DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Sukheung; Roberts, D.M.
1990-07-01
A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of ({sup 3}H)methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated andmore » green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.« less
Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites.
Kaimoyo, Evans; Farag, Mohamed A; Sumner, Lloyd W; Wasmann, Catherine; Cuello, Joel L; VanEtten, Hans
2008-01-01
Many secondary metabolites that are normally undetectable or in low amounts in healthy plant tissue are synthesized in high amounts in response to microbial infection. Various abiotic and biotic agents have been shown to mimic microorganisms and act as elicitors of the synthesis of these plant compounds. In the present study, sub-lethal levels of electric current are shown to elicit the biosynthesis of secondary metabolites in transgenic and non-transgenic plant tissue. The production of the phytoalexin (+)-pisatin by pea was used as the main model system. Non-transgenic pea hairy roots treated with 30-100 mA of electric current produced 13 times higher amounts of (+)-pisatin than did the non-elicited controls. Electrically elicited transgenic pea hairy root cultures blocked at various enzymatic steps in the (+)-pisatin biosynthetic pathway also accumulated intermediates preceding the blocked enzymatic step. Secondary metabolites not usually produced by pea accumulated in some of the transgenic root cultures after electric elicitation due to the diversion of the intermediates into new pathways. The amount of pisatin in the medium bathing the roots of electro-elicited roots of hydroponically cultivated pea plants was 10 times higher 24 h after elicitation than in the medium surrounding the roots of non-elicited control plants, showing not only that the electric current elicited (+)-pisatin biosynthesis but also that the (+)-pisatin was released from the roots. Seedlings, intact roots or cell suspension cultures of fenugreek (Trigonella foenum-graecum), barrel medic, (Medicago truncatula), Arabidopsis thaliana, red clover (Trifolium pratense) and chickpea (Cicer arietinum) also produced increased levels of secondary metabolites in response to electro-elicitation. On the basis of our results, electric current would appear to be a general elicitor of plant secondary metabolites and to have potential for application in both basic and commercial research.
Quantification of phenylethylamine and p-tyramine in rat tissues using a new radioenzymatic assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamburger, S.A.; Henry, D.P.
Phenylethylamine (PEA) and p-tyramine (p-tym) are biologically active aralkylamines that are found in a number of mammalian tissues, including brain and plasma. The investigation of the biological role of these substances has been hampered by the lack of accessible assay methodology. They have developed a new radioenzymatic assay using barley root tyramine N-methyltransferase and tritiated S-adenosylmethionine. The products formed by the reaction are isolated by TLC. The assay sensitivity was 2.1 and 1.0 pg/tube for PEA and p-tym, respectively. The concentration of PEA and p-tym was determined simultaneously in tissues from Sprague-Dawley rats (280 gm). Plasma PEA and p-tym weremore » 478 +/- 66 and 309 +/- 69 pg/ml, respectively. They conclude that this new procedure is applicable to all tissues examined in that all tissues contain both PEA and p-tym and that these amines are heterogeneously distributed in rat tissues.« less
Inhibition of strigolactones promotes adventitious root formation
Beveridge, Christine A.; Geelen, Danny
2012-01-01
Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species. PMID:22580687
NASA Astrophysics Data System (ADS)
Jadko, Sergiy
Early increasing of reactive oxygen species (ROS) content, including H2O2, occurs in plant cells under various impacts and than these ROS can function as signaling molecules in starting of cell stress responses. At the same time thioredoxins (TR) are significant ROS and H2O2 sensors and transmitters to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study was aimed to investigate early increasing of ROS and H2O2 contents and TR activity in the pea roots and in tissue culture under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12-14 days old tissue culture of Arabidopsis thaliana were studied. The pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 10 and 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and TR activity were determined. All experiments were repeated by 3-5 times. Early and reliable increasing of ChL intensity and H2O2 contents in the pea roots and in the tissue culture took place under hypergravity and oxidative stresses to 30, 60 and 90 min. At the same time TR activity increased on 11 and 19 percents only to 60 and 90 min. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers lead to increasing of TR activity with creating of ROS-TR stress signaling pathway.
NASA Astrophysics Data System (ADS)
Jadko, Sergiy
Early increasing of reactive oxygen species (ROS) concentration, including H2O2, occur in plant cells under various impacts and these ROS can function as signaling molecules in starting of cell stress responses. Peroxiredoxins (Prx) and thioredoxins (Trx) are significant cell ROS/H2O2 sensors and transmitters. Prx besides its antioxidant activity, participate in creating of stress redox signals by destroying of H2O2 and reducing of Trx. Than these reduced Trx lead to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study aimed to investigate early increasing of ROS and H2O2 contents and Prx and Trx activities in pea roots and arabidopsis tissue culture cells under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12 days old tissue culture of Arabidopsis thaliana from leaves were studied. Pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and Prx and Trx activities were determined. All experiments were repeated by 3-4 times. Early increasing of ChL intensity and H2O2 content in the pea roots and arabidopsis tissue culture cells took place under hypergravity and oxidative stresses and its were higher corresponding controls on average on 25, 21 and 17 percents to 30, 60 and 90 min. At the same time Prx and Trx activities increased on 7, 13 and 16 percents. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers can lead to ROS/H2O2-dependent increasing of Prx and Trx activities with creating of H2O2-Prx-Trx signaling pathway.
Uptake and Accumulation of the Herbicides Chlorsulfuron and Clopyralid in Excised Pea Root Tissue 1
Devine, Malcolm D.; Bestman, Hank D.; Vanden Born, William H.
1987-01-01
The herbicides chlorsulfuron and clopyralid were taken up rapidly by excised pea root tissue and accumulated in the tissue to concentrations ten and four times those in the external medium, respectively. Uptake was related linearly to external herbicide concentration over a wide concentration range, implying that transport across the membrane is by nonfacilitated diffusion. Uptake of both compounds was influenced by pH, with greatest uptake at low pH. The pH dependence of uptake suggests that the herbicides (both of which are weak acids) are transported across the plasma membrane in the undissociated form, and accumulate in the cytoplasm by an ion trap mechanism. Most of the absorbed herbicide effluxed from the tissue when it was transferred to herbicide-free buffer, indicating that the accumulation was not due to irreversible binding. Consequently, both herbicides remain available for transfer to the phloem. These results can explain the high reported phloem mobility of clopyralid in intact plants. The low phloem mobility of chlorsulfuron must be accounted for by factors that override its ability to accumulate in the symplast. PMID:16665689
Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea1[C][W][OA
Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B.; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne
2012-01-01
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776
Strigolactones suppress adventitious rooting in Arabidopsis and pea.
Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne
2012-04-01
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.
Abeles, Fred B.; Leather, Gerald R.; Forrence, Leonard E.
1978-01-01
Light production by plants was confirmed by measuring chemiluminescence from root and stem tissue of peas (Pisum sativum), beans (Phaseolus vulgaris), and corn (Zea mays) in a modified scintillation spectrophotometer. Chemiluminescence was inhibited by treating pea roots with boiling ethanol or by placing them in a N2 gas phase. Chemiluminescence was increased by an O2 gas phase or by the addition of luminol. NaN3 and NaCN blocked both in vitro and in vivo chemiluminescence. It is postulated that the source of light is the hydrogen peroxide-peroxidase enzyme system. It is known that this system is responsible for chemiluminescence in leukocytes and it seems likely that a similar system occurs in plants. PMID:16660587
Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu
2017-12-01
A field experiment was conducted to explore the mechanism of cultivation measures in affecting crop yield by investigating root distribution in spring wheat-pea rotation based on a long-term conservation tillage practices in a farming region of Gansu. The results showed that with the develo-pment of growth period, the total root length, root surface area of spring wheat and pea showed a consistent trend of increase after initial decrease and reached the maximum at flowering stage. Higher root distribution was found in the 0-10 cm soil layer at seedling and 10-30 cm soil layer at flowering and maturity stages in spring wheat, while in the field pea, higher root distribution was found in the 0-10 cm soil layer at seedling and maturity, and in the 10-30 cm soil layer at flowering stages. No tillage with straw mulching and plastic mulching increased the root length and root surface area. Compared with conventional tillage in spring wheat and field pea, root length increased by 35.9% to 92.6%, and root surface area increased by 43.2% to 162.4%, respectively. No tillage with straw mulching and plastic mulching optimized spring wheat and pea root system distribution, compared with conventional tillage, increased spring wheat and field pea root length and root surface area ratio at 0-10 cm depths at the seedling stage, the root distribution at deeper depths increased significantly at flowering and maturity stages, and no tillage with straw mulching increased root length and root surface area ratio by 3.3% and 9.7% respectively, in 30-80 cm soil layer at the flowering stage. The total root length, root surface area and yield had significantly positive correlation for spring wheat in each growth period, and the total root length and pea yield also had significant positive correlation. No tillage with straw mulching and plastic mulching boosted yield of spring wheat and pea by 23.4%-38.7% compared with the conventional tillage, and the water use efficiency was increased by 13.7%-28.5%. It was concluded that no-till farming and straw mulching (plastic) could increase crop root length and root surface area, optimize the spatial distribution of roots in the soil, enhance crop root layer absorption ability, so as to improve crop yield and water utilization.
Jiang, Jinglong; Su, Miao; Wang, Liyan; Jiao, Chengjin; Sun, Zhengxi; Cheng, Wei; Li, Fengmin; Wang, Chongying
2012-04-01
During germination in distilled water (dH(2)O) on a horizontally positioned Petri dish, emerging primary roots of grass pea (Lathyrus sativus L.) grew perpendicular to the bottom of the Petri dish, due to gravitropism. However, when germinated in exogenous hydrogen peroxide (H(2)O(2)), the primary roots grew parallel to the bottom of the Petri dish and asymmetrically, forming a horizontal curvature. Time-course experiments showed that the effect was strongest when H(2)O(2) was applied prior to the emergence of the primary root. H(2)O(2) failed to induce root curvature when applied post-germination. Dosage studies revealed that the frequency of primary root curvature was significantly enhanced with increased H(2)O(2) concentrations. This curvature could be directly counteracted by dimethylthiourea (DMTU), a scavenger of H(2)O(2), but not by diphenylene iodonium (DPI) and pyridine, inhibitors of H(2)O(2) production. Exogenous H(2)O(2) treatment caused both an increase in the activities of H(2)O(2)-scavenging enzymes [including ascorbate peroxidase (APX: EC 1.11.1.11), catalase (CAT: EC 1.11.1.6) and peroxidase (POD: EC 1.11.1.7)] and a reduction in endogenous H(2)O(2) levels and root vitality. Although grass pea seeds absorbed exogenous H(2)O(2) during seed germination, DAB staining of paraffin sections revealed that exogenous H(2)O(2) only entered the root epidermis and not inner tissues. These data indicated that exogenously applied H(2)O(2) could lead to a reversible loss of the root gravitropic response and a horizontal curvature in primary roots during radicle emergence of the seedling. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild
2015-01-01
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Correlations between polyamine ratios and growth patterns in seedling roots
NASA Technical Reports Server (NTRS)
Shen, H. J.; Galston, A. W.
1985-01-01
The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.
Cruchaga, Saioa; Artola, Ekhiñe; Lasa, Berta; Ariz, Idoia; Irigoyen, Ignacio; Moran, Jose Fernando; Aparicio-Tejo, Pedro M
2011-03-01
The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species. Copyright © 2010 Elsevier GmbH. All rights reserved.
Stimulation of root elongation and curvature by calcium
NASA Technical Reports Server (NTRS)
Takahashi, H.; Scott, T. K.; Suge, H.
1992-01-01
Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.
Mineral Ion Contents and Cell Transmembrane Electropotentials of Pea and Oat Seedling Tissue 1
Higinbotham, N.; Etherton, Bud; Foster, R. J.
1967-01-01
The relationships of concentration gradients to electropotential gradients resulting from passive diffusion processes, after equilibration, are described by the Nernst equation. The primary criterion for the hypothesis that any given ion is actively transported is to establish that it is not diffusing passively. A test was made of how closely the Nernst equation describes the electrochemical equilibrium in seedling tissues. Segments of roots and epicotyl internodes of pea (Pisum sativum var. Alaska) and of roots and coleoptiles of oat (Avena sativa var. Victory) seedlings were immersed and shaken in defined nutrient solutions containing eight major nutrients (K+, Na+, Ca2+, Mg2+, Cl−, NO3−, H2PO4− and SO42−) at 1-fold and 10-fold concentrations. The tissue content of each ion was assayed at 0, 8, 24, and 48 hours. A near-equilibrium condition was approached by roots for most ions; however, the segments of shoot tissue generally continued to show a net accumulation of some ions, mainly K+ and NO3−. Only K+ approached a reasonable fit to the Nernst equation and this was true for the 1-fold concentration but not the 10-fold. The data suggest that for Na+, Mg2+, and Ca2+ the electrochemical gradient is from the external solution to the cell interior; thus passive diffusion should be in an inward direction. Consequently, some mechanism must exist in plant tissue either to exclude these cations or to extrude them (e.g., by an active efflux pump). For each of the anions the electrochemical gradient is from the tissue to the solution; thus an active influx pump for anions seems required. Root segments approach ionic equilibrium with the solution concentration in which the seedlings were grown. Segments of shoot tissue, however, are far removed from such equilibration. Thus in the intact seedling the extracellular (wall space) fluid must be very different from that of the nutrient solution bathing the segments; it would appear that the root is the site of regulation of ion uptake in the intact plant although other correlative mechanisms may be involved. PMID:16656483
Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté
2012-08-01
Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.
Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté
2012-01-01
Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions. PMID:22645070
Desgroux, Aurore; Baudais, Valentin N; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie
2017-01-01
Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes ( PsLE, PsTFL1 ) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6 , was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches . This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.
Desgroux, Aurore; Baudais, Valentin N.; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie
2018-01-01
Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties. PMID:29354146
de Dios Barajas-López, Juan; Serrato, Antonio Jesús; Olmedilla, Adela; Chueca, Ana; Sahrawy, Mariam
2007-11-01
Plant thioredoxins (TRXs) are involved in redox regulation of a wide variety processes and usually exhibit organ specificity. We report strong evidence that chloroplastic TRXs are localized in heterotrophic tissues and suggest some ways in which they might participate in several metabolic and developmental processes. The promoter regions of the chloroplastic f and m1 TRX genes were isolated from a pea (Pisum sativum) plant genomic bank. Histochemical staining for beta-glucuronidase (GUS) in transgenic homozygous Arabidopsis (Arabidopsis thaliana) plants showed preferential expression of the 444-bp PsTRXf1 promoter in early seedlings, stems, leaves, and roots, as well as in flowers, stigma, pollen grains, and filaments. GUS activity under the control of the 1,874-bp PsTRXm1 promoter was restricted to the leaves, roots, seeds, and flowers. To gain insight into the translational regulation of these genes, a series of deletions of 5' elements in both TRX promoters were analyzed. The results revealed that a 126-bp construct of the PsTRXf2 promoter was unable to reproduce the expression pattern observed with the full promoter. The differences in expression and tissue specificity between PsTRXm1 and the deleted promoters PsTRXm2 and PsTRXm3 suggest the existence of upstream positive or negative regulatory regions that affect tissue specificity, sucrose metabolism, and light regulation. PsTRXm1 expression is finely regulated by light and possibly by other metabolic factors. In situ hybridization experiments confirmed new localizations of these chloroplastic TRX transcripts in vascular tissues and flowers, and therefore suggest possible new functions in heterotrophic tissues related to cell division, germination, and plant reproduction.
A diagnostic guide for Fusarium Root Rot of pea
USDA-ARS?s Scientific Manuscript database
Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...
Corpas, Francisco J; Barroso, Juan B; Carreras, Alfonso; Valderrama, Raquel; Palma, José M; León, Ana M; Sandalio, Luisa M; del Río, Luis A
2006-07-01
Nitric oxide (NO) is an important signalling molecule in different animal and plant physiological processes. Little is known about its biological function in plants and on the enzymatic source or site of NO production during plant development. The endogenous NO production from L-arginine (NO synthase activity) was analyzed in leaves, stems and roots during plant development, using pea seedlings as a model. NOS activity was analyzed using a novel chemiluminescence-based assay which is more sensitive and specific than previous methods used in plant tissues. In parallel, NO accumulation was analyzed by confocal laser scanning microscopy using as fluorescent probes either DAF-2 DA or DAF-FM DA. A strong increase in NOS activity was detected in stems after 11 days growth, coinciding with the maximum stem elongation. The arginine-dependent NOS activity was constitutive and sensitive to aminoguanidine, a well-known irreversible inhibitor of animal NOS, and this NOS activity was differentially modulated depending on the plant organ and seedling developmental stage. In all tissues studied, NO was localized mainly in the vascular tissue (xylem) and epidermal cells and in root hairs. These loci of NO generation and accumulation suggest novel functions for NO in these cell types.
Kahlon, Jagroop Gill; Jacobsen, Hans-Jörg; Cahill, James F; Hall, Linda M
2017-10-01
Genetically modified crops have raised concerns about unintended consequences on non-target organisms including beneficial soil associates. Pea transformed with four antifungal genes 1-3 β glucanase, endochitinase, polygalacturonase-inhibiting proteins, and stilbene synthase is currently under field-testing for efficacy against fungal diseases in Canada. Transgenes had lower expression in the roots than leaves in greenhouse experiment. To determine the impact of disease-tolerant pea or gene products on colonization by non-target arbuscular mycorrhizae and nodulation by rhizobium, a field trial was established. Transgene insertion, as single gene or stacked genes, did not alter root colonization by arbuscular mycorrhiza fungus (AMF) or root nodulation by rhizobium inoculation in the field. We found no effect of transgenes on the plant growth and performance although, having a dual inoculant with both AMF and rhizobium yielded higher fresh weight shoot-to-root ratio in all the lines tested. This initial risk assessment of transgenic peas expressing antifungal genes showed no deleterious effect on non-target organisms.
7 CFR 301.86-5 - Issuance and cancellation of certificates and limited permits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... plant. (3) Certification requirements for potatoes for consumption, root crops for consumption, garden... for consumption, root crops intended for consumption, garden or dry beans, or peas from the quarantined area only if the field in which the potatoes, root crops, garden or dry beans, or peas were grown...
7 CFR 301.86-5 - Issuance and cancellation of certificates and limited permits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... plant. (3) Certification requirements for potatoes for consumption, root crops for consumption, garden... for consumption, root crops intended for consumption, garden or dry beans, or peas from the quarantined area only if the field in which the potatoes, root crops, garden or dry beans, or peas were grown...
7 CFR 301.86-5 - Issuance and cancellation of certificates and limited permits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... plant. (3) Certification requirements for potatoes for consumption, root crops for consumption, garden... for consumption, root crops intended for consumption, garden or dry beans, or peas from the quarantined area only if the field in which the potatoes, root crops, garden or dry beans, or peas were grown...
Rothwell, Shane A.; Elphinstone, E. David; Dodd, Ian C.
2015-01-01
To meet future requirements for food production, sustainable intensive agricultural systems need to optimize nutrient availability to maximize yield, traditionally achieved by maintaining soil pH within an optimal range (6–6.5) by applying lime (calcium carbonate). However, a field trial that applied recommended liming rates to a sandy loam soil (increasing soil pH from 5.5 to 6.2) decreased pod yield of field bean (Vicia faba L. cv. Fuego) by ~30%. Subsequent pot trials, with liming that raised soil pH to 6.3–6.7, reduced stomatal conductance (g s) by 63, 26, and 59% in V. faba, bean (Phaseolus vulgaris), and pea (Pisum sativum), respectively. Furthermore, liming reduced shoot dry biomass by 16–24% in these species. Ionomic analysis of root xylem sap and leaf tissue revealed a decrease in phosphorus concentration that was correlated with decreased g s: both reductions were partially reversed by adding superphosphate fertilizer. Further analysis of pea suggests that leaf gas exchange was reduced by a systemic increase (roots, xylem sap, and leaves) in the phytohormone abscisic acid (ABA) in response to lime-induced suboptimal plant phosphorus concentrations. Supplying synthetic ABA via the transpiration stream to detached pea leaves, at the same xylem sap concentrations induced by liming, decreased transpiration. Furthermore, the g s of the ABA-deficient mutant pea wilty was unresponsive to liming, apparently confirming that ABA mediates some responses to low phosphorus availability caused by liming. This research provides a detailed mechanistic understanding of the physiological processes by which lime application can limit crop yields, and questions the suitability of current liming recommendations. PMID:25740925
Kinetic features of gravicurvature of pea (Pisum sativum) and cress (Lepidium sativum) roots
NASA Astrophysics Data System (ADS)
Polishchuk, O. V.
The upper sides of roots oriented horizontally grow more rapidly than the lower sides, causing the root ultimately to grow downward; this phenomenon is known as positive gravitropism. This ability is based on implicit mechanism which is being extensively investigated. Elaborate analysis of kinetic features of gravicurvature may complement the investigation. Pea and cress roots have positive gravitropism as roots of majority of higher plants. Mainly we investigated dependence of gravicurvature angle on time of gravistimulation. Two-day-old seedlings of cress (Lepidium sativum L. cv. P896) and four-day-old pea ones (Pisum sativum L. cv. Damir-2) were placed on 1% agar medium in Petri dishes and turned on angle of gravistimulation. Then they were photographed at the same position each hour of gravistimulation. Photographs were analyzed with the help of Image Tool software program. Both pea and cress roots showed two phases of gravitropic response during gravistimulation for 6 hours when the initial angle of gravistimulation was 135 degrees. Two peaks of the rate of bending were observed. In cress roots, the first peak was much lower and the distance between the two peaks was greater than in pea roots. Curves of gravitropic bending of cress roots grown in agar had one or two inflections while in the case of roots grown on filter paper curves had no inflections. These data are in agreement with the effect of the external medium on the gravitropic curvature of rice roots reported by Staves et al. (1997). Our results may reflect the fact that at least two systems that contribute to gravicurvature may exist in roots. These systems may be ligand-receptor complexes that may be formed with different kinetics in two different regions of the root. The most probable ligand is auxin and the regions appear to be central elongation zone (CEZ) and distal elongation zone (DEZ), that were reported to be centers of tropic bending in roots. Thus, dependence of rate of root bending on time may represent a superposition of at least two constituents. Moreover, differences in kinetics of bending between pea and cress roots may correspond to different kinetic parameters and contribution of the constituents. (Financial support by STCU: NN-13R).
New class of radioenzymatic assay for the quantification of p-tyramine and phenylethylamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, D.P.; Van Huysse, J.W.; Bowsher, R.R.
Radioenzymatic assays are widely used for the quantification of a number of biogenic amines. All previous procedures have utilized methyltransferases derived from mammalian tissues. In this assay for the quantification of the trace aralkylamines, p-tyramine (p-tym) and phenylethylamine (PEA), an enzyme, tyramine N-methyltransferase isolated from sprouted barley roots was used. The enzyme was specific for phenylethylamines. Of 26 structurally-related compounds, only p-tym, PEA, m-tym and amphetamine were substrates in vitro. Theoretic maximal methylation of substrates occurred at 10-20/sup 0/C. When TLC was used to separate the radiolabeled reaction products, a specific method was developed for p-tym and PEA. The assaymore » had a sensitivity of 0.8 and 2.8 pg/tube with a C.V. < 5% and was applicable to human plasma and urine. Assay throughput is similar to that of other TLC based radioenzymatic assays.« less
40 CFR 180.589 - Boscalid; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., except cowpea, field pea and grain lupin 2.5 Pea and bean, succulent shelled, subgroup 6B, except cowpea....05 Beet, garden, roots 0.1 Beet, sugar, roots 0.1 Cowpea, seed 0.1 Grain, cereal, forage, fodder and...
Differential uptake of photosynthetic and non-photosynthetic proteins by pea root plastids.
Yan, Xianxi; Khan, Sultan; Hase, Toshiharu; Emes, Michael J; Bowsher, Caroline G
2006-11-27
The photosynthetic proteins RuBiSCO, ferredoxin I and ferredoxin NADP(+)-oxidoreductase (pFNR) were efficiently imported into isolated pea chloroplasts but not into pea root plastids. By contrast non-photosynthetic ferredoxin III and heterotrophic FNR (hFNR) were efficiently imported into both isolated chloroplasts and root plastids. Chimeric ferredoxin I/III (transit peptide of ferredoxin I attached to the mature region of ferredoxin III) only imported into chloroplasts. Ferredoxin III/I (transit peptide of ferredoxin III attached to the mature region of ferredoxin I) imported into both chloroplasts and root plastids. This suggests that import depends on specific interactions between the transit peptide and the translocon apparatus.
Sujkowska-Rybkowska, Marzena; Borucki, Wojciech
2014-12-01
Cell wall components such as hydroxyproline-rich glycoproteins (HRGPs, extensins) have been proposed to be involved in aluminum (Al) resistance mechanisms in plants. We have characterized the distribution of extensin in pea (Pisum sativum L.) root nodules apoplast under short (for 2 and 24h) Al stress. Monoclonal antibodie LM1 have been used to locate extensin protein epitope by immunofluorescence and immunogold labeling. The nodules were shown to respond to Al stress by thickening of plant and infection thread (IT) walls and disturbances in threads growth and bacteria endocytosis. Immunoblot results indicated the presence of a 17-kDa band specific for LM1. Irrespective of the time of Al stress, extensin content increased in root nodules. Further observation utilizing fluorescence and transmission electron microscope showed that LM1 epitope was localized in walls and intercellular spaces of nodule cortex tissues and in the infection threads matrix. Al stress in nodules appears to be associated with higher extensin accumulation in matrix of enlarged thick-walled ITs. In addition to ITs, thickened walls and intercellular spaces of nodule cortex were also associated with intense extensin accumulation. These data suggest that Al-induced extensin accumulation in plant cell walls and ITs matrix may have influence on the process of IT growth and tissue and cell colonization by Rhizobium bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hydrotropism in pea roots in a porous-tube water delivery system
NASA Technical Reports Server (NTRS)
Takahashi, H.; Brown, C. S.; Dreschel, T. W.; Scott, T. K.; Knott, W. M. (Principal Investigator)
1992-01-01
Orientation of root growth on earth and under microgravity conditions can possibly be controlled by hydrotropism--growth toward a moisture source in the absence of or reduced gravitropism. A porous-tube water delivery system being used for plant growth studies is appropriate for testing this hypothesis since roots can be grown aeroponically in this system. When the roots of the agravitropic mutant pea ageotropum (Pisum sativum L.) were placed vertically in air of 91% relative humidity and 2 to 3 mm from the water-saturated porous tube placed horizontally, the roots responded hydrotropically and grew in a continuous arch along the circular surface of the tube. By contrast, normal gravitropic roots of Alaska' pea initially showed a slight transient curvature toward the tube and then resumed vertical downward growth due to gravitropism. Thus, in microgravity, normal gravitropic roots could respond to a moisture gradient as strongly as the agravitropic roots used in this study. Hydrotropism should be considered a significant factor responsible for orientation of root growth in microgravity.
Effect of Root-Zone Moisture Variations on Growth of Lettuce and Pea Plants
NASA Astrophysics Data System (ADS)
Ilieva, Iliana; Ivanova, Tania
2008-06-01
Variations in substrate moisture lead to changes in water and oxygen availability to plant roots. Ground experiments were carried out in the laboratory prototype of SVET-2 Space Greenhouse to study the effect of variation of root-zone moisture conditions on growth of lettuce and pea plants. The effect of transient increase (for 1 day) and drastic increase (waterlogging for 10 days) of substrate moisture was studied with 16-day old pea and 21-day old lettuce plants respectively. Pea height and fresh biomass accumulation were not affected by transient substrate moisture increase. Net photosynthetic rate (Pn) of pea plants showed fast response to substrate moisture variation, while chlorophyll content did not change. Drastic change of substrate moisture suppressed lettuce Pn, chlorophyll biosynthesis and plant growth. These parameters slowly recovered after termination of waterlogging treatment but lettuce yield was greatly affected. The results showed that the most sensitive physiological parameter to substrate moisture variations is photosynthesis.
Mandeel, Qaher A
2006-03-01
In earlier studies, biological control of Fusarium wilt of cucumber induced by Fusarium oxysporum f. sp. cucumerinum was demonstrated using nonpathogenic strains C5 and C14 of Fusarium oxysporum. Strain C14 induced resistance and competed for infection sites whether roots were wounded or intact, whereas strain C5 required wounds to achieve biocontrol. In the current work, additional attributes involved in enhanced resistance by nonpathogenic biocontrol agents strains to Fusarium wilt of cucumber and pea were further investigated. In pre-penetration assays, pathogenic formae specials exhibited a significantly higher percentage of spore germination in 4-day-old root exudates of cucumber and pea than nonpathogens. Also, strain C5 exhibited the lowest significant reduction in spore germination in contrast to strain C14 or control. One-day-old cucumber roots injected with strain C14 resulted in significant reduction in germ tube orientation towards the root surface, 48-96 h after inoculation with F. o. cucumerinum spores, whereas strain C5 induced significantly lower spore orientation of the pathogen and only at 72 and 96 h after inoculation. In post-penetration tests, passive transport of microconidia of pathogenic and nonpathogens in stems from base to apex were examined when severed plant roots were immersed in spore suspension. In repeated trials, strain C5, F. o. cucumerinum and F. o. pisi were consistently isolated from stem tissues of both cucumber and pea at increasing heights over a 17 days incubation period. Strain C14 however, was recovered at a maximum translocation distance of 4.6 cm at day 6 and later height of isolation significantly declined thereafter to 1.2 cm at day 17. In pea stem, the decline was even less. Significant induction of resistance to challenge inoculation by the pathogen in cucumber occurred 72 and 96 h after pre-inoculation with biocontrol agents. Nonetheless, strain C14 induced protection as early as 48 h and the maximum resistance was reached at 96 h. The presented data confirm the previous findings that attributes important for nonpathogenic fusaria to induce resistant are: rapid spore germination and orientation in response to root exudate; active root penetration and passive conidia transport in stem to initiate defence reaction without pathogenicity and enough lag period between induction and challenge inoculation. Strain C14 possesses all these qualifications and hence its ability to enhance host resistance is superior than strain C5.
Di Cesare Mannelli, Lorenzo; Pacini, Alessandra; Corti, Francesca; Boccella, Serena; Luongo, Livio; Esposito, Emanuela; Cuzzocrea, Salvatore; Maione, Sabatino; Calignano, Antonio; Ghelardini, Carla
2015-01-01
Neurotoxicity is a main side effect of the anticancer drug oxaliplatin. The development of a neuropathic syndrome impairs quality of life and potentially results in chemotherapy dose reductions and/or early discontinuation. In the complex pattern of molecular and morphological alterations induced by oxaliplatin in the nervous system, an important activation of glia has been preclinically evidenced. N-Palmitoylethanolamine (PEA) modulates glial cells and exerts antinociceptive effects in several animal models. In order to improve the therapeutic chances for chemotherapy-dependent neuropathy management, the role of PEA was investigated in a rat model of oxaliplatin-induced neuropathy (2.4 mg kg-1 daily, intraperitoneally). On day 21, a single administration of PEA (30 mg kg-1 i.p.) was able to reduce oxaliplatin-dependent pain induced by mechanical and thermal stimuli. The repeated treatment with PEA (30 mg kg-1 daily i.p. for 21 days, from the first oxaliplatin injection) prevented lowering of pain threshold as well as increased pain on suprathreshold stimulation. Ex vivo histological and molecular analysis of dorsal root ganglia, peripheral nerves and spinal cord highlighted neuroprotective effects and glia-activation prevention induced by PEA repeated administration. The protective effect of PEA resulted in the normalization of the electrophysiological activity of the spinal nociceptive neurons. Finally, PEA did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. The efficacy of PEA in neuropathic pain control and in preventing nervous tissue alteration candidates this endogenous compound as disease modifying agent. These characteristics, joined to the safety profile, suggest the usefulness of PEA in chemotherapy-induced neuropathy. PMID:26039098
Baćanović-Šišić, Jelena; Karlovsky, Petr; Wittwer, Raphaël; Walder, Florian; Campiglia, Enio; Radicetti, Emanuele; Friberg, Hanna; Baresel, Jörg Peter; Finckh, Maria R.
2018-01-01
Leguminous cover crop and living mulch species show not only great potential for providing multiple beneficial services to agro-ecosystems, but may also present pathological risks for other crops in rotations through shared pathogens, especially those of the genus Fusarium. Disease severity on roots of subterranean clover, white clover, winter and summer vetch grown as cover crop and living mulch species across five European sites as well as the frequency, distribution and aggressiveness to pea of Fusarium spp. recovered from the roots were assessed in 2013 and 2014. Disease symptoms were very low at all sites. Nevertheless, out of 1480 asymptomatic roots, 670 isolates of 14 Fusarium spp. were recovered. The most frequently isolated species in both years from all hosts were F. oxysporum and F. avenaceum accounting for 69% of total isolation percentage. They were common at the Swiss, Italian and German sites, whereas at the Swedish site F. oxysporum dominated and F. avenaceum occurred only rarely. The agressiveness and effect on pea biomass were tested in greenhouse assays for 72 isolates of six Fusarium species. Isolates of F. avenaceum caused severe root rot symptoms with mean severity index (DI) of 82 and 74% mean biomass reduction compared to the non-inoculated control. Fusarium oxysporum and F. solani isolates were higly variable in agressiveness and their impact on pea biomass. DI varied between 15 and 50 and biomass changes relative to the non-inoculated control -40% to +10%. Isolates of F. tricinctum, F. acuminatum and F. equiseti were non to weakly agressive often enhancing pea biomass. This study shows that some of the major pea pathogens are characterized by high ecological plasticity and have the ability to endophytically colonize the hosts studied that thus may serve as inoculum reservoir for susceptible main legume grain crops such as pea. PMID:29444142
Badowiec, Anna; Swigonska, Sylwia; Weidner, Stanisław
2013-10-01
Amongst many factors restricting geographical distribution of plants and crop productivity, low temperature is one of the most important. To gain better understanding of the molecular response of germinating pea (Pisum sativum L.) to low temperature, we investigated the influence of long and short chilling stress as well as post-stress recovery on the alterations in the root proteomes. The impact of long stress was examined on the pea seeds germinating in the continuous chilling conditions of 10 °C for 8 days (LS). To examine the impact of short stress, pea seeds germinating for 72 h in the optimal temperature of 20 °C were subjected to 24-h chilling (SS). Additionally, both stress treatments were followed by 24 h of recovery in the optimal conditions (accordingly LSR and SR). Using the 2D gel electrophoresis and MALDI-TOF MS protein identification, it was revealed, that most of the proteins undergoing regulation under the applied conditions were implicated in metabolism, protection against stress, cell cycle regulation, cell structure maintenance and hormone synthesis, which altogether may influence root growth and development in the early stages of plant life. The obtained results have shown that most of detected alterations in the proteome patterns of pea roots are dependent on stress duration. However, there are some analogical response pathways which are triggered regardless of stress length. The functions of proteins which accumulation has been changed by chilling stress and post-stress recovery are discussed here in relation to their impact on pea roots development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon.
Rahman, Mohammad Farhadur; Ghosal, Anubrata; Alam, Mohammad Firoz; Kabir, Ahmad Humayan
2017-01-01
Cadmium (Cd) is an important phytotoxic element causing health hazards. This work investigates whether and how silicon (Si) influences the alleviation of Cd toxicity in field peas at biochemical and molecular level. The addition of Si in Cd-stressed plants noticeably increased growth and development as well as total protein and membrane stability of Cd-stressed plants, suggesting that Si does have critical roles in Cd detoxification in peas. Furthermore, Si supplementation in Cd-stressed plants showed simultaneous significant increase and decrease of Cd and Fe in roots and shoots, respectively, compared with Cd-stressed plants. At molecular level, GSH1 (phytochelatin precursor) and MT A (metallothionein) transcripts predominantly expressed in roots and strongly induced due to Si supplementation in Cd-stressed plants compared with Cd-free conditions, suggesting that these chelating agents may bind to Cd leading to vacuolar sequestration in roots. Furthermore, pea Fe transporter (RIT1) showed downregulation in shoots when plants were treated with Si along with Cd compared with Cd-treated conditions. It is consistent with the physiological observations and supports the conclusion that alleviation of Cd toxicity in pea plants might be associated with Cd sequestration in roots and reduced Cd translocation in shoots through the regulation of Fe transport. Furthermore, increased CAT, POD, SOD and GR activity along with elevated S-metabolites (cysteine, methionine, glutathione) implies the active involvement of ROS scavenging and plays, at least in part, to the Si-mediated alleviation of Cd toxicity in pea. The study provides first mechanistic evidence on the beneficial effect of Si on Cd toxicity in pea plants. Copyright © 2016 Elsevier Inc. All rights reserved.
Interactive Effects of CO2 and O2 in Soil on Root and Top Growth of Barley and Peas
Geisler, G.
1967-01-01
Barley and pea plants were grown under several regimens of different compositions of soil atmosphere, the O2 concentration varying from 0 to 21% and the CO2 concentration from 0 to 8%. In absence of CO2, the effect of O2 on root length in barley was characterized by equal root lengths within the range of 21 to 7% O2 and a steep decline between 7 and 0%. In peas, while showing the same general response, the decline occurred between 14 and 7% O2. Root numbers of the seminal roots of barley decreased already with reduction in O2 concentration from 21 to 14%. Dry matter production was affected somewhat differently by O2 and CO2 concentration. Dry matter production in barley was reduced at 14% O2 while root length decreased between 7 and 0%. In peas, dry matter production was favored by low CO2 concentrations except where there was no oxygen. At 21% O2, increasing CO2 concentrations did not seem to affect root length up to concentrations of 2% CO2. At 8% CO2, root length was decreased. The inter-active effects of CO2 and O2 are characterized by a reduced susceptibility to CO2 at O2 values below 7%, and a very deleterious effect of 8% CO2 at 7% O2. PMID:16656508
Immunological characterization of plant ornithine transcarbamylases
NASA Technical Reports Server (NTRS)
Slocum, R. D.; Williamson, C. L.; Poggenburg, C. A.; Lynes, M. A.
1990-01-01
Pea (Pisum sativum L.) ornithine transcarbamylase (OTC) antisera were used to investigate the immunological relatedness of several plant and animal OTC enzymes. The antisera immunoprecipitated OTC activity in all monocot and dicot species tested, and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of immunoprecipitated protein revealed monomeric proteins ranging from 35,200 to 36,800 daltons in size. Pea OTC antisera did not recognize mammalian OTC protein. OTC activity and protein levels detected on sodium dodecyl sulfate polyacrylamide gel electrophoresis immunoblots from homogenates of green leaf, etiolated epicotyl and cotyledon, and root tissues of pea were poorly correlated. This might result from differences in amounts of enzymatically active OTC protein in the homogenates. Alternatively, the antisera may fail to recognize different isozyme forms of OTC, which have been reported for some plant species. A putative cytosolic precursor OTC (pOTC) polypeptide exhibiting and Mr = 39,500 to 40,000 daltons was immunoprecipitated from in vitro translation mixtures of total pea leaf poly(A)+ RNA. The size of the pOTC polypeptide, as compared with mature OTC monomer (36,000 daltons), suggests that a 4 kilodalton N-terminal leader sequence, like that responsible for mitochondrial targeting of the mammalian enzyme, may be involved in organellar import of the plant enzyme.
Li, Xuewen; Li, Yalin; Qu, Mei; Xiao, Hongdong; Feng, Yingming; Liu, Jiayou; Wu, Lishu; Yu, Min
2016-01-01
The initial response of plants to aluminum (Al) is the inhibition of root elongation, while the transition zone is the most Al sensitive zone in the root apex, which may sense the presence of Al and regulate the responses of root to Al toxicity. In the present study, the effect of Al treatment (30 μM, 24 h) on root growth, Al accumulation, and properties of cell wall of two pea (Pisum sativum L.) cultivars, cv Onward (Al-resistant) and cv Sima (Al-sensitive), were studied to disclose whether the response of root transition zone to Al toxicity determines Al resistance in pea cultivars. The lower relative root elongation (RRE) and higher Al content were founded in cv Sima compared with cv Onward, which were related to Al-induced the increase of pectin in root segments of both cultivars. The increase of pectin is more prominent in Al-sensitive cultivar than in Al-resistant cultivar. Aluminum toxicity also induced the increase of pectin methylesterases (PME), which is 2.2 times in root transition zone in Al-sensitive cv Sima to that of Al resistant cv Onward, thus led to higher demethylesterified pectin content in root transition zone of Al-sensitive cv Sima. The higher demethylesterified pectin content in root transition zone resulted in more Al accumulation in the cell wall and cytosol in Al-sensitive cv Sima. Our results provide evidence that the increase of pectin content and PME activity under Al toxicity cooperates to determine Al sensitivity in root transition zone that confers Al resistance in cultivars of pea (Pisum sativum). PMID:26870060
Seventeen years of research on genetics of resistance to Aphanomyces root rot of pea
USDA-ARS?s Scientific Manuscript database
Aphanomyces root rot, caused by the oomycete Aphanomyces euteiches, is a major soil borne disease of pea in many countries. Genetic resistance is considered to be a main way to control the disease. Since 2000, INRA has engaged a long-term research program to study genetic resistance to A. euteiches ...
Kukavica, Biljana M; Veljovicc-Jovanovicc, Sonja D; Menckhoff, Ljiljana; Lüthje, Sabine
2012-07-01
Cell wall isolated from pea roots was used to separate and characterize two fractions possessing class III peroxidase activity: (i) ionically bound proteins and (ii) covalently bound proteins. Modified SDS-PAGE separated peroxidase isoforms by their apparent molecular weights: four bands of 56, 46, 44, and 41kDa were found in the ionically bound fraction (iPOD) and one band (70kDa) was resolved after treatment of the cell wall with cellulase and pectinase (cPOD). Isoelectric focusing (IEF) patterns for iPODs and cPODs were significantly different: five iPODs with highly cationic pI (9.5-9.2) were detected, whereas the nine cPODs were anionic with pI values between pH 3.7 and 5. iPODs and cPODs showed rather specific substrate affinity and different sensitivity to inhibitors, heat, and deglycosylation treatments. Peroxidase and oxidase activities and their IEF patterns for both fractions were determined in different zones along the root and in roots of different ages. New iPODs with pI 9.34 and 9.5 were induced with root growth, while the activity of cPODs was more related to the formation of the cell wall in non-elongating tissue. Treatment with auxin that inhibits root growth led to suppression of iPOD and induction of cPOD. A similar effect was obtained with the widely used elicitor, chitosan, which also induced cPODs with pI 5.3 and 5.7, which may be specifically related to pathogen defence. The differences reported here between biochemical properties of cPOD and iPOD and their differential induction during development and under specific treatments implicate that they are involved in specific and different physiological processes.
NASA Technical Reports Server (NTRS)
Lee, J. S.; Mulkey, T. J.; Evans, M. L.
1984-01-01
Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawes, M.C.
1995-03-01
The objective of this research was to develop a model system to study border cell separation in transgenic pea roots. In addition, the hypothesis that genes encoding pectolytic enzymes in the root cap play a role in the programmed separation of root border cells from the root tip was tested. The following objectives have been accomplished: (1) the use of transgenic hairy roots to study border cell separation has been optimized for Pisum sativum; (2) a cDNA encoding a root cap pectinmethylesterase (PME) has been cloned; (3) PME and polygalacturonase activities in cell walls of the root cap have beenmore » characterized and shown to be correlated with border cell separation. A fusion gene encoding pectate lyase has also been transformed into pea hairy root cells.« less
Tsyganov, Viktor E; Belimov, Andrei A; Borisov, Alexey Y; Safronova, Vera I; Georgi, Manfred; Dietz, Karl-Josef; Tikhonovich, Igor A
2007-02-01
To date, there are no crop mutants described in the literature that display both Cd accumulation and tolerance. In the present study a unique pea (Pisum sativum) mutant SGECd(t) with increased Cd tolerance and accumulation was isolated and characterized. Ethylmethane sulfonate mutagenesis of the pea line SGE was used to obtain the mutant. Screening for Cd-tolerant seedlings in the M2 generation was performed using hydroponics in the presence of 6 microm CdCl2. Hybridological analysis was used to identify the inheritance of the mutant phenotype. Several physiological and biochemical characteristics of SGECd(t) were studied in hydroponic experiments in the presence of 3 microm CdCl2, and elemental analysis was conducted. The mutant SGECd(t) was characterized as having a monogenic inheritance and a recessive phenotype. It showed increased Cd concentrations in roots and shoots but no obvious morphological defects, demonstrating its capability to cope well with increased Cd levels in its tissues. The enhanced Cd accumulation in the mutant was accompanied by maintenance of homeostasis of shoot Ca, Mg, Zn and Mn contents, and root Ca and Mg contents. Through the application of La(+3) and the exclusion of Ca from the nutrient solution, maintenance of nutrient homeostasis in Cd-stressed SGECd(t) was shown to contribute to the increased Cd tolerance. Control plants of the mutant (i.e. no Cd treatment) had elevated concentrations of glutathione (GSH) in the roots. Through measurements of chitinase and guaiacol-dependent peroxidase activities, as well as proline and non-protein thiol (NPT) levels, it was shown that there were lower levels of Cd stress both in roots and shoots of SGECd(t). Accumulation of phytochelatins [(PCcalculated) = (NPT)-(GSH)] could be excluded as a cause of the increased Cd tolerance in the mutant. The SGECd(t) mutant represents a novel and unique model to study adaptation of plants to toxic heavy metal concentrations.
Immunolocalization of an annexin-like protein in corn
NASA Astrophysics Data System (ADS)
Clark, G. B.; Dauwalder, M.; Roux, S. J.
1994-08-01
Although calcium has been proposed to be an important regulatory element in plant gravitropic growth, as yet no specific function of Ca2+ in growth regulation has been discovered. Our recent studies on a Ca2+-binding protein in pea seedlings called p35 indicate that it is a member of the annexin family of proteins and may play a key role in growth regulation through its function in delivering polysaccharides needed for wall construction. We previously reported the isolation of p35 from pea plumules and the production of polyclonal antibodies to it. Immunolocalization analyses of p35 in pea tissues revealed high levels of staining in secretory cell types such as developing vascular cells and outer root cap cells. To test how general was the occurrence and distribution of this annexin-like protein in plant cells we initiated an analysis of annexins in the monocot corn using immunological techniques. Our results indicate the immunochemical properties and localization of corn annexins are very similar to those reported for pea. They are consistent with the postulate that annexins may play a general role in the regulation of the secretion of wall polysaccharides needed for growth, and thus could be an important target of calcium action during gravitropic growth.
Immunolocalization of an annexin-like protein in corn
NASA Technical Reports Server (NTRS)
Clark, G. B.; Dauwalder, M.; Roux, S. J.
1994-01-01
Although calcium has been proposed to be an important regulatory element in plant gravitropic growth, as yet no specific function of Ca2(+) in growth regulation has been discovered. Our recent studies on a Ca2(+)-binding protein in pea seedlings called p35 indicate that it is a member of the annexin family of proteins and may play a key role in growth regulation through its function in delivering polysaccharides needed for wall construction. We previously reported the isolation of p35 from pea plumules and the production of polyclonal antibodies to it. Immunolocalization analyses of p35 in pea tissues revealed high levels of staining in secretory cell types such as developing vascular cells and outer root cap cells. To test how general was the occurrence and distribution of this annexin-like protein in plant cells we initiated an analysis of annexins in the monocot corn using immunological techniques. Our results indicate the immunochemical properties and localization of corn annexins are very similar to those reported for pea. They are consistent with the postulate that annexins may play a general role in the regulation of the secretion of wall polysaccharides needed for growth, and thus could be an important target of calcium action during gravitropic growth.
Gucciardo, Sébastian; Wisniewski, Jean-Pierre; Brewin, Nicholas J; Bornemann, Stephen
2007-01-01
The cDNAs encoding three germin-like proteins (PsGER1, PsGER2a, and PsGER2b) were isolated from Pisum sativum. The coding sequence of PsGER1 transiently expressed in tobacco leaves gave a protein with superoxide dismutase activity but no detectable oxalate oxidase activity according to in-gel activity stains. The transient expression of wheat germin gf-2.8 oxalate oxidase showed oxalate oxidase but no superoxide dismutase activity under the same conditions. The superoxide dismutase activity of PsGER1 was resistant to high temperature, denaturation by detergent, and high concentrations of hydrogen peroxide. In salt-stressed pea roots, a heat-resistant superoxide dismutase activity was observed with an electrophoretic mobility similar to that of the PsGER1 protein, but this activity was below the detection limit in non-stressed or H(2)O(2)-stressed pea roots. Oxalate oxidase activity was not detected in either pea roots or nodules. Following in situ hybridization in developing pea nodules, PsGER1 transcript was detected in expanding cells just proximal to the meristematic zone and also in the epidermis, but to a lesser extent. PsGER1 is the first known germin-like protein with superoxide dismutase activity to be associated with nodules. It shared protein sequence identity with the N-terminal sequence of a putative plant receptor for rhicadhesin, a bacterial attachment protein. However, its primary location in nodules suggests functional roles other than as a rhicadhesin receptor required for the first stage of bacterial attachment to root hairs.
Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris
2016-01-01
Phenotyping local crop cultivars is becoming more and more important, as they are an important genetic source for breeding – especially in regard to inherent root system architectures. Machine learning algorithms are promising tools to assist in the analysis of complex data sets; novel approaches are need to apply them on root phenotyping data of mature plants. A greenhouse experiment was conducted in large, sand-filled columns to differentiate 16 European Pisum sativum cultivars based on 36 manually derived root traits. Through combining random forest and support vector machine models, machine learning algorithms were successfully used for unbiased identification of most distinguishing root traits and subsequent pairwise cultivar differentiation. Up to 86% of pea cultivar pairs could be distinguished based on top five important root traits (Timp5) – Timp5 differed widely between cultivar pairs. Selecting top important root traits (Timp) provided a significant improved classification compared to using all available traits or randomly selected trait sets. The most frequent Timp of mature pea cultivars was total surface area of lateral roots originating from tap root segments at 0–5 cm depth. The high classification rate implies that culturing did not lead to a major loss of variability in root system architecture in the studied pea cultivars. Our results illustrate the potential of machine learning approaches for unbiased (root) trait selection and cultivar classification based on rather small, complex phenotypic data sets derived from pot experiments. Powerful statistical approaches are essential to make use of the increasing amount of (root) phenotyping information, integrating the complex trait sets describing crop cultivars. PMID:27999587
Schuurmans, Jolanda A M J; van Dongen, Joost T; Rutjens, Bas P W; Boonman, Alex; Pieterse, Corné M J; Borstlap, Adrianus C
2003-11-01
Water and nutrients required by developing seeds are mainly supplied by the phloem and have to be released from a maternal parenchyma tissue before being utilized by the filial tissues of embryo and endosperm. To identify aquaporins that could be involved in this process four full-length cDNAs were cloned and sequenced from a cDNA library of developing seed coats of pea (Pisum sativum L.). The cDNA of PsPIP1-1 appeared to be identical to that of clone 7a/TRG-31, a turgor-responsive gene cloned previously from pea roots. PsPIP1-1, PsPIP2-1, and PsTIP1-1, or their possible close homologues, were also expressed in cotyledons of developing and germinating seeds, and in roots and shoots of seedlings, but transcripts of PsNIP-1 were only detected in the seed coat. In mature dry seeds, high hybridization signals were observed with the probe for PsPIP1-1, but transcripts of PsPIP2-1, PsTIP1-1, and PsNIP-1 were not detected. Functional characterization after heterologous expression in Xenopus oocytes showed that PsPIP2-1 and PsTIP1-1 are aquaporins whereas PsNIP-1 is an aquaglyceroporin. PsNIP-1, like several other NIPs, contains a tryptophan residue corresponding with Trp-48 in GlpF (the glycerol facilitator of Escherichia coli) that borders the selectivity filter in the permeation channel. It is suggested that PsPIP1-1 and/or its possible close homologues could play a role in water absorption during seed imbibition, and that PsPIP2-1, possibly together with PsPIP1-1, could be involved in the release of phloem water from the seed coat symplast, which is intimately connected with the release of nutrients for the embryo.
