the AMPA receptor transport by a PDZ (postsynaptic density-95/Drosophila disc large tumor suppressor zona occludens 1) and LIM (Lin11/rat Isl-1/Mec3) domain-containing protein, RIL (reversion-induced LIM protein). We show that RIL binds to the AMPA glutamate receptor subunit GluR-A C-terminal peptide via its LIM domain and to alpha-actinin via its PDZ domain. RIL is enriched in the postsynaptic density fraction isolated from rat forebrain, strongly localizes to dendritic spines in cultured neurons, and coprecipitates, together with alpha-actinin, in a protein complex isolated by immunoprecipitation of AMPA receptors from forebrain synaptosomes. Functionally, in heterologous cells, RIL links AMPA receptors to the alpha-actinin/actin cytoskeleton, an effect that appears to apply selectively to the endosomal surface-internalized population of the receptors. In cultured neurons, an overexpression of recombinant RIL increases the accumulation of AMPA receptors in dendritic spines, both at the total level, as assessed by immunodetection of endogenous GluR-A-containing receptors, and at the synaptic surface, as assessed by recording of miniature EPSCs. Our results thus indicate that RIL directs the transport of GluR-A-containing AMPA receptors to and/or within dendritic spines, in an alpha-actinin/actin-dependent manner, and that such trafficking function promotes the synaptic accumulation of the receptors.

  15. Canonical and Noncanonical Sites Determine NPT2A Binding Selectivity to NHERF1 PDZ1

    PubMed Central

    Mamonova, Tatyana; Zhang, Qiangmin; Khajeh, Jahan Ali; Bu, Zimei; Bisello, Alessandro; Friedman, Peter A.

    2015-01-01

    Na+/H+ Exchanger Regulatory Factor-1 (NHERF1) is a scaffolding protein containing 2 PDZ domains that coordinates the assembly and trafficking of transmembrane receptors and ion channels. Most target proteins harboring a C-terminus recognition motif bind more-or-less equivalently to the either PDZ domain, which contain identical core-binding motifs. However some substrates such as the type II sodium-dependent phosphate co-transporter (NPT2A), uniquely bind only one PDZ domain. We sought to define the structural determinants responsible for the specificity of interaction between NHERF1 PDZ domains and NPT2A. By performing all-atom/explicit-solvent molecular dynamics (MD) simulations in combination with biological mutagenesis, fluorescent polarization (FP) binding assays, and isothermal titration calorimetry (ITC), we found that in addition to canonical interactions of residues at 0 and -2 positions, Arg at the -1 position of NPT2A plays a critical role in association with Glu43 and His27 of PDZ1 that are absent in PDZ2. Experimentally introduced mutation in PDZ1 (Glu43Asp and His27Asn) decreased binding to NPT2A. Conversely, introduction of Asp183Glu and Asn167His mutations in PDZ2 promoted the formation of favorable interactions yielding micromolar KDs. The results describe novel determinants within both the PDZ domain and outside the canonical PDZ-recognition motif that are responsible for discrimination of NPT2A between two PDZ domains. The results challenge general paradigms for PDZ recognition and suggest new targets for drug development. PMID:26070212

  16. Targeted inhibition of disheveled PDZ domain via NSC668036 depresses fibrotic process

    SciTech Connect

    Wang, Cong; Dai, Jinghong; Sun, Zhaorui; Shi, Chaowen; Cao, Honghui; and others

    2015-02-01

    In this study, we determined the effects of transforming growth factor-beta (TGF-β) and Wnt/β-catenin signaling on myofibroblast differentiation of NIH/3T3 fibroblasts in vitro and evaluated the therapeutic efficacy of NSC668036 in bleomycin-induced pulmonary fibrosis murine model. In vitro study, NSC668036, a small organic inhibitor of the PDZ domain in Dvl, suppressed β-catenin-driven gene transcription and abolished TGF-β1-induced migration, expression of collagen I and α-smooth muscle actin (α-SMA) in fibroblasts. In vivo study, we found that NSC668036 significantly suppressed accumulation of collagen I, α-SMA, and TGF-β1 but increased the expression of CK19, Occludin and E-cadherin that can inhibit pulmonary fibrogenesis. Because fibrotic lung exhibit aberrant activation of Wnt/β-catenin signaling, these data collectively suggest that inhibition of Wnt/β-catenin signaling at the Dvl level may be an effective approach to the treatment of fibrotic lung diseases. - Highlights: • NSC668036 inhibited the proliferation and migration of NIH/3T3 fibroblasts. • NSC668036 suppressed the Wnt/β-catenin signaling pathway. • TGF-β-induced stimulation of profibrotic responses were inhibited by NSC668036. • NSC668036 can inhibit the development of bleomycin-induced pulmonary fibrosis.

  17. Structure-Based Design of a Br Halogen Bond at the Complex Interface of the Human Placental HtrA1 PDZ Domain with Its Heptapeptide Ligand.

    PubMed

    Dou, Shuo-Fen; Liu, Hong; Cao, Tong-Mei; Wen, Qing-Li; Li, Jie; Shao, Qing-Chun

    2016-04-01

    The shock-induced serine protease HtrA1 is a potential regulator of human placenta development during pregnancy. The protein contains a functional PDZ domain that has been solved in complex with a phage display-derived heptapeptide: Asp-6 Ser-5 Arg-4 Ile-3 Trp-2 Trp-1 Val0 . In this study, a rationally designed halogen bond was introduced to the domain-peptide complex based on its NMR structure in solution. We computationally compared the stabilization energies and hindrance effects due to the presence of different halogens X (X = F, Cl, Br, or I), using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach, and found that the Br atom could considerably promote the peptide binding free energy (ΔΔG = -5.2 kcal/mol). Fluorescence assays confirmed that the peptide affinity to the HtrA1 PDZ domain was improved by approximately sevenfold upon bromination. Structural analysis identified a geometrically perfect halogen bond between the Br atom of the peptide Trp-1 residue and the carbonyl O atom of the HtrA1 Ile385 residue, with a bond length and an interaction energy of d = 3.20 Å and ΔE = -3.7 kcal/mol, respectively.

  18. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled.

    PubMed

    Wong, Hing-C; Bourdelas, Audrey; Krauss, Anke; Lee, Ho-Jin; Shao, Youming; Wu, Dianqing; Mlodzik, Marek; Shi, De-Li; Zheng, Jie

    2003-11-01

    The cytoplasmic protein Dishevelled (Dvl) and the associated membrane-bound receptor Frizzled (Fz) are essential in canonical and noncanonical Wnt signaling pathways. However, the molecular mechanisms underlying this signaling are not well understood. By using NMR spectroscopy, we determined that an internal sequence of Fz binds to the conventional peptide binding site in the PDZ domain of Dvl; this type of site typically binds to C-terminal binding motifs. The C-terminal region of the Dvl inhibitor Dapper (Dpr) and Frodo bound to the same site. In Xenopus, Dvl binding peptides of Fz and Dpr/Frodo inhibited canonical Wnt signaling and blocked Wnt-induced secondary axis formation in a dose-dependent manner, but did not block noncanonical Wnt signaling mediated by the DEP domain. Together, our results identify a missing molecular connection within the Wnt pathway. Differences in the binding affinity of the Dvl PDZ domain and its binding partners may be important in regulating signal transduction by Dvl.

  19. Direct Binding of the PDZ Domain of Dishevelled to a Conserved Internal Sequence in the C-Terminal Region of Frizzled

    PubMed Central

    Wong, Hing-C.; Bourdelas, Audrey; Krauss, Anke; Lee, Ho-Jin; Shao, Youming; Wu, Dianqing; Mlodzik, Marek; Shi, De-Li; Zheng, Jie

    2015-01-01

    Summary The cytoplasmic protein Dishevelled (Dvl) and the associated membrane-bound receptor Frizzled (Fz) are essential in canonical and noncanonical Wnt signaling pathways. However, the molecular mechanisms underlying this signaling are not well understood. By using NMR spectroscopy, we determined that an internal sequence of Fz binds to the conventional peptide binding site in the PDZ domain of Dvl; this type of site typically binds to C-terminal binding motifs. The C-terminal region of the Dvl inhibitor Dapper (Dpr) and Frodo bound to the same site. In Xenopus, Dvl binding peptides of Fz and Dpr/Frodo inhibited canonical Wnt signaling and blocked Wnt-induced secondary axis formation in a dose-dependent manner, but did not block noncanonical Wnt signaling mediated by the DEP domain. Together, our results identify a missing molecular connection within the Wnt pathway. Differences in the binding affinity of the Dvl PDZ domain and its binding partners may be important in regulating signal transduction by Dvl. PMID:14636582

  20. An Oligomeric Equilibrium Intermediate as the Precursory Nucleus of Globular and Fibrillar Supramacromolecular Assemblies in a PDZ Domain

    PubMed Central

    Murciano-Calles, Javier; Cobos, Eva S.; Mateo, Pedro L.; Camara-Artigas, Ana; Martinez, Jose C.

    2010-01-01

    Abstract The equilibrium unfolding at neutral pH of the third PDZ domain of PSD95, as followed by DSC, is characterized by the presence of an equilibrium intermediate with clear signs of oligomerization. DLS and SEC measurements indicate that at 60–70°C small oligomers populate, showing a typical β-sheet far-UV CD spectrum. These intermediate species lead to the formation of rodlike particulates of ∼12 nm, which remain in solution after 2 weeks incubation and grow until they adopt annular/spherical shapes of ∼50 nm and protofibrils, which are subsequently fully transformed into fibrils. The fibrils can also disaggregate after the addition of 1:1 buffer dilution followed by cooling to room temperature, thus returning to the initial monomeric state. Growth kinetics, as shown by ThT and ANS fluorescence, show that the organization of the different supramacromolecular structures comes from a common nucleation unit, the small oligomers, which organize themselves before reaching the incubation temperature of 60°C. Our experiments point toward the existence of a well-defined reversible, stepwise, and downhill organization of the processes involved in the association-dissociation of the intermediate. We estimate the enthalpy change accompanying the association-dissociation equilibria to be 130 kJ × mol−1. Furthermore, the coalescence under essentially reversible conditions of different kinds of supramacromolecular assemblies renders this protein system highly interesting for biophysical studies aimed at our further understanding of amyloid pathological conditions. PMID:20655855

  1. Characterization of physiological phenotypes of dentate gyrus synapses of PDZ1/2 domain-deficient PSD-95-knockin mice.

    PubMed

    Nagura, Hitoshi; Doi, Tomoko; Fujiyoshi, Yoshinori

    2016-03-01

    The hippocampal formation is involved in several important brain functions of animals, such as memory formation and pattern separation, and the synapses in the dentate gyrus (DG) play critical roles as the first step in the hippocampal circuit. Previous studies have reported that mice with genetic modifications of the PDZ1/2 domains of postsynaptic density (PSD)-95 exhibit altered synaptic properties in the DG and impaired hippocampus-dependent behaviors. Based on the involvement of the DG in the regulation of behaviors, these data suggest that the abnormal behavior of these knockin (KI) mice is due partly to altered DG function. Precise understanding of the phenotypes of these mutant mice requires characterization of the synaptic properties of the DG, and here we provide detailed studies of DG synapses. We have demonstrated global changes in the PSD membrane-associated guanylate kinase expression pattern in the DG of mutant mice, and DG synapses in these mice exhibited increased long-term potentiation under a wide range of stimulus intensities, although the N-methyl-d-aspartic acid receptor dependence of the long-term potentiation was unchanged. Furthermore, our data also indicate increased silent synapses in the DG of the KI mice. These findings suggest that abnormal protein expression and physiological properties disrupt the function of DG neurons in these KI mice.

  2. An oligomeric equilibrium intermediate as the precursory nucleus of globular and fibrillar supramacromolecular assemblies in a PDZ domain.

    PubMed

    Murciano-Calles, Javier; Cobos, Eva S; Mateo, Pedro L; Camara-Artigas, Ana; Martinez, Jose C

    2010-07-07

    The equilibrium unfolding at neutral pH of the third PDZ domain of PSD95, as followed by DSC, is characterized by the presence of an equilibrium intermediate with clear signs of oligomerization. DLS and SEC measurements indicate that at 60-70 degrees C small oligomers populate, showing a typical beta-sheet far-UV CD spectrum. These intermediate species lead to the formation of rodlike particulates of approximately 12 nm, which remain in solution after 2 weeks incubation and grow until they adopt annular/spherical shapes of approximately 50 nm and protofibrils, which are subsequently fully transformed into fibrils. The fibrils can also disaggregate after the addition of 1:1 buffer dilution followed by cooling to room temperature, thus returning to the initial monomeric state. Growth kinetics, as shown by ThT and ANS fluorescence, show that the organization of the different supramacromolecular structures comes from a common nucleation unit, the small oligomers, which organize themselves before reaching the incubation temperature of 60 degrees C. Our experiments point toward the existence of a well-defined reversible, stepwise, and downhill organization of the processes involved in the association-dissociation of the intermediate. We estimate the enthalpy change accompanying the association-dissociation equilibria to be 130 kJ x mol(-1). Furthermore, the coalescence under essentially reversible conditions of different kinds of supramacromolecular assemblies renders this protein system highly interesting for biophysical studies aimed at our further understanding of amyloid pathological conditions.

  3. GIPC binds to the human lutropin receptor (hLHR) through an unusual PDZ domain binding motif, and it regulates the sorting of the internalized human choriogonadotropin and the density of cell surface hLHR.

    PubMed

    Hirakawa, Takashi; Galet, Colette; Kishi, Mikiko; Ascoli, Mario

    2003-12-05

    By using a yeast two-hybrid screen we identified GIPC (GAIP-interacting protein C terminus), a protein with a type I PDZ domain as a novel human lutropin receptor (hLHR) binding partner. Pull-down and immunoprecipitation assays confirmed this interaction and showed that it is dependent on the PDZ domain of GIPC and the C-terminal tetrapeptide of the hLHR. To characterize the functional consequences of the GIPC-hLHR interaction, we used a small interfering RNA against GIPC to generate a clonal cell line that is deficient in GIPC. Studies with this cell line reveal that GIPC is partially responsible for the recycling of the hormone that is internalized by the hLHR and also for maintaining a relatively constant level of hLHR at the cell surface during hormone internalization.

  4. Intracellular Delivery of Peptidyl Ligands by Reversible Cyclization: Discovery of a PDZ Domain Inhibitor that Rescues CFTR Activity**

    PubMed Central

    Qian, Ziqing; Xu, Xiaohua; Amacher, Jeanine F.; Madden, Dean R.; Cormet-Boyaka, Estelle

    2015-01-01

    We report a general strategy for intracellular delivery of linear peptidyl ligands by fusing them with a cell-penetrating peptide and cyclizing the fusion peptides through a disulfide bond. The resulting cyclic peptides are cell permeable and have improved proteolytic stability. Once inside the cell, the disulfide bond is reduced to produce linear, biologically active peptides. This strategy was applied to generate a cell-permeable peptide substrate for real-time detection of intracellular caspase activities during apoptosis and a CAL-PDZ domain inhibitor for potential treatment of cystic fibrosis. PMID:25785567

  5. PDZ Domain Dependent Regulation of NHE3 Occurs by Both Internal Class II and C-terminal Class I PDZ Binding Motifs.

    PubMed

    Cha, Boyoung; Yang, Jianbo; Singh, Varsha; Zachos, Nicholas C; Sarker, Rafiquel I; Chen, Tian-E; Chakraborty, Molee; Tse, Chung-Ming; Donowitz, Mark

    2017-03-10

    NHE3 directly binds NHERF family scaffolding proteins that are required for many aspects of NHE3 regulation. The NHERFs bind both to an internal region (aa. 586-660) of the NHE3 C-terminus and to the NHE3 C-terminal four amino acids. The internal NHERF binding region contains both putative Class I (-592SAV-) and Class II (-595CLDM-) PDZ binding motifs (PBM). Point mutagenesis showed that only the Class II motif contributes to NHERF binding. In this study, the roles in regulation of NHE3 activity of these two PBMs were investigated, revealing: 1) Interaction between these binding sites since mutation of either removed nearly all NHERF binding. 2) Mutations in either significantly reduced basal NHE3 activity. Total and percent plasma membrane (PM) NHE3 protein expression were reduced in the C-terminal but not in the internal PBD mutation. 3) cGMP and Ca2+-mediated inhibition of NHE3 were impaired both in the internal and in the C-terminal PBM mutations. 4) A significant reduction in half-life of the PM pool of NHE3 in only the internal PBM mutation but no change in total NHE3 half-life in either. 5) Some difference in NHE3 associating proteins in the two PBM mutations. In conclusion, NHE3 binds to NHERF proteins via both an internal Class II and C-terminal Class I PBM, which interact. The former appears to determine NHE3 stability of a pool in the PM and the letter determines total expression and percent PM expression.

  6. The PDZ-Binding Motif of Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Is a Determinant of Viral Pathogenesis

    PubMed Central

    Jimenez-Guardeño, Jose M.; Nieto-Torres, Jose L.; DeDiego, Marta L.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Enjuanes, Luis

    2014-01-01

    A recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major determinant of virulence. Elimination of SARS-CoV E protein PBM by using reverse genetics caused a reduction in the deleterious exacerbation of the immune response triggered during infection with the parental virus and virus attenuation. Cellular protein syntenin was identified to bind the E protein PBM during SARS-CoV infection by using three complementary strategies, yeast two-hybrid, reciprocal coimmunoprecipitation and confocal microscopy assays. Syntenin redistributed from the nucleus to the cell cytoplasm during infection with viruses containing the E protein PBM, activating p38 MAPK and leading to the overexpression of inflammatory cytokines. Silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation in SARS-CoV infected cells, further reinforcing their functional relationship. Active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM as compared with the parental virus, leading to a decreased expression of inflammatory cytokines and to virus attenuation. Interestingly, administration of a p38 MAPK inhibitor led to an increase in mice survival after infection with SARS-CoV, confirming the relevance of this pathway in SARS-CoV virulence. Therefore, the E protein PBM is a virulence domain that activates immunopathology most likely by using syntenin as a mediator of p38 MAPK induced inflammation. PMID:25122212

  7. The Human PDZome: A Gateway to PSD95-Disc Large-Zonula Occludens (PDZ)-mediated Functions*

    PubMed Central

    Belotti, Edwige; Polanowska, Jolanta; Daulat, Avais M.; Audebert, Stéphane; Thomé, Virginie; Lissitzky, Jean-Claude; Lembo, Frédérique; Blibek, Karim; Omi, Shizue; Lenfant, Nicolas; Gangar, Akanksha; Montcouquiol, Mireille; Santoni, Marie-Josée; Sebbagh, Michael; Aurrand-Lions, Michel; Angers, Stéphane; Kodjabachian, Laurent; Reboul, Jérome; Borg, Jean-Paul

    2013-01-01

    Protein–protein interactions organize the localization, clustering, signal transduction, and degradation of cellular proteins and are therefore implicated in numerous biological functions. These interactions are mediated by specialized domains able to bind to modified or unmodified peptides present in binding partners. Among the most broadly distributed protein interaction domains, PSD95-disc large-zonula occludens (PDZ) domains are usually able to bind carboxy-terminal sequences of their partners. In an effort to accelerate the discovery of PDZ domain interactions, we have constructed an array displaying 96% of the human PDZ domains that is amenable to rapid two-hybrid screens in yeast. We have demonstrated that this array can efficiently identify interactions using carboxy-terminal sequences of PDZ domain binders such as the E6 oncoviral protein and protein kinases (PDGFRβ, BRSK2, PCTK1, ACVR2B, and HER4); this has been validated via mass spectrometry analysis. Taking advantage of this array, we show that PDZ domains of Scrib and SNX27 bind to the carboxy-terminal region of the planar cell polarity receptor Vangl2. We also have demonstrated the requirement of Scrib for the promigratory function of Vangl2 and described the morphogenetic function of SNX27 in the early Xenopus embryo. The resource presented here is thus adapted for the screen of PDZ interactors and, furthermore, should facilitate the understanding of PDZ-mediated functions. PMID:23722234

  8. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    SciTech Connect

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun Nishina, Hiroshi

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  9. modPDZpep: a web resource for structure based analysis of human PDZ-mediated interaction networks.

    PubMed

    Sain, Neetu; Mohanty, Debasisa

    2016-09-21

    PDZ domains recognize short sequence stretches usually present in C-terminal of their interaction partners. Because of the involvement of PDZ domains in many important biological processes, several attempts have been made for developing bioinformatics tools for genome-wide identification of PDZ interaction networks. Currently available tools for prediction of interaction partners of PDZ domains utilize machine learning approach. Since, they have been trained using experimental substrate specificity data for specific PDZ families, their applicability is limited to PDZ families closely related to the training set. These tools also do not allow analysis of PDZ-peptide interaction interfaces. We have used a structure based approach to develop modPDZpep, a program to predict the interaction partners of human PDZ domains and analyze structural details of PDZ interaction interfaces. modPDZpep predicts interaction partners by using structural models of PDZ-peptide complexes and evaluating binding energy scores using residue based statistical pair potentials. Since, it does not require training using experimental data on peptide binding affinity, it can predict substrates for diverse PDZ families. Because of the use of simple scoring function for binding energy, it is also fast enough for genome scale structure based analysis of PDZ interaction networks. Benchmarking using artificial as well as real negative datasets indicates good predictive power with ROC-AUC values in the range of 0.7 to 0.9 for a large number of human PDZ domains. Another novel feature of modPDZpep is its ability to map novel PDZ mediated interactions in human protein-protein interaction networks, either by utilizing available experimental phage display data or by structure based predictions. In summary, we have developed modPDZpep, a web-server for structure based analysis of human PDZ domains. It is freely available at http://www.nii.ac.in/modPDZpep.html or http://202.54.226.235/modPDZpep.html . This

  10. Sorting of β1-Adrenergic Receptors Is Mediated by Pathways That Are Either Dependent on or Independent of Type I PDZ, Protein Kinase A (PKA), and SAP97*

    PubMed Central

    Nooh, Mohammed M.; Chumpia, Maryanne M.; Hamilton, Thomas B.; Bahouth, Suleiman W.

    2014-01-01

    The β1-adrenergic receptor (β1-AR) is a target for treatment of major cardiovascular diseases, such as heart failure and hypertension. Recycling of agonist-internalized β1-AR is dependent on type I PSD-95/DLG/ZO1 (PDZ) in the C-tail of the β1-AR and on protein kinase A (PKA) activity (Gardner, L. A., Naren, A. P., and Bahouth, S. W. (2007) J. Biol. Chem. 282, 5085–5099). We explored the effects of point mutations in the PDZ and in the activity of PKA on recycling of the β1-AR and its binding to the PDZ-binding protein SAP97. These studies indicated that β1-AR recycling was inhibited by PKA inhibitors and by mutations in the PDZ that interfered with SAP97 binding. The trafficking effects of short sequences differing in PDZ and SAP97 binding were examined using chimeric mutant β1-AR. β1-AR chimera containing the type I PDZ of the β2-adrenergic receptor that does not bind to SAP97 failed to recycle except when serine 312 was mutated to aspartic acid. β1-AR chimera with type I PDZ sequences from the C-tails of aquaporin-2 or GluR1 recycled in a SAP97- and PKA-dependent manner. Non-PDZ β1-AR chimera derived from μ-opioid, dopamine 1, or GluR2 receptors promoted rapid recycling of chimeric β1-AR in a SAP97- and PKA-independent manner. Moreover, the nature of the residue at position −3 in the PDZ regulated whether the β1-AR was internalized alone or in complex with SAP97. These results indicate that divergent pathways were involved in trafficking the β1-AR and provide a roadmap for its trafficking via type I PDZs versus non-PDZs. PMID:24324269

  11. Engineered protein connectivity to actin mimics PDZ-dependent recycling of G protein-coupled receptors but not its regulation by Hrs.

    PubMed

    Lauffer, Benjamin E L; Chen, Stanford; Melero, Cristina; Kortemme, Tanja; von Zastrow, Mark; Vargas, Gabriel A

    2009-01-23

    Many G protein-coupled receptors (GPCRs) recycle after agonist-induced endocytosis by a sequence-dependent mechanism, which is distinct from default membrane flow and remains poorly understood. Efficient recycling of the beta2-adrenergic receptor (beta2AR) requires a C-terminal PDZ (PSD-95/Discs Large/ZO-1) protein-binding determinant (PDZbd), an intact actin cytoskeleton, and is regulated by the endosomal protein Hrs (hepatocyte growth factor-regulated substrate). The PDZbd is thought to link receptors to actin through a series of protein interaction modules present in NHERF/EBP50 (Na+/H+ exchanger 3 regulatory factor/ezrin-binding phosphoprotein of 50 kDa) family and ERM (ezrin/radixin/moesin) family proteins. It is not known, however, if such actin connectivity is sufficient to recapitulate the natural features of sequence-dependent recycling. We addressed this question using a receptor fusion approach based on the sufficiency of the PDZbd to promote recycling when fused to a distinct GPCR, the delta-opioid receptor, which normally recycles inefficiently in HEK293 cells. Modular domains mediating actin connectivity promoted receptor recycling with similarly high efficiency as the PDZbd itself, and recycling promoted by all of the domains was actin-dependent. Regulation of receptor recycling by Hrs, however, was conferred only by the PDZbd and not by downstream interaction modules. These results suggest that actin connectivity is sufficient to mimic the core recycling activity of a GPCR-linked PDZbd but not its cellular regulation.

  12. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.

    PubMed

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-17

    YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription.

  13. Characterization of PDZ-binding kinase, a mitotic kinase

    PubMed Central

    Gaudet, Suzanne; Branton, Daniel; Lue, Robert A.

    2000-01-01

    hDlg, the human homologue of the Drosophila Discs-large (Dlg) tumor suppressor protein, is known to interact with the tumor suppressor protein APC and the human papillomavirus E6 transforming protein. In a two-hybrid screen, we identified a 322-aa serine/threonine kinase that binds to the PDZ2 domain of hDlg. The mRNA for this PDZ-binding kinase, or PBK, is most abundant in placenta and absent from adult brain tissue. The protein sequence of PBK has all the characteristic protein kinase subdomains and a C-terminal PDZ-binding T/SXV motif. In vitro, PBK binds specifically to PDZ2 of hDlg through its C-terminal T/SXV motif. PBK and hDlg are phosphorylated at mitosis in HeLa cells, and the mitotic phosphorylation of PBK is required for its kinase activity. In vitro, cdc2/cyclin B phosphorylates PBK. This evidence shows how PBK could link hDlg or other PDZ-containing proteins to signal transduction pathways regulating the cell cycle or cellular proliferation. PMID:10779557

  14. Human Papillomavirus Type 18 E6 Protein Binds the Cellular PDZ Protein TIP-2/GIPC, Which Is Involved in Transforming Growth Factor β Signaling and Triggers Its Degradation by the Proteasome

    PubMed Central

    Favre-Bonvin, Arnaud; Reynaud, Caroline; Kretz-Remy, Carole; Jalinot, Pierre

    2005-01-01

    Several viral proteins expressed by DNA or RNA transforming viruses have the particular property of binding via their C-terminal end to various cellular proteins with PDZ domains. This study is focused on the PDZ protein TIP-2/GIPC, which was originally identified in two-hybrid screens performed with two different baits: the human T-cell leukemia virus type 1 Tax oncoprotein and the regulator of G signaling RGS-GAIP. Further studies have shown that TIP-2/GIPC is also able to associate with the cytoplasmic domains of various transmembrane proteins. In this report we show that TIP-2/GIPC interacts with the E6 protein of human papillomavirus type 18 (HPV-18). This event triggers polyubiquitination and proteasome-mediated degradation of the cellular protein. In agreement with this observation, silencing of E6 by RNA interference in HeLa cells causes an increase in the intracellular TIP-2/GIPC level. This PDZ protein has been previously found to be involved in transforming growth factor β (TGF-β) signaling by favoring expression of the TGF-β type III receptor at the cell membrane. In line with this activity of TIP-2/GIPC, we observed that depletion of this protein in HeLa cells hampers induction of the Id3 gene by TGF-β treatment and also diminishes the antiproliferative effect of this cytokine. Conversely, silencing of E6 increases the expression of Id3 and blocks proliferation of HeLa cells. These results support the notion that HPV-18 E6 renders cells less sensitive to the cytostatic effect of TGF-β by lowering the intracellular amount of TIP-2/GIPC. PMID:15767424

  15. Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome.

    PubMed

    Favre-Bonvin, Arnaud; Reynaud, Caroline; Kretz-Remy, Carole; Jalinot, Pierre

    2005-04-01

    Several viral proteins expressed by DNA or RNA transforming viruses have the particular property of binding via their C-terminal end to various cellular proteins with PDZ domains. This study is focused on the PDZ protein TIP-2/GIPC, which was originally identified in two-hybrid screens performed with two different baits: the human T-cell leukemia virus type 1 Tax oncoprotein and the regulator of G signaling RGS-GAIP. Further studies have shown that TIP-2/GIPC is also able to associate with the cytoplasmic domains of various transmembrane proteins. In this report we show that TIP-2/GIPC interacts with the E6 protein of human papillomavirus type 18 (HPV-18). This event triggers polyubiquitination and proteasome-mediated degradation of the cellular protein. In agreement with this observation, silencing of E6 by RNA interference in HeLa cells causes an increase in the intracellular TIP-2/GIPC level. This PDZ protein has been previously found to be involved in transforming growth factor beta (TGF-beta) signaling by favoring expression of the TGF-beta type III receptor at the cell membrane. In line with this activity of TIP-2/GIPC, we observed that depletion of this protein in HeLa cells hampers induction of the Id3 gene by TGF-beta treatment and also diminishes the antiproliferative effect of this cytokine. Conversely, silencing of E6 increases the expression of Id3 and blocks proliferation of HeLa cells. These results support the notion that HPV-18 E6 renders cells less sensitive to the cytostatic effect of TGF-beta by lowering the intracellular amount of TIP-2/GIPC.

  16. Regulation of PDZ domain-containing 1 (PDZK1) expression by hepatocyte nuclear factor-1α (HNF1α) in human kidney.

    PubMed

    Prestin, Katharina; Hussner, Janine; Ferreira, Celio; Seibert, Isabell; Breitung, Vivien; Zimmermann, Uwe; Meyer Zu Schwabedissen, Henriette E

    2017-10-01

    In the renal proximal tubule the secretion and reabsorption of glomerularly filtrated compounds is realized by a functional network of uptake and efflux transporters. The activity and localization of several transporters expressed at the apical tubular membrane are regulated by the membrane-associated protein PDZ domain-containing 1 (PDZK1). We aimed to characterize the transcriptional regulation of this modulator of renal transport. Coexpression analyses of PDZK1 and putative regulators were performed using human kidney samples. Protein and mRNA expression of PDZK1 in renal proximal tubule epithelial cells after adenoviral transfer and siRNA knockdown of transcription factor hepatocyte nuclear factor-1α (HNF1α) was assessed by quantitative real-time PCR and Western blot analysis. Transactivation of the PDZK1 promoter was quantified in cell-based reporter gene assays. Subsequently, the binding of HNF1α to the PDZK1 promoter was verified by in silico analyses and chromatin immunoprecipitation assay. HNF1α positively regulated the promoter activity of PDZK1. Adenoviral overexpression of HNF1α in renal proximal tubule epithelial cells (RPTEC) increased PDZK1 mRNA and protein expression, whereas siRNA knockdown of HNF1α resulted in decreased expression of PDZK1. Our results show that HNF1α, which has previously been described as a modulator of several transporters of the renal transportosome, is also a key determinant of PDZK1 transcription. Copyright © 2017 the American Physiological Society.

  17. Biochemical investigations of the mechanism of action of small molecules ZL006 and IC87201 as potential inhibitors of the nNOS-PDZ/PSD-95-PDZ interactions

    PubMed Central

    Bach, Anders; Pedersen, Søren W.; Dorr, Liam A.; Vallon, Gary; Ripoche, Isabelle; Ducki, Sylvie; Lian, Lu-Yun

    2015-01-01

    ZL006 and IC87201 have been presented as efficient inhibitors of the nNOS/PSD-95 protein-protein interaction and shown great promise in cellular experiments and animal models of ischemic stroke and pain. Here, we investigate the proposed mechanism of action of ZL006 and IC87201 using biochemical and biophysical methods, such as fluorescence polarization (FP), isothermal titration calorimetry (ITC), and 1H-15N HSQC NMR. Our data show that under the applied in vitro conditions, ZL006 and IC87201 do not interact with the PDZ domains of nNOS or PSD-95, nor inhibit the nNOS-PDZ/PSD-95-PDZ interface by interacting with the β-finger of nNOS-PDZ. Our findings have implications for further medicinal chemistry efforts of ZL006, IC87201 and analogues, and challenge the general and widespread view on their mechanism of action. PMID:26177569

  18. Common variant of PDZ domain containing 1 (PDZK1) gene is associated with gout susceptibility: A replication study and meta-analysis in Japanese population.