Gao, Yuan; Zhao, Jin Tong; Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas
2011-01-01
Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA.
Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen
Dhandapani, Pragatheswari; Song, Jiancheng; Novak, Ondrej
2017-01-01
Background and Aims Pisum sativum L. (pea) seed is a source of carbohydrate and protein for the developing plant. By studying pea seeds inoculated by the cytokinin-producing bacterium, Rhodococcus fascians, we sought to determine the impact of both an epiphytic (avirulent) strain and a pathogenic strain on source–sink activity within the cotyledons during and following germination. Methods Bacterial spread was monitored microscopically, and real-time reverse transcription–quantitative PCR was used to determine the expression of cytokinin biosynthesis, degradation and response regulator gene family members, along with expression of family members of SWEET, SUT, CWINV and AAP genes – gene families identified initially in pea by transcriptomic analysis. The endogenous cytokinin content was also determined. Key Results The cotyledons infected by the virulent strain remained intact and turned green, while multiple shoots were formed and root growth was reduced. The epiphytic strain had no such marked impact. Isopentenyl adenine was elevated in the cotyledons infected by the virulent strain. Strong expression of RfIPT, RfLOG and RfCKX was detected in the cotyledons infected by the virulent strain throughout the experiment, with elevated expression also observed for PsSWEET, PsSUT and PsINV gene family members. The epiphytic strain had some impact on the expression of these genes, especially at the later stages of reserve mobilization from the cotyledons. Conclusions The pathogenic strain retained the cotyledons as a sink tissue for the pathogen rather than the cotyledon converting completely to a source tissue for the germinating plant. We suggest that the interaction of cytokinins, CWINVs and SWEETs may lead to the loss of apical dominance and the appearance of multiple shoots. PMID:27864224
Yao, Shaolun; Jiang, Chuan; Huang, Ziyue; Torres-Jerez, Ivone; Chang, Junil; Zhang, Heng; Udvardi, Michael; Liu, Renyi; Verdier, Jerome
2016-10-01
Legume research and cultivar development are important for sustainable food production, especially of high-protein seed. Thanks to the development of deep-sequencing technologies, crop species have been taken to the front line, even without completion of their genome sequences. Black-eyed pea (Vigna unguiculata) is a legume species widely grown in semi-arid regions, which has high potential to provide stable seed protein production in a broad range of environments, including drought conditions. The black-eyed pea reference genotype has been used to generate a gene expression atlas of the major plant tissues (i.e. leaf, root, stem, flower, pod and seed), with a developmental time series for pods and seeds. From these various organs, 27 cDNA libraries were generated and sequenced, resulting in more than one billion reads. Following filtering, these reads were de novo assembled into 36 529 transcript sequences that were annotated and quantified across the different tissues. A set of 24 866 unique transcript sequences, called Unigenes, was identified. All the information related to transcript identification, annotation and quantification were stored into a gene expression atlas webserver (http://vugea.noble.org), providing a user-friendly interface and necessary tools to analyse transcript expression in black-eyed pea organs and to compare data with other legume species. Using this gene expression atlas, we inferred details of molecular processes that are active during seed development, and identified key putative regulators of seed maturation. Additionally, we found evidence for conservation of regulatory mechanisms involving miRNA in plant tissues subjected to drought and seeds undergoing desiccation. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Interaction between hydrotropism and gravitropism in seedling roots
NASA Astrophysics Data System (ADS)
Kobayashi, A.; Takahashi, A.; Yamazaki, Y.; Kakimoto, Y.; Higashitani, A.; Fujii, N.; Takahashi, H.
Roots display positive hydrotropism in response to a moisture gradient, which could play a role in avoiding drought stress. Because roots also respond to other stimuli such as gravity, touch and light and exhibit gravitropism, thigmotropism and phototropism, respectively, their growth orientation is determined by interaction among those tropisms. We have demonstrated the interaction between hydrotropism and gravitropism. For example, 1) agravitropic roots of pea mutant strongly respond to a moisture gradient and show positive hydrotropism by overcoming gravitropism, 2) in wild type pea roots hydrotropism is weak but pronounced when rotated on clinostat, 3) cucumber roots are positively gravitropic on the ground but become hydrotropic in microgravity, and 4) maize roots change their growth direction depending on the intensities of both gravistimulation and hydrostimulation. Here we found that Arabidopsis roots could display strong hydrotropism by overcoming gravitropism. It was discovered that amyloplasts in the columella cells are rapidly degraded upon exposure to a moisture gradient. Thus, degradation of amyloplasts could reduce the responsiveness to gravity, which could pronounce the hydrotropic response. In hydrotropically stimulated roots of pea seedlings, however, we could not observe a rapid degradation of amyloplasts in the columella cells. These results suggest that mechanism underlying the interaction between hydrotropism and gravitropism differs among plant species. To further study the molecular mechanism of hydrotropism and its interaction with gravitropism, we isolated unique mutants of Arabidopsis of which roots showed either ahydrotropism, reduced hydrotropism or negative hydrotropic response and examined their gravitropism, phototropism, waving response, amyloplast degradation and elongation growth. Based on the characterization of hydrotropic mutants, we will attempt to compare the mechanisms of the two tropisms and to clarify their cross talk for controlling the directional growth of seedling roots.
Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas
2011-01-01
Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA. PMID:22102911
Selim, Sameh; Sanssené, Jean; Rossard, Stéphanie; Courtois, Josiane
2017-06-19
Oligogalacturonides (OGs) are known for their powerful ability to stimulate the plant immune system but little is known about their mode of action in pea ( Pisum sativum ). In the present study, we investigated the elicitor activity of two fractions of OGs, with polymerization degrees (DPs) of 2-25, in pea against Aphanomyces euteiches . One fraction was nonacetylated (OGs - Ac) whereas the second one was 30% acetylated (OGs + Ac). OGs were applied by injecting the upper two rachises of the plants at three- and/or four-weeks-old. Five-week-old roots were inoculated with 10⁵ zoospores of A. euteiches . The root infection level was determined at 7, 10 and 14 days after inoculation using the quantitative real-time polymerase chain reaction (qPCR). Results showed significant root infection reductions namely 58, 45 and 48% in the plants treated with 80 µg OGs + Ac and 59, 56 and 65% with 200 µg of OGs - Ac. Gene expression results showed the upregulation of genes involved in the antifungal defensins, lignans and the phytoalexin pisatin pathways and a priming effect in the basal defense, SA and ROS gene markers as a response to OGs. The reduction of the efficient dose in OGs + Ac is suggesting that acetylation is necessary for some specific responses. Our work provides the first evidence for the potential of OGs in the defense induction in pea against Aphanomyces root rot.
Hiltpold, Ivan; Jaffuel, Geoffrey; Turlings, Ted C J
2015-02-01
To defend themselves against herbivores and pathogens, plants produce numerous secondary metabolites, either constitutively or de novo in response to attacks. An intriguing constitutive example is the exudate produced by certain root-cap cells that can induce a state of reversible quiescence in plant-parasitic nematodes, thereby providing protection against these antagonists. The effect of such root exudates on beneficial entomopathogenic nematodes (EPNs) remains unclear, but could potentially impair their use in pest management programmes. We therefore tested how the exudates secreted by green pea (Pisum sativum) root caps affect four commercial EPN species. The exudates induced reversible quiescence in all EPN species tested. Quiescence levels varied with the green pea cultivars tested. Notably, after storage in root exudate, EPN performance traits were maintained over time, whereas performances of EPNs stored in water rapidly declined. In sharp contrast to high concentrations, lower concentrations of the exudate resulted in a significant increase in EPN activity and infectiousness, but still reduced the activity of two plant-parasitic nematode species. Our study suggests a finely tuned dual bioactivity of the exudate from green pea root caps. Appropriately formulated, it can favour long-term storage of EPNs and boost their infectiousness, while it may also be used to protect plants from plant-parasitic nematodes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Technical Reports Server (NTRS)
Dauwalder, M.; Roux, S. J.
1986-01-01
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in etiolated corn (Zea mays, var. Bear Hybrid) seedlings. Uniform staining was seen in the background cytoplasm of most cell types. Cell walls and vacuoles were not stained. In coleoptile mesophyll cells the nucleoplasm of most nuclei was stained as was the stroma of most amyloplasts. The lumen border of mature tracheary elements in coleoptiles also stained. In the rootcap the most intensely stained regions were the cytoplasms of columella cells and of the outermost cells enmeshed in the layer of secreted slime. Nuclei in the rootcap cells did not stain distinctly, but those in all cell types of the root meristem did. Also in the root meristem, the cytoplasm of metaxylem elements stained brightly. These results are compared and contrasted with previous data on the localization of calmodulin in pea root apices and epicotyls and discussed in relation to current hypotheses on mechanisms of gravitropism.
Biological activities of indoleacetylamino acids and their use as auxins in tissue culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hangarter, R.P.; Peterson, M.D.; Good, N.E.
1980-05-01
The auxin activities of a number of indoleacetylamino acid conjugates have been determined in three test systems: growth of tomato hypocotyl explants (Lycopersicon esculentum Mill. cv. Marglobe); growth of tobacco callus cultures (Nicotiana tabacum L. cv. Wisconsin 38); and ethylene production from pea stems (Pisum sativum L. cv. Alaska). The activities of the conjugates differ greatly depending on the amino acid moiety. Indoleacetyl-L-alanine supports rapid callus growth from the tomato hypocotyls while inhibiting growth of shoots and roots. Indoleacetlyglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting growth of shoots andmore » roots. Indoleacetylglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting shoot formation. The other amino acid conjugates tested (valine, leucine, aspartic acid, threonine, methionine, phenylalanine, and proline) support shoot formation without supporting root formation or much callus growth. The tobacco callus system, which forms abundant shoots in the presence or absence of free indoleacetic acid, produces only rapid undifferentiated growth in the presence of indoleacetyl-L-alanine and indoleacetylglycine. The other conjugates inhibit shoot formatin weakly if at all. Most of the conjugates induce sustained ethylene production from the pea stems but at rates well below the initial rates observed with free indoleacetic acid. Many, but not all of the effects of conjugates such as indoleacetyl-L-alanine can be mimicked by frequent renewals of the supply of free indoleacetic acid.« less
NASA Technical Reports Server (NTRS)
Dauwalder, M.; Roux, S. J.; Hardison, L.
1986-01-01
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in young etiolated pea (Pisum sativum L.) seedlings. A fairly uniform staining was seen in the nucleoplasm and background cytoplasm of most cell types. Cell walls and nucleoli were not stained. In addition, patterned staining reactions were seen in many cells. In cells of the plumule, punctate staining of the cytoplasm was common, and in part this stain appeared to be associated with the plastids. A very distinctive staining of amyloplasts was seen in the columella of the root cap. Staining associated with cytoskeletal elements could be shown in division stages. By metaphase, staining of the spindle region was quite evident. In epidermal cells of the stem and along the underside of the leaf there was an intense staining of the vacuolar contents. Guard cells lacked this vacuolar stain. Vacuolar staining was sometimes seen in cells of the stele, but the most distinctive pattern in the stele was associated with young conducting cells of the xylem. These staining patterns are consistent with the idea that the interactions of plastids and the cytoskeletal may be one of the Ca(2+)-mediated steps in the response of plants to environmental stimuli. Nuclear functions may also be controlled, at least in part, by Ca2+.
A Simple Device to Measure Root Growth Rates
ERIC Educational Resources Information Center
Rauser, Wilfried E.; Horton, Roger F.
1975-01-01
Describes construction and use of a simple auxanometer which students can use to accurately measure root growth rates of intact seedlings. Typical time course data are presented for the effect of ethylene and indole acetic acid on pea root growth. (Author/BR)
Kichigina, Natalia E; Puhalsky, Jan V; Shaposhnikov, Aleksander I; Azarova, Tatiana S; Makarova, Natalia M; Loskutov, Svyatoslav I; Safronova, Vera I; Tikhonovich, Igor A; Vishnyakova, Margarita A; Semenova, Elena V; Kosareva, Irina A; Belimov, Andrey A
2017-10-01
Our study aimed to evaluate intraspecific variability of pea ( Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.
Long, Chengli; Held, Mark; Hayward, Allison; Nisler, Jaroslav; Spíchal, Lukas; Neil Emery, R J; Moffatt, Barbara A; Guinel, Frédérique C
2012-06-01
R50 (sym16) is a pea nodulation mutant that accumulates cytokinin (CK) in its vegetative organs. Total CK content increases as the plant ages because of the low activity of the enzyme cytokinin oxidase/dehydrogenase (CKX) responsible for CK degradation. R50 exhibits a large seed with high relative water content, and its seedling establishes itself slowly. Whether these two traits are linked to abnormal CK levels was considered here. R50 was found to have a similar germination rate but a much slower epicotyl emergence than Sparkle, its wild-type (WT). At the onset of emergence, the starch grains in R50 cotyledons were larger than those of WT; furthermore, they did not degrade as fast as in WT because of low amylase activity. No differences between the pea lines were observed in the CK forms identified during seed embryogenesis. However, while CK content compared to that of WT was reduced early in R50 embryogenesis, it was elevated later on in its dry seeds where CKX activity was low, although CKX transcript abundance remained high. Transcripts of the two known PsCKX isoforms exhibited tissue- and development-specific profiles with no detectable PsCKX2 expression in cotyledons. There were more of both transcripts in R50 roots than in WT roots, but less of PsCKX2 than PsCKX1 in R50 shoots compared to WT shoots. Thus, although there is a definite CKX post-transcriptional defect in R50 dry seeds, an abnormal CK homeostasis is not the basis of the delay in R50 seedling establishment, which we linked to abnormal amylase activity early in development. Copyright © Physiologia Plantarum 2012.
Zahir, Z A; Munir, A; Asghar, H N; Shaharoona, B; Arshad, M
2008-05-01
A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the growth of peas.
Perfluoroalkyl acid distribution in various plant compartments ...
Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var.dulce), tomato (Lycopersicon lycopersicum), and sugar snap pea (Pisum sativum var. macrocarpon) from an industrially impacted biosolids-amended soil, a municipal biosolids amended soil, and a control soil. Individual concentrations of PFAAs, on a dry weight basis, in mature, edible portions of crops grown in soil amended with PFAA industrially impacted biosolids were highest for perfluorooctanoate (PFOA; 67 ng/g) in radish root, perfluorobutanoate (PFBA;232 ng/g) in celery shoot, and PFBA (150 ng/g) in pea fruit. Comparatively, PFAA concentrations in edible compartments of crops grown in the municipal biosolids-amended soil and in the control soil were less than 25 ng/g. Bioaccumulation factors (BAFs) were calculated for the root, shoot, and fruit compartments (as applicable) of all crops grown in the industrially impacted soil. BAFs were highest for PFBA in the shoots of all crops, as well as in the fruit compartment of pea. Root soil concentration factors (RCFs) for tomato and pea were independent of PFAA chain length, while radish and celery RCFs showed a slight decrease with increasing chain length. Shoot-soil concentration factors (SCFs) for all crops showed a decrease with incre
Karahara, Ichirou
2012-01-01
The Casparian strip is commonly observed in the endodermis of roots of vascular plants and, in some cases, also in the stems. Pea stems develop the Casparian strip, and its development has been reported to be regulated by blue light. In addition, for the purpose of photobiological studies, pea stems provide a unique experimental system for other physiological studies of the development of the Casparian strip. In this article, I have briefly summarized (1) the effects of environmental factors on the development of the Casparian strip, (2) the advantage of using pea stems for physiological studies of the development of the Casparian strip, and (3) cellular events indicated to be involved in the development of the Casparian strip, focusing on the studies using pea stems as well as other recent studies. PMID:22899074
Nambiar, P. T. C.; Ma, S.-W.; Iyer, V. N.
1990-01-01
A region of DNA which determined the production of the insecticidal toxin of Bacillus thuringiensis subsp. israelensis was cloned into a derivative of a broad-host-range group IncQ plasmid vector of gram-negative bacteria. The plasmid which we constructed was transferred by conjugative mobilization into a Bradyrhizobium species that nodulates pigeon peas. In this species the construction was maintained stably in the absence of selection and expressed the gene that was installed. Experiments in a greenhouse with the strain which we constructed indicated that this organism provides protection against root nodule damage by the larvae of the insect Rivellia angulata (Diptera). Images PMID:16348294
Heat stress increases the efficiency of EDTA in phytoextraction of heavy metals.
Chen, Ya-Hua; Mao, Ying; He, Shi-Bin; Guo, Peng; Xu, Ke
2007-04-01
Solution culture and pot experiments were carried out to investigate the effects of root damage on phytoextraction of heavy metals. In hydroponics, roots of corn (Zea mays L.) seedlings were pretreated with heating stress, and then were exposed to 250 microM Pb+250 microM EDTA solutions for 7d. The results showed that the preheating treatment significantly increased Pb transportation from roots to shoots. In pot experiments, the effect of hot EDTA solution (95 degrees C) on the accumulation of heavy metal in the shoot of corn and pea (Pisum sativum L.) was also examined. Compared to normal EDTA (25 degrees C) treatment, application of hot EDTA solution to the soil surface increased the total removal of Pb in shoots of corn and pea by about 8- and 12-fold, respectively, in an artificially multimetal-contaminated soil. In addition, hot EDTA solution increased the shoot Cu removal by about 6-fold for corn and 9-fold for pea, respectively, in a naturally Cu-contaminated soil. These results suggested that exposure of roots to high temperature could increase the efficiency of EDTA on the accumulation of heavy metals in shoots. This new approach can help to minimize the amount of chelate applied in the field and reduce the potential risk of heavy metals' leaching.
Ueda, Junichi; Miyamoto, Kensuke
2003-08-01
We review the graviresponse under true and simulated microgravity conditions on a clinostat in higher plants, and its regulation in molecular bases, especially on the aspect of auxin polar transport in etiolated pea (Pisum sativum L. cv. Alaska) seedlings which were the plant materials subjected to STS-95 space experiments. True and simulated microgravity conditions substantially affected growth and development in etiolated pea seedlings, especially the direction of growth of stems and roots, resulting in automorphosis. In etiolated pea seedlings grown in space, epicotyls were the most oriented toward the direction far from the cotyledons, and roots grew toward the aerial space of Plant Growth Chamber. Automorphosis observed in space were well simulated by a clinorotation on a 3-dimensional clinostat and also phenocopied by the application of auxin polar transport inhibitors of 2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid and 9-hydroxyfluorene-9-carboxylic acid. Judging from the results described above together with the fact that activities of auxin polar transport in epicotyls of etiolated pea seedlings grown in space substantially were reduced, auxin polar transport seems to be closely related to automorphosis. Strenuous efforts to learn in molecular levels how gravity contributes to the auxin polar transport in etiolated pea epicotyls resulted in successful identification of PsPIN2 and PsAUX1 genes located in plasma membrane which products are considered to be putative efflux and influx carriers of auxin, respectively. Based on the results of expression of PsPIN2 and PsAUX1 genes under various gravistimulations, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.
78 FR 7266 - Alpha-Cypermethrin; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... confidential pursuant to 40 CFR part 2 may be disclosed publicly by EPA without prior notice. Submit the non...- cypermethrin in or on tree nuts, Group 14; dried shelled pea and bean, except soybean, subgroup 6C; corn, grain... shelled pea and bean, subgroup 6B; and root and tuber vegetables, Group 1 at 0.1 ppm; cucurbit vegetables...
75 FR 17564 - Chlorantraniliprole; Extension of Time-Limited Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... at 0.20 ppm; grass, forage, fodder and hay, crop group 17 at 0.20 ppm; vegetable, leaves of root and... hay (includes cowpea, forage and hay; field pea, vines and hay); grass, forage, fodder and hay, crop...-limited tolerances for cowpea, forage and hay; field pea, vines and hay; grass, forage, fodder and hay...
Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis
USDA-ARS?s Scientific Manuscript database
The impact of nano-ZnO (nZnO) on Rhizobium-legume symbiosis was studied with garden pea and its compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure of peas to nZnO had no impact on germination, but significantly affected root length. Chronic exposure of plant to nZnO impac...
Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis
USDA-ARS?s Scientific Manuscript database
The impact of nano-TiO2 on Rhizobium-legume symbiosis was studied using garden peas and the compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure to nano-TiO2 did not affect the germination of peas grown aseptically, nor did it impact the gross root structure. However, nano-...
Sea lamprey avoid areas scented with conspecific tissue extract in Michigan streams
Di Rocco, Richard; Johnson, Nicholas; Brege, Linnea; Imre, I.; Brown, G.E.
2016-01-01
Three in-stream experiments were conducted to determine whether sea lamprey, Petromyzon marinus L., tissue extract (alarm cue) and 2-phenylethylamine hydrochloride (PEA HCl, a putative predator cue) influenced the distribution of migrating adult sea lamprey. Experiments evaluated sea lamprey movement when an odour was applied to (1) a tributary of a larger stream; and (2) half of a stream channel. Fewer sea lamprey entered the tributary and side of the river scented with sea lamprey tissue extract compared to the control treatment. Sea lamprey did not avoid the tributary and side of the river scented with PEA HCl. A final laboratory experiment found no difference in the avoidance response of sea lamprey to PEA HCl mixed with river water vs PEA HCl mixed with water from Lake Huron. As such, the lack of sea lamprey response to PEA HCl in the stream was unlikely to have been caused by the presence of the river water. Rather, the difference between laboratory and field results may be attributed to the complexity of the physical environment.
Auxin transport and response requirements for root hydrotropism differ between plant species.
Nakajima, Yusuke; Nara, Yoshitaka; Kobayashi, Akie; Sugita, Tomoki; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki
2017-06-15
The direction of auxin transport changes in gravistimulated roots, causing auxin accumulation in the lower side of horizontally reoriented roots. This study found that auxin was similarly involved in hydrotropism and gravitropism in rice and pea roots, but hydrotropism in Lotus japonicus roots was independent of both auxin transport and response. Application of either auxin transport inhibitors or an auxin response inhibitor decreased both hydrotropism and gravitropism in rice roots, and reduced hydrotropism in pea roots. However, Lotus roots treated with these inhibitors showed reduced gravitropism but an unaltered or an enhanced hydrotropic response. Inhibiting auxin biosynthesis substantially reduced both tropisms in rice and Lotus roots. Removing the final 0.2 mm (including the root cap) from the root tip inhibited gravitropism but not hydrotropism in rice seedling roots. These results suggested that modes of auxin involvement in hydrotropism differed between plant species. In rice roots, although auxin transport and responses were required for both gravitropism and hydrotropism, the root cap was involved in the auxin regulation of gravitropism but not hydrotropism. Hydrotropism in Lotus roots, however, may be regulated by a novel mechanism that is independent of both auxin transport and the TIR1/AFBs auxin response pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Mitochondrial ultrastructure and tissue respiration of pea leaves under clinorotation
NASA Astrophysics Data System (ADS)
Brykov, Vasyl
2016-07-01
Respiration is essential for growth, maintenance, and carbon balance of all plant cells. Mitochondrial respiration in plants provides energy for biosynthesis, and its balance with photosynthesis determines the rate of plant biomass accumulation (production). Mitochondria are not only the energetic organelles in a cell but they play an essential regulatory role in many basic cellular processes. As plants adapt to real and simulated microgravity, it is very important to understand the state of mitochondria in these conditions. Disturbance of respiratory metabolism can significantly affect the productivity of plants in long-term space flights. We have established earlier that the rate of respiration in root apices of pea etiolated seedlings rose after 7 days of clinorotation. These data indicate the oxygen increased requirement by root apices under clinorotation, that confirms the necessity of sufficient substrate aeration in space greenhouses to provide normal respiratory metabolism and supply of energy for root growth. In etiolated seedlings, substrate supply of mitochondria occurs at the expense of the mobilization of cotyledon nutrients. A goal of our work was to study the ultrastructure and respiration of mitochondria in pea leaves after 12 days of clinorotation during (2 rpm/min). Plants grew at a light level of 180 μµmol m ^{-2} s ^{-1} PAR and a photoperiod of 16 h light/4 h dark. It was showed an essential increase in the mitochondrion area on 53% in palisade parenchyma cells at the sections. Such phenomenon can not be described as swelling of mitochondria, since enlarged mitochondria contained a more quantity of crista 1.76 times. In addition, the cristae total area per organelle also increased in comparison with that in control. An increase in a size of mitochondria in the experimental conditions is supposed to occur by a partial alteration of the chondriom. Thus, a size of 49% mitochondria in control was 0.1 - 0.3 μµm ^{2}, whereas only 26% mitochondria have a similar size under clinorotation. Described changes in the mitochondrion ultrastructure under clinorotation were accompanied with rising of mitochondrial respiration on 17%. These data indicate that mitochondria in both root and leaf cells are sensitive to the simulated microgravity influence. That is why, a further research of plant energetic metabolism during plant growth in real and simulated microgravity has to be in progress.
Discrete forms of amylose are synthesized by isoforms of GBSSI in pea.
Edwards, Anne; Vincken, Jean-Paul; Suurs, Luc C J M; Visser, Richard G F; Zeeman, Sam; Smith, Alison; Martin, Cathie
2002-08-01
Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses.
Discrete Forms of Amylose Are Synthesized by Isoforms of GBSSI in PeaW⃞
Edwards, Anne; Vincken, Jean-Paul; Suurs, Luc C. J. M.; Visser, Richard G. F.; Zeeman, Sam; Smith, Alison; Martin, Cathie
2002-01-01
Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses. PMID:12172021
Isolation and Structural Studies of Mitochondria from Pea Roots.
Vishwakarma, Abhaypratap; Gupta, Kapuganti Jagadis
2017-01-01
For structural and respiratory studies, isolation of intact and active mitochondria is essential. Here, we describe an isolation method which gave good yield and intact mitochondria from 2-week-old pea (Pisum sativum) roots grown hydroponically under standard growth conditions. We used Percoll gradient centrifugation for this isolation procedure. The yield of purified mitochondria was 50 μg/g FW. Isolated mitochondria maintained their structure which was observed by using MitoTracker green in confocal microscope and scanning electron microscopy (SEM). Intact mitochondria are clearly visible in SCM images. Taken together this isolation method can be used for physiological and microscopic studies on mitochondria.
Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins.
Foo, Eloise; Ross, John J; Jones, William T; Reid, James B
2013-05-01
Arbuscular mycorrhizal symbioses are important for nutrient acquisition in >80 % of terrestrial plants. Recently there have been major breakthroughs in understanding the signals that regulate colonization by the fungus, but the roles of the known plant hormones are still emerging. Here our understanding of the roles of abscisic acid, ethylene, auxin, strigolactones, salicylic acid and jasmonic acid is discussed, and the roles of gibberellins and brassinosteroids examined. Pea mutants deficient in gibberellins, DELLA proteins and brassinosteroids are used to determine whether fungal colonization is altered by the level of these hormones or signalling compounds. Expression of genes activated during mycorrhizal colonization is also monitored. Arbuscular mycorrhizal colonization of pea roots is substantially increased in gibberellin-deficient na-1 mutants compared with wild-type plants. This is reversed by application of GA3. Mutant la cry-s, which lacks gibberellin signalling DELLA proteins, shows reduced colonization. These changes were parallelled by changes in the expression of genes associated with mycorrhizal colonization. The brassinosteroid-deficient lkb mutant showed no change in colonization. Biologically active gibberellins suppress arbuscule formation in pea roots, and DELLA proteins are essential for this response, indicating that this role occurs within the root cells.
Nordström, Ann-Caroline; Jacobs, Fernando Alvarado; Eliasson, Lennart
1991-01-01
The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by 1H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265
Bourion, Virginie; Heulin-Gotty, Karine; Aubert, Véronique; Tisseyre, Pierre; Chabert-Martinello, Marianne; Pervent, Marjorie; Delaitre, Catherine; Vile, Denis; Siol, Mathieu; Duc, Gérard; Brunel, Brigitte; Burstin, Judith; Lepetit, Marc
2018-01-01
Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv). In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum. The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation. PMID:29367857
Bourion, Virginie; Heulin-Gotty, Karine; Aubert, Véronique; Tisseyre, Pierre; Chabert-Martinello, Marianne; Pervent, Marjorie; Delaitre, Catherine; Vile, Denis; Siol, Mathieu; Duc, Gérard; Brunel, Brigitte; Burstin, Judith; Lepetit, Marc
2017-01-01
Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv). In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum . The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation.
Baker, G. B.; Coutts, R. T.; Rao, T. S.
1987-01-01
1 N-(2-cyanoethyl)-2-phenylethylamine (CEPEA) was examined as a possible prodrug of 2-phenylethylamine (PEA). 2 Pharmacokinetics of PEA and CEPEA were investigated in rat brain, blood and liver by gas chromatography with electron-capture detection (GC-ECD). Interactions of PEA and CEPEA with putative neurotransmitter amines were investigated by use of high performance liquid chromatography with electrochemical detection (h.p.l.c.-e.c.). 3 Administration of PEA caused transient increases in PEA concentrations which decreased rapidly in brain and blood and at a slower rate in liver. Administration of CEPEA caused sustained elevations of PEA concentrations and elimination of PEA was markedly decreased in these tissues relative to the situation after administration of PEA itself. 4 Administration of CEPEA caused more prolonged decreases in brain noradrenaline, dopamine and 5-hydroxytryptamine concentrations than those observed after PEA administration, although values increased to control levels eventually. PMID:2890391
Rapid wall relaxation in elongating tissues.
Matyssek, R; Maruyama, S; Boyer, J S
1988-04-01
Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision.
Rapid Wall Relaxation in Elongating Tissues 1
Matyssek, Rainer; Maruyama, Sachio; Boyer, John S.
1988-01-01
Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision. PMID:16666048
Purification and immunolocalization of an annexin-like protein in pea seedlings
NASA Technical Reports Server (NTRS)
Clark, G. B.; Dauwalder, M.; Roux, S. J.
1992-01-01
As part of a study to identify potential targets of calcium action in plant cells, a 35-kDa, annexin-like protein was purified from pea (Pisum sativum L.) plumules by a method used to purify animal annexins. This protein, called p35, binds to a phosphatidylserine affinity column in a calcium-dependent manner and binds 45Ca2+ in a dot-blot assay. Preliminary sequence data confirm a relationship for p35 with the annexin family of proteins. Polyclonal antibodies have been raised which recognize p35 in Western and dot blots. Immunofluorescence and immunogold techniques were used to study the distribution and subcellular localization of p35 in pea plumules and roots. The highest levels of immunostain were found in young developing vascular cells producing wall thickenings and in peripheral root-cap cells releasing slime. This localization in cells which are actively involved in secretion is of interest because one function suggested for the animal annexins is involvement in the mediation of exocytosis.
Identification and Function of Ets Target Genes Involved in Lung Cancer Progression
2013-10-01
Upadhyay et al., 2006). Tissues with Lkb1 mutations have higher Pea3 expression than wild type tissues (Upadhyay et al., 2006). In vitro, Pea3...with rotation. AG beads (Santa Cruz Biotechnology, Inc.), BSA (100 μg/ml), and salmon sperm (500 μg/ml) were added to samples. Samples were rotated (4
Garcha, G.; Imrie, P. R.; Marley, E.; Thomas, D. V.
1985-01-01
[14C]-beta-phenethylamine [( 14C]-PEA) was instilled intragastrically, intraduodenally (i.d.) or infused into the portal vein or femoral artery of cats, anaesthetized with chloralose, to investigate its distribution in the body. [14C]-PEA and phenylacetic acid (PAA) accounted for approximately 85% of radioactivity recovered in blood from control cats or those pretreated with deprenyl or mebanazine. Progressively greater portal venous (PV), cranial mesenteric arterial (CMA) and PV-CMA concentrations of PEA and PAA were observed with increase in amount of PEA instilled intraduodenally (i.d.); PAA predominated over PEA, more so in CMA than PV blood. Radioactivity was not recovered from blood following intragastric instillation of PEA. When histamine 1.7 mumol kg-1, i.d., was combined with PEA 1.7 mumol kg-1, i.d., or tyramine 8.5 mumol kg-1, i.d., was combined with PEA 8.5 mumol kg-1, i.d., PV-CMA values for PEA were significantly augmented. Arterial concentrations of PEA were increased 3.5 to 5 fold compared to controls by pretreatment with mebanazine or deprenyl plus clorgyline; arterial concentrations of PAA were reduced. PEA blood concentrations were not significantly altered by clorgyline or deprenyl pretreatment. Infusion of PEA 680, 1020 or 1360 nmol kg-1 min-1 for 20 min into the portal vein raised blood pressure 60 to 100 mmHg (at a PEA concentration of ca, 2 nmol ml-1) but lacked effect on the nictitating membrane despite peak arterial PEA concentrations of 20 nmol ml-1; in cats pretreated with mebanazine or clorgyline plus deprenyl, half-maximum contraction of the nictitating membrane occurred with arterial PEA concentrations of 4.8 to 9 nmol ml-1. In cats pretreated with mebanazine or deprenyl plus clorgyline, half maximum contraction of the nictitating membrane was elicited also by intraduodenal PEA 8.5 mumol kg-1 at arterial PEA concentrations of ca. 2 nmol ml-1, despite lack of effect of PEA 17 mumol kg-1, i.d., in control cats with a peak arterial PEA concentration of 1.8 nmol ml-1. [14C]-PEA and PAA were recovered from liver, kidney, distal small intestine, lung, arterial vessel walls, skeletal muscle, brain, foetus and amniotic liquor, after PEA instilled i.d., overall concentration of PEA exceeding that of PAA except in the kidney. The combined amount of PEA and PAA in kidney was 7 to 20 fold that in other tissues. PEA content of tissues was significantly elevated and that of PAA diminished by pretreatment with deprenyl plus clorgyline, and to a lesser extent after mebanazine. PMID:4075021
Yamamoto, Yoko; Kobayashi, Yukiko; Matsumoto, Hideaki
2001-01-01
Pea (Pisum sativum) roots were treated with aluminum in a calcium solution, and lipid peroxidation was investigated histochemically and biochemically, as well as other events caused by aluminum exposure. Histochemical stainings were observed to distribute similarly on the entire surface of the root apex for three events (aluminum accumulation, lipid peroxidation, and callose production), but the loss of plasma membrane integrity (detected by Evans blue uptake) was localized exclusively at the periphery of the cracks on the surface of root apex. The enhancement of four events (aluminum accumulation, lipid peroxidation, callose production, and root elongation inhibition) displayed similar aluminum dose dependencies and occurred by 4 h. The loss of membrane integrity, however, was enhanced at lower aluminum concentrations and after longer aluminum exposure (8 h). The addition of butylated hydroxyanisole (a lipophilic antioxidant) during aluminum treatment completely prevented lipid peroxidation and callose production by 40%, but did not prevent or slow the other events. Thus lipid peroxidation is a relatively early symptom induced by the accumulation of aluminum and appears to cause, in part, callose production, but not the root elongation inhibition; by comparison, the loss of plasma membrane integrity is a relatively late symptom caused by cracks in the root due to the inhibition of root elongation. PMID:11154329
Butterly, Clayton R; Armstrong, Roger; Chen, Deli; Tang, Caixian
2016-01-01
Additional carbohydrate supply resulting from enhanced photosynthesis under predicted future elevated CO2 is likely to increase symbiotic nitrogen (N) fixation in legumes. This study examined the interactive effects of atmospheric CO2 and nitrate (NO3(-)) concentration on the growth, nodulation and N fixation of field pea (Pisum sativum) in a semi-arid cropping system. Field pea was grown for 15 weeks in a Vertosol containing 5, 25, 50 or 90 mg NO3(-)-N kg(-1) under either ambient CO2 (aCO2; 390 ppm) or elevated CO2 (eCO2; 550 ppm) using free-air CO2 enrichment (SoilFACE). Under aCO2, field pea biomass was significantly lower at 5 mg NO3(-)-N kg(-1) than at 90 mg NO3(-)-N kg(-1) soil. However, increasing the soil N level significantly reduced nodulation of lateral roots but not the primary root, and nodules were significantly smaller, with 85% less nodule mass in the 90 NO3(-)-N kg(-1) than in the 5 mg NO3(-)-N kg(-1) treatment, highlighting the inhibitory effects of NO3(-). Field pea grown under eCO2 had greater biomass (approx. 30%) than those grown under aCO2, and was not affected by N level. Overall, the inhibitory effects of NO3(-) on nodulation and nodule mass appeared to be reduced under eCO2 compared with aCO2, although the effects of CO2 on root growth were not significant. Elevated CO2 alleviated the inhibitory effect of soil NO3(-) on nodulation and N2 fixation and is likely to lead to greater total N content of field pea growing under future elevated CO2 environments. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development.
Lobreaux, S; Briat, J F
1991-01-01
Iron concentration and ferritin distribution have been determined in different organs of pea (Pisum sativum) during development under conditions of continuous iron supply from hydroponic cultures. No ferritin was detected in total protein extracts from roots or leaves. However, a transient iron accumulation in the roots, which corresponds to an increase in iron uptake, was observed when young fruits started to develop. Ferritin was detectable in total protein extracts of flowers and pods, and it accumulated in seeds. In seeds, the same relative amount of ferritin was detected in cotyledons and in the embryo axis. In cotyledons, ferritin and iron concentration decrease progressively during the first week of germination. Ferritin in the embryo axis was processed, and disappeared, during germination, within the first 4 days of radicle and epicotyl growth. This degradation of ferritin in vivo was marked by a shortening of a 28 kDa subunit, giving 26.5 and 25 kDa polypeptides, reminiscent of the radical damage occurring in pea seed ferritin during iron exchange in vitro [Laulhere, Laboure & Briat (1989) J. Biol. Chem. 264, 3629-3635]. Developmental control of iron concentration and ferritin distribution in different organs of pea is discussed. Images Fig. 4. Fig. 6. Fig. 7. PMID:2006922
Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins
Foo, Eloise; Ross, John J.; Jones, William T.; Reid, James B.
2013-01-01
Background and Aims Arbuscular mycorrhizal symbioses are important for nutrient acquisition in >80 % of terrestrial plants. Recently there have been major breakthroughs in understanding the signals that regulate colonization by the fungus, but the roles of the known plant hormones are still emerging. Here our understanding of the roles of abscisic acid, ethylene, auxin, strigolactones, salicylic acid and jasmonic acid is discussed, and the roles of gibberellins and brassinosteroids examined. Methods Pea mutants deficient in gibberellins, DELLA proteins and brassinosteroids are used to determine whether fungal colonization is altered by the level of these hormones or signalling compounds. Expression of genes activated during mycorrhizal colonization is also monitored. Key Results Arbuscular mycorrhizal colonization of pea roots is substantially increased in gibberellin-deficient na-1 mutants compared with wild-type plants. This is reversed by application of GA3. Mutant la cry-s, which lacks gibberellin signalling DELLA proteins, shows reduced colonization. These changes were parallelled by changes in the expression of genes associated with mycorrhizal colonization. The brassinosteroid-deficient lkb mutant showed no change in colonization. Conclusions Biologically active gibberellins suppress arbuscule formation in pea roots, and DELLA proteins are essential for this response, indicating that this role occurs within the root cells. PMID:23508650
Kiczorowska, Bożena; Samolińska, Wioletta; Andrejko, Dariusz
2016-11-01
This study aimed to evaluate the effect of micronized pea seeds introduced into feed mixes for broilers on the slaughter yield, blood lipid parameters, content of fatty acids in selected tissues, and meat quality. The studies involved 150 1-day-old Ross 308 chicks split into three groups (for 42 days). The feed rations differed in terms of the source of proteins: in the control group (C), it was post-extraction soybean meal (SBM) 100%; in group I, SBM 50% and micronized peas 50%; and in group II, micronized peas only, 100%. Irradiated pea seeds added to the feed ration for chicks reduced the fattening grade of carcasses (P < 0.05). Additionally, significant improvement of blood lipid indices was recorded. The share of the irradiated pea seeds in feed mixes decreased the share of saturated fatty acids in the muscles and abdominal fat and had a positive effect on the n-6/n-3 ratio, hypocholesterolemic / hypercholesterolemic ratio, as well as the atherogenic and thrombogenic indices (P < 0.05). © 2016 Japanese Society of Animal Science.
Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).
Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru
2012-11-01
Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum.
Abeles, F. B.; Ruth, J. M.; Forrence, L. E.; Leather, G. R.
1972-01-01
We observed no exchange between deuterated ethylene (C2D4) and the hydrogen of pea seedlings (Pisum sativum L. cv. Alaska). This suggests that bonding forces in which exchange could readily occur are not important in the physiological action of ethylene. Deuterated ethylene was just as effective as normal ethylene in inhibiting the growth of pea root sections. These results indicate that splitting carbon to hydrogen bonds did not occur during ethylene action. PMID:16658026
Arora, Naveen Kumar; Khare, Ekta; Singh, Sachin; Tewari, Sakshi
2018-01-01
Pigeon pea ( Cajanus cajan ) is one of the most important legumes grown in the northern province of Uttar Pradesh, India. However, its productively in Uttar Pradesh is lower than the average yield of adjoining states. During the course of the present study, a survey of pigeon pea growing agricultural fields was carried out and it was found that 80% of plants were inadequately nodulated. The study was aimed to evaluate the pigeon pea symbiotic compatibility and nodulation efficiency of root nodulating bacteria isolated from various legumes, and to explore the phenetic and genetic diversity of rhizobial population nodulating pigeon pea growing in fields of Uttar Pradesh. Amongst all the 96 isolates, 40 isolates showed nodulation in pigeon pea. These 40 isolates were further characterized by phenotypic, biochemical and physiological tests. Intrinsic antibiotic resistance pattern was taken to generate similarity matrix revealing 10 phenons. The study shows that most of the isolates nodulating pigeon pea in this region were rapid growers. The dendrogram generated using the NTSYSpc software grouped RAPD patterns into 19 clusters. The high degree of phenetic and genetic diversity encountered is probably because of a history of mixed cropping of legumes. The assessment of diversity is a very important tool and can be used to improve the nodulation and quality of pigeon pea crop. It is also concluded that difference between phenetic and RAPD clustering pattern is an indication that rhizobial diversity of pigeon pea is not as yet completely understood and settled.
Ultrastructure of meristem and root cap of pea seedlings under spaceflight conditions
NASA Technical Reports Server (NTRS)
Sytnyk, K. M.; Kordyum, E. L.; Bilyavska, N. O.; Tarasenko, V. O.
1983-01-01
Data of electron microscopic analysis of meristem and root cap of pea seedlings grown aboard the Salyut-6 orbital research station in the Oazis apparatus and in the laboratory are presented. The main morphological and anatomical characteristics of the test and control plants are shown to be similar. At the same time, some differences are found in the structural and functional organization of the experimental cells as compared to the controls. They concern first of all the plastic apparatus, mitochondria and Golgi apparatus. It is assumed that cell function for certain periods of weightlessness on the whole ensures execution of the cytodifferentiation programs genetically determined on the Earth. Biochemical and physiological processes vary rather markedly due to lack of initially rigorous determination.
Wani, Parvaze Ahmad; Khan, Md Saghir; Zaidi, Almas
2008-07-01
The nickel- and zinc-tolerant plant growth-promoting (PGP) Rhizobium sp. RP5 was isolated from nodules of pea, grown in metal-contaminated Indian soils. The PGP potentials of strain RP5 was assessed under in vitro conditions. Strain RP5 displayed a high level of tolerance to nickel (350 microg ml(-1)) and zinc (1500 microg ml(-1)) and showed PGP activity under in vitro conditions. The PGP activity of this strain was further assessed with increasing concentrations of nickel and zinc, using pea as a test crop. The bio-inoculant enhanced the dry matter, nodule numbers, root N, shoot N, leghemoglobin, seed yield, and grain protein (GP) by 19%, 23%, 26%, 47%, 112%, 26%, and 8%, respectively, at 290 mg Ni kg(-1) while at 4890 mg Zn kg(-1) soil, it increased the dry matter, nodule numbers, leghemoglobin, seed yield, GP, and root and shoot N by 18%, 23%, 78%, 26%, 7%, 25%, and 42%, respectively, compared to plants grown in soil amended with metal only. The bio-inoculant increased the glutathione reductase activity of roots and nodules by 46% and 65% at 580 mg Ni kg(-1) and 47% and 54% at 9780 mg Zn kg(-1) soil, respectively, compared to uninoculated plants. The inoculated strain decreased the concentration of nickel and zinc in plant organs. The intrinsic abilities of nitrogen fixation, growth promotion, and the ability to reduce the toxicity of nickel and zinc of the tested strain could be of practical importance in augmenting the growth and yield of pea, in nickel- and zinc-polluted soils.
Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA
NASA Technical Reports Server (NTRS)
Gaynor, J. J.
1984-01-01
Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.
The tropic response of plant roots to oxygen: oxytropism in Pisum sativum L
NASA Technical Reports Server (NTRS)
Porterfield, D. M.; Musgrave, M. E.
1998-01-01
Plant roots are known to orient growth through the soil by gravitropism, hydrotropism, and thigmotropism. Recent observations of plant roots that developed in a microgravity environment in space suggested that plant roots may also orient their growth toward oxygen (oxytropism). Using garden pea (Pisum sativum L. cv. Weibul's Apollo) and an agravitropic mutant (cv. Ageotropum), root oxytropism was studied in the controlled environment of a microrhizotron. A series of channels in the microrhizotron allowed establishment of an oxygen gradient of 0.8 mmol mol-1 mm-1. Curvature of seedling roots was determined prior to freezing the roots for subsequent spectrophotometric determinations of alcohol dehydrogenase activity. Oxytropic curvature was observed all along the gradient in both cultivars of pea. The normal gravitropic cultivar showed a maximal curvature of 45 degrees after 48 h, while the agravitropic mutant curved to 90 degrees. In each cultivar, the amount of curvature declined as the oxygen concentration decreased, and was linearly related to the root elongation rate. Since oxytropic curvature occurred in roots exposed to oxygen concentrations that were not low enough to induce the hypoxically responsive protein alcohol dehydrogenase, we suspect that the oxygen sensor associated with oxytropism does not control the induction of hypoxic metabolism. Our results indicate that oxygen can play a critical role in determining root orientation as well as impacting root metabolic status. Oxytropism allows roots to avoid oxygen-deprived soil strata and may also be the basis of an auto-avoidance mechanism, decreasing the competition between roots for water and nutrients as well as oxygen.
Rapid wall relaxation in elongating tissues. [Glycine max (L. ); Pisum sativum L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyssek, R.; Maruyama, S.; Boyer, J.S.
1988-01-01
Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max (L.) Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, the authors investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. The authors found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached tomore » the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species.« less
Liu, Wei; Zhang, Su; Zu, Yuan-Gang; Fu, Yu-Jie; Ma, Wei; Zhang, Dong-Yang; Kong, Yu; Li, Xiao-Juan
2010-06-01
Enrichment and separation of genistein and apigenin from extracts of pigeon pea roots were studied using eleven macroporous resins with different physical and chemical properties. ADS-5 resin showed the maximum effectiveness among the tested resins. The solute affinity towards ADS-5 resin at different temperatures was described in terms of Langmuir and Freundlich isotherms, and the equilibrium experimental data were well-fitted to the two isotherms. In order to optimize the operating parameters for separating genistein and apigenin, dynamic adsorption and desorption tests were carried out. After one run treatment with ADS-5 resin, the contents of genistein and apigenin in the product were 9.36-fold and 11.09-fold increased with recovery yields of 89.78% and 93.41%, respectively. The process achieved easy and effective enrichment and separation of genistein and apigenin by using ADS-5 resin, and it is a promising basis for large-scale preparation of genistein and apigenin from pigeon pea or other plants extracts. (c) 2010 Elsevier Ltd. All rights reserved.
Dutta, Swarnalee; Morang, Pranjal; Kumar S, Nishanth; Dileep Kumar, B S
2014-09-01
A Pseudomonas aeruginosa strain, RRLJ 04, and a Bacillus cereus strain, BS 03, were tested both individually and in combination with a Rhizobium strain, RH 2, for their ability to enhance plant growth and nodulation in pigeon pea (Cajanus cajan L.) under gnotobiotic, greenhouse and field conditions. Both of the rhizobacterial strains exhibited a positive effect on growth in terms of shoot height, root length, fresh and dry weight, nodulation and yield over the non-treated control. Co-inoculation of seeds with these strains and Rhizobium RH 2 also reduced the number of wilted plants, when grown in soil infested with Fusarium udum. Gnotobiotic studies confirmed that the suppression of wilt disease was due to the presence of the respective PGPR strains. Seed bacterization with drug-marked mutants of RRLJ 04 and BS 03 confirmed their ability to colonize and multiply along the roots. The results suggest that co-inoculation of these strains with Rhizobium strain RH 2 can be further exploited for enhanced growth, nodulation and yield in addition to control of fusarial wilt in pigeon pea.
Optimization of pre-sowing magnetic field doses through RSM in pea
NASA Astrophysics Data System (ADS)
Iqbal, M.; Ahmad, I.; Hussain, S. M.; Khera, R. A.; Bokhari, T. H.; Shehzad, M. A.
2013-09-01
Seed pre-sowing magnetic field treatment was reported to induce biochemical and physiological changes. In the present study, response surface methodology was used for deduction of optimal magnetic field doses. Improved growth and yield responses in the pea cultivar were achieved using a rotatable central composite design and multivariate data analysis. The growth parameters such as root and shoot fresh masses and lengths as well as yield were enhanced at a certain magnetic field level. The chlorophyll contents were also enhanced significantly vs. the control. The low magnetic field strength for longer duration of exposure/ high strength for shorter exposure were found to be optimal points for maximum responses in root fresh mass, chlorophyll `a' contents, and green pod yield/plant, respectively and a similar trend was observed for other measured parameters. The results indicate that the magnetic field pre-sowing seed treatment can be used practically to enhance the growth and yield in pea cultivar and response surface methodology was found an efficient experimental tool for optimization of the treatment level to obtain maximum response of interest.
A rapid method to increase the number of F₁ plants in pea (Pisum sativum) breeding programs.
Espósito, M A; Almirón, P; Gatti, I; Cravero, V P; Anido, F S L; Cointry, E L
2012-08-16
In breeding programs, a large number of F₂ individuals are required to perform the selection process properly, but often few such plants are available. In order to obtain more F₂ seeds, it is necessary to multiply the F₁ plants. We developed a rapid, efficient and reproducible protocol for in vitro shoot regeneration and rooting of seeds using 6-benzylaminopurine. To optimize shoot regeneration, basic medium contained Murashige and Skoog (MS) salts with or without B5 Gamborg vitamins and different concentrations of 6-benzylaminopurine (25, 50 and 75 μM) using five genotypes. We found that modified MS (B5 vitamins + 25 μM 6-benzylaminopurine) is suitable for in vitro shoot regeneration of pea. Thirty-eight hybrid combinations were transferred onto selected medium to produce shoots that were used for root induction on MS medium supplemented with α-naphthalene-acetic acid. Elongated shoots were developed from all hybrid genotypes. This procedure can be used in pea breeding programs and will allow working with a large number of plants even when the F₁ plants produce few seeds.
NASA Astrophysics Data System (ADS)
Belyavskaya, N.
The role for calcium in the regulation of a wide variety of cellular events in plants is well known. Calcium signaling has been implicated in plant gravitropism. A carboxylic acid antibiotic A23187 (calcimycin) has been widely used in biological studies since it can translocate calcium across membranes. Seedlings of Pisum sativum L. cv. Uladovsky germinated in a vertically oriented cylinder of moist filter paper soaked in water during 4.5 day had been treated with 10-5 M A23187 for 12 hr. Tips of primary roots of control and A23187-treated pea seedlings were fixed for electron microscopy and electron cytochemistry. Experiments with Pisum sativum 5- day seedlings placed horizontally for 4 h after treatment with 10 μM A23187 during 12 h found that the graviresponsiveness of their primary roots was lost completely (91 % of roots) or inhibited (24 +/- 6° in comparison with 88 +/- 8° in control). At ultrastructural level, there were observed distribution of amyloplasts around the nucleus, remarkable lengthening of statocytes, advanced vacuolization, changes in dictyosome structure, ER fragmentation, cell wall thinning in A23187-treated statocytes. Cytochemical study has indicated that statocytes exposed to calcimycin have contained a number of Ca-pyroantimonate granules detected Ca 2 + ions in organelles and hyaloplasm (unlike the control ones). The deposits were mainly associated with the plasma membrane. Among organelles, mitochondria were notable for their ability to accumulate Ca 2 +. In amyloplasts, a fine precipitate was predominately located in their stroma and envelope lumens. In cell walls, deposits of the reaction product were observed along the periphery and in the median zone. Localization of electron-dense granules of lead phosphate, which indicated Ca 2 +- ATPase activities in pea statocytes exposed to A23187, was generally consistent with that in untreated roots. Apart from plasma membrane, chromatin, and nucleolus components, the cytochemical reaction product was found in mitochondrial cristae in contrast to control ones. The presence of the precipitate in other Ca 2 +-sequestered organelles was not determined. The data presented suggest that at the ultrastructural level, the effects of the Ca 2 + ionophore manifested in the loss of polarity in statocytes may be functionally related to systems that regulate the intracellular Ca 2 + homeostasis. It is evident that significant increase in Ca 2 + level in A23187-treated statocytes may cause a disbalance in the gravisensor system and/or calcium signaling and therefore to abolish gravitropism of pea roots.
Biomimetic L-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering.
Knight, Darryl K; Gillies, Elizabeth R; Mequanint, Kibret
2014-08-01
Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Auxin Biosynthesis in Pea: Characterization of the Tryptamine Pathway1[W][OA
Quittenden, Laura J.; Davies, Noel W.; Smith, Jason A.; Molesworth, Peter P.; Tivendale, Nathan D.; Ross, John J.
2009-01-01
One pathway leading to the bioactive auxin, indole-3-acetic acid (IAA), is known as the tryptamine pathway, which is suggested to proceed in the sequence: tryptophan (Trp), tryptamine, N-hydroxytryptamine, indole-3-acetaldoxime, indole-3-acetaldehyde (IAAld), IAA. Recently, this pathway has been characterized by the YUCCA genes in Arabidopsis (Arabidopsis thaliana) and their homologs in other species. YUCCA is thought to be responsible for the conversion of tryptamine to N-hydroxytryptamine. Here we complement the genetic findings with a compound-based approach in pea (Pisum sativum), detecting potential precursors by gas chromatography/tandem-mass spectrometry. In addition, we have synthesized deuterated forms of many of the intermediates involved, and have used them to quantify the endogenous compounds, and to investigate their metabolic fates. Trp, tryptamine, IAAld, indole-3-ethanol, and IAA were detected as endogenous constituents, whereas indole-3-acetaldoxime and one of its products, indole-3-acetonitrile, were not detected. Metabolism experiments indicated that the tryptamine pathway to IAA in pea roots proceeds in the sequence: Trp, tryptamine, IAAld, IAA, with indole-3-ethanol as a side-branch product of IAAld. N-hydroxytryptamine was not detected, but we cannot exclude that it is an intermediate between tryptamine and IAAld, nor can we rule out the possibility of a Trp-independent pathway operating in pea roots. PMID:19710233
ERIC Educational Resources Information Center
Elliott, Shannon Snyder
2007-01-01
The purpose of this study is to first develop an 8-week college teaching module based on root competition literature. The split-root technique is adapted for the teaching laboratory, and the Sugar Ann English pea (Pisum sativum var. Sugar Ann English) is selected as the species of interest prior to designing experiments, either original or…
Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing
2016-12-01
Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lp r ), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lp rc ), and leaf cell hydraulic conductivity (Lp lc ) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lp r and K leaf were reduced by 29 %, and Lp rc and Lp lc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.
Krishna, Gaurav; Reddy, P Sairam; Ramteke, Pramod W; Rambabu, Pogiri; Sohrab, Sayed S; Rana, Debashis; Bhattacharya, Parthasarathi
2011-10-01
In vitro regeneration of pigeon pea through organogenesis and somatic embryogenesis was demonstrated with pigeon pea cv. JKR105. Embryonic axes explants of pigeon pea showed greater regeneration of shoot buds on 2.5 mg L(-1) 6-benzylaminopurine (BAP) in the medium, followed by further elongation at lower concentrations. Rooting of shoots was observed on half-strength Murashige and Skoog (MS) medium with 2 % sucrose and 0.5 mg L(-1) 3-indolebutyric acid (IBA). On the other hand, the regeneration of globular embryos from cotyledon explant was faster and greater with thidiazuron (TDZ) than BAP with sucrose as carbohydrate source. These globular embryos were maturated on MS medium with abscisic acid (ABA) and finally germinated on half-strength MS medium at lower concentrations of BAP. Comparison of regeneration pathways in pigeon pea cv. JKR105 showed that the turnover of successful establishment of plants achieved through organogenesis was more compared to somatic embryogenesis, despite the production of more embryos than shoot buds.
The role of calcium ions in cytological effects of hypogravity
NASA Astrophysics Data System (ADS)
Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Palladina, T. A.; Tarasenko, V. A.
Electron-cytochemical and biochemical methods made it possible to reveal certain differences in ATPase activity stimulation by calcium ions in root apex cells of pea seedlings and moss protonema Funaria hygrometrica grown under stationary and slow clinostatic (2 rev/min) conditions. It was showed that under clinostatic conditions in comparison with the control variant the ATPase activity decreases in plasmalemma. The protein content in the plasmalemma fraction was also twice as low under these conditions. The root apex cells of the pea seedlings grown under spaceflight conditions were found to contain high concentrations of membrane-bound calcium. The data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance and the system of active calcium ion transport through plasmalemma under hypogravity.
Gas chromatography-mass spectrometry evidence for several endogenous auxins in pea seedling organs.
Schneider, E A; Kazakoff, C W; Wightman, F
1985-08-01
Qualitative analysis by gas chromatography-mass spectrometry (GC-MS) of the auxins present in the root, cotyledons and epicotyl of 3-dold etiolated pea (Pisum sativum L., cv. Alaska) seedlings has shown that all three organs contain phenylacetic acid (PAA), 3-indoleacetic acid (IAA) and 4-chloro-3-indoleacetic acid (4Cl-IAA). In addition, 3-indolepropionic acid (IPA) was present in the root and 3-indolebutyric acid (IBA) was detected in both root and epicotyl. Phenylacetic acid, IAA and IPA were measured quantitatively in the three organs by GC-MS-single ion monitoring, using deuterated internal standards. Levels of IAA were found to range from 13 to 115 pmol g(-1) FW, while amounts of PAA were considerably higher (347-451 pmol g(-1) FW) and the level of IPA was quite low (5 pmol g(-1) FW). On a molar basis the PAA:IAA ratio in the whole seedling was approx. 15:1.
Hecht, Valérie; Laurie, Rebecca E; Vander Schoor, Jacqueline K; Ridge, Stephen; Knowles, Claire L; Liew, Lim Chee; Sussmilch, Frances C; Murfet, Ian C; Macknight, Richard C; Weller, James L
2011-01-01
Garden pea (Pisum sativum) was prominent in early studies investigating the genetic control of flowering and the role of mobile flowering signals. In view of recent evidence that genes in the FLOWERING LOCUS T (FT) family play an important role in generating mobile flowering signals, we isolated the FT gene family in pea and examined the regulation and function of its members. Comparison with Medicago truncatula and soybean (Glycine max) provides evidence of three ancient subclades (FTa, FTb, and FTc) likely to be common to most crop and model legumes. Pea FT genes show distinctly different expression patterns with respect to developmental timing, tissue specificity, and response to photoperiod and differ in their activity in transgenic Arabidopsis thaliana, suggesting they may have different functions. We show that the pea FTa1 gene corresponds to the GIGAS locus, which is essential for flowering under long-day conditions and promotes flowering under short-day conditions but is not required for photoperiod responsiveness. Grafting, expression, and double mutant analyses show that GIGAS/FTa1 regulates a mobile flowering stimulus but also provide clear evidence for a second mobile flowering stimulus that is correlated with expression of FTb2 in leaf tissue. These results suggest that induction of flowering by photoperiod in pea results from interactions among several members of a diversified FT family.
Krishna, Gaurav; Reddy, P Sairam; Ramteke, P W; Bhattacharya, P S
2010-10-01
Pigeon pea [Cajanus cajan (L.) Millsp.] (Family: Fabaceae) is an important legume crop cultivated across 50 countries in Asia, Africa, and the Americas; and ranks fifth in area among pulses after soybean, common bean, peanut, and chickpea. It is consumed as a major source of protein (21%) to the human population in many developing countries. In India, it is the second important food legume contributing to 80% of the global production. Several biotic and abiotic stresses are posing a big threat to its production and productivity. Attempts to address these problems through conventional breeding methods have met with partial success. This paper reviews the chronological progress made in tissue culture through organogenesis and somatic embryogenesis, including the influence of factors such as genotypes, explant sources, and culture media including the supplementation of plant growth regulators. Comprehensive lists of morphogenetic pathways involved in in vitro regeneration through organogenesis and somatic embryogenesis using different explant tissues of diverse pigeon pea genotypes are presented. Similarly, the establishment of protocols for the production of transgenics via particle bombardment and Agrobacterium-mediated transformation using different explant tissues, Agrobacterium strains, Ti plasmids, and plant selectable markers, as well as their interactions on transformation efficiency have been discussed. Future research thrusts on the use of different promoters and stacking of genes for various biotic and abiotic stresses in pigeon pea are suggested.
Scherbak, Nikolai; Ala-Häivälä, Anneli; Brosché, Mikael; Böwer, Nathalie; Strid, Hilja; Gittins, John R; Grahn, Elin; Eriksson, Leif A; Strid, Åke
2011-04-01
The pea (Pisum sativum) tetrameric short-chain alcohol dehydrogenase-like protein (SAD) family consists of at least three highly similar members (SAD-A, -B, and -C). According to mRNA data, environmental stimuli induce SAD expression. The aim of this study was to characterize the SAD proteins by examining their catalytic function, distribution in pea, and induction in different tissues. In enzyme activity assays using a range of potential substrates, the SAD-C enzyme was shown to reduce one- or two-ring-membered quinones lacking long hydrophobic hydrocarbon tails. Immunological assays using a specific antiserum against the protein demonstrated that different tissues and cell types contain small amounts of SAD protein that was predominantly located within epidermal or subepidermal cells and around vascular tissue. Particularly high local concentrations were observed in the protoderm of the seed cotyledonary axis. Two bow-shaped rows of cells in the ovary and the placental surface facing the ovule also exhibited considerable SAD staining. Ultraviolet-B irradiation led to increased staining in epidermal and subepidermal cells of leaves and stems. The different localization patterns of SAD suggest functions both in development and in responses to environmental stimuli. Finally, the pea SAD-C promoter was shown to confer heterologous wound-induced expression in Arabidopsis (Arabidopsis thaliana), which confirmed that the inducibility of its expression is regulated at the transcriptional level.
Scherbak, Nikolai; Ala-Häivälä, Anneli; Brosché, Mikael; Böwer, Nathalie; Strid, Hilja; Gittins, John R.; Grahn, Elin; Eriksson, Leif A.; Strid, Åke
2011-01-01
The pea (Pisum sativum) tetrameric short-chain alcohol dehydrogenase-like protein (SAD) family consists of at least three highly similar members (SAD-A, -B, and -C). According to mRNA data, environmental stimuli induce SAD expression. The aim of this study was to characterize the SAD proteins by examining their catalytic function, distribution in pea, and induction in different tissues. In enzyme activity assays using a range of potential substrates, the SAD-C enzyme was shown to reduce one- or two-ring-membered quinones lacking long hydrophobic hydrocarbon tails. Immunological assays using a specific antiserum against the protein demonstrated that different tissues and cell types contain small amounts of SAD protein that was predominantly located within epidermal or subepidermal cells and around vascular tissue. Particularly high local concentrations were observed in the protoderm of the seed cotyledonary axis. Two bow-shaped rows of cells in the ovary and the placental surface facing the ovule also exhibited considerable SAD staining. Ultraviolet-B irradiation led to increased staining in epidermal and subepidermal cells of leaves and stems. The different localization patterns of SAD suggest functions both in development and in responses to environmental stimuli. Finally, the pea SAD-C promoter was shown to confer heterologous wound-induced expression in Arabidopsis (Arabidopsis thaliana), which confirmed that the inducibility of its expression is regulated at the transcriptional level. PMID:21343423
Chovanec, P; Hovorka, O; Novák, K
2008-01-01
In rhizobial symbiosis with legume plant hosts, the symbiotic tissue in the root nodules of indeterminate type is localized to the basal part of the nodule where the symbiotic zones contain infected cells (IC) interspersed with uninfected cells (UC) that are devoid of rhizobia. Although IC are easily distinguished in nodule sections using standard histochemical techniques, their observation in intact nodules is hampered by nodule tissue characteristics. Tagging of Rhizobium leguminosarum bv. viciae strain 128C30 with a constitutively expressed gene for green fluorescent protein (nonshifted mutant form cycle3) in combination with the advantages of the tiny nodules formed by Vicia tetrasperma (L.) SCHREB . allowed for vital observation of symbiotic tissue using fluorescence microscopy. Separation of a red-shifted background channel and digital image stacking along z-axis enabled us to construct a nodule image in a classical fluorescence microscopy of nodules exceeding 1 mm in diameter. In parallel, visualization of nodule bacteria inside the symbiotic tissue by confocal microscopy at the excitation wavelength 488 nm clearly distinguished IC/UC pattern in the nodule virtual sections and revealed red-shifted fluorescence of nonrhizobial origin. This signal was located on the periphery of IC and increased with their degradation, thus suggesting accumulation of secondary metabolites, presumably flavonoids. The simultaneous detection of bacteria and secondary metabolites can be used for monitoring changes to intact nodule physiology in the model legumes. The advantage of V. tetrasperma as a suggested laboratory model for pea cross-inoculation group has been demonstrated.
Woźniak, Agnieszka; Drzewiecka, Kinga; Kęsy, Jacek; Marczak, Łukasz; Narożna, Dorota; Grobela, Marcin; Motała, Rafał; Bocianowski, Jan; Morkunas, Iwona
2017-08-24
The aim of this study was to investigate the effect of an abiotic factor, i.e., lead at various concentrations (low causing a hormesis effect and causing high toxicity effects), on the generation of signalling molecules in pea ( Pisum sativum L. cv. Cysterski) seedlings and then during infestation by the pea aphid ( Acyrthosiphon pisum Harris). The second objective was to verify whether the presence of lead in pea seedling organs and induction of signalling pathways dependent on the concentration of this metal trigger defense responses to A. pisum . Therefore, the profile of flavonoids and expression levels of genes encoding enzymes of the flavonoid biosynthesis pathway (phenylalanine ammonialyase and chalcone synthase) were determined. A significant accumulation of total salicylic acid (TSA) and abscisic acid (ABA) was recorded in the roots and leaves of pea seedlings growing on lead-supplemented medium and next during infestation by aphids. Increased generation of these phytohormones strongly enhanced the biosynthesis of flavonoids, including a phytoalexin, pisatin. This research provides insights into the cross-talk between the abiotic (lead) and biotic factor (aphid infestation) on the level of the generation of signalling molecules and their role in the induction of flavonoid biosynthesis.
NASA Technical Reports Server (NTRS)
Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.
1993-01-01
The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.
Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil.
Mukherjee, Arnab; Peralta-Videa, Jose R; Bandyopadhyay, Susmita; Rico, Cyren M; Zhao, Lijuan; Gardea-Torresdey, Jorge L
2014-01-01
The toxicological effects of zinc oxide nanoparticles (ZnO NPs) in plants are still largely unknown. In the present study, green pea (Pisum sativum L.) plants were treated with 0, 125, 250, and 500 mg kg(-1) of either ZnO NPs or bulk ZnO in organic matter enriched soil. Corresponding toxicological effects were measured on the basis of plant growth, chlorophyll production, Zn bioaccumulation, H2O2 generation, stress enzyme activity, and lipid peroxidation using different cellular, molecular, and biochemical approaches. Compared to control, all ZnO NP concentrations significantly increased (p ≤ 0.05) root elongation but no effects were observed in the stem. Whereas all bulk ZnO treatments significantly increased both root and stem length. After 25 days, chlorophyll in leaves decreased, compared to control, by ~61%, 67%, and 77% in plants treated with 125, 250, and 500 mg kg(-1) ZnO NPs, respectively. Similar results were found in bulk ZnO treated plants. At all ZnO NP concentrations CAT was significantly reduced in leaves (p ≤ 0.05), while APOX was reduced in both roots and leaves. In the case of bulk ZnO, APOX activity was down-regulated in the root and leaf and CAT was unaffected. At 500 mg kg(-1) treatment, the H2O2 in leaves increased by 61% with a twofold lipid peroxidation, which would be a predictive biomarker of nanotoxicity. This study could be pioneering in evaluating the phytotoxicity of ZnO NPs to green peas and can serve as a good indicator for measuring the effects on ZnO NPs in plants grown in organic matter enriched soil.
2-Pentadecyl-2-Oxazoline, the Oxazoline of Pea, Modulates Carrageenan-Induced Acute Inflammation
Petrosino, Stefania; Campolo, Michela; Impellizzeri, Daniela; Paterniti, Irene; Allarà, Marco; Gugliandolo, Enrico; D’Amico, Ramona; Siracusa, Rosalba; Cordaro, Marika; Esposito, Emanuela; Di Marzo, Vincenzo; Cuzzocrea, Salvatore
2017-01-01
N-acylethanolamines (NAEs) involve a family of lipid molecules existent in animal and plant, with N-palmitoylethanolamide (PEA) that arouses great attention owing to its anti-inflammatory, analgesic and neuroprotective activities. Because PEA is produced on demand and exerts pleiotropic effects, the modulation of specific amidases for NAEs (and in particular NAE-hydrolyzing acid amidase NAAA, which is more selective for PEA) could be a condition to preserve its levels. Here we investigate the effect of 2-Pentadecyl-2-oxazoline (PEA-OXA) the oxazoline of PEA, on human recombinant NAAA in vitro and in an established model of Carrageenan (CAR)-induced rat paw inflammation. PEA-OXA dose-dependently significantly inhibited recombinant NAAA and, orally administered to rats (10 mg/kg), limiting histological damage, thermal hyperalgesia and the increase of infiltrating inflammatory cells after CAR injection in the rat right hindpaw, compared to ultramicronized PEA given orally at the same dose (10 mg/kg). These effects were accompanied by elevation of paw PEA levels. Moreover, PEA-OXA markedly reduced neutrophil infiltration and pro-inflammatory cytokine release and prevented CAR-induced IκB-α degradation, nuclear translocation of NF-κB p65, the increase of inducible nitric oxide synthase, cyclooxygenase-2, intercellular adhesion molecule-1, and mast cell activation. Experiments in PPAR-α knockout mice showed that the anti-inflammatory effects of PEA-OXA were not dependent on the presence of PPAR-α receptors. In conclusion, NAAA modulators as PEA-OXA could help to maximize the tissue availability of PEA by increasing its levels and anti-inflammatory effects. PMID:28611664
Protein tyrosine nitration in pea roots during development and senescence
Corpas, Francisco J.
2013-01-01
Protein tyrosine nitration is a post-translational modification mediated by reactive nitrogen species (RNS) that is associated with nitro-oxidative damage. No information about this process is available in relation to higher plants during development and senescence. Using pea plants at different developmental stages (ranging from 8 to 71 days), tyrosine nitration in the main organs (roots, stems, leaves, flowers, and fruits) was analysed using immunological and proteomic approaches. In the roots of 71-day-old senescent plants, nitroproteome analysis enabled the identification a total of 16 nitrotyrosine-immunopositive proteins. Among the proteins identified, NADP-isocitrate dehydrogenase (ICDH), an enzyme involved in the carbon and nitrogen metabolism, redox regulation, and responses to oxidative stress, was selected to evaluate the effect of nitration. NADP-ICDH activity fell by 75% during senescence. Analysis showed that peroxynitrite inhibits recombinant cytosolic NADP-ICDH activity through a process of nitration. Of the 12 tyrosines present in this enzyme, mass spectrometric analysis of nitrated recombinant cytosolic NADP-ICDH enabled this study to identify the Tyr392 as exclusively nitrated by peroxynitrite. The data as a whole reveal that protein tyrosine nitration is a nitric oxide-derived PTM prevalent throughout root development and intensifies during senescence. PMID:23362300
NASA Astrophysics Data System (ADS)
Miyamoto, Kensuke; Hoshino, Tomoki; Hitotsubashi, Reiko; Yamashita, Masamichi; Ueda, Junichi
Both microgravity conditions in space and simulated microgravity using a 3-dimensional clinostat resulted in: (1) automorphosis of etiolated pea seedlings, (2) epicotyls bending ca. 45° from the vertical line to the direction away from cotyledons, (3) inhibition of hook formation and (4) alternation of growth direction of roots. These facts indicate that the growth and development of etiolated pea seedlings on earth is under the influence of gravistimulation. Lanthanum and gadolinium ions, blockers of stretch-activated mechanosensitive ion channels, induced automorphosis-like epicotyl bending. Cantharidin, an inhibitor of protein phosphatase, also phenocopied automorphosis-like growth. On the other hand, cytochalasin B, cytochalasin D and brefeldin A did not induce automorphological epicotyl bending and inhibition of hook formation, although these compounds strikingly inhibited elongation of etiolated pea epicotyls. These results strongly suggest that stretch-activated mechanosensitive ion channels are involved in the perception of signals of gravistimuli in plants, and they are transduced by protein phosphorylation and dephosphorylation cascades by changing levels of calcium ions. Possible mechanisms to induce automorphosis-like growth in relation to gravity signals in etiolated pea seedlings are discussed.
NASA Technical Reports Server (NTRS)
Kuzmanoff, K. M.
1984-01-01
In plants, gravity stimulates differential growth in the upper and lower halves of horizontally oriented organs. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the activity of Golgi-localized Beta-1,4-glucan synthase, an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. The primary objective is to determine if auxin induces de novo formation of Golgi glucan synthase and increases the level of this glucan synthase mRNA. This shall be accomplished by (a) preparation of a monoclonal antibody to the synthase, (b) isolation, and characterization of the glucan synthase, and (c) examination for cross reactivity between the antibody and translation products of auxin induced mRNAs in pea tissue. The antibody will also be used to localize the glucan synthase in upper and lower halves of pea stem tissue before, during and after the response to gravity.
Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.
Terpolilli, Jason J; Masakapalli, Shyam K; Karunakaran, Ramakrishnan; Webb, Isabel U C; Green, Rob; Watmough, Nicholas J; Kruger, Nicholas J; Ratcliffe, R George; Poole, Philip S
2016-10-15
Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2 Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [(13)C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2 However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance oxidation of plant-derived dicarboxylates in the TCA cycle with lipid synthesis. Pea bacteroids channel acetyl-CoA into both lipid and the lipid-like polymer poly-β-hydroxybutyrate, the latter via a type II PHB synthase. Lipogenesis is likely to be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids
Terpolilli, Jason J.; Masakapalli, Shyam K.; Karunakaran, Ramakrishnan; Webb, Isabel U. C.; Green, Rob; Watmough, Nicholas J.; Kruger, Nicholas J.; Ratcliffe, R. George
2016-01-01
ABSTRACT Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2. Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [13C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. IMPORTANCE Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2. However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance oxidation of plant-derived dicarboxylates in the TCA cycle with lipid synthesis. Pea bacteroids channel acetyl-CoA into both lipid and the lipid-like polymer poly-β-hydroxybutyrate, the latter via a type II PHB synthase. Lipogenesis is likely to be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. PMID:27501983
Speer, Michael; Kaiser, Werner M.
1991-01-01
Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl−) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3−/Cl− uptake by roots. PMID:16668541
Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)
Sabater-Muñoz, Beatriz; Legeai, Fabrice; Rispe, Claude; Bonhomme, Joël; Dearden, Peter; Dossat, Carole; Duclert, Aymeric; Gauthier, Jean-Pierre; Ducray, Danièle Giblot; Hunter, Wayne; Dang, Phat; Kambhampati, Srini; Martinez-Torres, David; Cortes, Teresa; Moya, Andrès; Nakabachi, Atsushi; Philippe, Cathy; Prunier-Leterme, Nathalie; Rahbé, Yvan; Simon, Jean-Christophe; Stern, David L; Wincker, Patrick; Tagu, Denis
2006-01-01
Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect. PMID:16542494
Rudikovskaya, E G; Akimova, G P; Rudikovskii, A V; Katysheva, N B; Dudareva, L V
2017-01-01
A change in the contents of endogenous salicylic and jasmonic acids in the roots of the host plant at the preinfectious stage of interaction with symbiotic (Rhizobium leguminosarum) and pathogenic (Agrobacterium rizogenes) bacteria belonging for to the family Rhizobiaceae was studied. It was found that the jasmonic acid content increased 1.5–2 times 5 min after inoculation with these bacterial species. It was shown that dynamics of the change in the JA and SA contents depends on the type of infection. Thus, the JA content decreased in the case of pathogenesis, while the SA content increased. At the same time, an increased JA content was observed during symbiosis. The observed regularities could indicate the presence of different strategies of hormonal regulation for interaction with symbiotic and pathogenic bacteria belonging to the family Rhizobiaceae in peas plants.
Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn
2016-01-01
Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drobak, B.K.; Watkins, P.A.C.; Roberts, K.
1991-02-01
Metabolism of the putative messenger molecule D-myo-inositol(1,4,5)trisphosphate (Ins(1,4,5)P{sub 3}) in plant cells has been studied using a soluble fraction from pea (pisum sativum) roots as enzyme source and (5-{sup 32}P)Ins(1,4,5)P{sub 3} and (2-{sup 3}H)Ins(1,4,5)P{sub 3} as tracers. Ins(1,4,5)P{sub 3} was rapidly converted into both lower and higher inositol phosphates. The major dephosphorylation product was inositol (4,5) bisphosphate (Ins(4,5)P{sub 2}) whereas inositol(1,4)bisphosphate (Ins(1,4)P{sub 2}) was only present in very small quantities throughout a 15 minute incubation period. In addition to these compounds, small amounts of nine other metabolites were produced including inositol and inositol(1,4,5,X)P{sub 4}. Dephosphorylation of Ins(1,4,5)P{sub 3} to Ins(4,5)P{submore » 2} was dependent on Ins(1,4,5)P{sub 3} concentration and was partially inhibited by the phosphohydrolase inhibitors 2,3-diphosphoglycerate, glucose 6-phosphate, and p-nitrophenylphosphate. Conversion of Ins(1,4,5)P{sub 3} to Ins(4,5)P{sub 2} and Ins(1,4,5,X)P{sub 4} was inhibited by 55 micromolar Ca{sup 2+}. This study demonstrates that enzymes are present in plant tissues which are capable of rapidly converting Ins(1,4,5)P{sub 3} and that pathways of inositol phosphate metabolism exist which may prove to be unique to the plant kingdom.« less
Kitanaka, Junichi; Kitanaka, Nobue; Tatsuta, Tomohiro; Takemura, Motohiko
2005-11-01
2-Phenylethylamine (PEA)-induced stereotypy in rodents is suggested to model psychotic symptoms of schizophrenia. It is reported that PEA induces dopamine release in the striatum in vivo and in vitro. The present study analyzed the PEA-induced stereotypy and possible associated brain dopamine metabolism in mice. Using male ICR mice treated with a combination of PEA (100 mg/kg, i.p.) and increasing doses of l-deprenyl (0-10 mg/kg, s.c.), we examined (1) the behavioral profile of stereotypy (rating the scores), and (2) the tissue levels of dopamine and its metabolites by high-performance liquid chromatography. The stereotypic scores reached a plateau level at 10 min which lasted until 30 min after a single administration of 100 mg/kg PEA. The stereotyped behavior completely disappeared 45 min after PEA administration. Pretreatment with l-deprenyl (0.1, 1, and 10 mg/kg, s.c.) dose-dependently prolonged the duration of PEA-induced stereotypy. Notably, pretreatment with l-deprenyl dose-dependently increased the continuous sniffing. Treatment with PEA in combination of l-deprenyl (1 and 10 mg/kg) significantly reduced the level of dopamine in the region of the striatum and nucleus accumbens, compared with control animals. These results suggest that PEA in combination with l-deprenyl prolonged the duration of the stereotypy (particularly, continuous sniffing) while reducing the striatal level of dopamine.
Frederix, Marijke; Edwards, Anne; Swiderska, Anna; Stanger, Andrew; Karunakaran, Ramakrishnan; Williams, Alan; Abbruscato, Pamela; Sanchez-Contreras, Maria; Poole, Philip S; Downie, J Allan
2014-01-01
In Rhizobium leguminosarum bv. viciae, quorum-sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)-dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out-competed wild-type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR-mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots. PMID:24942546
Characterization of some biological specimens using TEM and SEM
NASA Astrophysics Data System (ADS)
Ghosh, Nabarun; Smith, Don W.
2009-05-01
The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.
Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity
NASA Astrophysics Data System (ADS)
Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.
In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.
The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.
Urquhart, Shelley; Foo, Eloise; Reid, James B
2015-03-01
The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone-deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild-type seedlings when grown in the dark, but not when grown in the light. This observation in dark-grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de-etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F-Box strigolactone response pathway as Psmax2 f-box mutants did not show a reduction in adventitious rooting in the dark compared with wild-type plants. The auxin-deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild-type plants. Rooting was restored by the application of indole-3-acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild-type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency. © 2014 Scandinavian Plant Physiology Society.
Abscisic Acid Stimulates Elongation of Excised Pea Root Tips
Gaither, Douglas H.; Lutz, Donald H.; Forrence, Leonard E.
1975-01-01
Excised Pisum sativum L. root tips were incubated in a pH 5.2 sucrose medium containing abscisic acid. Elongation growth was inhibited by 100 μm abscisic acid. However, decreasing the abscisic acid concentration caused stimulation of elongation, the maximum response (25% to 30%) occurring at 1 μm abscisic acid. Prior to two hours, stimulation of elongation by 1 μm abscisic acid was not detectable. Increased elongation did not occur in abscisic acid-treated root tips of Lens culinaris L., Phaseolus vulgaris L., or Zea mays L. PMID:16659198
Escobar Galvis, Martha L.; Marttila, Salla; Håkansson, Gunilla; Forsberg, Jens; Knorpp, Carina
2001-01-01
In this work we have further characterized the first mitochondrial nucleoside diphosphate kinase (mtNDPK) isolated from plants. The mitochondrial isoform was found to be especially abundant in reproductive and young tissues. Expression of the pea (Pisum sativum L. cv Oregon sugarpod) mtNDPK was not affected by different stress conditions. However, the pea mtNDPK was found to interact with a novel 86-kD protein, which is de novo synthesized in pea leaves upon exposure to heat. Thus, we have evidence for the involvement of mtNDPK in mitochondrial heat response in pea in vivo. Studies on oligomerization revealed that mtNDPK was found in complexes of various sizes, corresponding to the sizes of e.g. hexamers, tetramers, and dimers, indicating flexibility in oligomerization. This flexibility, also found for other NDPK isoforms, has been correlated with the ability of this enzyme to interact with other proteins. We believe that the mtNDPK is involved in heat stress response in pea, possibly as a modulator of the 86-kD protein. PMID:11351071
Escobar Galvis, M L; Marttila, S; Håkansson, G; Forsberg, J; Knorpp, C
2001-05-01
In this work we have further characterized the first mitochondrial nucleoside diphosphate kinase (mtNDPK) isolated from plants. The mitochondrial isoform was found to be especially abundant in reproductive and young tissues. Expression of the pea (Pisum sativum L. cv Oregon sugarpod) mtNDPK was not affected by different stress conditions. However, the pea mtNDPK was found to interact with a novel 86-kD protein, which is de novo synthesized in pea leaves upon exposure to heat. Thus, we have evidence for the involvement of mtNDPK in mitochondrial heat response in pea in vivo. Studies on oligomerization revealed that mtNDPK was found in complexes of various sizes, corresponding to the sizes of e.g. hexamers, tetramers, and dimers, indicating flexibility in oligomerization. This flexibility, also found for other NDPK isoforms, has been correlated with the ability of this enzyme to interact with other proteins. We believe that the mtNDPK is involved in heat stress response in pea, possibly as a modulator of the 86-kD protein.
40 CFR 180.626 - Prothioconazole; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Alfalfa, forage 0.02 Alfalfa, hay 0.02 Beet, sugar, roots 0.25 Corn, sweet kernel plus cob with husks... sweet corn and sorghum 0.35 Pea and bean, dried shelled, except soybean, subgroup 6C 0.9 Peanut 0.02...
40 CFR 180.626 - Prothioconazole; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Alfalfa, forage 0.02 Alfalfa, hay 0.02 Beet, sugar, roots 0.25 Corn, sweet kernel plus cob with husks... sweet corn and sorghum 0.35 Pea and bean, dried shelled, except soybean, subgroup 6C 0.9 Peanut 0.02...
Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lyon, David; Geilfus, Christoph-Martin; Lüthje, Sabine
2016-05-17
Iron deficiency (-Fe) is one of the major problems in crop production. Dicots, like pea (Pisum sativum L.), are Strategy I plants, which induce a group of specific enzymes such as Fe(III)-chelate reductase (FRO), Fe responsive transporter (IRT) and H(+)-ATPase (HA) at the root plasma membrane under -Fe. Different species and cultivars have been shown to react diversely to -Fe. Furthermore, different kinds of experimental set-ups for -Fe have to be distinguished: i) short-term vs. long-term, ii) constant vs. acute alteration and iii) buffered vs. unbuffered systems. The presented work compares the effects of constant long-term -Fe in an unbuffered system on roots of four different pea cultivars in a timely manner (12, 19 and 25days). To differentiate the effects of -Fe and plant development, control plants (+Fe) were analyzed in comparison to -Fe plants. Besides physiological measurements, an integrative study was conducted using a comprehensive proteome analysis. Proteins, related to stress adaptation (e.g. HSP), reactive oxygen species related proteins and proteins of the mitochondrial electron transport were identified to be changed in their abundance. Regulations and possible functions of identified proteins are discussed. Pea (Pisum sativum L.) belongs to the legume family (Fabaceae) and is an important crop plant due to high Fe, starch and protein contents. According to FAOSTAT data (September 2015), world production of the garden pea quadrupled from 1970 to 2012. Since the initial studies by Gregor Mendel, the garden pea became the most-characterized legume and has been used in numerous investigations in plant biochemistry and physiology, but is not well represented in the "omics"-related fields. A major limitation in pea production is the Fe availability from soils. Adaption mechanisms to Fe deficiency vary between species, and even cultivars have been shown to react diversely. A label-free proteomic approach, in combination with physiological measurements, was chosen to observe four different pea cultivars for 5 to 25days. Physiological and proteome data showed that cultivar Blauwschokker and Vroege were more susceptible to -Fe than cultivar Kelvedon (highly efficient) and GftR (semi-efficient). Proteomic data hint that the adaptation process to long-term -Fe takes place between days 19 and 25. Results show that adaptation processes of efficient cultivars are able to postpone secondary negative effects of long-term -Fe, possibly by stabilizing the protein metabolic processing and the mitochondrial electron transport components. This maintains the cellular energy proliferation, keeps ROS production low and postpones the mitochondrial cell death signal. Copyright © 2016 Elsevier B.V. All rights reserved.
Frederix, Marijke; Edwards, Anne; Swiderska, Anna; Stanger, Andrew; Karunakaran, Ramakrishnan; Williams, Alan; Abbruscato, Pamela; Sanchez-Contreras, Maria; Poole, Philip S; Downie, J Allan
2014-08-01
In Rhizobium leguminosarum bv. viciae, quorum-sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)-dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out-competed wild-type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR-mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Wong, Chui E; Bhalla, Prem L; Ottenhof, Harald; Singh, Mohan B
2008-01-01
Background Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity. Results In order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag). Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation, epigenetic regulation, auxin-mediated responses and microRNA regulation. Conclusion The presented data provide a picture of the transcriptional profile of the pea SAM, and reveal possible roles of differentially expressed transcripts in meristem function and maintenance. PMID:18590528
Chakraborty, Sandeep; Britton, Monica; Martínez-García, P J; Dandekar, Abhaya M
2016-03-01
Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.
Reddy, M K; Nair, S; Tewari, K K; Mudgil, Y; Yadav, B S; Sopory, S K
1999-09-01
We have isolated and sequenced four overlapping cDNA clones to identify the full-length cDNA for topoisomerase II (PsTopII) from pea. Using degenerate primers, based on the conserved amino acid sequences of other eukaryotic type II topoisomerases, a 680 bp fragment was PCR-amplified with pea cDNA as template. This fragment was used as a probe to screen an oligo-dT-primed pea cDNA library. A partial cDNA clone was isolated that was truncated at the 3' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of PsTopII is 4639 bp with an open reading frame of 4392 bp. The deduced amino acid sequence shows a strong homology to other eukaryotic topoisomerase II (topo II) at the N-terminus end. The topo II transcript was abundant in proliferative tissues. We also show that the level of topo II transcripts could be stimulated by exogenous application of growth factors that induced proliferation in vitro cultures. Light irradiation to etiolated tissue strongly stimulated the expression of topo II. These results suggest that topo II gene expression is up-regulated in response to light and hormones and correlates with cell proliferation. Besides, we have also isolated and analysed the 5'-flanking region of the pea TopII gene. This is first report on the isolation of a putative promoter for topoisomerase II from plants.
Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea.
Desgroux, Aurore; L'Anthoëne, Virginie; Roux-Duparque, Martine; Rivière, Jean-Philippe; Aubert, Grégoire; Tayeh, Nadim; Moussart, Anne; Mangin, Pierre; Vetel, Pierrick; Piriou, Christophe; McGee, Rebecca J; Coyne, Clarice J; Burstin, Judith; Baranger, Alain; Manzanares-Dauleux, Maria; Bourion, Virginie; Pilet-Nayel, Marie-Laure
2016-02-20
Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and others suggested that the QTL are involved in diverse functions. This study provides valuable markers, marker haplotypes and germplasm lines to increase levels of partial resistance to A. euteiches in pea breeding.
Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN
2017-01-01
The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496
Ben-Harari, R. R.; Youdim, M. B.
1981-01-01
1. Uptake of 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) was studied in perfused lung from male rats between 10 and 70 days old. 2. Monoamine oxidase (MAO) activity towards 5-HT, PEA and dopamine was studied in homogenate preparations of lung from rats aged between 5 and 80 days. 3. Uptake of 5-HT (10 microM) decreased throughout the age range studied but uptake of PEA (50 microM) increased for the first 30 days and beyond this age it decreased. Metabolites formed for both amines reflected the changes in uptake. 4. MAO activity deaminating 5-HT is well developed by day 10 and reaches its maximum by day 40. For dopamine and PEA, MAO activity remained low until day 20, and the developed rapidly, reaching a maximum by day 40 for dopamine; activity towards PEA did not reach a maximum by day 80. 5. These results show that uptake and MAO activity changes with age and thus the lung responds like other tissues. 6. These results also demonstrate the independent development of uptake and MAO activity towards 5-HT, PEA and dopamine. PMID:7284689
2011-01-01
Background The rhizosphere is the microbe-rich zone around plant roots and is a key determinant of the biosphere's productivity. Comparative transcriptomics was used to investigate general and plant-specific adaptations during rhizosphere colonization. Rhizobium leguminosarum biovar viciae was grown in the rhizospheres of pea (its legume nodulation host), alfalfa (a non-host legume) and sugar beet (non-legume). Gene expression data were compared to metabolic and transportome maps to understand adaptation to the rhizosphere. Results Carbon metabolism was dominated by organic acids, with a strong bias towards aromatic amino acids, C1 and C2 compounds. This was confirmed by induction of the glyoxylate cycle required for C2 metabolism and gluconeogenesis in all rhizospheres. Gluconeogenesis is repressed in R. leguminosarum by sugars, suggesting that although numerous sugar and putative complex carbohydrate transport systems are induced in the rhizosphere, they are less important carbon sources than organic acids. A common core of rhizosphere-induced genes was identified, of which 66% are of unknown function. Many genes were induced in the rhizosphere of the legumes, but not sugar beet, and several were plant specific. The plasmid pRL8 can be considered pea rhizosphere specific, enabling adaptation of R. leguminosarum to its host. Mutation of many of the up-regulated genes reduced competitiveness for pea rhizosphere colonization, while two genes specifically up-regulated in the pea rhizosphere reduced colonization of the pea but not alfalfa rhizosphere. Conclusions Comparative transcriptome analysis has enabled differentiation between factors conserved across plants for rhizosphere colonization as well as identification of exquisite specific adaptation to host plants. PMID:22018401
Rajendran, Geetha; Sing, Falguni; Desai, Anjana J; Archana, G
2008-07-01
Endophytic bacteria which are known to reside in plant tissues have often been shown to promote plant growth. Present study deals with the isolation of putative endophytes from the surface sterilized root nodules of pigeon pea (Cajanus cajan) designated as non-rhizobial (NR) isolates. Three of these non-rhizobial isolates called NR2, NR4 and NR6 showed plant growth promotion with respect to increase in plant fresh weight, chlorophyll content, nodule number and nodule fresh weight when co-inoculated with the rhizobial bioinoculant strain IC3123. The three isolates were neither able to nodulate C. cajan nor did they show significant plant growth promotion when inoculated alone without Rhizobium spp. IC3123. All the three isolates were gram positive rods with NR2 and NR4 showing endospore formation and formed one single cluster in Amplified Ribosomal DNA Restriction Analysis (ARDRA). Partial sequences of 16S rRNA genes of NR4 and NR6 showed 97% similarity to Bacillus megaterium. The Bacillus strains NR4 and NR6 were able to produce siderophores which the rhizobial bioinoculant IC3123 was able to cross-utilize. Under iron starved conditions IC3123 showed enhanced growth in the presence of the Bacillus isolates indicating that siderophore mediated interactions may be underlying mechanism of beneficial effect of the NR isolates on nodulation by IC3123.
Qiao, Guang; Wen, Xiao-Peng; Zhang, Ting
2015-12-01
Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future.
2009-01-01
Background N-acylethanolamines (NAEs) are lipids upregulated in response to cell and tissue injury and are involved in cytoprotection. Arachidonylethanolamide (AEA) is a well characterized NAE that is an endogenous ligand at cannabinoid and vanilloid receptors, but it exists in small quantities relative to other NAE types. The abundance of other NAE species, such as palmitoylethanolamine (PEA), together with their largely unknown function and receptors, has prompted us to examine the neuroprotective properties and mechanism of action of PEA. We hypothesized that PEA protects HT22 cells from oxidative stress and activates neuroprotective kinase signaling pathways. Results Indeed PEA protected HT22 cells from oxidative stress in part by mediating an increase in phosphorylated Akt (pAkt) and ERK1/2 immunoreactivity as well as pAkt nuclear translocation. These changes take place within a time frame consistent with neuroprotection. Furthermore, we determined that changes in pAkt immunoreactivity elicited by PEA were not mediated by activation of cannabinoid receptor type 2 (CB2), thus indicating a novel mechanism of action. These results establish a role for PEA as a neuroprotectant against oxidative stress, which occurs in a variety of neurodegenerative diseases. Conclusions The results from this study reveal that PEA protects HT22 cells from oxidative stress and alters the localization and expression levels of kinases known to be involved in neuroprotection by a novel mechanism. Overall, these results identify PEA as a neuroprotectant with potential as a possible therapeutic agent in neurodegenerative diseases involving oxidative stress. PMID:20003317
NASA Technical Reports Server (NTRS)
Stahlberg, R.; Cosgrove, D. J.
1995-01-01
Excision of a growing stem causes local wound responses, such as membrane depolarization and growth inhibition, as well as effects at larger distances from the cut. In this study, cucumber hypocotyls were excised 100 mm below the hook, so that the growing region was beyond the reach of the wound-induced depolarization (up to 40 mm). Even at such a distance, the cut still caused a considerable and rapid drop in the hypocotyl growth rate. This growth response is not a direct wound response because it does not result from the cut-induced depolarization and because it can be simulated by root pressure manipulation (using a pressure chamber). The results indicate that the growth response resulted from the rapid release of the xylem pressure upon excision. To test this conclusion we measured the xylem pressure by connecting a pressure probe to the cut surface of the stem. Xylem pressure (Px) was found to be +10 to +40 kPa in cucumber hypocotyls and -5 to -10 kPa or lower in pea epicotyls. Excision of the cucumber hypocotyl base led to a rapid drop in Px to negative values, whereas excision in pea led to a rapid rise in Px to ambient (zero) pressure. These fast and opposite Px changes parallel the excision-induced changes in growth rate (GR): a decrease in cucumber and a rise in pea. The sign of the endogenous xylem pressure also determined whether excision induced a propagating depolarization in the form of a slow wave potential (SWP). Under normal circumstances pea seedlings generated an SWP upon excision whereas cucumber seedlings failed to do so. When the Px in cucumber hypocotyls was experimentally inverted to negative values by incubating the cumber roots in solutions of NaCN or n-ethylmaleimide, excision caused a propagating depolarization (SWP). The experiment shows that only hydraulic signals in the form of positive Px steps are converted into propagating electric SWP signals. These propagating depolarizations might be causally linked to systemic 'wound' responses, which occur independently of the short-distance or direct wound responses.
2017-01-01
The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds and seedlings. Physicochemical biomarkers were significantly changed by glyphosate exposure after 15 days. The germination of seedlings under control conditions (0 mg/L) was 100% after 3 days of treatment but at 3 and 4 mg/L glyphosate, germination was reduced to 55 and 40%, respectively. Physiological parameters like root and shoot length decreased monotonically with increasing glyphosate concentration, at 14 days of observation. Average root and shoot length (n=30 in three replicates) were reduced to 14.7 and 17.6%, respectively, at 4 mg/L glyphosate. Leaf chlorophyll content also decreased, with a similar trend to root and shoot length, but the protein content initially decreased and then increased with an increase in glyphosate concentration to 3 mg/L. The study suggests that glyphosate reduces the soluble sugar content significantly, by 21.6% (v/v). But internal sodium and potassium tissue concentrations were significantly altered by glyphosate exposure with increasing concentrations of glyphosate. Biochemical and physiological analysis also supports the inhibitory effect of glyphosate on seed germination and biochemical effects on seedlings. PMID:28728354
Kanika; Dogra, Tripti; Lata
2010-05-01
Out of a total of 8 bacterial strains isolated from the root nodules of pigeon pea plants grown in arid region, five were identified as rhizobia based on biochemical test and confirmed by 16S rDNA sequencing. PCR based screening for the rtxA gene (involved in biosynthesis of rhizobitoxine) revealed that the gene was present in one strain identified biochemically and genetically as belonging to species Bradyrhizobium (BS KT-24). The strain was resistant to phosphomycin, nalidixic acid, kanamycin, gentamicin and neomycin but sensitive towards streptomycin and spectinomycin. Bioinformatic-tool-guided phylogenetic analysis of rtxA gene revealed its distinctiveness from other known rtxA genes (present in B. japonicum, B. elkanii and Xanthomonas oryzae). The rhizobitoxine producing strain BS KT-24 is considered to exhibit better survival and nodulation protection besides competitiveness for pigeon pea and other legumes grown under abiotic stress and, thus, be a candidate in practical aspect of rhizobitoxine production by rhizobium and its application as rhizobial inoculants.
Fluidity of pea root plasma membranes under altered gravity
NASA Astrophysics Data System (ADS)
Klymchuk, D. O.; Baranenko, V. V.; Vorobyova, T. V.; Dubovoy, V. D.
This investigation aims to determine whether clinorotation 2 rev min of pea Pisum sativum L seedlings induces the alterations in the physical-chemical properties of cellular membranes including the plasma membrane fluidity The last is an important regulator of functional activity of membrane enzymes The plasma membranes were isolated by aqueous two-phase partitioning from roots of 6-day old pea seedlings The membrane fluidity was examined by fluorescence spectroscopy using pyrene probe The plasma membrane vesicles with known protein concentration were added to the incubation buffer to a final concentration of 50 mu g of protein per ml A small amount by 1 mu l of pyrene solution in 2-propanol was added to the incubation mixture to a final probe concentration 5 mu M at constant mixing Fluorescence spectra were measured using a Perkin-Elmer LS-50 spectrofluorometer Perkin-Elmer England Pyrene was excited at 337 nm and fluorescence intensity of monomers I M and excimers I E were measured at 393 and 470 nm respectively The I E I M ratios were 0 081 pm 0 003 and 0 072 pm 0 004 in preparations obtained from clinorotated and the control seedlings respectively This fact indicates that rotation on the clinostat increases the membrane fluidity Compared with controls clinorotated seedlings have also showed a reduced growth and a higher level of total unsaturated fatty acids determined by gas chromatography The factors that influence on the fluidity of membrane lipids in bilayer appear to be the
NASA Astrophysics Data System (ADS)
Takahashi, Hideyuki; Kobayashi, Akie; Fujii, Nobuharu; Yano, Sachiko; Shimazu, Toru; Kim, Hyejeong; Tomita, Yuuta; Miyazawa, Yutaka
Plant organs display helical growth movement known as circumnutation. This movement helps plant organs find suitable environmental cues. The amplitude, period and shape of the circumnutation differ depending on plant species or organs. Although the mechanism for circumnutation is unclear, it has long been argued whether circumnutation is involved with gravitropic response. Previously, we showed that shoots of weeping morning glory (we1 and we2) are impaired in not only the differentiation of endodermis (gravisensing cells) and gravitropic response, but also winding and circumnutation (Kitazawa et al., PNAS 102: 18742-18747, 2005). Here, we report a reduced circumnutation in the shoots of rice and the roots of pea mutants defective in gravitropic response. Coleoptiles of clinorotated rice seedlings and decapped roots of pea seedlings also showed a reduction of their circumnutational movement. These results suggest that circumnutation is tightly related with gravitropic response. In the proposed spaceflight experiments, “Plant Rotation”, we will verify the hypothesis that circumnutation requires gravity response, by using microgravity environment in KIBO module of the International Space Station. We will grow rice and morning glory plants under both muG and 1G conditions on orbit and monitor their growth by a camera. The downlinked images will be analyzed for the measurements of plant growth and nutational movements. This experiment will enable us to answer the question whether circumnutation depends on gravity response or not.
Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K
2001-01-24
We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.
Veronico, Pasqua; Melillo, M Teresa; Saponaro, Concetta; Leonetti, Paola; Picardi, Ernesto; Jones, John T
2011-04-01
A cDNA of 312 bp, similar to polygalacturonase-inhibiting proteins (PGIPs), was isolated by cDNA-amplified fragment length polymorphism (cDNA-AFLP) from pea roots infected with the cyst nematode Heterodera goettingiana. The deduced amino acid sequence obtained from the complete Pspgip1 coding sequence was very similar to PGIPs described from several other plant species, and was identical in both MG103738 and Progress 9 genotypes, resistant and susceptible to H. goettingiana, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) expression analysis revealed the differential regulation of the Pspgip1 gene in the two genotypes in response to wounding and nematode challenge. Mechanical wounding induced Pspgip1 expression in MG103738 within 8 h, but this response was delayed in Progress 9. In contrast, the response to nematode infection was more complex. The transcription of Pspgip1 was triggered rapidly in both genotypes, but the expression level returned to levels observed in uninfected plants more quickly in susceptible than in resistant roots. In addition, in situ hybridization showed that Pspgip1 was expressed in the cortical cells damaged as a result of nematode invasion in both genotypes. However, it was specifically localized in the cells bordering the nematode-induced syncytia in resistant roots. This suggests a role for this gene in counteracting nematode establishment inside the root. © 2010 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2010 BSPP AND BLACKWELL PUBLISHING LTD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wullschleger, S.D.; Oosterhuis, D.M.
Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leafmore » water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.« less
Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.
Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho
2017-06-01
The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.
Samuilov, V D; Kiselevsky, D B
2015-04-01
Plastoquinone bound with decyltriphenylphosphonium cation (SkQ1) penetrating through the membrane in nanomolar concentrations inhibited H2O2 generation in cells of epidermis of pea seedling leaves that was detected by the fluorescence of 2',7'-dichlorofluorescein. Photosynthetic electron transfer in chloroplasts isolated from pea leaves is suppressed by SkQ1 at micromolar concentrations: the electron transfer in chloroplasts under the action of photosystem II or I (with silicomolybdate or methyl viologen as electron acceptors, respectively) is more sensitive to SkQ1 than under the action of photosystem II + I (with ferricyanide or p-benzoquinone as electron acceptors). SkQ1 reduced by borohydride is oxidized by ferricyanide, p-benzoquinone, and, to a lesser extent, by silicomolybdate, but not by methyl viologen. SkQ1 is not effective as an electron acceptor supporting O2 evolution from water in illuminated chloroplasts. The data on suppression of photosynthetic O2 evolution or consumption show that SkQ1, similarly to phenazine methosulfate, causes conversion of the chloroplast redox-chain from non-cyclic electron transfer mode to the cyclic mode without O2 evolution. Oxidation of NADH or succinate in mitochondria isolated from pea roots is stimulated by SkQ1.
USDA-ARS?s Scientific Manuscript database
More knowledge about diversity of Quantitative Trait Loci (QTL) controlling polygenic disease resistance in natural genetic variation of crop species is required for durably improving plant genetic resistances to pathogens. Polygenic partial resistance to Aphanomyces root rot, due to Aphanomcyces eu...
Di Paola, Rosanna; Cordaro, Marika; Crupi, Rosalia; Siracusa, Rosalba; Campolo, Michela; Bruschetta, Giuseppe; Fusco, Roberta; Pugliatti, Pietro; Esposito, Emanuela; Cuzzocrea, Salvatore
2016-08-01
Myocardial infarction is the leading cause of death, occurs after prolonged ischemia of the coronary arteries. Restore blood flow is the first intervention help against heart attack. However, reperfusion of the arteries leads to ischemia/reperfusion injury (I/R). The fatty acid amide palmitoylethanolamide (PEA) is an endogenous compound widely present in living organisms, with analgesic and anti-inflammatory properties. The present study evaluated the effect of ultramicronized palmitoylethanolamide (PEA-um) treatment on the inflammatory process associated with myocardial I/R. Myocardial ischemia reperfusion injury was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. PEA-um, was administered (10 mg/kg) 15 min after ischemia and 1 h after reperfusion. In this study, we demonstrated that PEA-um treatment reduces myocardial tissue injury, neutrophil infiltration, adhesion molecules (ICAM-1, P-selectin) expression, proinflammatory cytokines (TNF-α, IL-1β) production, nitrotyrosine and PAR formation, nuclear factor kB expression, and apoptosis (Fas-L, Bcl-2) activation. In addition to study whether the protective effect of PEA-um on myocardial ischemia reperfusion injury is also related to the activation of PPAR-α, in a separate set of experiments it has been performed myocardial I/R in PPARα mice. Genetic ablation of peroxisome proliferator activated receptor (PPAR)-α in PPAR-αKO mice exacerbated Myocardial ischemia reperfusion injury when compared with PPAR-αWT mice. PEA-um induced cardioprotection in PPAR-α wild-type mice, but the same effect cannot be observed in PPAR-αKO mice. Our results have clearly shown a modulation of the inflammatory process, associated with myocardial ischemia reperfusion injury, following administration of PEA-um.
Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis
Colla, Giuseppe; Rouphael, Youssef; Canaguier, Renaud; Svecova, Eva; Cardarelli, Mariateresa
2014-01-01
The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation) of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L.) coleoptile elongation rate test (Experiment 1), a rooting test on tomato cuttings (Experiment 2); and two greenhouse experiments: a dwarf pea (Pisum sativum L.) growth test (Experiment 3), and a tomato (Solanum lycopersicum L.) nitrogen uptake trial (Experiment 4). Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the concentrations 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21, 35, 24, and 26%, respectively, in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In Experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L) significantly increased the shoot length of the gibberellin-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5, 15, and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances. PMID:25250039
Blankenburg, S; Balfanz, S; Hayashi, Y; Shigenobu, S; Miura, T; Baumann, O; Baumann, A; Blenau, W
2015-01-01
γ-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABAA receptors or metabotropic GABAB receptors. GABAB receptors regulate, via Gi/o G-proteins, ion channels, and adenylyl cyclases. In humans, GABAB receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABAB receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABAB receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABAB receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABAB receptors act as autoreceptors in this neuron. Copyright © 2014 Elsevier Ltd. All rights reserved.
Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M
2017-10-01
Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is regulated in reproductive tissues in response to heat stress to modulate resource allocation dynamics.
2011-01-01
Background For efficient and large scale production of recombinant proteins in plants transient expression by agroinfection has a number of advantages over stable transformation. Simple manipulation, rapid analysis and high expression efficiency are possible. In pea, Pisum sativum, a Virus Induced Gene Silencing System using the pea early browning virus has been converted into an efficient agroinfection system by converting the two RNA genomes of the virus into binary expression vectors for Agrobacterium transformation. Results By vacuum infiltration (0.08 Mpa, 1 min) of germinating pea seeds with 2-3 cm roots with Agrobacteria carrying the binary vectors, expression of the gene for Green Fluorescent Protein as marker and the gene for the human acidic fibroblast growth factor (aFGF) was obtained in 80% of the infiltrated developing seedlings. Maximal production of the recombinant proteins was achieved 12-15 days after infiltration. Conclusions Compared to the leaf injection method vacuum infiltration of germinated seeds is highly efficient allowing large scale production of plants transiently expressing recombinant proteins. The production cycle of plants for harvesting the recombinant protein was shortened from 30 days for leaf injection to 15 days by applying vacuum infiltration. The synthesized aFGF was purified by heparin-affinity chromatography and its mitogenic activity on NIH 3T3 cells confirmed to be similar to a commercial product. PMID:21548923
Riah, Nassira; Béna, Gilles; Djekoun, Abdelhamid; Heulin, Karine; de Lajudie, Philippe; Laguerre, Gisèle
2014-07-01
The genetic structure of rhizobia nodulating pea and lentil in Algeria, Northern Africa was determined. A total of 237 isolates were obtained from root nodules collected on lentil (Lens culinaris), proteaginous and forage pea (Pisum sativum) growing in two eco-climatic zones, sub-humid and semi-arid, in Eastern Algeria. They were characterised by PCR-restriction fragment length polymorphism (RFLP) of the 16S-23S rRNA intergenic region (IGS), and the nodD-F symbiotic region. The combination of these haplotypes allowed the isolates to be clustered into 26 distinct genotypes, and all isolates were classified as Rhizobium leguminosarum. Symbiotic marker variation (nodD-F) was low but with the predominance of one nod haplotype (g), which had been recovered previously at a high frequency in Europe. Sequence analysis of the IGS further confirmed its high variability in the studied strains. An AMOVA analysis showed highly significant differentiation in the IGS haplotype distribution between populations from both eco-climatic zones. This differentiation was reflected by differences in dominant genotype frequencies. Conversely, no host plant effect was detected. The nodD gene sequence-based phylogeny suggested that symbiotic gene diversity in pea and lentil nodulating rhizobial populations in Algeria was low compared to that reported elsewhere in the world. Copyright © 2014 Elsevier GmbH. All rights reserved.
Zhao, J; Li, C; Wang, W; Zhao, C; Luo, M; Mu, F; Fu, Y; Zu, Y; Yao, M
2013-07-01
The aim was to isolate, identify and characterize endophytes from pigeon pea (Cajanus cajan [L.] Millsp.), as novel producer of cajanol and its in vitro cytotoxicity assay. Isolation, identification and characterization of novel endophytes producing cajanol from the roots of pigeon pea were investigated. The endophytes were identified as Hypocrea lixii by morphological and molecular methods. Cajanol produced by endophytes were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). R-18 produced the highest levels of cajanol (322·4 ± 10·6 μg l(-1) or 102·8 ± 6·9 μg g(-1) dry weight of mycelium) after incubation for 7 days. The cytotoxicity towards human lung carcinoma cells (A549) of fungal cajanol was investigated in vitro. First, a novel endophyte Hypocrea lixii, producing anticancer agent cajanol, was isolated from the host pigeon pea (Cajanus cajan [L.] Millsp.). Fungal cajanol possessed stronger cytotoxicity activity towards A549 cells in time- and dose-dependent manners. This endophyte is a potential handle for scientific and commercial exploitation, and it could provide a promising alterative approach for large-scale production of cajanol to satisfy new anticancer drug development. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.
Zhao, Jiangsan; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A.; Nakhforoosh, Alireza
2017-01-01
Abstract Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. PMID:28168270
Isolation of Nuclei and Nucleoli.
Pendle, Alison F; Shaw, Peter J
2017-01-01
Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.
40 CFR 180.205 - Paraquat; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., sugar, tops 0.05 Berry group 13 0.05 Cacao bean, bean 0.05 Carrot, roots 0.05 Cattle, fat 0.05 Cattle, kidney 0.5 Cattle, meat 0.05 Cattle, meat byproducts, except kidney 0.05 Coffee, bean, green 0.05 Corn..., green 0.05 Papaya 0.05 Passionfruit 0.2 Pea and bean, dried shelled, except soybean, subgroup 6C, except...
40 CFR 180.205 - Paraquat; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., sugar, tops 0.05 Berry group 13 0.05 Cacao bean, bean 0.05 Carrot, roots 0.05 Cattle, fat 0.05 Cattle, kidney 0.5 Cattle, meat 0.05 Cattle, meat byproducts, except kidney 0.05 Coffee, bean, green 0.05 Corn..., green 0.05 Papaya 0.05 Passionfruit 0.2 Pea and bean, dried shelled, except soybean, subgroup 6C, except...
Using CT imaging, we found that rapidly deteriorating marshes in Jamaica Bay had significantly less belowground mass and abundance of coarse roots and rhizomes at depth (< 10 cm) compared to more stable areas in the Jamaica Bay Estuary. In addition, the rhizome diameters and pea...
Effects of heavy metals on the absorbance and reflectance spectra of plants
NASA Technical Reports Server (NTRS)
Horler, D. N. H.; Barber, J.; Barringer, A. R.
1980-01-01
The spectral responses of plants to various concentrations of heavy metals in their rooting media are investigated in relation to the application of remote sensing methods to the detection of vegetation under stress. Absorption photometry of chloroplasts, measurements of metal and chlorophyll concentrations and reflectance spectrometry were performed on leaves of pea, sunflower and soybean plants grown under greenhouse conditions with the addition of various concentrations of Cd, Cu, Pb and Zn to their rooting media and on leaves of oak trees growing naturally in an area of a copper-arsenic mineralization. Under laboratory conditions, the most general effect observed was growth inhibition and ultimately death, with pea plants also exhibiting changes of chlorophyll a/ chlorophyll b ratios with Cd and Cu and reflectance increases in the visible and decreases in the infrared. Although results for other species indicate that reflectance effects are dependent on species, correlations between reflectance and metal exposure is confirmed by the field investigations. It is concluded that a remote sensing system would be improved by the inclusion of bands around 1.65 and 2.20 microns to detect soil mineralization from plant spectra.
Bonomi, Hernán R.; Posadas, Diana M.; Paris, Gastón; Carrica, Mariela del Carmen; Frederickson, Marcus; Pietrasanta, Lía Isabel; Bogomolni, Roberto A.; Zorreguieta, Angeles; Goldbaum, Fernando A.
2012-01-01
Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum. PMID:22773814
Petrosino, Stefania; Di Marzo, Vincenzo
2017-06-01
Palmitoylethanolamide (PEA) has emerged as a potential nutraceutical, because this compound is naturally produced in many plant and animal food sources, as well as in cells and tissues of mammals, and endowed with important neuroprotective, anti-inflammatory and analgesic actions. Several efforts have been made to identify the molecular mechanism of action of PEA and explain its multiple effects both in the central and the peripheral nervous system. Here, we provide an overview of the pharmacology, efficacy and safety of PEA in neurodegenerative disorders, pain perception and inflammatory diseases. The current knowledge of new formulations of PEA with smaller particle size (i.e. micronized and ultra-micronized) when given alone or in combination with antioxidant flavonoids (i.e. luteolin) and stilbenes (i.e. polydatin) is also reviewed. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British Pharmacological Society.
The palmitoylethanolamide family: a new class of anti-inflammatory agents?
Lambert, Didier M; Vandevoorde, Severine; Jonsson, Kent-Olov; Fowler, Christopher J
2002-03-01
The discovery of anandamide as an endogenous ligand for the cannabinoid receptors has led to a resurgence of interest in the fatty acid amides. However, N-palmitoylethanolamine (PEA), a shorter and fully saturated analogue of anandamide, has been known since the fifties. This endogenous compound is a member of the N-acylethanolamines, found in most mammalian tissues. PEA is accumulated during inflammation and has been demonstrated to have a number of anti-inflammatory effects, including beneficial effects in clinically relevant animal models of inflammatory pain. It is now engaged in phase II clinical development, and two studies regarding the treatment of chronic lumbosciatalgia and multiple sclerosis are in progress. However, its precise mechanism of action remains debated. In the present review, the biochemical and pharmacological properties of PEA are discussed, in particular with respect to its analgesic and anti-inflammatory properties.
Bennett, Michael D; Price, H James; Johnston, J Spencer
2008-04-01
Measuring genome size by flow cytometry assumes direct proportionality between nuclear DNA staining and DNA amount. By 1997 it was recognized that secondary metabolites may affect DNA staining, thereby causing inaccuracy. Here experiments are reported with poinsettia (Euphorbia pulcherrima) with green leaves and red bracts rich in phenolics. DNA content was estimated as fluorescence of propidium iodide (PI)-stained nuclei of poinsettia and/or pea (Pisum sativum) using flow cytometry. Tissue was chopped, or two tissues co-chopped, in Galbraith buffer alone or with six concentrations of cyanidin-3-rutinoside (a cyanidin-3-rhamnoglucoside contributing to red coloration in poinsettia). There were large differences in PI staining (35-70 %) between 2C nuclei from green leaf and red bract tissue in poinsettia. These largely disappeared when pea leaflets were co-chopped with poinsettia tissue as an internal standard. However, smaller (2.8-6.9 %) differences remained, and red bracts gave significantly lower 1C genome size estimates (1.69-1.76 pg) than green leaves (1.81 pg). Chopping pea or poinsettia tissue in buffer with 0-200 microm cyanidin-3-rutinoside showed that the effects of natural inhibitors in red bracts of poinsettia on PI staining were largely reproduced in a dose-dependent way by this anthocyanin. Given their near-ubiquitous distribution, many suspected roles and known affects on DNA staining, anthocyanins are a potent, potential cause of significant error variation in genome size estimations for many plant tissues and taxa. This has important implications of wide practical and theoretical significance. When choosing genome size calibration standards it seems prudent to select materials producing little or no anthocyanin. Reviewing the literature identifies clear examples in which claims of intraspecific variation in genome size are probably artefacts caused by natural variation in anthocyanin levels or correlated with environmental factors known to induce variation in pigmentation.
Datsenko, Z M; Volkov, H L; Kryvenko, O M; Nechytaĭlo, L O; Shovkun, S A; Khmel', T O; Perederiĭ, O F
2002-01-01
As a result of the experimental researches conducted it has been shown that administration of some normal animal marine phospholipids (PL) including in their structure omega-3 polyunsaturated fatty acids (PUFA) provides for quantitative changes of individual PL, fatty acids (FA) content and quantity in general and individual PL of liver, heart, brain and gonads microsomes. While estimating general microsomal PL fraction FA content under the action of PL omega-3 PUFA FA concentration change, unsaturation index (omega 6/omega 3) and relation of arachidonic acid to docosahexenic (AA/DHA) decrease have been identified. The decrease of AA/DHA relationship occurs due to AA and DHA quantitative changes. In the case of AA increase in some tissues there is observed the decrease of docosapentaenic acid and increase of DHA and eucosapentaenic (EPA) acidds. As a result of studying FA content in the individual PL composition it has been identified that certain PL classes characteristic for some tissues respond by changes of some certain FA. The relationship omega 6/omega 3 has been shown as decreasing in phosphatidilcholine (PC) all tissues microsomes (liver, gonads, heart, brain), in phosphatidilethanolamine (PEA) of liver and cardiac microsomes, in phosphatidilserine (PS) this relationship relationship decreases in the liver, brain and heart, for phosphatidilinositole (PI) the changes take place in liver, gonads, brain. Simultaneously, the decrease of AA/DHA relationship in the individual PL decrease of AA and increase of EPA and DHA depend on the tested tissues. The marine phospholipids might be supposed to render their effect on AA metabolism resulting in AA/DHA relationship in PEA and PS relationship displays itself as specific and depends on the tissues functions. The preference of PEA and PS use by certain tissues microsomes could be explained by their membrane protective capability.
García, María J; Romera, Francisco J; Stacey, Minviluz G; Stacey, Gary; Villar, Eduardo; Alcántara, Esteban; Pérez-Vicente, Rafael
2013-01-01
Previous research showed that auxin, ethylene, and nitric oxide (NO) can activate the expression of iron (Fe)-acquisition genes in the roots of Strategy I plants grown with low levels of Fe, but not in plants grown with high levels of Fe. However, it is still an open question as to how Fe acts as an inhibitor and which pool of Fe (e.g., root, phloem, etc.) in the plant acts as the key regulator for gene expression control. To further clarify this, we studied the effect of the foliar application of Fe on the expression of Fe-acquisition genes in several Strategy I plants, including wild-type cultivars of Arabidopsis [Arabidopsis thaliana (L.) Heynh], pea [Pisum sativum L.], tomato [Solanum lycopersicon Mill.], and cucumber [Cucumis sativus L.], as well as mutants showing constitutive expression of Fe-acquisition genes when grown under Fe-sufficient conditions [Arabidopsis opt3-2 and frd3-3, pea dgl and brz, and tomato chln (chloronerva)]. The results showed that the foliar application of Fe blocked the expression of Fe-acquisition genes in the wild-type cultivars and in the frd3-3, brz, and chln mutants, but not in the opt3-2 and dgl mutants, probably affected in the transport of a Fe-related repressive signal in the phloem. Moreover, the addition of either ACC (ethylene precursor) or GSNO (NO donor) to Fe-deficient plants up-regulated the expression of Fe-acquisition genes, but this effect did not occur in Fe-deficient plants sprayed with foliar Fe, again suggesting the existence of a Fe-related repressive signal moving from leaves to roots.
Yamamoto, Yoko; Kobayashi, Yukiko; Devi, S. Rama; Rikiishi, Sanae; Matsumoto, Hideaki
2002-01-01
Potential mechanisms of Al toxicity measured as Al-induced inhibition of growth in cultured tobacco cells (Nicotiana tabacum, nonchlorophyllic cell line SL) and pea (Pisum sativum) roots were investigated. Compared with the control treatment without Al, the accumulation of Al in tobacco cells caused instantaneously the repression of mitochondrial activities [monitored by the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and the uptake of Rhodamine 123] and, after a lag of about 12 h, triggered reactive oxygen species (ROS) production, respiration inhibition, ATP depletion, and the loss of growth capability almost simultaneously. The presence of an antioxidant, butylated hydroxyanisol, during Al treatment of SL cells prevented not only ROS production but also ATP depletion and the loss of growth capability, suggesting that the Al-triggered ROS production seems to be a cause of ATP depletion and the loss of growth capability. Furthermore, these three late events were similarly repressed in an Al-tolerant cell line (ALT301) isolated from SL cells, suggesting that the acquisition of antioxidant functions mimicking butylated hydroxyanisol can be a mechanism of Al tolerance. In the pea root, Al also triggered ROS production, respiration inhibition, and ATP depletion, which were all correlated with inhibition of root elongation. Taken together, we conclude that Al affects mitochondrial functions, which leads to ROS production, probably the key critical event in Al inhibition of cell growth. PMID:11788753
Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza
2017-02-01
Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Interaction of Light and Ethylene on Stem Gravitropism
NASA Technical Reports Server (NTRS)
Harrison, Marcia A.
1996-01-01
The major objective of this study was to evaluate light-regulated ethylene production during gravitropic bending in etiolated pea stems. Previous investigations indicated that ethylene production increases after gravistimulation and is associated with the later (counter-reactive) phase of bending. Additionally, changes in the counter-reaction and locus of curvature during gravitropism are greatly influenced by red light and ethylene production. Ethylene production may be regulated by the levels of available precursor (1-aminocyclopropane-l-carboxylic acid, ACC) via its synthesis, conjugation to malonyl-ACC or glutamyl-ACC, or oxidation to ethylene. The regulation of ethylene production by quantifying ACC and conjugated ACC levels in gravistimulated pea stemswas examined. Also measured was the changes in protein and enzyme activity associated with gravitropic curvature by electrophoretic and spectrophotometric techniques. An image analysis system was used to visualize and quantify enzymatic activity and transcriptional products in gravistimulated and red-light treated etiolated pea stem tissues.
Red light regulation of ethylene biosynthesis and gravitropism in etiolated pea stems
NASA Technical Reports Server (NTRS)
Steed, C. L.; Taylor, L. K.; Harrison, M. A.
2004-01-01
During gravitropism, the accumulation of auxin in the lower side of the stem causes increased growth and the subsequent curvature, while the gaseous hormone ethylene plays a modulating role in regulating the kinetics of growth asymmetries. Light also contributes to the control of gravitropic curvature, potentially through its interaction with ethylene biosynthesis. In this study, red-light pulse treatment of etiolated pea epicotyls was evaluated for its effect on ethylene biosynthesis during gravitropic curvature. Ethylene biosynthesis analysis included measurements of ethylene; the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC); malonyl-conjugated ACC (MACC); and expression levels of pea ACC oxidase (Ps-ACO1) and ACC synthase (Ps-ACS1, Ps-ACS2) genes by reverse transcriptase-polymerase chain reaction analysis. Red-pulsed seedlings were given a 6 min pulse of 11 micromoles m-2 s-1 red-light 15 h prior to horizontal reorientation for consistency with the timeline of red-light inhibition of ethylene production. Red-pulse treatment significantly reduced ethylene production and MACC levels in epicotyl tissue. However, there was no effect of red-pulse treatment on ACC level, or expression of ACS or ACO genes. During gravitropic curvature, ethylene production increased from 60 to 120 min after horizontal placement in both control and red-pulsed epicotyls. In red-pulsed tissues, ACC levels increased by 120 min after horizontal reorientation, accompanied by decreased MACC levels in the lower portion of the epicotyl. Overall, our results demonstrate that ethylene production in etiolated epicotyls increases after the initiation of curvature. This ethylene increase may inhibit cell growth in the lower portion of the epicotyl and contribute to tip straightening and reduced overall curvature observed after the initial 60 min of curvature in etiolated pea epicotyls.
40 CFR 180.205 - Paraquat; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., roots 0.5 Beet, sugar, tops 0.05 Berry group 13 0.05 Biriba 0.05 Cacao bean, bean 0.05 Canistel 0.05... kidney 0.05 Cherimoya 0.05 Coffee, bean, green 0.05 Corn, field, forage 3.0 Corn, field, grain 0.1 Corn... Olive 0.05 Onion, bulb 0.1 Onion, green 0.05 Papaya 0.05 Passionfruit 0.2 Pawpaw 0.05 Pea and bean...
40 CFR 180.205 - Paraquat; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., roots 0.5 Beet, sugar, tops 0.05 Berry group 13 0.05 Biriba 0.05 Cacao bean, bean 0.05 Canistel 0.05... kidney 0.05 Cherimoya 0.05 Coffee, bean, green 0.05 Corn, field, forage 3.0 Corn, field, grain 0.1 Corn... Olive 0.05 Onion, bulb 0.1 Onion, green 0.05 Papaya 0.05 Passionfruit 0.2 Pawpaw 0.05 Pea and bean...
The Effects of Light and Temperature on Biotin Synthesis in Pea Sprouts.
Kamiyama, Shin; Ohnuki, Risa; Moriki, Aoi; Abe, Megumi; Ishiguro, Mariko; Sone, Hideyuki
2016-01-01
Biotin is an essential micronutrient, and is a cofactor for several carboxylases that are involved in the metabolism of glucose, fatty acids, and amino acids. Because plant cells can synthesize their own biotin, a wide variety of plant-based foods contains significant amounts of biotin; however, the influence of environmental conditions on the biotin content in plants remains largely unclear. In the present study, we investigated the effects of different cultivation conditions on the biotin content and biotin synthesis in pea sprouts (Pisum sativum). In the experiment, the pea sprouts were removed from their cotyledons and cultivated by hydroponics under five different lighting and temperature conditions (control [25ºC, 12-h light/12-h dark cycle], low light [25ºC, 4-h light/20-h dark cycle], dark [25ºC, 24 h dark], low temperature [12ºC, 12-h light/12-h dark cycle], and cold [6ºC, 12-h light/12-h dark cycle]) for 10 d. Compared to the biotin content of pea sprouts under the control conditions, the biotin contents of pea sprouts under the low-light, dark, and cold conditions had significantly decreased. The dark group showed the lowest biotin content among the groups. Expression of the biotin synthase gene (bio2) was also significantly decreased under the dark and cold conditions compared to the control condition, in a manner similar to that observed for the biotin content. No significant differences in the adenosine triphosphate content were observed among the groups. These results indicate that environmental conditions such as light and temperature modulate the biotin content of pea plant tissues by regulating the expression of biotin synthase.
Taciak, Marcin; Barszcz, Marcin; Święch, Ewa; Bachanek, Ilona; Skomiał, Jacek
2017-01-01
The use of pea seeds is limited due to the content of antinutritional factors that may affect gut physiology. Heat treatment such as extrusion may reduce heat-labile antinutritional factors and improve the nutritional value of pea seeds. This study determined the effect of partial replacement of soybean meal in pig diets by raw or extruded pea seeds on growth performance, nitrogen balance and physiology of the ileum and distal colon. The experiment was carried out in 18 castrated male piglets of initial body weight of 11 kg, divided into three groups. The animals were fed cereal-based diets with soybean meal (C), which was partly replaced by raw (PR) or extruded pea (PE) seeds. Nitrogen balance was measured at about 15 kg body weight. After 26 days of feeding, tissue samples were taken from the ileum and distal colon for histological measurements, and colonic digesta samples for analyses of microbial activity indices. The animals fed the PE diet had a significantly greater average daily gain than those fed the C diet and better apparent protein digestibility than those on the PR diet. Pigs fed the PR diet had a significantly greater butyric acid concentration and lower pH in the colon than pigs fed PE and C diets. There was no significant effect of the diet on other indices of microbial activity or morphological parameters. In conclusion, feeding a diet with extruded pea seeds improved growth performance of pigs, did not affect intestinal morphology and had a negligible effect on microbial activity in the distal colon. PMID:28060879
Increased germination and growth rates of pea and Zucchini seed by FSG plasma
NASA Astrophysics Data System (ADS)
Khatami, Shohreh; Ahmadinia, Arash
2018-04-01
Recently, cold atmospheric plasma (CAP) with the unique bio-disinfection features is used in various fields of industry, medicine, and agriculture. The main objectives of this work were to design FSG plasma (a semi-automatic device) and investigate the effect of the cold plasma in the enhancement of the Pea and Zucchini seed germination. Plasma irradiation time was studied to obtain a proper condition for the germination enhancement of seeds. The growth rate was calculated by measuring length of root and stem and dry weight of plants treated by plasma. To investigate drought resistance of plants, all treated and untreated samples were kept in darkness without water for 48 h. From the experimental results, it could be confirmed both drought resistance and germination of seedlings increased after plasma was applied to seeds at 30 s, while seeds treated whiten 60 s showed a decrease in both germination rate and seedling growth.
Rani, Anju; Shouche, Yogesh S; Goel, Reeta
2008-07-01
The copper-resistant (1318 microM CuSO(4).5H(2)O) strain KNP3 of Proteus vulgaris was isolated from soil near the Panki power plant, Kanpur, India, and was used to inoculate pigeon pea (Cajanus cajan var. UPS-120) seeds grown in soil for 60 days in the presence of 600 microM CuSO(4).5H(2)O. A study of siderophore production (126.34 +/- 0.52 microg ml(-1)) and its subsequent effects on plant growth promotion under in situ conditions was conducted. The parameters that were monitored included the plants' wet weight, dry weight, shoot length, chlorophyll content, and concentration of copper in plant roots and shoots. The results showed that the strain caused a significant (p < 0.05) increase in wet weight, dry weight, root length, shoot growth, and chlorophyll content (57.8%, 60%, 19.7%, 47.8%, and 36.3%, respectively) in the presence of copper. Furthermore, the strain reduced accumulation of Cu in the roots and shoots to 36.8% and 60.5%, respectively. Apart from this, copper concentration in the soil was measured on 0, 7, 15, 30, and 45 days consecutively and the results indicated that the bioinoculant KNP3 causes a significant decrease in Cu concentration in soil (55.6%), which was unlikely in the control (10.5%) treatment. The data suggested that the bacterial strain has the ability to protect plants against the inhibitory effects of copper besides reducing the copper load of the soil.
Branching in Pea (Action of Genes Rms3 and Rms4).
Beveridge, C. A.; Ross, J. J.; Murfet, I. C.
1996-01-01
The nonallelic ramosus mutations rms3-2 and rms4 of pea (Pisum sativum L.) cause extensive release of vegetative axillary buds and lateral growth in comparison with wild-type (cv Torsdag) plants, in which axillary buds are not normally released under the conditions utilized. Grafting studies showed that the expression of the rms4 mutation in the shoot is independent of the genotype of the root-stock. In contrast, the length of the branches at certain nodes of rms3-2 plants was reduced by grafting to wild-type stocks, indicating that the wild-type Rms3 gene may control the level of a mobile substance produced in the root. This substance also appears to be produced in the shoot because Rms3 shoots did not branch when grafted to mutant rms3-2 rootstocks. However, the end product of the Rms3 gene appears to differ from that of the Rms2 gene (C.A. Beveridge, J.J. Ross, and I.C. Murfet [1994] Plant Physiol 104: 953-959) because reciprocal grafts between rms3-2 and rms2 seedlings produced mature shoots with apical dominance similar to that of rms3-2 and rms2 shoots grafted to wild-type stocks. Indole-3-acetic acid levels were not reduced in apical or nodal portions of rms4 plants and were actually elevated (up to 2-fold) in rms3-2 plants. It is suggested that further studies with these branching mutants may enable significant progress in understanding the normal control of apical dominance and the related communication between the root and shoot. PMID:12226224
Weeden, Norman F.
2007-01-01
Background and Aims The changes that occur during the domestication of crops such as maize and common bean appear to be controlled by relatively few genes. This study investigates the genetic basis of domestication in pea (Pisum sativum) and compares the genes involved with those determined to be important in common bean domestication. Methods Quantitative trait loci and classical genetic analysis are used to investigate and identify the genes modified at three stages of the domestication process. Five recombinant inbred populations involving crosses between different lines representing different stages are examined. Key Results A minimum of 15 known genes, in addition to a relatively few major quantitative trait loci, are identified as being critical to the domestication process. These genes control traits such as pod dehiscence, seed dormancy, seed size and other seed quality characters, stem height, root mass, and harvest index. Several of the genes have pleiotropic effects that in species possessing a more rudimentary genetic characterization might have been interpreted as clusters of genes. Very little evidence for gene clustering was found in pea. When compared with common bean, pea has used a different set of genes to produce the same or similar phenotypic changes. Conclusions Similar to results for common bean, relatively few genes appear to have been modified during the domestication of pea. However, the genes involved are different, and there does not appear to be a common genetic basis to ‘domestication syndrome’ in the Fabaceae. PMID:17660515
Sankara Rao, K; Sreevathsa, Rohini; Sharma, Pinakee D; Keshamma, E; Udaya Kumar, M
2008-10-01
Development of transgenics in pigeon pea remains dogged by poor plant regeneration in vitro from transformed tissues and low frequency transformation protocols. This article presents a non-tissue culture-based method of generating transgenic pigeon pea (Cajanus cajan (L.) Millisp.) plants using Agrobacterium-Ti plasmid-mediated transformation system. The protocol involves raising of whole plant transformants (T0 plants) directly from Agrobacterium-infected young seedlings. The plumular and intercotyledonary meristems of the seedling axes are targeted for transformation. The transformation conditions optimized were, pricking of the apical and intercotyledonary region of the seedling axes of two-day old germinating seedlings with a sewing needle, infection with Agrobacterium (LBA4404/pKIWI105 carrying uid A and npt II genes) in Winans' AB medium that was added with wounded tobacco leaf extract, co-cultivation in the same medium for 1h and transfer of seedlings to soilrite for further growth and hardening and subsequent transfer of seedlings to soil in pots in the greenhouse. Out of the 22-25 primary transformants that survived infection-hardening treatments from each of the three experiments, 15 plants on the average established on the soil under greenhouse conditions, showed slow growth initially, nevertheless grew as normal plants, and flowered and set seed eventually. Of the several seeds harvested from all the T0 plants, six hundred were sown to obtain progeny (T1) plants and 350 of these were randomly analysed to determine their transgenic nature. PCR was performed for both gus (uid A) and npt II genes. Forty eight of the 350 T1 plants amplified both transgenes. Southern blot analysis substantiated the integration and transmission of these genes. The protocol ensured generation of pigeon pea transgenic plants with considerable ease in a short time and is applicable across different genotypes/cultivars of the crop and offers immense potential as a supplemental or an alternative protocol for generating transgenic plants of difficult-to-regenerate pigeon pea. Further, the protocol offers the option of doing away with a selection step in the procedure and so facilitates transformation, which is free of marker genes.
Coumar, M Vassanda; Parihar, R S; Dwivedi, A K; Saha, J K; Rajendiran, S; Dotaniya, M L; Kundu, S
2016-01-01
Introduction of heavy metals in the environment by various anthropogenic activities has become a potential treat to life. Among the heavy metals, cadmium (Cd) shows relatively high soil mobility and has high phyto-mammalian toxicity. Integration of soil remediation and ecosystem services, such as carbon sequestration in soils through organic amendments, may provide an attractive land management option for contaminated sites. The application of biochar in agriculture has recently received much attention globally due to its associated multiple benefits, particularly, long-term carbon storage in soil. However, the application of biochar from softwood crop residue for heavy metal immobilization, as an alternative to direct field application, has not received much attention. Hence, a pot experiment was conducted to study the effect of pigeon pea biochar on cadmium mobility in a soil-plant system in cadmium-spiked sandy loam soil. The biochar was prepared from pigeon pea stalk through a slow pyrolysis method at 300 °C. The experiment was designed with three levels of Cd (0, 5, and 10 mg Cd kg(-1) soil) and three levels of biochar (0, 2.5, and 5 g kg(-1) soil) using spinach as a test crop. The results indicate that with increasing levels of applied cadmium at 5 and 10 mg kg(-1) soil, the dry matter yield (DMY) of spinach leaf decreased by 9.84 and 18.29 %, respectively. However, application of biochar (at 2.5 and 5 g kg(-1) soil) significantly increased the dry matter yield of spinach leaf by 5.07 and 15.02 %, respectively, and root by 14.0 and 24.0 %, respectively, over the control. Organic carbon content in the post-harvest soil increased to 34.9 and 60.5 % due to the application of biochar 2.5 and 5 g kg(-1) soil, respectively. Further, there was a reduction in the diethylene triamine pentaacetic acid (DTPA)-extractable cadmium in the soil and in transfer coefficient values (soil to plant), as well as its concentrations in spinach leaf and root, indicating that cadmium mobility was decreased due to biochar application. This study shows that pigeon pea biochar has the potential to increase spinach yield and reduce cadmium mobility in contaminated sandy soil.
Srinivasan, Dayalan G; Abdelhady, Ahmed; Stern, David L
2014-01-01
Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity.
Srinivasan, Dayalan G.; Abdelhady, Ahmed; Stern, David L.
2014-01-01
Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity. PMID:25501006
Biological effects due to weak magnetic field on plants
NASA Astrophysics Data System (ADS)
Belyavskaya, N. A.
2004-01-01
Throughout the evolution process, Earth's magnetic field (MF, about 50 μT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G 1 phase in many plant species (and of G 2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stabile. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca 2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak magnetic field may cause different biological effects at the cellular, tissue and organ levels. They may be functionally related to systems that regulate plant metabolism including the intracellular Ca 2+ homeostasis. However, our understanding of very complex fundamental mechanisms and sites of interactions between weak magnetic fields and biological systems is still incomplete and still deserve strong research efforts.
Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth
NASA Technical Reports Server (NTRS)
Melan, M. A.; Cosgrove, D. J.
1988-01-01
Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.
ETHYLMERCURY: FORMATION IN PLANT TISSUES AND RELATION TO METHYLMERCURY FORMATION
Seedlings of the common dwarf garden pea, Pisum sativum, cv. Little Marvel, exposed to elemental mercury vapor formed both methylmercury and ethylmercury in all parts of the plant. Concentrations of both organomercury compounds fluctuated considerably over a 48-hour exposure peri...
Strigolactones Stimulate Internode Elongation Independently of Gibberellins1[C][W
de Saint Germain, Alexandre; Ligerot, Yasmine; Dun, Elizabeth A.; Pillot, Jean-Paul; Ross, John J.; Beveridge, Christine A.; Rameau, Catherine
2013-01-01
Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation. PMID:23943865
2010-01-01
Background The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT) of subjects with both obesity and type 2 diabetes (OBT2D), characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB). Design and Methods The levels of anandamide and 2-AG, and of the anandamide-related PPARα ligands, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW) subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp. Results As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p < 0.05), and 2-AG levels 2.3-fold reduced (p < .05), in OBT2D but not in OB subjects. Anandamide, OEA and PEA correlated positively (p < .05) with SAT leptin mRNA and free fatty acid during hyperinsulinaemic clamp, and negatively with SAT LPL activity and plasma HDL-cholesterol, which were all specifically altered in OBT2D subjects. Conclusions The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners) and 2-AG in obesity and type 2 diabetes. PMID:20426869
Phytotoxicity of sulfamethazine soil pollutant to six legume plant species.
Piotrowicz-Cieślak, Agnieszka I; Adomas, Barbara; Nałecz-Jawecki, Grzegorz; Michalczyk, Dariusz J
2010-01-01
The effect of traces of sulfamethazine (SMZ) in soil (0.01, 0.1, 0.25, 1, 5, 15, and 20 mM) on cellular distribution of cytochrome c oxidase activity, shoot and root growth, and leachate electroconductivity was analyzed in germinating seeds of yellow lupin, pea, lentil, soybean, adzuki bean, and alfalfa. Results showed that a high activity of cytochrome c oxidase in mitochondria correlated with high seed vigor and viability. The appearance of necroses and root decay was associated with a decrease in the activity of mitochondrial cytochrome c oxidase but was accompanied by an increase in cytosolic cytochrome c oxidase activity. A short exposure period of seeds (3 and 6 d) to sulfamethazine did not influence germination. Elongation of roots and stems was more sensitive than germination rate as an indicator of soil contamination by sulfamethazine. Among all tested leguminous plants, yellow lupin was the most reliable bioindicator of SMZ contaminated soil.
Alteration of plasma membrane-bound redox systems of iron deficient pea roots by chitosan.
Meisrimler, Claudia-Nicole; Planchon, Sebastien; Renaut, Jenny; Sergeant, Kjell; Lüthje, Sabine
2011-08-12
Iron is essential for all living organisms and plays a crucial role in pathogenicity. This study presents the first proteome analysis of plasma membranes isolated from pea roots. Protein profiles of four different samples (+Fe, +Fe/Chitosan, -Fe, and -Fe/Chitosan) were compared by native IEF-PAGE combined with in-gel activity stains and DIGE. Using DIGE, 89 proteins of interest were detected in plasma membrane fractions. Data revealed a differential abundance of several spots in all samples investigated. In comparison to the control and -FeCh the abundance of six protein spots increased whereas 56 spots decreased in +FeCh. Altered protein spots were analyzed by MALDI-TOF-TOF mass spectrometry. Besides stress-related proteins, transport proteins and redox enzymes were identified. Activity stains after native PAGE and spectrophotometric measurements demonstrated induction of a ferric-chelate reductase (-Fe) and a putative respiratory burst oxidase homolog (-FeCh). However, the activity of the ferric-chelate reductase decreased in -Fe plants after elicitor treatment. The activity of plasma membrane-bound class III peroxidases increased after elicitor treatment and decreased under iron-deficiency, whereas activity of quinone reductases decreased mostly after elicitor treatment. Possible functions of proteins identified and reasons for a weakened pathogen response of iron-deficient plants were discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Ligerot, Yasmine; de Saint Germain, Alexandre; Troadec, Christelle; Citerne, Sylvie; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Estelle, Mark; Debellé, Frédéric
2017-01-01
Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner. PMID:29220348
Ligerot, Yasmine; de Saint Germain, Alexandre; Waldie, Tanya; Troadec, Christelle; Citerne, Sylvie; Kadakia, Nikita; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Leyser, Ottoline; Estelle, Mark; Debellé, Frédéric; Rameau, Catherine
2017-12-01
Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner.
Castillejo, María Ángeles; Bani, Moustafa; Rubiales, Diego
2015-07-01
Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis of the "endocannabinoidome" in peripheral tissues of obese Zucker rats.
Iannotti, F A; Piscitelli, F; Martella, A; Mazzarella, E; Allarà, M; Palmieri, V; Parrella, C; Capasso, R; Di Marzo, V
2013-08-01
The endocannabinoid system (ECS) represents one of the major determinants of metabolic disorders. We investigated potential changes in the endogenous levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) in some peripheral organs and tissues of obese Zucker(fa/fa) and lean Zucker(fa/+) rats by qPCR, liquid chromatography mass spectrometry, western blot and enzymatic activity assays. At 10-12 weeks of age AEA levels were significantly lower in BAT, small intestine and heart and higher in soleus of Zucker(fa/fa) rats. In this tissue, also the expression of CB1 receptors was higher. By contrast in Zucker(fa/fa) rats, 2-AG levels were changed (and lower) solely in the small and large intestine. Finally, in Zucker(fa/fa), PEA levels were unchanged, whereas OEA was slightly lower in BAT, and higher in the large intestine. Interestingly, these differences were accompanied by differential alterations of the genes regulating ECS tone. In conclusion, the levels of endocannabinoids are altered during obesity in a way partly correlating with changes of the genes related to their metabolism and activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mela, Virginia; Piscitelli, Fabiana; Berzal, Alvaro Llorente; Chowen, Julie; Silvestri, Cristoforo; Viveros, Maria Paz; Di Marzo, Vincenzo
2016-08-01
Maternal deprivation (MD) during neonatal life has diverse long-term effects, including modification of metabolism. We have previously reported that MD modifies the metabolic response to high-fat diet (HFD) intake, with this response being different between males and females, while previous studies indicate that in mice with HFD-induced obesity, endocannabinoid (EC) levels are markedly altered in various brown and white adipose tissue depots. Here, we analyzed the effects of MD (24 h at postnatal day 9), alone or in combination with a HFD from weaning until the end of the experiment in Wistar rats of both sexes. Brown and white perirenal and subcutaneous adipose tissues were collected and the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were determined. In males, MD increased the content of OEA in brown and 2-AG in subcutaneous adipose tissues, while in females the content of 2-AG was increased in perirenal fat. Moreover, in females, MD decreased AEA and OEA levels in perirenal and subcutaneous adipose tissues, respectively. HFD decreased the content of 2-AG in brown fat of both sexes and OEA in brown and subcutaneous adipose tissue of control females. In contrast, in subcutaneous fat, HFD increased AEA levels in MD males and OEA levels in control and MD males. The present results show for the first time that MD and HFD induce sex-dependent effects on the main ECs, AEA, and 2-AG, and of AEA-related mediators, OEA and PEA, in the rat brown and white (visceral and subcutaneous) adipose tissues.
Wang, Mingxing; Wu, Bo; Tucker, Jason D; Bollinger, Lauren E; Lu, Peijuan; Lu, Qilong
2016-01-01
A series of poly(esteramine)s (PEAs) constructed from low molecular weight polyethyleneimine (LPEI) and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs), 2′-O-methyl phosphorothioate RNA (2′-OMePS) and phosphorodiamidate morpholino oligomer (PMO) in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2′-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was found in the order of PEA 01, PEA 04 > PEA 05 > others. The in vivo study in mdx mice demonstrated enhanced exon-skipping of 2′-OMePS with the order of PEA 06 > PEA 04, PEA 07 > PEA 03 > PEA 01 > others, and much higher than PEI 25k formulated 2′-OMePS. Exon-skipping efficiency of PMO in formulation with the PEAs were significantly enhanced in the order of PEA 02 > PEA 10 > PEA 01, PEA 03 > PEA 05, PEA 07, PEA 08 > others, with PEA 02 reaching fourfold of Endo-porter formulated PMO. PEAs improve PMO delivery more effectively than 2′-OMePS delivery in vivo, and the systemic delivery evaluation further highlight the efficiency of PEA for PMO delivery in all skeletal muscle. The results suggest that the flexibility of PEA polymers could be explored for delivery of different AO chemistries, especially for antisense therapy. PMID:27483024
Whole shoot mineral partitioning and accumulation in pea (Pisum sativum)
USDA-ARS?s Scientific Manuscript database
Several grain legumes are staple food crops that are important sources of minerals for humans; unfortunately, our knowledge is incomplete with respect to the mechanisms of translocation of these minerals to the vegetative tissues and loading into seeds. Understanding the mechanism and partitioning o...
Ultrastructure of pea and cress root statocytes exposed to high gradient magnetic field
NASA Astrophysics Data System (ADS)
Belyavskaya, N. A.; Chernishov, V. I.; Polishchuk, O. V.; Kondrachuk, A. V.
As it was demonstrated by Kuznetsov & Hasenstein (1996) the high gradient magnetic field (HGMF) can produce a ponderomotive force that results in displacements of amyloplasts and causes the root response similar to the graviresponse. It was suggested that the HGMF could allow to imitate the effects of gravity in microgravity and/or change them in laboratory conditions correspondingly, as well as to study statolith-related processes in graviperception. Therefore, the correlation between the direction of the ponderomotive force resulting in statolith displacements and the direction of the HGMF-induced plant curvature can be the serious argument to support this suggestion and needs the detailed ultrastructural analysis. Seeds of dicotyledon Pisum sativum L. cv. Damir-2 and monocotyledon Lepidium sativum L. cv. P896 were soaked and grown in a vertical position on moist filter paper in chambers at room temperature. Tips of primary roots of vertical control, gravistimulated and exposed to HGMF seedlings were fixed for electron microscopy using conventional techniques. At ultrastructural level, we observed no significant changes in the volume of the individual statocytes or amyloplasts, relative volumes of cellular organelles (except vacuoles), number of amyloplasts per statocyte or surface area of endoplasmic reticulum. No consistent contacts between amyloplasts and any cellular structures, including plasma membrane, were revealed at any stage of magneto- and gravistimulation. By 5 min after onset of magnetostimulation, amyloplasts were located along cell wall distant from magnets. In HGMF, the locations of amyloplasts in columella cells were similar to those in horizontally-oriented roots up to 1 h stimulation. In the latter case, there were sometimes cytoplasmic spherical bodies with a dense vesicle-rich cytoplasm in pea statocytes, which were absent in seedlings exposed to HGMF. In cress root statocytes, both gravi- and magnetostimulation were found to cause the appearance of significant amounts of electron-dense granules in the cytoplasm and the nucleus (particularly, in the nucleolus); the effect was most evident in HGMF. Testing the chemical composition of such deposits is going on. The data presented statocyte responses indicate similarity the effects of magneto- and gravistimulation at the ultrastructural level. Thus, the root curvature in HGMF is the plant response to displacement of amyloplasts by ponderomotive force, which can serve as tool for investigation of graviperception mechanism and can provide directional stimulus for plant growth in microgravity. (Financial support by STCU: NN-13R).
Greenhouse Studies of Thiamethoxam Effects on Pea Leaf Weevil, Sitona lineatus
Cárcamo, Héctor; Herle, Carolyn; Hervet, Vincent
2012-01-01
The pea leaf weevil, Sitona lineatus L. (Coleoptera: Curculionidae), has recently emerged as an important pest of field peas in the Canadian prairies. Systemic seed-coated insecticides may provide a tool for the integrated pest management of this pest. Therefore, several controlled assays were performed in order to determine effects of a recently registered neonicotinoid, (thiamethoxam) on S. lineatus damage to foliage, weevil mortality, fertility, egg viability, larval mortality, and root nodule damage. Foliage damage was reduced by thiamethoxam relative to untreated controls during the seedling stage (2nd–5th nodes), but weevil adult mortality was only 15–30%. Fertility was reduced substantially through an extra seven-day delay in the preoviposition period and reduced egg-laying rate during the first 20 days of the study (92% lower than controls). Overall egg viability was lower in females fed foliage grown from thiamethoxamtreated seeds. Larval survivorship and nodule damage were also lower, but only when eggs were added to treated plants at the 2nd node stage. When eggs were added late, at the 5th node stage, thiamethoxam had no effect on larval survivorship or nodule damage. The results of this study led to the conclusion that seed treatments such as thiamethoxam have potential to be used as tools that will aid in the integrated pest management of S. lineatus, especially in combination with other methods such as biocontrol and trap crops. PMID:23461362
Reliability and Validity of the Physical Education Activities Scale.
Thomason, Diane L; Feng, Du
2016-06-01
Measuring adolescent perceptions of physical education (PE) activities is necessary in understanding determinants of school PE activity participation. This study assessed reliability and validity of the Physical Education Activities Scale (PEAS), a 41-item visual analog scale measuring high school adolescent perceptions of school PE activity participation. Adolescents (N = 529) from the Pacific Northwest aged 15-19 in grades 9-12 participated in the study. Construct validity was assessed using exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). Measurement invariance across sex groups was tested by multiple-group CFA. Internal consistency reliability was analyzed using Cronbach's alpha. Inter-subscale correlations (Pearson's r) were calculated for latent factors and observed subscale scores. Exploratory factor analysis suggested a 3-factor solution explaining 43.4% of the total variance. Confirmatory factor analysis showed the 3-factor model fit the data adequately (comparative fit index [CFI] = 0.90, Tucker-Lewis index [TLI] = 0.89, root mean squared error of approximation [RMSEA] = 0.063). Factorial invariance was supported. Cronbach's alpha of the total PEAS was α = 0.92, and for subscales α ranged from 0.65 to 0.92. Independent t-tests showed significantly higher mean scores for boys than girls on the total scale and all subscales. Findings provide psychometric support for using the PEAS for examining adolescent's psychosocial and environmental perceptions to participating in PE activities. © 2016, American School Health Association.
Protein import into isolated pea root leucoplasts.
Chu, Chiung-Chih; Li, Hsou-Min
2015-01-01
Leucoplasts are important organelles for the synthesis and storage of starch, lipids and proteins. However, molecular mechanism of protein import into leucoplasts and how it differs from that of import into chloroplasts remain unknown. We used pea seedlings for both chloroplast and leucoplast isolations to compare within the same species. We further optimized the isolation and import conditions to improve import efficiency and to permit a quantitative comparison between the two plastid types. The authenticity of the import was verified using a mitochondrial precursor protein. Our results show that, when normalized to Toc75, most translocon proteins are less abundant in leucoplasts than in chloroplasts. A precursor shown to prefer the receptor Toc132 indeed had relatively more similar import efficiencies between chloroplasts and leucoplasts compared to precursors that prefer Toc159. Furthermore we found two precursors that exhibited very high import efficiency into leucoplasts. Their transit peptides may be candidates for delivering transgenic proteins into leucoplasts and for analyzing motifs important for leucoplast import.