    PubMed

    Higashino, Toshihide; Matsuo, Hirotaka; Sakiyama, Masayuki; Nakayama, Akiyoshi; Nakamura, Takahiro; Takada, Tappei; Ogata, Hiraku; Kawamura, Yusuke; Kawaguchi, Makoto; Naito, Mariko; Kawai, Sayo; Takada, Yuzo; Ooyama, Hiroshi; Suzuki, Hiroshi; Shinomiya, Nariyoshi

    2016-12-01

    PDZ domain containing 1 (PDZK1) is a scaffold protein that organizes a transportsome and regulates several transporters' functions including urate and drug transporters. Therefore, PDZK1 in renal proximal tubules may affect serum uric acid levels through PDZK1-binding renal urate transporters. Two previous studies in Japanese male population reported that a PDZK1 single nucleotide polymorphism (SNP), rs12129861, was not associated with gout. In the present study, we performed a further association analysis between gout and rs12129861 in a different large-scale Japanese male population and a meta-analysis with previous Japanese population studies. We genotyped rs12129861 in 1210 gout cases and 1224 controls of a Japanese male population by TaqMan assay. As a result, we showed that rs12129861 was significantly associated with gout susceptibility (P = 0.016, odds ratio [OR] = 0.80, 95% confidence interval [CI] 0.67-0.96). The result of the meta-analysis among Japanese populations also showed a significant association (P = 0.013, OR = 0.85, 95%CI 0.75-0.97). Our findings show the significant association between gout susceptibility and common variant of PDZK1 which reportedly regulates the functions of urate transporters in the urate transportsome. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  19. Improved affinity at the cost of decreased specificity: a recurring theme in PDZ-peptide interactions.

    PubMed

    Karlsson, O Andreas; Sundell, Gustav N; Andersson, Eva; Ivarsson, Ylva; Jemth, Per

    2016-10-03

    The E6 protein from human papillomavirus (HPV) plays an important role during productive infection and is a potential drug target. We have previously designed a high affinity bivalent protein binder for the E6 protein, a fusion between a helix from the E6 associated protein and PDZØ9, an engineered variant (L391F/K392M) of the second PDZ domain from synapse associated protein 97 (SAP97 PDZ2). How the substitutions improve the affinity of SAP97 PDZ2 for HPV E6 is not clear and it is not known to what extent they affect the specificity for cellular targets. Here, we explore the specificity of wild type SAP97 PDZ2 and PDZØ9 through proteomic peptide phage display. In addition, we employ a double mutant cycle of SAP97 PDZ2 in which the binding kinetics for nine identified potential cellular peptide ligands are measured and compared with those for the C-terminal E6 peptide. The results demonstrate that PDZØ9 has an increased affinity for all peptides, but at the cost of specificity. Furthermore, there is a peptide dependent coupling free energy between the side chains at positions 391 and 392. This corroborates our previous allosteric model for PDZ domains, involving sampling of intramolecular energetic pathways.

  20. A Novel PDZ Domain Interaction Mediates the Binding between Human Papillomavirus 16 L2 and Sorting Nexin 27 and Modulates Virion Trafficking

    PubMed Central

    Broniarczyk, Justyna; Bergant, Martina; Playford, Martin P.; Banks, Lawrence

    2015-01-01

    ABSTRACT Previous studies have demonstrated an interaction between sorting nexin 17 and the L2 capsid proteins from a variety of papillomavirus types. This interaction is required for late endosomal trafficking of the L2 protein and entry of the L2/DNA complex into the nucleus during infection. Here we show an interaction between papillomavirus L2 proteins and the related PX-FERM family member sorting nexin 27 (SNX27), which is mediated in part by a novel interaction between the PDZ domain of SNX27 and sequences in a central portion of L2. The interaction is direct and, unlike that with SNX17, is variable in strength depending on the papillomavirus type. We show that small interfering RNA (siRNA)-mediated knockdown of SNX27 alone leads to a marginal reduction in the efficiency of viral infection but that double knockdown of both sorting nexins results in a striking reduction in infection, greater than that observed for the knockdown of either sorting nexin alone. These results suggest that the HPV L2 proteins can interact through distinct mechanisms with multiple components of the cellular cargo-sorting machinery. IMPORTANCE The trafficking of papillomaviruses to the host cell nucleus during their natural infectious life cycle is an incompletely understood process. Studies have suggested that the virus minor capsid protein L2 can interact with the endosomal recycling pathway, in part by association with sorting nexin 17, to ensure that virus DNA bound to L2 is recycled through the trans-Golgi network rather than back to the plasma membrane. In this study, we characterize the interaction between L2 and a second sorting nexin, SNX27, which is also part of the retromer complex. The study furthers our understanding of papillomavirus infection dynamics and provides potential tools for the further dissection of endosomal structure and function. PMID:26202251

  1. Quantifying protein–protein interactions in high throughput using protein domain microarrays

    PubMed Central

    Kaushansky, Alexis; Allen, John E; Gordus, Andrew; Stiffler, Michael A; Karp, Ethan S; Chang, Bryan H; MacBeath, Gavin

    2011-01-01

    Protein microarrays provide an efficient way to identify and quantify protein–protein interactions in high throughput. One drawback of this technique is that proteins show a broad range of physicochemical properties and are often difficult to produce recombinantly. To circumvent these problems, we have focused on families of protein interaction domains. Here we provide protocols for constructing microarrays of protein interaction domains in individual wells of 96-well microtiter plates, and for quantifying domain–peptide interactions in high throughput using fluorescently labeled synthetic peptides. As specific examples, we will describe the construction of microarrays of virtually every human Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain, as well as microarrays of mouse PDZ domains, all produced recombinantly in Escherichia coli. For domains that mediate high-affinity interactions, such as SH2 and PTB domains, equilibrium dissociation constants (KDs) for their peptide ligands can be measured directly on arrays by obtaining saturation binding curves. For weaker binding domains, such as PDZ domains, arrays are best used to identify candidate interactions, which are then retested and quantified by fluorescence polarization. Overall, protein domain microarrays provide the ability to rapidly identify and quantify protein–ligand interactions with minimal sample consumption. Because entire domain families can be interrogated simultaneously, they provide a powerful way to assess binding selectivity on a proteome-wide scale and provide an unbiased perspective on the connectivity of protein–protein interaction networks. PMID:20360771

  2. Specificity Profiling of Protein-Binding Domains Using One-Bead-One-Compound Peptide Libraries

    PubMed Central

    Kunys, Andrew R.; Lian, Wenlong; Pei, Dehua

    2013-01-01

    One-bead-one-compound (OBOC) libraries consist of structurally related compounds (e.g., peptides) covalently attached to a solid support, with each resin bead carrying a unique compound. OBOC libraries of high structural diversity can be rapidly synthesized and screened without the need of any special equipment and therefore can be employed in any chemical or biochemical laboratory. OBOC peptide libraries have been widely used to map the ligand specificity of proteins, to determine the substrate specificity of enzymes, and to develop inhibitors against macromolecular targets. They have proven particularly useful in profiling the binding specificity of protein modular domains (e.g., SH2 domains, BIR domains, and PDZ domains) and subsequently using the specificity information to predict the protein targets of these domains. The protocols outlined in this article describe the methodologies for synthesizing and screening OBOC peptide libraries against SH2 and PDZ domains and the related data analysis. PMID:23788558

  3. G protein-coupled estrogen receptor 1 (GPER1)/GPR30 increases ERK1/2 activity through PDZ motif-dependent and -independent mechanisms.

    PubMed

    Gonzalez de Valdivia, Ernesto; Broselid, Stefan; Kahn, Robin; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2017-06-16

    G protein-coupled receptor 30 (GPR30), also called G protein-coupled estrogen receptor 1 (GPER1), is thought to play important roles in breast cancer and cardiometabolic regulation, but many questions remain about ligand activation, effector coupling, and subcellular localization. We showed recently that GPR30 interacts through the C-terminal type I PDZ motif with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, which anchor the receptor in the plasma membrane and mediate an apparently constitutive decrease in cAMP production independently of Gi/o Here, we show that GPR30 also constitutively increases ERK1/2 activity. Removing the receptor PDZ motif or knocking down specifically AKAP5 inhibited the increase, showing that this increase also requires the PDZ interaction. However, the increase was inhibited by pertussis toxin as well as by wortmannin but not by AG1478, indicating that Gi/o and phosphoinositide 3-kinase (PI3K) mediate the increase independently of epidermal growth factor receptor transactivation. FK506 and okadaic acid also inhibited the increase, implying that a protein phosphatase is involved. The proposed GPR30 agonist G-1 also increased ERK1/2 activity, but this increase was only observed at a level of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif did not inhibit the G-1-stimulated increase. Based on these results, we propose that GPR30 increases ERK1/2 activity via two Gi/o-mediated mechanisms, a PDZ-dependent, apparently constitutive mechanism and a PDZ-independent G-1-stimulated mechanism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. PRMT5 C-terminal Phosphorylation Modulates a 14-3-3/PDZ Interaction Switch.

    PubMed

    Espejo, Alexsandra B; Gao, Guozhen; Black, Karynne; Gayatri, Sitaram; Veland, Nicolas; Kim, Jeesun; Chen, Taiping; Sudol, Marius; Walker, Cheryl; Bedford, Mark T

    2017-02-10

    PRMT5 is the primary enzyme responsible for the deposition of the symmetric dimethylarginine in mammalian cells. In an effort to understand how PRMT5 is regulated, we identified a threonine phosphorylation site within a C-terminal tail motif, which is targeted by the Akt/serum- and glucocorticoid-inducible kinases. While investigating the function of this posttranslational modification, we serendipitously discovered that its free C-terminal tail binds PDZ domains (when unphosphorylated) and 14-3-3 proteins (when phosphorylated). In essence, a phosphorylation event within the last few residues of the C-terminal tail generates a posttranslational modification-dependent PDZ/14-3-3 interaction "switch." The C-terminal motif of PRMT5 is required for plasma membrane association, and loss of this switching capacity is not compatible with life. This signaling phenomenon was recently reported for the HPV E6 oncoprotein but has not yet been observed for mammalian proteins. To investigate the prevalence of PDZ/14-3-3 switching in signal transduction, we built a protein domain microarray that harbors PDZ domains and 14-3-3 proteins. We have used this microarray to interrogate the C-terminal tails of a small group of candidate proteins and identified ERBB4, PGHS2, and IRK1 (as well as E6 and PRMT5) as conforming to this signaling mode, suggesting that PDZ/14-3-3 switching may be a broad biological paradigm.

  5. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  6. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  7. Sac phosphatase domain proteins.

    PubMed Central

    Hughes, W E; Cooke, F T; Parker, P J

    2000-01-01

    Advances in our understanding of the roles of phosphatidylinositol phosphates in controlling cellular functions such as endocytosis, exocytosis and the actin cytoskeleton have included new insights into the phosphatases that are responsible for the interconversion of these lipids. One of these is an entirely novel class of phosphatase domain found in a number of well characterized proteins. Proteins containing this Sac phosphatase domain include the yeast Saccharomyces cerevisiae proteins Sac1p and Fig4p. The Sac phosphatase domain is also found within the mammalian phosphoinositide 5-phosphatase synaptojanin and the yeast synaptojanin homologues Inp51p, Inp52p and Inp53p. These proteins therefore contain both Sac phosphatase and 5-phosphatase domains. This review describes the Sac phosphatase domain-containing proteins and their actions, with particular reference to the genetic and biochemical insights provided by study of the yeast Saccharomyces cerevisiae. PMID:10947947

  8. Two PDZ binding motifs within NS5 have roles in Tick-borne encephalitis virus replication.

    PubMed

    Melik, Wessam; Ellencrona, Karin; Wigerius, Michael; Hedström, Christer; Elväng, Annelie; Johansson, Magnus

    2012-10-01

    The flavivirus genus includes important human neurotropic pathogens like Tick-borne encephalitis virus (TBEV) and West-Nile virus (WNV). Flavivirus replication occurs at replication complexes, where the NS5 protein provides both RNA cap methyltransferase and RNA-dependent RNA polymerase activities. TBEVNS5 contains two PDZ binding motifs (PBMs) important for specific targeting of human PDZ proteins including Scribble, an association important for viral down regulation of cellular defense systems and neurite outgrowth. To determine whether the PBMs of TBEVNS5 affects virus replication we constructed a DNA based sub-genomic TBEV replicon expressing firefly luciferase. The PBMs within NS5 were mutated individually and in concert and the replicons were assayed in cell culture. Our results show that the replication rate was impaired in all mutants, which indicates that PDZ dependent host interactions influence TBEV replication. We also find that the C-terminal PBMs present in TBEVNS5 and WNVNS5 are targeting various human PDZ domain proteins. TBEVNS5 has affinity to Zonula occludens-2 (ZO-2), GIAP C-terminus interacting protein (GIPC), calcium/calmodulin-dependent serine protein kinase (CASK), glutamate receptor interacting protein 2, (GRIP2) and Interleukin 16 (IL-16). A different pattern was observed for WNVNS5 as it associate with a broader repertoire of putative host PDZ proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Extra domains in secondary transport carriers and channel proteins.

    PubMed

    Barabote, Ravi D; Tamang, Dorjee G; Abeywardena, Shannon N; Fallah, Neda S; Fu, Jeffrey Yu Chung; Lio, Jeffrey K; Mirhosseini, Pegah; Pezeshk, Ronnie; Podell, Sheila; Salampessy, Marnae L; Thever, Mark D; Saier, Milton H

    2006-10-01

    "Extra" domains in members of the families of secondary transport carrier and channel proteins provide secondary functions that expand, amplify or restrict the functional nature of these proteins. Domains in secondary carriers include TrkA and SPX domains in DASS family members, DedA domains in TRAP-T family members (both of the IT superfamily), Kazal-2 and PDZ domains in OAT family members (of the MF superfamily), USP, IIA(Fru) and TrkA domains in ABT family members (of the APC superfamily), ricin domains in OST family members, and TrkA domains in AAE family members. Some transporters contain highly hydrophilic domains consisting of multiple repeat units that can also be found in proteins of dissimilar function. Similarly, transmembrane alpha-helical channel-forming proteins contain unique, conserved, hydrophilic domains, most of which are not found in carriers. In some cases the functions of these domains are known. They may be ligand binding domains, phosphorylation domains, signal transduction domains, protein/protein interaction domains or complex carbohydrate-binding domains. These domains mediate regulation, subunit interactions, or subcellular targeting. Phylogenetic analyses show that while some of these domains are restricted to closely related proteins derived from specific organismal types, others are nearly ubiquitous within a particular family of transporters and occur in a tremendous diversity of organisms. The former probably became associated with the transporters late in the evolutionary process; the latter probably became associated with the carriers much earlier. These domains can be located at either end of the transporter or in a central region, depending on the domain and transporter family. These studies provide useful information about the evolution of extra domains in channels and secondary carriers and provide novel clues concerning function.

  10. The amino acid motif L/IIxxFE defines a novel actin-binding sequence in PDZ-RhoGEF.

    PubMed

    Banerjee, Jayashree; Fischer, Christopher C; Wedegaertner, Philip B

    2009-08-25

    PDZ-RhoGEF is a member of the regulator family of G protein signaling (RGS) domain-containing RhoGEFs (RGS-RhoGEFs) that link activated heterotrimeric G protein alpha subunits of the G12 family to activation of the small GTPase RhoA. Unique among the RGS-RhoGEFs, PDZ-RhoGEF contains a short sequence that localizes the protein to the actin cytoskeleton. In this report, we demonstrate that the actin-binding domain, located between amino acids 561 and 585, directly binds to F-actin in vitro. Extensive mutagenesis identifies isoleucine 568, isoleucine 569, phenylalanine 572, and glutamic acid 573 as being necessary for binding to actin and for colocalization with the actin cytoskeleton in cells. These results define a novel actin-binding sequence in PDZ-RhoGEF with a critical amino acid motif of IIxxFE. Moreover, sequence analysis identifies a similar actin-binding motif in the N-terminus of the RhoGEF frabin, and as with PDZ-RhoGEF, mutagenesis and actin interaction experiments demonstrate an LIxxFE motif, consisting of the key amino acids leucine 23, isoleucine 24, phenylalanine 27, and glutamic acid 28. Taken together, results with PDZ-RhoGEF and frabin identify a novel actin-binding sequence. Lastly, inducible dimerization of the actin-binding region of PDZ-RhoGEF revealed a dimerization-dependent actin bundling activity in vitro. PDZ-RhoGEF exists in cells as a dimer, raising the possibility that PDZ-RhoGEF could influence actin structure in a manner independent of its ability to activate RhoA.

  11. The PDZ Protein GIPC Regulates Trafficking of the LPA1 Receptor from APPL Signaling Endosomes and Attenuates the Cell’s Response to LPA

    PubMed Central

    Varsano, Tal; Taupin, Vanessa; Guo, Lixia; Baterina, Oscar Y.; Farquhar, Marilyn G.

    2012-01-01

    Lysophosphatidic acid (LPA) mediates diverse cellular responses through the activation of at least six LPA receptors – LPA1–6, but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA1 contains a PDZ binding motif (SVV) identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA1 but not that of other LPA receptors. LPA1 colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA1 to EEA1 early endosomes and promoted LPA1 mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA1 and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes. PMID:23145131

  12. The PDZ protein GIPC regulates trafficking of the LPA1 receptor from APPL signaling endosomes and attenuates the cell's response to LPA.

    PubMed

    Varsano, Tal; Taupin, Vanessa; Guo, Lixia; Baterina, Oscar Y; Farquhar, Marilyn G

    2012-01-01

    Lysophosphatidic acid (LPA) mediates diverse cellular responses through the activation of at least six LPA receptors--LPA(1-6,) but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA(1) contains a PDZ binding motif (SVV) identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA(1) but not that of other LPA receptors. LPA(1) colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA(1) to EEA1 early endosomes and promoted LPA(1) mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA(1) and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes.

  13. Structural and functional characterization of synapse-associated protein-97

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    Synapse-associated protein-97 (SAP97) as a scaffold protein plays an important role in regulating neural signal transmission in the central nervous system by coupling with activated membrane receptors, ion channels, and downstream signaling proteins. SAP97 consists of six functional domains: L27, PDZ1, PDZ2, PDZ3, SH3, and GK. Each of these domains mediates the interactions of SAP97 with other proteins. Understanding the molecular mechanism of these interactions in neural signal transmission is a goal of this study. Here high-resolution nuclear magnetic resonance spectroscopy and fluorescence anisotropy are employed towards the goal of the structural and functional characterization of SAP97; specifically, we (a) characterize the binding of the PDZ domains of SAP97 with the C-terminus of NR2B, and determine the structure of the PDZ1-NR2B; (b) characterize the binding of the PDZ domains with the C-terminus of stargazin and multiple mutants, and identify the perturbed amino acids in PDZ2 upon the binding of stargazin; (c) characterize the binding specificity carried by the beta2/beta3 loop of the PDZ3 domain. These results provide insight into the molecular mechanism for the binding specificities of the PDZ domains of SAP97, thereby furthering the development of drugs that target these domains to treat neurological diseases.

  14. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  15. Cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  16. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Bu, Zimei; Farago, Bela; Callaway, David

    2012-02-01

    NHERF1 is a multi-domain scaffolding protein that assembles the signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by a membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 angstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length scales and on sub-microsecond time scales upon forming a complex with ezrin. We show that a much simplified coarse-grained model is sufficient to describe inter-domain motion of a multi-domain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. The results demonstrate that propagation of allosteric signals to distal sites involves the activation of long-range coupled domain motions on submicrosecond time scales, and that these coupled motions can be distinguished and characterized by NSE.

  17. Activated RhoA Binds to the Pleckstrin Homology (PH) Domain of PDZ-RhoGEF, a Potential Site for Autoregulation

    SciTech Connect

    Chen, Zhe; Medina, Frank; Liu, Mu-ya; Thomas, Celestine; Sprang, Stephen R.; Sternweis, Paul C.

    2010-07-19

    Guanine nucleotide exchange factors (GEFs) catalyze exchange of GDP for GTP by stabilizing the nucleotide-free state of the small GTPases through their Dbl homology/pleckstrin homology (DH {center_dot} PH) domains. Unconventionally, PDZ-RhoGEF (PRG), a member of the RGS-RhoGEFs, binds tightly to both nucleotide-free and activated RhoA (RhoA {center_dot} GTP). We have characterized the interaction between PRG and activated RhoA and determined the structure of the PRG-DH {center_dot} PH-RhoA {center_dot} GTP{gamma}S (guanosine 5{prime}-O-[{gamma}-thio]triphosphate) complex. The interface bears striking similarity to a GTPase-effector interface and involves the switch regions in RhoA and a hydrophobic patch in PRG-PH that is conserved among all Lbc RhoGEFs. The two surfaces that bind activated and nucleotide-free RhoA on PRG-DH {center_dot} PH do not overlap, and a ternary complex of PRG-DH {center_dot} PH bound to both forms of RhoA can be isolated by size-exclusion chromatography. This novel interaction between activated RhoA and PH could play a key role in regulation of RhoGEF activity in vivo.

  18. Subtype-specific role of phospholipase C-beta in bradykinin and LPA signaling through differential binding of different PDZ scaffold proteins.

    PubMed

    Choi, Jung Woong; Lim, Seyoung; Oh, Yong-Seok; Kim, Eung-Kyun; Kim, Sun-Hee; Kim, Yun-Hee; Heo, Kyun; Kim, Jaeyoon; Kim, Jung Kuk; Yang, Yong Ryul; Ryu, Sung Ho; Suh, Pann-Ghill

    2010-07-01

    Among phospholipase C (PLC) isozymes (beta, gamma, delta, epsilon, zeta and eta), PLC-beta plays a key role in G-protein coupled receptor (GPCR)-mediated signaling. PLC-beta subtypes are often overlapped in their distribution, but have unique knock-out phenotypes in organism, suggesting that each subtype may have the different role even within the same type of cells. In this study, we examined the possibility of the differential coupling of each PLC-beta subtype to GPCRs, and explored the molecular mechanism underlying the specificity. Firstly, we found that PLC-beta1 and PLC-beta 3 are activated by bradykinin (BK) or lysophosphatidic acid (LPA), respectively. BK-triggered phosphoinositides hydrolysis and subsequent Ca(2+) mobilization were abolished specifically by PLC-beta1 silencing, whereas LPA-triggered events were by PLC-beta 3 silencing. Secondly, we showed the evidence that PDZ scaffold proteins is a key mediator for the selective coupling between PLC-beta subtype and GPCR. We found PAR-3 mediates physical interaction between PLC-beta1 and BK receptor, while NHERF2 does between PLC-beta 3 and LPA(2) receptor. Consistently, the silencing of PAR-3 or NHERF2 blunted PLC signaling induced by BK or LPA respectively. Taken together, these data suggest that each subtype of PLC-beta is selectively coupled to GPCR via PDZ scaffold proteins in given cell types and plays differential role in the signaling of various GPCRs.

  19. Z-band Alternatively Spliced PDZ Motif Protein (ZASP) Is the Major O-Linked β-N-Acetylglucosamine-substituted Protein in Human Heart Myofibrils*

    PubMed Central

    Leung, Man-Ching; Hitchen, Paul G.; Ward, Douglas G.; Messer, Andrew E.; Marston, Steven B.

    2013-01-01

    We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ∼90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p < 0.05). ZASP is only 22% of all O-GlcNAcylated proteins in mouse heart myofibrils. PMID:23271734

  20. Z-band alternatively spliced PDZ motif protein (ZASP) is the major O-linked β-N-acetylglucosamine-substituted protein in human heart myofibrils.

    PubMed

    Leung, Man-Ching; Hitchen, Paul G; Ward, Douglas G; Messer, Andrew E; Marston, Steven B

    2013-02-15

    We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ~90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p < 0.05). ZASP is only 22% of all O-GlcNAcylated proteins in mouse heart myofibrils.

  1. The role of the PDZ protein GIPC in regulating NMDA receptor trafficking.

    PubMed

    Yi, Zhaohong; Petralia, Ronald S; Fu, Zhanyan; Swanwick, Catherine Croft; Wang, Ya-Xian; Prybylowski, Kate; Sans, Nathalie; Vicini, Stefano; Wenthold, Robert J

    2007-10-24

    The NMDA receptor is an important component of excitatory synapses in the CNS. In addition to its synaptic localization, the NMDA receptor is also present at extrasynaptic sites where it may have functions distinct from those at the synapse. Little is known about how the number, composition, and localization of extrasynaptic receptors are regulated. We identified a novel NMDA receptor-interacting protein, GIPC (GAIP-interacting protein, C terminus), that associates with surface as well as internalized NMDA receptors when expressed in heterologous cells. In neurons, GIPC colocalizes with a population of NMDA receptors on the cell surface, and changes in GIPC expression alter the number of surface receptors. GIPC is mainly excluded from the synapse, and changes in GIPC expression do not change the total number of synaptic receptors. Our results suggest that GIPC may be preferentially associated with extrasynaptic NMDA receptors and may play a role in the organization and trafficking of this population of receptors.

  2. The PDZ Protein Canoe/AF-6 Links Ras-MAPK, Notch and Wingless/Wnt Signaling Pathways by Directly Interacting with Ras, Notch and Dishevelled

    PubMed Central

    Carmena, Ana; Speicher, Stephan; Baylies, Mary

    2006-01-01

    Over the past few years, it has become increasingly apparent that signal transduction pathways are not merely linear cascades; they are organized into complex signaling networks that require high levels of regulation to generate precise and unique cell responses. However, the underlying regulatory mechanisms by which signaling pathways cross-communicate remain poorly understood. Here we show that the Ras-binding protein Canoe (Cno)/AF-6, a PDZ protein normally associated with cellular junctions, is a key modulator of Wingless (Wg)/Wnt, Ras-Mitogen Activated Protein Kinase (MAPK) and Notch (N) signaling pathways cross-communication. Our data show a repressive effect of Cno/AF-6 on these three signaling pathways through physical interactions with Ras, N and the cytoplasmic protein Dishevelled (Dsh), a key Wg effector. We propose a model in which Cno, through those interactions, actively coordinates, at the membrane level, Ras-MAPK, N and Wg signaling pathways during progenitor specification. PMID:17183697

  3. Protein domain connectivity and essentiality

    NASA Astrophysics Data System (ADS)

    da F. Costa, L.; Rodrigues, F. A.; Travieso, G.

    2006-10-01

    Protein-protein interactions can be properly modeled as scale-free complex networks, while the lethality of proteins has been correlated with the node degrees, therefore defining a lethality-centrality rule. In this work the authors revisit this relevant problem by focusing attention not on proteins as a whole, but on their functional domains, which are ultimately responsible for their binding potential. Four networks are considered: the original protein-protein interaction network, its randomized version, and two domain networks assuming different lethality hypotheses. By using formal statistical analysis, they show that the correlation between connectivity and essentiality is higher for domains than for proteins.

  4. PDZ-domain containing-2 (PDZD2) drives the maturity of human fetal pancreatic progenitor-derived islet-like cell clusters with functional responsiveness against membrane depolarization.

    PubMed

    Leung, Kwan Keung; Suen, Po Man; Lau, Tse Kin; Ko, Wing Hung; Yao, Kwok Ming; Leung, Po Sing

    2009-09-01

    We recently reported the isolation and characterization of a population of pancreatic progenitor cells (PPCs) from early trimester human fetal pancreata. The PPCs, being the forerunners of adult pancreatic cell lineages, were amenable to growth and differentiation into insulin-secreting islet-like cell clusters (ICCs) upon stimulation by adequate morphogens. Of note, a novel morphogenic factor, PDZ-domain containing-2 (PDZD2) and its secreted form (sPDZD2) were ubiquitously expressed in the PPCs. Our goals for this study were to evaluate the potential role of sPDZD2 in stimulating PPC differentiation and to establish the optimal concentration for such stimulation. We found that 10(-9)M sPDZD2 promoted PPC differentiation, as evidenced by the upregulation of the pancreatic endocrine markers (PDX-1, NGN3, NEURO-D, ISL-1, NKX 2.2, NKX 6.1) and INSULIN mRNA. Inhibited endogenous production of sPDZD2 suppressed expression of these factors. Secreted PDZD2 treatment significantly elevated the C-peptide content of the ICCs and increased the basal rate of insulin secretion. However, they remained unresponsive to glucose stimulation, reflected by a minimal increase in GLUT-2 and GLUCOKINASE mRNA expression. Interestingly, sPDZD2 treatment induced increased expression of the L-type voltage-gated calcium channel (Ca(v)1.2) in the ICCs, triggering calcium ion influx under KCl stimulation and conferring an ability to secrete insulin in response to KCl. Pancreatic progenitor cells from 10- and 13-week fetal pancreata showed peak expression of endogenous sPDZD2, implying that sPDZD2 has a specific role in islet development during the first trimester. In conclusion, our data suggest that sPDZD2 promotes functional maturation of human fetal PPC-derived ICCs, thus enhancing its transplanting potentials.

  5. Molecular characterization of a PDZ-LIM protein in Atlantic salmon (Salmo salar): a fish ortholog of the alpha-actinin-associated LIM-protein (ALP).

    PubMed

    Andersen, Øivind; Østbye, Tone-Kari; Gabestad, Irene; Nielsen, Christer; Bardal, Tora; Galloway, Trina Falck

    2004-01-01

    A protein containing both PDZ and LIM protein-protein interaction motifs has for the first time been identified in a lower vertebrate species. A full-length cDNA encoding the ortholog of the alpha-actinin-associated LIM protein (ALP) was isolated from white skeletal muscle of Atlantic salmon (Salmo salar). Whereas ALP is expressed as two muscle specific isoforms in mammals and chicken as the result of alternative splicing, a single ALP transcript was found in both muscle and non-muscular tissues of Atlantic salmon. On the other hand, Western blot analysis revealed several immunoreactive ALP variants in salmon muscle tissues, including a 45 kDa protein in white and red skeletal muscle and a 37-40 kDa protein in heart and smooth muscle. Salmon ALP and alpha-actinin showed similar striated patterns in serial longitudinal sections of white and red skeletal muscle and heart muscle. Expression of ALP was initiated at the 45-somite stage of the salmon embryogenesis contemporary with the first appearance of alpha-actinin transcripts. The similarities in both the spatial and temporal expression patterns of salmon ALP and alpha-actinin strongly indicate that the two proteins are associated as in higher vertebrates, and that the assumed involvement of ALP in the organization and/or maintenance of the Z-lines in striated muscle has been conserved during vertebrate evolution. However, in contrast to the restricted expression of ALP in higher vertebrates, the ubiquitous expression of salmon ALP suggest that this factor is involved in the assembly of additional multi-protein complexes in fish.

  6. Interdomain interface-mediated target recognition by the Scribble PDZ34 supramodule.

    PubMed

    Ren, Jinqi; Feng, Lei; Bai, Yujie; Pei, Haohong; Yuan, Zengqiang; Feng, Wei

    2015-05-15

    Tandem-arranged PDZ [PSD-95 (postsynaptic density-95), Dlg (discs large homologue) and ZO-1 (zonula occludens-1)] domains often form structural and functional supramodules with distinct target-binding properties. In the present study, we found that the two PDZ domains within the PDZ34 tandem of Scribble, a cell polarity regulator, tightly pack in a 'front-to-back' mode to form a compact supramodule. Although PDZ4 contains a distorted αB/βB pocket, the attachment of PDZ4 to PDZ3 generates an unexpected interdomain pocket that is adjacent to and integrates with the canonical αB/βB pocket of PDZ3 to form an expanded target-binding groove. The structure of the PDZ34-target peptide complex further demonstrated that the peptide binds to this expanded target-binding groove with its upstream residues anchoring into the interdomain pocket directly. Mutations of the interdomain pocket and disruptions of the PDZ34 supramodule both interfere with its target-binding capacity. Therefore, the interdomain interface between the PDZ34 supramodule is intrinsically required for its target recognition and determines its target-binding specificity. This interdomain interface-mediated specific recognition may represent a novel mode of target recognition and would broaden the target-binding versatility for PDZ supramodules. The supramodular nature and target recognition mode of the PDZ34 tandem found in the present study would also help to identify the new binding partners of Scribble and thus may direct further research on the PDZ domain-mediated assembly of Scribble polarity complexes.

  7. The Serine Protease HhoA from Synechocystis sp. Strain PCC 6803: Substrate Specificity and Formation of a Hexameric Complex Are Regulated by the PDZ Domain▿

    PubMed Central

    Huesgen, Pitter F.; Scholz, Philipp; Adamska, Iwona

    2007-01-01

    Enzymes of the ATP-independent Deg serine endopeptidase family are very flexible with regard to their substrate specificity. Some family members cleave only one substrate, while others act as general proteases on unfolded substrates. The proteolytic activity of Deg proteases is regulated by PDZ protein interaction domains. Here we characterized the HhoA protease from Synechocystis sp. strain PCC 6803 in vitro using several recombinant protein constructs. The proteolytic activity of HhoA was found to increase with temperature and basic pH and was stimulated by the addition of Mg2+ or Ca2+. We found that the single PDZ domain of HhoA played a critical role in regulating protease activity and in the assembly of a hexameric complex. Deletion of the PDZ domain strongly reduced proteolysis of a sterically challenging resorufin-labeled casein substrate, but unlabeled β-casein was still degraded. Reconstitution of the purified HhoA with total membrane proteins isolated from Synechocystis sp. wild-type strain PCC 6803 and a ΔhhoA mutant resulted in specific degradation of selected proteins at elevated temperatures. We concluded that a single PDZ domain of HhoA plays a critical role in defining the protease activity and oligomerization state, combining the functions that are attributed to two PDZ domains in the homologous DegP protease from Escherichia coli. Based on this first enzymatic study of a Deg protease from cyanobacteria, we propose a general role for HhoA in the quality control of extracytoplasmic proteins, including membrane proteins, in Synechocystis sp. strain PCC 6803. PMID:17616590

  8. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  9. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  10. An essential role for the Glut1 PDZ-binding motif in growth factor regulation of Glut1 degradation and trafficking.

    PubMed

    Wieman, Heather L; Horn, Sarah R; Jacobs, Sarah R; Altman, Brian J; Kornbluth, Sally; Rathmell, Jeffrey C

    2009-03-01

    Cell surface localization of the Glut (glucose transporter), Glut1, is a cytokine-controlled process essential to support the metabolism and survival of haemopoietic cells. Molecular mechanisms that regulate Glut1 trafficking, however, are not certain. In the present study, we show that a C-terminal PDZ-binding motif in Glut1 is critical to promote maximal cytokine-stimulated Glut1 cell surface localization and prevent Glut1 lysosomal degradation in the absence of growth factor. Disruption of this PDZ-binding sequence through deletion or point mutation sharply decreased surface Glut1 levels and led to rapid targeting of internalized Glut1 to lysosomes for proteolysis, particularly in growth factor-deprived cells. The PDZ-domain protein, GIPC (G(alpha)-interacting protein-interacting protein, C-terminus), bound to Glut1 in part via the Glut1 C-terminal PDZ-binding motif, and we found that GIPC deficiency decreased Glut1 surface levels and glucose uptake. Unlike the Glut1 degradation observed on mutation of the Glut1 PDZ-binding domain, however, GIPC deficiency resulted in accumulation of intracellular Glut1 in a pool distinct from the recycling pathway of the TfR (transferrin receptor). Blockade of Glut1 lysosomal targeting after growth factor withdrawal also led to intracellular accumulation of Glut1, a portion of which could be rapidly restored to the cell surface after growth factor stimulation. These results indicate that the C-terminal PDZ-binding motif of Glut1 plays a key role in growth factor regulation of glucose uptake by both allowing GIPC to promote Glut1 trafficking to the cell surface and protecting intracellular Glut1 from lysosomal degradation after growth factor withdrawal, thus allowing the potential for a rapid return of intracellular Glut1 to the cell surface on restimulation.

  11. Diversity in protein domain superfamilies

    PubMed Central

    Das, Sayoni; Dawson, Natalie L; Orengo, Christine A

    2015-01-01

    Whilst ∼93% of domain superfamilies appear to be relatively structurally and functionally conserved based on the available data from the CATH-Gene3D domain classification resource, the remainder are much more diverse. In this review, we consider how domains in some of the most ubiquitous and promiscuous superfamilies have evolved, in particular the plasticity in their functional sites and surfaces which expands the repertoire of molecules they interact with and actions performed on them. To what extent can we identify a core function for these superfamilies which would allow us to develop a ‘domain grammar of function’ whereby a protein's biological role can be proposed from its constituent domains? Clearly the first step is to understand the extent to which these components vary and how changes in their molecular make-up modifies function. PMID:26451979

  12. The structure of the harmonin/sans complex reveals an unexpected interaction mode of the two Usher syndrome proteins

    PubMed Central

    Yan, Jing; Pan, Lifeng; Chen, Xiuye; Wu, Lin; Zhang, Mingjie

    2010-01-01

    The hereditary hearing-vision loss disease, Usher syndrome I (USH1), is caused by defects in several proteins that can interact with each other in vitro. Defects in USH1 proteins are thought to be responsible for the developmental and functional impairments of sensory cells in the retina and inner ear. Harmonin/USH1C and Sans/USH1G are two of the USH1 proteins that interact with each other. Harmonin also binds to other USH1 proteins such as cadherin 23 (CDH23) and protocadherin 15 (PCDH15). However, the molecular basis governing the harmonin and Sans interaction is largely unknown. Here, we report an unexpected assembly mode between harmonin and Sans. We demonstrate that the N-terminal domain and the first PDZ domain of harmonin are tethered by a small-domain C-terminal to PDZ1 to form a structural and functional supramodule responsible for binding to Sans. We discover that the SAM domain of Sans, specifically, binds to the PDZ domain of harmonin, revealing previously unknown interaction modes for both PDZ and SAM domains. We further show that the synergistic PDZ1/SAM and PDZ1/carboxyl PDZ binding-motif interactions, between harmonin and Sans, lock the two scaffold proteins into a highly stable complex. Mutations in harmonin and Sans found in USH1 patients are shown to destabilize the complex formation of the two proteins. PMID:20142502

  13. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  14. Cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Allostery Is an Intrinsic Property of the Protease Domain of DegS Implications for Enzyme Function and Evolution

    SciTech Connect

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T.

    2010-12-02

    DegS is a periplasmic Escherichia coli protease, which functions as a trimer to catalyze the initial rate-limiting step in a proteolytic cascade that ultimately activates transcription of stress response genes in the cytoplasm. Each DegS subunit consists of a protease domain and a PDZ domain. During protein folding stress, DegS is allosterically activated by peptides exposed in misfolded outer membrane porins, which bind to the PDZ domain and stabilize the active protease. It is not known whether allostery is conferred by the PDZ domains or is an intrinsic feature of the trimeric protease domain. Here, we demonstrate that free DegS{sup {Delta}PDZ} equilibrates between active and inactive trimers with the latter species predominating. Substrate binding stabilizes active DegS{sup {Delta}PDZ} in a positively cooperative fashion. Mutations can also stabilize active DegS{sup {Delta}PDZ} and produce an enzyme that displays hyperbolic kinetics and degrades substrate with a maximal velocity within error of that for fully activated, intact DegS. Crystal structures of multiple DegS{sup {Delta}PDZ} variants, in functional and non-functional conformations, support a two-state model in which allosteric switching is mediated by changes in specific elements of tertiary structure in the context of an invariant trimeric base. Overall, our results indicate that protein substrates must bind sufficiently tightly and specifically to the functional conformation of DegS{sup {Delta}PDZ} to assist their own degradation. Thus, substrate binding alone may have regulated the activities of ancestral DegS trimers with subsequent fusion of the protease domain to a PDZ domain, resulting in ligand-mediated regulation.

  16. Extending Protein Domain Boundary Predictors to Detect Discontinuous Domains

    PubMed Central

    Xue, Zhidong; Jang, Richard; Govindarajoo, Brandon; Huang, Yichu; Wang, Yan

    2015-01-01

    A variety of protein domain predictors were developed to predict protein domain boundaries in recent years, but most of them cannot predict discontinuous domains. Considering nearly 40% of multidomain proteins contain one or more discontinuous domains, we have developed DomEx to enable domain boundary predictors to detect discontinuous domains by assembling the continuous domain segments. Discontinuous domains are predicted by matching the sequence profile of concatenated continuous domain segments with the profiles from a single-domain library derived from SCOP and CATH, and Pfam. Then the matches are filtered by similarity to library templates, a symmetric index score and a profile-profile alignment score. DomEx recalled 32.3% discontinuous domains with 86.5% precision when tested on 97 non-homologous protein chains containing 58 continuous and 99 discontinuous domains, in which the predicted domain segments are within ±20 residues of the boundary definitions in CATH 3.5. Compared with our recently developed predictor, ThreaDom, which is the state-of-the-art tool to detect discontinuous-domains, DomEx recalled 26.7% discontinuous domains with 72.7% precision in a benchmark with 29 discontinuous-domain chains, where ThreaDom failed to predict any discontinuous domains. Furthermore, combined with ThreaDom, the method ranked number one among 10 predictors. The source code and datasets are available at https://github.com/xuezhidong/DomEx. PMID:26502173

  17. Structure of Dimeric and Tetrameric Complexes of the BAR Domain Protein PICK1 Determined by Small-Angle X-Ray Scattering.

    PubMed

    Karlsen, Morten L; Thorsen, Thor S; Johner, Niklaus; Ammendrup-Johnsen, Ina; Erlendsson, Simon; Tian, Xinsheng; Simonsen, Jens B; Høiberg-Nielsen, Rasmus; Christensen, Nikolaj M; Khelashvili, George; Streicher, Werner; Teilum, Kaare; Vestergaard, Bente; Weinstein, Harel; Gether, Ulrik; Arleth, Lise; Madsen, Kenneth L

    2015-07-07

    PICK1 is a neuronal scaffolding protein containing a PDZ domain and an auto-inhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher-order structures, and SAXS analysis suggests an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model in which oligomerization governs auto-inhibition of BAR domain function.

  18. Structure of dimeric and tetrameric complexes of the BAR domain protein PICK1 determined by small-angle X-ray scattering

    PubMed Central

    Johner, Niklaus; Ammendrup-Johnsen, Ina; Erlendsson, Simon; Tian, Xinsheng; Simonsen, Jens B.; Høiberg-Nielsen, Rasmus; Christensen, Nikolaj M.; Khelashvili, George; Streicher, Werner; Teilum, Kaare; Vestergaard, Bente; Weinstein, Harel; Gether, Ulrik; Arleth, Lise; Madsen, Kenneth L.

    2015-01-01

    Summary PICK1 is a neuronal scaffolding protein containing a PDZ domain and an autoinhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher order structures and SAXS analysis suggest an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model where oligomerization governs auto-inhibition of BAR domain function. PMID:26073603

  19. An Essential Role for the Glut1 PDZ-Binding Motif in Growth Factor Regulation of Glut1 Degradation and Trafficking

    PubMed Central

    Wieman, Heather L.; Horn, Sarah R.; Jacobs, Sarah R.; Altman, Brian J.; Kornbluth, Sally; Rathmell, Jeffrey C.

    2008-01-01

    Cell surface localization of the glucose transporter, Glut1, is a cytokine-controlled process essential to support the metabolism and survival of hematopoietic cells. Molecular mechanisms that regulate Glut1 trafficking, however, are not certain. Here we show a C-terminal PDZ-binding motif in Glut1 is critical to promote maximal cytokine-stimulated Glut1 cell surface localization and prevent Glut1 lysosomal degradation in the absence of growth factor. Disruption of this PDZ-binding sequence through deletion or point mutation sharply decreased surface Glut1 levels and led to rapid targeting of internalized Glut1 to lysosomes for proteolysis, particularly in growth factor-deprived cells. The PDZ domain protein, GIPC, bound to Glut1 in part via the Glut1 C-terminal PDZ binding motif and we found that GIPC-deficiency decreased Glut1 surface levels and glucose uptake. Unlike the Glut1 degradation observed upon mutation of the Glut1 PDZ-binding domain, however, GIPC-deficiency resulted in accumulation of intracellular Glut1 in a pool distinct from the recycling pathway of the Transferrin Receptor (TfR). Blockade of Glut1 lysosomal targeting after growth factor withdrawal also led to intracellular accumulation of Glut1, a portion of which could be rapidly restored to the cell surface after growth factor stimulation. These data indicate that the C-terminal PDZ-binding motif of Glut1 plays a key role in growth factor regulation of glucose uptake by both allowing GIPC to promote Glut1 trafficking to the cell surface and protecting intracellular Glut1 from lysosomal degradation after growth factor withdrawal, thus allowing potential for a rapid return of intracellular Glut1 to the cell surface upon re-stimulation. PMID:19016655

  20. Functional domains in tetraspanin proteins.

    PubMed

    Stipp, Christopher S; Kolesnikova, Tatiana V; Hemler, Martin E

    2003-02-01

    Exciting new findings have emerged about the structure, function and biochemistry of tetraspanin proteins. Five distinct tetraspanin regions have now been delineated linking structural features to specific functions. Within the large extracellular loop of tetraspanins, there is a variable region that mediates specific interactions with other proteins, as well as a more highly conserved region that has been suggested to mediate homodimerization. Within the transmembrane region, the four tetraspanin transmembrane domains are probable sites of both intra- and inter-molecular interactions that are crucial during biosynthesis and assembly of the network of tetraspanin-linked membrane proteins known as the 'tetraspanin web'. In the intracellular juxtamembrane region, palmitoylation of cysteine residues also contributes to tetraspanin web assembly, and the C-terminal cytoplasmic tail region could provide specific functional links to cytoskeletal or signaling proteins.

  1. Stability of domain structures in multi-domain proteins

    PubMed Central

    Bhaskara, Ramachandra M.; Srinivasan, Narayanaswamy

    2011-01-01

    Multi-domain proteins have many advantages with respect to stability and folding inside cells. Here we attempt to understand the intricate relationship between the domain-domain interactions and the stability of domains in isolation. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Stability of such folds to exist independently is optimized by evolution. Specific residue mutations in the sites equivalent to inter-domain interface enhance the overall solvation, thereby stabilizing these domain folds independently. A few naturally occurring variants at these sites alter communication between domains and affect stability leading to disease manifestation. Our analysis provides safe guidelines for mutagenesis which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR. PMID:22355559

  2. Exhaustive enumeration of protein domain families.

    PubMed

    Heger, Andreas; Holm, Liisa

    2003-05-02

    Domains are considered as the basic units of protein folding, evolution, and function. Decomposing each protein into modular domains is thus a basic prerequisite for accurate functional classification of biological molecules. Here, we present ADDA, an automatic algorithm for domain decomposition and clustering of all protein domain families. We use alignments derived from an all-on-all sequence comparison to define domains within protein sequences based on a global maximum likelihood model. In all, 90% of domain boundaries are predicted within 10% of domain size when compared with the manual domain definitions given in the SCOP database. A representative database of 249,264 protein sequences were decomposed into 450,462 domains. These domains were clustered on the basis of sequence similarities into 33,879 domain families containing at least two members with less than 40% sequence identity. Validation against family definitions in the manually curated databases SCOP and PFAM indicates almost perfect unification of various large domain families while contamination by unrelated sequences remains at a low level. The global survey of protein-domain space by ADDA confirms that most large and universal domain families are already described in PFAM and/or SMART. However, a survey of the complete set of mobile modules leads to the identification of 1479 new interesting domain families which shuffle around in multi-domain proteins. The data are publicly available at ftp://ftp.ebi.ac.uk/pub/contrib/heger/adda.

  3. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    PubMed Central

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  4. Structure-function analysis of SAP97, a modular scaffolding protein that drives dendrite growth.

    PubMed

    Zhang, L; Hsu, F-C; Mojsilovic-Petrovic, J; Jablonski, A M; Zhai, J; Coulter, D A; Kalb, R G

    2015-03-01

    Activation of AMPA receptors assembled with the GluA1 subunit can promote dendrite growth in a manner that depends on its direct binding partner, SAP97. SAP97 is a modular scaffolding protein that has at least seven recognizable protein-protein interaction domains. Several complementary approaches were employed to show that the dendrite branching promoting action of full length SAP97 depends on ligand(s) that bind to the PDZ3 domain. Ligand(s) to PDZ1, PDZ2 and I3 domains also contribute to dendrite growth. The ability of PDZ3 ligand(s) to promote dendrite growth depends on localization at the plasma membrane along with GluA1 and SAP97. These results suggest that the assembly of a multi-protein complex at or near synapses is vital for the translation of AMPA-R activity into dendrite growth.

  5. PDZ interaction sites in integrin alpha subunits. T14853, TIP/GIPC binds to a type I recognition sequence in alpha 6A/alpha 5 and a novel sequence in alpha 6B.

    PubMed

    Tani, T T; Mercurio, A M

    2001-09-28

    We used published peptide library data to identify PDZ recognition sequences in integrin alpha subunit cytoplasmic domains and found that the alpha(6)A and alpha(5) subunits contain a type I PDZ binding site (TSDA*) (asterisk indicates the stop codon). The alpha(6)A cytoplasmic domain was used for screening a two-hybrid library to find interacting proteins. The bulk of the captured cDNAs (60%) coded for TIP-2/GIPC, a cytoplasmic protein with one PDZ domain. The interaction of TIP-2/GIPC with different integrin subunits was tested in two-hybrid and in vitro binding assays. Surprisingly, TIP-2/GIPC bound strongly to the C terminus of both alpha(6)A and alpha(6)B, although the alpha(6)B sequence (ESYS*) is not suggestive of a PDZ binding site because of its polar C-terminal residue. For high affinity interaction with TIP-2/GIPC, at least one of the residues at positions -1 and -3 must be negatively charged. An aliphatic residue at position 0 increases the affinity of but is not required for this interaction. The alpha(5) integrin subunit also bound to TIP-2/GIPC. The alpha(6) integrin and TIP-2/GIPC co-localize in retraction fibers in carcinoma cells plated on laminin, a finding suggesting a functional interaction in vivo. Our results demonstrate that both splice variants of alpha(6) integrin contain a conserved PDZ binding site that enables interaction with TIP-2/GIPC. The binding site in alpha(6)B defines a new subclass of type I PDZ interaction site, characterized by a non-aliphatic residue at position 0.

  6. Protein structural domains: definition and prediction.

    PubMed

    Ezkurdia, Iakes; Tress, Michael L

    2011-11-01

    Recognition and prediction of structural domains in proteins is an important part of structure and function prediction. This unit lists the range of tools available for domain prediction, and describes sequence and structural analysis tools that complement domain prediction methods. Also detailed are the basic domain prediction steps, along with suggested strategies for different protein sequences and potential pitfalls in domain boundary prediction. The difficult problem of domain orientation prediction is also discussed. All the resources necessary for domain boundary prediction are accessible via publicly available Web servers and databases and do not require computational expertise.

  7. A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation.

    PubMed

    Ludford-Menting, Mandy J; Oliaro, Jane; Sacirbegovic, Faruk; Cheah, Eric T-Y; Pedersen, Natalie; Thomas, Suzanne J; Pasam, Anupama; Iazzolino, Rosa; Dow, Lukas E; Waterhouse, Nigel J; Murphy, Amanda; Ellis, Sarah; Smyth, Mark J; Kershaw, Michael H; Darcy, Phillip K; Humbert, Patrick O; Russell, Sarah M

    2005-06-01

    T cell shape is dictated by the selective recruitment of molecules to different regions of the cell (polarity) and is integral to every aspect of T cell function, from migration to cytotoxicity. This study describes a mechanism for the regulation of T cell polarity. We show that T cells contain a network of asymmetrically distributed proteins with the capacity to dictate the subcellular localization of both cell surface receptors and morphological determinants in T cells. Proteins from the Scribble, Crumbs3, and Par3 complexes, previously shown to regulate epithelial polarity, were polarized in T cells containing either uropods or immunological synapses. Reduction in Scribble expression prevented the polarization of cell surface receptors and prevented morphological changes associated with uropod formation, migration, and antigen presentation. By dynamically coordinating molecular distribution throughout the T cell, this network provides a mechanism by which T cell function and polarity are linked.

  8. Enhanced protein domain discovery using taxonomy

    PubMed Central

    Coin, Lachlan; Bateman, Alex; Durbin, Richard

    2004-01-01

    Background It is well known that different species have different protein domain repertoires, and indeed that some protein domains are kingdom specific. This information has not yet been incorporated into statistical methods for finding domains in sequences of amino acids. Results We show that by incorporating our understanding of the taxonomic distribution of specific protein domains, we can enhance domain recognition in protein sequences. We identify 4447 new instances of Pfam domains in the SP-TREMBL database using this technique, equivalent to the coverage increase given by the last 8.3% of Pfam families and to a 0.7% increase in the number of domain predictions. We use PSI-BLAST to cross-validate our new predictions. We also benchmark our approach using a SCOP test set of proteins of known structure, and demonstrate improvements relative to standard Hidden Markov model techniques. Conclusions Explicitly including knowledge about the taxonomic distribution of protein domains can enhance protein domain recognition. Our method can also incorporate other context-specific domain distributions – such as domain co-occurrence and protein localisation. PMID:15137915

  9. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    SciTech Connect

    Han, Miaojun; Wang, Hailun; Zhang, Hua-Tang; Han, Zhaozhong

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. Black-Right-Pointing-Pointer Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  10. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice.

    PubMed

    Han, Miaojun; Wang, Hailun; Zhang, Hua-Tang; Han, Zhaozhong

    2012-05-25

    Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Actinin-associated LIM protein-deficient mice maintain normal development and structure of skeletal muscle.

    PubMed

    Jo, K; Rutten, B; Bunn, R C; Bredt, D S

    2001-03-01

    The actinin-associated LIM protein, ALP, is the prototype of a large family of proteins containing an N-terminal PDZ domain and a C-terminal LIM domain. These PDZ-LIM proteins are components of the muscle cytoskeleton and occur along the Z lines owing to interaction of the PDZ domain with the spectrin-like repeats of alpha-actinin. Because PDZ and LIM domains are typically found in proteins that mediate cellular signaling, PDZ-LIM proteins are suspected to participate in muscle development. Interestingly the ALP gene occurs at 4q35 near the heterochromatic region mutated in facioscapulohumeral muscular dystrophy, indicating a possible role for ALP in this disease. Here, we describe the generation and analysis of mice lacking the ALP gene. Surprisingly, the ALP knockout mice show no gross histological abnormalities and maintain sarcolemmal integrity as determined by serum pyruvate kinase assays. The absence of a dystrophic phenotype in these mice suggests that down-regulation of ALP does not participate in facioscapulohumeral muscular dystrophy. These data suggest that ALP does not participate in muscle development or that an alternative PDZ-LIM protein can compensate for the lack of ALP.

  12. Multiple graph regularized protein domain ranking

    PubMed Central

    2012-01-01

    Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. PMID:23157331

  13. PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo.

    PubMed

    Xie, Li; Yamamoto, Brenda; Haoudi, Abdelali; Semmes, O John; Green, Patrick L

    2006-03-01

    HTLV-1 cellular transformation and disease induction is dependent on expression of the viral Tax oncoprotein. PDZ is a modular protein interaction domain used in organizing signaling complexes in eukaryotic cells through recognition of a specific binding motif in partner proteins. Tax-1, but not Tax-2, contains a PDZ-binding domain motif (PBM) that promotes the interaction with several cellular PDZ proteins. Herein, we investigate the contribution of the Tax-1 PBM in HTLV-induced proliferation and immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. We generated several HTLV-1 and HTLV-2 Tax viral mutants, including HTLV-1deltaPBM, HTLV-2+C22(+PBM), and HTLV-2+ C18(deltaPBM). All Tax mutants maintained the ability to significantly activate the CREB/ATF or NFkappaB signaling pathways. Microtiter proliferation assays revealed that the Tax-1 PBM significantly increases both HTLV-1- and HTLV-2-induced primary T-cell proliferation. In addition, Tax-1 PBM was responsible for the micronuclei induction activity of Tax-1 relative to that of Tax-2. Viral infection and persistence were severely attenuated in rabbits inoculated with HTLV-1deltaPBM. Our results provide the first direct evidence suggesting that PBM-mediated associations between Tax-1 and cellular proteins play a key role in HTLV-induced cell proliferation and genetic instability in vitro and facilitate viral persistence in vivo.

  14. J domain independent functions of J proteins.

    PubMed

    Ajit Tamadaddi, Chetana; Sahi, Chandan

    2016-07-01

    Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.

  15. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay.

    PubMed

    Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles

    2015-08-01

    Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this end, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to 1,000 domain-motif equilibrium binding affinities per day. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from human papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human 'PDZome'. We obtained sharply sequence-dependent binding profiles that quantitatively describe the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has wide potential for quantifying the specificities of interactomes.

  16. A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction

    PubMed Central

    Van Itallie, Christina M.; Tietgens, Amber Jean; Krystofiak, Evan; Kachar, Bechara; Anderson, James M.

    2015-01-01

    Assembly and sealing of the tight junction barrier are critically dependent on the perijunctional actin cytoskeleton, yet little is known about physical and functional links between barrier-forming proteins and actin. Here we identify a novel functional complex of the junction scaffolding protein ZO-1 and the F-BAR–domain protein TOCA-1. Using MDCK epithelial cells, we show that an alternative splice of TOCA-1 adds a PDZ-binding motif, which binds ZO-1, targeting TOCA-1 to barrier contacts. This isoform of TOCA-1 recruits the actin nucleation–promoting factor N-WASP to tight junctions. CRISPR-Cas9–mediated knockout of TOCA-1 results in increased paracellular flux and delayed recovery in a calcium switch assay. Knockout of TOCA-1 does not alter FRAP kinetics of GFP ZO-1 or occludin, but longer term (12 h) time-lapse microscopy reveals strikingly decreased tight junction membrane contact dynamics in knockout cells compared with controls. Reexpression of TOCA-1 with, but not without, the PDZ-binding motif rescues both altered flux and membrane contact dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction in TOCA-1–knockout cells but unaltered freeze-fracture fibril morphology. Identification of the ZO-1/TOCA-1 complex provides novel insights into the underappreciated dependence of the barrier on the dynamic nature of cell-to-cell contacts and perijunctional actin. PMID:26063734

  17. Electric-field-stimulated protein mechanics.

    PubMed

    Hekstra, Doeke R; White, K Ian; Socolich, Michael A; Henning, Robert W; Šrajer, Vukica; Ranganathan, Rama

    2016-12-15

    The internal mechanics of proteins-the coordinated motions of amino acids and the pattern of forces constraining these motions-connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2(PDZ2)) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function.

  18. Analysis of Multiple HPV E6 PDZ Interactions Defines Type-Specific PDZ Fingerprints That Predict Oncogenic Potential

    PubMed Central

    Thomas, Miranda; Myers, Michael P.; Guarnaccia, Corrado; Banks, Lawrence

    2016-01-01

    The high-risk Human Papillomavirus (HPV) E6 oncoproteins are characterised by the presence of a class I PDZ-binding motif (PBM) on their extreme carboxy termini. The PBM is present on the E6 proteins derived from all cancer-causing HPV types, but can also be found on some related non-cancer-causing E6 proteins. We have therefore been interested in investigating the potential functional differences between these different E6 PBMs. Using an unbiased proteomic approach in keratinocytes, we have directly compared the interaction profiles of these different PBMs. This has allowed us to identify the potential PDZ target fingerprints of the E6 PBMs from 7 different cancer-causing HPV types, from 3 HPV types with weak cancer association, and from one benign HPV type that possesses an ancestral PBM. We demonstrate a striking increase in the number of potential PDZ targets bound by each E6 PBM as cancer-causing potential increases, and show that the HPV-16 and HPV-18 PBMs have the most flexibility in their PDZ target selection. Furthermore, the specific interaction with hScrib correlates directly with increased oncogenic potential. In contrast, hDlg is bound equally well by all the HPV E6 PBMs analysed, indicating that this is an evolutionarily conserved interaction, and was most likely one of the original E6 PBM target proteins that was important for the occupation of a potential new niche. Finally, we present evidence that the cell junction components ZO-2 and β-2 syntrophin are novel PDZ domain–containing targets of a subset of high-risk HPV types. PMID:27483446

  19. A thermodynamic definition of protein domains

    PubMed Central

    Porter, Lauren L.; Rose, George D.

    2012-01-01

    Protein domains are conspicuous structural units in globular proteins, and their identification has been a topic of intense biochemical interest dating back to the earliest crystal structures. Numerous disparate domain identification algorithms have been proposed, all involving some combination of visual intuition and/or structure-based decomposition. Instead, we present a rigorous, thermodynamically-based approach that redefines domains as cooperative chain segments. In greater detail, most small proteins fold with high cooperativity, meaning that the equilibrium population is dominated by completely folded and completely unfolded molecules, with a negligible subpopulation of partially folded intermediates. Here, we redefine structural domains in thermodynamic terms as cooperative folding units, based on m-values, which measure the cooperativity of a protein or its substructures. In our analysis, a domain is equated to a contiguous segment of the folded protein whose m-value is largely unaffected when that segment is excised from its parent structure. Defined in this way, a domain is a self-contained cooperative unit; i.e., its cooperativity depends primarily upon intrasegment interactions, not intersegment interactions. Implementing this concept computationally, the domains in a large representative set of proteins were identified; all exhibit consistency with experimental findings. Specifically, our domain divisions correspond to the experimentally determined equilibrium folding intermediates in a set of nine proteins. The approach was also proofed against a representative set of 71 additional proteins, again with confirmatory results. Our reframed interpretation of a protein domain transforms an indeterminate structural phenomenon into a quantifiable molecular property grounded in solution thermodynamics. PMID:22635268

  20. A thermodynamic definition of protein domains.

    PubMed

    Porter, Lauren L; Rose, George D

    2012-06-12

    Protein domains are conspicuous structural units in globular proteins, and their identification has been a topic of intense biochemical interest dating back to the earliest crystal structures. Numerous disparate domain identification algorithms have been proposed, all involving some combination of visual intuition and/or structure-based decomposition. Instead, we present a rigorous, thermodynamically-based approach that redefines domains as cooperative chain segments. In greater detail, most small proteins fold with high cooperativity, meaning that the equilibrium population is dominated by completely folded and completely unfolded molecules, with a negligible subpopulation of partially folded intermediates. Here, we redefine structural domains in thermodynamic terms as cooperative folding units, based on m-values, which measure the cooperativity of a protein or its substructures. In our analysis, a domain is equated to a contiguous segment of the folded protein whose m-value is largely unaffected when that segment is excised from its parent structure. Defined in this way, a domain is a self-contained cooperative unit; i.e., its cooperativity depends primarily upon intrasegment interactions, not intersegment interactions. Implementing this concept computationally, the domains in a large representative set of proteins were identified; all exhibit consistency with experimental findings. Specifically, our domain divisions correspond to the experimentally determined equilibrium folding intermediates in a set of nine proteins. The approach was also proofed against a representative set of 71 additional proteins, again with confirmatory results. Our reframed interpretation of a protein domain transforms an indeterminate structural phenomenon into a quantifiable molecular property grounded in solution thermodynamics.

  1. Synthetic Protein Scaffolds Based on Peptide Motifs and Cognate Adaptor Domains for Improving Metabolic Productivity

    PubMed Central

    Horn, Anselm H. C.; Sticht, Heinrich

    2015-01-01

    The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity. PMID:26636078

  2. The architecture of the protein domain universe.

    PubMed

    Dokholyan, Nikolay V

    2005-03-14

    Understanding the design of the universe of protein structures may provide insights into protein evolution. We study the architecture of the protein domain universe, which has been found to poses peculiar scale-free properties. We examine the origin of these scale-free properties of the graph of protein domain structures (PDUG) and determine that that the PDUG is not modular, i.e. it does not consist of modules with uniform properties. Instead, we find the PDUG to be self-similar at all scales. We further characterize the PDUG architecture by studying the properties of the hub nodes that are responsible for the scale-free connectivity of the PDUG. We introduce a measure of the betweenness centrality of protein domains in the PDUG and find a power-law distribution of the betweenness centrality values. The scale-free distribution of hubs in the protein universe suggests that a set of specific statistical mechanics models, such as the self-organized criticality model, can potentially identify the principal driving forces of protein evolution. We also find a gatekeeper protein domain, removal of which partitions the largest cluster into two large sub-clusters. We suggest that the loss of such gatekeeper protein domains in the course of evolution is responsible for the creation of new fold families.

  3. Domain structure of Lassa virus L protein.

    PubMed

    Brunotte, Linda; Lelke, Michaela; Hass, Meike; Kleinsteuber, Katja; Becker-Ziaja, Beate; Günther, Stephan

    2011-01-01

    The 200-kDa L protein of arenaviruses plays a central role in viral genome replication and transcription. This study aimed at providing evidence for the domain structure of L protein by combining bioinformatics with a stepwise mutagenesis approach using the Lassa virus minireplicon system. Potential interdomain linkers were predicted using various algorithms. The prediction was challenged by insertion of flexible sequences into the predicted linkers. Insertion of 5 or 10 amino acid residues was tolerated at seven sites (S407, G446, G467, G774, G939, S1952, and V2074 in Lassa virus AV). At two of these sites, G467 and G939, L protein could be split into an N-terminal and a C-terminal part, which were able to trans-complement each other and reconstitute a functional complex upon coexpression. Coimmunoprecipitation studies revealed physical interaction between the N- and C-terminal domains, irrespective of whether L protein was split at G467 or G939. In confocal immunofluorescence microscopy, the N-terminal domains showed a dot-like, sometimes perinuclear, cytoplasmic distribution similar to that of full-length L protein, while the C-terminal domains were homogenously distributed in cytoplasm. The latter were redistributed into the dot-like structures upon coexpression with the corresponding N-terminal domain. In conclusion, this study demonstrates two interdomain linkers in Lassa virus L protein, at G467 and G939, suggesting that L protein is composed of at least three structural domains spanning residues 1 to 467, 467 to 939, and 939 to 2220. The first domain seems to mediate accumulation of L protein into cytoplasmic dot-like structures.

  4. Discovering interacting domains and motifs in protein-protein interactions.

    PubMed

    Hugo, Willy; Sung, Wing-Kin; Ng, See-Kiong

    2013-01-01

    Many important biological processes, such as the signaling pathways, require protein-protein interactions (PPIs) that are designed for fast response to stimuli. These interactions are usually transient, easily formed, and disrupted, yet specific. Many of these transient interactions involve the binding of a protein domain to a short stretch (3-10) of amino acid residues, which can be characterized by a sequence pattern, i.e., a short linear motif (SLiM). We call these interacting domains and motifs domain-SLiM interactions. Existing methods have focused on discovering SLiMs in the interacting proteins' sequence data. With the recent increase in protein structures, we have a new opportunity to detect SLiMs directly from the proteins' 3D structures instead of their linear sequences. In this chapter, we describe a computational method called SLiMDIet to directly detect SLiMs on domain interfaces extracted from 3D structures of PPIs. SLiMDIet comprises two steps: (1) interaction interfaces belonging to the same domain are extracted and grouped together using structural clustering and (2) the extracted interaction interfaces in each cluster are structurally aligned to extract the corresponding SLiM. Using SLiMDIet, de novo SLiMs interacting with protein domains can be computationally detected from structurally clustered domain-SLiM interactions for PFAM domains which have available 3D structures in the PDB database.