Morkunas, Iwona; Woźniak, Agnieszka; Formela, Magda; Mai, Van Chung; Marczak, Łukasz; Narożna, Dorota; Borowiak-Sobkowiak, Beata; Kühn, Christina; Grimm, Bernhard
2016-07-01
The perception of aphid infestation induces highly coordinated and sequential defensive reactions in plants at the cellular and molecular levels. The aim of the study was to explore kinetics of induced antioxidative defence responses in leaf cells of Pisum sativum L.cv. Cysterski upon infestation of the pea aphid Acyrthosiphon pisum at varying population sizes, including accumulation of flavonoids, changes of carbon metabolism, and expression of nuclear genes involved in sugar transport. Within the first 96 h, after A. pisum infestation, flavonoid accumulation and increased peroxidase activity were observed in leaves. The level of pisatin increased after 48 h of infestation and reached a maximum at 96 h. At this time point, a higher concentration of flavonols was observed in the infested tissue than in the control. Additionally, strong post-infestation accumulation of chalcone synthase (CHS) and isoflavone synthase (IFS) transcription products was also found. The levels of sucrose and fructose in 24-h leaves infested by 10, 20, and 30 aphids were significantly lower than in the control. Moreover, in leaves infested by 30 aphids, the reduced sucrose level observed up to 48 h was accompanied by a considerable increase in the expression level of the PsSUT1 gene encoding the sucrose transporter. In conclusion, A. pisum infestation on pea leads to stimulation of metabolic pathways associated with defence.
Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan
2013-06-01
Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the changes of tissue N concentration and anatomical structure along root branch orders in both tree species, which provide deeper understanding in the mechanism of how root traits affect root respiration in woody plants.
The palmitoylethanolamide and oleamide enigmas : are these two fatty acid amides cannabimimetic?
Lambert, D M; Di Marzo, V
1999-08-01
Palmitoylethanolamide (PEA) and oleamide are two fatty acid amides which 1) share some cannabimimetic actions with delta9-tetrahydrocannabinol, anandamide and 2-arachidonoylglycerol, and 2) may interact with proteins involved in the biosynthesis, action and inactivation of endocannabinoids. Due to its pharmacological actions and its accumulation in damaged cells, PEA may have a physio-pathological role as an analgesic, anti-oxidant and anti-inflammatory mediator. However, its mechanism of action is puzzling. In fact, PEA does not bind to CB1 and CB2 receptors transfected into host cells, but might be a ligand for a putative CBn receptor present in the RBL-2H3 cell line. On the other hand, the analgesic effect of PEA is reversed by SR144528, a CB2 antagonist. PEA may act as an entourage compound for endocannabinoids, i.e. it may enhance their action for example by inhibiting their inactivation. Oleamide is a sleep inducing lipid whose mechanism of action is far from being understood. Although it does not bind with high affinity to CB1 or CB2 receptors, it exhibits some cannabimimetic actions which could be explained at least in part by entourage effects. It is likely that oleamide and anandamide have common as well as distinct pathways of action. The 5-HT2A receptor appears to be a target for oleamide but the possibility of the existence of specific receptors for this compound is open. The biosynthesis and tissue distribution of oleamide remain to be assessed in order to both substantiate its role as a sleep-inducing factor and investigate its participation in other physiopathological situations.
Ivanova, Kira A; Tsyganova, Anna V; Brewin, Nicholas J; Tikhonovich, Igor A; Tsyganov, Viktor E
2015-11-01
Rhizobia are able to establish a beneficial interaction with legumes by forming a new organ, called the symbiotic root nodule, which is a unique ecological niche for rhizobial nitrogen fixation. Rhizobial infection has many similarities with pathogenic infection and induction of defence responses accompanies both interactions, but defence responses are induced to a lesser extent during rhizobial infection. However, strong defence responses may result from incompatible interactions between legumes and rhizobia due to a mutation in either macro- or microsymbiont. The aim of this research was to analyse different plant defence reactions in response to Rhizobium infection for several pea (Pisum sativum) mutants that result in ineffective symbiosis. Pea mutants were examined by histochemical and immunocytochemical analyses, light, fluorescence and transmission electron microscopy and quantitative real-time PCR gene expression analysis. It was observed that mutations in pea symbiotic genes sym33 (PsIPD3/PsCYCLOPS encoding a transcriptional factor) and sym40 (PsEFD encoding a putative negative regulator of the cytokinin response) led to suberin depositions in ineffective nodules, and in the sym42 there were callose depositions in infection thread (IT) and host cell walls. The increase in deposition of unesterified pectin in IT walls was observed for mutants in the sym33 and sym42; for mutant in the sym42, unesterified pectin was also found around degrading bacteroids. In mutants in the genes sym33 and sym40, an increase in the expression level of a gene encoding peroxidase was observed. In the genes sym40 and sym42, an increase in the expression levels of genes encoding a marker of hypersensitive reaction and PR10 protein was demonstrated. Thus, a range of plant defence responses like suberisation, callose and unesterified pectin deposition as well as activation of defence genes can be triggered by different pea single mutations that cause perception of an otherwise beneficial strain of Rhizobium as a pathogen.
Development of Rhizo-Columns for Nondestructive Root System Architecture Laboratory Measurements
NASA Astrophysics Data System (ADS)
Oostrom, M.; Johnson, T. J.; Varga, T.; Hess, N. J.; Wietsma, T. W.
2016-12-01
Numerical models for root water uptake in plant-soil systems have been developing rapidly, increasing the demand for laboratory experimental data to test and verify these models. Most of the increasingly detailed models are either compared to long-term field crop data or do not involve comparisons at all. Ideally, experiments would provide information on dynamic root system architecture (RSA) in combination with soil-pant hydraulics such as water pressures and volumetric water contents. Data obtained from emerging methods such as Spectral Induced Polarization (SIP) and x-ray computed tomography (x-ray CT) may be used to provide laboratory RSA data needed for model comparisons. Point measurements such as polymer tensiometers (PT) may provide soil moisture information over a large range of water pressures, from field capacity to the wilting point under drought conditions. In the presentation, we demonstrate a novel laboratory capability allowing for detailed RSA studies in large columns under controlled conditions using automated SIP, X-ray CT, and PT methods. Examples are shown for pea and corn root development under various moisture regimes.
NASA Astrophysics Data System (ADS)
Belyavskaya, Ninel A.; Polishchuk, Olexandr V.; Kondrachuk, Alexander V.
2005-08-01
High-gradient magnetic field (HGMF) is one of methods, by which gravitropism in plants is studied. The aim of our study was elucidation of HGMF effects on topography of cellular components in root statocytes of 4- day Pisum sativum L. seedlings in comparison to gravistimulation. Under gravistimulation during 5, 30 and 60 min seedlings were rotated 45o; magnetostimulation was carried out along gap between two NdFeB magnets (0.7 T). Morphometric measurements were made from images of whole statocytes, for upper, middle and lower thirds of cells, and proximal and distal halves of cells. Morphometric analysis revealed that HGMF resulted in the redistribution of all cellular components in statocytes. The correlation in the amyloplast distribution between gravistimulation and magnetostimulation was established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, D.; Goudie, A.J.
The discriminative stimulus (cue) properties of phenylethylamine (PEA) were analysed in rodents in a conventional two lever FR10 operant drug discrimination task. Rats trained to discriminate phenylethylamine at 30 mg/kg showed complete dose-related generalization to PEA and to two potential PEA metabolites: phenylethanolamine (PEOH) and N-Methyl PEA (NMPEA). Only partial (50%) generalization was seen with N-Methylphenylethanolamine (NMPEOH), another potential PEA metabolite. The specificity of PEA's action as a discriminative stimulus was demonstrated by the finding that fenfluramine, a substituted phenylethylamine, failed to generalize to PEA even at high doses with marked behavioural effects which are known to have discriminative stimulusmore » properties themselves. These data suggest that NMPEA and PEOH may be functionally important active metabolites of PEA, particularly if the major pathway of PEA metabolism to phenylacetic acid under the influence of MAO Type B is for any reason impaired. A long acting deuterium substituted form of PEA (alpha, alpha, d2 PEA), which is resistant to metabolism by MAO, produced complete dose-related generalization to the PEA cue but was more potent than PEA, due presumably to its resistance to metabolism by MAO. Deuterated PEA may therefore be a useful agent to use in future studies of the PEA cue, because the discriminability of PEA itself appears to be low due to its very rapid metabolism in vivo.« less
Keyes, Samuel D; Gostling, Neil J; Cheung, Jessica H; Roose, Tiina; Sinclair, Ian; Marchant, Alan
2017-06-01
The use of in vivo X-ray microcomputed tomography (μCT) to study plant root systems has become routine, but is often hampered by poor contrast between roots, soil, soil water, and soil organic matter. In clinical radiology, imaging of poorly contrasting regions is frequently aided by the use of radio-opaque contrast media. In this study, we present evidence for the utility of iodinated contrast media (ICM) in the study of plant root systems using μCT. Different dilutions of an ionic and nonionic ICM (Gastrografin 370 and Niopam 300) were perfused into the aerial vasculature of juvenile pea plants via a leaf flap (Pisum sativum). The root systems were imaged via μCT, and a variety of image-processing approaches used to quantify and compare the magnitude of the contrast enhancement between different regions. Though the treatment did not appear to significantly aid extraction of full root system architectures from the surrounding soil, it did allow the xylem and phloem units of seminal roots and the vascular morphology within rhizobial nodules to be clearly visualized. The nonionic, low-osmolality contrast agent Niopam appeared to be well tolerated by the plant, whereas Gastrografin showed evidence of toxicity. In summary, the use of iodine-based contrast media allows usually poorly contrasting root structures to be visualized nondestructively using X-ray μCT. In particular, the vascular structures of roots and rhizobial nodules can be clearly visualized in situ.
NASA Astrophysics Data System (ADS)
Gaudinat, Germain; Lorin, Mathieu; Valantin-morison, Muriel; Garnier, Patricia
2015-04-01
Cover crops provide multiple services to the agro ecosystem. Among them, the use of legumes as cover crop is one of the solutions for limiting the use of herbicides, mineral fertilizers, and insecticides. However, the dynamic of mineralization is difficult to understand because of the difficulty of measuring nitrogen release from mulch in field. Indeed, residues are degraded at the soil surface as mulch, while the nitrogen uptake by the main crop occurred simultaneously in the soil. This work aims to study the dynamics of nitrogen mineralization from legume residues through i) the use of a model able to describe the physical and biological dynamic of mulch and ii) a data set from a field experiment of intercropping systems "oilseed rape-legumes" from different species (grass pea, lentil, Berseem clover, field pea, vetch). The objective of the simulations is to identify the variations of expected quantities of nitrogen from different legumes. The soil-plant model of mulch decomposition PASTIS-Mulch was used to determine the nitrogen supply from mulch available for rapeseed. These simulation results were compared to the data collected in the experimental field of Grignon (France). We performed analyzes of biochemical and physical characteristics of legume residues and monitored the evolution of mulches (moisture, density, cover surface, biomass) in fields. PASTIS simulations of soil temperature, soil moisture, mulch humidity and mulch decomposition were close to the experimental results. The PASTIS model was suitable to simulate the dynamic of legume mulches in the case of "rape - legume" associations. The model simulated nitrogen restitution of aerial and root parts. We found a more rapid nitrogen release by grass pea than other species. Vetch released less nitrogen than the other species. The scenarios for climate conditions were : i) a freezing in December that causes the destruction of plants, or a destruction by herbicide in March, ii) a strong or a weak rainy spring. Climatic conditions had a strong impact on the simulated release of nitrogen. Nitrogen supply was higher when degradation begun early with a rainy spring. Conversely, the degradation was lower when the degradation started late with a dry spring. Root release was less sensitive to climate and most of the nitrogen in the roots returned to the soil in a few weeks. The impact of "species" on the decomposition was explained not only by their chemical properties but also by their physical properties. The climatic conditions had different effects according to the species.
Reinecke, Dennis M.; Wickramarathna, Aruna D.; Ozga, Jocelyn A.; Kurepin, Leonid V.; Jin, Alena L.; Good, Allen G.; Pharis, Richard P.
2013-01-01
Gibberellins (GAs) are key modulators of plant growth and development. PsGA3ox1 (LE) encodes a GA 3β-hydroxylase that catalyzes the conversion of GA20 to biologically active GA1. To further clarify the role of GA3ox expression during pea (Pisum sativum) plant growth and development, we generated transgenic pea lines (in a lele background) with cauliflower mosaic virus-35S-driven expression of PsGA3ox1 (LE). PsGA3ox1 transgene expression led to higher GA1 concentrations in a tissue-specific and development-specific manner, altering GA biosynthesis and catabolism gene expression and plant phenotype. PsGA3ox1 transgenic plants had longer internodes, tendrils, and fruits, larger stipules, and displayed delayed flowering, increased apical meristem life, and altered vascular development relative to the null controls. Transgenic PsGA3ox1 overexpression lines were then compared with lines where endogenous PsGA3ox1 (LE) was introduced, by a series of backcrosses, into the same genetic background (BC LEle). Most notably, the BC LEle plants had substantially longer internodes containing much greater GA1 levels than the transgenic PsGA3ox1 plants. Induction of expression of the GA deactivation gene PsGA2ox1 appears to make an important contribution to limiting the increase of internode GA1 to modest levels for the transgenic lines. In contrast, PsGA3ox1 (LE) expression driven by its endogenous promoter was coordinated within the internode tissue to avoid feed-forward regulation of PsGA2ox1, resulting in much greater GA1 accumulation. These studies further our fundamental understanding of the regulation of GA biosynthesis and catabolism at the tissue and organ level and demonstrate that the timing/localization of GA3ox expression within an organ affects both GA homeostasis and GA1 levels, and thereby growth. PMID:23979969
Reinecke, Dennis M; Wickramarathna, Aruna D; Ozga, Jocelyn A; Kurepin, Leonid V; Jin, Alena L; Good, Allen G; Pharis, Richard P
2013-10-01
Gibberellins (GAs) are key modulators of plant growth and development. PsGA3ox1 (LE) encodes a GA 3β-hydroxylase that catalyzes the conversion of GA20 to biologically active GA1. To further clarify the role of GA3ox expression during pea (Pisum sativum) plant growth and development, we generated transgenic pea lines (in a lele background) with cauliflower mosaic virus-35S-driven expression of PsGA3ox1 (LE). PsGA3ox1 transgene expression led to higher GA1 concentrations in a tissue-specific and development-specific manner, altering GA biosynthesis and catabolism gene expression and plant phenotype. PsGA3ox1 transgenic plants had longer internodes, tendrils, and fruits, larger stipules, and displayed delayed flowering, increased apical meristem life, and altered vascular development relative to the null controls. Transgenic PsGA3ox1 overexpression lines were then compared with lines where endogenous PsGA3ox1 (LE) was introduced, by a series of backcrosses, into the same genetic background (BC LEle). Most notably, the BC LEle plants had substantially longer internodes containing much greater GA1 levels than the transgenic PsGA3ox1 plants. Induction of expression of the GA deactivation gene PsGA2ox1 appears to make an important contribution to limiting the increase of internode GA1 to modest levels for the transgenic lines. In contrast, PsGA3ox1 (LE) expression driven by its endogenous promoter was coordinated within the internode tissue to avoid feed-forward regulation of PsGA2ox1, resulting in much greater GA1 accumulation. These studies further our fundamental understanding of the regulation of GA biosynthesis and catabolism at the tissue and organ level and demonstrate that the timing/localization of GA3ox expression within an organ affects both GA homeostasis and GA1 levels, and thereby growth.
Liu, Jing; Parsons, Loren; Pope, Carey
2015-01-01
Parathion and chlorpyrifos are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). The endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) are endogenous neuromodulators that regulate presynaptic neurotransmitter release in neurons throughout the central and peripheral nervous systems. While substantial information is known about the eCBs, less is known about a number of endocannabinoid-like metabolites (eCBLs, e.g., N-palmitoylethanolamine, PEA; N-oleoylethanolamine, OEA). We report the comparative effects of parathion and chlorpyrifos on AChE and enzymes responsible for inactivation of the eCBs, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and changes in the eCBs AEA and 2AG and eCBLs PEA and OEA, in rat striatum. Adult, male rats were treated with vehicle (peanut oil, 2 ml/kg, sc), parathion (27 mg/kg) or chlorpyrifos (280 mg/kg) 6-7 days after surgical implantation of microdialysis cannulae into the right striatum, followed by microdialysis two or four days later. Additional rats were similarly treated and sacrificed for evaluation of tissue levels of eCBs and eCBLs. Dialysates and tissue extracts were analyzed by LC-MS/MS. AChE and FAAH were extensively inhibited at both time-points (85-96%), while MAGL activity was significantly but lesser affected (37-62% inhibition) by parathion and chlorpyrifos. Signs of toxicity were noted only in parathion-treated rats. In general, chlorpyrifos increased eCB levels while parathion had no or lesser effects. Early changes in extracellular AEA, 2AG and PEA levels were significantly different between parathion and chlorpyrifos exposures. Differential changes in extracellular and/or tissue levels of eCBs and eCBLs could potentially influence a number of signaling pathways and contribute to selective neurological changes following acute OP intoxications. PMID:26215119
Liu, Jing; Parsons, Loren; Pope, Carey
2015-09-01
Parathion and chlorpyrifos are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). The endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) are endogenous neuromodulators that regulate presynaptic neurotransmitter release in neurons throughout the central and peripheral nervous systems. While substantial information is known about the eCBs, less is known about a number of endocannabinoid-like metabolites (eCBLs, e.g., N-palmitoylethanolamine, PEA; N-oleoylethanolamine, OEA). We report the comparative effects of parathion and chlorpyrifos on AChE and enzymes responsible for inactivation of the eCBs, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and changes in the eCBs AEA and 2AG and eCBLs PEA and OEA, in rat striatum. Adult, male rats were treated with vehicle (peanut oil, 2 ml/kg, sc), parathion (27 mg/kg) or chlorpyrifos (280 mg/kg) 6-7 days after surgical implantation of microdialysis cannulae into the right striatum, followed by microdialysis two or four days later. Additional rats were similarly treated and sacrificed for evaluation of tissue levels of eCBs and eCBLs. Dialysates and tissue extracts were analyzed by LC-MS/MS. AChE and FAAH were extensively inhibited at both time-points (85-96%), while MAGL activity was significantly but lesser affected (37-62% inhibition) by parathion and chlorpyrifos. Signs of toxicity were noted only in parathion-treated rats. In general, chlorpyrifos increased eCB levels while parathion had no or lesser effects. Early changes in extracellular AEA, 2AG and PEA levels were significantly different between parathion and chlorpyrifos exposures. Differential changes in extracellular and/or tissue levels of eCBs and eCBLs could potentially influence a number of signaling pathways and contribute to selective neurological changes following acute OP intoxications. Copyright © 2015 Elsevier Inc. All rights reserved.
Biocompatibility of root-end filling materials: recent update
Gupta, Saurabh Kumar; Newaskar, Vilas
2013-01-01
The purpose of a root-end filling is to establish a seal between the root canal space and the periradicular tissues. As root-end filling materials come into contact with periradicular tissues, knowledge of the tissue response is crucial. Almost every available dental restorative material has been suggested as the root-end material of choice at a certain point in the past. This literature review on root-end filling materials will evaluate and comparatively analyse the biocompatibility and tissue response to these products, with primary focus on newly introduced materials. PMID:24010077
Vacondio, Federica; Bassi, Michele; Silva, Claudia; Castelli, Riccardo; Carmi, Caterina; Scalvini, Laura; Lodola, Alessio; Vivo, Valentina; Flammini, Lisa; Barocelli, Elisabetta; Mor, Marco; Rivara, Silvia
2015-01-01
Palmitoylethanolamide (PEA) has antinflammatory and antinociceptive properties widely exploited in veterinary and human medicine, despite its poor pharmacokinetics. Looking for prodrugs that could progressively release PEA to maintain effective plasma concentrations, we prepared carbonates, esters and carbamates at the hydroxyl group of PEA. Chemical stability (pH 7.4) and stability in rat plasma and liver homogenate were evaluated by in vitro assays. Carbonates and carbamates resulted too labile and too resistant in plasma, respectively. Ester derivatives, prepared by conjugating PEA with various amino acids, allowed to modulate the kinetics of PEA release in plasma and stability in liver homogenate. L-Val-PEA, with suitable PEA release in plasma, and D-Val-PEA, with high resistance to hepatic degradation, were orally administered to rats and plasma levels of prodrugs and PEA were measured at different time points. Both prodrugs showed significant release of PEA, but provided lower plasma concentrations than those obtained with equimolar doses of PEA. Amino-acid esters of PEA are a promising class to develop prodrugs, even if they need further chemical optimization. PMID:26053855
Hadwiger, Lee A.
2015-01-01
Of the multiplicity of plant pathogens in nature, only a few are virulent on a given plant species. Conversely, plants develop a rapid “nonhost” resistance response to the majority of the pathogens. The anatomy of the nonhost resistance of pea endocarp tissue against a pathogen of bean, Fusarium solani f.sp. phaseoli (Fsph) and the susceptibility of pea to F. solani f sp. pisi (Fspi) has been described cytologically, biochemically and molecular-biologically. Cytological changes have been followed by electron microscope and stain differentiation under white and UV light. The induction of changes in transcription, protein synthesis, expression of pathogenesis-related (PR) genes, and increases in metabolic pathways culminating in low molecular weight, antifungal compounds are described biochemically. Molecular changes initiated by fungal signals to host organelles, primarily to chromatin within host nuclei, are identified according to source of the signal and the mechanisms utilized in activating defense genes. The functions of some PR genes are defined. A hypothesis based on this data is developed to explain both why fungal growth is suppressed in nonhost resistance and why growth can continue in a susceptible reaction. PMID:26124762
Hadwiger, Lee A
2015-01-01
Of the multiplicity of plant pathogens in nature, only a few are virulent on a given plant species. Conversely, plants develop a rapid "nonhost" resistance response to the majority of the pathogens. The anatomy of the nonhost resistance of pea endocarp tissue against a pathogen of bean, Fusarium solani f.sp. phaseoli (Fsph) and the susceptibility of pea to F. solani f sp. pisi (Fspi) has been described cytologically, biochemically and molecular-biologically. Cytological changes have been followed by electron microscope and stain differentiation under white and UV light. The induction of changes in transcription, protein synthesis, expression of pathogenesis-related (PR) genes, and increases in metabolic pathways culminating in low molecular weight, antifungal compounds are described biochemically. Molecular changes initiated by fungal signals to host organelles, primarily to chromatin within host nuclei, are identified according to source of the signal and the mechanisms utilized in activating defense genes. The functions of some PR genes are defined. A hypothesis based on this data is developed to explain both why fungal growth is suppressed in nonhost resistance and why growth can continue in a susceptible reaction.
Hadwiger, Lee A; Polashock, James
2013-01-01
Previous reports on the model nonhost resistance interaction between Fusarium solani f. sp. phaseoli and pea endocarp tissue have described the disease resistance-signaling role of a fungal DNase1-like protein. The response resulted in no further growth beyond spore germination. This F. solani f. sp. phaseoli DNase gene, constructed with a pathogenesis-related (PR) gene promoter, when transferred to tobacco, generated resistance against Pseudomonas syringe pv. tabaci. The current analytical/theoretical article proposes similar roles for the additional nuclear and mitochondrial nucleases, the coding regions for which are identified in newly available fungal genome sequences. The amino acid sequence homologies within functional domains are conserved within a wide array of fungi. The potato pathogen Verticillium dahliae nuclease was divergent from that of the saprophyte, yeast; however, the purified DNase from yeast also elicited nonhost defense responses in pea, including pisatin accumulation, PR gene induction, and resistance against a true pea pathogen. The yeast mitochondrial DNase gene (open reading frame) predictably codes for a signal peptide providing the mechanism for secretion. Mitochondrial DNase genes appear to provide an unlimited source of components for developing transgenic resistance in all transformable plants.
Bean alpha-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae.
de Sousa-Majer, Maria José; Hardie, Darryl C; Turner, Neil C; Higgins, Thomas J V
2007-08-01
This glasshouse study used an improved larval measurement procedure to evaluate the impact of transgenic pea, Pisum sativum L., seeds expressing a-amylase inhibitor (AI)-1 or -2 proteins on pea weevil, Bruchus pisorum L. Seeds of transgenic 'Laura' and 'Greenfeast' peas expressing alpha-(AI)-1 reduced pea weevil survival by 93-98%. Larval mortality occurred at an early instar. Conversely, in nontransgenic cultivars, approximately 98-99% of the pea weevils emerged as adults. By measuring the head capsule size, we determined that larvae died at the first to early third instar in alpha-(AI)-1 transgenic peas, indicating that this inhibitor is highly effective in controlling this insect. By contrast, transgenic Laura and 'Dundale' expressing alpha-(AI)-2 did not affect pea weevil survival, but they did delay larval development. After 77 d of development, the head capsule size indicated that the larvae were still at the third instar stage in transgenic alpha-(AI)-2 peas, whereas adult bruchids had developed in the nontransgenic peas.
7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).
Code of Federal Regulations, 2013 CFR
2013-01-01
... necrosis or decay. (B) All other kinds: (1) Both missing and the seedling generally weak. (2) [Reserved... remaining attached. (B) Less than half of the original tissue free of necrosis or decay. (ii) Epicotyl: (A... necrosis or decay. (ii) Epicotyl: (A) Missing. (B) Less than one primary leaf. (C) Deep open cracks. (D...
7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).
Code of Federal Regulations, 2014 CFR
2014-01-01
... necrosis or decay. (B) All other kinds: (1) Both missing and the seedling generally weak. (2) [Reserved... remaining attached. (B) Less than half of the original tissue free of necrosis or decay. (ii) Epicotyl: (A... necrosis or decay. (ii) Epicotyl: (A) Missing. (B) Less than one primary leaf. (C) Deep open cracks. (D...
USDA-ARS?s Scientific Manuscript database
In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid-plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Her...
Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development
Liu, Na; Zhang, Guwen; Xu, Shengchun; Mao, Weihua; Hu, Qizan; Gong, Yaming
2015-01-01
Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding. PMID:26635856
Pottosin, Igor; Velarde-Buendía, Ana María; Bose, Jayakumar; Fuglsang, Anja T; Shabala, Sergey
2014-06-01
Polyamines regulate a variety of cation and K(+) channels, but their potential effects on cation-transporting ATPases are underexplored. In this work, noninvasive microelectrode ion flux estimation and conventional microelectrode techniques were applied to study the effects of polyamines on Ca(2+) and H(+) transport and membrane potential in pea roots. Externally applied spermine or putrescine (1mM) equally activated eosin yellow (EY)-sensitive Ca(2+) pumping across the root epidermis and caused net H(+) influx or efflux. Proton influx induced by spermine was suppressed by EY, supporting the mechanism in which Ca(2+) pump imports 2 H(+) per each exported Ca(2+). Suppression of the Ca(2+) pump by EY diminished putrescine-induced net H(+) efflux instead of increasing it. Thus, activities of Ca(2+) and H(+) pumps were coupled, likely due to the H(+)-pump inhibition by intracellular Ca(2+). Additionally, spermine but not putrescine caused a direct inhibition of H(+) pumping in isolated plasma membrane vesicles. Spermine, spermidine, and putrescine (1mM) induced membrane depolarization by 70, 50, and 35 mV, respectively. Spermine-induced depolarization was abolished by cation transport blocker Gd(3+), was insensitive to anion channels' blocker niflumate, and was dependent on external Ca(2+). Further analysis showed that uptake of polyamines but not polyamine-induced cationic (K(+)+Ca(2+)+H(+)) fluxes were a main cause of membrane depolarization. Polyamine increase is a common component of plant stress responses. Activation of Ca(2+) efflux by polyamines and contrasting effects of polyamines on net H(+) fluxes and membrane potential can contribute to Ca(2+) signalling and modulate a variety of transport processes across the plasma membrane under stress. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Biological effects due to weak magnetic fields on plants
NASA Astrophysics Data System (ADS)
Belyavskaya, N.
In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to WMF show the Ca2 + oversaturation both in all organelles and in a hyaloplasm of the cells unlike the control ones. The data presented suggest that prolonged plant exposures to WMF may cause different biological effects at the cellular, tissue and organ level. They may be functionally related to systems that regulate plant metabolism including the intracellular Ca 2 + homeostasis. The understanding of the fundamental mechanisms and sites of interactions between WMF and biological systems are complex and still deserve strong efforts, particular addressed to basic principles of coupling between field energy and biomolecules.
Fang, Jing; Tao, Lin; Shen, Ren Fang; Li, Ya Lin; Xiao, Hong Dong; Feng, Ying Ming; Wen, Hai Xiang; Guan, Jia Hua; Wu, Li Shu; He, Yong Ming; Goldbach, Heiner E.; Yu, Min
2017-01-01
Aluminum (Al) toxicity is the primary factor limiting crop growth in acidic soils. Boron (B) alleviates Al toxicity in plants, which is mainly considered to be due to the formation of Rhamnogalacturonan II-B (RGII-B) complexes, which helps to stabilize the cytoskeleton. It is unclear yet whether this is due to the increasing of net negative charges and/or further mechanisms. Kinetics of Al accumulation and adsorption were investigated using entire cells, cell wall and pectin of root border cells (RBCs) of pea (Pisum sativum), to reveal the mechanism of B in interacting with alkali-soluble and chelator-soluble pectin for an increased Al tolerance in RBCs. The results show that B could rescue RBCs from Al-induced cell death by accumulating more Al in the cell wall, predominately in alkali-soluble pectin. Boron also promotes Al3+ adsorption and inhibits Al3+ desorption from alkali-soluble pectin. Thus, more Al3+ is immobilized within the alkali-soluble pectin fraction and less in the chelator-soluble pectin, rendering Al3+ less mobile. Boron induces an increase of RG-II (KDO,2-keto-3-deoxyoctonic acid) content for forming more borate-RGII complexes, and the decrease of pectin methyl-esterification, thus creates more negative charges to immobilize Al3+ in cell wall pectin. The study provides evidence that abundant B supply enhances the immobilization of Al in alkali-soluble pectin, thus most likely reducing the entry of Al3+ into the symplast from the surroundings. PMID:28533794
NASA Technical Reports Server (NTRS)
Hsieh, H. L.; Tong, C. G.; Thomas, C.; Roux, S. J.
1996-01-01
A CDNA encoding a 47 kDa nucleoside triphosphatase (NTPase) that is associated with the chromatin of pea nuclei has been cloned and sequenced. The translated sequence of the cDNA includes several domains predicted by known biochemical properties of the enzyme, including five motifs characteristic of the ATP-binding domain of many proteins, several potential casein kinase II phosphorylation sites, a helix-turn-helix region characteristic of DNA-binding proteins, and a potential calmodulin-binding domain. The deduced primary structure also includes an N-terminal sequence that is a predicted signal peptide and an internal sequence that could serve as a bipartite-type nuclear localization signal. Both in situ immunocytochemistry of pea plumules and immunoblots of purified cell fractions indicate that most of the immunodetectable NTPase is within the nucleus, a compartment proteins typically reach through nuclear pores rather than through the endoplasmic reticulum pathway. The translated sequence has some similarity to that of human lamin C, but not high enough to account for the earlier observation that IgG against human lamin C binds to the NTPase in immunoblots. Northern blot analysis shows that the NTPase MRNA is strongly expressed in etiolated plumules, but only poorly or not at all in the leaf and stem tissues of light-grown plants. Accumulation of NTPase mRNA in etiolated seedlings is stimulated by brief treatments with both red and far-red light, as is characteristic of very low-fluence phytochrome responses. Southern blotting with pea genomic DNA indicates the NTPase is likely to be encoded by a single gene.
2012-01-01
Background White mold, caused by Sclerotinia sclerotiorum, is one of the most important diseases of pea (Pisum sativum L.), however, little is known about the genetics and biochemistry of this interaction. Identification of genes underlying resistance in the host or pathogenicity and virulence factors in the pathogen will increase our knowledge of the pea-S. sclerotiorum interaction and facilitate the introgression of new resistance genes into commercial pea varieties. Although the S. sclerotiorum genome sequence is available, no pea genome is available, due in part to its large genome size (~3500 Mb) and extensive repeated motifs. Here we present an EST data set specific to the interaction between S. sclerotiorum and pea, and a method to distinguish pathogen and host sequences without a species-specific reference genome. Results 10,158 contigs were obtained by de novo assembly of 128,720 high-quality reads generated by 454 pyrosequencing of the pea-S. sclerotiorum interactome. A method based on the tBLASTx program was modified to distinguish pea and S. sclerotiorum ESTs. To test this strategy, a mixture of known ESTs (18,490 pea and 17,198 S. sclerotiorum ESTs) from public databases were pooled and parsed; the tBLASTx method successfully separated 90.1% of the artificial EST mix with 99.9% accuracy. The tBLASTx method successfully parsed 89.4% of the 454-derived EST contigs, as validated by PCR, into pea (6,299 contigs) and S. sclerotiorum (2,780 contigs) categories. Two thousand eight hundred and forty pea ESTs and 996 S. sclerotiorum ESTs were predicted to be expressed specifically during the pea-S. sclerotiorum interaction as determined by homology search against 81,449 pea ESTs (from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings) and 57,751 S. sclerotiorum ESTs (from mycelia at neutral pH, developing apothecia and developing sclerotia). Among those ESTs specifically expressed, 277 (9.8%) pea ESTs were predicted to be involved in plant defense and response to biotic or abiotic stress, and 93 (9.3%) S. sclerotiorum ESTs were predicted to be involved in pathogenicity/virulence. Additionally, 142 S. sclerotiorum ESTs were identified as secretory/signal peptides of which only 21 were previously reported. Conclusions We present and characterize an EST resource specific to the pea-S. sclerotiorum interaction. Additionally, the tBLASTx method used to parse S. sclerotiorum and pea ESTs was demonstrated to be a reliable and accurate method to distinguish ESTs without a reference genome. PMID:23181755
Salt: Too Much of a Good Thing | NIH MedlinePlus the Magazine
... 1 cup of raw peas has 4 mg sodium. Answer Canned peas have three times more sodium than frozen peas. Canned Peas Caption: Canned Peas, ... 0%, Saturated Fat 0g 0%, Cholesterol 0mg 0%, Sodium 380 mg 16%, Total Carbohydrate 12g 4%, Dietary ...
Electrotropism of maize roots. Role of the root cap and relationship to gravitropism
NASA Technical Reports Server (NTRS)
Ishikawa, H.; Evans, M. L.
1990-01-01
We examined the kinetics of electrotropic curvature in solutions of low electrolyte concentration using primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across which an electric field was applied, the roots curved rapidly and strongly toward the positive electrode (anode). The strength of the electrotropic response increased and the latent period decreased with increasing field strength. At a field strength of 7.5 volts per centimeter the latent period was 6.6 minutes and curvature reached 60 degrees in about 1 hour. For electric fields greater than 10 volts per centimeter the latent period was less than 1 minute. There was no response to electric fields less than 2.8 volts per centimeter. Both electrotropism and growth were inhibited when indoleacetic acid (10 micromolar) was included in the medium. The auxin transport inhibitor pyrenoylbenzoic acid strongly inhibited electrotropism without inhibiting growth. Electrotropism was enhanced by treatments that interfere with gravitropism, e.g. decapping the roots or pretreating them with ethyleneglycol-bis-[beta-ethylether]-N,N,N',N' -tetraacetic acid. Similarly, roots of agravitropic pea (Pisum sativum, variety Ageotropum) seedlings were more responsive to electrotropic stimulation than roots of normal (variety Alaska) seedlings. The data indicate that the early steps of gravitropism and electrotropism occur by independent mechanisms. However, the motor mechanisms of the two responses may have features in common since auxin and auxin transport inhibitors reduced both gravitropism and electrotropism.
Immunofluorescence detection of pea protein in meat products.
Petrášová, Michaela; Pospiech, Matej; Tremlová, Bohuslava; Javůrková, Zdeňka
2016-08-01
In this study we developed an immunofluorescence method to detect pea protein in meat products. Pea protein has a high nutritional value but in sensitive individuals it may be responsible for causing allergic reactions. We produced model meat products with various additions of pea protein and flour; the detection limit (LOD) of the method for pea flour was 0.5% addition, and for pea protein it was 0.001% addition. The repeatabilities and reproducibilities for samples both positive and negative for pea protein were all 100%. In a blind test with model products and commercial samples, there was no statistically significant difference (p > 0.05) between the declared concentrations of pea protein and flour and the immunofluorescence method results. Sensitivity was 1.06 and specificity was 1.00. These results show that the immunofluorescence method is suitable for the detection of pea protein in meat products.
Fan, Xuetong; Sokorai, Kimberly J B
2007-08-01
The effects of irradiation (0, 1.8, and 4.5 kGy) on the quality of frozen corn and peas were investigated during a 12month period of postirradiation storage at -18 degrees C. Irradiation of frozen corn and peas caused a reduction in ascorbic acid content of both vegetables and a loss of texture in peas but had no significant effects on instrumental color parameters (L*, a*, and b*), carotenoid and chlorophyll content, or antioxidant capacity of corn and peas. Irradiation reduced microbial loads of frozen peas and increased display life at 23 degrees C of thawed peas by preserving the green color, apparently because of slower increases in the population of acid-producing microorganisms in the irradiated samples. Overall, irradiation significantly reduced the microbial load and increased the display life of peas and had minimal detrimental effects on the quality of frozen corn and peas.
Occurrence of low molecular weight thiols in biological systems
NASA Technical Reports Server (NTRS)
Fahey, Robert C.; Newton, Gerald L.
1983-01-01
Bromobimane labeling and high performance chromatography analysis were applied to various species of bacteria, plant tissues, and animal tissues. The reaction between thiols and monobromobimane is studied. Chromatograms revealing peaks produced by nonthiols and thiols are analyzed and compared. It is observed that all the bacteria species contain hydrogen sulfide, and glutathione is contained in facultative and aerobic gram-negative bacteria. For the plant tissues, the data reveal that mung bean sprouts contain homoglutathione and no glutathione; alfalfa sprouts contain homoglutathione and glutathione; the pea seed, nonlegumes, and fungi contain glutathione and no homoglutathione. It is detected that the main thiol in the animal tissues is glutathione. Based on the data, it is suggested that glutathione has an essential function in higher organisms.
Yan, Jianmin; Campbell, James H.; Glick, Bernard R.; Smith, Matthew D.; Liang, Yan
2014-01-01
The translocon at the outer envelope membrane of chloroplasts (Toc) mediates the recognition and initial import into the organelle of thousands of nucleus-encoded proteins. These proteins are translated in the cytosol as precursor proteins with cleavable amino-terminal targeting sequences called transit peptides. The majority of the known Toc components that mediate chloroplast protein import were originally identified in pea, and more recently have been studied most extensively in Arabidopsis. With the completion of the tomato genome sequencing project, it is now possible to identify putative homologues of the chloroplast import components in tomato. In the work reported here, the Toc GTPase cDNAs from tomato were identified, cloned and analyzed. The analysis revealed that there are four Toc159 homologues (slToc159-1, -2, -3 and -4) and two Toc34 homologues (slToc34-1 and -2) in tomato, and it was shown that tomato Toc159 and Toc34 homologues share high sequence similarity with the comparable import apparatus components from Arabidopsis and pea. Thus, tomato is a valid model for further study of this system. The expression level of Toc complex components was also investigated in different tissues during tomato development. The two tomato Toc34 homologues are expressed at higher levels in non-photosynthetic tissues, whereas, the expression of two tomato Toc159 homologues, slToc159-1 and slToc159-4, were higher in photosynthetic tissues, and the expression patterns of slToc159-2 was not significantly different in photosynthetic and non-photosynthetic tissues, and slToc159-3 expression was limited to a few select tissues. PMID:24751891
Curlango-Rivera, Gilberto
2011-01-01
Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1–2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. PMID:21455030
Cytological and ultrastructural studies on root tissues
NASA Technical Reports Server (NTRS)
Slocum, R. D.; Gaynor, J. J.; Galston, A. W.
1984-01-01
The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.
Goodarzi Boroojeni, F; Senz, M; Kozłowski, K; Boros, D; Wisniewska, M; Rose, D; Männer, K; Zentek, J
2017-10-01
The present study examined the impacts of native, fermented or enzymatically treated peas (Pisum sativum L.) inclusion in broiler diets, on growth performance and nutrient digestibility. For the fermentation process, Madonna pea was mixed with water (1/1) containing 2.57×108 Bacillus subtilis (GalliPro®) spores/kg pea and then, incubated for 48 h at 30 °C. For the enzymatic treatment process, the used water for dough production contained three enzymes, AlphaGalTM (α-galactosidase), RONOZYME® ProAct and VP (protease and pectinases respectively - DSM, Switzerland) and the pea dough incubated for 24 h at 30°C. Nine corn-wheat-soybean diets were formulated by supplying 10%, 20% and 30% of the required CP with either native, fermented or enzymatically treated peas. Performance was recorded weekly and at the end of the experiment (day 35), apparent ileal digestibility (AID) of CP, amino acids (AA), crude fat, starch, Ca, P and K were determined. Data were subjected to ANOVA using GLM procedure with a 3×3 factorial arrangement of treatments. Both processes reduced α-galactosides, phytate, trypsin inhibitor activity and resistant starch in peas. Increasing levels of pea products up to 300 g/kg diet, reduced BW gain and feed intake (P⩽0.05). Broilers fed diets containing enzymatically treated pea had the best feed conversion ratio at day 35. Different types of pea product and their inclusion levels had no effect on AID of all nutrients. The interaction between type of the pea products and inclusion levels was significant for AID of starch. For native pea diets, 10% group showed similar AID of starch to 20% native pea but it had higher AID than 30% native pea. For fermented and enzymatically treated groups, all three levels displayed similar AID of starch. In conclusion, enzymatic treatment and fermentation could improve the nutritional quality of pea. Inclusion of enzymatically treated pea in broiler diets could improve broiler performance compared with other pea products while, it displayed neither positive nor negative impact on nutrient digestibility. The present findings indicate the feasibility of these processes, particularly enzymatic treatment, for improving the nutritional quality of pea as a protein source for broiler nutrition.
Review of the health benefits of peas (Pisum sativum L.).
Dahl, Wendy J; Foster, Lauren M; Tyler, Robert T
2012-08-01
Pulses, including peas, have long been important components of the human diet due to their content of starch, protein and other nutrients. More recently, the health benefits other than nutrition associated with pulse consumption have attracted much interest. The focus of the present review paper is the demonstrated and potential health benefits associated with the consumption of peas, Pisum sativum L., specifically green and yellow cotyledon dry peas, also known as smooth peas or field peas. These health benefits derive mainly from the concentration and properties of starch, protein, fibre, vitamins, minerals and phytochemicals in peas. Fibre from the seed coat and the cell walls of the cotyledon contributes to gastrointestinal function and health, and reduces the digestibility of starch in peas. The intermediate amylose content of pea starch also contributes to its lower glycaemic index and reduced starch digestibility. Pea protein, when hydrolysed, may yield peptides with bioactivities, including angiotensin I-converting enzyme inhibitor activity and antioxidant activity. The vitamin and mineral contents of peas may play important roles in the prevention of deficiency-related diseases, specifically those related to deficiencies of Se or folate. Peas contain a variety of phytochemicals once thought of only as antinutritive factors. These include polyphenolics, in coloured seed coat types in particular, which may have antioxidant and anticarcinogenic activity, saponins which may exhibit hypocholesterolaemic and anticarcinogenic activity, and galactose oligosaccharides which may exert beneficial prebiotic effects in the large intestine.
Lu, Zhan-Hui; Donner, Elizabeth; Liu, Qiang
2018-04-15
Oven or microwave roasting and alginate encapsulation of pea flour and starch to produce novel pea ingredients for enrichment of slowly digestible starch (SDS) and resistant starch (RS) content in pea bread were investigated. Pea flour treated either by oven roasting (160°C, 30min) or by microwave roasting (1.1kW, 6min) effectively retained its low starch digestibility similar to its native form (∼25% SDS; ∼60% RS). When oven roasting was applied to pea starch, SDS content increased triply compared to the fully boiled counterpart. Alginate encapsulation effectively controlled carbohydrate release to simulated gastric, intestinal and colonic fluids, and thus largely enriched the SDS and RS fractions in starch. Pea bread containing up to 37.5% of encapsulated roasted MPS pea starch not only provided high SDS and RS fractions (23.9% SDS and 30.2% RS) compared to a white bread control (0.2% SDS and 2.5% RS), but also provided an acceptable palatability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Monitoring 2-phenylethanamine and 2-(3-hydroxyphenyl)acetamide sulfate in doping controls.
Sigmund, Gerd; Dib, Josef; Tretzel, Laura; Piper, Thomas; Bosse, Christina; Schänzer, Wilhelm; Thevis, Mario
2015-01-01
2-Phenylethanamine (phenethylamine, PEA) represents the core structure of numerous drugs with stimulant-like properties and is explicitly featured as so-called specified substance on the World Anti-Doping Agency (WADA) Prohibited List. Due to its natural occurrence in humans as well as its presence in dietary products, studies concerning the ability of test methods to differentiate between an illicit intake and the renal elimination of endogenously produced PEA were indicated. Following the addition of PEA to the Prohibited List in January 2015, retrospective evaluation of routine doping control data of 10 190 urine samples generated by combined gas chromatography-mass spectrometry and nitrogen phosphorus-specific detection (GC-MS/NPD) was performed. Signals for PEA at approximate concentrations > 500 ng/mL were observed in 31 cases (0.3%), which were subjected to a validated isotope-dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) test method for accurate quantification of the target analyte. Further, using elimination study urine samples collected after a single oral administration of 250 mg of PEA hydrochloride to two healthy male volunteers, two tentatively identified metabolites of PEA were observed and evaluated concerning their utility as discriminative markers for PEA intake. The ID-LC-MS/MS approach was extended to allow for the simultaneous detection of PEA and 2-(3-hydroxyphenyl)acetamide sulfate (M1), and concentration ratios of M1 and PEA were calculated for elimination study urine samples and a total of 205 doping control urine samples that returned findings for PEA at estimated concentrations of 50-2500 ng/mL. Urine samples of the elimination study with PEA yielded concentration ratios of M1/PEA up to values of 9.4. Notably, the urinary concentration of PEA did increase with the intake of PEA only to a modest extent, suggesting a comprehensive metabolism of the orally administered substance. Conversely, doping control urine samples with elevated (>50 ng/mL) amounts of PEA returned quantifiable concentrations of M1 only in 3 cases, which yielded maximum ratios of M1/PEA of 0.9, indicating an origin of PEA other than an orally ingested drug formulation. Consequently, the consideration of analyte abundance ratios (e.g. M1/PEA) is suggested as a means to identify the use of PEA by athletes, but further studies to support potential decisive criteria are warranted. Copyright © 2015 John Wiley & Sons, Ltd.
PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.
Fiory, Francesca; Parrillo, Luca; Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco
2014-01-01
The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15) mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15)). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15) cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15). These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.
Richard, C; Jacquenet, S; Sergeant, P; Moneret-Vautrin, D A
2015-07-01
Legume allergy is the fifth food allergy in Europe. The dun pea (Pisum sativum sativum var. arvense), a pea belonging to the same subspecies as green pea, has been recently introduced as an ingredient in the human food industry. The aims of this study were to evaluate the cross-reactivity between dun pea and other legumes and to search for modification of allergenicity induced by food technologies. A series of 36 patients with legume and/or peanut allergy was studied. They underwent skin tests to peanut and a panel of legumes including dun pea. Specific IgE to dun pea and cross-reactivity to peanut allergens, particularly to Ara h 1, were evaluated by ELISA. Proteins and allergens of different pea extracts were studied by SDS-PAGE and immunoblots. In France and Belgium, 7.7% of severe food anaphylaxis cases were due to legumes. Patients with isolated legume allergy had positive prick tests to dun pea, whereas patients with isolated peanut allergy had negative prick tests. Cross-reactivity between sIgE to peanut and dun pea was observed, and more frequently than expected (96%) peanut-allergic patients with legume sensitization or allergy had sIgE to Ara h 1. Analysis of dun pea allergens suggested that protein epitopes were presented differently in dun pea seeds, isolate and flour. This study identifies, for the first time, a risk of dun pea allergy in legume-allergic patients and in a subset of peanut-allergic patients.
7 CFR 868.101 - General information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... for Beans, Whole Dry Peas, Split Peas, and Lentils, which provide a uniform language for describing..., suspending, or terminating the U.S. standards for Beans, Whole Dry Peas, Split Peas, and Lentils...
7 CFR 868.101 - General information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... for Beans, Whole Dry Peas, Split Peas, and Lentils, which provide a uniform language for describing..., suspending, or terminating the U.S. standards for Beans, Whole Dry Peas, Split Peas, and Lentils...
7 CFR 868.101 - General information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... for Beans, Whole Dry Peas, Split Peas, and Lentils, which provide a uniform language for describing..., suspending, or terminating the U.S. standards for Beans, Whole Dry Peas, Split Peas, and Lentils...
7 CFR 868.101 - General information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... for Beans, Whole Dry Peas, Split Peas, and Lentils, which provide a uniform language for describing..., suspending, or terminating the U.S. standards for Beans, Whole Dry Peas, Split Peas, and Lentils...
7 CFR 868.101 - General information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... for Beans, Whole Dry Peas, Split Peas, and Lentils, which provide a uniform language for describing..., suspending, or terminating the U.S. standards for Beans, Whole Dry Peas, Split Peas, and Lentils...
Utilizing collagen membranes for guided tissue regeneration-based root coverage.
Wang, Hom-Lay; Modarressi, Marmar; Fu, Jia-Hui
2012-06-01
Gingival recession is a common clinical problem that can result in hypersensitivity, pain, root caries and esthetic concerns. Conventional soft tissue procedures for root coverage require an additional surgical site, thereby causing additional trauma and donor site morbidity. In addition, the grafted tissues heal by repair, with formation of long junctional epithelium with some connective tissue attachment. Guided tissue regeneration-based root coverage was thus developed in an attempt to overcome these limitations while providing comparable clinical results. This paper addresses the biologic foundation of guided tissue regeneration-based root coverage, and describes the indications and contraindications for this technique, as well as the factors that influence outcomes. The step-by-step clinical techniques utilizing collagen membranes are also described. In comparison with conventional soft tissue procedures, the benefits of guided tissue regeneration-based root coverage procedures include new attachment formation, elimination of donor site morbidity, less chair-time, and unlimited availability and uniform thickness of the product. Collagen membranes, in particular, benefit from product biocompatibility with the host, while promoting chemotaxis, hemostasis, and exchange of gas and nutrients. Such characteristics lead to better wound healing by promoting primary wound coverage, angiogenesis, space creation and maintenance, and clot stability. In conclusion, collagen membranes are a reliable alternative for use in root coverage procedures. © 2012 John Wiley & Sons A/S.
An Overview of the Current Status of Southernpea Breeding Programs in the United States
USDA-ARS?s Scientific Manuscript database
American Horticulturists use the term southernpea when referring to any type of cowpea being grown as a vegetable crop. Several types of southernpeas, e.g., pinkeye peas, blackeye peas, crowder peas, cream peas and snap peas, have a long history of use in the southern United States. An extensive i...