  5. Proteins and cholesterol-rich domains.

    PubMed

    Epand, Richard M

    2008-01-01

    Biological membranes are composed of many molecular species of lipids and proteins. These molecules do not mix ideally. In the plane of the membrane components are segregated into domains that are enriched in certain lipids and proteins. Cholesterol is a membrane lipid that is not uniformly distributed in the membrane. Proteins play an important role in determining cholesterol distribution. Certain types of protein lipidation are known to cause the lipoprotein to sequester with cholesterol and to stabilize cholesterol-rich domains. However, proteins that are excluded from such domains also contribute to the redistribution of cholesterol. One of the motifs that favor interaction with cholesterol is the CRAC motif. The role of the CRAC motif of the gp41 fusogenic protein of HIV is discussed. The distribution of the multianionic lipid, phosphatidylinositol(4,5)bis-phosphate (PtnIns(4,5)P2), is also not uniform in cell membranes. This lipid has several functions in the cell, including a morphological role in determining the sites of attachment of the actin cytoskeleton to the plasma membrane. PtnIns(4,5)P2 is sequestered by proteins having clusters of cationic residues in their sequence. Certain proteins containing cationic clusters also contain moieties such as myristoylation or a CRAC segment that would also endow them with the ability to sequester to a cholesterol-rich domain. These proteins interact with PtnIns(4,5)P2 in a cholesterol-dependent manner forming domains that are enriched in both cholesterol and in PtnIns(4,5)P2 but can also be distinct from liquid-ordered raft-like domains.

  6. Functional innovation from changes in protein domains and their combinations.

    PubMed

    Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A

    2016-06-01

    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level.

  7. ECOD: An Evolutionary Classification of Protein Domains

    PubMed Central

    Kinch, Lisa N.; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V.

    2014-01-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or “fold”). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies. PMID:25474468

  8. ECOD: an evolutionary classification of protein domains.

    PubMed

    Cheng, Hua; Schaeffer, R Dustin; Liao, Yuxing; Kinch, Lisa N; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V

    2014-12-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or "fold"). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.

  9. Functional genomics of intracellular peptide recognition domains with combinatorial biology methods.

    PubMed

    Sidhu, Sachdev S; Bader, Gary D; Boone, Charles

    2003-02-01

    Phage-displayed peptide libraries have been used to identify specific ligands for peptide-binding domains that mediate intracellular protein-protein interactions. These studies have provided significant insights into the specificities of particular domains. For PDZ domains that recognize C-terminal sequences, the information has proven useful in identifying natural binding partners from genomic databases. For SH3 domains that recognize internal proline-rich motifs, the results of database searches with phage-derived ligands have been compared with the results of yeast-two-hybrid experiments to produce overlap networks that reliably predict natural protein-protein interactions. In addition, libraries of phage-displayed PDZ and SH3 domains have been used to identify the residues responsible for ligand recognition, and also to engineer domains with altered specificities.

  10. Identifying structural domains of proteins using clustering

    PubMed Central

    2012-01-01

    Background Protein structures are comprised of modular elements known as domains. These units are used and re-used over and over in nature, and usually serve some particular function in the structure. Thus it is useful to be able to break up a protein of interest into its component domains, prior to similarity searching for example. Numerous computational methods exist for doing so, but most operate only on a single protein chain and many are limited to making a series of cuts to the sequence, while domains can and do span multiple chains. Results This study presents a novel clustering-based approach to domain identification, which works equally well on individual chains or entire complexes. The method is simple and fast, taking only a few milliseconds to run, and works by clustering either vectors representing secondary structure elements, or buried alpha-carbon positions, using average-linkage clustering. Each resulting cluster corresponds to a domain of the structure. The method is competitive with others, achieving 70% agreement with SCOP on a large non-redundant data set, and 80% on a set more heavily weighted in multi-domain proteins on which both SCOP and CATH agree. Conclusions It is encouraging that a basic method such as this performs nearly as well or better than some far more complex approaches. This suggests that protein domains are indeed for the most part simply compact regions of structure with a higher density of buried contacts within themselves than between each other. By representing the structure as a set of points or vectors in space, it allows us to break free of any artificial limitations that other approaches may depend upon. PMID:23116496

  11. Inferring Evolutionary Scenarios for Protein Domain Compositions

    NASA Astrophysics Data System (ADS)

    Wiedenhoeft, John; Krause, Roland; Eulenstein, Oliver

    Essential cellular processes are controlled by functional interactions of protein domains, which can be inferred from their evolutionary histories. Methods to reconstruct these histories are challenged by the complexity of reconstructing macroevolutionary events. In this work we model these events using a novel network-like structure that represents the evolution of domain combinations, called plexus. We describe an algorithm to find a plexus that represents the evolution of a given collection of domain histories as phylogenetic trees with the minimum number of macroevolutionary events, and demonstrate its effectiveness in practice.

  12. Folding mechanism of a multiple independently-folding domain protein: double B domain of protein A.

    PubMed

    Arora, Pooja; Hammes, Gordon G; Oas, Terrence G

    2006-10-10

    The antibody binding properties of staphylococcal protein A (SpA) can be attributed to the presence of five highly homologous domains (E, D, A, B, and C). Although the folding of the B domain of protein A (BdpA) is well-characterized, the folding behavior of this domain in the context of full-length SpA in the cell remains unexplored. The sequence of the B domain is 89 and 91% identical to those of domains A and C, respectively. We have fused B domain sequences (BBdpA) as a close approximation of the A-B or B-C portion of SpA. Circular dichroism and fluorescence-detected denaturation curves of BBdpA are experimentally indistinguishable from those of BdpA. The rate constants for folding and unfolding from NMR line shape analysis for the single- and double-domain proteins are the same within experimental uncertainties (+/-20%). These results support the designation of SpA as a multiple independently-folding domain (MIFD) protein. We develop a mathematical model that describes the folding thermodynamics and kinetics of MIFD proteins. The model depicts MIFD protein folding and unfolding as a parallel network and explicitly calculates the flux through all parallel pathways. These fluxes are combined to give a complete description of the global thermodynamics and kinetics of the folding and unfolding of MIFD proteins. The global rates for complete folding and unfolding of a MIFD protein and those of the individual domains depend on the stability of the protein. We show that the global unfolding rate of a MIFD protein may be many orders of magnitude slower than that of the constituent domains.

  13. A Comparison of Rosetta Stones in Adapter Protein Families

    PubMed Central

    Kumar, Hulikal Shivashankara Santosh; Kumar, Vadlapudi

    2016-01-01

    The inventory of proteins used in different kingdoms appears surprisingly similar in all sequenced eukaryotic genome. Protein domains represent the basic evolutionary units that form proteins. Domain duplication and shuffling by recombination are probably the most important forces driving protein evolution and hence the complexity of the proteome. While the duplication of whole genes as well as domain encoding exons increases the abundance of domains in the proteome, domain shuffling increases versatility, i.e. the number of distinct contexts in which a domain can occur. In this study we considered five important adapter domain families namely WD40, KELCH, Ankyrin, PDZ and Pleckstrin Homology (PH domain) family for the comparison of Domain versatility, Abundance and domain sharing between them. We used ecological statistics methods such as Jaccard’s Similarity Index (JSI), Detrended Correspondence Analysis, k-Means clustering for the domain distribution data. We found high propensity of domain sharing between PH and PDZ. We found higher abundance of only few selected domains in PH, PDZ, ANK and KELCH families. We also found WD40 family with high versatility and less redundant domain occurrence, with less domain sharing. Hence, the assignments of functions to more orphan WD40 proteins that will help in the identification of suitable drug targets. PMID:28246462

  14. Tight junction protein ZO-1 controls organic cation/carnitine transporter OCTN2 (SLC22A5) in a protein kinase C-dependent way.

    PubMed

    Jurkiewicz, Dominika; Michalec, Katarzyna; Skowronek, Krzysztof; Nałęcz, Katarzyna A

    2017-05-01

    OCTN2 (SLC22A5) is an organic cation/carnitine transporter belonging to the solute carrier transporters (SLC) family. OCTN2 is ubiquitously expressed and its presence was shown in various brain cells, including the endothelial cells forming blood-brain barrier, where it was mainly detected at abluminal membrane and in proximity of tight junctions (TJ). Since OCTN2 contains a PDZ-binding domain, the present study was focused on a possible role of transporter interaction with a TJ-associated protein ZO-1, containing PDZ domains and detected in rat Octn2 proteome. We showed previously that activation of protein kinase C (PKC) in rat astrocytes regulates Octn2 surface presence and activity. Regulation of a wild type Octn2 and its deletion mutant without a PDZ binding motif were studied in heterologous expression system in HEK293 cells. Plasma membrane presence of overexpressed Octn2 did not depend on either PKC activation or presence of PDZ-binding motif, anyhow, as assayed in proximity ligation assay, the truncation of PDZ binding motif resulted in a strongly diminished Octn2/ZO-1 interaction and in a decreased transporter activity. The same effects on Octn2 activity were detected upon PKC activation, what correlated with ZO-1 phosphorylation. It is postulated that ZO-1, when not phosphorylated by PKC, keeps Octn2 in an active state, while elimination of this binding in ΔPDZ mutant or after ZO-1 phosphorylation leads to diminution of Octn2 activity.

  15. The multiple-specificity landscape of modular peptide recognition domains

    PubMed Central

    Gfeller, David; Butty, Frank; Wierzbicka, Marta; Verschueren, Erik; Vanhee, Peter; Huang, Haiming; Ernst, Andreas; Dar, Nisa; Stagljar, Igor; Serrano, Luis; Sidhu, Sachdev S; Bader, Gary D; Kim, Philip M

    2011-01-01

    Modular protein interaction domains form the building blocks of eukaryotic signaling pathways. Many of them, known as peptide recognition domains, mediate protein interactions by recognizing short, linear amino acid stretches on the surface of their cognate partners with high specificity. Residues in these stretches are usually assumed to contribute independently to binding, which has led to a simplified understanding of protein interactions. Conversely, we observe in large binding peptide data sets that different residue positions display highly significant correlations for many domains in three distinct families (PDZ, SH3 and WW). These correlation patterns reveal a widespread occurrence of multiple binding specificities and give novel structural insights into protein interactions. For example, we predict a new binding mode of PDZ domains and structurally rationalize it for DLG1 PDZ1. We show that multiple specificity more accurately predicts protein interactions and experimentally validate some of the predictions for the human proteins DLG1 and SCRIB. Overall, our results reveal a rich specificity landscape in peptide recognition domains, suggesting new ways of encoding specificity in protein interaction networks. PMID:21525870

  16. BAR domain proteins regulate Rho GTPase signaling

    PubMed Central

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis. PMID:25483303

  17. Linking in domain-swapped protein dimers

    PubMed Central

    Baiesi, Marco; Orlandini, Enzo; Trovato, Antonio; Seno, Flavio

    2016-01-01

    The presence of knots has been observed in a small fraction of single-domain proteins and related to their thermodynamic and kinetic properties. The exchanging of identical structural elements, typical of domain-swapped proteins, makes such dimers suitable candidates to validate the possibility that mutual entanglement between chains may play a similar role for protein complexes. We suggest that such entanglement is captured by the linking number. This represents, for two closed curves, the number of times that each curve winds around the other. We show that closing the curves is not necessary, as a novel parameter G′, termed Gaussian entanglement, is strongly correlated with the linking number. Based on 110 non redundant domain-swapped dimers, our analysis evidences a high fraction of chains with a significant intertwining, that is with |G′| > 1. We report that Nature promotes configurations with negative mutual entanglement and surprisingly, it seems to suppress intertwining in long protein dimers. Supported by numerical simulations of dimer dissociation, our results provide a novel topology-based classification of protein-swapped dimers together with some preliminary evidence of its impact on their physical and biological properties. PMID:27659606

  18. Protein transduction domain delivery of therapeutic macromolecules.

    PubMed

    van den Berg, Arjen; Dowdy, Steven F

    2011-12-01

    Owing to their unprecedented selectivity, specific activity and potential for 1000+ fold amplification of signal, macromolecules, such as peptides, catalytic protein domains, complete proteins, and oligonucleotides, offer great potential as therapeutic molecules. However, therapeutic use of macromolecules is limited by their poor penetration in tissues and their inability to cross the cellular membrane. The discovery of small cationic peptides that cross the membrane, called Protein Transduction Domains (PTDs) or Cell Penetrating Peptides (CPPs), in the late 1980s opened the door to cellular delivery of large, bioactive molecules. Now, PTDs are widely used as research tools, and impressively, multiple clinical trials are testing PTD-mediated delivery of macromolecular drug conjugates in patients with a variety of diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Joining RDC data from flexible protein domains

    NASA Astrophysics Data System (ADS)

    Sgheri, Luca

    2010-11-01

    We study the inverse problem of determining the conformational freedom of two protein domains from residual dipolar coupling (RDC) measurements. For each paramagnetic ion attached to one of the domains we obtain a magnetic susceptibility tensor χ from the RDC of couples of atoms of that domain, and a mean paramagnetic susceptibility tensor {\\bar{\\chi }} from the RDC of couples of atoms of the other domain. The latter is an integral average of rotations of χ which depends on the conformational freedom of the two domains. In this paper we consider the case when we have data from paramagnetic ions attached separately to each of the domains. We prove that in this case not all the elements of χ and {\\bar{\\chi }} are independent. We derive the mathematical equations for the compatibility of the measurements and show how these relations can be used in the presence of noisy data to determine a compatible set of χ and {\\bar{\\chi }} with an unconstrained minimization. If available, information about the shape of the noise can be included in the target function. We show that in this case the compatible set obtained has a reduced error with respect to the noisy data.

  20. TARP modulation of synaptic AMPA receptor trafficking and gating depends on multiple intracellular domains.

    PubMed

    Milstein, Aaron D; Nicoll, Roger A

    2009-07-07

    Previous work has established stargazin and its related family of transmembrane AMPA receptor regulatory proteins (TARPs) as auxiliary subunits of AMPA receptors (AMPARs) that control synaptic strength both by targeting AMPARs to synapses through an intracellular PDZ-binding motif and by modulating their gating through an extracellular domain. However, TARPs gamma-2 and gamma-8 differentially regulate the synaptic targeting of AMPARs, despite having identical PDZ-binding motifs. Here, we investigate the structural elements that contribute to this functional difference between TARP subtypes by using domain transplantation and truncation. We identify a component of synaptic AMPAR trafficking that is independent of the TARP C-terminal PDZ-binding motif, and we establish previously uncharacterized roles for the TARP intracellular N terminus, loop, and C terminus in modulating both the trafficking and gating of synaptic AMPARs.

  1. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource.

  2. The Evolutionary History of Protein Domains Viewed by Species Phylogeny

    PubMed Central

    Yang, Song; Bourne, Philip E.

    2009-01-01

    Background Protein structural domains are evolutionary units whose relationships can be detected over long evolutionary distances. The evolutionary history of protein domains, including the origin of protein domains, the identification of domain loss, transfer, duplication and combination with other domains to form new proteins, and the formation of the entire protein domain repertoire, are of great interest. Methodology/Principal Findings A methodology is presented for providing a parsimonious domain history based on gain, loss, vertical and horizontal transfer derived from the complete genomic domain assignments of 1015 organisms across the tree of life. When mapped to species trees the evolutionary history of domains and domain combinations is revealed, and the general evolutionary trend of domain and combination is analyzed. Conclusions/Significance We show that this approach provides a powerful tool to study how new proteins and functions emerged and to study such processes as horizontal gene transfer among more distant species. PMID:20041107

  3. Structure and function of WD40 domain proteins.

    PubMed

    Xu, Chao; Min, Jinrong

    2011-03-01

    The WD40 domain exhibits a β-propeller architecture, often comprising seven blades. The WD40 domain is one of the most abundant domains and also among the top interacting domains in eukaryotic genomes. In this review, we will discuss the identification, definition and architecture of the WD40 domains. WD40 domain proteins are involved in a large variety of cellular processes, in which WD40 domains function as a protein-protein or protein-DNA interaction platform. WD40 domain mediates molecular recognition events mainly through the smaller top surface, but also through the bottom surface and sides. So far, no WD40 domain has been found to display enzymatic activity. We will also discuss the different binding modes exhibited by the large versatile family of WD40 domain proteins. In the last part of this review, we will discuss how post-translational modifications are recognized by WD40 domain proteins.

  4. Phylogenetic Analysis of Brassica rapa MATH-Domain Proteins

    PubMed Central

    Zhao, Liming; Huang, Yong; Hu, Yan; He, Xiaoli; Shen, Wenhui; Liu, Chunlin; Ruan, Ying

    2013-01-01

    The MATH (meprin and TRAF-C homology) domain is a fold of seven anti-parallel β-helices involved in protein-protein interaction. Here, we report the identification and characterization of 90 MATH-domain proteins from the Brassica rapa genome. By sequence analysis together with MATH-domain proteins from other species, the B. rapa MATH-domain proteins can be grouped into 6 classes. Class-I protein has one or several MATH domains without any other recognizable domain; Class-II protein contains a MATH domain together with a conserved BTB (Broad Complex, Tramtrack, and Bric-a-Brac ) domain; Class-III protein belongs to the MATH/Filament domain family; Class-IV protein contains a MATH domain frequently combined with some other domains; Class-V protein has a relative long sequence but contains only one MATH domain; Class-VI protein is characterized by the presence of Peptidase and UBQ (Ubiquitinylation) domains together with one MATH domain. As part of our study regarding seed development of B. rapa, six genes are screened by SSH (Suppression Subtractive Hybridization) and their expression levels are analyzed in combination with seed developmental stages, and expression patterns suggested that Bra001786, Bra03578 and Bra036572 may be seed development specific genes, while Bra001787, Bra020541 and Bra040904 may be involved in seed and flower organ development. This study provides the first characterization of the MATH domain proteins in B. rapa PMID:24179444

  5. Discovery and Confirmation of Ligand Binding Specificities of the Schistosoma japonicum Polarity Protein Scribble

    PubMed Central

    Piao, Xianyu; Hou, Nan; Liu, Shuai; Gao, Youhe; Wang, Heng; Chen, Qijun

    2014-01-01

    Background Schistosomiasis is a chronic debilitating parasitic disease that afflicts more than 200 million individuals worldwide. Long-term administration of chemotherapy with the single available drug, praziquantel, has led to growing concerns about drug resistance. The PSD-95/Dlg/ZO-1 (PDZ) domain is an important module found in many scaffolding proteins, which has been recognized as promising targets for the development of novel drugs. However, the parasite-derived PDZ domains and their associated functions are still largely unknown. Methodology/Principal Findings The gene encoding the Schistosoma japonicum Scribble protein (SjScrib) was identified by homologous search with the S. mansoni Scrib sequence. By screening an arbitrary peptide library in yeast two-hybrid (Y2H) assays, we identified and confirmed the ligand binding specificity for each of the four PDZ domains of SjScrib. Both SjScrib-PDZ1 and SjScrib-PDZ3 recognize type I C-terminal PDZ-domain binding motifs (PBMs), which can be deduced as consensus sequences of -[Φ][x][E][TS][x][ILF] and -[x][RKx][ETS][T][WΦ][ILV], respectively. SjScrib-PDZ2 prefers stringent type II C-terminal PBMs, which significantly differs from that of its human ortholog. SjScrib-PDZ4 binds to typical II C-terminal PBMs with a consensus sequence -[x][FW][x][LI][x][LIV], in which the aromatic residue Phe is predominantly selected at position -4. The irregular and unconventional internal ligand binding specificities for the PDZ domains of SjScrib were confirmed by point mutations of the key amino acids within the ligand binding motifs. We also compared the differences in ligand specificities between SjScrib-PDZs and hScrib-PDZs, and explored the structural basis for the ligand binding properties of SjScrib-PDZs. Conclusions/Significance In this study, we characterized and confirmed the ligand binding specificities of all four PDZ domains of SjScrib for the first time. We denoted the differential ligand binding specificities

  6. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane

    PubMed Central

    Lauffer, Benjamin E.L.; Melero, Cristina; Temkin, Paul; Lei, Cai; Hong, Wanjin; Kortemme, Tanja

    2010-01-01

    Postsynaptic density 95/discs large/zonus occludens-1 (PDZ) domain–interacting motifs, in addition to their well-established roles in protein scaffolding at the cell surface, are proposed to act as cis-acting determinants directing the molecular sorting of transmembrane cargo from endosomes to the plasma membrane. This hypothesis requires the existence of a specific trans-acting PDZ protein that mediates the proposed sorting operation in the endosome membrane. Here, we show that sorting nexin 27 (SNX27) is required for efficient PDZ-directed recycling of the β2-adrenoreceptor (β2AR) from early endosomes. SNX27 mediates this sorting function when expressed at endogenous levels, and its recycling activity requires both PDZ domain–dependent recognition of the β2AR cytoplasmic tail and Phox homology (PX) domain–dependent association with the endosome membrane. These results identify a discrete role of SNX27 in PDZ-directed recycling of a physiologically important signaling receptor, and extend the concept of cargo-specific molecular sorting in the recycling pathway. PMID:20733053

  7. Evaluating, Comparing, and Interpreting Protein Domain Hierarchies

    PubMed Central

    2014-01-01

    Abstract Arranging protein domain sequences hierarchically into evolutionarily divergent subgroups is important for investigating evolutionary history, for speeding up web-based similarity searches, for identifying sequence determinants of protein function, and for genome annotation. However, whether or not a particular hierarchy is optimal is often unclear, and independently constructed hierarchies for the same domain can often differ significantly. This article describes methods for statistically evaluating specific aspects of a hierarchy, for probing the criteria underlying its construction and for direct comparisons between hierarchies. Information theoretical notions are used to quantify the contributions of specific hierarchical features to the underlying statistical model. Such features include subhierarchies, sequence subgroups, individual sequences, and subgroup-associated signature patterns. Underlying properties are graphically displayed in plots of each specific feature's contributions, in heat maps of pattern residue conservation, in “contrast alignments,” and through cross-mapping of subgroups between hierarchies. Together, these approaches provide a deeper understanding of protein domain functional divergence, reveal uncertainties caused by inconsistent patterns of sequence conservation, and help resolve conflicts between competing hierarchies. PMID:24559108

  8. The role of prolyl hydroxylase domain protein (PHD) during rosiglitazone-induced adipocyte differentiation.

    PubMed

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Cheon, Hyae Gyeong

    2014-01-31

    Rosiglitazone, a well known insulin sensitizer, stimulates adipocyte differentiation via the activation of peroxisome proliferator-activated receptor γ (PPARγ). Previous two-dimensional proteomics studies using C3H10T1/2 murine mesenchymal pluripotent stem cells revealed that prolyl hydroxylase domain protein (PHD) levels significantly increased during rosiglitazone-induced adipocyte differentiation (RIAD). In this study, we investigated the functional role played by PHD during RIAD. Three PHD isoforms (PHD1, 2, and 3) were found to be up-regulated in C3H10T1/2 cells during RIAD, whereas PHD knockdown and treatment with PHD inhibitors (dimethyloxalyl glycine or ethyl-3,4-dihydroxybenzoate) blocked RIAD. PHD inhibition was found to be associated with increases in the levels of anti-adipogenic proteins such as GATA-3, KLF-2, and transcriptional coactivator with PDZ binding motif (TAZ), with their reduced ubiquitination, suggesting that PHDs evoke the ubiquitination/proteasomal degradation of anti-adipogenic proteins. On the other hand, MG-132 (a proteasomal inhibitor) prevented the degradation of anti-adipogenic proteins and retarded RIAD. PPARγ antagonists (bisphenol A diglycidyl ether or GW9662) blunted the effects of rosiglitazone on PHD regulation. Furthermore, putative PPARγ binding sites were identified in the promoter region of PHDs by ChIP-PCR, implying that rosiglitazone may induce PHD up-regulation directly by PPARγ activation. Consistent with in vitro results, oral administration of rosiglitazone to ob/ob mice for 2 weeks increased adipose PHD levels and decreased anti-adipogenic protein levels by increasing their ubiquitination. These results suggest that rosiglitazone increases PHD expression in a PPARγ-dependent manner and that this leads to the commitment of anti-adipogenic proteins to the ubiquitination-proteasomal pathway and to the subsequent induction of adipocyte differentiation.

  9. Rational design of an orthogonal noncovalent interaction system at the MUPP1 PDZ11 complex interface with CaMKIIα-derived peptides in human fertilization.

    PubMed

    Zhang, Yi-Le; Han, Zhao-Feng

    2017-09-26

    The recognition and association between the Ca(2+)/calmodulin-activated protein kinase II-α (CaMKIIα) and the multi-PDZ domain protein 1 (MUPP1) plays an important role in the sperm acrosome reaction and human fertilization. Previously, we have demonstrated that the MUPP1 PDZ11 domain is the primary binding partner of the CaMKIIα C-terminal tail, which can be targeted by a rationally designed sia peptide with nanomolar affinity. Here, we further introduced an orthogonal noncovalent interaction (ONI) system between a native hydrogen bond and a designed halogen bond across the complex interface of the PDZ11 domain with the sia [Asn-1Phe] peptide mutant, where the halogen bond was formed by substituting the o-hydrogen atom of the benzene ring of the peptide Phe-1 residue with a halogen atom (F, Cl, Br or I). Molecular dynamics simulations and high-level theoretical calculations suggested that bromine (Br) is a good compromise between the halogen-bonding strength and steric hindrance effect due to introduction of a bulkier halogen atom into the tightly packed complex interface. Fluorescence spectroscopy assays revealed that the resulting o-Br-substituted peptide (Kd = 18 nM) exhibited an ∼7.6-fold affinity increase relative to its native counterpart (Kd = 137 nM). In contrast, the p-Br-substituted peptide, a negative control that is unable to establish the ONI according to structure-based analysis, has decreased affinity (Kd = 210 nM) upon halogenation.

  10. Independent Structural Domains in Paramyxovirus Polymerase Protein*

    PubMed Central

    Dochow, Melanie; Krumm, Stefanie A.; Crowe, James E.; Moore, Martin L.; Plemper, Richard K.

    2012-01-01

    All enzymatic activities required for genomic replication and transcription of nonsegmented negative strand RNA viruses (or Mononegavirales) are believed to be concentrated in the viral polymerase (L) protein. However, our insight into the organization of these different enzymatic activities into a bioactive tertiary structure remains rudimentary. Fragments of Mononegavirales polymerases analyzed to date cannot restore bioactivity through trans-complementation, unlike the related L proteins of segmented NSVs. We investigated the domain organization of phylogenetically diverse Paramyxovirus L proteins derived from measles virus (MeV), Nipah virus (NiV), and respiratory syncytial virus (RSV). Through a comprehensive in silico and experimental analysis of domain intersections, we defined MeV L position 615 as an interdomain candidate in addition to the previously reported residue 1708. Only position 1708 of MeV and the homologous positions in NiV and RSV L also tolerated the insertion of epitope tags. Splitting of MeV L at residue 1708 created fragments that were unable to physically interact and trans-complement, but strikingly, these activities were reconstituted by the addition of dimerization tags to the fragments. Equivalently split fragments of NiV, RSV, and MeV L oligomerized with comparable efficiency in all homo- and heterotypic combinations, but only the homotypic pairs were able to trans-complement. These results demonstrate that synthesis as a single polypeptide is not required for the Mononegavirales polymerases to adopt a proper tertiary conformation. Paramyxovirus polymerases are composed of at least two truly independent folding domains that lack a traditional interface but require molecular compatibility for bioactivity. The functional probing of the L domain architecture through trans-complementation is anticipated to be applicable to all Mononegavirales polymerases. PMID:22215662

  11. Plasma Membrane Targeting of Protocadherin 15 Is Regulated by the Golgi-Associated Chaperone Protein PIST.

    PubMed

    Nie, Hongyun; Liu, Yueyue; Yin, Xiaolei; Cao, Huiren; Wang, Yanfei; Xiong, Wei; Lin, Yushuang; Xu, Zhigang

    2016-01-01

    Protocadherin 15 (PCDH15) is a core component of hair cell tip-links and crucial for proper function of inner ear hair cells. Mutations of PCDH15 gene cause syndromic and nonsyndromic hearing loss. At present, the regulatory mechanisms responsible for the intracellular transportation of PCDH15 largely remain unknown. Here we show that PIST, a Golgi-associated, PDZ domain-containing protein, interacts with PCDH15. The interaction is mediated by the PDZ domain of PIST and the C-terminal PDZ domain-binding interface (PBI) of PCDH15. Through this interaction, PIST retains PCDH15 in the trans-Golgi network (TGN) and reduces the membrane expression of PCDH15. We have previously showed that PIST regulates the membrane expression of another tip-link component, cadherin 23 (CDH23). Taken together, our finding suggests that PIST regulates the intracellular trafficking and membrane targeting of the tip-link proteins CDH23 and PCDH15.

  12. Synthetic mimetics of protein secondary structure domains

    PubMed Central

    Ross, Nathan T.; Katt, William P.; Hamilton, Andrew D.

    2010-01-01

    Proteins modulate the majority of all biological functions and are primarily composed of highly organized secondary structural elements such as helices, turns and sheets. Many of these functions are affected by a small number of key protein–protein contacts, often involving one or more of these well-defined structural elements. Given the ubiquitous nature of these protein recognition domains, their mimicry by peptidic and non-peptidic scaffolds has become a major focus of contemporary research. This review examines several key advances in secondary structure mimicry over the past several years, particularly focusing upon scaffolds that show not only promising projection of functional groups, but also a proven effect in biological systems. PMID:20123744

  13. Modular protein domains: an engineering approach toward functional biomaterials.

    PubMed

    Lin, Charng-Yu; Liu, Julie C

    2016-08-01

    Protein domains and peptide sequences are a powerful tool for conferring specific functions to engineered biomaterials. Protein sequences with a wide variety of functionalities, including structure, bioactivity, protein-protein interactions, and stimuli responsiveness, have been identified, and advances in molecular biology continue to pinpoint new sequences. Protein domains can be combined to make recombinant proteins with multiple functionalities. The high fidelity of the protein translation machinery results in exquisite control over the sequence of recombinant proteins and the resulting properties of protein-based materials. In this review, we discuss protein domains and peptide sequences in the context of functional protein-based materials, composite materials, and their biological applications.

  14. Molecular and functional characterization of proteins interacting with the C-terminal domains of 5-HT2 receptors: emergence of 5-HT2 "receptosomes".

    PubMed

    Gavarini, Sophie; Bécamel, Carine; Chanrion, Benjamin; Bockaert, Joël; Marin, Philippe

    2004-06-01

    Many cellular functions are carried out by multiprotein complexes. The last five years of research have revealed that many G-protein coupled receptor (GPCR) functions that are not mediated by G proteins involve protein networks, which interact with their intracellular domains. This review focuses on one family of GPCRs activated by serotonin, the 5-HT(2) receptor family, which comprises three closely related subtypes, the 5-HT(2A), the 5-HT(2B) and the 5-HT(2c) receptors. These receptors still raise particular interest, because a large number of psychoactive drugs including hallucinogens, anti-psychotics, anxiolytics and anti-depressants, mediate their action, at least in part, through activation of 5-HT(2) receptors. Recent studies based on two-hybrid screens, proteomic, biochemical and cell biology approaches, have shown that the C-terminal domains of 5-HT(2) receptors interact with intracellular proteins. To date, the protein network associated with the C-terminus of the 5-HT(2C) receptor has been the most extensively characterized, using a proteomic approach combining affinity chromatography, mass spectrometry and immunoblotting. It includes scaffolding proteins containing one or several PDZ domains, signalling proteins and proteins of the cytoskeleton. Data indicating that the protein complexes interacting with 5-HT(2) receptor C-termini tightly control receptor trafficking and receptor-mediated signalling will also be reviewed.

  15. GIPC and GAIP form a complex with TrkA: a putative link between G protein and receptor tyrosine kinase pathways.

    PubMed

    Lou, X; Yano, H; Lee, F; Chao, M V; Farquhar, M G

    2001-03-01

    NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-gamma1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways.

  16. GIPC and GAIP Form a Complex with TrkA: A Putative Link between G Protein and Receptor Tyrosine Kinase Pathways

    PubMed Central

    Lou, Xiaojing; Yano, Hiroko; Lee, Francis; Chao, Moses V.; Farquhar, Marilyn Gist

    2001-01-01

    NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-γ1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways. PMID:11251075

  17. Plant SAM-Domain Proteins Start to Reveal Their Roles.

    PubMed

    Denay, Grégoire; Vachon, Gilles; Dumas, Renaud; Zubieta, Chloe; Parcy, François

    2017-08-01

    Proteins often act in complexes assembled via protein-protein interaction domains. The sterile alpha motif (SAM) domain is one of the most prominent interaction domains in animals and is present in proteins of diverse functions. This domain allows head-to-tail closed oligomerisation or polymer formation resulting in homo- and/or heterocomplexes that have been shown to be important for proper protein localisation and function. In plants this domain is also present but has been poorly studied except for recent studies on the LEAFY floral regulator and the tRNA import component (TRIC)1/2 proteins. Here we catalogue SAM domain-containing proteins from arabidopsis (Arabidopsis thaliana), compare plant and other eukaryotic SAM domains, and perform homology modelling to probe plant SAM domain interaction capabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evolution of Protein Domain Repeats in Metazoa

    PubMed Central

    Schüler, Andreas; Bornberg-Bauer, Erich

    2016-01-01

    Repeats are ubiquitous elements of proteins and they play important roles for cellular function and during evolution. Repeats are, however, also notoriously difficult to capture computationally and large scale studies so far had difficulties in linking genetic causes, structural properties and evolutionary trajectories of protein repeats. Here we apply recently developed methods for repeat detection and analysis to a large dataset comprising over hundred metazoan genomes. We find that repeats in larger protein families experience generally very few insertions or deletions (indels) of repeat units but there is also a significant fraction of noteworthy volatile outliers with very high indel rates. Analysis of structural data indicates that repeats with an open structure and independently folding units are more volatile and more likely to be intrinsically disordered. Such disordered repeats are also significantly enriched in sites with a high functional potential such as linear motifs. Furthermore, the most volatile repeats have a high sequence similarity between their units. Since many volatile repeats also show signs of recombination, we conclude they are often shaped by concerted evolution. Intriguingly, many of these conserved yet volatile repeats are involved in host-pathogen interactions where they might foster fast but subtle adaptation in biological arms races. Key Words: protein evolution, domain rearrangements, protein repeats, concerted evolution. PMID:27671125

  19. Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma.