CELL POPULATION KINETICS OF EXCISED ROOTS OF PISUM SATIVUM
Van't Hof, Jack
1965-01-01
The cell population kinetics of excised, cultured pea roots was studied with the use of tritiated thymidine and colchicine to determine (1) the influence of excision, (2) the influence of sucrose concentration, (3) the average mitotic cycle duration, and (4) the duration of mitosis and the G 1, S, and G 2 periods of interphase.1 The results indicate that the process of excision causes a drop in the frequency of mitotic figures when performed either at the beginning of the culture period or after 100 hours in culture. This initial decrease in frequency of cell division is independent of sucrose concentration, but the subsequent rise in frequency of division, after 12 hours in culture, is dependent upon sucrose concentration. Two per cent sucrose maintains the shortest mitotic cycle duration. The use of colchicine indicated an average cycle duration of 20 hours, whereas the use of tritiated thymidine produced an average cycle duration of 17 hours. PMID:5857253
Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species.
Greger, Maria; Wang, Yaodong; Neuschütz, Clara
2005-03-01
In this paper we investigated if, and to what extent, six different plant species accumulate, translocate and emit mercury (Hg) into the air. The Hg uptake by roots, distribution of Hg to the shoot and release of Hg via shoots of garden pea, spring wheat, sugar beet, oil-seed rape, white clover and willow were investigated in a transpiration chamber. The airborne Hg was trapped in a Hopcalite trap or a gold trap. Traps and plant materials were analysed for content of Hg by CVAAS. The results show that all plant species were able to take up Hg to a large extent from a nutrient solution containing 200 microg L(-1) Hg. However, the Hg translocation to the shoot was low (0.17-2.5%) and the Hg that reached the leaves was trapped and no release of the absorbed Hg to the air was detected.
Seneviratne, Herana Kamal; Dalisay, Doralyn S; Kim, Kye-Won; Moinuddin, Syed G A; Yang, Hong; Hartshorn, Christopher M; Davin, Laurence B; Lewis, Norman G
2015-05-01
Continually exposed to potential pathogens, vascular plants have evolved intricate defense mechanisms to recognize encroaching threats and defend themselves. They do so by inducing a set of defense responses that can help defeat and/or limit effects of invading pathogens, of which the non-host disease resistance response is the most common. In this regard, pea (Pisum sativum) pod tissue, when exposed to Fusarium solani f. sp. phaseoli spores, undergoes an inducible transcriptional activation of pathogenesis-related genes, and also produces (+)-pisatin, its major phytoalexin. One of the inducible pathogenesis-related genes is Disease Resistance Response-206 (DRR206), whose role in vivo was unknown. DRR206 is, however, related to the dirigent protein (DP) family. In this study, its biochemical function was investigated in planta, with the metabolite associated with its gene induction being pinoresinol monoglucoside. Interestingly, both pinoresinol monoglucoside and (+)-pisatin were co-localized in pea pod endocarp epidermal cells, as demonstrated using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging. In addition, endocarp epidermal cells are also the site for both chalcone synthase and DRR206 gene expression. Taken together, these data indicate that both (+)-pisatin and pinoresinol monoglucoside function in the overall phytoalexin responses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Further identification of endogenous gibberellins in the shoots of pea, line G2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halinska, A.; Davies, P.J.; Lee, J.W.
1989-12-01
To interpret the metabolism of radiolabeled gibberellins A{sub 12}-aldehyde and A{sub 12} in shoots of pea (Pisum sativum L.), the identity of the radiolabeled peaks has to be determined and the endogenous presence of the gibberellins demonstrated. High specific activity ({sup 14}C)GA{sub 12} and ({sup 14}C)GA{sub 12}-aldehyde were synthesized using a pumpkin endosperm enzyme preparation, and purified by high performance liquid chromatography (HPLC). ({sup 14}C)GA{sub 12} was supplied to upper shoots of pea, line G2, to produce radiolabeled metabolites on the 13-OH pathway. Endogenous compounds copurifying with the ({sup 14}C)GAs on HPLC were analyzed by gas chromatography-mass spectrometry. The endogenousmore » presence of GA{sub 53}, GA{sub 44}, GA{sub 19} and GA{sub 20} was demonstrated and their HPLC peak identity ascertained. The {sup 14}C was progressively diluted in GAs further down the pathway, proportional to the levels found in the tissue and inversely proportional to the speed of metabolism, ranging from 63% in GA{sub 53} to 4% in GA{sub 20}. Calculated levels of GA{sub 20}, GA{sub 19}, GA{sub 44}, and GA{sub 53} were 42, 8, 10, and 0.5 nanograms/gram, respectively.« less
Nosworthy, Matthew G; Franczyk, Adam J; Medina, Gerardo; Neufeld, Jason; Appah, Paulyn; Utioh, Alphonsus; Frohlich, Peter; House, James D
2017-09-06
In order to determine the effect of extrusion, baking, and cooking on the protein quality of yellow and green split peas, a rodent bioassay was conducted and compared to an in vitro method of protein quality determination. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS) of green split peas (71.4%) was higher than that of yellow split peas (67.8%), on average. Similarly, the average Digestible Indispensable Amino Acid Score (DIAAS) of green split peas (69%) was higher than that of yellow split peas (67%). Cooked green pea flour had lower PDCAAS and DIAAS values (69.19% and 67%) than either extruded (73.61%, 70%) or baked (75.22%, 70%). Conversely, cooked yellow split peas had the highest PDCCAS value (69.19%), while extruded yellow split peas had the highest DIAAS value (67%). Interestingly, a strong correlation was found between in vivo and in vitro analysis of protein quality (R 2 = 0.9745). This work highlights the differences between processing methods on pea protein quality and suggests that in vitro measurements of protein digestibility could be used as a surrogate for in vivo analysis.
A technique for collection of exudate from pea seedlings
NASA Technical Reports Server (NTRS)
Hanson, S. D.; Cohen, J. D.; Bandurski, R. S. (Principal Investigator)
1985-01-01
Ethylenediaminetetraacetic acid (EDTA), at concentrations higher than 1.0 millimolar, is phytotoxic to etiolated seedlings of Pisum sativum. Substantial vascular exudation from pea epicotyls could be obtained without tissue damage at 0.5 millimolar EDTA if the solution was buffered at pH 7.5 with sodium N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid. Treated seedlings exuded 950 micrograms (leucine equivalents) of ninhydrin-positive material per day and 870 micrograms (glucose equivalents) of anthrone-positive material per day. Amino acid analysis showed the exudate to have glutamine as the major amido nitrogen containing compound and sucrose was shown to be the major sugar. Radiolabeled tryptophan and sucrose applied to cotyledons were transferred through the epicotyl and into the collection medium. The pH profile for exudation shows half maximal exudation at pH 7.2, indicating the promotion of exudation by EDTA is probably not due simply to Ca2+ chelation.
Burgess, D; Penton, A; Dunsmuir, P; Dooner, H
1997-02-01
Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.
Mollard, Rebecca C; Luhovyy, Bohdan L; Smith, Christopher; Anderson, G Harvey
2014-12-01
Whether pulse components can be used as value-added ingredients in foods formulated for blood glucose (BG) and food intake (FI) control requires investigation. The objective of this study was to examine of the effects of pea components on FI at an ad libitum meal, as well as appetite and BG responses before and after the meal. In a repeated-measures crossover trial, men (n = 15) randomly consumed (i) pea hull fibre (7 g), (ii) pea protein (10 g), (iii) pea protein (10 g) plus hull fibre (7 g), (iv) yellow peas (406 g), and (v) control. Pea hull fibre and protein were served with tomato sauce and noodles, while yellow peas were served with tomato sauce. Control was noodles and tomato sauce. FI was measured at a pizza meal (135 min). Appetite and BG were measured pre-pizza (0-135 min) and post-pizza (155-215 min). Protein plus fibre and yellow peas led to lower pre-pizza BG area under the curve compared with fibre and control. At 30 min, BG was lower after protein plus fibre and yellow peas compared with fibre and control, whereas at 45 and 75 min, protein plus fibre and yellow peas led to lower BG compared with fibre (p < 0.05). Following the pizza meal (155 min), yellow peas led to lower BG compared with fibre (p < 0.05). No differences were observed in FI or appetite. This trial supports the use of pea components as value-added ingredients in foods designed to improve glycemic control.
Zepeda-Jazo, Isaac; Velarde-Buendía, Ana María; Enríquez-Figueroa, René; Bose, Jayakumar; Shabala, Sergey; Muñiz-Murguía, Jesús; Pottosin, Igor I.
2011-01-01
Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca2+ dynamics by activating a range of nonselective Ca2+-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K+ and Ca2+ fluxes induced by hydroxyl radicals (OH•) in pea (Pisum sativum) roots. OH•, but not hydrogen peroxide, activated a rapid Ca2+ efflux and a more slowly developing net Ca2+ influx concurrent with a net K+ efflux. In isolated protoplasts, OH• evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K+ efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca2+. Active OH•-induced Ca2+ efflux in roots was suppressed by the PM Ca2+ pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH•-induced ionic currents in root protoplasts and K+ efflux and Ca2+ influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH•-induced cation fluxes. The net OH•-induced Ca2+ efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH•-induced net K+ efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca2+ homeostasis by modulating both Ca2+ influx and efflux transport systems at the root cell PM. PMID:21980172
Chung, Hyun-Jung; Liu, Qiang
2012-01-01
Flours and isolated starches from three different cultivars (1544-8, 1658-11 and 1760-8) of pea grown under identical environmental conditions were evaluated for their physicochemical properties and in vitro digestibility. The protein content, total starch content and apparent amylose content of pea flour ranged from 24.4 to 26.3%, 48.8 to 50.2%, and 13.9 to 16.7%, respectively. In pea starches, the 1760-8 showed higher apparent amylose content and total starch content than the other cultivars. Pea starch granules were irregularly shaped, ranging from oval to round with a smooth surface. All pea starches showed C-type X-ray diffraction pattern with relative crystallinity ranging between 23.7 and 24.7%. Pea starch had only a single endothermic transition (12.1-14.2 J/g) in the DSC thermogram, whereas pea flour showed two separate endothermic transitions corresponding to starch gelatinization (4.54-4.71 J/g) and disruption of the amylose-lipid complex (0.36-0.78 J/g). In pea cultivars, the 1760-8 had significantly higher setback and final viscosity than the other cultivars in both pea flour (672 and 1170cP, respectively) and isolated starch (2901 and 4811cP). The average branch chain length of pea starches ranged from 20.1 to 20.3. The 1760-8 displayed a larger proportion of short branch chains, DP (degree of polymerization) 6-12 (21.1%), and a smaller proportion of long branch chains, DP≥37 (8.4%). The RDS, SDS and RS contents of pea flour ranged from 23.7 to 24.1%, 11.3 to 12.8%, and 13.2 to 14.8%, respectively. In pea starches, the 1760-8 showed a lower RDS content but higher SDS and RS contents. The expected glycemic index (eGI), based on the hydrolysis index, ranged from 36.9 to 37.7 and 69.8 to 70.7 for pea flour and isolated pea starch, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
The pea END1 promoter drives anther-specific gene expression in different plant species.
Gómez, María D; Beltrán, José-Pío; Cañas, Luis A
2004-10-01
END1 was isolated by an immunosubtractive approach intended to identify specific proteins present in the different pea (Pisum sativum L.) floral organs and the genes encoding them. Following this strategy we obtained a monoclonal antibody (mAbA1) that specifically recognized a 26-kDa protein (END1) only detected in anther tissues. Northern blot assays showed that END1 is expressed specifically in the anther. In situ hybridization and immunolocalization assays corroborated the specific expression of END1 in the epidermis, connective, endothecium and middle layer cells during the different stages of anther development. END1 is the first anther-specific gene isolated from pea. The absence of a practicable pea transformation method together with the fact that no END1 homologue gene exists in Arabidopsis prevented us from carrying out END1 functional studies. However, we designed functional studies with the END1 promoter in different dicot species, as the specific spatial and temporal expression pattern of END1 suggested, among other things, the possibility of using its promoter region for biotechnological applications. Using different constructs to drive the uidA (beta-glucuronidase) gene controlled by the 2.7-kb isolated promoter sequence we have proven that the END1 promoter is fully functional in the anthers of transgenic Arabidopsis thaliana (L.) Heynh., Nicotiana tabacum L. (tobacco) and Lycopersicon esculentum Mill. (tomato) plants. The presence in the -330-bp region of the promoter sequence of three putative CArG boxes also suggests that END1 could be a target gene of MADS-box proteins and that, subsequently, it would be activated by genes controlling floral organ identity.
Wang, Junqing; Zhang, Pengfei; Huang, Chao; Liu, Gang; Leung, Ken Cham-Fai; Wáng, Yì Xiáng J
2015-07-28
Photoluminescent carbon dots (CDs) have received ever-increasing attention in the application of optical bioimaging because of their low toxicity, tunable fluorescent properties, and ultracompact size. We report for the first time on enhanced photoluminescence (PL) performance influenced by structure effects among the various types of nitrogen doped (N-doped) PL CDs. These CDs were facilely synthesized from condensation carbonization of linear polyethylenic amine (PEA) analogues and citric acid (CA) of different ratios. Detailed structural and property studies demonstrated that either the structures or the molar ratio of PEAs altered the PL properties of the CDs. The content of conjugated π-domains with C═N in the carbon backbone was correlated with their PL Quantum Yield (QY) (up to 69%). The hybridization between the surface/molecule state and the carbon backbone synergistically affected the chemical/physical properties. Also, long-chain polyethylenic amine (PEA) molecule-doped CDs exhibit increasing photostability, but at the expense of PL efficiency, proving that the PL emission of high QY CDs arise not only from the sp(2)/sp(3) carbon core and surface passivation of CDs, but also from the molecular fluorophores integrated in the CDs. In vitro and in vivo bioimaging of these N-doped CDs showed strong photoluminescence signals. Good biocompatibility demonstrates their potential feasibility for bioimaging applications. In addition, the overall size profile of the as-prepared CDs is comparable to the average size of capillary pores in normal living tissues (∼5 nm). Our study provides valuable insights into the effects of the PEA doping ratios on photoluminescence efficiency, biocompatibility, cellular uptake, and optical bioimaging of CDs.
Ma, Zhen; Boye, Joyce I; Hu, Xinzhong
2017-02-01
Saskatchewan grown yellow field pea was subjected to different processing conditions including dehulling, micronization, roasting, conventional/microwave cooking, germination, and combined germination and conventional cooking/roasting. Their nutritional and antinutritional compositions, functional properties, microstructure, thermal properties, in vitro protein and starch digestibility, and protein composition were studied. Processed field peas including conventional cooked yellow peas (CCYP), microwave cooked yellow peas (MCYP), germinated-conventional cooked yellow peas (GCCYP), and germinated-roasted yellow peas (GRYP) exhibited the significantly higher in vitro protein digestibility (IVPD), which was in accordance with their significantly lower trypsin inhibitor activity and tannin content. The SDS-PAGE and size exclusion HPLC profiles of untreated pea proteins and their hydrolysates also confirmed the IVPD result that these four treatments facilitated the hydrolysis of pea proteins to a greater extent. The CCYP, MCYP, GCCYP, and GRYP also exhibited significantly higher starch digestibility which was supported by their lower onset (T o ), peak (T p ), and conclusion (T c ) temperatures obtained from DSC thermogram, their lower pasting properties and starch damage results, as well as their distinguished amorphous flakes' configuration observed on the scanning electron microscopic image. LC/ESI-MS/MS analysis following in-gel digests of SDS-PAGE separated proteins allowed detailed compositional characterization of pea proteins. The present study would provide fundamental information to help to better understand the functionality of field peas as ingredients, and particularly in regards to agri-food industry to improve the process efficiency of field peas with enhanced nutritional and techno-functional qualities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating demand for perennial pigeon pea in Malawi using choice experiments.
Waldman, Kurt B; Ortega, David L; Richardson, Robert B; Snapp, Sieglinde S
2017-01-01
Perennial crops have numerous ecological and agronomic advantages over their annual counterparts. We estimate discrete choice models to evaluate farmers' preferences for perennial attributes of pigeon pea intercropped with maize in central and southern Malawi. Pigeon pea is a nitrogen-fixing leguminous crop, which has the potential to ameliorate soil fertility problems related to continuous maize cultivation, which are common in Southern Africa. Adoption of annual pigeon pea is relatively low but perennial production of pigeon pea may be more appealing to farmers due to some of the ancillary benefits associated with perenniality. We model perennial production of pigeon pea as a function of the attributes that differ between annual and perennial production: lower labor and seed requirements resulting from a single planting with multiple harvests, enhanced soil fertility and higher levels of biomass production. The primary tradeoff associated with perennial pigeon pea intercropped with maize is competition with maize in subsequent years of production. While maize yield is approximately twice as valuable to farmers as pigeon pea yield, we find positive yet heterogeneous demand for perenniality driven by soil fertility improvements and pigeon pea grain yield.
Phenylethylamine induces an increase in cytosolic Ca2+ in yeast.
Pinontoan, Reinhard; Krystofova, Svetlana; Kawano, Tomonori; Mori, Izumi C; Tsuji, Frederick I; Iida, Hidetoshi; Muto, Shoshi
2002-05-01
Beta-phenylethylamine (PEA) induced an increase in cytosolic free calcium ion concentration ([Ca2+]c) in Saccharomyces cerevisiae cells monitored with transgenic aequorin, a Ca2+-dependent photoprotein. The PEA-induced [Ca2+]c increase was dependent on the concentrations of PEA applied, and the Ca2+ mostly originated from an extracellular source. Preceding the Ca2+ influx, H2O2 was generated in the cells by the addition of PEA. Externally added H2O2 also induced a [Ca2+]c increase. These results suggest that PEA induces the [Ca2+]c increase via H2O2 generation. The PEA-induced [Ca2+]c increase occurred in the mid1 mutant with a slightly smaller peak than in the wild-type strain, indicating that Mid1, a stretch-activated nonselective cation channel, may not be mainly involved in the PEA-induced Ca2+ influx. When PEA was applied, the MATa mid1 mutant was rescued from alpha-factor-induced death in a Ca2+-limited medium, suggesting that the PEA-induced [Ca2+]c increase can reinforce calcium signaling in the mating pheromone response pathway.
Assimilation and conversion of 3,4-benzpyrene by plants under sterile conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durmishidze, S.V.; Devdariani, T.V.; Kavtaradze, L.K.
1974-01-01
In this article the authors discuss the results of the oxidative conversion of BP to various individual compounds in plant roots and leaves. The experiments were conducted on 14-day alfalfa plants (Medicago sativa), ryegrass (Lolium multiflorum), chick-pea (Cicer arientinum), cucumbers (Cucumis sativus), pumpkin (Cucurbita), orchard grass (Dactylis glomerata), and vetch (Vicia faba), grown under sterile conditions on Knop's nutrient medium. Labeled 1,2-/sup 14/C-BP was synthesized in several steps using phthalic and 1,2-/sup 14/C-acetic anhydrides as the starting materials. The results of the experiments showed that the roots and leaves of various plants assimilate BP and subject it to profound chemicalmore » transformations. The conversion products are transported from the roots to the leaves and from the leaves to the roots. Low-molecular weight compounds, in particular, organic acids, provided most radioactive. The distribution of the radioactivity of the low-molecular weight substances among the plant organs depends on the site of the primary assimilation of 1,2-/sup 14/C-BP. In the case of assimilation of BP by the roots, the most radioactive are the low-molecular weight compounds of the root themselves, while in the case of assimilation of BP by the leaves, the most radioactive are the low-molecular weight compounds of the leaves. The same pattern is observed in the distribution of radioactivity among the organs of plants in the case of organic acids.« less
40 CFR 180.574 - Fluazinam; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Onion, bulb, subgroup 3-07A 0.20 Pea and bean, dried shelled, except soybean, subgroup 6C, except pea 0.02 Pea and bean, succulent shelled, subgroup 6B, except pea 0.04 Peanut 0.02 Potato 0.02 Turnip...
Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.
Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia
2010-05-01
Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (p<0.05). Pea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (p<0.05). Hepatic mRNA concentration of genes involved in fatty acids synthesis, such as fatty acid synthase and stearoyl-CoA desaturase, was lower in pea protein-fed rats than in rats fed casein (p<0.05). In conclusion, the present study demonstrates a marked cholesterol and triglyceride-lowering activity of pea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.
Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes
Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M.; Lüthje, Sabine
2015-01-01
Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed. PMID:26539198
Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.
Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L
2014-03-30
The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosendahl, L.; Pedersen, W.B.; Vance, C.P.
1990-05-01
Products of the nodule cytosol in vivo dark ({sup 14}C)CO{sub 2} fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv Bodil) nodules. The distribution of the metabolites of the dark CO{sub 2} fixation products was compared in effective (fix{sup +}) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix{sup {minus}}) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The {sup 14}C incorporation from ({sup 14}C)CO{sub 2} was about threefold greater in themore » wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the {sup 14}C label in the cytosol was found in organic acids in both symbioses. The results indicate a central role for nodule cytosol dark CO{sub 2} fixation in the supply of the bacteroids with dicarboxylic acids.« less
Dastager, Syed G; Deepa, C K; Pandey, Ashok
2010-12-01
A phosphate-solubilizing bacterial strain NII-0909 isolated from the Western ghat forest soil in India was identified as Micrococcus sp on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, and siderophore production. It was able to solubilize (122.4μg of Ca(3)PO(4) ml(-1)), and produce IAA (109μgml(-1)) at 30°C. P-solubilizing activity of the strain NII-0909 was associated with the release of organic acids and a drop in the pH of the NBRIP medium. HPLC analysis detected two organic acids in the course of P-solubilization. A significant increase in the growth of cow pea was recorded for inoculations under controlled conditions. Scanning electron microscopic study revealed the root colonization of strain on cow pea seedlings. These results demonstrate that isolates NII-0909 has the promising PGPR attributes to be develop as a biofertilizer to enhance soil fertility and promote the plant growth. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Fox, Simon R.; Rawsthorne, Stephen; Hills, Matthew J.
2001-01-01
The uptake in vitro of glucose (Glc)-6-phosphate (Glc-6-P) into plastids from the roots of 10- to 14-d-old pea (Pisum sativum L. cv Puget) plants was inhibited by oleoyl-coenzyme A (CoA) concentrations in the low micromolar range (1–2 μm). The IC50 (the concentration of inhibitor that reduces enzyme activity by 50%) for the inhibition of Glc-6-P uptake was approximately 750 nm; inhibition was reversed by recombinant rapeseed (Brassica napus) acyl-CoA binding protein. In the presence of ATP (3 mm) and CoASH (coenzyme A; 0.3 mm), Glc-6-P uptake was inhibited by 60%, due to long-chain acyl-CoA synthesis, presumably from endogenous sources of fatty acids present in the preparations. Addition of oleoyl-CoA (1 μm) decreased carbon flux from Glc-6-P into the synthesis of starch and through the oxidative pentose phosphate (OPP) pathway by up to 73% and 40%, respectively. The incorporation of carbon from Glc-6-P into fatty acids was not detected under any conditions. Oleoyl-CoA inhibited the incorporation of acetate into fatty acids by 67%, a decrease similar to that when ATP was excluded from incubations. The oleoyl-CoA-dependent inhibition of fatty acid synthesis was attributable to a direct inhibition of the adenine nucleotide translocator by oleoyl-CoA, which indirectly reduced fatty acid synthesis by ATP deprivation. The Glc-6-P-dependent stimulation of acetate incorporation into fatty acids was reversed by the addition of oleoyl-CoA. PMID:11457976
Zabalza, Ana; Orcaray, Luis; Fernández-Escalada, Manuel; Zulet-González, Ainhoa; Royuela, Mercedes
2017-09-01
The shikimate pathway is a metabolic route for the biosynthesis of aromatic amino acids (AAAs) (i.e. phenylalanine, tyrosine, and tryptophan). A key enzyme of shikimate pathway (5-enolpyruvylshikimate-3-phosphate synthase, EPSPS) is the target of the widely used herbicide glyphosate. Quinate is a compound synthesized in plants through a side branch of the shikimate pathway. Glyphosate provokes quinate accumulation and exogenous quinate application to plants shows a potential role of quinate in the toxicity of the herbicide glyphosate. Based on this, we hypothesized that the role of quinate accumulation in the toxicity of the glyphosate would be mediated by a deregulation of the shikimate pathway. In this study the effect of the glyphosate and of the exogenous quinate was evaluated in roots of pea plants by analyzing the time course of a full metabolic map of several metabolites of shikimate and phenylpropanoid pathways. Glyphosate application induced an increase of the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS, first enzyme of the shikimate pathway) protein and accumulation of metabolites upstream of the enzyme EPSPS. No common effects on the metabolites and regulation of shikimate pathway were detected between quinate and glyphosate treatments, supporting that the importance of quinate in the mode of action of glyphosate is not mediated by a common alteration of the regulation of the shikimate pathway. Contrary to glyphosate, the exogenous quinate supplied was probably incorporated into the main trunk from the branch pathway and accumulated in the final products, such as lignin, concomitant with a decrease in the amount of DAHPS protein. Copyright © 2016 Elsevier B.V. All rights reserved.
Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben
2007-01-01
In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527
Mikić, Aleksandar
2012-01-01
This preliminary research was aimed at finding the roots in various Eurasian proto-languages directly related to pulses and giving the words denoting the same in modern European languages. Six Proto-Indo-European roots were indentified, namely arnk(')- (‘a leguminous plant’), *bhabh- (‘field bean’), * (‘a kernel of leguminous plant’, ‘pea’), ghArs- (‘a leguminous plant’), *kek- (‘pea’) and *lent- (‘lentil’). No Proto-Uralic root was attested save hypothetically *kača (‘pea’), while there were two Proto-Altaic roots, *bŭkrV (‘pea’) and * (‘lentil’). The Proto-Caucasianx root * denoted pea, while another one, *hōwł(ā) (‘bean’, ‘lentil’) and the Proto-Basque root *iłha-r (‘pea’, ‘bean’, ‘vetch’) could have a common Proto-Sino-Caucasian ancestor, *hVwłV (‘bean’) within the hypothetic Dené-Caucasian language superfamily. The Modern Maltese preserved the memory of two Proto-Semitic roots, *'adaš- (‘lentil’) and *pūl- (‘field bean’). The presented results prove that the most ancient Eurasian pulse crops were well-known and extensively cultivated by the ancestors of all modern European nations. The attested lexicological continuum witnesses the existence of a millennia-long links between the peoples of Eurasia to their mutual benefit. This research is meant to encourage interdisciplinary concerted actions between plant scientists dealing with crop evolution and biodiversity, archaeobotanists and language historians. PMID:22973458
Peas in a Pod: Environment and Ionization in Green Pea Galaxies
NASA Astrophysics Data System (ADS)
Kurtz, Heather; Jaskot, Anne; Drew, Patrick; Pare, Dylan; Griffin, Jon; Petersen, Michael
2016-01-01
The Green Peas are extreme, highly ionized, starburst galaxies with strong [OIII] 5007 emission. Using the Sloan Digital Sky Survey, we present statistics on the environment of Green Peas and investigate its effects on their ionized gas properties. Although most dwarf starburst galaxies are in low-density environments, we identify a sample of Green Peas in dense environments. Emission line observations with the WIYN 0.9-meter telescope at Kitt Peak reveal that one cluster Green Pea is more highly ionized in the direction of the cluster center. Ram pressure stripping likely generates this ionization gradient. We explore the role of the environment in enhancing star formation rates and ionization, and we compare the nebular properties of Green Peas in high-density environments to those in low-density environments.
Hossain, Murad; Wickramasekara, Rochelle N; Carvelli, Lucia
2014-07-01
β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Murata, Mikio; Katagiri, Nobuyuki; Ishida, Kota; Abe, Kenji; Ishikawa, Masago; Utsunomiya, Iku; Hoshi, Keiko; Miyamoto, Ken-ichi; Taguchi, Kyoji
2009-05-07
It is known that psychostimulants stimulate dopamine transmission in the nucleus accumbens. In the present study, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor-stimulating trace amine, on dopamine concentrations in the nucleus accumbens and prefrontal cortex in freely moving rats, using an in vivo microdialysis technique. Intraperitoneal administration of beta-PEA (12.5 and 25 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens shell. The observed increase in the dopamine concentration in nucleus accumbens shell dialysate after intraperitoneal administration of 25 mg/kg beta-PEA was inhibited by pre-treatment with a dopamine uptake inhibitor, GBR12909 (10 mg/kg, i.p.). In contrast, beta-PEA (25 mg/kg, i.p.) did not affect dopamine release in the nucleus accumbens core. Although a high dose of beta-PEA (50 mg/kg) significantly increased dopamine levels in the nucleus accumbens core, the dopamine increasing effect of beta-PEA was more potent in the nucleus accumbens shell. Systemic administration of 12.5 and 25 mg/kg beta-PEA also increased extracellular dopamine levels in the prefrontal cortex of rats. However, systemic 25 mg/kg beta-PEA-induced increases in extracellular dopamine levels were not blocked by GBR12909 within the prefrontal cortex. These results suggest that beta-PEA has a greater effect in the shell than in the core and low-dose beta-PEA stimulates dopamine release in the nucleus accumbens shell through uptake by a dopamine transporter. Similarly, beta-PEA increased extracellular dopamine levels in the prefrontal cortex. Thus, beta-PEA may increase extracellular dopamine concentrations in the mesocorticolimbic pathway.
Hossain, Murad; Wickramasekara, Rochelle N.; Carvelli, Lucia
2013-01-01
β-phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. PMID:24161617
Overduin, Joost; Guérin-Deremaux, Laetitia; Wils, Daniel; Lambers, Tim T.
2015-01-01
Background Pea protein (from Pisum sativum) is under consideration as a sustainable, satiety-inducing food ingredient. Objective In the current study, pea-protein-induced physiological signals relevant to satiety were characterized in vitro via gastric digestion kinetics and in vivo by monitoring post-meal gastrointestinal hormonal responses in rats. Design Under in vitro simulated gastric conditions, the digestion of NUTRALYS® pea protein was compared to that of two dairy proteins, slow-digestible casein and fast-digestible whey. In vivo, blood glucose and gastrointestinal hormonal (insulin, ghrelin, cholecystokinin [CCK], glucagon-like peptide 1 [GLP-1], and peptide YY [PYY]) responses were monitored in nine male Wistar rats following isocaloric (11 kcal) meals containing 35 energy% of either NUTRALYS® pea protein, whey protein, or carbohydrate (non-protein). Results In vitro, pea protein transiently aggregated into particles, whereas casein formed a more enduring protein network and whey protein remained dissolved. Pea-protein particle size ranged from 50 to 500 µm, well below the 2 mm threshold for gastric retention in humans. In vivo, pea-protein and whey-protein meals induced comparable responses for CCK, GLP-1, and PYY, that is, the anorexigenic hormones. Pea protein induced weaker initial, but equal 3-h integrated ghrelin and insulin responses than whey protein, possibly due to the slower gastric breakdown of pea protein observed in vitro. Two hours after meals, CCK levels were more elevated in the case of protein meals compared to that of non-protein meals. Conclusions These results indicate that 1) pea protein transiently aggregates in the stomach and has an intermediately fast intestinal bioavailability in between that of whey and casein; 2) pea-protein- and dairy-protein-containing meals were comparably efficacious in triggering gastrointestinal satiety signals. PMID:25882536
Valenzuela-Estrada, Luis R.; Richards, James H.; Diaz, Andres; Eissensat, David M.
2009-01-01
Although roots in dry soil layers are commonly rehydrated by internal hydraulic redistribution during the nocturnal period, patterns of tissue rehydration are poorly understood. Rates of nocturnal rehydration were examined in roots of different orders in Vaccinium corymbosum L. ‘Bluecrop’ (Northern highbush blueberry) grown in a split-pot system with one set of roots in relatively moist soil and the other set of roots in dry soil. Vaccinium is noted for a highly branched and extremely fine root system. It is hypothesized that nocturnal root tissue rehydration would be slow, especially in the distal root orders because of their greater hydraulic constraints (smaller vessel diameters and fewer number of vessels). Vaccinium root hydraulic properties delayed internal water movement. Even when water was readily available to roots in the wet soil and transpiration was minimal, it took a whole night-time period of 12 h for the distal finest roots (1st to 4th order) under dry soil conditions to reach the same water potentials as fine roots in moist soil (1st to 4th order). Even though roots under dry soil equilibrated with roots in moist soil, the equilibrium point reached before sunrise was about –1.2 MPa, indicating that tissues were not fully rehydrated. Using a single-branch root model, it was estimated that individual roots exhibiting the lowest water potentials in dry soil were 1st order roots (distal finest roots of the root system). However, considered at the branch level, root orders with the highest hydraulic resistances corresponded to the lowest orders of the permanent root system (3rd-, 4th-, and 5th-order roots), thus indicating possible locations of hydraulic safety control in the root system of this species. PMID:19188275
Valenzuela-Estrada, Luis R; Richards, James H; Diaz, Andres; Eissensat, David M
2009-01-01
Although roots in dry soil layers are commonly rehydrated by internal hydraulic redistribution during the nocturnal period, patterns of tissue rehydration are poorly understood. Rates of nocturnal rehydration were examined in roots of different orders in Vaccinium corymbosum L. 'Bluecrop' (Northern highbush blueberry) grown in a split-pot system with one set of roots in relatively moist soil and the other set of roots in dry soil. Vaccinium is noted for a highly branched and extremely fine root system. It is hypothesized that nocturnal root tissue rehydration would be slow, especially in the distal root orders because of their greater hydraulic constraints (smaller vessel diameters and fewer number of vessels). Vaccinium root hydraulic properties delayed internal water movement. Even when water was readily available to roots in the wet soil and transpiration was minimal, it took a whole night-time period of 12 h for the distal finest roots (1st to 4th order) under dry soil conditions to reach the same water potentials as fine roots in moist soil (1st to 4th order). Even though roots under dry soil equilibrated with roots in moist soil, the equilibrium point reached before sunrise was about -1.2 MPa, indicating that tissues were not fully rehydrated. Using a single-branch root model, it was estimated that individual roots exhibiting the lowest water potentials in dry soil were 1st order roots (distal finest roots of the root system). However, considered at the branch level, root orders with the highest hydraulic resistances corresponded to the lowest orders of the permanent root system (3rd-, 4th-, and 5th-order roots), thus indicating possible locations of hydraulic safety control in the root system of this species.
Moore, Randy; Pasieniuk, John
1984-01-01
Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots. Images Fig. 1 PMID:11540818
40 CFR 180.314 - Triallate; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., tops 0.5 Pea, dry 0.2 Pea, field, hay 1.0 Pea, field, vines 0.5 Pea, succulent 0.2 Wheat, forage 0.5 Wheat, grain 0.05 Wheat, hay 1.0 Wheat, straw 1.0 (d) Indirect or inadvertent residues. [Reserved] [72...
NASA Astrophysics Data System (ADS)
Retnaningsih, C.; Sumardi; Meiliana; Surya, A.
2018-01-01
The objective of this study wasto investigate the physicochemical and sensory properties of the soy sauce substituted with pigeon pea. Soybean was substituted by 20%, 50%, 75%, and 100% of pigeon pea. The observation included viscosity, total solids, protein levels, antioxidant activity, and sensory characteristics. The results showed that the more substitution of pigeon pea, the less the protein content of soy sauce and the more the antioxidant activity as well as total solids. The most favored group was 25% pigeon pea substitution. It is suggested that soy sauce could be prepared using 25% to 75% pigeon pea substitution.
β-phenylethylamine, a small molecule with a large impact.
Irsfeld, Meredith; Spadafore, Matthew; Prüß, Birgit M
2013-09-30
During a screen of bacterial nutrients as inhibitors of Escherichia coli O157:H7 biofilm, the Prüß research team made an intriguing observation: among 95 carbon and 95 nitrogen sources tested, β-phenylethylamine (PEA) performed best at reducing bacterial cell counts and biofilm amounts, when supplemented to liquid beef broth medium. This review article summarizes what is known about PEA. After some starting information on the chemistry of the molecule, we focus on PEA as a neurotransmitter and then move on to its role in food processing. PEA is a trace amine whose molecular mechanism of action differs from biogenic amines, such as serotonin or dopamine. Especially low or high concentrations of PEA may be associated with specific psychological disorders. For those disorders that are characterized by low PEA levels ( e.g. attention deficit hyperactivity disorder), PEA has been suggested as a 'safe' alternative to drugs, such as amphetamine or methylphenidate, which are accompanied by many undesirable side effects. On the food processing end, PEA can be detected in food either as a result of microbial metabolism or thermal processing. PEA's presence in food can be used as an indicator of bacterial contamination.
β-phenylethylamine, a small molecule with a large impact
Irsfeld, Meredith; Spadafore, Matthew; Prüß, Birgit M.
2013-01-01
During a screen of bacterial nutrients as inhibitors of Escherichia coli O157:H7 biofilm, the Prüß research team made an intriguing observation: among 95 carbon and 95 nitrogen sources tested, β-phenylethylamine (PEA) performed best at reducing bacterial cell counts and biofilm amounts, when supplemented to liquid beef broth medium. This review article summarizes what is known about PEA. After some starting information on the chemistry of the molecule, we focus on PEA as a neurotransmitter and then move on to its role in food processing. PEA is a trace amine whose molecular mechanism of action differs from biogenic amines, such as serotonin or dopamine. Especially low or high concentrations of PEA may be associated with specific psychological disorders. For those disorders that are characterized by low PEA levels (e.g. attention deficit hyperactivity disorder), PEA has been suggested as a ‘safe’ alternative to drugs, such as amphetamine or methylphenidate, which are accompanied by many undesirable side effects. On the food processing end, PEA can be detected in food either as a result of microbial metabolism or thermal processing. PEA's presence in food can be used as an indicator of bacterial contamination. PMID:24482732
Voisin, A S; Salon, C; Jeudy, C; Warembourg, F R
2003-12-01
The relationships between symbiotic nitrogen fixation (SNF) activity and C fluxes were investigated in pea plants (Pisum sativum L. cv. Baccara) using simultaneous 13C and 15N labelling. Analysis of the dynamics of labelled CO2 efflux from the nodulated roots allowed the different components associated with SNF activity to be calculated, together with root and nodule synthetic and maintenance processes. The carbon costs for the synthesis of roots and nodules were similar and decreased with time. Carbon lost by turnover, associated with maintenance processes, decreased with time for nodules while it increased in the roots. Nodule turnover remained higher than root turnover until flowering. The effect of the N source on SNF was investigated using plants supplied with nitrate or plants only fixing N2. SNF per unit nodule biomass (nodule specific activity) was linearly related to the amount of carbon allocated to the nodulated roots regardless of the N source, with regression slopes decreasing across the growth cycle. These regression slopes permitted potential values of SNF specific activity to be defined. SNF activity decreased as the plants aged, presumably because of the combined effects of both increasing C costs of SNF (from 4.0 to 6.7 g C g-1 N) and the limitation of C supply to the nodules. SNF activity competed for C against synthesis and maintenance processes within the nodulated roots. Synthesis was the main limiting factor of SNF, but its importance decreased as the plant aged. At seed-filling, SNF was probably more limited by nodule age than by C supply to the nodulated roots.
78 FR 63160 - United States Standards for Feed Peas, Split Peas, and Lentils
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration United States... Administration, USDA ACTION: Notice and request for comments. SUMMARY: The Department of Agriculture's (USDA... Standards for Feed Peas, Split Peas, and Lentils under the Agriculture Marketing Act (AMA) of 1946. To...
[Possibility of using flour of pigeon pea in products prepared with rice or wheat flour].
Mueses, C; de León, L; Bressani, R
1993-03-01
The present study reports on the development of foods containing processed pigeon pea (Cajanus cajan) flour. The pigeon pea flours described in a previous publication were prepared from dehulled pigeon peas by cooking in autoclave, by extrusion-cooking and by cooking/dehydration by drum-drying. Mixtures of cooked pigeon peas and rice were first evaluated biological through a protein complementation design using NPR. The results of this study showed that the two products had high protein quality and were similar when mixed in ratios of 80:20 to 40:60. For the evaluation of the processed pigeon pea flour, mixtures with rice (80:20) were used. All pigeon pea flours gave similar protein quality values. On the basis of these results three products were developed and tested. One was a gruel ("atole"), a second a fruit-flavored thick drink with and without 15% milk. Cookies were also prepared with a series of blends of pigeon pea flour (extrusion-cooked) and wheat. The gruel and the fruit flavored products had high acceptability based on a sensory evaluation test. Cookies with 100% pigeon pea flour were unacceptable, however, mixtures of 75% wheat flour and 25% pigeon pea flour gave cookies of attractive appearance and good taste. The study showed the possibility of preparing and utilizing tropical grain legume flours for food products of relatively high acceptability and nutritive value.
Addition of sucralose enhances the release of satiety hormones in combination with pea protein.
Geraedts, Maartje C P; Troost, Freddy J; Saris, Wim H M
2012-03-01
Exposing the intestine to proteins or tastants, particularly sweet, affects satiety hormone release. There are indications that each sweetener has different effects on this release, and that combining sweeteners with other nutrients might exert synergistic effects on hormone release. STC-1 cells were incubated with acesulfame-K, aspartame, saccharine, sucralose, sucrose, pea, and pea with each sweetener. After a 2-h incubation period, cholecystokinin(CCK) and glucagon-like peptide 1 (GLP-1) concentrations were measured. Using Ussing chamber technology, the mucosal side of human duodenal biopsies was exposed to sucrose, sucralose, pea, and pea with each sweetener. CCK and GLP-1 levels were measured in basolateral secretions. In STC-1 cells, exposure to aspartame, sucralose, sucrose, pea, and pea with sucralose increased CCK levels, whereas GLP-1 levels increased after addition of all test products. Addition of sucrose and sucralose to human duodenal biopsies did not affect CCK and GLP-1 release; addition of pea stimulated CCK and GLP-1 secretion. Combining pea with sucrose and sucralose induced even higher levels of CCK and GLP-1. Synchronous addition of pea and sucralose to enteroendocrine cells induced higher levels of CCK and GLP-1 than addition of each compound alone. This study shows that combinations of dietary compounds synergize to enhance satiety hormone release. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genomic Tools in Pea Breeding Programs: Status and Perspectives
Tayeh, Nadim; Aubert, Grégoire; Pilet-Nayel, Marie-Laure; Lejeune-Hénaut, Isabelle; Warkentin, Thomas D.; Burstin, Judith
2015-01-01
Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22–25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome. PMID:26640470
Pretheep-Kumar, P; Mohan, S; Ramaraju, K
2004-01-01
Studies were conducted to evaluate the effect of a protein-enriched pea (Pisum sativum var. Bonneville) flour extract against the rice weevil, Sitophilus oryzae in its repellency, toxicity, effect on fecundity, stability and sensory properties. Milled rice admixed with pea flour extract at 1% concentration significantly repelled S. oryzae. Mortality of S. oryzae was found to increase and fecundity was markedly suppressed, in rice treated with 1% pea flour extract. The toxicity and reproductive effects of the pea protein-enriched rice were found to be stable for a period of 5 months. The sensory characteristics of stored rice when eaten were not affected by the treatment with pea flour extract. This study indicates that the protein-enriched flour extract obtained from the Bonneville pea may be feasible to protect stored milled rice from insect attack.
Guibert, Michèle; Leclerc, Aurélie; Andrivon, Didier; Tivoli, Bernard
2012-01-01
Plant diseases are caused by pathogen populations continuously subjected to evolutionary forces (genetic flow, selection, and recombination). Ascochyta blight, caused by Mycosphaerella pinodes, is one of the most damaging necrotrophic pathogens of field peas worldwide. In France, both winter and spring peas are cultivated. Although these crops overlap by about 4 months (March to June), primary Ascochyta blight infections are not synchronous on the two crops. This suggests that the disease could be due to two different M. pinodes populations, specialized on either winter or spring pea. To test this hypothesis, 144 pathogen isolates were collected in the field during the winter and spring growing seasons in Rennes (western France), and all the isolates were genotyped using amplified fragment length polymorphism (AFLP) markers. Furthermore, the pathogenicities of 33 isolates randomly chosen within the collection were tested on four pea genotypes (2 winter and 2 spring types) grown under three climatic regimes, simulating winter, late winter, and spring conditions. M. pinodes isolates from winter and spring peas were genetically polymorphic but not differentiated according to the type of cultivars. Isolates from winter pea were more pathogenic than isolates from spring pea on hosts raised under winter conditions, while isolates from spring pea were more pathogenic than those from winter pea on plants raised under spring conditions. These results show that disease developed on winter and spring peas was initiated by a single population of M. pinodes whose pathogenicity is a plastic trait modulated by the physiological status of the host plant. PMID:23023742
Laithwaite, J E; Benn, S J; Marshall, W S; FitzGerald, D J; LaMarre, J
2001-09-01
Pseudomonas exotoxin A (PEA) is an extracellular virulence factor produced by the opportunistic human pathogen Pseudomonas aerguinosa. PEA intoxification begins when PEA binds to the low-density lipoprotein receptor-related protein (LRP). The liver is the primary target of systemic PEA, due largely to the high levels of functional LRP expressed by liver cells. Using a 3H-leucine incorporation assay to measure inhibition of protein synthesis we have demonstrated that normal (BNL CL.2) and transformed (BNL 1ME A7R.1) liver cells exhibit divergent PEA sensitivity; with BNL 1ME A7R.1 cells demonstrating greater PEA sensitivity than their non-transformed counterparts. The receptor-associated protein, a LRP antagonist, decreased PEA toxicity in BNL 1ME A7R.1 cells, confirming the importance of the LRP in PEA intoxification in this cell type. Increased PEA sensitivity in BNL 1ME A7R.1 cells was associated with increased functional cell surface LRP expression, as measured by alpha2-macroglobulin binding and internalization studies, and increased LRP mRNA levels, as determined by Northern blot analysis. Interestingly, BNL CL.2 cells were more sensitive than BNL 1ME A7R.1 cells to conjugate and mutant PEA toxins that do not utilize the LRP for cellular entry. These data demonstrate that increased LRP expression is an important mechanism by which PEA sensitivity is increased in BNL 1ME A7R.1 transformed liver cells.
76 FR 37136 - Post-Entry Amendment (PEA) Processing Test: Modification, Clarification, and Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
.... Customs and Border Protection's (CBP's) Post-Entry Amendment (PEA) Processing test, which allows the...: The Post-Entry Amendment (PEA) Processing test modification set forth in this document is effective...: Background I. Post-Entry Amendment Processing Test Program The Post-Entry Amendment (PEA) Processing test...
Pea3 transcription factor promotes neurite outgrowth
Kandemir, Basak; Caglayan, Berrak; Hausott, Barbara; Erdogan, Burcu; Dag, Ugur; Demir, Ozlem; Sogut, Melis S.; Klimaschewski, Lars; Kurnaz, Isil A.
2014-01-01
Pea3 subfamily of E–twenty six transcription factors consist of three major -exhibit branching morphogenesis, the function of Pea3 family in nervous system development and regeneration is only beginning to unfold. In this study, we provide evidence that Pea3 can directs neurite extension and axonal outgrowth in different model systems, and that Serine 90 is important for this function. We have also identified neurofilament-L and neurofilament-M as two putative novel targets for Pea3. PMID:25018694
Vision for Time-Varying Images
2012-05-01
YOC:lbabry consisting ofSIFf feztures ( lo ~. 2004) Is constracted by rannlng k-means on :1 random set of lm:~gt:S cont21nlng examples from 211 clu.ses of...demtxlngofthed:au. Ls used to wlupllb. The p2lh from the root to a lo f ln a decisiOn tree Is a con· JUnction or loc:d deciSions on feature nJues and :as a...oomplose q..Jikelibood of oor model il pea by: N t. - los n p( ... . , ..... , .,)p(z.) •x• N • toe n p(r.~ • • r., B)p(1.18)1’(•.) . x o N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, T.A.; Howells, B.W.; Ruhland, C.T.
1995-06-01
In growth-chamber and greenhouse studies, garden pea is typically quite sensitive to enhanced UV-B radiation (280-320 nm). We assessed whether growth of pea was reduced under more ecologically relevant UV-B enhancements by employing modulated field lampbanks simulating 0, 16 or 24% ozone depletion. We also examined if these UV-B treatments altered leaf anatomy and concentrations of chlorophyll and UV-B-absorbing compounds, and whether this was dependent on leaf age. We used Pisum sativum mutant Argenteum which has an easily detachable epidermis that allowed us to compare concentrations in epidermal and mesophyll tissues. There were no significant UV-B effects on whole-plant growth.more » Of the 15 leaf-level parameters we examined, UV-B had a strong effect on only two parameters: the ratio of UV-B-absorbing compounds to chlorophyll (which increased with UV-B dose), and stomatal density of the adaxial surface (which decreased with UV-B dose). Chlorophyll concentrations tended to decrease, while the proportion of UV-B-absorbing compounds in the adaxial epidermis tended to increase with UV-B dose (p = 0.11 for both). In contrast to UV-B effects, we found strong leaf-age effects on nearly all parameters except the ratio of UV-B-absorbing compounds to chlorophyll, which remained relatively constant with leaf age.« less
Pretheep-Kumar, P.; Mohan, S.; Ramaraju, K.
2004-01-01
Studies were conducted to evaluate the effect of a protein-enriched pea (Pisum sativum var. Bonneville) flour extract against the rice weevil, Sitophilus oryzae in its repellency, toxicity, effect on fecundity, stability and sensory properties. Milled rice admixed with pea flour extract at 1% concentration significantly repelled S. oryzae. Mortality of S. oryzae was found to increase and fecundity was markedly suppressed, in rice treated with 1% pea flour extract. The toxicity and reproductive effects of the pea protein-enriched rice were found to be stable for a period of 5 months. The sensory characteristics of stored rice when eaten were not affected by the treatment with pea flour extract. This study indicates that the protein-enriched flour extract obtained from the Bonneville pea may be feasible to protect stored milled rice from insect attack. PMID:15861241
Potential alternative hosts for a powdery mildew on pea
USDA-ARS?s Scientific Manuscript database
Powdery mildew of pea (Pisum sativum) is an important disease in the field and in the greenhouse. The most widely documented powdery mildew on pea is Erysiphe pisi, but E. trifolii and E. baeumleri have also been reported. From greenhouse-grown peas, we obtained powdery mildew samples with rDNA ITS ...
Potential alternative hosts for the pea powdery mildew pathogen Erysiphe trifolii
USDA-ARS?s Scientific Manuscript database
Powdery mildew of pea (Pisum sativum) is an important disease in the field and in the greenhouse. The most widely documented powdery mildew pathogen on pea is Erysiphe pisi, but E. baeumleri and E. trifolii have also been reported. We recently showed that E. trifolii is frequently found on pea in th...
7 CFR 319.56-45 - Shelled garden peas from Kenya.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...
7 CFR 319.56-45 - Shelled garden peas from Kenya.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...
7 CFR 319.56-45 - Shelled garden peas from Kenya.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...
7 CFR 319.56-45 - Shelled garden peas from Kenya.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...
7 CFR 319.56-45 - Shelled garden peas from Kenya.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United States from Kenya only under the following conditions and in accordance with all other applicable...
Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste
2004-12-01
To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.
Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice.
Lee, Rui-Yun; Reiner, Daniela; Dekan, Gerhard; Moore, Andrew E; Higgins, T J V; Epstein, Michelle M
2013-01-01
Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice.
Genetically Modified α-Amylase Inhibitor Peas Are Not Specifically Allergenic in Mice
Dekan, Gerhard; Moore, Andrew E.; Higgins, T. J. V.; Epstein, Michelle M.
2013-01-01
Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice. PMID:23326368
NASA Technical Reports Server (NTRS)
Moore, R.
1985-01-01
Roots of Allium cepa L. cv. Yellow are differentially responsive to gravity. Long (e.g. 40 mm) roots are strongly graviresponsive, while short (c.g. 4 mm) roots are minimally responsive to gravity. Although columella cells of graviresponsive roots are larger than those of nongraviresponsive roots, they partition their volumes to cellular organelles similarly. The movement of amyloplasts and nuclei in columella cells of horizontally-oriented roots correlates positively with the onset of gravicurvature. Furthermore, there is no significant difference in the rates of organellar redistribution when graviresponsive and nongraviresponsive roots are oriented horizontally. The more pronounced graviresponsiveness of longer roots correlates positively with (1) their caps being 9-6 times more voluminous, (2) their columella tissues being 42 times more voluminous, (3) their caps having 15 times more columella cells, and (4) their columella tissues having relative volumes 4.4 times larger than those of shorter, nongraviresponsive roots. Graviresponsive roots that are oriented horizontally are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side, while similarly oriented nongraviresponsive roots exhibit only a minimal polar transport of 45Ca2+. These results indicate that the differential graviresponsiveness of roots of A. cepa is probably not due to either (1) ultrastructural differences in their columella cells, (2) differences in the rates of organellar redistribution when roots are oriented horizontally. Rather, these results indicate the graviresponsiveness may require an extensive columella tissue, which, in turn, may be necessary for polar movement of 45Ca2+ across the root tip.
Ishida, Kota; Murata, Mikio; Katagiri, Nobuyuki; Ishikawa, Masago; Abe, Kenji; Kato, Masatoshi; Utsunomiya, Iku; Taguchi, Kyoji
2005-08-01
The effects of systemic administration of beta-phenylethylamine (beta-PEA) and microiontophoretically applied beta-PEA on the spontaneous discharge of dopamine (DA) neurons in the ventral tegmental area (VTA) of the anesthetized rat were examined. Intravenous administration of beta-PEA (1.0, 2.5, and 5.0 mg/kg) and microiontophoretic applications of beta-PEA caused inhibitory responses in DA neurons. Systemic administration and microiontophoretic applications of beta-PEA induced dose- or current-dependent responses. The systemic beta-PEA-induced inhibitory responses were reversed by pretreatment with the DA D(2) receptor antagonists haloperidol (0.5 mg/kg i.p.) and sulpiride (10 mg/kg i.p). Pretreatment with reserpine (5 mg/kg i.p. 24 h earlier) did not completely block the systemic administration of beta-PEA (2.5 mg/kg) inhibition. A microdialysis study of freely moving rats demonstrated that the extracellular DA level increased significantly in response to local application of beta-PEA (100 muM) in the VTA via a microdialysis probe, and local application of beta-PEA-stimulated somatodendritic DA release in the VTA. The beta-PEA-induced release of DA was calcium ion-independent and was enhanced by pretreatment with pertussis toxin. These findings indicate that beta-phenylethylamine inhibits DA neuron activity via DA D(2) autoreceptors in the rat VTA and that this inhibitory effect is mediated by the somatodendritic DA release.
Laudadio, V; Tufarelli, V
2010-07-01
An experiment was carried out to evaluate the effects of diets containing peas on productive traits, carcass yields, and fatty acid profiles (breast and drumstick meat) of broiler chickens. Hubbard strain broiler chicks, divided into 2 groups, received from 14 d to slaughtering age (49 d) a wheat middlings-based diet containing soybean (190 g/kg) or micronized-dehulled peas (400 g/kg) as the main protein source. The inclusion of peas did not significantly change the growth performance of birds. The pea level had no effect on the dressing percentage, the percentage of breast or drumstick muscles, and abdominal fat. The muscles of birds fed the pea diet had significant (P < 0.05) lower L* (lightness) and b* (yellowness, drumstick muscle) values and fat content. Instead, total collagen and water-holding capacity values were higher in the pea treatment. The polyunsaturated fatty acid concentration in breast and drumstick muscles was significantly increased with the alternative protein source inclusion, whereas the saturated fatty acid was similar among treatments. The n-6/n-3 polyunsaturated fatty acid ratio of the broiler drumstick meat decreased significantly in the pea group. Dietary pea inclusion improved the saturation index of meat without altering atherogenic and thrombogenic indexes. It can be concluded that the pea treatment tested had a positive effect on the performance and meat quality of broiler chickens.
Parolini, Cinzia; Manzini, Stefano; Busnelli, Marco; Rigamonti, Elena; Marchesi, Marta; Diani, Erika; Sirtori, Cesare R; Chiesa, Giulia
2013-10-01
Many functional foods and dietary supplements have been reported to be beneficial for the management of dyslipidaemia, one of the major risk factors for CVD. Soluble fibres and legume proteins are known to be a safe and practical approach for cholesterol reduction. The present study aimed at investigating the hypocholesterolaemic effect of the combinations of these bioactive vegetable ingredients and their possible effects on the expression of genes regulating cholesterol homeostasis. A total of six groups of twelve rats each were fed, for 28 d, Nath's hypercholesterolaemic diets, differing in protein and fibre sources, being, respectively, casein and cellulose (control), pea proteins and cellulose (pea), casein and oat fibres (oat), casein and apple pectin (pectin), pea proteins and oat fibres (pea+oat) and pea proteins and apple pectin (pea+pectin). Administration of each vegetable-containing diet was associated with lower total cholesterol concentrations compared with the control. The combinations (pea+oat and pea+pectin) were more efficacious than fibres alone in modulating cholesterolaemia ( - 53 and - 54%, respectively, at 28 d; P< 0·005). In rats fed the diets containing oat fibres or apple pectin, alone or in combination with pea proteins, a lower hepatic cholesterol content (P< 0·005) and higher hepatic mRNA concentrations of CYP7A1 and NTCP were found when compared with the control rats (P< 0·05). In summary, the dietary combinations of pea proteins and oat fibres or apple pectin are extremely effective in lowering plasma cholesterol concentrations in rats and affect cellular cholesterol homeostasis by up-regulating genes involved in hepatic cholesterol turnover.
Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine.
Sotnikova, Tatyana D; Budygin, Evgeny A; Jones, Sara R; Dykstra, Linda A; Caron, Marc G; Gainetdinov, Raul R
2004-10-01
Beta-phenylethylamine (beta-PEA) is an endogenous amine that is found in trace amounts in the brain. It is believed that the locomotor-stimulating action of beta-PEA, much like amphetamine, depends on its ability to increase extracellular dopamine (DA) concentrations owing to reversal of the direction of dopamine transporter (DAT)-mediated DA transport. beta-PEA can also bind directly to the recently identified G protein-coupled receptors, but the physiological significance of this interaction is unclear. To assess the mechanism by which beta-PEA mediates its effects, we compared the neurochemical and behavioral effects of this amine in wild type (WT), heterozygous and 'null' DAT mutant mice. In microdialysis studies, beta-PEA, administered either systemically or locally via intrastriatal infusion, produced a pronounced outflow of striatal DA in WT mice whereas no increase was detected in mice lacking the DAT (DAT-KO mice). Similarly, in fast-scan voltammetry studies beta-PEA did not alter DA release and clearance rate in striatal slices from DAT-KO mice. In behavioral studies beta-PEA produced a robust but transient increase in locomotor activity in WT and heterozygous mice. In DAT-KO mice, whose locomotor activity and stereotypy are increased in a novel environment, beta-PEA (10-100 mg/kg) exerted a potent inhibitory action. At high doses, beta-PEA induced stereotypies in WT and heterozygous mice; some manifestations of stereotypy were also observed in the DAT-KO mice. These data demonstrate that the DAT is required for the striatal DA-releasing and hyperlocomotor actions of beta-PEA. The inhibitory action on hyperactivity and certain stereotypies induced by beta-PEA in DAT-KO mice indicate that targets other than the DAT are responsible for these effects.
Vicilin and convicilin are potential major allergens from pea.
Sanchez-Monge, R; Lopez-Torrejón, G; Pascual, C Y; Varela, J; Martin-Esteban, M; Salcedo, G
2004-11-01
Allergic reactions to pea (Pisum sativum) ingestion are frequently associated with lentil allergy in the Spanish population. Vicilin have been described as a major lentil allergen. To identify the main IgE binding components from pea seeds and to study their potential cross-reactivity with lentil vicilin. A serum pool or individual sera from 18 patients with pea allergy were used to detect IgE binding proteins from pea seeds by immunodetection and immunoblot inhibition assays. Protein preparations enriched in pea vicilin were obtained by gel filtration chromatography followed by reverse-phase high-performance liquid chromatography (HPLC). IgE binding components were identified by means of N-terminal amino acid sequencing. Complete cDNAs encoding pea vicilin were isolated by PCR, using primers based on the amino acid sequence of the reactive proteins. IgE immunodetection of crude pea extracts revealed that convicilin (63 kDa), as well as vicilin (44 kDa) and one of its proteolytic fragments (32 kDa), reacted with more than 50% of the individual sera tested. Additional proteolytic subunits of vicilin (36, 16 and 13 kDa) bound IgE from approximately 20% of the sera. The lentil vicilin allergen Len c 1 strongly inhibited the IgE binding to all components mentioned above. The characterization of cDNA clones encoding pea vicilin has allowed the deduction of its complete amino acid sequence (90% of sequence identity to Len c 1), as well as those of its reactive proteolytic processed subunits. Vicilin and convicilin are potential major allergens from pea seeds. Furthermore, proteolytic fragments from vicilin are also relevant IgE binding pea components. All these proteins cross-react with the major lentil allergen Len c 1.
Ko, Dennis T; Qiu, Feng; Koh, Maria; Dorian, Paul; Cheskes, Sheldon; Austin, Peter C; Scales, Damon C; Wijeysundera, Harindra C; Verbeek, P Richard; Drennan, Ian; Ng, Tiffany; Tu, Jack V; Morrison, Laurie J
2016-07-01
Many patients with out-of-hospital cardiac arrest present with pulseless electric activity (PEA) rather than shockable rhythm. Despite improvements in resuscitation care, survival of PEA patients remains dismal. Our main objective was to characterize out-of-hospital cardiac arrest patients by initial presenting rhythm and to evaluate independent determinants of PEA. A population-based study was conducted using the Toronto Rescu Epistry database with linkage to administrative data in Ontario, Canada. We included patients older than 20 years who had nontraumatic cardiac arrests from 2005 to 2010. Multivariable logistic regression models were constructed to determine factors predicting the occurrence of PEA vs shockable rhythm vs asystole. Of the 9,882 included patients who received treatment, 24.5% had PEA, 26.3% had shockable rhythm, and 49.2% had asystole. Patients with PEA had a mean age of 72 years, 41.2% were female and had multiple comorbidities, and 53.4% were hospitalized in the past year. As compared with shockable rhythm, PEA patients were older, were more likely to be women, and had more comorbidities. As compared with asystole, PEA patients had similar baseline and clinical characteristics, but were substantially more likely to have an arrest witnessed by emergency medical services (odds ratio 13) or by bystander (odds ratio 3.24). Mortality at 30 days was 95.5%, 77.9%, and 98.9% for patients with PEA, shockable rhythm, asystole, respectively. Patient characteristics differed substantially in those presenting with PEA and shockable rhythm. In contrast, the main distinguishing factor between PEA and asystole cardiac arrest related mainly to factors at the time of the cardiac arrest. Copyright © 2016 Elsevier Inc. All rights reserved.
Kulaeva, Olga A; Zhernakov, Aleksandr I; Afonin, Alexey M; Boikov, Sergei S; Sulima, Anton S; Tikhonovich, Igor A; Zhukov, Vladimir A
2017-01-01
Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.
Barillot, Romain; Combes, Didier; Chevalier, Valérie; Fournier, Christian; Escobar-Gutiérrez, Abraham J.
2012-01-01
Background and aims Light interception is a key factor driving the functioning of wheat–pea intercrops. The sharing of light is related to the canopy structure, which results from the architectural parameters of the mixed species. In the present study, we characterized six contrasting pea genotypes and identified architectural parameters whose range of variability leads to various levels of light sharing within virtual wheat–pea mixtures. Methodology Virtual plants were derived from magnetic digitizations performed during the growing cycle in a greenhouse experiment. Plant mock-ups were used as inputs of a radiative transfer model in order to estimate light interception in virtual wheat–pea mixtures. The turbid medium approach, extended to well-mixed canopies, was used as a framework for assessing the effects of leaf area index (LAI) and mean leaf inclination on light sharing. Principal results Three groups of pea genotypes were distinguished: (i) early and leafy cultivars, (ii) late semi-leafless cultivars and (iii) low-development semi-leafless cultivars. Within open canopies, light sharing was well described by the turbid medium approach and was therefore determined by the architectural parameters that composed LAI and foliage inclination. When canopy closure started, the turbid medium approach was unable to properly infer light partitioning because of the vertical structure of the canopy. This was related to the architectural parameters that determine the height of pea genotypes. Light capture was therefore affected by the development of leaflets, number of branches and phytomers, as well as internode length. Conclusions This study provides information on pea architecture and identifies parameters whose variability can be used to drive light sharing within wheat–pea mixtures. These results could be used to build up the architecture of pea ideotypes adapted to multi-specific stands towards light competition. PMID:23240074
THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaskot, A. E.; Oey, M. S.
2013-04-01
Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with themore » highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.« less
Death of Root Tissues in Standing [Live] and Felled Loblolly Pines
Charles H. Walkinshaw
1999-01-01
Recycling tree root components is important in sustaining the productivity of southern pine forests. Death of outer cortical tissues and mortality of short roots is ubiquitous in conifers. Affected tissues lose their starch grains and accumulate secondary products, such as tannins. In this study, 10-year-old loblolly pine trees were cut at the soil surface and...
Analgesic effects of β-phenylethylamine and various methylated derivatives in mice.
Mosnaim, Aron D; Hudzik, Thomas; Wolf, Marion E
2014-09-01
Administration of β-phenylethylamine (PEA), the simplest endogenous neuroamine, and various methylated PEA derivatives including α-methyl PEA (amphetamine, AMP) elicits analgesia in mice. Five or 20 min after intraperitoneal PEA injection of as little as 6 mg/kg resulted in an increased latency response time (from 2.4 ± 0.4 to 8.5 ± 2.3 or 7.0 ± 3.0 s, respectively) to the thermal stimulus (hot-plate test), which reached statistical significance at the 15 mg/kg (20 min; 13.1 ± 0.4 s) or 25 mg/kg dose (5 min; 15.3 ± 4.1 s). This PEA effect, was dose-dependent (albeit non-linear: 6, 12, 15, 25, 50 and 100 mg/kg), reached the cut-off time of 45 s at the upper PEA dose (5 min), and it was consistently enhanced by pretreatment with the monoamine oxidase inhibitor pargyline (P). Methylated PEA derivatives (15 and 100 mg/kg dose) produced various degrees of analgesia (in decreasing order p-Me PEA > PEA > N,N-diMe PEA > N-Me PEA) which, likewise to PEA itself, were consistently increased by P and declined over time (mice tested 5, 20 and 60 min after amine injection); small but statistically significant o- and β-Me PEA antinociceptive effects (5 min) were observed only at the higher dose (in the presence of P for β-Me PEA). A small analgesic effect was observed after the administration of AMP (5 or 10 mg/kg) which failed, even after P, to reach statistically significance. Independent of the amine and concentration tested, individual compound's antinociceptive properties were reliably increased by P (exception of AMP), decreased by reserpine (R) or haloperidol (H), and remained essentially unchanged after naloxone (N) administration suggesting the involvement of catecholamines, but not opioid peptides, in their observed analgesic effects. Injection of P + N produced results similar to those seen after P alone. Under the experimental conditions described neither P, R, H or N had any effects by themselves. These findings suggest additional understanding of the mechanism of action responsible for the analgesic effects of these amines would be of interest, leading further to controlled studies on their alleged usefulness as weight reducing agents and sport performance enhancers.
Feeding value of field pea as a protein source in forage-based diets fed to beef cattle.
Soto-Navarro, S A; Encinias, A M; Bauer, M L; Lardy, G P; Caton, J S
2012-02-01
Three studies were conducted to evaluate the feasibility of field peas as a protein source in diets for beef cattle. In the first study, 4 cultivars of field pea were incubated in situ to determine rate and extent of CP disappearance. Results indicate that field pea cultivars vary in CP content (22.6, 26.1, 22.6, and 19.4%, DM basis for Profi, Arvika, Carneval, and Trapper, respectively). Soluble protein fraction ranged from 34.9% for Trapper to 54.9% for Profi. Degradable CP fraction was greater (P = 0.01) for Trapper compared with the other cultivars, and no differences (P ≥ 0.25) were observed among Profi, Arvika, and Carneval. Rate of CP degradation differed (P ≤ 0.03) for all cultivars, with Profi being the greatest and Trapper the smallest (10.8, 10.0, 8.1, and 6.3 ± 1.4%/h for Profi, Carneval, Arvika, and Trapper, respectively). Estimated RDP was not different (P = 0.21) for all 4 cultivars. In the second study, 30 crossbred beef steers (301 ± 15 kg) were individually fed and used to evaluate effects of field pea processing (whole, rolled, or ground) on steer performance. Diets contained 40% field pea grain. Growing steers consuming whole field pea had greater ADG (P = 0.08) than those consuming processed field pea (1.69, 1.52, and 1.63 ± 0.05 kg/d, for whole, rolled, and ground, respectively). However, DMI (kg/d and as % of BW) and G:F were not different (P ≥ 0.24). In the third study, 35 individually fed gestating beef cows (694 ± 17 kg) were used to evaluate the use of field pea as a protein supplement for medium quality grass hay (9.3% CP). Treatments consisted of whole field peas at 1) 0 g (CON), 2) 680 g (FP680), 3) 1,360 g (FP1360), and 4) 2,040 g (FP2040), and 5) 1,360 g of 74% barley and 26% canola meal (BCM). Total intake (forage + supplement) of gestating beef cows increased with increasing field pea level (linear, P = 0.01; supplemented vs. nonsupplemented, P = 0.01). In summary, protein quantity and rate of ruminal protein degradation vary across sources of field peas used in this study. Additionally, because of source variability, nutrient analysis and animal requirements should be considered when field pea is incorporated into beef cattle diets. Processing field pea does not improve performance of growing steers. Supplementation of field pea to gestating cows consuming medium-quality grass hay increased total DMI. Overall, our data indicate field pea can be used in a wide variety of beef cattle diets.
Azacytidine and miR156 promote rooting in adult but not in juvenile Arabidopsis tissues.
Massoumi, Mehdi; Krens, Frans A; Visser, Richard G F; De Klerk, Geert-Jan M
2017-01-01
Poor adventitious root (AR) formation is a major obstacle in micropropagation and conventional vegetative propagation of many crops. It is affected by many endogenous and exogenous factors. With respect to endogenous factors, the phase change from juvenile to adult has a major influence on AR formation and rooting is usually much reduced or even fully inhibited in adult tissues. It has been reported that the phase change is characterized by an increase in DNA-methylation and a decrease in the expression of microRNA156 (miR156). In this paper, we examined the effect of azacytidine (AzaC) and miR156 on AR formation in adult and juvenile Arabidopsis tissues. To identify the ontogenetic state researchers have used flowering or leaf morphology. We have used the rootability which allows - in contrast with both other characteristics- to examine the ontogenetic state at the cellular level. Overexpression of miR156 promoted only the rooting of adult tissues indicating that the phase change-associated loss in tissues' competence to develop ARs is also under the control of miR156. Azacytidine inhibits DNA methylation during DNA replication. Azacytidine treatment also promoted AR formation in nonjuvenile tissues but had no or little effect in juvenile tissues. Its addition during seedling growth (by which all tissues become hypomethylated) or during the rooting treatment (by which only those cells become hypomethylated that are generated after taking the explant) are both effective in the promotion of rooting. An AzaC treatment may be useful in tissue culture for crops that are recalcitrant to root. Copyright © 2016 Elsevier GmbH. All rights reserved.
Clematis, Francesca; Viglione, Serena; Beruto, Margherita; Lanzotti, Virginia; Dolci, Paola; Poncet, Christine; Curir, Paolo
2014-09-01
Spartium junceum L. (Leguminosae) is a perennial shrub, native to the Mediterranean region in southern Europe, widespread in all the Italian regions and, as a leguminous species, it has a high isoflavone content. An in vitro culture protocol was developed for this species starting from stem nodal sections of in vivo plants, and isoflavone components of the in vitro cultured tissues were studied by means of High Performance Liquid Chromatography (HPLC) analytical techniques. Two main isoflavones were detected in the S. junceum tissues during the in vitro propagation phases: Genistein (4',5,7-Trihydroxyisoflavone), already reported in this species, and its methylated form 4',5,7-Trimethoxyisoflavone, detected for the first time in this plant species (0.750 ± 0.02 mg g(-1) dry tissue). The presence of both of these compounds in S. junceum tissues was consistently detected during the in vitro multiplication phase. The absence of the methylated form within plant tissues in the early phases of the in vitro adventitious root formation was correlated with its negative effect displayed on root induction and initiation phases, while its presence in the final "root manifestation" phase influenced positively the rooting process. The unmethylated form, although detectable in tissues in the precocious rooting phases, was no longer present in the final rooting phase. Its effect on rooting, however, proved always to be beneficial. Copyright © 2014 Elsevier GmbH. All rights reserved.
Primary epiploic appendagitis and successful outpatient management
Schnedl, Wolfgang J.; Krause, Robert; Wallner-Liebmann, Sandra J.; Tafeit, Erwin; Mangge, Harald; Tillich, Manfred
2012-01-01
Summary Background Primary epiploic appendagitis (PEA) is a rare cause of abdominal acute or subacute complaints. Diagnosis of PEA is made with ultrasonography (US) or when computed tomography (CT) reveals a characteristic lesion. Case Report We report on two patients with PEA. In one patient PEA was first seen with US and confirmed with contrast enhanced CT, and in the second patient CT without contrast enhancement demonstrated PEA. In both patients an outpatient recovery with conservative non-surgical treatment is described. Conclusions Medical personnel should be aware of this rare disease, which mimics many other intra-abdominal acute and subacute conditions. A correct diagnosis of PEA with imaging procedures enables conservative and successful outpatient management avoiding unnecessary surgical intervention and additional costs. PMID:22648258
Morton, Roger L.; Schroeder, Hart E.; Bateman, Kaye S.; Chrispeels, Maarten J.; Armstrong, Eric; Higgins, Thomas J. V.
2000-01-01
Two α-amylase inhibitors, called αAI-1 and αAI-2, that share 78% amino acid sequence identity and have a differential specificity toward mammalian and insect α-amylases are present in different accessions of the common bean (Phaseolus vulgaris). Using greenhouse-grown transgenic peas (Pisum sativum), we have shown previously that expression of αAI-1 in pea seeds can provide complete protection against the pea weevil (Bruchus pisorum). Here, we report that αAI-1 also protects peas from the weevil under field conditions. The high degree of protection is explained by our finding that αAI-1 inhibits pea bruchid α-amylase by 80% over a broad pH range (pH 4.5–6.5). αAI-2, on the other hand, is a much less effective inhibitor of pea bruchid α-amylase, inhibiting the enzyme by only 40%, and only in the pH 4.0–4.5 range. Nevertheless, this inhibitor was still partially effective in protecting field-grown transgenic peas against pea weevils. The primary effect of αAI-2 appeared to be a delay in the maturation of the larvae. This contrasts with the effect of αAI-1, which results in larval mortality at the first or second instar. These results are discussed in relationship to the use of amylase inhibitors with different specificities to bring about protection of crops from their insect pests or to decrease insect pest populations below the economic injury level. PMID:10759552
Safratowich, Bryan D.; Hossain, Murad; Bianchi, Laura
2014-01-01
β-Phenylethylamine (βPEA) is a trace amine present in the CNS of all animals tested to date. However, its function is still not fully understood. βPEA has been suggested to function as a neurotransmitter and/or to mimic the effect of amphetamine (Amph). In support of the latter is the observation that βPEA and Amph produce similar but not identical behaviors. Here, we show that βPEA, like Amph, activates the dopamine transporter and the amine-gated chloride channel LGC-55 to generate behaviors in Caenorhabditis elegans. However, although Amph-induced behaviors occurred gradually during 10 min of treatment, βPEA induced maximal effects within 1 min. In vitro data demonstrate that βPEA activates the LGC-55 more efficiently than Amph (Km = 9 and 152 μm, respectively) and generates saturating currents that are 10 times larger than those produced by Amph. These results suggest that activation of LGC-55 mostly accounts for the behavioral effects reached after 1 min of treatment with βPEA. Importantly, our in vitro and in vivo data show that Amph increases the effects induced by βPEA on the LGC-55, indicating that Amph potentiates the effects generated by the biogenic amine βPEA. Together, our data not only identify a new target for βPEA, but also offer a novel mechanism of action of Amph. In addition, our results highlight C. elegans as a powerful genetic model for studying the effects of biogenic and synthetic amines both at the molecular and behavioral levels. PMID:24672014
Safratowich, Bryan D; Hossain, Murad; Bianchi, Laura; Carvelli, Lucia
2014-03-26
β-Phenylethylamine (βPEA) is a trace amine present in the CNS of all animals tested to date. However, its function is still not fully understood. βPEA has been suggested to function as a neurotransmitter and/or to mimic the effect of amphetamine (Amph). In support of the latter is the observation that βPEA and Amph produce similar but not identical behaviors. Here, we show that βPEA, like Amph, activates the dopamine transporter and the amine-gated chloride channel LGC-55 to generate behaviors in Caenorhabditis elegans. However, although Amph-induced behaviors occurred gradually during 10 min of treatment, βPEA induced maximal effects within 1 min. In vitro data demonstrate that βPEA activates the LGC-55 more efficiently than Amph (Km = 9 and 152 μm, respectively) and generates saturating currents that are 10 times larger than those produced by Amph. These results suggest that activation of LGC-55 mostly accounts for the behavioral effects reached after 1 min of treatment with βPEA. Importantly, our in vitro and in vivo data show that Amph increases the effects induced by βPEA on the LGC-55, indicating that Amph potentiates the effects generated by the biogenic amine βPEA. Together, our data not only identify a new target for βPEA, but also offer a novel mechanism of action of Amph. In addition, our results highlight C. elegans as a powerful genetic model for studying the effects of biogenic and synthetic amines both at the molecular and behavioral levels.
The effect of olfactory training on the odor threshold in patients with traumatic anosmia.
Jiang, Rong-San; Twu, Chih-Wen; Liang, Kai-Li
2017-09-01
Olfactory training is a novel intervention that has been used to treat olfactory dysfunction. This study attempted to investigate the effect of olfactory training in patients with traumatic anosmia. Patients with a clear history of anosmia after experiencing a head injury and whose phenyl ethyl alcohol (PEA) odor detection thresholds were -1 after steroid and zinc treatment were included. The patients were randomly divided into two groups, with patients in one group given a bottle of PEA and those in another group given a bottle of mineral oil for 3-month olfactory training. All the patients were followed up with a PEA threshold test and the traditional Chinese version of the University of Pennsylvania Smell Identification Test (UPSIT-TC). Magnetic resonance imaging was performed to measure the volume of the olfactory bulbs. Any patient whose PEA threshold result was below -1.01 or whose UPSIT-TC score increased four or more points was considered to have shown improvement in their olfactory function. Forty-two patients received PEA olfactory training, whereas 39 received olfactory training with mineral oil. The improvement of PEA thresholds function was observed in 10 patients within the PEA group and in 2 patients in the mineral oil group. The frequency of improvement of threshold within the PEA group was significantly higher than that of the mineral oil group. Neither olfactory bulb volume nor UPSIT-TC score was significantly different between the two groups. Our results showed that olfactory training with PEA can improve PEA odor threshold levels in patients with traumatic anosmia.
Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots
NASA Technical Reports Server (NTRS)
Lin, B. L.; Raghavan, V.
1991-01-01
In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.
Fibril formation from pea protein and subsequent gel formation.
Munialo, Claire Darizu; Martin, Anneke H; van der Linden, Erik; de Jongh, Harmen H J
2014-03-19
The objective of this study was to characterize fibrillar aggregates made using pea proteins, to assemble formed fibrils into protein-based gels, and to study the rheological behavior of these gels. Micrometer-long fibrillar aggregates were observed after pea protein solutions had been heated for 20 h at pH 2.0. Following heating of pea proteins, it was observed that all of the proteins were hydrolyzed into peptides and that 50% of these peptides were assembled into fibrils. Changes on a structural level in pea proteins were studied using circular dichroism, transmission electron microscopy, and particle size analysis. During the fibril assembly process, an increase in aggregate size was observed, which coincided with an increase in thioflavin T binding, indicating the presence of β-sheet aggregates. Fibrils made using pea proteins were more branched and curly. Gel formation of preformed fibrils was induced by slow acidification from pH 7.0 to a final pH of around pH 5.0. The ability of pea protein-based fibrillar gels to fracture during an amplitude sweep was comparable to those of soy protein and whey protein-based fibrillar gels, although gels prepared from fibrils made using pea protein and soy protein were weaker than those of whey protein. The findings show that fibrils can be prepared from pea protein, which can be incorporated into protein-based fibrillar gels.
Keppel Hesselink, Jan M.; Costagliola, Ciro; Fakhry, Josiane; Kopsky, David J.
2015-01-01
Retinopathy is a threat to the eyesight, and glaucoma and diabetes are the main causes for the damage of retinal cells. Recent insights pointed out a common pathogenetic pathway for both disorders, based on chronic inflammation. Palmitoylethanolamide (PEA) is an endogenous cell protective lipid. Since its discovery in 1957 as a biologically active component in foods and in many living organisms, around 500 scientific papers have been published on PEA's anti-inflammatory and neuron-protective properties. PEA has been evaluated for glaucoma, diabetic retinopathy, and uveitis, pathological states based on chronic inflammation, respiratory disorders, and various pain syndromes in a number of clinical trials since the 70s of 20th century. PEA is available as a food supplement (PeaPure) and as diet food for medical purposes in Italy (Normast, PeaVera, and Visimast). These products are notified in Italy for the nutritional support in glaucoma and neuroinflammation. PEA has been tested in at least 9 double blind placebo controlled studies, among which two studies were in glaucoma, and found to be safe and effective up to 1.8 g/day, with excellent tolerability. PEA therefore holds a promise in the treatment of a number of retinopathies. We discuss PEA as a putative anti-inflammatory and retinoprotectant compound in the treatment of retinopathies, especially related to glaucoma and diabetes. PMID:26664738
ERIC Educational Resources Information Center
Hills, Libby
2017-01-01
Promoting Equality in African Schools (PEAS) seeks to expand access to sustainably delivered, quality secondary education in Africa. PEAS builds and runs chains of not-for-profit, low-cost private schools in public-private partnership with governments. External evaluation data show that PEAS schools in Uganda are delivering higher quality…
USDA-ARS?s Scientific Manuscript database
As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...
Germinated Pigeon Pea (Cajanus cajan): a novel diet for lowering oxidative stress and hyperglycemia.
Uchegbu, Nneka N; Ishiwu, Charles N
2016-09-01
This work studied the antioxidant activity of extract of germinated pigeon pea (Cajanus cajan) in alloxan-induced diabetic rats. Germination was carried out in a dark chamber under room temperature (28°C). The total phenolic, 1,1,diphenyl-2-picrylhy-drazyl free radical (DPPH) scavenging, the inhibition of α-amylase and α-glucosidase were done in vitro and blood glucose levels of the animal were investigated. Lipid peroxidation (LPO) and reduced glutathione (GSH) were analyzed spectrophotometrically. The total phenolic and DPPH scavenging activity increased by 30% and 63%, respectively, after germinating pigeon pea. Also after germination there was an increase in the inhibitory potential of pigeon pea extract against α-glucosidase compared with the nongerminated pigeon pea extract. There was a significant increase (P < 0.05) in fasting blood glucose level of alloxan-induced rats. Consumption of germinated pigeon pea extract gave rise to a reduced fasting blood glucose level in diabetic rats. On administration of germinated pigeon pea extract, LPO reduced drastically but there was an increase in the level of GSH. This study concluded that intake of germinated pigeon pea is a good dietary supplement for controlling hyperglycemia and LPO.
A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids.
Ismail, Emadeldeen; Blom, Jochen; Bultreys, Alain; Ivanović, Milan; Obradović, Aleksa; van Doorn, Joop; Bergsma-Vlami, Maria; Maes, Martine; Willems, Anne; Duffy, Brion; Stockwell, Virginia O; Smits, Theo H M; Puławska, Joanna
2014-12-01
Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.
Effects of Phenethyl Alcohol on Phospholipid Metabolism in Escherichia coli
Nunn, William D.; Tropp, Burton E.
1972-01-01
The incorporation of labeled precursors into the deoxyribonucleic acid, ribonucleic acid (RNA), proteins, and phospholipids of Escherichia coli cultured in the presence of phenethyl alcohol (PEA) was determined. PEA inhibited the uptake of labeled uracil to the same extent in cells exhibiting relaxed and stringent control of RNA synthesis. This indicates that PEA does not primarily affect amino acid synthesis or activation. Uptake of labeled acetate into the phospholipid fraction was more sensitive to inhibition by low concentrations of PEA than was the uptake of labeled precursors into the macromolecules. Thymine starvation or the addition of nalidixic acid (10 μg/ml) had no effect on acetate incorporation. Chloramphenicol (25 μg/ml) was a much less effective inhibitor of acetate incorporation than was PEA. The distribution of labeled acetate incorporated into phospholipids was markedly affected by the presence of PEA. The uptake of acetate into phosphatidylethanolamine and phosphatidylglycerol was inhibited, whereas the uptake of acetate into the cardiolipin fraction was unaffected. Since acetate incorporation into phospholipid was quite sensitive to PEA, we suggest that the PEA-sensitive component required for the initiation of replication may be a phospholipid(s). PMID:4550658
Buchman, N; Cuddington, K
2009-08-01
It has been claimed that plant architecture can alter aphid reproductive rates, but the mechanism driving this effect has not been identified. We studied interactions between plant architecture, aphid density, environmental conditions, and nutrient availability on the reproduction of pea aphids [Acyrthosiphon pisum (Harris)] using four near-isogenic peas (Pisum sativum L.) that differ in morphology. Manipulations of aphid density (1, 5, and 10 adults per plant) allowed us to examine any effects of plant morphology on crowding and consequently reproduction. Pea morphology per se did not alter pea aphid crowding, as measured by mean nearest neighbor distance, and there was no effect on reproduction. In addition, reproduction increased with increasing adult density, indicating positive density dependence. In a separate experiment, peas were fertilized to determine whether differences between nutrient availability of the four different morphologies might drive any observed differences in aphid reproduction. Although plant nitrogen content was altered by fertilization treatments, this did not have an impact on aphid reproduction. Greenhouse experiments, however, suggested that pea morphology can interact with environmental conditions to reduce aphid reproduction under some conditions. We conclude that plant morphology only influences aphid reproduction when environmental conditions are less than optimal.
Lee, Bao-Hong; Lai, Yi-Syuan; Wu, She-Ching
2015-12-01
Because of the high incidence of cardiovascular diseases in Asian countries, traditional fermented foods from Asia have been increasingly investigated for antiatherosclerotic effects. This study investigated the production of nattokinase, a serine fibrinolytic enzyme, in pigeon pea by Bacillus subtilis fermentation. B. subtilis 14714, B. subtilis 14715, B. subtilis 14716, and B. subtilis 14718 were employed to produce nattokinase. The highest nattokinase activity in pigeon pea was obtained using B. subtilis 14715 fermentation for 32 hours. In addition, the levels of antioxidants (phenolics and flavonoids) and angiotensin converting enzyme inhibitory activity were increased in B. subtilis 14715-fermented pigeon pea, compared with those in nonfermented pigeon pea. In an animal model, we found that both water extracts of pigeon pea (100 mg/kg body weight) and water extracts of B. subtilis-fermented pigeon pea (100 mg/kg body weight) significantly improved systolic blood pressure (21 mmHg) and diastolic blood pressure (30 mmHg) in spontaneously hypertensive rats. These results suggest that Bacillus-fermented pigeon pea has benefits for cardiovascular health and can be developed as a new dietary supplement or functional food that prevents hypertension. Copyright © 2015. Published by Elsevier B.V.
Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S
2014-02-01
Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.
RADIOAUTOGRAPHIC STUDY OF CELL WALL DEPOSITION IN GROWING PLANT CELLS
Ray, Peter M.
1967-01-01
Segments cut from growing oat coleoptiles and pea stems were fed glucose-3H in presence and absence of the growth hormone indoleacetic acid (IAA). By means of electron microscope radioautography it was demonstrated that new cell wall material is deposited both at the wall surface (apposition) and within the preexisting wall structure (internally). Quantitative profiles for the distribution of incorporation with position through the thickness of the wall were obtained for the thick outer wall of epidermal cells. With both oat coleoptile and pea stem epidermal outer walls, it was found that a larger proportion of the newly synthesized wall material appeared to become incorporated within the wall in the presence of IAA. Extraction experiments on coleoptile tissue showed that activity that had been incorporated into the cell wall interior represented noncellulosic constituents, mainly hemicelluloses, whereas cellulose was deposited largely or entirely by apposition. It seems possible that internal incorporation of hemicelluloses plays a role in the cell wall expansion process that is involved in cell growth. PMID:6064369
N abundance of nodules as an indicator of N metabolism in n(2)-fixing plants.
Shearer, G; Feldman, L; Bryan, B A; Skeeters, J L; Kohl, D H; Amarger, N; Mariotti, F; Mariotti, A
1982-08-01
This paper expands upon previous reports of (15)N elevation in nodules (compared to other tissues) of N(2)-fixing plants. N(2)-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in (15)N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N(2)-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in (15)N. Thus, (15)N elevation in nodules of these plants depends on active N(2)-fixation. Results obtained so far on the generality of (15)N enrichment in N(2)-fixing nodules suggest that only the nodules of plants which actively fix N(2) and which transport allantoin or allantoic acid exhibit (15)N enrichment.
308-nm excimer laser in endodontics
NASA Astrophysics Data System (ADS)
Liesenhoff, Tim
1992-06-01
Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.
Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana
Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal
2015-01-01
Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296
Gonçalves, Patricia F; Lima, Liana L; Sallum, Enilson A; Casati, Márcio Z; Nociti, Francisco H
2008-02-01
Previous data demonstrated that root cementum may affect periodontal regeneration. As such, this study aimed to explore further possible mechanisms involved in this process by investigating in humans whether root cementum modulates gene expression in the regenerating tissue formed under membrane-protected intrabony defects. Thirty subjects with deep intrabony defects (> or =5 mm; 2- or 3-wall) were selected and assigned to the control or test group. The control group received scaling and root planing with the removal of granulation tissue and root cementum; the test group underwent removal of granulation tissue and soft microbial deposits by cleaning the root surface with a microbrush and saline solution, aiming at cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. Twenty-one days later, the newly formed tissue under the membrane was assessed for the expression of the following genes: alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), platelet-derived growth factor-alpha (PDGFA), bone sialoprotein (BSP), and basic fibroblast growth factor (bFGF). Data analysis demonstrated that mRNA levels for PDGFA, BSP, and bFGF were higher in the sites where root cementum was kept in place compared to the sites where root cementum was removed completely as part of the periodontal therapy (P <0.05); in contrast, OCN levels were lower (P <0.05). No difference for ALP or OPN was observed between the control and test groups (P >0.05). Root cementum may modulate the expression of growth and mineral-associated factors during periodontal regeneration.
Gonçalves, Patricia F; Gurgel, Bruno C V; Pimentel, Suzana P; Sallum, Enilson A; Sallum, Antonio W; Casati, Márcio Z; Nociti, Francisco H
2006-06-01
Because the possibility of root cementum preservation as an alternative approach for the treatment of periodontal disease has been demonstrated, this study aimed to histometrically evaluate the effect of root cementum on periodontal regeneration. Bilateral Class III furcation defects were created in dogs, and each dog was randomly assigned to receive one of the following treatments: control (group A): scaling and root planing with the removal of root cementum; or test (group B): removal of soft microbial deposits by polishing the root surface with rubber cups and polishing paste, aiming at maximum cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. Four months after treatment, a superior length of new cementum (3.59 +/- 1.67 mm versus 6.20 +/- 2.26 mm; P = 0.008) and new bone (1.86 +/- 1.76 mm versus 4.62 +/- 3.01 mm; P = 0.002) and less soft tissue along the root surface (2.77 +/- 0.79 mm versus 1.10 +/- 1.48 mm; P = 0.020) was observed for group B. Additionally, group B presented a larger area of new bone (P = 0.004) and a smaller area of soft tissue (P = 0.008). Within the limits of this study, root cementum may modulate the healing pattern obtained by guided tissue regeneration in Class III furcation defects.
Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.
Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank
2016-02-01
Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7.
Prieto, Pilar; Mercado-Blanco, Jesús
2008-05-01
Confocal microscopy combined with three-dimensional olive root tissue sectioning was used to provide evidence of the endophytic behaviour of Pseudomonas fluorescens PICF7, an effective biocontrol strain against Verticillium wilt of olive. Two derivatives of the green fluorescent protein (GFP), the enhanced green and the red fluorescent proteins, have been used to visualize simultaneously two differently fluorescently tagged populations of P. fluorescens PICF7 within olive root tissues at the single cell level. The time-course of colonization events of olive roots cv. Arbequina by strain PICF7 and the localization of tagged bacteria within olive root tissues are described. First, bacteria rapidly colonized root surfaces and were predominantly found in the differentiation zone. Thereafter, microscopy observations showed that PICF7-tagged populations eventually disappeared from the root surface, and increasingly colonized inner root tissues. Localized and limited endophytic colonization by the introduced bacteria was observed over time. Fluorescent-tagged bacteria were always visualized in the intercellular spaces of the cortex region, and no colonization of the root xylem vessels was detected at any time. To the best of our knowledge, this is the first time this approach has been used to demonstrate endophytism of a biocontrol Pseudomonas spp. strain in a woody host such as olive using a nongnotobiotic system.
Simulated microgravity impacts the plant plasmalemma lipid bilayer
NASA Astrophysics Data System (ADS)
Nedukha, Olena; Berkovich, Yuliy A.; Vorobyeva, Tamara; Grakhov, Volodimir; Klimenko, Elena; Zhupanov, Ivan; Jadko, Sergiy
Biological membranes, especially the plasmalemma, and their properties and functions can be considered one of the most sensitive indicators of gravity interaction or alteration of gravity, respectively. Studies on the molecular basis of cellular signal perception and transduction are very important in order to understand signal responses at the cellular and organism level. The plasmalemma lipid bilayer is the boundary between the cell internal and external environment and mediates communication between them. Therefore, we studied the content and composition of lipids, saturated and unsaturated fatty acids, sterols, and microviscosity in the plasmalemma isolated from pea seedling roots and epicotyls grown in the stationary conditions and under slow horizontal clinorotation. In addition, lipid peroxidation intensity of intact roots was also identified. The plasmalemma fraction was isolated by the two-phase aquatic-polymer system optimized for pea using a centrifuge Optima L-90K. Lipid bilayer components were determined by using highly effective liquid chromatography with a system Angilent 1100 (Germany). Spontaneous chemiluminescence intensity was measured with a chemiluminometer ChLMTS-01. The obtained data showed that plasmalemma investigated parameters are sensitive to clinorotation, namely: increasing or decreasing the different lipids content, among which, phospho- and glycolipids were dominated, as well as changes in the content of saturated and unsaturated fatty acids and sterols. A degree of plasmalemma sensitivity to clinorotation was higher for the root plasmalemma than epicocotyl ones. This distinguish may be naturally explained by the differences in the structure, cell types, growth, and specific functions of a root and an epicotyl, those are the most complicated in roots. An index of unsaturation under clinorotation was similar to that in the stationary conditions as a result of the certain balance between changes in the content of saturated and unsaturated fatty acids, that maintains the plasmalemma fluidity in the normal limits, and it may be considered as an adaptive pattern. This assumption was directly confirmed by the data on plasmalemma fluidity in control and under clinorotation defined by electron paramagnetic resonance spectrometer Bruker Elexsys E 580 (Germany). It was in the first established a significant increase in the sterol content under clinorotation. It is of much interest because sterols along with glyco- and phospholipids and mainly saturated fatty acids form “rafts” that are membrane certain domains, where a lipid bilayer is in the dense, highly ordered state. As rafts include the protein complexes, which are necessary for perception and transduction of exogenous signals, stress protection, pathogenesis, vesicular transport also, a significant increase of sterols under clinorotation may indicate the changes in both membrane permeability and protein activity. On the basis of obtained data, the future researches of components of signaling pathways and regulation of certain plasmalemma membranous proteins activity are grounded and planned.
Epstein, E; Cohn, E
1971-10-01
The amino acids of terminal root galls caused by Longidorus africanus on bur marigold (Bidens tripartita L.) and grapevine (Vitis vinifera L.) were studied. The galled roots of bur marigold contained 73% more cell-wall protein and 184% more free amino acids. The main changes among the free amino acids of the galled tissue were a large increase (1900%) in proline and a decrease in aspartic acid (56%) compared with the respective check tissue. Hydroxyproline decreased in the wall protein fraction from 5.6% in the healthy tissue to 3.6% in the infected tissue.Percent of hydroxyproline in total amino acids of the wall protein fraction of grapevine roots decreased from 0.7% in the healthy tissue to 0.3% in the galled tissue, and total proteins of this fraction decreased from 9.5 mg to 4.5 rag, respectively. Total protein in the protoplasmic fraction also decreased from 3.0 mg in healthy to 1.0 mg in infected roots. No change was noticed in total proteins in the free amino acids fraction but free proline decreased 40% in the infected roots.The relationship of these differences to the specific reactions of the hosts to nematode feeding is discussed.
Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier
2012-01-01
Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation. PMID:22505729
Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier
2012-04-01
Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation.
Sun, Huanli; Cheng, Ru; Deng, Chao; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan
2015-02-09
A novel and versatile family of enzymatically and reductively degradable α-amino acid-based poly(ester amide)s (SS-PEAs) were developed from solution polycondensation of disulfide-containing di-p-toluenesulfonic acid salts of bis-l-phenylalanine diesters (SS-Phe-2TsOH) with di-p-nitrophenyl adipate (NA) in N,N-dimethylformamide (DMF). SS-PEAs with Mn ranging from 16.6 to 23.6 kg/mol were obtained, depending on NA/SS-Phe-2TsOH molar ratios. The chemical structures of SS-PEAs were confirmed by (1)H NMR and FTIR spectra. Thermal analyses showed that the obtained SS-PEAs were amorphous with a glass transition temperature (Tg) in the range of 35.2-39.5 °C. The in vitro degradation studies of SS-PEA films revealed that SS-PEAs underwent surface erosion in the presence of 0.1 mg/mL α-chymotrypsin and bulk degradation under a reductive environment containing 10 mM dithiothreitol (DTT). The preliminary cell culture studies displayed that SS-PEA films could well support adhesion and proliferation of L929 fibroblast cells, indicating that SS-PEAs have excellent cell compatibility. The nanoparticles prepared from SS-PEA with PVA as a surfactant had an average size of 167 nm in phosphate buffer (PB, 10 mM, pH 7.4). SS-PEA nanoparticles while stable under physiological environment undergo rapid disintegration under an enzymatic or reductive condition. The in vitro drug release studies showed that DOX release was accelerated in the presence of 0.1 mg/mL α-chymotrypsin or 10 mM DTT. Confocal microscopy observation displayed that SS-PEA nanoparticles effectively transported DOX into both drug-sensitive and -resistant MCF-7 cells. MTT assays revealed that DOX-loaded SS-PEA nanoparticles had a high antitumor activity approaching that of free DOX in drug-sensitive MCF-7 cells, while more than 10 times higher than free DOX in drug-resistant MCF-7/ADR cells. These enzymatically and reductively degradable α-amino acid-based poly(ester amide)s have provided an appealing platform for biomedical technology in particular controlled drug delivery applications.
Seifrtova, Marcela; Halesova, Tatana; Sulcova, Klara; Riddellova, Katerina; Erban, Tomas
2017-05-01
Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg -1 imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg -1 treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg -1 imidacloprid treatment. Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Li, Ruilong; Tan, Huadong; Zhu, Yaxian; Zhang, Yong
2017-07-01
The polycyclic aromatic hydrocarbons (PAHs) located on the epidermal tissues showed distinctive toxic effects to root, while the retention and distribution of PAHs on mangrove seedlings poorly understood. Our results confirmed that the partition coefficients (K f ) of the PAHs retained on the epidermal tissue of mangrove roots, such as Kandelia obovata, Avicennia marina and Aegiceras corniculatum, were much higher than the Poaceae plants roots, for example wheat and maize (Wild et al., 2005). Moreover, to the parent and alkyl PAHs, a well negative correlation was observed between the surface polarity of these three species of mangrove root and the K f values (p < 0.05). To the N/O/S containing PAHs, these relationships were not obviously due to existing of the π-π, n-π interactions and hydrogen bonding between the N/O/S-containing PAHs and epidermal tissues. The PAHs retained on these three species of mangrove root epidermal tissues formed larger clusters than that of on Poaceae plants, such as wheat and maize (Wild et al., 2005) due to the limitation of the suberization of the root exodermis and endodermis. After exposure of 30 d, rhizo- and endophytic bacteria degraded parts of the N/O/S-containing PAHs to medium-lifetime fluorescence substances. To our knowledge, this is the first time to assess the retention of PAHs on the epidermal tissue of mangrove root, which will improve our understanding of the root uptake PAHs process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rhythms and outcomes of adult in-hospital cardiac arrest.
Meaney, Peter A; Nadkarni, Vinay M; Kern, Karl B; Indik, Julia H; Halperin, Henry R; Berg, Robert A
2010-01-01
To determine the relationship of electrocardiographic rhythm during cardiac arrest with survival outcomes. Prospective, observational study. Total of 411 hospitals in the National Registry of Cardiopulmonary Resuscitation. Total of 51,919 adult patients with pulseless cardiac arrests from April 1999 to July 2005. Registry data collected included first documented rhythm, patient demographics, pre-event data, event data, and survival and neurologic outcome data. Of 51,919 indexed cardiac arrests, first documented pulseless rhythm was ventricular tachycardia (VT) in 3810 (7%), ventricular fibrillation (VF) in 8718 (17%), pulseless electrical activity (PEA) in 19,262 (37%) and asystole 20,129 (39%). Subsequent VT/VF (that is, VT or VF occurring during resuscitation for PEA or asystole) occurred in 5154 (27%), with first documented rhythm of PEA and 4988 (25%) with asystole. Survival to hospital discharge rate was not different between those with first documented VF and VT (37% each, adjusted odds ratio [OR]) 1.08; 95% confidence interval [CI] 0.95-1.23). Survival to hospital discharge was slightly more likely after PEA than asystole (12% vs. 11%, adjusted OR 1.1; 95% CI 1.00-1.18), Survival to discharge was substantially more likely after first documented VT/VF than PEA/asystole (adjusted OR 1.68; 95% CI 1.55-1.82). Survival to discharge was also more likely after PEA/asystole without subsequent VT/VF compared with PEA/asystole with subsequent VT/VF (14% vs. 7% for PEA without vs. with subsequent VT/VF; 12% vs. 8% for asystole without vs. with subsequent VT/VF; adjusted OR 1.60; 95% CI, 1.44-1.80). Survival to hospital discharge was substantially more likely when the first documented rhythm was shockable rather than nonshockable, and slightly more likely after PEA than asystole. Survival to hospital discharge was less likely following PEA/asystole with subsequent VT/VF compared to PEA/asystole without subsequent VT/VF.
Involvement of Activated Oxygen in Nitrate-Induced Senescence of Pea Root Nodules.
Escuredo, P. R.; Minchin, F. R.; Gogorcena, Y.; Iturbe-Ormaetxe, I.; Klucas, R. V.; Becana, M.