    PubMed

    Park, Yun-Yong; Sohn, Bo Hwa; Johnson, Randy L; Kang, Myoung-Hee; Kim, Sang Bae; Shim, Jae-Jun; Mangala, Lingegowda S; Kim, Ji Hoon; Yoo, Jeong Eun; Rodriguez-Aguayo, Cristian; Pradeep, Sunila; Hwang, Jun Eul; Jang, Hee-Jin; Lee, Hyun-Sung; Rupaimoole, Rajesha; Lopez-Berestein, Gabriel; Jeong, Woojin; Park, Inn Sun; Park, Young Nyun; Sood, Anil K; Mills, Gordon B; Lee, Ju-Seog

    2016-01-01

    Metabolic activation is a common feature of many cancer cells and is frequently associated with the clinical outcomes of various cancers, including hepatocellular carcinoma. Thus, aberrantly activated metabolic pathways in cancer cells are attractive targets for cancer therapy. Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ) are oncogenic downstream effectors of the Hippo tumor suppressor pathway, which is frequently inactivated in many cancers. Our study revealed that YAP1/TAZ regulates amino acid metabolism by up-regulating expression of the amino acid transporters solute carrier family 38 member 1 (SLC38A1) and solute carrier family 7 member 5 (SLC7A5). Subsequently, increased uptake of amino acids by the transporters (SLC38A1 and SLC7A5) activates mammalian target of rapamycin complex 1 (mTORC1), a master regulator of cell growth, and stimulates cell proliferation. We also show that high expression of SLC38A1 and SLC7A5 is significantly associated with shorter survival in hepatocellular carcinoma patients. Furthermore, inhibition of the transporters and mTORC1 significantly blocks YAP1/TAZ-mediated tumorigenesis in the liver. These findings elucidate regulatory networks connecting the Hippo pathway to mTORC1 through amino acid metabolism and the mechanism's potential clinical implications for treating hepatocellular carcinoma. YAP1 and TAZ regulate cancer metabolism and mTORC1 through regulation of amino acid transportation, and two amino acid transporters, SLC38A1 and SLC7A5, might be important therapeutic targets. © 2015 by the American Association for the Study of Liver Diseases.

  20. Replacing the PDZ-interacting C-termini of DSCAM and DSCAML1 with epitope tags causes different phenotypic severity in different cell populations

    PubMed Central

    Garrett, Andrew M; Tadenev, Abigail LD; Hammond, Yuna T; Fuerst, Peter G; Burgess, Robert W

    2016-01-01

    Different types of neurons in the retina are organized vertically into layers and horizontally in a mosaic pattern that helps ensure proper neural network formation and information processing throughout the visual field. The vertebrate Dscams (DSCAM and DSCAML1) are cell adhesion molecules that support the development of this organization by promoting self-avoidance at the level of cell types, promoting normal developmental cell death, and directing vertical neurite stratification. To understand the molecular interactions required for these activities, we tested the functional significance of the interaction between the C-terminus of the Dscams and multi-PDZ domain-containing scaffolding proteins in mouse. We hypothesized that this PDZ-interacting domain would mediate a subset of the Dscams’ functions. Instead, we found that in the absence of these interactions, some cell types developed almost normally, while others resembled complete loss of function. Thus, we show differential dependence on this domain for Dscams’ functions in different cell types. DOI: http://dx.doi.org/10.7554/eLife.16144.001 PMID:27637097

  1. The expanding superfamily of gelsolin homology domain proteins.

    PubMed

    Ghoshdastider, Umesh; Popp, David; Burtnick, Leslie D; Robinson, Robert C

    2013-11-01

    The gelsolin homology (GH) domain has been found to date exclusively in actin-binding proteins. In humans, three copies of the domain are present in CapG, five copies in supervillin, and six copies each in adseverin, gelsolin, flightless I and the villins: villin, advillin and villin-like protein. Caenorhabditis elegans contains a four-GH-domain protein, GSNL-1. These architectures are predicted to have arisen from gene triplication followed by gene duplication to result in the six-domain protein. The subsequent loss of one, two or three domains produced the five-, four-, and three-domain proteins, respectively. Here we conducted BLAST and hidden Markov based searches of UniProt and NCBI databases to identify novel gelsolin domain containing proteins. The variety in architectures suggests that the GH domain has been tested in many molecular constructions during evolution. Of particular note is flightless-like I protein (FLIIL1) from Entamoeba histolytica, which combines a leucine rich repeats (LRR) domain, seven GH domains, and a headpiece domain, thus combining many of the features of flightless I with those of villin or supervillin. As such, the GH domain superfamily appears to have developed along complex routes. The distribution of these proteins was analyzed in the 343 completely sequenced genomes, mapped onto the tree of life, and phylogenetic trees of the proteins were constructed to gain insight into their evolution. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  2. Stochastic single-molecule dynamics of synaptic membrane protein domains

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Li, Yiwei; Haselwandter, Christoph A.

    2016-09-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  3. Protein domain assignment from the recurrence of locally similar structures

    PubMed Central

    Tai, Chin-Hsien; Sam, Vichetra; Gibrat, Jean-Francois; Garnier, Jean; Munson, Peter J.

    2010-01-01

    Domains are basic units of protein structure and essential for exploring protein fold space and structure evolution. With the structural genomics initiative, the number of protein structures in the Protein Databank (PDB) is increasing dramatically and domain assignments need to be done automatically. Most existing structural domain assignment programs define domains using the compactness of the domains and/or the number and strength of intra-domain versus inter-domain contacts. Here we present a different approach based on the recurrence of locally similar structural pieces (LSSPs) found by one-against-all structure comparisons with a dataset of 6,373 protein chains from the PDB. Residues of the query protein are clustered using LSSPs via three different procedures to define domains. This approach gives results that are comparable to several existing programs that use geometrical and other structural information explicitly. Remarkably, most of the proteins that contribute the LSSPs defining a domain do not themselves contain the domain of interest. This study shows that domains can be defined by a collection of relatively small locally similar structural pieces containing, on average, four secondary structure elements. In addition, it indicates that domains are indeed made of recurrent small structural pieces that are used to build protein structures of many different folds as suggested by recent studies. PMID:21287617

  4. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  5. Increasing the Receptor Tyrosine Kinase EphB2 Prevents Amyloid-β-induced Depletion of Cell Surface Glutamate Receptors by a Mechanism That Requires the PDZ-binding Motif of EphB2 and Neuronal Activity*

    PubMed Central

    Miyamoto, Takashi; Kim, Daniel; Knox, Joseph A.; Johnson, Erik; Mucke, Lennart

    2016-01-01

    Diverse lines of evidence suggest that amyloid-β (Aβ) peptides causally contribute to the pathogenesis of Alzheimer disease (AD), the most frequent neurodegenerative disorder. However, the mechanisms by which Aβ impairs neuronal functions remain to be fully elucidated. Previous studies showed that soluble Aβ oligomers interfere with synaptic functions by depleting NMDA-type glutamate receptors (NMDARs) from the neuronal surface and that overexpression of the receptor tyrosine kinase EphB2 can counteract this process. Through pharmacological treatments and biochemical analyses of primary neuronal cultures expressing wild-type or mutant forms of EphB2, we demonstrate that this protective effect of EphB2 depends on its PDZ-binding motif and the presence of neuronal activity but not on its kinase activity. We further present evidence that the protective effect of EphB2 may be mediated by the AMPA-type glutamate receptor subunit GluA2, which can become associated with the PDZ-binding motif of EphB2 through PDZ domain-containing proteins and can promote the retention of NMDARs in the membrane. In addition, we show that the Aβ-induced depletion of surface NMDARs does not depend on several factors that have been implicated in the pathogenesis of Aβ-induced neuronal dysfunction, including aberrant neuronal activity, tau, prion protein (PrPC), and EphB2 itself. Thus, although EphB2 does not appear to be directly involved in the Aβ-induced depletion of NMDARs, increasing its expression may counteract this pathogenic process through a neuronal activity- and PDZ-dependent regulation of AMPA-type glutamate receptors. PMID:26589795

  6. Design of protein function leaps by directed domain interface evolution

    PubMed Central

    Huang, Jin; Koide, Akiko; Makabe, Koki; Koide, Shohei

    2008-01-01

    Most natural proteins performing sophisticated tasks contain multiple domains where an active site is located at the domain interface. Comparative structural analyses suggest that major leaps in protein function occur through gene recombination events that connect two or more protein domains to generate a new active site, frequently occurring at the newly created domain interface. However, such functional leaps by combination of unrelated domains have not been directly demonstrated. Here we show that highly specific and complex protein functions can be generated by joining a low-affinity peptide-binding domain with a functionally inert second domain and subsequently optimizing the domain interface. These directed evolution processes dramatically enhanced both affinity and specificity to a level unattainable with a single domain, corresponding to >500-fold and >2,000-fold increases of affinity and specificity, respectively. An x-ray crystal structure revealed that the resulting “affinity clamp” had clamshell architecture as designed, with large additional binding surface contributed by the second domain. The affinity clamps having a single-nanomolar dissociation constant outperformed a monoclonal antibody in immunochemical applications. This work establishes evolutionary paths from isolated domains with primitive function to multidomain proteins with sophisticated function and introduces a new protein-engineering concept that allows for the generation of highly functional affinity reagents to a predefined target. The prevalence and variety of natural interaction domains suggest that numerous new functions can be designed by using directed domain interface evolution. PMID:18445649

  7. Design of protein function leaps by directed domain interface evolution.

    PubMed

    Huang, Jin; Koide, Akiko; Makabe, Koki; Koide, Shohei

    2008-05-06

    Most natural proteins performing sophisticated tasks contain multiple domains where an active site is located at the domain interface. Comparative structural analyses suggest that major leaps in protein function occur through gene recombination events that connect two or more protein domains to generate a new active site, frequently occurring at the newly created domain interface. However, such functional leaps by combination of unrelated domains have not been directly demonstrated. Here we show that highly specific and complex protein functions can be generated by joining a low-affinity peptide-binding domain with a functionally inert second domain and subsequently optimizing the domain interface. These directed evolution processes dramatically enhanced both affinity and specificity to a level unattainable with a single domain, corresponding to >500-fold and >2,000-fold increases of affinity and specificity, respectively. An x-ray crystal structure revealed that the resulting "affinity clamp" had clamshell architecture as designed, with large additional binding surface contributed by the second domain. The affinity clamps having a single-nanomolar dissociation constant outperformed a monoclonal antibody in immunochemical applications. This work establishes evolutionary paths from isolated domains with primitive function to multidomain proteins with sophisticated function and introduces a new protein-engineering concept that allows for the generation of highly functional affinity reagents to a predefined target. The prevalence and variety of natural interaction domains suggest that numerous new functions can be designed by using directed domain interface evolution.

  8. Purification and Structural Analysis of LEM-Domain Proteins.

    PubMed

    Herrada, Isaline; Bourgeois, Benjamin; Samson, Camille; Buendia, Brigitte; Worman, Howard J; Zinn-Justin, Sophie

    2016-01-01

    LAP2-emerin-MAN1 (LEM)-domain proteins are modular proteins characterized by the presence of a conserved motif of about 50 residues. Most LEM-domain proteins localize at the inner nuclear membrane, but some are also found in the endoplasmic reticulum or nuclear interior. Their architecture has been analyzed by predicting the limits of their globular domains, determining the 3D structure of these domains and in a few cases calculating the 3D structure of specific domains bound to biological targets. The LEM domain adopts an α-helical fold also found in SAP and HeH domains of prokaryotes and unicellular eukaryotes. The LEM domain binds to BAF (barrier-to-autointegration factor; BANF1), which interacts with DNA and tethers chromatin to the nuclear envelope. LAP2 isoforms also share an N-terminal LEM-like domain, which binds DNA. The structure and function of other globular domains that distinguish LEM-domain proteins from each other have been characterized, including the C-terminal dimerization domain of LAP2α and C-terminal WH and UHM domains of MAN1. LEM-domain proteins also have large intrinsically disordered regions that are involved in intra- and intermolecular interactions and are highly regulated by posttranslational modifications in vivo.

  9. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction

    PubMed Central

    Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam

    2015-01-01

    Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568

  10. Imaging the dynamics of intracellular protein translocation by photoconversion of phamret-cybr/ROM.

    PubMed

    Yang, L; Matsuda, T; Raviraj, V; Ching, Y W; Braet, F; Nagai, T; Soon, L L

    2011-06-01

    Cybr/Reduced On-random Motile (ROM) is a scaffold protein, containing a postsynaptic density protein-95/discs-large/ZO-1 (PDZ) domain, a LEU region and a PDZ domain binding region at the C-terminus. In the immune system, Cybr/ROM was found to localize in vesicles and at the plasma membrane, through interactions with cytohesin-1. In this investigation, we reported Cybr/ROM as occurring in vesicles, the cytoplasm and at membrane ruffles of H1299 lung cancer cells. Its localization at the ruffles was dependent on intact actin structures as indicated by latrunculin A treatment, which abrogated ruffle formation and staining of Cybr/ROM at the cells' periphery. Transfection of truncation mutants consisting of either the PDZ or LEU domain showed that the LEU domain of ROM was localized to membrane ruffles, vesicles and the cytoplasm, whereas, the PDZ domain localized to the membrane ruffles and cytoplasm only. There was therefore, domain/molecular segregation of Cybr/ROM in different cellular compartments. Cybr/ROM was subcloned into a plasmid carrying the photoactivation-mediated resonance energy transfer (Phamret) protein. The photoconversion experiments demonstrated the diffusion of ROM from the cytoplasm to the membrane ruffling sites and conversely from membrane ruffles to the cytoplasm. Large variances in the transport velocity of Cybr/ROM in the cytoplasm suggested that its movements were facilitated by other mechanisms in addition to diffusion.

  11. A kinetic study of domain swapping of Protein L.

    PubMed

    Moschen, Thomas; Tollinger, Martin

    2014-04-14

    Domain swapping of the B1 domain of Protein L isolated from Peptostreptococcus magnus can be induced by rational mutation. We show that the monomeric and the domain swapped dimeric forms of the G55A mutant of Protein L are directly observable by solution NMR spectroscopy under equilibrium conditions. The kinetics of the domain swapping process can be characterized by real-time NMR spectroscopic techniques, and the free energy landscape for domain swapping of Protein L can be probed by variation of denaturant concentration. Our data suggest that domain swapping of Protein L proceeds through a compact transition state, with an accessible surface area that is similar in size to the transition state for folding and unfolding. It is thus conceivable that domain swapping and folding of Protein L are mechanistically related at the level of their rate-limiting step(s), which might represent a branching point along the folding pathway.

  12. The architectural design of networks of protein domain architectures.

    PubMed

    Hsu, Chia-Hsin; Chen, Chien-Kuo; Hwang, Ming-Jing

    2013-08-23

    Protein domain architectures (PDAs), in which single domains are linked to form multiple-domain proteins, are a major molecular form used by evolution for the diversification of protein functions. However, the design principles of PDAs remain largely uninvestigated. In this study, we constructed networks to connect domain architectures that had grown out from the same single domain for every single domain in the Pfam-A database and found that there are three main distinctive types of these networks, which suggests that evolution can exploit PDAs in three different ways. Further analysis showed that these three different types of PDA networks are each adopted by different types of protein domains, although many networks exhibit the characteristics of more than one of the three types. Our results shed light on nature's blueprint for protein architecture and provide a framework for understanding architectural design from a network perspective.

  13. WW domain-containing proteins: retrospectives and the future.

    PubMed

    Salah, Zaidoun; Alian, Akram; Aqeilan, Rami I

    2012-01-01

    WW domains are protein modules that mediate protein-protein interactions through recognition of proline-rich peptide motifs (PRM) and phosphorylated serine/threonine-proline sites. WW domains are found in many different structural and signaling proteins that are involved in a variety of cellular processes, including RNA transcription and processing, protein trafficking and stability, receptor signaling, and control of the cytoskeleton. WW domain-containing proteins and complexes have been implicated in major human diseases including cancer as well as in major signaling cascades such as the Hippo tumor suppressor pathway, making them targets for new diagnostics and therapeutics. In this review, we discuss how WW domains provide versatile platforms that link individual proteins into physiologically important networks and the indispensible role of WW domain-containing proteins in biology and pathology, especially tumorogenesis.

  14. Fold of the conserved DTC domain in deltex proteins

    SciTech Connect

    Obiero, Josiah; Walker, John R.; Dhe-Paganon, Sirano

    2012-04-30

    Human Deltex 3-like (DTX3L) is a member of the Deltex family of proteins. Initially identified as a B-lymphoma and BAL-associated protein, DTX3L is an E3 ligase that regulates subcellular localization of its partner protein, BAL, by a dynamic nucleocytoplasmic trafficking mechanism. Unlike other members of the Deltex family of proteins, DTX3L lacks the highly basic N-terminal motif and the central proline-rich motif present in other Deltex proteins, and instead contains other unique N-terminal domains. The C-terminal domains are, however, homologous with other members of the Deltex family of proteins; these include a RING domain and a previously unidentified C-terminal domain. In this study, we report the high-resolution crystal structure of this previously uncharacterized C-terminal domain of human DTX3L, which we term the Deltex C-terminal domain.

  15. Fuzzy domains: new way of describing flexibility and interdependence of the protein domains.

    PubMed

    Yesylevskyy, Semen O; Kharkyanen, Valery N

    2009-03-01

    We proposed the innovative method of domain identification based on the concept of the fuzzy domains. In this method each residue of the protein can belong to several domains simultaneously with certain weights, which reflect to what extent this residue shares the motion pattern of the given domain. Our method allows describing the fuzzy boundaries between the domains and the gradual changes of the motion pattern from one domain to the other. It provides the reasonable compromise between the continuous change of the protein dynamics from one residue to the other and the discrete description of the structure in terms of small number of domains. We suggested quantitative criterion, which shows the overall degree of domain flexibility in the protein. The concept of the fuzzy domains provides an innovative way of visualization of domain flexibility, which makes the gradual transitions between the domains clearly visible and comparable to available experimental and structural data. In the future, the concept of the fuzzy domains can be used in the coarse-grained simulations of the domain dynamics in order to account for internal protein flexibility.

  16. Domain mobility in proteins: functional and evolutionary implications.

    PubMed

    Basu, Malay Kumar; Poliakov, Eugenia; Rogozin, Igor B

    2009-05-01

    A substantial fraction of eukaryotic proteins contains multiple domains, some of which show a tendency to occur in diverse domain architectures and can be considered mobile (or 'promiscuous'). These promiscuous domains are typically involved in protein-protein interactions and play crucial roles in interaction networks, particularly those contributing to signal transduction. They also play a major role in creating diversity of protein domain architecture in the proteome. It is now apparent that promiscuity is a volatile and relatively fast-changing feature in evolution, and that only a few domains retain their promiscuity status throughout evolution. Many such domains attained their promiscuity status independently in different lineages. Only recently, we have begun to understand the diversity of protein domain architectures and the role the promiscuous domains play in evolution of this diversity. However, many of the biological mechanisms of protein domain mobility remain shrouded in mystery. In this review, we discuss our present understanding of protein domain promiscuity, its evolution and its role in cellular function.

  17. Comparative Analysis of SWIRM Domain-Containing Proteins in Plants

    PubMed Central

    Gao, Yan; Yang, Songguang; Yuan, Lianyu; Cui, Yuhai; Wu, Keqiang

    2012-01-01

    Chromatin-remodeling complexes affect gene expression by using the energy of ATP hydrolysis to locally disrupt or alter the association of histones with DNA. SWIRM (Swi3p, Rsc8p, and Moira) domain is an alpha-helical domain of about 85 residues in chromosomal proteins. SWIRM domain-containing proteins make up large multisubunit complexes by interacting with other chromatin modification factors and may have an important function in plants. However, little is known about SWIRM domain-containing proteins in plants. In this study, 67 SWIRM domain-containing proteins from 6 plant species were identified and analyzed. Plant SWIRM domain proteins can be divided into three distinct types: Swi-type, LSD1-type, and Ada2-type. Generally, the SWIRM domain forms a helix-turn-helix motif commonly found in DNA-binding proteins. The genes encoding SWIRM domain proteins in Oryza sativa are widely expressed, especially in pistils. In addition, OsCHB701 and OsHDMA701 were downregulated by cold stress, whereas OsHDMA701 and OsHDMA702 were significantly induced by heat stress. These observations indicate that SWIRM domain proteins may play an essential role in plant development and plant responses to environmental stress. PMID:22924025

  18. Identification of domains and domain interface residues in multidomain proteins from graph spectral method.

    PubMed

    Sistla, Ramesh K; K V, Brinda; Vishveshwara, Saraswathi

    2005-05-15

    We present a novel method for the identification of structural domains and domain interface residues in proteins by graph spectral method. This method converts the three-dimensional structure of the protein into a graph by using atomic coordinates from the PDB file. Domain definitions are obtained by constructing either a protein backbone graph or a protein side-chain graph. The graph is constructed based on the interactions between amino acid residues in the three-dimensional structure of the proteins. The spectral parameters of such a graph contain information regarding the domains and subdomains in the protein structure. This is based on the fact that the interactions among amino acids are higher within a domain than across domains. This is evident in the spectra of the protein backbone and the side-chain graphs, thus differentiating the structural domains from one another. Further, residues that occur at the interface of two domains can also be easily identified from the spectra. This method is simple, elegant, and robust. Moreover, a single numeric computation yields both the domain definitions and the interface residues. Copyright 2005 Wiley-Liss, Inc.

  19. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  20. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  1. Do proteins facilitate the formation of cholesterol-rich domains?

    PubMed

    Epand, Richard M

    2004-11-03

    Both biological and model membranes can exhibit the formation of domains. A brief review of some of the diverse methodologies used to identify the presence of domains in membranes is given. Some of these domains are enriched in cholesterol. The segregation of lipids into cholesterol-rich domains can occur in both pure lipid systems as well as membranes containing peptides and proteins. Peptides and proteins can promote the formation of cholesterol-rich domains not only by preferentially interacting with cholesterol and being sequestered into these regions of the membrane, but also indirectly as a consequence of being excluded from cholesterol-rich domains. The redistribution of components is dictated by the thermodynamics of the system. The formation of domains in a biological membrane is a consequence of all of the intermolecular interactions including those among lipid molecules as well as between lipids and proteins.

  2. Putative Domain-Domain Interactions in the Vesicular Stomatitis Virus L Polymerase Protein Appendage Region

    PubMed Central

    Ruedas, John B.

    2014-01-01

    ABSTRACT The multidomain polymerase protein (L) of nonsegmented negative-strand (NNS) RNA viruses catalyzes transcription and replication of the virus genome. The N-terminal half of the protein forms a ring-like polymerase structure, while the C-terminal half encoding viral mRNA transcript modifications consists of a flexible appendage with three distinct globular domains. To gain insight into putative transient interactions between L domains during viral RNA synthesis, we exchanged each of the four distinct regions encompassing the appendage region of vesicular stomatitis virus (VSV) Indiana serotype L protein with their counterparts from VSV New Jersey and analyzed effects on virus polymerase activity in a minigenome system. The methyltransferase domain exchange yielded a fully active polymerase protein, which functioned as well as wild-type L in the context of a recombinant virus. Exchange of the downstream C-terminal nonconserved region abolished activity, but coexchanging it with the methyltransferase domain generated a polymerase favoring replicase over transcriptase activity, providing strong evidence of interaction between these two regions. Exchange of the capping enzyme domain or the adjacent nonconserved region thought to function as an “unstructured” linker also abrogated polymerase activity even when either domain was coexchanged with other appendage domains. Further probing of the putative linker segment using in-frame enhanced green fluorescent protein (EGFP) insertions similarly abrogated activity. We discuss the implications of these findings with regard to L protein appendage domain structure and putative domain-domain interactions required for polymerase function. IMPORTANCE NNS viruses include many well-known human pathogens (e.g., rabies, measles, and Ebola viruses), as well as emerging viral threats (e.g., Nipah and Hendra viruses). These viruses all encode a large L polymerase protein similarly organized into multiple domains that work in

  3. PDZ1 inhibitor peptide protects neurons against ischemia via inhibiting GluK2-PSD-95-module-mediated Fas signaling pathway.

    PubMed

    Yin, Xiao-Hui; Yan, Jing-Zhi; Yang, Guo; Chen, Li; Xu, Xiao-Feng; Hong, Xi-Ping; Wu, Shi-Liang; Hou, Xiao-Yu; Zhang, GuangYi

    2016-04-15

    Respecting the selective inhibition of peptides on protein-protein interactions, they might become potent methods in ischemic stroke therapy. In this study, we investigated the effect of PDZ1 inhibitor peptide on ischemic neuron apoptosis and the relative mechanism. Results showed that PDZ1 inhibitor peptide, which significantly disrupted GluK2-PSD-95 interaction, efficiently protected neuron from ischemia/reperfusion-induced apoptosis. Further, PDZ1 inhibited FasL expression, DISC assembly and activation of Caspase 8, Bid, Caspase 9 and Caspase 3 after global brain ischemia. Based on our previous report that GluK2-PSD-95 pathway increased FasL expression after global brain ischemia, the neuron protection effect of PDZ1 inhibitor peptide was considered to be achieved by disrupting GluK2-PSD-95 interaction and subsequently inhibiting FasL expression and Fas apoptosis pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Interaction between Functional Domains of Bacillus thuringiensis Insecticidal Crystal Proteins

    PubMed Central

    Rang, Cécile; Vachon, Vincent; de Maagd, Ruud A.; Villalon, Mario; Schwartz, Jean-Louis; Bosch, Dirk; Frutos, Roger; Laprade, Raynald

    1999-01-01

    Interactions among the three structural domains of Bacillus thuringiensis Cry1 toxins were investigated by functional analysis of chimeric proteins. Hybrid genes were prepared by exchanging the regions coding for either domain I or domain III among Cry1Ab, Cry1Ac, Cry1C, and Cry1E. The activity of the purified trypsin-activated chimeric toxins was evaluated by testing their effects on the viability and plasma membrane permeability of Sf9 cells. Among the parental toxins, only Cry1C was active against these cells and only chimeras possessing domain II from Cry1C were functional. Combination of domain I from Cry1E with domains II and III from Cry1C, however, resulted in an inactive toxin, indicating that domain II from an active toxin is necessary, but not sufficient, for activity. Pores formed by chimeric toxins in which domain I was from Cry1Ab or Cry1Ac were slightly smaller than those formed by toxins in which domain I was from Cry1C. The properties of the pores formed by the chimeras are therefore likely to result from an interaction between domain I and domain II or III. Domain III appears to modulate the activity of the chimeric toxins: combination of domain III from Cry1Ab with domains I and II of Cry1C gave a protein which was more strongly active than Cry1C. PMID:10388684

  5. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains.

    PubMed

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J; Eggeling, Christian; Hell, Stefan W; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-30

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.

  6. Continuous and discontinuous domains: an algorithm for the automatic generation of reliable protein domain definitions.

    PubMed Central

    Siddiqui, A. S.; Barton, G. J.

    1995-01-01

    An algorithm is presented for the fast and accurate definition of protein structural domains from coordinate data without prior knowledge of the number or type of domains. The algorithm explicitly locates domains that comprise one or two continuous segments of protein chain. Domains that include more than two segments are also located. The algorithm was applied to a nonredundant database of 230 protein structures and the results compared to domain definitions obtained from the literature, or by inspection of the coordinates on molecular graphics. For 70% of the proteins, the derived domains agree with the reference definitions, 18% show minor differences and only 12% (28 proteins) show very different definitions. Three screens were applied to identify the derived domains least likely to agree with the subjective definition set. These screens revealed a set of 173 proteins, 97% of which agree well with the subjective definitions. The algorithm represents a practical domain identification tool that can be run routinely on the entire structural database. Adjustment of parameters also allows smaller compact units to be identified in proteins. PMID:7663343

  7. Domain structure and organisation in extracellular matrix proteins.

    PubMed

    Hohenester, Erhard; Engel, Jürgen

    2002-03-01

    Extracellular matrix (ECM) proteins are large modular molecules built up from a limited set of modules, or domains. The basic folds of many domains have now been determined by crystallography or NMR spectroscopy. Recent structures of domain pairs and larger tandem arrays, as well as of oligomerisation domains, have begun to reveal the principles underlying the higher order architecture of ECM proteins. Structural information, coupled with site-directed mutagenesis, has been instrumental in showing how adjacent domains can co-operate in ligand binding. Very recently, the first heterotypic ECM protein complexes have become available. Here, we review the advances of the last 5 years in understanding ECM protein structure, with special emphasis on those structures that have given insight into the biological functions of ECM proteins.

  8. The nature of protein domain evolution: shaping the interaction network.

    PubMed

    Bagowski, Christoph P; Bruins, Wouter; Te Velthuis, Aartjan J W

    2010-08-01

    The proteomes that make up the collection of proteins in contemporary organisms evolved through recombination and duplication of a limited set of domains. These protein domains are essentially the main components of globular proteins and are the most principal level at which protein function and protein interactions can be understood. An important aspect of domain evolution is their atomic structure and biochemical function, which are both specified by the information in the amino acid sequence. Changes in this information may bring about new folds, functions and protein architectures. With the present and still increasing wealth of sequences and annotation data brought about by genomics, new evolutionary relationships are constantly being revealed, unknown structures modeled and phylogenies inferred. Such investigations not only help predict the function of newly discovered proteins, but also assist in mapping unforeseen pathways of evolution and reveal crucial, co-evolving inter- and intra-molecular interactions. In turn this will help us describe how protein domains shaped cellular interaction networks and the dynamics with which they are regulated in the cell. Additionally, these studies can be used for the design of new and optimized protein domains for therapy. In this review, we aim to describe the basic concepts of protein domain evolution and illustrate recent developments in molecular evolution that have provided valuable new insights in the field of comparative genomics and protein interaction networks.

  9. The Nature of Protein Domain Evolution: Shaping the Interaction Network

    PubMed Central

    Bagowski, Christoph P; Bruins, Wouter; te Velthuis, Aartjan J.W

    2010-01-01

    The proteomes that make up the collection of proteins in contemporary organisms evolved through recombination and duplication of a limited set of domains. These protein domains are essentially the main components of globular proteins and are the most principal level at which protein function and protein interactions can be understood. An important aspect of domain evolution is their atomic structure and biochemical function, which are both specified by the information in the amino acid sequence. Changes in this information may bring about new folds, functions and protein architectures. With the present and still increasing wealth of sequences and annotation data brought about by genomics, new evolutionary relationships are constantly being revealed, unknown structures modeled and phylogenies inferred. Such investigations not only help predict the function of newly discovered proteins, but also assist in mapping unforeseen pathways of evolution and reveal crucial, co-evolving inter- and intra-molecular interactions. In turn this will help us describe how protein domains shaped cellular interaction networks and the dynamics with which they are regulated in the cell. Additionally, these studies can be used for the design of new and optimized protein domains for therapy. In this review, we aim to describe the basic concepts of protein domain evolution and illustrate recent developments in molecular evolution that have provided valuable new insights in the field of comparative genomics and protein interaction networks. PMID:21286315

  10. ELISA: a unified, multidimensional view of the protein domain universe.

    PubMed

    Shakhnovich, Boris E; Harvey, John Max; Delisi, Charles

    2004-01-01

    ELISA (http://romi.bu.edu/elisa/) is a database that was designed for flexibility in defining interesting queries about protein domain evolution. We have defined and included both the inherent characteristics of the domains such as structure and function and comparisons of these characteristics between domains. Thus, the database is useful in defining structural and functional links between related protein domains and by extension sequences that encode them. In this database we introduce and employ a novel method of functional annotation and comparison. For each protein domain we create a probabilistic functional annotation tree using GO. We have designed an algorithm that accurately compares these trees and thus provides a measure of "functional distance" between two protein domains. Along with functional annotation, we have also included structural comparison between protein domains and best sequence comparisons to all known genomes. The latter enables researchers to dynamically do searches for domains sharing similar phylogenetic profiles. This combination of data and tools enables the researcher to design complex queries to carry out research in the areas of protein domain evolution, structure prediction and functional annotation of novel sequences.

  11. Delineation of modular proteins: domain boundary prediction from sequence information.

    PubMed

    Kong, Lesheng; Ranganathan, Shoba

    2004-06-01

    The delineation of domain boundaries of a given sequence in the absence of known 3D structures or detectable sequence homology to known domains benefits many areas in protein science, such as protein engineering, protein 3D structure determination and protein structure prediction. With the exponential growth of newly determined sequences, our ability to predict domain boundaries rapidly and accurately from sequence information alone is both essential and critical from the viewpoint of gene function annotation. Anyone attempting to predict domain boundaries for a single protein sequence is invariably confronted with a plethora of databases that contain boundary information available from the internet and a variety of methods for domain boundary prediction. How are these derived and how well do they work? What definition of 'domain' do they use? We will first clarify the different definitions of protein domains, and then describe the available public databases with domain boundary information. Finally, we will review existing domain boundary prediction methods and discuss their strengths and weaknesses.

  12. Protein universe containing a PUA RNA-binding domain.

    PubMed

    Cerrudo, Carolina S; Ghiringhelli, Pablo D; Gomez, Daniel E

    2014-01-01

    Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.

  13. Membrane-tethered monomeric neurexin LNS-domain triggers synapse formation.

    PubMed

    Gokce, Ozgun; Südhof, Thomas C

    2013-09-04

    Neurexins are presynaptic cell-adhesion molecules that bind to postsynaptic cell-adhesion molecules such as neuroligins and leucine-rich repeat transmembrane proteins (LRRTMs). When neuroligins or LRRTMs are expressed in a nonneuronal cell, cocultured neurons avidly form heterologous synapses onto that cell. Here we show that knockdown of all neurexins in cultured hippocampal mouse neurons did not impair synapse formation between neurons, but blocked heterologous synapse formation induced by neuroligin-1 or LRRTM2. Rescue experiments demonstrated that all neurexins tested restored heterologous synapse formation in neurexin-deficient neurons. Neurexin-deficient neurons exhibited a decrease in the levels of the PDZ-domain protein CASK (a calcium/calmodulin-activated serine/threonine kinase), which binds to neurexins, and mutation of the PDZ-domain binding sequence of neurexin-3β blocked its transport to the neuronal surface and impaired heterologous synapse formation. However, replacement of the C-terminal neurexin sequence with an unrelated PDZ-domain binding sequence that does not bind to CASK fully restored surface transport and heterologous synapse formation in neurexin-deficient neurons, suggesting that no particular PDZ-domain protein is essential for neurexin surface transport or heterologous synapse formation. Further mutagenesis revealed, moreover, that the entire neurexin cytoplasmic tail was dispensable for heterologous synapse formation in neurexin-deficient neurons, as long as the neurexin protein was transported to the neuronal cell surface. Furthermore, the single LNS-domain (for laminin/neurexin/sex hormone-binding globulin-domain) of neurexin-1β or neurexin-3β, when tethered to the presynaptic plasma membrane by a glycosylinositolphosphate anchor, was sufficient for rescuing heterologous synapse formation in neurexin-deficient neurons. Our data suggest that neurexins mediate heterologous synapse formation via an extracellular interaction with

  14. Simple synthetic protein scaffolds can create adjustable artificial MAPK circuits in yeast and mammalian cells.

    PubMed

    Ryu, Jihoon; Park, Sang-Hyun

    2015-06-30

    As hubs for eukaryotic cell signaling, scaffold proteins are attractive targets for engineering and manipulating signaling circuits. We designed synthetic scaffolds with a repeated PDZ domain that interacted with engineered kinases of the mitogen-activated protein kinase (MAPK) cascade involved in yeast mating to investigate how modular interactions mediate kinase cascades. The synthetic scaffolds functioned as logic gates of signaling circuits. We replaced the endogenous yeast scaffold Ste5 with designer scaffolds with a variable numbers of a PDZ domain that bound kinases or phosphatases engineered with a PDZ-binding motif. Although association with the membrane was necessary for pathway activity, surprisingly, mating responses occurred when the circuit contained a scaffold with only two PDZ domains, which could only bind two of the three kinases simultaneously. Additionally, the three tiers of the MAPK pathway exhibited decreasing positional plasticity from the top [MAPK kinase kinase (MAPKKK)] to the bottom (MAPK) tier such that binding of a MAPKKK, but not a MAPK, from the osmoregulatory pathway or protein kinase C pathway to the synthetic scaffold activated a reporter of the mating response. We also showed that the output duration and intensity could be altered by recruiting phosphatases or varying the affinity of the recruited proteins for the scaffold and that a designer MAPK scaffold functioned in mammalian cells. Thus, this synthetic approach with designer scaffolds should enable the rational manipulation or engineering of signaling pathways and provide insight into the functional roles of scaffold proteins. Copyright © 2015, American Association for the Advancement of Science.

  15. Protein domain decomposition using a graph-theoretic approach.

    PubMed

    Xu, Y; Xu, D; Gabow, H N; Gabow, H

    2000-12-01

    Automatic decomposition of a multi-domain protein into individual domains represents a highly interesting and unsolved problem. As the number of protein structures in PDB is growing at an exponential rate, there is clearly a need for more reliable and efficient methods for protein domain decomposition simply to keep the domain databases up-to-date. We present a new algorithm for solving the domain decomposition problem, using a graph-theoretic approach. We have formulated the problem as a network flow problem, in which each residue of a protein is represented as a node of the network and each residue--residue contact is represented as an edge with a particular capacity, depending on the type of the contact. A two-domain decomposition problem is solved by finding a bottleneck (or a minimum cut) of the network, which minimizes the total cross-edge capacity, using the classical Ford--Fulkerson algorithm. A multi-domain decomposition problem is solved through repeatedly solving a series of two-domain problems. The algorithm has been implemented as a computer program, called DomainParser. We have tested the program on a commonly used test set consisting of 55 proteins. The decomposition results are 78.2% in agreement with the literature on both the number of decomposed domains and the assignments of residues to each domain, which compares favorably to existing programs. On the subset of two-domain proteins (20 in number), the program assigned 96.7% of the residues correctly when we require that the number of decomposed domains is two.

  16. Reconstituting Protein Interaction Networks Using Parameter-Dependent Domain-Domain Interactions

    DTIC Science & Technology

    2013-05-07

    for yeast ( Saccharomyces cerevisiae ) using sequences of 5,884 proteins,a downloaded from the Saccharomyces Genome Database (SGD) [31] and yeast...Riles L, Mortimer RK, et al: Genetic and physical maps of Saccharomyces cerevisiae . Nature 1997, 387(6632 Suppl):67–73. 32. Finn RD, Mistry J, Tate J...downloaded from the Saccharomyces Genome Database [31]. NP, proteins with at least one domain annotation. NS, protein-domain amino acid sequence

  17. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    PubMed Central

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes. PMID:25635869

  18. Protein domain definition should allow for conditional disorder.

    PubMed

    Yegambaram, Kavestri; Bulloch, Esther M M; Kingston, Richard L

    2013-11-01

    Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.

  19. CBS domains: structure, function, and pathology in human proteins.

    PubMed

    Ignoul, Sofie; Eggermont, Jan

    2005-12-01

    The cystathionine-beta-synthase (CBS) domain is an evolutionarily conserved protein domain that is present in the proteome of archaebacteria, prokaryotes, and eukaryotes. CBS domains usually come in tandem repeats and are found in cytosolic and membrane proteins performing different functions (metabolic enzymes, kinases, and channels). Crystallographic studies of bacterial CBS domains have shown that two CBS domains form an intramolecular dimeric structure (CBS pair). Several human hereditary diseases (homocystinuria, retinitis pigmentosa, hypertrophic cardiomyopathy, myotonia congenital, etc.) can be caused by mutations in CBS domains of, respectively, cystathionine-beta-synthase, inosine 5'-monophosphate dehydrogenase, AMP kinase, and chloride channels. Despite their clinical relevance, it remains to be established what the precise function of CBS domains is and how they affect the structural and/or functional properties of an enzyme, kinase, or channel. Depending on the protein in which they occur, CBS domains have been proposed to affect multimerization and sorting of proteins, channel gating, and ligand binding. However, recent experiments revealing that CBS domains can bind adenosine-containing ligands such ATP, AMP, or S-adenosylmethionine have led to the hypothesis that CBS domains function as sensors of intracellular metabolites.

  20. Cholesterol and the interaction of proteins with membrane domains.

    PubMed

    Epand, Richard M

    2006-07-01

    Cholesterol is not uniformly distributed in biological membranes. One of the factors influencing the formation of cholesterol-rich domains in membranes is the unequal lateral distribution of proteins in membranes. Certain proteins are found in cholesterol-rich domains. In some of these cases, it is as a consequence of the proteins interacting directly with cholesterol. There are several structural features of a protein that result in the protein preferentially associating with cholesterol-rich domains. One of the best documented of these is certain types of lipidations. In addition, however, there are segments of a protein that can preferentially sequester cholesterol. We discuss two examples of these cholesterol-recognition elements: the cholesterol recognition/interaction amino acid consensus (CRAC) domain and the sterol-sensing domain (SSD). The requirements for a CRAC motif are quite flexible and predict that a large number of sequences could recognize cholesterol. There are, however, certain proteins that are known to interact with cholesterol-rich domains of cell membranes that have CRAC motifs, and synthetic peptides corresponding to these segments also promote the formation of cholesterol-rich domains. Modeling studies have provided a rationale for certain requirements of the CRAC motif. The SSD is a larger protein segment comprising five transmembrane domains. The amino acid sequence YIYF is found in several SSD and in certain other proteins for which there is evidence that they interact with cholesterol-rich domains. The CRAC sequences as well as YIYF are generally found adjacent to a transmembrane helical segment. These regions appear to have a strong influence of the localization of certain proteins into domains in biological membranes. In addition to the SSD, there is also a domain found in soluble proteins, the START domain, that binds lipids. Certain proteins with START domains specifically bind cholesterol and are believed to function in

  1. Discrete structure of van der Waals domains in globular proteins.

    PubMed

    Berezovsky, Igor N

    2003-03-01

    Most globular proteins are divisible by domains, distinct substructures of the globule. The notion of hierarchy of the domains was introduced earlier via van der Waals energy profiles that allow one to subdivide the proteins into domains (subdomains). The question remains open as to what is the possible structural connection of the energy profiles. The recent discovery of the loop-n-lock elements in the globular proteins suggests such a structural connection. A direct comparison of the segmentation by van der Waals energy criteria with the maps of the locked loops of nearly standard size reveals a striking correlation: domains in general appear to consist of one to several such loops. In addition, it was demonstrated that a variety of subdivisions of the same protein into domains is just a regrouping of the loop-n-lock elements.

  2. Allosteric properties of PH domains in Arf regulatory proteins.

    PubMed

    Roy, Neeladri Sekhar; Yohe, Marielle E; Randazzo, Paul A; Gruschus, James M

    2016-01-01

    Pleckstrin Homology (PH) domains bind phospholipids and proteins. They are critical regulatory elements of a number enzymes including guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) for Ras-superfamily guanine nucleotide binding proteins such as ADP-ribosylation factors (Arfs). Recent studies have indicated that many PH domains may bind more than one ligand cooperatively. Here we discuss the molecular basis of PH domain-dependent allosteric behavior of 2 ADP-ribosylation factor exchange factors, Grp1 and Brag2, cooperative binding of ligands to the PH domains of Grp1 and the Arf GTPase-activating protein, ASAP1, and the consequences for activity of the associated catalytic domains.

  3. The application of modular protein domains in proteomics

    PubMed Central

    Jadwin, Joshua A.; Ogiue-Ikeda, Mari; Machida, Kazuya

    2012-01-01

    The ability of modular protein domains to independently fold and bind short peptide ligands both in vivo and in vitro has allowed a significant number of protein-protein interaction studies to take advantage of them as affinity and detection reagents. Here, we refer to modular domain based proteomics as “domainomics” to draw attention to the potential of using domains and their motifs as tools in proteomics. In this review we describe core concepts of domainomics, established and emerging technologies, and recent studies by functional category. Accumulation of domain-motif binding data should ultimately provide the foundation for domain-specific interactomes, which will likely reveal the underlying substructure of protein networks as well as the selectivity and plasticity of signal transduction. PMID:22710164

  4. Inference of domain-disease associations from domain-protein, protein-disease and disease-disease relationships.

    PubMed

    Zhang, Wangshu; Coba, Marcelo P; Sun, Fengzhu

    2016-01-11

    Protein domains can be viewed as portable units of biological function that defines the functional properties of proteins. Therefore, if a protein is associated with a disease, protein domains might also be associated and define disease endophenotypes. However, knowledge about such domain-disease relationships is rarely available. Thus, identification of domains associated with human diseases would greatly improve our understanding of the mechanism of human complex diseases and further improve the prevention, diagnosis and treatment of these diseases. Based on phenotypic similarities among diseases, we first group diseases into overlapping modules. We then develop a framework to infer associations between domains and diseases through known relationships between diseases and modules, domains and proteins, as well as proteins and disease modules. Different methods including Association, Maximum likelihood estimation (MLE), Domain-disease pair exclusion analysis (DPEA), Bayesian, and Parsimonious explanation (PE) approaches are developed to predict domain-disease associations. We demonstrate the effectiveness of all the five approaches via a series of validation experiments, and show the robustness of the MLE, Bayesian and PE approaches to the involved parameters. We also study the effects of disease modularization in inferring novel domain-disease associations. Through validation, the AUC (Area Under the operating characteristic Curve) scores for Bayesian, MLE, DPEA, PE, and Association approaches are 0.86, 0.84, 0.83, 0.83 and 0.79, respectively, indicating the usefulness of these approaches for predicting domain-disease relationships. Finally, we choose the Bayesian approach to infer domains associated with two common diseases, Crohn's disease and type 2 diabetes. The Bayesian approach has the best performance for the inference of domain-disease relationships. The predicted landscape between domains and diseases provides a more detailed view about the disease

  5. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions*

    PubMed Central

    Yuan, Li; Seong, Eunju; Beuscher, James L.; Arikkath, Jyothi

    2015-01-01

    The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome. PMID:25724647

  6. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    PubMed Central

    Lenaerts, Tom; Ferkinghoff-Borg, Jesper; Stricher, Francois; Serrano, Luis; Schymkowitz, Joost WH; Rousseau, Frederic

    2008-01-01

    Background Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located in the phosphopeptide and specificity binding sites and a number of residues at the other side of the domain near the linkers that connect the SH2 domain to the SH3 and kinase domains. We find that for this particular domain, communication is affected by a series of contiguous residues that connect distal sites by crossing the core of the SH2 domain. Conclusion As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road, next to the existing attempts at sequence level, to predict long-range interactions within protein structures. PMID:18842137

  7. GluA1 and its PDZ-interaction: a role in experience-dependent behavioral plasticity in the forced swim test.

    PubMed

    Freudenberg, Florian; Marx, Verena; Mack, Volker; Layer, Liliana E; Klugmann, Matthias; Seeburg, Peter H; Sprengel, Rolf; Celikel, Tansu

    2013-04-01

    Glutamate receptor dependent synaptic plasticity plays an important role in the pathophysiology of depression. Hippocampal samples from clinically depressed patients display reduced mRNA levels for GluA1, a major subunit of AMPA receptors. Moreover, activation and synaptic incorporation of GluA1-containing AMPA receptors are required for the antidepressant-like effects of NMDA receptor antagonists. These findings argue that GluA1-dependent synaptic plasticity might be critically involved in the expression of depression. Using an animal model of depression, we demonstrate that global or hippocampus-selective deletion of GluA1 impairs expression of experience-dependent behavioral despair. This impairment is mediated by the interaction of GluA1 with PDZ-binding domain proteins, as deletion of the C-terminal leucine alone is sufficient to replicate the behavioral phenotype. Our results provide evidence for a significant role of hippocampal GluA1-containing AMPA receptors and their PDZ-interaction in experience-dependent expression of behavioral despair and link mechanisms of hippocampal synaptic plasticity with behavioral expression of depression.

  8. Automatic domain decomposition of proteins by a Gaussian Network Model.

    PubMed

    Kundu, Sibsankar; Sorensen, Dan C; Phillips, George N

    2004-12-01

    Proteins are often comprised of domains of apparently independent folding units. These domains can be defined in various ways, but one useful definition divides the protein into substructures that seem to move more or less independently. The same methods that allow fairly accurate calculation of motion can be used to help classify these substructures. We show how the Gaussian Network Model (GNM), commonly used for determining motion, can also be adapted to automatically classify domains in proteins. Parallels between this physical network model and graph theory implementation are apparent. The method is applied to a nonredundant set of 55 proteins, and the results are compared to the visual assignments by crystallographers. Apart from decomposing proteins into structural domains, the algorithm can generally be applied to any large macromolecular system to decompose it into motionally decoupled sub-systems. Copyright 2004 Wiley-Liss, Inc.

  9. Structure of synaptophysin: a hexameric MARVEL-domain channel protein.

    PubMed

    Arthur, Christopher P; Stowell, Michael H B

    2007-06-01

    Synaptophysin I (SypI) is an archetypal member of the MARVEL-domain family of integral membrane proteins and one of the first synaptic vesicle proteins to be identified and cloned. Most all MARVEL-domain proteins are involved in membrane apposition and vesicle-trafficking events, but their precise role in these processes is unclear. We have purified mammalian SypI and determined its three-dimensional (3D) structure by using electron microscopy and single-particle 3D reconstruction. The hexameric structure resembles an open basket with a large pore and tenuous interactions within the cytosolic domain. The structure suggests a model for Synaptophysin's role in fusion and recycling that is regulated by known interactions with the SNARE machinery. This 3D structure of a MARVEL-domain protein provides a structural foundation for understanding the role of these important proteins in a variety of biological processes.

  10. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    PubMed

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  11. Domain tree-based analysis of protein architecture evolution.

    PubMed

    Forslund, Kristoffer; Henricson, Anna; Hollich, Volker; Sonnhammer, Erik L L

    2008-02-01

    Understanding the dynamics behind domain architecture evolution is of great importance to unravel the functions of proteins. Complex architectures have been created throughout evolution by rearrangement and duplication events. An interesting question is how many times a particular architecture has been created, a form of convergent evolution or domain architecture reinvention. Previous studies have approached this issue by comparing architectures found in different species. We wanted to achieve a finer-grained analysis by reconstructing protein architectures on complete domain trees. The prevalence of domain architecture reinvention in 96 genomes was investigated with a novel domain tree-based method that uses maximum parsimony for inferring ancestral protein architectures. Domain architectures were taken from Pfam. To ensure robustness, we applied the method to bootstrap trees and only considered results with strong statistical support. We detected multiple origins for 12.4% of the scored architectures. In a much smaller data set, the subset of completely domain-assigned proteins, the figure was 5.6%. These results indicate that domain architecture reinvention is a much more common phenomenon than previously thought. We also determined which domains are most frequent in multiply created architectures and assessed whether specific functions could be attributed to them. However, no strong functional bias was found in architectures with multiple origins.

  12. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    PubMed Central

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  13. The evolution of filamin-a protein domain repeat perspective.

    PubMed

    Light, Sara; Sagit, Rauan; Ithychanda, Sujay S; Qin, Jun; Elofsson, Arne

    2012-09-01

    Particularly in higher eukaryotes, some protein domains are found in tandem repeats, performing broad functions often related to cellular organization. For instance, the eukaryotic protein filamin interacts with many proteins and is crucial for the cytoskeleton. The functional properties of long repeat domains are governed by the specific properties of each individual domain as well as by the repeat copy number. To provide better understanding of the evolutionary and functional history of repeating domains, we investigated the mode of evolution of the filamin domain in some detail. Among the domains that are common in long repeat proteins, sushi and spectrin domains evolve primarily through cassette tandem duplications while scavenger and immunoglobulin repeats appear to evolve through clustered tandem duplications. Additionally, immunoglobulin and filamin repeats exhibit a unique pattern where every other domain shows high sequence similarity. This pattern may be the result of tandem duplications, serve to avert aggregation between adjacent domains or it is the result of functional constraints. In filamin, our studies confirm the presence of interspersed integrin binding domains in vertebrates, while invertebrates exhibit more varied patterns, including more clustered integrin binding domains. The most notable case is leech filamin, which contains a 20 repeat expansion and exhibits unique dimerization topology. Clearly, invertebrate filamins are varied and contain examples of similar adjacent integrin-binding domains. Given that invertebrate integrin shows more similarity to the weaker filamin binder, integrin β3, it is possible that the distance between integrin-binding domains is not as crucial for invertebrate filamins as for vertebrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The evolution of filamin – A protein domain repeat perspective

    PubMed Central

    Light, Sara; Sagit, Rauan; Ithychanda, Sujay S.; Qin, Jun; Elofsson, Arne

    2013-01-01

    Particularly in higher eukaryotes, some protein domains are found in tandem repeats, performing broad functions often related to cellular organization. For instance, the eukaryotic protein filamin interacts with many proteins and is crucial for the cytoskeleton. The functional properties of long repeat domains are governed by the specific properties of each individual domain as well as by the repeat copy number. To provide better understanding of the evolutionary and functional history of repeating domains, we investigated the mode of evolution of the filamin domain in some detail. Among the domains that are common in long repeat proteins, sushi and spectrin domains evolve primarily through cassette tandem duplications while scavenger and immunoglobulin repeats appear to evolve through clustered tandem duplications. Additionally, immunoglobulin and filamin repeats exhibit a unique pattern where every other domain shows high sequence similarity. This pattern may be the result of tandem duplications, serve to avert aggregation between adjacent domains or it is the result of functional constraints. In filamin, our studies confirm the presence of interspersed integrin binding domains in vertebrates, while invertebrates exhibit more varied patterns, including more clustered integrin binding domains. The most notable case is leech filamin, which contains a 20 repeat expansion and exhibits unique dimerization topology. Clearly, invertebrate filamins are varied and contain examples of similar adjacent integrin-binding domains. Given that invertebrate integrin shows more similarity to the weaker filamin binder, integrin β3, it is possible that the distance between integrin-binding domains is not as crucial for invertebrate filamins as for vertebrates. PMID:22414427

  15. Classification of Domain Movements in Proteins Using Dynamic Contact Graphs

    PubMed Central

    Taylor, Daniel; Cawley, Gavin; Hayward, Steven

    2013-01-01

    A new method for the classification of domain movements in proteins is described and applied to 1822 pairs of structures from the Protein Data Bank that represent a domain movement in two-domain proteins. The method is based on changes in contacts between residues from the two domains in moving from one conformation to the other. We argue that there are five types of elemental contact changes and that these relate to five model domain movements called: “free”, “open-closed”, “anchored”, “sliding-twist”, and “see-saw.” A directed graph is introduced called the “Dynamic Contact Graph” which represents the contact changes in a domain movement. In many cases a graph, or part of a graph, provides a clear visual metaphor for the movement it represents and is a motif that can be easily recognised. The Dynamic Contact Graphs are often comprised of disconnected subgraphs indicating independent regions which may play different roles in the domain movement. The Dynamic Contact Graph for each domain movement is decomposed into elemental Dynamic Contact Graphs, those that represent elemental contact changes, allowing us to count the number of instances of each type of elemental contact change in the domain movement. This naturally leads to sixteen classes into which the 1822 domain movements are classified. PMID:24260562

  16. Classification of domain movements in proteins using dynamic contact graphs.

    PubMed

    Taylor, Daniel; Cawley, Gavin; Hayward, Steven

    2013-01-01

    A new method for the classification of domain movements in proteins is described and applied to 1822 pairs of structures from the Protein Data Bank that represent a domain movement in two-domain proteins. The method is based on changes in contacts between residues from the two domains in moving from one conformation to the other. We argue that there are five types of elemental contact changes and that these relate to five model domain movements called: "free", "open-closed", "anchored", "sliding-twist", and "see-saw." A directed graph is introduced called the "Dynamic Contact Graph" which represents the contact changes in a domain movement. In many cases a graph, or part of a graph, provides a clear visual metaphor for the movement it represents and is a motif that can be easily recognised. The Dynamic Contact Graphs are often comprised of disconnected subgraphs indicating independent regions which may play different roles in the domain movement. The Dynamic Contact Graph for each domain movement is decomposed into elemental Dynamic Contact Graphs, those that represent elemental contact changes, allowing us to count the number of instances of each type of elemental contact change in the domain movement. This naturally leads to sixteen classes into which the 1822 domain movements are classified.

  17. Selection of soluble protein expression constructs: the experimental determination of protein domain boundaries.

    PubMed

    Dyson, Michael R

    2010-08-01

    Proteins can contain multiple domains each of which is capable of possessing a separate independent function and three-dimensional structure. It is often useful to clone and express individual protein domains to study their biochemical properties and for structure determination. However, the annotated domain boundaries in databases such as Pfam or SMART are not always accurate. The present review summarizes various strategies for the experimental determination of protein domain boundaries.

  18. Exogenous agents that target transmembrane domains of proteins.

    PubMed

    Yin, Hang

    2008-01-01

    Although membrane proteins account for approximately one third of all proteins encoded in the human genome, the functions and structures of their transmembrane domains are much less understood than the water-soluble regions. A major hurdle in studying these transmembrane domains is the lack of appropriate exogenous agents that can be used as specific probes. Despite the daunting challenges, major strides have recently been made in targeting the transmembrane domains of a variety of membrane proteins. High affinity and selectivity have been achieved in model biophysical systems, membranes of bacteria, and mammalian cells.

  19. An ambiguity principle for assigning protein structural domains.

    PubMed

    Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe

    2017-01-01

    Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object-in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our "multipartitioning" approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules.

  20. An ambiguity principle for assigning protein structural domains

    PubMed Central

    Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe

    2017-01-01

    Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object—in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our “multipartitioning” approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules. PMID:28097215

  1. Domain view: a web tool for protein domain visualization and analysis.

    PubMed

    Pan, Xiaokang; Bingman, Craig A; Wesenberg, Gary E; Sun, Zhaohui; Phillips, George N

    2010-12-01

    The identification of sequence-based protein domains and their boundaries is often a prelude to structure determination. An accurate prediction of disordered regions, secondary structures and low complexity segments of target protein sequences can improve the efficiency of selection in structural genomics and also aid in design of constructs for directed structural biology studies. At the Center for Eukaryotic Structural Genomics (CESG) we have developed DomainView, a web tool to visualize and analyze predicted protein domains, disordered regions, secondary structures and low complexity segments of target protein sequences for selection of experimental protein structure attempts. DomainView consists of a relational database and a web graphical-user interface. The database was developed based on MySQL, which stores data from target protein sequences and their domains, disordered regions, secondary structures and low complexity segments. The program of the web user interface is a Perl CGI script. When a user searches for a target protein sequence, the script displays the combinational information about the domains and other features of that target sequence graphically on a web page by querying the database. The graphical representation for each feature is linked to a web page showing more detailed annotation information or to a new window directly running the corresponding prediction program to show further information about that feature.

  2. 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response.

    PubMed

    Mohammad, Duaa H; Yaffe, Michael B

    2009-09-02

    The DNA damage response depends on the concerted activity of protein serine/threonine kinases and modular phosphoserine/threonine-binding domains to relay the damage signal and recruit repair proteins. The PIKK family of protein kinases, which includes ATM/ATR/DNA-PK, preferentially phosphorylate Ser-Gln sites, while their basophilic downstream effecter kinases, Chk1/Chk2/MK2 preferentially phosphorylate hydrophobic-X-Arg-X-X-Ser/Thr-hydrophobic sites. A subset of tandem BRCT domains act as phosphopeptide binding modules that bind to ATM/ATR/DNA-PK substrates after DNA damage. Conversely, 14-3-3 proteins interact with substrates of Chk1/Chk2/MK2. FHA domains have been shown to interact with substrates of ATM/ATR/DNA-PK and CK2. In this review we consider how substrate phosphorylation together with BRCT domains, FHA domains and 14-3-3 proteins function to regulate ionizing radiation-induced nuclear foci and help to establish the G(2)/M checkpoint. We discuss the role of MDC1 a molecular scaffold that recruits early proteins to foci, such as NBS1 and RNF8, through distinct phosphodependent interactions. In addition, we consider the role of 14-3-3 proteins and the Chk2 FHA domain in initiating and maintaining cell cycle arrest.

  3. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins.

    PubMed

    Yang, Yingzhen; Jack, Thomas

    2004-05-01

    The MADS proteins APETALA3 (AP3), PISTILLATA (PI), SEPALLATAI (SEPI), SEP2, SEP3, AGAMOUS, and APETALA are required for proper floral organ identity in Arabidopsis flowers. All of these floral MADS proteins conserve two domains: the MADS domain that mediates DNA binding and dimerization, and the K domain that mediates protein protein interaction. The K domain is postulated to form a several amphipathic c-helices referred to as K1, K2, and K3. The K1 and K2 helicies are located entirely within the K domain while the K3 helix spans the K domain-C domain boundary. Here we report on our studies on the interactions of the B class MADS proteins AP3 and PI with the E class MADS proteins SEP1, SEP2, and SEP3. A comparative analysis of mutants in the K domain reveals that the subdomains mediating the PI/AP3 interaction are different from the subdomains mediating the PI/SEP3 (or PI/SEP1) interaction. The strong PI/SEP3 (or PI/SEP1) interaction requires K2, part of K3, and the interhelical region between K1 and K2. By contrast, K1, K2 and the region between K1 and K2 are important for strong AP3/PI interaction. Most of the K3 helix does not appear to be important for either the PI/AP3 or the PI/SEP3 (or PI/SEP1) interaction. Conserved hydrophobic positions are most important for the strength of both PI/AP3 and PI/SEP3 dimerization, though ionic and/or polar interactions appear to play a secondary role.

  4. Dileucine and PDZ-binding Motifs Mediate Synaptic Adhesion-like Molecule 1 (SALM1) Trafficking in Hippocampal Neurons*

    PubMed Central

    Seabold, Gail K.; Wang, Philip Y.; Petralia, Ronald S.; Chang, Kai; Zhou, Arthur; McDermott, Mark I.; Wang, Ya-Xian; Milgram, Sharon L.; Wenthold, Robert J.

    2012-01-01

    Synaptic adhesion-like molecules (SALMs) are a family of cell adhesion molecules involved in neurite outgrowth and synapse formation. Of the five family members, only SALM1, -2, and -3 contain a cytoplasmic C-terminal PDZ-binding motif. We have found that SALM1 is unique among the SALMs because deletion of its PDZ-binding motif (SALM1ΔPDZ) blocks its surface expression in heterologous cells. When expressed in hippocampal neurons, SALM1ΔPDZ had decreased surface expression in dendrites and the cell soma but not in axons, suggesting that the PDZ-binding domain may influence cellular trafficking of SALMs to specific neuronal locations. Endoglycosidase H digestion assays indicated that SALM1ΔPDZ is retained in the endoplasmic reticulum (ER) in heterologous cells. However, when the entire C-terminal tail of SALM1 was deleted, SALM1 was detected on the cell surface. Using serial deletions, we identified a region of SALM1 that contains a putative dileucine ER retention motif, which is not present in the other SALMs. Mutation of this DXXXLL motif allowed SALM1 to leave the ER and enhanced its surface expression in heterologous cells and neurons. An increase in the number of protrusions at the dendrites and cell body was observed when this SALM1 mutant was expressed in hippocampal neurons. With electron microscopy, these protrusions appeared to be irregular, enlarged spines and filopodia. Thus, enrichment of SALM1 on the cell surface affects dendritic arborization, and intracellular motifs regulate its dendritic versus axonal localization. PMID:22174418

  5. Proteasomes and protein conjugation across domains of life.

    PubMed

    Maupin-Furlow, Julie

    2011-12-19

    Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.

  6. Identification of structural domains in proteins by a graph heuristic.

    PubMed

    Wernisch, L; Hunting, M; Wodak, S J

    1999-05-15

    A novel automatic procedure for identifying domains from protein atomic coordinates is presented. The procedure, termed STRUDL (STRUctural Domain Limits), does not take into account information on secondary structures and handles any number of domains made up of contiguous or non-contiguous chain segments. The core algorithm uses the Kernighan-Lin graph heuristic to partition the protein into residue sets which display minimum interactions between them. These interactions are deduced from the weighted Voronoi diagram. The generated partitions are accepted or rejected on the basis of optimized criteria, representing basic expected physical properties of structural domains. The graph heuristic approach is shown to be very effective, it approximates closely the exact solution provided by a branch and bound algorithm for a number of test proteins. In addition, the overall performance of STRUDL is assessed on a set of 787 representative proteins from the Protein Data Bank by comparison to domain definitions in the CATH protein classification. The domains assigned by STRUDL agree with the CATH assignments in at least 81% of the tested proteins. This result is comparable to that obtained previously using PUU (Holm and Sander, Proteins 1994;9:256-268), the only other available algorithm designed to identify domains with any number of non-contiguous chain segments. A detailed discussion of the structures for which our assignments differ from those in CATH brings to light some clear inconsistencies between the concept of structural domains based on minimizing inter-domain interactions and that of delimiting structural motifs that represent acceptable folding topologies or architectures. Considering both concepts as complementary and combining them in a layered approach might be the way forward.

  7. Spatially Restricted G Protein-coupled Receptor Activity via Divergent Endocytic Compartments*

    PubMed Central

    Jean-Alphonse, Frederic; Bowersox, Shanna; Chen, Stanford; Beard, Gemma; Puthenveedu, Manojkumar A.; Hanyaloglu, Aylin C.

    2014-01-01

    Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity. PMID:24375413

  8. Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments.

    PubMed

    Jean-Alphonse, Frederic; Bowersox, Shanna; Chen, Stanford; Beard, Gemma; Puthenveedu, Manojkumar A; Hanyaloglu, Aylin C

    2014-02-14

    Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.

  9. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay

    PubMed Central

    Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles

    2015-01-01

    Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes. PMID:26053890

  10. Domain fusion analysis by applying relational algebra to protein sequence and domain databases

    PubMed Central

    Truong, Kevin; Ikura, Mitsuhiko

    2003-01-01

    Background Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. Results This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at . Conclusion As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time. PMID:12734020

  11. Domain fusion analysis by applying relational algebra to protein sequence and domain databases.

    PubMed

    Truong, Kevin; Ikura, Mitsuhiko

    2003-05-06

    Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at http://calcium.uhnres.utoronto.ca/pi. As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time.

  12. RNA polymerase II conserved protein domains as platforms for protein-protein interactions

    PubMed Central

    García-López, M Carmen

    2011-01-01

    RNA polymerase II establishes many protein-protein interactions with transcriptional regulators to coordinate gene expression, but little is known about protein domains involved in the contact with them. We use a new approach to look for conserved regions of the RNA pol II of S. cerevisiae located at the surface of the structure of the complex, hypothesizing that they might be involved in the interaction with transcriptional regulators. We defined five different conserved domains and demonstrate that all of them make contact with transcriptional regulators. PMID:21922063

  13. EVEREST: a collection of evolutionary conserved protein domains

    PubMed Central

    Portugaly, Elon; Linial, Nathan; Linial, Michal

    2007-01-01

    Protein domains are subunits of proteins that recur throughout the protein world. There are many definitions attempting to capture the essence of a protein domain, and several systems that identify protein domains and classify them into families. EVEREST, recently described in Portugaly et al. (2006) BMC Bioinformatics, 7, 277, is one such system that performs the task automatically, using protein sequence alone. Herein we describe EVEREST release 2.0, consisting of 20 029 families, each defined by one or more HMMs. The current EVEREST database was constructed by scanning UniProt 8.1 and all PDB sequences (total over 3 000 000 sequences) with each of the EVEREST families. EVEREST annotates 64% of all sequences, and covers 59% of all residues. EVEREST is available at . The website provides annotations given by SCOP, CATH, Pfam A and EVEREST. It allows for browsing through the families of each of those sources, graphically visualizing the domain organization of the proteins in the family. The website also provides access to analyzes of relationships between domain families, within and across domain definition systems. Users can upload sequences for analysis by the set of EVEREST families. Finally an advanced search form allows querying for families matching criteria regarding novelty, phylogenetic composition and more. PMID:17099230

  14. EVEREST: a collection of evolutionary conserved protein domains.

    PubMed

    Portugaly, Elon; Linial, Nathan; Linial, Michal

    2007-01-01

    Protein domains are subunits of proteins that recur throughout the protein world. There are many definitions attempting to capture the essence of a protein domain, and several systems that identify protein domains and classify them into families. EVEREST, recently described in Portugaly et al. (2006) BMC Bioinformatics, 7, 277, is one such system that performs the task automatically, using protein sequence alone. Herein we describe EVEREST release 2.0, consisting of 20,029 families, each defined by one or more HMMs. The current EVEREST database was constructed by scanning UniProt 8.1 and all PDB sequences (total over 3,000,000 sequences) with each of the EVEREST families. EVEREST annotates 64% of all sequences, and covers 59% of all residues. EVEREST is available at http://www.everest.cs.huji.ac.il/. The website provides annotations given by SCOP, CATH, Pfam A and EVEREST. It allows for browsing through the families of each of those sources, graphically visualizing the domain organization of the proteins in the family. The website also provides access to analyzes of relationships between domain families, within and across domain definition systems. Users can upload sequences for analysis by the set of EVEREST families. Finally an advanced search form allows querying for families matching criteria regarding novelty, phylogenetic composition and more.

  15. CDD: a Conserved Domain Database for protein classification.

    PubMed

    Marchler-Bauer, Aron; Anderson, John B; Cherukuri, Praveen F; DeWeese-Scott, Carol; Geer, Lewis Y; Gwadz, Marc; He, Siqian; Hurwitz, David I; Jackson, John D; Ke, Zhaoxi; Lanczycki, Christopher J; Liebert, Cynthia A; Liu, Chunlei; Lu, Fu; Marchler, Gabriele H; Mullokandov, Mikhail; Shoemaker, Benjamin A; Simonyan, Vahan; Song, James S; Thiessen, Paul A; Yamashita, Roxanne A; Yin, Jodie J; Zhang, Dachuan; Bryant, Stephen H

    2005-01-01

    The Conserved Domain Database (CDD) is the protein classification component of NCBI's Entrez query and retrieval system. CDD is linked to other Entrez databases such as Proteins, Taxonomy and PubMed, and can be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. CD-Search, which is available at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, is a fast, interactive tool to identify conserved domains in new protein sequences. CD-Search results for protein sequences in Entrez are pre-computed to provide links between proteins and domain models, and computational annotation visible upon request. Protein-protein queries submitted to NCBI's BLAST search service at http://www.ncbi.nlm.nih.gov/BLAST are scanned for the presence of conserved domains by default. While CDD started out as essentially a mirror of publicly available domain alignment collections, such as SMART, Pfam and COG, we have continued an effort to update, and in some cases replace these models with domain hierarchies curated at the NCBI. Here, we report on the progress of the curation effort and associated improvements in the functionality of the CDD information retrieval system.

  16. Targeting of passenger protein domains to multiple intracellular membranes.

    PubMed Central

    Janiak, F; Glover, J R; Leber, B; Rachubinski, R A; Andrews, D W

    1994-01-01

    The role of passenger domains in protein targeting was examined by fusing previously characterized targeting motifs to different protein sequences. To compare the targeting requirements for a variety of subcellular compartments, targeting of the fusion proteins was examined for endoplasmic reticulum, mitochondria and peroxisomes in vitro and in yeast. Although most passenger domains were only partially passive to translocation, motif-dependent targeting via motifs positioned at either end of one passenger domain (gPA) was demonstrated for all of the subcellular compartments tested. The data presented extend earlier suggestions that translocation competence is an intrinsic property of the passenger protein. However, the properties that determine protein targeting are not mutually exclusive for the compartments tested. Therefore, although the primary determinant of specificity is the targeting motif, our results suggest that translocation competence of the targeted protein augments the fidelity of transport. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8198533

  17. Assembly of cell regulatory systems through protein interaction domains.

    PubMed

    Pawson, Tony; Nash, Piers

    2003-04-18

    The sequencing of complete genomes provides a list that includes the proteins responsible for cellular regulation. However, this does not immediately reveal what these proteins do, nor how they are assembled into the molecular machines and functional networks that control cellular behavior. The regulation of many different cellular processes requires the use of protein interaction domains to direct the association of polypeptides with one another and with phospholipids, small molecules, or nucleic acids. The modular nature of these domains, and the flexibility of their binding properties, have likely facilitated the evolution of cellular pathways. Conversely, aberrant interactions can induce abnormal cellular behavior and disease. The fundamental properties of protein interaction domains are discussed in this review and in detailed reviews on individual domains at Science's STKE at http://www.sciencemag.org/cgi/content/full/300/5618/445/DC1.

  18. Evolution of a protein domain interaction network

    NASA Astrophysics Data System (ADS)

    Gao, Li-Feng; Shi, Jian-Jun; Guan, Shan

    2010-01-01

    In this paper, we attempt to understand complex network evolution from the underlying evolutionary relationship between biological organisms. Firstly, we construct a Pfam domain interaction network for each of the 470 completely sequenced organisms, and therefore each organism is correlated with a specific Pfam domain interaction network; secondly, we infer the evolutionary relationship of these organisms with the nearest neighbour joining method; thirdly, we use the evolutionary relationship between organisms constructed in the second step as the evolutionary course of the Pfam domain interaction network constructed in the first step. This analysis of the evolutionary course shows: (i) there is a conserved sub-network structure in network evolution; in this sub-network, nodes with lower degree prefer to maintain their connectivity invariant, and hubs tend to maintain their role as a hub is attached preferentially to new added nodes; (ii) few nodes are conserved as hubs; most of the other nodes are conserved as one with very low degree; (iii) in the course of network evolution, new nodes are added to the network either individually in most cases or as clusters with relative high clustering coefficients in a very few cases.

  19. Tandem-repeat protein domains across the tree of life

    PubMed Central

    Jernigan, Kristin K.

    2015-01-01

    Tandem-repeat protein domains, composed of repeated units of conserved stretches of 20–40 amino acids, are required for a wide array of biological functions. Despite their diverse and fundamental functions, there has been no comprehensive assessment of their taxonomic distribution, incidence, and associations with organismal lifestyle and phylogeny. In this study, we assess for the first time the abundance of armadillo (ARM) and tetratricopeptide (TPR) repeat domains across all three domains in the tree of life and compare the results to our previous analysis on ankyrin (ANK) repeat domains in this journal. All eukaryotes and a majority of the bacterial and archaeal genomes analyzed have a minimum of one TPR and ARM repeat. In eukaryotes, the fraction of ARM-containing proteins is approximately double that of TPR and ANK-containing proteins, whereas bacteria and archaea are enriched in TPR-containing proteins relative to ARM- and ANK-containing proteins. We show in bacteria that phylogenetic history, rather than lifestyle or pathogenicity, is a predictor of TPR repeat domain abundance, while neither phylogenetic history nor lifestyle predicts ARM repeat domain abundance. Surprisingly, pathogenic bacteria were not enriched in TPR-containing proteins, which have been associated within virulence factors in certain species. Taken together, this comparative analysis provides a newly appreciated view of the prevalence and diversity of multiple types of tandem-repeat protein domains across the tree of life. A central finding of this analysis is that tandem repeat domain-containing proteins are prevalent not just in eukaryotes, but also in bacterial and archaeal species. PMID:25653910

  20. de Gennes Narrowing Describes the Relative Motion of Protein Domains

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Smolin, Nikolai; Smith, Jeremy C.

    2014-04-01

    The relative motion of structural domains is essential for the biological function of many proteins. Here, by analyzing neutron scattering data and performing molecular dynamics simulations, we find that interdomain motion in several proteins obeys the principle of de Gennes narrowing, in which the wave vector dependence of the interdomain diffusion coefficient is inversely proportional to the interdomain structure factor. Thus, the rate of interdomain motion is inversely proportional to the probability distribution of the spatial configurations of domains.

  1. Stochastic lattice model of synaptic membrane protein domains

    NASA Astrophysics Data System (ADS)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  2. Singlet CH domain containing human multidomain proteins: an inventory.

    PubMed

    Friedberg, Felix

    2010-03-01

    The actin cytoskeleton presents the basic force in processes such as cytokinesis, endocytosis, vesicular trafficking and cell migration. Here, we list 30 human singlet CH (calpononin homology/actin binding) containing multidomain molecules, each encoded by one gene. We show the domain distributions as given by the SMART program. These mosaic proteins organize geographically the placement of selected proteins in proximity within the cell. In most instances, their precise location, their actin binding capacity by way of the singlet CH (or by other domains?) and their physiological functions need further elucidation. A dendrogram based solely on the relationship for the human singlet CH domains (in terms of AA sequences) for the various molecules that possess the domain, implies that the singlet descended from a common ancestor which in turn sprouted three main branches of protein products. Each branch bifurcated multiple times thus accounting for a cornucopia of products. Wherever, additional (unassigned), highly homologous regions exist in related proteins (e.g., in LIM and LMO7 or in Tangerin and EH/BP1), these unrecognized domain regions await assignment as specific functional domains. Frequently genes coding multidomain proteins duplicated. The varying modular nature within multidomain proteins should have accelerated evolutionary changes to a degree not feasible to achieve by means of mere post-duplication mutational changes.

  3. Protein Interacting with C Kinase 1 (PICK1) Reduces Reinsertion Rates of Interaction Partners Sorted to Rab11-dependent Slow Recycling Pathway*

    PubMed Central

    Madsen, Kenneth L.; Thorsen, Thor S.; Rahbek-Clemmensen, Troels; Eriksen, Jacob; Gether, Ulrik

    2012-01-01

    The scaffolding protein PICK1 (protein interacting with C kinase 1) contains an N-terminal PSD-95/Discs large/ZO-1 (PDZ) domain and a central lipid-binding Bin/amphiphysin/Rvs (BAR) domain. PICK1 is thought to regulate trafficking of its PDZ binding partners but different and even opposing functions have been suggested. Here, we apply ELISA-based assays and confocal microscopy in HEK293 cells with inducible PICK1 expression to assess in an isolated system the ability of PICK1 to regulate trafficking of natural and engineered PDZ binding partners. The dopamine transporter (DAT), which primarily sorts to degradation upon internalization, did not form perinuclear clusters with PICK1, and PICK1 did not affect DAT internalization/recycling. However, transfer of the PICK1-binding DAT C terminus to the β2-adrenergic receptor, which sorts to recycling upon internalization, led to formation of PICK1 co-clusters in Rab11-positive compartments. Furthermore, PICK1 inhibited Rab11-mediated recycling of the receptor in a BAR and PDZ domain-dependent manner. In contrast, transfer of the DAT C terminus to the δ-opioid receptor, which sorts to degradation, did not result in PICK1 co-clusters or any change in internalization/recycling. Further support for a role of PICK1 determined by its PDZ cargo was obtained for the PICK1 interaction partner prolactin-releasing peptide receptor (GPR10). GPR10 co-localized with Rab11 and clustered with PICK1 upon constitutive internalization but co-localized with the late endosomal marker Rab7 and did not cluster with PICK1 upon agonist-induced internalization. Our data suggest a selective role of PICK1 in clustering and reducing the recycling rates of PDZ domain binding partners sorted to the Rab11-dependent recycling pathway. PMID:22303009

  4. Protein interacting with C kinase 1 (PICK1) reduces reinsertion rates of interaction partners sorted to Rab11-dependent slow recycling pathway.

    PubMed

    Madsen, Kenneth L; Thorsen, Thor S; Rahbek-Clemmensen, Troels; Eriksen, Jacob; Gether, Ulrik

    2012-04-06

    The scaffolding protein PICK1 (protein interacting with C kinase 1) contains an N-terminal PSD-95/Discs large/ZO-1 (PDZ) domain and a central lipid-binding Bin/amphiphysin/Rvs (BAR) domain. PICK1 is thought to regulate trafficking of its PDZ binding partners but different and even opposing functions have been suggested. Here, we apply ELISA-based assays and confocal microscopy in HEK293 cells with inducible PICK1 expression to assess in an isolated system the ability of PICK1 to regulate trafficking of natural and engineered PDZ binding partners. The dopamine transporter (DAT), which primarily sorts to degradation upon internalization, did not form perinuclear clusters with PICK1, and PICK1 did not affect DAT internalization/recycling. However, transfer of the PICK1-binding DAT C terminus to the β(2)-adrenergic receptor, which sorts to recycling upon internalization, led to formation of PICK1 co-clusters in Rab11-positive compartments. Furthermore, PICK1 inhibited Rab11-mediated recycling of the receptor in a BAR and PDZ domain-dependent manner. In contrast, transfer of the DAT C terminus to the δ-opioid receptor, which sorts to degradation, did not result in PICK1 co-clusters or any change in internalization/recycling. Further support for a role of PICK1 determined by its PDZ cargo was obtained for the PICK1 interaction partner prolactin-releasing peptide receptor (GPR10). GPR10 co-localized with Rab11 and clustered with PICK1 upon constitutive internalization but co-localized with the late endosomal marker Rab7 and did not cluster with PICK1 upon agonist-induced internalization. Our data suggest a selective role of PICK1 in clustering and reducing the recycling rates of PDZ domain binding partners sorted to the Rab11-dependent recycling pathway.

  5. Conditional random field approach to prediction of protein-protein interactions using domain information.

    PubMed

    Hayashida, Morihiro; Kamada, Mayumi; Song, Jiangning; Akutsu, Tatsuya

    2011-06-20

    For understanding cellular systems and biological networks, it is important to analyze functions and interactions of proteins and domains. Many methods for predicting protein-protein interactions have been developed. It is known that mutual information between residues at interacting sites can be higher than that at non-interacting sites. It is based on the thought that amino acid residues at interacting sites have coevolved with those at the corresponding residues in the partner proteins. Several studies have shown that such mutual information is useful for identifying contact residues in interacting proteins. We propose novel methods using conditional random fields for predicting protein-protein interactions. We focus on the mutual information between residues, and combine it with conditional random fields. In the methods, protein-protein interactions are modeled using domain-domain interactions. We perform computational experiments using protein-protein interaction datasets for several organisms, and calculate AUC (Area Under ROC Curve) score. The results suggest that our proposed methods with and without mutual information outperform EM (Expectation Maximization) method proposed by Deng et al., which is one of the best predictors based on domain-domain interactions. We propose novel methods using conditional random fields with and without mutual information between domains. Our methods based on domain-domain interactions are useful for predicting protein-protein interactions.

  6. Anchors aweigh: protein localization and transport mediated by transmembrane domains.

    PubMed

    Cosson, Pierre; Perrin, Jackie; Bonifacino, Juan S

    2013-10-01

    The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in cytosolic domains, TMD sorting determinants are not conserved amino acid sequences but physical properties such as the length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized, but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport.

  7. Anchors Aweigh: Protein Traffic Mediated by Transmembrane Domains

    PubMed Central

    Cosson, Pierre; Perrin, Jackie; Bonifacino, Juan S.

    2013-01-01

    The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in the cytosolic domains, TMD sorting determinants are not conserved amino-acid sequences but physical properties such as length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport. PMID:23806646

  8. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  9. Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains

    PubMed Central

    Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K.; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-01-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences. PMID:22046139

  10. Domain organizations of modular extracellular matrix proteins and their evolution.

    PubMed

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  11. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins.

    PubMed Central

    Gillooly, D J; Simonsen, A; Stenmark, H

    2001-01-01

    PtdIns3P is a phosphoinositide 3-kinase product that has been strongly implicated in regulating membrane trafficking in both mammalian and yeast cells. PtdIns3P has been shown to be specifically located on membranes associated with the endocytic pathway. Proteins that contain FYVE zinc-finger domains are recruited to PtdIns3P-containing membranes. Structural information is now available concerning the interaction between FYVE domains and PtdIns3P. A number of proteins have been identified which contain a FYVE domain, and in this review we discuss the functions of PtdIns3P and its FYVE-domain-containing effector proteins in membrane trafficking, cytoskeletal regulation and receptor signalling. PMID:11284710

  12. CD-Search: protein domain annotations on the fly.

    PubMed

    Marchler-Bauer, Aron; Bryant, Stephen H

    2004-07-01

    We describe the Conserved Domain Search service (CD-Search), a web-based tool for the detection of structural and functional domains in protein sequences. CD-Search uses BLAST(R) heuristics to provide a fast, interactive service, and searches a comprehensive collection of domain models. Search results are displayed as domain architecture cartoons and pairwise alignments between the query and domain-model consensus sequences. Search results may be visualized in further detail by embedding the query sequence into multiple alignment displays and by mapping onto three-dimensional molecular graphic displays of known structures within the domain family. CD-Search can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi.

  13. The COOH termini of NBC3 and the 56-kDa H+-ATPase subunit are PDZ motifs involved in their interaction.

    PubMed

    Pushkin, Alexander; Abuladze, Natalia; Newman, Debra; Muronets, Vladimir; Sassani, Pejvak; Tatishchev, Sergei; Kurtz, Ira

    2003-03-01

    The electroneutral sodium bicarbonate cotransporter 3 (NBC3) coimmunoprecipitates from renal lysates with the vacuolar H(+)-ATPase. In renal type A and B intercalated cells, NBC3 colocalizes with the vacuolar H(+)-ATPase. The involvement of the COOH termini of NBC3 and the 56-kDa subunit of the proton pump in the interaction of these proteins was investigated. The intact and modified COOH termini of NBC3 and the 56-kDa subunit of the proton pump were synthesized, coupled to Sepharose beads, and used to pull down kidney membrane proteins. Both the 56- and the 70-kDa subunits of the proton pump, as well as a PDZ domain containing protein Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1), were bound to the intact 18 amino acid NBC3 COOH terminus. A peptide truncated by five COOH-terminal amino acids did not bind these proteins. Replacement of the COOH-terminal leucine with glycine blocked binding of both the proton pump subunits but did not affect binding of NHERF-1. The 18 amino acid COOH terminus of the 56-kDa subunit of the proton pump bound NHERF-1 and NBC3, but the truncated and modified peptide did not. A complex of NBC3, the 56-kDa subunit of the proton pump, and NHERF-1 was identified in rat kidney. The data indicate that the COOH termini of NBC3 and the 56-kDa subunit of the vacuolar proton pump are PDZ-interacting motifs that are necessary for the interaction of these proteins. NHERF-1 is involved in the interaction of NBC3 and the vacuolar proton pump.

  14. Domain conservation in several volvocalean cell wall proteins.

    PubMed

    Woessner, J P; Molendijk, A J; van Egmond, P; Klis, F M; Goodenough, U W; Haring, M A

    1994-11-01

    Based on our previous work demonstrating that (SerPro)x epitopes are common to extensin-like cell wall proteins in Chlamydomonas' reinhardtii, we looked for similar proteins in the distantly related species C. eugametos. Using a polyclonal antiserum against a (SerPro)10 oligopeptide, we found distinct sets of stage-specific polypeptides immunoprecipitated from in vitro translations of C. eugametos RNA. Screening of a C. eugametos cDNA expression library with the antiserum led to the isolation of a cDNA (WP6) encoding a (SerPro)x-rich multidomain wall protein. Analysis of a similarly selected cDNA (VSP-3) from a C. reinhardtii cDNA expression library revealed that it also coded for a (SerPro)x-rich multidomain wall protein. The C-terminal rod domains of VSP-3 and WP6 are highly homologous, while the N-terminal domains are dissimilar; however, the N-terminal domain of VSP-3 is homologous to the globular domain of a cell wall protein from Volvox carteri. Exon shuffling might be responsible for this example of domain conservation over 350 million years of volvocalean cell wall protein evolution.

  15. Epigenetic repression of PDZ-LIM domain-containing protein 2 promotes ovarian cancer via NOS2-derived nitric oxide signaling.

    PubMed

    Zhao, Linjie; Yu, Chuan; Zhou, Shengtao; Lau, Wayne Bond; Lau, Bonnie; Luo, Zhongyue; Lin, Qiao; Yang, Huiliang; Xuan, Yu; Yi, Tao; Zhao, Xia; Wei, Yuquan

    2016-01-12

    Ovarian cancer constitutes one of the most lethal gynaecological malignancies worldwide and currently no satisfactory therapeutic approaches have been established. Therefore, elucidation of molecular mechanisms to develop targeted therapy of ovarian cancer is crucial. PDLIM2 is critical to promote ubiquitination of nuclear p65 and thus its role in inflammation has been highlighted recently. We demonstrate that PDLIM2 is decreased in both ovarian high-grade serous carcinoma and in various human ovarian cancer cell lines compared with normal ovary tissues and human ovarian surface epithelial cells (HOSE). Further functional analysis revealed that PDLIM2 is epigenetically repressed in ovarian cancer development and inhibition of PDLIM2 promoted ovarian cancer growth both in vivo and in vitro via NOS2-derived nitric oxide signaling, leading to recruitment of M2 type macrophages. These results suggest that PDLIM2 might be involved in ovarian cancer pathogenesis, which could serve as a promising therapeutic target for ovarian cancer patients.

  16. The PUB domain: a putative protein-protein interaction domain implicated in the ubiquitin-proteasome pathway.

    PubMed

    Suzuki, T; Park, H; Till, E A; Lennarz, W J

    2001-10-12

    Cytoplasmic peptide:N-glycanase (PNGase) is a de-N-glycosylating enzyme which may be involved in the proteasome-dependent pathway for degradation of misfolded glycoproteins formed in the endoplasmic reticulum (ER) that are exported into the cytoplasm. A cytoplasmic PNGase found in Saccharomyces cerevisiae, Png1p, is widely distributed in higher eukaryotes as well as in yeast (Suzuki, T., et al. J. Cell Biol. 149, 1039-1051, 2000). The recently uncovered complete genome sequence of Arabidopsis thaliana prompted us to search for the protein homologue of Png1p in this organism. Interestingly, when the mouse Png1p homologue sequence was used as a query, not only a Png1p homologue containing a transglutaminase-like domain that is believed to contain a catalytic triad for PNGase activity, but also four proteins which had a domain of 46 amino acids in length that exhibited significant similarity to the N-terminus of mouse Png1p were identified. Moreover, three of these homologous proteins were also found to possess a UBA or UBX domain, which are found in various proteins involved in the ubiquitin-related pathway. We name this newly found homologous region the PUB (Peptide:N-glycanase/UBA or UBX-containing proteins) domain and propose that this domain may mediate protein-protein interactions.

  17. The history of the CATH structural classification of protein domains.

    PubMed

    Sillitoe, Ian; Dawson, Natalie; Thornton, Janet; Orengo, Christine

    2015-12-01

    This article presents a historical review of the protein structure classification database CATH. Together with the SCOP database, CATH remains comprehensive and reasonably up-to-date with the now more than 100,000 protein structures in the PDB. We review the expansion of the CATH and SCOP resources to capture predicted domain structures in the genome sequence data and to provide information on the likely functions of proteins mediated by their constituent domains. The establishment of comprehensive function annotation resources has also meant that domain families can be functionally annotated allowing insights into functional divergence and evolution within protein families. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Viral Macro Domains Reverse Protein ADP-Ribosylation.

    PubMed

    Li, Changqing; Debing, Yannick; Jankevicius, Gytis; Neyts, Johan; Ahel, Ivan; Coutard, Bruno; Canard, Bruno

    2016-10-01

    ADP-ribosylation is a posttranslational protein modification in which ADP-ribose is transferred from NAD(+) to specific acceptors to regulate a wide variety of cellular processes. The macro domain is an ancient and highly evolutionarily conserved protein domain widely distributed throughout all kingdoms of life, including viruses. The human TARG1/C6orf130, MacroD1, and MacroD2 proteins can reverse ADP-ribosylation by acting on ADP-ribosylated substrates through the hydrolytic activity of their macro domains. Here, we report that the macro domain from hepatitis E virus (HEV) serves as an ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) and poly(ADP-ribose) (PAR) chain removal (de-MARylation and de-PARylation, respectively) from mono- and poly(ADP)-ribosylated proteins, respectively. The presence of the HEV helicase in cis dramatically increases the binding of the macro domain to poly(ADP-ribose) and stimulates the de-PARylation activity. Abrogation of the latter dramatically decreases replication of an HEV subgenomic replicon. The de-MARylation activity is present in all three pathogenic positive-sense, single-stranded RNA [(+)ssRNA] virus families which carry a macro domain: Coronaviridae (severe acute respiratory syndrome coronavirus and human coronavirus 229E), Togaviridae (Venezuelan equine encephalitis virus), and Hepeviridae (HEV), indicating that it might be a significant tropism and/or pathogenic determinant. Protein ADP-ribosylation is a covalent posttranslational modification regulating cellular protein activities in a dynamic fashion to modulate and coordinate a variety of cellular processes. Three viral families, Coronaviridae, Togaviridae, and Hepeviridae, possess macro domains embedded in their polyproteins. Here, we show that viral macro domains reverse cellular ADP-ribosylation, potentially cutting the signal of a viral infection in the cell. Various poly(ADP-ribose) polymerases which are notorious guardians of cellular integrity are demodified

  19. Viral Macro Domains Reverse Protein ADP-Ribosylation

    PubMed Central

    Li, Changqing; Debing, Yannick; Jankevicius, Gytis; Neyts, Johan; Ahel, Ivan

    2016-01-01

    ABSTRACT ADP-ribosylation is a posttranslational protein modification in which ADP-ribose is transferred from NAD+ to specific acceptors to regulate a wide variety of cellular processes. The macro domain is an ancient and highly evolutionarily conserved protein domain widely distributed throughout all kingdoms of life, including viruses. The human TARG1/C6orf130, MacroD1, and MacroD2 proteins can reverse ADP-ribosylation by acting on ADP-ribosylated substrates through the hydrolytic activity of their macro domains. Here, we report that the macro domain from hepatitis E virus (HEV) serves as an ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) and poly(ADP-ribose) (PAR) chain removal (de-MARylation and de-PARylation, respectively) from mono- and poly(ADP)-ribosylated proteins, respectively. The presence of the HEV helicase in cis dramatically increases the binding of the macro domain to poly(ADP-ribose) and stimulates the de-PARylation activity. Abrogation of the latter dramatically decreases replication of an HEV subgenomic replicon. The de-MARylation activity is present in all three pathogenic positive-sense, single-stranded RNA [(+)ssRNA] virus families which carry a macro domain: Coronaviridae (severe acute respiratory syndrome coronavirus and human coronavirus 229E), Togaviridae (Venezuelan equine encephalitis virus), and Hepeviridae (HEV), indicating that it might be a significant tropism and/or pathogenic determinant. IMPORTANCE Protein ADP-ribosylation is a covalent posttranslational modification regulating cellular protein activities in a dynamic fashion to modulate and coordinate a variety of cellular processes. Three viral families, Coronaviridae, Togaviridae, and Hepeviridae, possess macro domains embedded in their polyproteins. Here, we show that viral macro domains reverse cellular ADP-ribosylation, potentially cutting the signal of a viral infection in the cell. Various poly(ADP-ribose) polymerases which are notorious guardians of cellular

  20. On the detection of functionally coherent groups of protein domains with an extension to protein annotation

    PubMed Central

    McLaughlin, William A; Chen, Ken; Hou, Tingjun; Wang, Wei

    2007-01-01

    Background Protein domains coordinate to perform multifaceted cellular functions, and domain combinations serve as the functional building blocks of the cell. The available methods to identify functional domain combinations are limited in their scope, e.g. to the identification of combinations falling within individual proteins or within specific regions in a translated genome. Further effort is needed to identify groups of domains that span across two or more proteins and are linked by a cooperative function. Such functional domain combinations can be useful for protein annotation. Results Using a new computational method, we have identified 114 groups of domains, referred to as domain assembly units (DASSEM units), in the proteome of budding yeast Saccharomyces cerevisiae. The units participate in many important cellular processes such as transcription regulation, translation initiation, and mRNA splicing. Within the units the domains were found to function in a cooperative manner; and each domain contributed to a different aspect of the unit's overall function. The member domains of DASSEM units were found to be significantly enriched among proteins contained in transcription modules, defined as genes sharing similar expression profiles and presumably similar functions. The observation further confirmed the functional coherence of DASSEM units. The functional linkages of units were found in both functionally characterized and uncharacterized proteins, which enabled the assessment of protein function based on domain composition. Conclusion A new computational method was developed to identify groups of domains that are linked by a common function in the proteome of Saccharomyces cerevisiae. These groups can either lie within individual proteins or span across different proteins. We propose that the functional linkages among the domains within the DASSEM units can be used as a non-homology based tool to annotate uncharacterized proteins. PMID:17937820

  1. Protein domain repetition is enriched in Streptococcal cell-surface proteins.

    PubMed

    Lin, I-Hsuan; Hsu, Ming-Ta; Chang, Chuan-Hsiung

    2012-12-01

    Tandem repetition of domain in protein sequence occurs in all three domains of life. It creates protein diversity and adds functional complexity in organisms. In this work, we analyzed 52 streptococcal genomes and found 3748 proteins contained domain repeats. Proteins not harboring domain repeats are significantly enriched in cytoplasm, whereas proteins with domain repeats are significantly enriched in cytoplasmic membrane, cell wall and extracellular locations. Domain repetition occurs most frequently in S. pneumoniae and least in S. thermophilus and S. pyogenes. DUF1542 is the highest repeated domain in a single protein, followed by Rib, CW_binding_1, G5 and HemolysinCabind. 3D structures of 24 repeat-containing proteins were predicted to investigate the structural and functional effect of domain repetition. Several repeat-containing streptococcal cell surface proteins are known to be virulence-associated. Surface-associated tandem domain-containing proteins without experimental functional characterization may be potentially involved in the pathogenesis of streptococci and deserve further investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Understanding protein domain-swapping using structure-based models of protein folding.

    PubMed

    Mascarenhas, Nahren Manuel; Gosavi, Shachi

    2017-09-01

    In domain-swapping, two or more identical protein monomers exchange structural elements and fold into dimers or multimers whose units are structurally similar to the original monomer. Domain-swapping is of biotechnological interest because inhibiting domain-swapping can reduce disease-causing fibrillar protein aggregation. To achieve such inhibition, it is important to understand both the energetics that stabilize the domain-swapped structure and the protein dynamics that enable the swapping. Structure-based models (SBMs) encode the folded structure of the protein in their potential energy functions. SBMs have been successfully used to understand diverse aspects of monomer folding. Symmetrized SBMs model interactions between two identical protein chains using only intra-monomer interactions. Molecular dynamics simulations of such symmetrized SBMs have been used to correctly predict the domain-swapped structure and to understand the mechanism of domain-swapping. Here, we review such models and illustrate that monomer topology determines key aspects of domain-swapping. However, in some proteins, specifics of local energetic interactions modulate domain-swapping and these need to be added to the symmetrized SBMs. We then summarize some general principles of the mechanism of domain-swapping that emerge from the symmetrized SBM simulations. Finally, using our own results, we explore how symmetrized SBMs could be used to design domain-swapping in proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Partitioning protein structures into domains: why is it so difficult?

    PubMed

    Holland, Timothy A; Veretnik, Stella; Shindyalov, Ilya N; Bourne, Philip E

    2006-08-18

    This analysis takes an in-depth look into the difficulties encountered by automatic methods for domain decomposition from three-dimensional structure. The analysis involves a multi-faceted set of criteria including the integrity of secondary structure elements, the tendency toward fragmentation of domains, domain boundary consistency and topology. The strength of the analysis comes from the use of a new comprehensive benchmark dataset, which is based on consensus among experts (CATH, SCOP and AUTHORS of the 3D structures) and covers 30 distinct architectures and 211 distinct topologies as defined by CATH. Furthermore, over 66% of the structures are multi-domain proteins; each domain combination occurring once per dataset. The performance of four automatic domain assignment methods, DomainParser, NCBI, PDP and PUU, is carefully analyzed using this broad spectrum of topology combinations and knowledge of rules and assumptions built into each algorithm. We conclude that it is practically impossible for an automatic method to achieve the level of performance of human experts. However, we propose specific improvements to automatic methods as well as broadening the concept of a structural domain. Such work is prerequisite for establishing improved approaches to domain recognition. (The benchmark dataset is available from http://pdomains.sdsc.edu).

  4. Characterization of Two Dinoflagellate Cold Shock Domain Proteins

    PubMed Central

    Beauchemin, Mathieu; Roy, Sougata; Pelletier, Sarah; Averback, Alexandra; Lanthier, Frederic

    2016-01-01

    ABSTRACT Roughly two-thirds of the proteins annotated as transcription factors in dinoflagellate transcriptomes are cold shock domain-containing proteins (CSPs), an uncommon condition in eukaryotic organisms. However, no functional analysis has ever been reported for a dinoflagellate CSP, and so it is not known if they do in fact act as transcription factors. We describe here some of the properties of two CSPs from the dinoflagellate Lingulodinium polyedrum, LpCSP1 and LpCSP2, which contain a glycine-rich C-terminal domain and an N-terminal cold shock domain phylogenetically related to those in bacteria. However, neither of the two LpCSPs act like the bacterial CSP, since they do not functionally complement the Escherichia coli quadruple cold shock domain protein mutant BX04, and cold shock does not induce LpCSP1 and LpCSP2 to detectable levels, based on two-dimensional gel electrophoresis. Both CSPs bind to RNA and single-stranded DNA in a nonspecific manner in electrophoretic mobility shift assays, and both proteins also bind double-stranded DNA nonspecifically, albeit more weakly. These CSPs are thus unlikely to act alone as sequence-specific transcription factors. IMPORTANCE Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists. PMID:27303711

  5. Protein kinase C phosphorylation disrupts Na+/H+ exchanger regulatory factor 1 autoinhibition and promotes cystic fibrosis transmembrane conductance regulator macromolecular assembly.

    PubMed

    Li, Jianquan; Poulikakos, Poulikos I; Dai, Zhongping; Testa, Joseph R; Callaway, David J E; Bu, Zimei

    2007-09-14

    An emerging theme in cell signaling is that membrane-bound channels and receptors are organized into supramolecular signaling complexes for optimum function and cross-talk. In this study, we determined how protein kinase C (PKC) phosphorylation influences the scaffolding protein Na(+)/H(+) exchanger regulatory factor 1 (NHERF) to assemble protein complexes of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel that controls fluid and electrolyte transport across cell membranes. NHERF directs polarized expression of receptors and ion transport proteins in epithelial cells, as well as organizes the homo- and hetero-association of these cell surface proteins. NHERF contains two modular PDZ domains that are modular protein-protein interaction motifs, and a C-terminal domain. Previous studies have shown that NHERF is a phosphoprotein, but how phosphorylation affects NHERF to assemble macromolecular complexes is unknown. We show that PKC phosphorylates two amino acid residues Ser-339 and Ser-340 in the C-terminal domain of NHERF, but a serine 162 of PDZ2 is specifically protected from being phosphorylated by the intact C-terminal domain. PKC phosphorylation-mimicking mutant S339D/S340D of NHERF has increased affinity and stoichiometry when binding to C-CFTR. Moreover, solution small angle x-ray scattering indicates that the PDZ2 and C-terminal domains contact each other in NHERF, but such intramolecular domain-domain interactions are released in the PKC phosphorylation-mimicking mutant indicating that PKC phosphorylation disrupts the autoinhibition interactions in NHERF. The results demonstrate that the C-terminal domain of NHERF functions as an intramolecular switch that regulates the binding capability of PDZ2, and thus controls the stoichiometry of NHERF to assemble protein complexes.

  6. Rapid similarity search of proteins using alignments of domain arrangements.

    PubMed

    Terrapon, Nicolas; Weiner, January; Grath, Sonja; Moore, Andrew D; Bornberg-Bauer, Erich

    2014-01-15

    Homology search methods are dominated by the central paradigm that sequence similarity is a proxy for common ancestry and, by extension, functional similarity. For determining sequence similarity in proteins, most widely used methods use models of sequence evolution and compare amino-acid strings in search for conserved linear stretches. Probabilistic models or sequence profiles capture the position-specific variation in an alignment of homologous sequences and can identify conserved motifs or domains. While profile-based search methods are generally more accurate than simple sequence comparison methods, they tend to be computationally more demanding. In recent years, several methods have emerged that perform protein similarity searches based on domain composition. However, few methods have considered the linear arrangements of domains when conducting similarity searches, despite strong evidence that domain order can harbour considerable functional and evolutionary signal. Here, we introduce an alignment scheme that uses a classical dynamic programming approach to the global alignment of domains. We illustrate that representing proteins as strings of domains (domain arrangements) and comparing these strings globally allows for a both fast and sensitive homology search. Further, we demonstrate that the presented methods complement existing methods by finding similar proteins missed by popular amino-acid-based comparison methods. An implementation of the presented algorithms, a web-based interface as well as a command-line program for batch searching against the UniProt database can be found at http://rads.uni-muenster.de. Furthermore, we provide a JAVA API for programmatic access to domain-string–based search methods.

  7. Segmental, Domain-Selective Perdeuteration and Small-Angle Neutron Scattering for Structural Analysis of Multi-Domain Proteins.

    PubMed

    Sonntag, Miriam; Jagtap, Pravin Kumar Ankush; Simon, Bernd; Appavou, Marie-Sousai; Geerlof, Arie; Stehle, Ralf; Gabel, Frank; Hennig, Janosch; Sattler, Michael

    2017-08-01

    Multi-domain proteins play critical roles in fine-tuning essential processes in cellular signaling and gene regulation. Typically, multiple globular domains that are connected by flexible linkers undergo dynamic rearrangements upon binding to protein, DNA or RNA ligands. RNA binding proteins (RBPs) represent an important class of multi-domain proteins, which regulate gene expression by recognizing linear or structured RNA sequence motifs. Here, we employ segmental perdeuteration of the three RNA recognition motif (RRM) domains in the RBP TIA-1 using Sortase A mediated protein ligation. We show that domain-selective perdeuteration combined with contrast-matched small-angle neutron scattering (SANS), SAXS and computational modeling provides valuable information to precisely define relative domain arrangements. The approach is generally applicable to study conformational arrangements of individual domains in multi-domain proteins and changes induced by ligand binding. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dynamics of domain coverage of the protein sequence universe.

    PubMed

    Rekapalli, Bhanu; Wuichet, Kristin; Peterson, Gregory D; Zhulin, Igor B

    2012-11-16

    The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its "dark matter". Here we suggest that true size of "dark matter" is much larger than stated by current definitions. We propose an approach to reducing the size of "dark matter" by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of "dark matter"; however, its absolute size increases substantially with the growth of sequence data.

  9. Dynamics of domain coverage of the protein sequence universe

    PubMed Central

    2012-01-01

    Background The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its “dark matter”. Results Here we suggest that true size of “dark matter” is much larger than stated by current definitions. We propose an approach to reducing the size of “dark matter” by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Conclusions Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of “dark matter”; however, its absolute size increases substantially with the growth of sequence data. PMID:23157439

  10. Repeat proteins challenge the concept of structural domains.

    PubMed

    Espada, Rocío; Parra, R Gonzalo; Sippl, Manfred J; Mora, Thierry; Walczak, Aleksandra M; Ferreiro, Diego U

    2015-10-01

    Structural domains are believed to be modules within proteins that can fold and function independently. Some proteins show tandem repetitions of apparent modular structure that do not fold independently, but rather co-operate in stabilizing structural forms that comprise several repeat-units. For many natural repeat-proteins, it has been shown that weak energetic links between repeats lead to the breakdown of co-operativity and the appearance of folding sub-domains within an apparently regular repeat array. The quasi-1D architecture of repeat-proteins is crucial in detailing how the local energetic balances can modulate the folding dynamics of these proteins, which can be related to the physiological behaviour of these ubiquitous biological systems.

  11. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.

    PubMed

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-11-01

    APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.

  12. An Algebro-Topological Description of Protein Domain Structure

    PubMed Central

    Penner, Robert Clark; Knudsen, Michael; Wiuf, Carsten; Andersen, Jørgen Ellegaard

    2011-01-01

    The space of possible protein structures appears vast and continuous, and the relationship between primary, secondary and tertiary structure levels is complex. Protein structure comparison and classification is therefore a difficult but important task since structure is a determinant for molecular interaction and function. We introduce a novel mathematical abstraction based on geometric topology to describe protein domain structure. Using the locations of the backbone atoms and the hydrogen bonds, we build a combinatorial object – a so-called fatgraph. The description is discrete yet gives rise to a 2-dimensional mathematical surface. Thus, each protein domain corresponds to a particular mathematical surface with characteristic topological invariants, such as the genus (number of holes) and the number of boundary components. Both invariants are global fatgraph features reflecting the interconnectivity of the domain by hydrogen bonds. We introduce the notion of robust variables, that is variables that are robust towards minor changes in the structure/fatgraph, and show that the genus and the number of boundary components are robust. Further, we invesigate the distribution of different fatgraph variables and show how only four variables are capable of distinguishing different folds. We use local (secondary) and global (tertiary) fatgraph features to describe domain structures and illustrate that they are useful for classification of domains in CATH. In addition, we combine our method with two other methods thereby using primary, secondary, and tertiary structure information, and show that we can identify a large percentage of new and unclassified structures in CATH. PMID:21629687

  13. Bpur, the Lyme Disease Spirochete's PUR Domain Protein

    PubMed Central

    Jutras, Brandon L.; Chenail, Alicia M.; Carroll, Dustin W.; Miller, M. Clarke; Zhu, Haining; Bowman, Amy; Stevenson, Brian

    2013-01-01

    The PUR domain is a nucleic acid-binding motif found in critical regulatory proteins of higher eukaryotes and in certain species of bacteria. During investigations into mechanisms by which the Lyme disease spirochete controls synthesis of its Erp surface proteins, it was discovered that the borrelial PUR domain protein, Bpur, binds with high affinity to double-stranded DNA adjacent to the erp transcriptional promoter. Bpur was found to enhance the effects of the erp repressor protein, BpaB. Bpur also bound single-stranded DNA and RNA, with relative affinities RNA > double-stranded DNA > single-stranded DNA. Rational site-directed mutagenesis of Bpur identified amino acid residues and domains critical for interactions with nucleic acids, and it revealed that the PUR domain has a distinct mechanism of interaction with each type of nucleic acid ligand. These data shed light on both gene regulation in the Lyme spirochete and functional mechanisms of the widely distributed PUR domain. PMID:23846702

  14. Formation and organization of protein domains in the immunological synapse

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2014-11-01

    The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse. Here, we propose a minimal mathematical model for the dynamics of the IS that encompass membrane mechanics, hydrodynamics and protein kinetics. Simple scaling laws describe the dynamics of protein clusters as a function of membrane stiffness, rigidity of the adhesive proteins, and fluid flow in the synaptic cleft. Numerical simulations complement the scaling laws by quantifying the nucleation, growth and stabilization of proteins domains on the size of the cell. Direct comparison with experiment suggests that passive dynamics suffices to describe the short-time formation and organization of protein clusters, while the stabilization and long time dynamics of the synapse is likely determined by active cytoskeleton processes triggered by receptor binding. Our study reveals that the fluid flow generated by the interplay between membrane deformation and protein binding kinetics can assist immune cells in regulating protein sorting.

  15. Interactions between GIPC-APPL and GIPC-TRP1 regulate melanosomal protein trafficking and melanogenesis in human melanocytes.

    PubMed

    Kedlaya, Rajendra; Kandala, Gokul; Liu, Tie Fu; Maddodi, Nityanand; Devi, Sulochana; Setaluri, Vijayasaradhi

    2011-04-15

    By virtue of the presence of multiple protein-protein interaction and signaling domains, PDZ proteins play important roles in assembling protein complexes that participate in diverse cell biological processes. GIPC is a versatile PDZ protein that binds a variety of target proteins in different cell types. In previous studies we showed that, in epidermal melanocytes, GIPC interacts with newly synthesized melanosomal protein TRP1 in the Golgi region and proposed that this interaction may facilitate intracellular trafficking of TRP1. However, since GIPC contains a single PDZ domain and no other known protein interaction motifs, it is not known how GIPC-TRP1 interaction affects melanosome biogenesis and/or melanin pigmentation. Here, we show that in human primary melanocytes GIPC interacts with AKT-binding protein APPL (adaptor protein containing pleckstrin homology, leucine zipper and phosphotyrosine binding domains), which readily co-precipitates with newly synthesized TRP1. Knockdown of either GIPC or APPL inhibits melanogenesis by decreasing tyrosinase protein levels and enzyme activity. In melanocytes, APPL exists in a complex with GIPC and phospho-AKT. Inhibition of AKT phosphorylation using a PI3-kinase inhibitor abolishes this interaction and results in retardation TRP1 in the Golgi. These data suggest that interactions between TRP1-GIPC and GIPC-APPL-AKT provide a potential link between melanogenesis and PI3 kinase signaling. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Effective Moment Feature Vectors for Protein Domain Structures

    PubMed Central

    Shi, Jian-Yu; Yiu, Siu-Ming; Zhang, Yan-Ning; Chin, Francis Yuk-Lun

    2013-01-01

    Imaging processing techniques have been shown to be useful in studying protein domain structures. The idea is to represent the pairwise distances of any two residues of the structure in a 2D distance matrix (DM). Features and/or submatrices are extracted from this DM to represent a domain. Existing approaches, however, may involve a large number of features (100–400) or complicated mathematical operations. Finding fewer but more effective features is always desirable. In this paper, based on some key observations on DMs, we are able to decompose a DM image into four basic binary images, each representing the structural characteristics of a fundamental secondary structure element (SSE) or a motif in the domain. Using the concept of moments in image processing, we further derive 45 structural features based on the four binary images. Together with 4 features extracted from the basic images, we represent the structure of a domain using 49 features. We show that our feature vectors can represent domain structures effectively in terms of the following. (1) We show a higher accuracy for domain classification. (2) We show a clear and consistent distribution of domains using our proposed structural vector space. (3) We are able to cluster the domains according to our moment features and demonstrate a relationship between structural variation and functional diversity. PMID:24391828

  17. ELMO Domains, Evolutionary and Functional Characterization of a Novel GTPase-activating Protein (GAP) Domain for Arf Protein Family GTPases*

    PubMed Central

    East, Michael P.; Bowzard, J. Bradford; Dacks, Joel B.; Kahn, Richard A.

    2012-01-01

    The human family of ELMO domain-containing proteins (ELMODs) consists of six members and is defined by the presence of the ELMO domain. Within this family are two subclassifications of proteins, based on primary sequence conservation, protein size, and domain architecture, deemed ELMOD and ELMO. In this study, we used homology searching and phylogenetics to identify ELMOD family homologs in genomes from across eukaryotic diversity. This demonstrated not only that the protein family is ancient but also that ELMOs are potentially restricted to the supergroup Opisthokonta (Metazoa and Fungi), whereas proteins with the ELMOD organization are found in diverse eukaryotes and thus were likely the form present in the last eukaryotic common ancestor. The segregation of the ELMO clade from the larger ELMOD group is consistent with their contrasting functions as unconventional Rac1 guanine nucleotide exchange factors and the Arf family GTPase-activating proteins, respectively. We used unbiased, phylogenetic sorting and sequence alignments to identify the most highly conserved residues within the ELMO domain to identify a putative GAP domain within the ELMODs. Three independent but complementary assays were used to provide an initial characterization of this domain. We identified a highly conserved arginine residue critical for both the biochemical and cellular GAP activity of ELMODs. We also provide initial evidence of the function of human ELMOD1 as an Arf family GAP at the Golgi. These findings provide the basis for the future study of the ELMOD family of proteins and a new avenue for the study of Arf family GTPases. PMID:23014990

  18. Protein domain recurrence and order can enhance prediction of protein functions.

    PubMed

    Messih, Mario Abdel; Chitale, Meghana; Bajic, Vladimir B; Kihara, Daisuke; Gao, Xin

    2012-09-15

    Burgeoning sequencing technologies have generated massive amounts of genomic and proteomic data. Annotating the functions of proteins identified in this data has become a big and crucial problem. Various computational methods have been developed to infer the protein functions based on either the sequences or domains of proteins. The existing methods, however, ignore the recurrence and the order of the protein domains in this function inference. We developed two new methods to infer protein functions based on protein domain recurrence and domain order. Our first method, DRDO, calculates the posterior probability of the Gene Ontology terms based on domain recurrence and domain order information, whereas our second method, DRDO-NB, relies on the naïve Bayes methodology using the same domain architecture information. Our large-scale benchmark comparisons show strong improvements in the accuracy of the protein function inference achieved by our new methods, demonstrating that domain recurrence and order can provide important information for inference of protein functions. The new models are provided as open source programs at http://sfb.kaust.edu.sa/Pages/Software.aspx. dkihara@cs.purdue.edu, xin.gao@kaust.edu.sa Supplementary data are available at Bioinformatics Online.

  19. Efficient Binding of the NOS1AP C-Terminus to the nNOS PDZ Pocket Requires the Concerted Action of the PDZ Ligand Motif, the Internal ExF Site and Structural Integrity of an Independent Element

    PubMed Central

    Li, Li-Li; Cisek, Katryna; Courtney, Michael J.

    2017-01-01

    Neuronal nitric oxide synthase is widely regarded as an important contributor to a number of disorders of excitable tissues. Recently the adaptor protein NOS1AP has emerged as a contributor to several nNOS-linked conditions. As a consequence, the unexpectedly complex mechanisms of interaction between nNOS and its effector NOS1AP have become a particularly interesting topic from the point of view of both basic research and the potential for therapeutic applications. Here we demonstrate that the concerted action of two previously described motif regions contributing to the interaction of nNOS with NOS1AP, the ExF region and the PDZ ligand motif, efficiently excludes an alternate ligand from the nNOS-PDZ ligand-binding pocket. Moreover, we identify an additional element with a denaturable structure that contributes to interaction of NOS1AP with nNOS. Denaturation does not affect the functions of the individual motifs and results in a relatively mild drop, ∼3-fold, of overall binding affinity of the C-terminal region of NOS1AP for nNOS. However, denaturation selectively prevents the concerted action of the two motifs that normally results in efficient occlusion of the PDZ ligand-binding pocket, and results in 30-fold reduction of competition between NOS1AP and an alternate PDZ ligand. PMID:28360833

  20. Trimeric Transmembrane Domain Interactions in Paramyxovirus Fusion Proteins

    PubMed Central

    Smith, Everett Clinton; Smith, Stacy E.; Carter, James R.; Webb, Stacy R.; Gibson, Kathleen M.; Hellman, Lance M.; Fried, Michael G.; Dutch, Rebecca Ellis

    2013-01-01

    Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion. PMID:24178297

  1. Interactions between GIPC–APPL and GIPC–TRP1 regulate melanosomal protein trafficking and melanogenesis in human melanocytes

    PubMed Central

    Kedlaya, Rajendra; Kandala, Gokul; Liu, Tie Fu; Maddodi, Nityanand; Devi, Sulochana; Setaluri, Vijayasaradhi

    2011-01-01

    By virtue of the presence of multiple protein–protein interaction and signaling domains, PDZ proteins play important roles in assembling protein complexes that participate in diverse cell biological processes. GIPC is a versatile PDZ protein that binds a variety of target proteins in different cell types. In previous studies we showed that, in epidermal melanocytes, GIPC interacts with newly synthesized melanosomal protein TRP1 in the Golgi region and proposed that this interaction may facilitate intracellular trafficking of TRP1. However, since GIPC contains a single PDZ domain and no other known protein interaction motifs, it is not known how GIPC–TRP1 interaction affects melanosome biogenesis and/or melanin pigmentation. Here, we show that in human primary melanocytes GIPC interacts with AKT-binding protein APPL (adaptor protein containing pleckstrin homology, leucine zipper and phosphotyrosine binding domains), which readily co-precipitates with newly synthesized TRP1. Knockdown of either GIPC or APPL inhibits melanogenesis by decreasing tyrosinase protein levels and enzyme activity. In melanocytes, APPL exists in a complex with GIPC and phospho-AKT. Inhibition of AKT phosphorylation using a PI3-kinase inhibitor abolishes this interaction and results in retardation TRP1 in the Golgi. These data suggest that interactions between TRP1–GIPC and GIPC–APPL–AKT provide a potential link between melanogenesis and PI3 kinase signaling. PMID:21291857

  2. SNP@Domain: a web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and sequences

    PubMed Central

    Han, Areum; Kang, Hyo Jin; Cho, Yoobok; Lee, Sunghoon; Kim, Young Joo; Gong, Sungsam

    2006-01-01

    The single nucleotide polymorphisms (SNPs) in conserved protein regions have been thought to be strong candidates that alter protein functions. Thus, we have developed SNP@Domain, a web resource, to identify SNPs within human protein domains. We annotated SNPs from dbSNP with protein structure-based as well as sequence-based domains: (i) structure-based using SCOP and (ii) sequence-based using Pfam to avoid conflicts from two domain assignment methodologies. Users can investigate SNPs within protein domains with 2D and 3D maps. We expect this visual annotation of SNPs within protein domains will help scientists select and interpret SNPs associated with diseases. A web interface for the SNP@Domain is freely available at and from . PMID:16845090

  3. Pleiotropic roles of cold shock domain proteins in plants.

    PubMed

    Sasaki, Kentaro; Imai, Ryozo

    2011-01-01

    The cold shock domain (CSD) is a nucleic acid binding domain that is widely conserved from bacteria to higher plants and animals. In Escherichia coli, cold shock proteins (CSPs) are composed solely of a CSD and function as RNA chaperones that destabilize RNA secondary structures. Cellular RNAs tend to be folded into unfavorable structures under low temperature conditions, and RNA chaperones resolve these structures, recovering functionality of the RNAs. CSP functions are associated mainly with cold adaptation, but they are also involved in other biological processes under normal growth conditions. Eukaryotic CSD proteins contain auxiliary domains in addition to the CSD and regulate many biological processes such as development and stress tolerance. In plants, it has been demonstrated that CSD proteins play essential roles in acquiring freezing tolerance. In addition, it has been suggested that some plant CSD proteins regulate embryo development, flowering time, and fruit development. In this review, we summarize the pleiotropic biological functions of CSP proteins in plants and discuss possible mechanisms by which plant CSD proteins regulate the functions of RNA molecules.

  4. Structural Modeling of Protein Interactions by Analogy: Application to PSD-95

    PubMed Central

    Korkin, Dmitry; Davis, Fred P; Alber, Frank; Luong, Tinh; Shen, Min-Yi; Lucic, Vladan; Kennedy, Mary B; Sali, Andrej

    2006-01-01

    We describe comparative patch analysis for modeling the structures of multidomain proteins and protein complexes, and apply it to the PSD-95 protein. Comparative patch analysis is a hybrid of comparative modeling based on a template complex and protein docking, with a greater applicability than comparative modeling and a higher accuracy than docking. It relies on structurally defined interactions of each of the complex components, or their homologs, with any other protein, irrespective of its fold. For each component, its known binding modes with other proteins of any fold are collected and expanded by the known binding modes of its homologs. These modes are then used to restrain conventional molecular docking, resulting in a set of binary domain complexes that are subsequently ranked by geometric complementarity and a statistical potential. The method is evaluated by predicting 20 binary complexes of known structure. It is able to correctly identify the binding mode in 70% of the benchmark complexes compared with 30% for protein docking. We applied comparative patch analysis to model the complex of the third PSD-95, DLG, and ZO-1 (PDZ) domain and the SH3-GK domains in the PSD-95 protein, whose structure is unknown. In the first predicted configuration of the domains, PDZ interacts with SH3, leaving both the GMP-binding site of guanylate kinase (GK) and the C-terminus binding cleft of PDZ accessible, while in the second configuration PDZ interacts with GK, burying both binding sites. We suggest that the two alternate configurations correspond to the different functional forms of PSD-95 and provide a possible structural description for the experimentally observed cooperative folding transitions in PSD-95 and its homologs. More generally, we expect that comparative patch analysis will provide useful spatial restraints for the structural characterization of an increasing number of binary and higher-order protein complexes. PMID:17096593

  5. BRCT-domain protein BRIT1 influences class switch recombination.

    PubMed

    Yen, Wei-Feng; Chaudhry, Ashutosh; Vaidyanathan, Bharat; Yewdell, William T; Pucella, Joseph N; Sharma, Rahul; Liang, Yulong; Li, Kaiyi; Rudensky, Alexander Y; Chaudhuri, Jayanta

    2017-07-19

    DNA double-strand breaks (DSBs) serve as obligatory intermediates for Ig heavy chain (Igh) class switch recombination (CSR). The mechanisms by which DSBs are resolved to promote long-range DNA end-joining while suppressing genomic instability inherently associated with DSBs are yet to be fully elucidated. Here, we use a targeted short-hairpin RNA screen in a B-cell lymphoma line to identify the BRCT-domain protein BRIT1 as an effector of CSR. We show that conditional genetic deletion of BRIT1 in mice leads to a marked increase in unrepaired Igh breaks and a significant reduction in CSR in ex vivo activated splenic B cells. We find that the C-terminal tandem BRCT domains of BRIT1 facilitate its interaction with phosphorylated H2AX and that BRIT1 is recruited to the Igh locus in an activation-induced cytidine deaminase (AID) and H2AX-dependent fashion. Finally, we demonstrate that depletion of another BRCT-domain protein, MDC1, in BRIT1-deleted B cells increases the severity of CSR defect over what is observed upon loss of either protein alone. Our results identify BRIT1 as a factor in CSR and demonstrate that multiple BRCT-domain proteins contribute to optimal resolution of AID-induced DSBs.

  6. Methods of use of cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Methods of use of cellulose binding domain proteins

    SciTech Connect

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  8. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  9. Inferring Selection on Amino Acid Preference in Protein Domains

    PubMed Central

    Durbin, Richard

    2009-01-01

    Models that explicitly account for the effect of selection on new mutations have been proposed to account for “codon bias” or the excess of “preferred” codons that results from selection for translational efficiency and/or accuracy. In principle, such models can be applied to any mutation that results in a preferred allele, but in most cases, the fitness effect of a specific mutation cannot be predicted. Here we show that it is possible to assign preferred and unpreferred states to amino acid changing mutations that occur in protein domains. We propose that mutations that lead to more common amino acids (at a given position in a domain) can be considered “preferred alleles” just as are synonymous mutations leading to codons for more abundant tRNAs. We use genome-scale polymorphism data to show that alleles for preferred amino acids in protein domains occur at higher frequencies in the population, as has been shown for preferred codons. We show that this effect is quantitative, such that there is a correlation between the shift in frequency of preferred alleles and the predicted fitness effect. As expected, we also observe a reduction in the numbers of polymorphisms and substitutions at more important positions in domains, consistent with stronger selection at those positions. We examine the derived allele frequency distribution and polymorphism to divergence ratios of preferred and unpreferred differences and find evidence for both negative and positive selections acting to maintain protein domains in the human population. Finally, we analyze a model for selection on amino acid preferences in protein domains and find that it is consistent with the quantitative effects that we observe. PMID:19095755

  10. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation

    PubMed Central

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-01-01

    APS (Adaptor protein with PH and SH2 domains) initiates a PI 3-kinase independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS/Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Since actin rearrangement is important for insulin-induced Glut 4 translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were co-localized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of GFP-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodelling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue. PMID:16803868

  11. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly.

    PubMed

    Sawatsky, Bevan; Bente, Dennis A; Czub, Markus; von Messling, Veronika

    2016-05-01

    The amino-terminal cytoplasmic domains of paramyxovirus attachment glycoproteins include trafficking signals that influence protein processing and cell surface expression. To characterize the role of the cytoplasmic domain in protein expression, fusion support and particle assembly in more detail, we constructed chimeric Nipah virus (NiV) glycoprotein (G) and canine distemper virus (CDV) haemagglutinin (H) proteins carrying the respective heterologous cytoplasmic domain, as well as a series of mutants with progressive deletions in this domain. CDV H retained fusion function and was normally expressed on the cell surface with a heterologous cytoplasmic domain, while the expression and fusion support of NiV G was dramatically decreased when its cytoplasmic domain was replaced with that of CDV H. The cell surface expression and fusion support functions of CDV H were relatively insensitive to cytoplasmic domain deletions, while short deletions in the corresponding region of NiV G dramatically decreased both. In addition, the first 10 residues of the CDV H cytoplasmic domain strongly influence its incorporation into virus-like particles formed by the CDV matrix (M) protein, while the co-expression of NiV M with NiV G had no significant effect on incorporation of G into particles. The cytoplasmic domains of both the CDV H and NiV G proteins thus contribute differently to the virus life cycle.

  12. The modular organization of domain structures: insights into protein-protein binding.

    PubMed

    del Sol, Antonio; Carbonell, Pablo

    2007-12-01

    Domains are the building blocks of proteins and play a crucial role in protein-protein interactions. Here, we propose a new approach for the analysis and prediction of domain-domain interfaces. Our method, which relies on the representation of domains as residue-interacting networks, finds an optimal decomposition of domain structures into modules. The resulting modules comprise highly cooperative residues, which exhibit few connections with other modules. We found that non-overlapping binding sites in a domain, involved in different domain-domain interactions, are generally contained in different modules. This observation indicates that our modular decomposition is able to separate protein domains into regions with specialized functions. Our results show that modules with high modularity values identify binding site regions, demonstrating the predictive character of modularity. Furthermore, the combination of modularity with other characteristics, such as sequence conservation or surface patches, was found to improve our predictions. In an attempt to give a physical interpretation to the modular architecture of domains, we analyzed in detail six examples of protein domains with available experimental binding data. The modular configuration of the TEM1-beta-lactamase binding site illustrates the energetic independence of hotspots located in different modules and the cooperativity of those sited within the same modules. The energetic and structural cooperativity between intramodular residues is also clearly shown in the example of the chymotrypsin inhibitor, where non-binding site residues have a synergistic effect on binding. Interestingly, the binding site of the T cell receptor beta chain variable domain 2.1 is contained in one module, which includes structurally distant hot regions displaying positive cooperativity. These findings support the idea that modules possess certain functional and energetic independence. A modular organization of binding sites confers

  13. Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins

    PubMed Central

    Xu, Zhixiong; Meng, Xianzhang; Cai, Ying; Liang, Hong; Nagarajan, Lalitha; Brandt, Stephen J.

    2007-01-01

    The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and β-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins. PMID:17437998

  14. Inter-Domain Dynamics in a Two-Domain Protein Studied by NMR

    NASA Astrophysics Data System (ADS)

    Ryabov, Yaroslav; Fushman, David

    2006-03-01

    Domain orientation and dynamics often play an important role in regulation of multidomain proteins function. Here we consider a two-domain system, Lys48-linked di-ubiquitin (Ub2), which is the simplest model of the polyubiquitin chain involved in the ubiquitin-proteasome pathway. Under physiological conditions Ub2 adopts a compact conformation, in which the functionally important hydrophobic residues are sequestered at the interface between the two Ub2 domains. Here we present a dynamic model that combines the anisotropic overall rotational diffusion with intra- and interdomain dynamics. This model describes the interdomain motion as a transition between two distinct conformational states. The model is applied to experimental ^15N relaxation data for Lys48-linked Ub2 acquired at neutral (pH 6.8) and acidic (pH 4.5) conditions. The model provides complete picture of Ub2 domain mobility including domain orientations, time scales of domain motions, and occupation probabilities for both states of Ub2. The obtained results are consistent with independent data on chemical shift perturbation mapping and spin labeling.

  15. TOPDOM: database of conservatively located domains and motifs in proteins.

    PubMed

    Varga, Julia; Dobson, László; Tusnády, Gábor E

    2016-09-01

    The TOPDOM database-originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins-has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. TOPDOM database is available at http://topdom.enzim.hu The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. tusnady.gabor@ttk.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. Targeting proteins to liquid-ordered domains in lipid membranes.

    PubMed

    Stachowiak, Jeanne C; Hayden, Carl C; Sanchez, Mari Angelica A; Wang, Julia; Bunker, Bruce C; Voigt, James A; Sasaki, Darryl Y

    2011-02-15

    We demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (L(o)) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system. Fluorescence correlation spectroscopy confirmed the fluidity of the L(o) phase containing DPIDA. In the presence of CuCl(2), the iminodiacetic acid (IDA) headgroup of DPIDA forms the Cu(II)-IDA complex that exhibits a high affinity for histidine residues. His-tagged proteins were bound specifically to domains enriched in DPIDA, demonstrating the capacity to target protein binding selectively to both solid and L(o) phases. Steric pressure from the crowding of surface-bound proteins transformed the domains into tubules with persistence lengths that depended on the phase state of the lipid domains.

  17. Defining the boundaries: structure and function of LOB domain proteins.

    PubMed

    Majer, Christine; Hochholdinger, Frank

    2011-01-01

    The plant-specific LBD (Lateral Organ Boundaries Domain) gene family is essential in the regulation of plant lateral organ development and is involved in the regulation of anthocyanin and nitrogen metabolism. LBD proteins contain a characteristic LOB domain composed of a C-motif required for DNA-binding, a conserved glycine residue, and a leucine-zipper-like sequence required for protein-protein interactions. Recently, several LBD genes associated with mutant phenotypes related to almost all aspects of plant development, including embryo, root, leaf, and inflorescence development have been functionally characterized. These novel insights contribute to a better understanding of the molecular definition of boundaries between organs or boundaries between organs and meristems and the regulation of these processes by environmental cues and phytohormones.

  18. A Bayesian Sampler for Optimization of Protein Domain Hierarchies

    PubMed Central

    2014-01-01

    Abstract The process of identifying and modeling functionally divergent subgroups for a specific protein domain class and arranging these subgroups hierarchically has, thus far, largely been done via manual curation. How to accomplish this automatically and optimally is an unsolved statistical and algorithmic problem that is addressed here via Markov chain Monte Carlo sampling. Taking as input a (typically very large) multiple-sequence alignment, the sampler creates and optimizes a hierarchy by adding and deleting leaf nodes, by moving nodes and subtrees up and down the hierarchy, by inserting or deleting internal nodes, and by redefining the sequences and conserved patterns associated with each node. All such operations are based on a probability distribution that models the conserved and divergent patterns defining each subgroup. When we view these patterns as sequence determinants of protein function, each node or subtree in such a hierarchy corresponds to a subgroup of sequences with similar biological properties. The sampler can be applied either de novo o