1996-01-01
The effect of short-term nitrate application (10 mM, 0-4 d) on nitrogenase (N2ase) activity, antioxidant defenses, and related parameters was investigated in pea (Pisum sativum L. cv Frilene) nodules. The response of nodules to nitrate comprised two stages. In the first stage (0-2 d), there were major decreases in N2ase activity and N2ase-linked respiration and concomitant increases in carbon cost of N2ase and oxygen diffusion resistance of nodules. There was no apparent oxidative damage, and the decline in N2ase activity was, to a certain extent, reversible. The second stage (>2 d) was typical of a senescent, essentially irreversible process. It was characterized by moderate increases in oxidized proteins and catalytic Fe and by major decreases in antioxidant enzymes and metabolites. The restriction in oxygen supply to bacteroids may explain the initial decline in N2ase activity. The decrease in antioxidant protection is not involved in this process and is not specifically caused by nitrate, since it also occurs with drought stress. However, comparison of nitrate- and drought-induced senescence shows an important difference: there is no lipid degradation or lipid peroxide accumulation with nitrate, indicating that lipid peroxidation is not necessarily involved in nodule senescence. PMID:12226252
Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters 1
Terzaghi, William B.
1989-01-01
This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology. Images Figure 2 PMID:16666997
Laithwaite, James E.; Benn, Sally J.; Yamate, Jyoji; FitzGerald, David J.; LaMarre, Jonathan
1999-01-01
Cellular intoxification by exotoxin A of Pseudomonas aeruginosa (PEA) begins when PEA binds to its cellular receptor, the low-density lipoprotein receptor-related protein (LRP). This receptor is particularly abundant on macrophages. We hypothesize here that inducible changes in cellular expression levels of the LRP represent an important mechanism by which macrophage susceptibility to PEA is regulated by the host. We have examined the effect of lipopolysaccharide (LPS) on LRP expression and PEA sensitivity in the macrophage-like cell line HS-P. Using a [3H]leucine incorporation assay to measure inhibition of protein synthesis, we have demonstrated that HS-P macrophages are highly sensitive to PEA and that PEA toxicity is decreased by the LRP antagonist receptor-associated protein. LPS pretreatment decreases HS-P PEA sensitivity in a time- and dose-dependent manner. The dose of toxin required to inhibit protein synthesis by 50% increased from 11.3 ± 1.2 ng/ml in untreated cells to 25.7 ± 2.0 ng/ml in cells treated with LPS. In pulse experiments, involving brief exposure to saturating concentrations of PEA, [3H]leucine incorporation was more than threefold higher in cells pretreated with LPS than in untreated macrophages. These changes in HS-P PEA sensitivity following LPS treatment were consistently associated with a fivefold decrease in HS-P LRP mRNA expression as measured by Northern blot analysis and a three-and-a-half-fold decrease in HS-P LRP-specific ligand internalization as determined by activated α2-macroglobulin internalization studies. These data demonstrate for the first time that modulation of LRP levels by extracellular signaling molecules can alter cellular PEA sensitivity. PMID:10531236
Nitroxyl radical incorporated electrospun biodegradable poly(ester Amide) nanofiber membranes.
Li, Lei; Chu, Chih-Chang
2009-01-01
Biodegradable amino-acid-based poly(ester amide) (PEA) ultra-fine fibers pre-loaded with a nitroxyl radical model compound, 4-amino-2.2.6.6-tetramethylpiperidine-1-oxy (4-amino-TEMPO), were prepared by electrospinning. The fiber size and morphology were shown to be greatly affected by the composition ratio of the solvent mixture (chloroform to DMF) prepared for electrospinning. Nano-size PEA fibers (approx. 640 nm) were obtained when PEA dope was electrospun from the chloroform/DMF solvent mixture at a volume ratio of 2 to 1 vs. 3.5 mum size PEA fibers obtained from chloroform-based electrospun dope. Due to the low glass transition temperature and completely amorphous structures, the PEA electrospun fibrous membranes gradually lost their fiber characteristic during 1 month incubation in PBS buffer at 37 degrees C. The glass transition temperature and heat of fusion of PEA electrospun fibers increased with an increasing incubation time and the most significant change occurred in the first day of incubation in PBS. A sustained release of 4-amino-TEMPO from the electrospun PEA nanofiber membranes was observed over the 1-month incubation period in PBS buffer at 37 degrees C and 38% of the incorporated 4-amino-TEMPO (initial loading level 10 mg/g PEA fibers) was released in one month. During this 1 month incubation in PBS buffer, there were only 1.2% weight loss and 11.7% molecular weight reduction for the electrospun PEA fibrous membranes. In an alpha-chymotrypsin medium (0.1 mg/ml PBS), however, the same electrospun PEA fibrous membranes showed more than 80% weight loss within 6 days and a complete release of encapsulated 4-amino-TEMPO within 5 days.
Escribano-Subías, P; Del Pozo, R; Román-Broto, A; Domingo Morera, J A; Lara-Padrón, A; Elías Hernández, T; Molina-Ferragut, L; Blanco, I; Cortina, J; Barberà, J A
2016-01-15
The Spanish "Registry of Pulmonary Arterial Hypertension" (REHAP), started in 2007, includes chronic thromboembolic hypertension (CTEPH) patients. Based on data provided by this registry and retrospective data from patients diagnosed during 2006 (≤ 12 months since the registry was created), clinical management and long-term outcomes of CTEPH patients are analyzed nationwide for the first time in a scenario of a decentralized organization model of CTEPH management. A total of 391 patients (median [Q1:Q3] age 63.7 [48.0;73.3] years, 58% females) with CTEPH included during the period January 1, 2006-December 31, 2013 in the REHAP registry were analyzed. Rate of pulmonary endarterectomy (PEA) was 31.2%, and highly asymmetric among centers: rate was 47.9% at two centers designated as CTEPH expert centers, while it was 4.6% in other centers. Among patients not undergoing PEA, 82% were treated with therapies licensed for pulmonary arterial hypertension (PAH). Five-year survival rate was 86.3% for PEA patients, and 64.9% for non-PEA patients. Among non-PEA patients, presenting proximal lesions (42% of non-referred patients) was associated with a 3-fold increase in mortality. PEA patients achieved significantly better hemodynamic and clinical outcomes at one-year follow-up compared to non-PEA patients. Patients not being referred for PEA assessment were older and had a worse functional capacity. Older age was the most deterrent factor for non-operability. Despite the increase in diagnosis and expertise in PEA-specialized centers, an important percentage of patients do not benefit of PEA in a decentralized organization model of CTEPH management. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Laudadio, V; Nahashon, S N; Tufarelli, V
2012-11-01
This study was conducted to evaluate the effect of substitution of soybean meal (SBM) with dehulled-micronized peas (Pisum sativum) in diets of guinea fowl broilers on their growth performance, carcass yields, and fatty acid composition of meat. One hundred forty 1-d-old guinea fowl keets were randomly assigned to 2 dietary treatments, which were fed from hatch to 12 wk. The birds were fed 2 wheat middling-based diets comprising a control diet, which contained SBM (78 g/kg) and a test diet containing dehulled-micronized peas (180 g/kg) as the main protein source. The substitution of SBM with peas had no adverse effect on growth performance, dressing percentage, or breast and thigh muscle relative weights of the guinea broilers. However, a reduction of abdominal fat content (P < 0.05) was observed in birds fed the pea diet compared with the control. Breast and thigh meat of birds fed the pea diet had higher lightness scores (P < 0.05) and water-holding capacity (P < 0.01) than the control. Meat from guinea fowls fed the pea diet had less cholesterol (P < 0.01) and lipids (P < 0.05), and higher concentrations of phospholipids (P < 0.05). Feeding peas increased polyunsaturated fatty acid concentration in breast and thigh muscles, and decreased the saturated fatty acid concentration. Feeding the pea diet also lowered the n-6/n-3 polyunsaturated fatty acid ratio of the guinea broiler muscles. Our results suggest that replacing the conventional SBM as the protein source with dehulled-micronized pea meal in diets of guinea fowls broilers can improve carcass quality and favorable lipid profile without adversely affecting growth performance traits.
Improved rooting of western white pine shoots from tissue cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amerson, H.V.; Mott, R.L.
1982-01-01
Adventitious shoots of Pinus monticola obtained from embryonic tissue were exposed to 4 combinations of growth regulators (6-benzylaminopurine/NAA/IAA/IBA), either continuously for 6 weeks or by pulse treatment for 7 days, followed by 5 weeks culture without growth regulators. After 6 weeks of continuous exposure, rooting of shoots varied between 0 and 20%. Pulse treatment resulted in 40-64% rooting. In paired comparisons pulse treatments always provided better rooting percentages than did constant exposure treatments. Pulse treatments also produced longer (less than 2 mm) roots and more multiple roots.
... such as kidney beans, black beans, pinto beans, black-eyed peas, split peas, and garbanzo beans Starchy vegetables, such as potatoes, corn, green peas, and parsnips Whole grains, such as brown rice, oats, barley, and quinoa Refined grains, such as ...
The relationship between water binding and desiccation tolerance in tissues
NASA Technical Reports Server (NTRS)
Vertucci, C. W.; Leopold, A. C.
1987-01-01
In an effort to define the nature of desiccation tolerance, a comparison of the water sorption characteristics was made between tissues that were resistant and tissues that were sensitive to desiccation. Water sorption isotherms were constructed for germinated and ungerminated soybean axes and also for fronds of several species of Polypodium with varying tolerance to dehydration. The strength of water binding was determined by van't Hoff as well as D'Arcy/Watt analyses of the isotherms at 5, 15, and/or 25 degrees C. Tissues which were sensitive to desiccation had a poor capacity to bind water tightly. Tightly bound water can be removed from soybean and pea seeds by equilibration at 35 degrees C over very low relative humidities; this results in a reduction in the viability of the seed. We suggest that region 1 water (i.e. water bound with very negative enthalpy values) is an important component of desiccation tolerance.
Bystrowska, Beata; Smaga, Irena; Frankowska, Małgorzata; Filip, Małgorzata
2014-04-03
Preclinical investigations have demonstrated that drugs of abuse alter the levels of lipid-based signalling molecules, including endocannabinoids (eCBs) and N-acylethanolamines (NAEs), in the rodent brain. In addition, several drugs targeting eCBs and/or NAEs are implicated in reward and/or seeking behaviours related to the stimulation of dopamine systems in the brain. In our study, the brain levels of eCBs (anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and NAEs (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)) were analyzed via an LC-MS/MS method in selected brain structures of rats during cocaine self-administration and after extinction training according to the "yoked" control procedure. Repeated (14days) cocaine (0.5mg/kg/infusion) self-administration and yoked drug delivery resulted in a significant decrease (ca. 52%) in AEA levels in the cerebellum, whereas levels of 2-AG increased in the frontal cortex, the hippocampus and the cerebellum and decreased in the hippocampus and the dorsal striatum. In addition, we detected increases (>150%) in the levels of OEA and PEA in the limbic areas in both cocaine treated groups, as well as an increase in the tissue levels of OEA in the dorsal striatum in only the yoked cocaine group and increases in the tissue levels of PEA in the dorsal striatum (both cocaine groups) and the nucleus accumbens (yoked cocaine group only). Compared to the yoked saline control group, extinction training (10days) resulted in a potent reduction in AEA levels in the frontal cortex, the hippocampus and the nucleus accumbens and in 2-AG levels in the hippocampus, the dorsal striatum and the cerebellum. The decreases in the limbic and subcortical areas were more apparent for rats that self-administered cocaine. Following extinction, there was a region-specific change in the levels of NAEs in rats previously injected with cocaine; a potent increase (ca. 100%) in the levels of OEA and PEA was detected in the prefrontal cortex and the hippocampus, whilst a drop was noted in the striatal areas versus yoked saline yoked animals. Our findings support the previous pharmacological evidence that the eCB system and NAEs are involved in reinforcement and extinction of positively reinforced behaviours and that these lipid-derived molecules may represent promising targets for the development of new treatments for drug addiction. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Scott, A; Tsai, Chung-jui; Lindroth, Richard, L
The project set out to use comparative (genotype and treatment) and transgenic approaches to investigate the determinants of condensed tannin (CT) accrual and chemical variability in Populus. CT type and amount are thought to effect the decomposition of plant detritus in the soil, and thereby the sequestering of carbon in the soil. The stated objectives were: 1. Genome-wide transcriptome profiling (microarrays) to analyze structural gene, transcription factor and metabolite control of CT partitioning; 2. Transcriptomic (microarray) and chemical analysis of ontogenetic effects on CT and PG partitioning; and 3. Transgenic manipulation of flavonoid biosynthetic pathway genes to modify the controlmore » of CT composition. Objective 1: A number of approaches for perturbing CT content and chemistry were tested in Objective 1, and those included nitrogen deficit, leaf wounding, drought, and salicylic acid spraying. Drought had little effect on CTs in the genotypes we used. Plants exhibited unpredictability in their response to salicylic acid spraying, leading us to abandon its use. Reduced plant nitrogen status and leaf wounding caused reproducible and magnitudinally striking increases in leaf CT content. Microarray submissions to NCBI from those experiments are the following: GSE ID 14515: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 1979. Public on Jan 04, 2010; Contributor(s) Harding SA, Tsai C GSE ID 14893: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 3200. Public on Feb 19, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16783 Wound-induced gene expression changes in Populus: 1 week; clone RM5. Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16785 Wound-induced gene expression changes in Populus: 90 hours; clone RM5 Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C Although CT amount changed in response to treatments, CT composition was essentially conserved. Overall phenylpropanoid composition exhibited changes due to large effects on phenolic glycosides containing a salicin moiety. There were no effects on lignin content. Efforts to publish this work continue, and depend on additional data which we are still collecting. This ongoing work is expected to strengthen our most provocative metabolic profiling data which suggests as yet unreported links controlling the balance between the two major leaf phenylpropanoid sinks, the CTs and the salicin-PGs. Objective 2: Ontogenic effects on leaf CT accrual and phenylpropanoid complexity (Objective 2) have been reported in the past and we contributed two manuscripts on how phenylpropanoid sinks in roots and stems could have an increasing effect on leaf CT as plants grow larger and plant proportions of stem, root and leaf change. Tsai C.-J., El Kayal W., Harding S.A. (2006) Populus, the new model system for investigating phenylpropanoid complexity. International Journal of Applied Science and Engineering 4: 221-233. We presented evidence that flavonoid precursors of CT rapidly decline in roots under conditions that favor CT accrual in leaves. Harding SA, Jarvie MM, Lindroth RL, Tsai C-J (2009) A comparative analysis of phenylpropanoid metabolism, N utilization and carbon partitioning in fast- and slow-growing Populus hybrid clones. Journal of Experimental Botany. 60:3443-3452. We presented evidence that nitrogen delivery to leaves as a fraction of nitrogen taken up by the roots is lower in high leaf CT genotypes. We presented a hypothesis from our data that N was sequestered in proportion to lignin content in stem tissues. Low leaf N content and high leaf CT in genotypes with high stem lignin was posited to be a systemic outcome of N demand in lignifiying stem tissues. Thereby, stem lignin and leaf CT accrual might be systemically linked, placing control of leaf phenylpropanoids under systemic rather than solely organ specific determinants. Analyses of total structural and non-structural carbohydrates contributed to the model presented. Harding SA, Xue L, Du L, Nyamdari B, Sykes R, Davis M, Lindroth RL, Tsai CJ (submitted March 2013) Condensed tannin biosynthesis in leaves conditions carbon use, defense and growth in Populus. (Invited submission to Tree Physiology) MS abstract: Condensed tannins (CT) are flavonoid end products that can comprise a large fraction of leaf, bark and root biomass in Populus species. CT accrual was investigated in relation to metabolic carbon and nitrogen use in young leaves and shoot tips (ST) where CT biosynthesis was most active. A slow-growing genotype (SG) and a fast-growing genotype (FG) were compared. Both genotypes exhibited the capacity to accrue similarly large reserves of salicortin a phenolic glycoside (PG), but the slow-growing line also produced CT. PG accrual was developmentally delayed in the slow-growing line, SG. Irrigation with low-N nutrients promoted PG accrual in FG plants, but PG accrual was suspended in CT-producing SG plants. In addition, the low C:N amide asparagine accumulated and glucose was depleted in ST and expanding leaves of SG plants. The monoamine phenylethylamine (PEA) was abundant in SG leaves and absent in FG leaves. Leaf metabolite and gene expression differences were observed between SG and FG that would be expected to impinge upon glycolysis, acetyl-CoA production and flavonoid production. A model that integrates PEA with those activities and CT accrual was developed. Briefly, the data support a model in which flavonoid biosynthesis depleted the acetyl-CoA pool, thereby promoting glycolytic and shikimic pathway fluxes in SG plants. PEA results from decarboxylation of the shikimic pathway end-product phenylalanine, and is proposed to have facilitated CT polymerization, thereby promoting the continued biosynthesis of flavonoid CT precursors in SG leaves. The leaf differentials described here were absent in young roots, as was PEA. The potential contribution of PEA to CT polymerization constituted a metabolic carbon drain in developing leaves that was not observed in the roots. We propose that PEA, in addition to other factors, including flavonoid pathway Myb transcription factors, is an important contributor to carbon management and plant defense in Populus. Objective 3: From work related to the first two objectives, it appeared that CT chemistry, at least in terms of the proportions of mono, di and tri hydroxylation at the phenylpropanoid-derived B-ring, changed little if at all when CT accrual per unit time was increased. A large number of transgenic Populus plants with alterations in the expression of flavonoid pathway genes and the potential to produce B-ring, chemically altered CT were generated during the project. Transgenic lines of Populus tremula Michx. Populus alba L. clone 717-1B4, a low CT producer, were produced that over- or under-express several mid and late flavonoid pathway genes including dihydroxyflavonol reductase (DFR-2 isoforms), leucoanthocyanidin reductase (LAR-3 isoforms), anthocyanidin reductase (ANR-2 isoforms), flavonol synthase (FLS-2 isoforms). A large number of additional transformation constructs (chalcone synthases, flavone synthases, and flavanol hydroxylases) were developed that failed to result in transgenic plants. We have purified CT from several of the successful lines and have obtained evidence from pyrolysis GC-MS that CT chemical composition was altered in transgenic lines harboring overexpression constructs for one of the two DFR isoforms. We have also observed increased CT levels in leaves of those lines, but the increases vary substantially in magnitude from experiment to experiment which has led to ongoing efforts to understand the variation before attempting to publish the findings. Preliminary results from some of the transgenic work were presented: An C*, Luo K, El Kayal W, Harding SA, Tsai C-J (2009) Transgenic manipulation of condensed tannins in Populus. IUFRO Tree Biotechnology Conference, Whistler, BC, Canada Work on the design of some of the constructs for the CT transgenics work has been published: Luo K, Harding SA, Tsai C-J (2008) A modified T-vector for simplified assembly of hairpin RNAi constructs. Biotechnology Letters 30: 1271-1274. DOE support from this project was also acknowledged in a book chapter: Douglas CJ, Ehlting J, Harding SA (2009) Phenylpropanoid and Phenolic Metabolism in Populus: Gene Family Structure and Comparative and Functional Genomics In Joshi, C.P., and S.P. DiFazio (eds). Genetics, Genomics and Breeding of Crop Plants: Poplar. Science Publishers, Enfield, New Hampshire. Pp. 304-326 Other work directly related to and supported in part by this project include: Qin H, Feng T, Harding SA, Tsai C-J, Zhang S (2008) An efficient method to identify differentially expressed genes in microarray experiments. Bioinformatics 24: 1583-1589. Tsai C-J, Ranjan P, DiFazio SP, Tuskan GA, Johnson V (2011) Poplar genome microarrays. In: Joshi CP, DiFazio SP and Kole C (eds), Genetics, Genomics and Breeding of Poplars. Science Publishers, Enfield, NH. pp. 112-127. Street N, Tsai C-J (2010) Populus resources and bioinformatics. In: Jansson S, Bhalerao R, and Groover AT (eds), Genetics and Genomics of Populus. Plant Genetics and Genomics: Crops and Models book series. Springer, New York, pp. 135-152.« less
Hood-Niefer, Shannon D; Warkentin, Thomas D; Chibbar, Ravindra N; Vandenberg, Albert; Tyler, Robert T
2012-01-15
The effects of genotype and environment and their interaction on the concentrations of starch and protein in, and the amylose content and thermal and pasting properties of starch from, pea and fababean are not well known. Differences due to genotype were observed in the concentrations of starch and protein in pea and fababean, in the onset temperature (To) and peak temperature (Tp) of gelatinization of fababean starch, and in the pasting, trough, cooling and final viscosities of pea starch and fababean starch. Significant two-way interactions (location × genotype) were observed for the concentration of starch in fababean and the amylose content, To, endothermic enthalpy of gelatinization (ΔH) and trough viscosity of fababean starch. Significant three-way interactions (location × year × genotype) were observed for the concentration of starch in pea and the pasting, trough, cooling and final viscosities of pea starch. Differences observed in the concentrations of starch and protein in pea and fababean were sufficient to be of practical significance to end-users, but the relatively small differences in amylose content and physicochemical properties of starch from pea and fababean were not. Copyright © 2011 Society of Chemical Industry.
Muccioli, Giulio G.; Sia, Angela; Muchowski, Paul J.; Stella, Nephi
2009-01-01
Background Lipids can act as signaling molecules, activating intracellular and membrane-associated receptors to regulate physiological functions. To understand how a newly discovered signaling lipid functions, it is necessary to identify and characterize the enzymes involved in their production and inactivation. The signaling lipid N-palmitoylethanolamine (PEA) is known to activate intracellular and membrane-associated receptors and regulate physiological functions, but little is known about the enzymes involved in its production and inactivation. Principal Findings Here we show that Saccharomyces cerevisiae produce and inactivate PEA, suggesting that genetic manipulations of this lower eukaryote may be used to identify the enzymes involved in PEA metabolism. Accordingly, using single gene deletion mutants, we identified yeast genes that control PEA metabolism, including SPO14 (a yeast homologue of the mammalian phospholipase D) that controls PEA production and YJU3 (a yeast homologue of the mammalian monoacylglycerol lipase) that controls PEA inactivation. We also found that PEA metabolism is affected by heterologous expression of two mammalian proteins involved in neurodegenerative diseases, namely huntingtin and α-synuclein. Significance Together these findings show that forward and reverse genetics in S. cerevisiae can be used to identify proteins involved in PEA production and inactivation, and suggest that mutated proteins causing neurodegenerative diseases might affect the metabolism of this important signaling lipid. PMID:19529773
Martín-Sanz, Alberto; de la Vega, Marcelino Pérez; Murillo, Jesús; Caminero, Constantino
2013-07-01
Pseudomonas syringae pv. syringae causes extensive yield losses in the pea crop worldwide, although there is little information on its host specialization and its interactions with pea. A collection of 88 putative P. syringae pv. syringae strains (including 39 strains isolated from pea) was characterized by repetitive polymerase chain reaction (rep-PCR), multilocus sequence typing (MLST), and syrB amplification and evaluated for pathogenicity and virulence. rep-PCR data grouped the strains from pea into two groups (1B and 1C) together with strains from other hosts; a third group (1A) was formed exclusively with strains isolated from non-legume species. MLST data included all strains from pea in the genomospecies 1 of P. syringae pathovars defined in previous studies; they were distributed in the same three groups defined by rep-PCR. The inoculations performed in two pea cultivars showed that P. syringae pv. syringae strains from groups 1A and 1C were less virulent than strains from group 1B, suggesting a possible pathogenic specialization in this group. This study shows the existence of genetically and pathogenically distinct P. syringae pv. syringae strain groups from pea, which will be useful for the diagnostic and epidemiology of this pathogen and for disease resistance breeding.
Giger-Reverdin, Sylvie; Maaroufi, Chiraze; Chapoutot, Patrick; Peyronnet, Corinne; Sauvant, Daniel
2014-01-01
In ruminant nutrition, peas are characterized by high protein solubility and degradability, which impair its protein value estimated by the official in situ method. Grinding can be used as a technological treatment of pea seeds to modify their nutritional value. The aim of this study was to compare the in situ method with an in vitro method on the same pea either in a coarse pea flour form (PCF) or in a ground pea fine flour form (PFF) to understand the effect of grinding. Both forms were also reground (GPCF and GPFF). PCF presented a lower rate of in vitro degradation than PFF, and more stable fermentation parameters (pH, ammonia, soluble carbohydrates) even if gas production was higher for the PCF after 48 h of incubation. In situ dry matter and protein degradation were lower for PCF than those for PFF; these differences were more marked than with the in vitro method. Reground peas were very similar to PFF. The values for pea protein digestible in the intestine (PDI) were higher for PCF than those for PFF. This study points out the high sensitivity of the in situ method to grinding. The study needs to be validated by in vivo measurements. PMID:25473488
Bertolino, Bartolomeo; Crupi, Rosalia; Impellizzeri, Daniela; Bruschetta, Giuseppe; Cordaro, Marika; Siracusa, Rosalba; Esposito, Emanuela; Cuzzocrea, Salvatore
2017-01-01
Autism spectrum disorder (ASD) is a condition defined by social communication deficits and repetitive restrictive behaviors. Association of the fatty acid amide palmitoylethanolamide (PEA) with the flavonoid luteolin displays neuroprotective and antiinflammatory actions in different models of central nervous system pathologies. We hypothesized that association of PEA with luteolin might have therapeutic utility in ASD, and we employed a well-recognized autism animal model, namely sodium valproate administration, to evaluate cognitive and motor deficits. Two sets of experiments were conducted. In the first, we investigated the effect of association of ultramicronized PEA with luteolin, co-ultramicronized PEA-LUT® (co-ultraPEA-LUT®) in a murine model of autistic behaviors, while in the second, the effect of co-ultraPEA-LUT® in a patient affected by ASD was examined. Co-ultraPEA-LUT® treatment ameliorated social and nonsocial behaviors in valproic acid-induced autistic mice and improved clinical picture with reduction in stereotypes in a 10-year-old male child. These data suggest that ASD symptomatology may be improved by agents documented to control activation of mast cells and microglia. Co-ultraPEA-LUT® might be a valid and safe therapy for the symptoms of ASD alone or in combination with other used drugs. © 2016 John Wiley & Sons Ltd.
Roviezzo, Fiorentina; Rossi, Antonietta; Caiazzo, Elisabetta; Orlando, Pierangelo; Riemma, Maria A.; Iacono, Valentina M.; Guarino, Andrea; Ialenti, Armando; Cicala, Carla; Peritore, Alessio; Capasso, Raffaele; Di Marzo, Vincenzo; Izzo, Angelo A.
2017-01-01
One important risk factor for the development of asthma is allergen sensitization. Recent increasing evidence suggests a prominent role of mast cells in asthma pathophysiology. Since Palmitoylethanolamide (PEA), an endogenous lipid mediator chemically related to – and co-released with- the endocannabinoid anandamide, behaves as a local autacoid down-regulator of mast cell activation and inflammation, we explored the possible contribution of PEA in allergic sensitization, by using ovalbumin (OVA) as sensitizing agent in the mouse. PEA levels were dramatically reduced in the bronchi of OVA-treated animals. This effect was coupled to a significant up-regulation of CB2 and GPR55 receptors, two of the proposed molecular PEA targets, in bronchi harvested from allergen-sensitized mice. PEA supplementation (10 mg/kg, 15 min before each allergen exposure) prevented OVA-induced bronchial hyperreactivity, but it did not affect IgE plasma increase. On the other hand, PEA abrogated allergen-induced cell recruitment as well as pulmonary inflammation. Evaluation of pulmonary sections evidenced a significant inhibitory action of PEA on pulmonary mast cell recruitment and degranulation, an effect coupled to a reduction of leukotriene C4 production. These findings demonstrate that allergen sensitization negatively affects PEA bronchial levels and suggest that its supplementation has the potential to prevent the development of asthma-like features. PMID:29311913
Redlich, Sandra; Ribes, Sandra; Schütze, Sandra; Nau, Roland
2014-06-14
Palmitoylethanolamide (PEA), an endogenous lipid and a congener of anandamide, possesses a wide range of effects related to metabolic and cellular homeostasis including anti-inflammatory and neuroprotective properties. In vitro, we studied the ability of macrophages to phagocytose Escherichia coli K1 after stimulation with increasing doses of PEA. In vivo, wild-type mice were treated with PEA intraperitoneally 12 hours and 30 minutes before infection. Meningoencephalitis or sepsis was induced by intracerebral or intraperitoneal infection with E. coli K1. Stimulation of macrophages with PEA for 30 minutes increased the phagocytosis of E. coli K1 without inducing the release of TNFα or CXCL1. Intracellular killing of E. coli K1 was higher in PEA-stimulated than in unstimulated peritoneal macrophages and microglial cells. Pre-treatment with PEA significantly increased survival of mice challenged intracerebrally or intraperitoneally with E. coli K1. This effect was associated with a decreased production of CXCL1, IL-1β and IL-6 in homogenates of spleen and cerebellum in mice treated with PEA. Our observations suggest that these protective effects of PEA in mice can increase the resistance to bacterial infections without the hazard of collateral damage by excessive stimulation of phagocytes.
Control of storage-protein synthesis during seed development in pea (Pisum sativum L.).
Gatehouse, J A; Evans, I M; Bown, D; Croy, R R; Boulter, D
1982-01-01
The tissue-specific syntheses of seed storage proteins in the cotyledons of developing pea (Pisum sativum L.) seeds have been demonstrated by estimates of their qualitative and quantitative accumulation by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and rocket immunoelectrophoresis respectively. Vicilin-fraction proteins initially accumulated faster than legumin, but whereas legumin was accumulated throughout development, different components of the vicilin fraction had their predominant periods of synthesis at different stages of development. The translation products in vitro of polysomes isolated from cotyledons at different stages of development reflected the synthesis in vivo of storage-protein polypeptides at corresponding times. The levels of storage-protein mRNA species during development were estimated by 'Northern' hybridization using cloned complementary-DNA probes. This technique showed that the levels of legumin and vicilin (47000-Mr precursors) mRNA species increased and decreased in agreement with estimated rates of synthesis of the respective polypeptides. The relative amounts of these messages, estimated by kinetic hybridization were also consistent. Legumin mRNA was present in leaf poly(A)+ RNA at less than one-thousandth of the level in cotyledon poly(A)+ (polyadenylated) RNA, demonstrating tissue-specific expression. Evidence is presented that storage-protein mRNA species are relatively long-lived, and it is suggested that storage-protein synthesis is regulated primarily at the transcriptional level. Images Fig. 2. Fig. 3. PMID:6897609
Intramuscular fatty acid composition of lambs fed diets containing alternative protein sources.
Scerra, M; Caparra, P; Foti, F; Cilione, C; Zappia, G; Motta, C; Scerra, V
2011-03-01
Thirty male Merinizzata italiana lambs were divided into three groups after weaning according to live weight. The diet of the three groups differed in the main protein source used in the concentrate, soybean meal for treatment SBM, faba bean for treatment FB and peas for treatment PEA. Lambs were fed ad libitum and slaughtered at about 160 days of age. Meat from the PEA group had higher proportions of the essential fatty acids C18:2 ω-6 and C18:3 ω-3 than from FB and SBM lambs and consequently its derivatives, C20:4 ω-6 and C20:5 ω-3 respectively, were higher in meat from PEA animals, compared to SBM and FB ones. The total n-3 fatty acids were highest in meat from PEA lambs and consequently PEA lambs showed a more favourable n-6/n-3 ratio. In conclusion the use of legume seeds such as peas in lamb diets positively affected intramuscular fatty acid composition. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Shen, J Y; Ma, Q; Yang, Z B; Gong, J J; Wu, Y S
2017-09-20
Objective: To observe the effects of arnebia root oil on wound healing of rats with full-thickness skin defect, and to explore the related mechanism. Methods: Eighty SD rats were divided into arnebia root oil group and control group according to the random number table, with 40 rats in each group, then full-thickness skin wounds with area of 3 cm×3 cm were inflicted on the back of each rat. Wounds of rats in arnebia root oil group and control group were treated with sterile medical gauze and bandage package infiltrated with arnebia root oil gauze or Vaseline gauze, respectively, with dressing change of once every two days. On post injury day (PID) 3, 7, 14, and 21, 10 rats in each group were sacrificed respectively for general observation and calculation of wound healing rate. The tissue samples of unhealed wound were collected for observation of histomorphological change with HE staining, observation of expressions of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) with immunohistochemical staining, and determination of mRNA expressions of VEGF and bFGF with real time fluorescent quantitive reverse transcription polymerase chain reaction. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) On PID 3, there were a few secretions in wounds of rats in the two groups. On PID 7, there were fewer secretions and more granulation tissue in wounds of rats in arnebia root oil group, while there were more secretions and less granulation tissue in wounds of rats in control group. On PID 14, most of the wounds of rats in arnebia root oil group were healed and there was much red granulation tissue in unhealed wounds, while part of wounds of rats in control group was healed and there were a few secretions and less granulation tissue in unhealed wounds. On PID 21, wounds of rats in arnebia root oil group were basically healed, while there were still some unhealed wounds of rats in control group. (2) On PID 3 and 7, the wound healing rates of rats in arnebia root oil group were (39±5)% and (46±4)% respectively, which were close to (34±3)% and (44±4)% of rats in control group (with t values respectively 0.807 and 0.481, P values above 0.05). On PID 14 and 21, the wound healing rates of rats in arnebia root oil group were (76±4)% and (90±3)% respectively, which were significantly higher than (60±6)% and (73±5)% of rats in control group (with t values respectively 2.308 and 3.072, P <0.05 or P <0.01). (3) On PID 3, 7, and 14, granulation tissue, fibroblasts, and nascent capillaries in unhealed wound tissue of rats in the two groups both gradually increased, and more ranulation tissue, fibroblasts, and nascent capillaries were seen in unhealed wound tissue of rats in arnebia root oil group. On PID 21, granulation tissue, fibroblasts, and nascent capillaries in unhealed wound tissue of rats in the two groups both gradually decreased. (4) On PID 3, 7, and 14, the numbers of VEGF positive cells and bFGF positive cells in unhealed wound tissue of rats in the two groups both gradually increased; there were more VEGF positive cells and bFGF positive cells in unhealed wound tissue of rats in arnebia root oil group than those in control group. On PID 21, positive expressions of VEGF and bFGF both decreased in unhealed wound tissue of rats in the two groups. (5) On PID 3, 7, and 14, mRNA expressions of VEGF in unhealed wound tissue of rats in arnebia root oil group were higher than those of control group (with t values from 2.967 to 4.173, P values below 0.01). On PID 21, mRNA expression of VEGF in unhealed wound tissue of rats in arnebia root oil group was lower than that of control group ( t =-4.786, P <0.001). From PID 3 to 21, mRNA expressions of bFGF in unhealed wound tissue of rats in arnebia root oil group were higher than those of control group (with t values from 2.326 to 4.702, P <0.05 or P <0.01). Conclusions: Arnebia root oil can promote wound healing of rats with full-thickness skin defect, which may relate to increasing expressions of VEGF and bFGF.
Structure of the Developing Pea Seed Coat and the Post‐phloem Transport Pathway of Nutrients
VAN DONGEN, JOOST T.; AMMERLAAN, ANKIE M. H.; WOUTERLOOD, MADELEINE; VAN AELST, ADRIAAN C.; BORSTLAP, ADRIANUS C.
2003-01-01
An important function of the seed coat is to deliver nutrients to the embryo. To relate this function to anatomical characteristics, the developing seed coat of pea (Pisum sativum L.) was examined by light‐ and cryo‐scanning electron microscopy (cryo‐SEM) from the late pre‐storage phase until the end of seed filling. During this time the apparently undifferentiated seed coat tissues evolve into the epidermal macrosclereids, the hypodermal hourglass cells, chlorenchyma, ground parenchyma and branched parenchyma. Using the fluorescent symplast tracer 8‐hydroxypyrene‐1,3,6‐trisulfonic acid, it could be demonstrated that solutes imported by the phloem move into the chlorenchyma and ground parenchyma, but not into the branched parenchyma. From a comparison with literature data of common bean (Phaseolus vulgaris L.) and broad bean (Vicia faba L.), it is concluded that in the three species different parenchyma layers, but not the branched parenchyma, may be involved in the post‐phloem symplasmic transport of nutrients in the seed coat. In pea, the branched parenchyma dies during the storage phase, and its cell wall remnants then form the boundary layer between the living seed coat parenchyma cells and the cotyledons. Using cryo‐SEM, clear images were obtained of this boundary layer which showed that many intracellular spaces in the seed coat parenchyma are filled with an aqueous solution. This is suggested to facilitate the diffusion of nutrients from the site of unloading towards the cotyledons. PMID:12714370
Haga, Ken; Iino, Moritoshi
2006-01-01
The relationships between the distribution of the native auxin indole-3-acetic acid (IAA) and tropisms in the epicotyl of red light-grown pea (Pisum sativum L.) seedlings have been investigated. The distribution measurement was made in a defined zone of the third internode, using (3)H-IAA applied from the plumule as a tracer. The tropisms investigated were gravitropism, pulse-induced phototropism, and time-dependent phototropism. The investigation was extended to the phase of autostraightening (autotropism) that followed gravitropic curvature. It was found that IAA is asymmetrically distributed between the two halves of the zone, with a greater IAA level occurring on the convex side, at early stages of gravitropic and phototropic curvatures. This asymmetry was found in epidermal peels and, except for one case (pulse-induced phototropism), no asymmetry was detected in whole tissues. It was concluded, in support of earlier results, that auxin asymmetry mediates gravitropism and phototropism and that the epidermis or peripheral cell layers play an important role in the establishment of auxin asymmetry in pea epicotyls. During autostraightening, which results from a reversal of growth asymmetry, the extent of IAA asymmetry was reduced, but its direction was not reversed. This result demonstrated that autostraightening is not regulated through auxin distribution. In this study, the growth on either side of the investigated zone was also measured. In some cases, the measured IAA distribution could not adequately explain the local growth rate, necessitating further detailed investigation.
Guo, Oingfa; Li, Xiaolu; Yang, Yi; Wei, Jing; Zhao, Qian; Luo, Feng; Qian, Zhiyong
2014-02-01
Use of single chemotherapy agents has shown some limitations in anti-tumor treatment, such as development of drug resistance, severe adverse reactions and limited regime for therapeutic use. Combination of two or more therapeutic drugs is a feasible strategy to overcome these limitations. This paper reports study of co-delivery by core-shell nanoparticles (NPs) with hydrophobic PLLA core loaded with curcumin (Cur) and hydrophilic heparin shell adsorbing Doxorubicin (DOX). Characterizations of Cur-PEA NPs, Cur-PEA/heparin NPs and DOX adsorbing into Cur-PEA/heparin NPs (DOX-Cur NPs) were also investigated by transmission electron microscope (TEM) and Malvern Zetasizer. Studies on cellular uptake of DOX-Cur NPs demonstrated that both drugs were effectively taken up by 4T1 tumor cells. Furthermore, DOX-Cur NPs suppressed 4T1 tumor cells growth more efficiently than either DOX or Cur alone at the same concentrations, as measured by flow cytometry (FCM). We found out that intravenous injection of DOX-Cur NPs efficiently inhibited growth of subcutaneous 4T1 breast carcinoma in vivo (p < 0.01) and prolonged survival of the treated 4T1 breast carcinoma mice. Moreover, the pathological damage to the cardiac tissue in mice treated with DOX-Cur NPs was significantly less severe than that of mice treated with free DOX. This study suggested that DOX-Cur NPs may have promising applications in breast carcinoma therapy.
Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium.
Smiri, Moêz; Chaoui, Abdelilah; El Ferjani, Ezzedine
2009-02-15
Seeds of pea (Pisum sativum L.) were germinated for 5d by soaking in distilled water or 5mM cadmium nitrate. The relationships among cadmium stress, germination rate, changes in respiratory enzyme activities and carbohydrates mobilization were studied. Two cell fractions were obtained from embryonic axis: (1) mitochondria, used to determine enzyme activities of citric acid cycle and electron transport chain, and (2) soluble, to measure some enzyme activities involved in fermentation and pentose phosphate pathway. Activities of malate- and succinate-dehydrogenases (MDH, SDH) and NADH- and succinate-cytochrome c reductases (NCCR, SCCR) were rapidly inhibited, while cytochrome c oxidase (CCO) was unaltered by cadmium treatment. However, this stimulated the NADPH-generating enzyme activities of the pentose phosphate pathway, glucose-6-phosphate- and 6-phosphogluconate-dehydrogenases (G6PDH, 6PGDH), as well as enzyme activity of fermentation, alcohol dehydrogenase (ADH), with concomitant inhibition in the capacity of enzyme inactivator (INADH). Moreover, Cd restricted carbohydrate mobilization in the embryonic axis. Almost no glucose and less than 7% of control fructose and total soluble sugars were available in the embryo tissues after 5d of exposure to cadmium. Cotyledonary invertase isoenzyme activity was also inhibited by Cd. The results indicate that cadmium induces disorder in the resumption of respiration in germinating pea seeds. The contribution of Cd-stimulated alternative metabolic pathways to compensate for the failure in mitochondrial respiration is discussed in relation to the delay in seed germination and embryonic axis growth.
Effects of pea chips on pig performance, carcass quality and composition, and palatability of pork.
Newman, D J; Harris, E K; Lepper, A N; Berg, E P; Stein, H H
2011-10-01
Pea chips are produced as a by-product when field peas are processed to produce split peas for human consumption. The objective of this experiment was to test the hypothesis that inclusion of pea chips in diets fed to finishing pigs does not negatively influence pig growth performance, carcass composition, and the palatability of pork. A total of 24 barrows (initial BW: 58.0 ± 6.6 kg) were allotted to 1 of 4 treatments and fed early finishing diets for 35 d and late finishing diets for 35 d. A corn-soybean meal (SBM) control diet and 3 diets containing pea chips were formulated for each phase. Pea chips replaced 33.3, 66.6, or 100% of the SBM in the control diet. Pigs were housed individually, and all pigs were slaughtered at the conclusion of the experiment. Overall, there were no differences (P > 0.11) in final BW, ADFI, and G:F of pigs among treatments, but there was a quadratic response in ADG (P = 0.04), with the smallest value observed in pigs fed the control diet. Dressing percentage linearly decreased (P = 0.04) as pea chips replaced SBM in diets, but there were no differences (P > 0.20) among treatments in HCW, LM area, 10th-rib backfat, lean meat percentage, and marbling. Likewise, pH in loin and ham, drip loss, and purge loss were not influenced (P > 0.13) by treatment. However, there was a quadratic response (P = 0.08) in 24-h pH in the shoulder, with the smallest value present in pigs fed the diet, in which 66.6% of the SBM was replaced by pea chips. Subjective LM color and Japanese color score standard were reduced (quadratic, P = 0.03 and 0.05, respectively) and LM b* values and hue angle were increased (quadratic, P = 0.09 and 0.10, respectively) when pea chips replaced SBM in the diets. Ham L* (quadratic, P = 0.04), a* (linear, P = 0.02), b* (quadratic, P = 0.07), color saturation (linear, P = 0.02), and hue angle (quadratic, P = 0.05) were increased when pea chips replaced SBM. However, there were no differences (P > 0.16) in shoulder and fat color. Moreover, cook loss percentage, shear force, juiciness, and pork flavor of pork chops were not different (P > 0.10) among treatments, but tenderness of pork chops linearly decreased (P = 0.04) as SBM replaced pea chips. It is concluded that all the SBM in diets fed to growing-finishing pigs may be replaced by pea chips without negatively influencing growth performance or carcass composition. However, pigs fed pea chips will have pork chops and hams that are lighter, and chops may be less tender if pigs are fed pea chips rather than corn and SBM.
Rossi, Roberto; Pilloni, Andrea; Morales, Regina Santos
2009-01-01
Connective tissue grafts have been used successfully in the treatment of gingival recession. In the mid 80s and late 90s, the periodontal literature presented various techniques such as free gingival grafts, pedicle flaps, subepithelial connective tissue grafts, acellular dermal matrix grafts, and guided tissue regeneration to cover denuded root surfaces. Currently, connective tissue grafting is a reliable treatment for esthetic root coverage. This paper presents a qualitative assessment of a surgical technique that uses a connective tissue graft, including a portion of epithelium in the shape of the defect. This procedure enhances the healing of the covered root surface, increases the thickness of the soft tissue and improves esthetics. The criteria used for evaluation were: color, volume, texture, and blending. This evaluation demonstrated encouraging results from an esthetic viewpoint.
Anuradha, Ravi; Raveendran, Muthuraj; Babu, Subramanian
2013-11-01
The interaction between the clinical isolate of enteropathogenic Escherichia coli (EPEC) SBANU8 and pea sprouts was compared with avirulent K 12. E. coli. This was carried out by repeated co-incubation with pea sprouts for 5 days, and the protein profile of the culture supernatant was analyzed by single and two-dimensional electrophoresis. Mass spectrometry analysis led to the identification of two serine protease inhibitors including a Bowman-Birk-type protein secreted by pea sprouts in response to clinical isolate. Expression of the E. coli intimin gene involved in animal host colonization and virulence was studied by reverse transcription polymerase chain reaction. Expression of this gene was high in SBANU8 when co-incubated with pea sprouts. The present study gives baseline data on the molecular level interactions of EPEC and pea sprouts, which are needed to design the outbreak control strategies.
Replication of pea enation mosaic virus RNA in isolated pea nuclei
Powell, C. A.; Zoeten, G. A. de
1977-01-01
Isolated nuclei from healthy pea plants were primed with pea enation mosaic virus (PEMV), southern bean mosaic virus (SBMV), radish mosaic virus (RdMV), tobacco mosaic virus (TMV), PEMV RNA, SBMV RNA, RdMV RNA, or TMV RNA. RNA replication occurred only with PEMV RNA and not with intact PEMV or any of the other viruses or RNAs, as judged by ensuing actinomycin D-insensitive polymerase activity. Molecular hybridization experiments showed that some of the product of the polymerase was PEMV-specific (-)RNA. The substrate and ionic requirements of this polymerase were the same as those for the RNA-dependent RNA polymerase present in nuclei isolated from PEMV-infected pea plants. No virus particles could be recovered from nuclei primed with PEMV RNA. These results are discussed in relation to the possible mechanism for in vivo infection of pea cells. PMID:16592421
Mosnaim, Aron D; Hudzik, Thomas; Wolf, Marion E
2015-01-01
The effects of the administration [intraperitoneally, 15 and 75 mg/kg, except α-MePEA (amphetamine, AMPH) at 5 and 10 mg/kg] of β-phenylethylamine (PEA), its methylated (o-Me-, p-Me-, α-Me-, β-Me-, N-Me-, p-OMe-, N,N-di-Me-, and 3,4-diOH-N-Me-), para-halogenated (Br-, Cl-, F-, and I-), and other derivatives for example, p-OHPEA (p-tyramine), on Swiss male albino mice caged behavior fall into 3 broad categories. (1) N,N-diMe-, 3,4-diOH-N-Me-, and o-MePEA tend to reduce the behavioral activity, (2) p-OH and p-IPEA were without noticeable effects, and (3) the remaining compounds increased locomotor activity, produced hyperexcitability and fighting, jumping and vocalization, and convulsion in a graded manner (listed in increasing order p-OMe-, β-Me-, p-Cl-, p-Br-, p-F-, p-Me-, and N-MePEA, PEA itself and α-MePEA). The latter compound (amphetamine) being the most potent among them; equieffective but with lower potency were p-MePEA, N-MePEA, and PEA itself. The effects of PEAs upon group cage behavior were increased by pretreatment with pargyline (1.5 hours; 15 mg/kg) and decreased after reserpine or haloperidol [4 hours and/or 24 hours (2.5 and/or 2.5 mg/kg) and 1 hour (1 mg/kg), respectively], reaching full suppression with the double-dose regimen of reserpine and single dose of haloperidol. As expected, none of these substances by themselves were noticeable changed group mice activity or stereotypic behavior. The effects of test amines and catecholamine-modulating agents on stereotypy were assessed by rating the sequentially occurring behaviors: increased exploratory behavior with increased sniffing; occasional side-to-side head weaving; paw-licking and other grooming; gnawing, fighting and continuous side-to-side head weaving, and periodic episodes of "popcorn" behavior, during which all mice in the cage ran, jumped, and vocalized. In general, rank efficacy in eliciting stereotype aligned with rank efficacy in affecting group cage behavior. Our results show that a number of as yet little studied monomethylated and monohalogenated PEA analogs share a similar behavioral profile with PEA and AMPH. Behavioral changes observed appear to be, at least in part, mediated by catecholaminergic mechanism as they are modulated by drugs known to influence catecholamine activity. PEA analogs provide a large number of clinically useful drugs; whether further studies on these novel amines will lead to the rational design of newer, safer, and effective PEA-class drugs remains to be seen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sluis, C.
1980-09-01
The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media andmore » rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.« less
Dodge, Austin; Garcia, Jeffrey; Luepke, Paul; Lai, Yu-Lin; Kassab, Moawia; Lin, Guo-Hao
2018-04-01
The aim of this systematic review was to compare the root-coverage outcomes of using a partially exposed connective tissue graft (CTG) technique with a fully covered CTG technique for root coverage. An electronic search up to February 28 th , 2017, was performed to identify human clinical studies with data comparing outcomes of root coverage using CTG, with and without a partially exposed graft. Five clinical studies were selected for inclusion in this review. For each study, the gain of keratinized gingiva, reduction of recession depth, number of surgical sites achieving complete root coverage, percentage of root coverage, gain of tissue thickness, and changes of probing depth and clinical attachment level were recorded. Meta-analysis for the comparison of complete root coverage between the two techniques presented no statistically significant differences. A statistically significant gain of keratinized tissue in favor of the sites with an exposed CTG and a tendency of greater reduction in recession depth were seen at the sites with a fully covered CTG. Based on the results, the use of a partially exposed CTG in root-coverage procedures could achieve greater gain in keratinized gingiva, while a fully covered CTG might be indicated for procedures aiming to reduce recession depth. © 2018 Eur J Oral Sci.
Tissue response to silicone rubber when used as a root canal filling.
Kasman, F G; Goldman, M
1977-04-01
To test the tissue compatibility of silicone rubber when it is used as a root canal filler, excess material was intentionally forced into the apical tissues in primates. The tissue response was one of general acceptance, with the usual response being fibrotic encapsulation. A low degree of inflammation was noted. Further studies are in progress.
ASTROCULTURE (TM) root metabolism and cytochemical analysis
NASA Technical Reports Server (NTRS)
Porterfield, D. M.; Barta, D. J.; Ming, D. W.; Morrow, R. C.; Musgrave, M. E.
2000-01-01
Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure.
Nikolova, I
2016-04-01
Bruchus pisorum (L.) is one of the most intractable pest problems of cultivated pea in Europe. Development of resistant cultivars is very important to environmental protection and would solve this problem to a great extent. Therefore, the resistance of five spring pea cultivars was studied to B. pisorum: Glyans, Modus; Kamerton and Svit and Pleven 4 based on the weevil damage and chemical composition of seeds. The seeds were classified as three types: healthy seeds (type one), damaged seeds with parasitoid emergence holes (type two) and damaged seeds with bruchid emergence holes (type three). From visibly damaged pea seeds by pea weevil B. pisorum was isolated the parasitoid Triaspis thoracica Curtis (Hymenoptera, Braconidae). Modus, followed by Glyans was outlined as resistant cultivars against the pea weevil. They had the lowest total damaged seed degree, loss in weight of damaged seeds (type two and type three) and values of susceptibility coefficients. A strong negative relationship (r = -0.838) between the weight of type one seeds and the proportion of type three seeds was found. Cultivars with lower protein and phosphorus (P) content had a lower level of damage. The crude protein, crude fiber and P content in damaged seeds significantly or no significantly were increased as compared with the healthy seeds due to weevil damage. The P content had the highest significant influence on pea weevil infestation. Use of chemical markers for resistance to the creation of new pea cultivars can be effective method for defense and control against B. pisorum.
Prieto, Pilar; Navarro‐Raya, Carmen; Valverde‐Corredor, Antonio; Amyotte, Stefan G.; Dobinson, Katherine F.; Mercado‐Blanco, Jesús
2009-01-01
Summary The colonization process of Olea europaea by the defoliating pathotype of Verticillium dahliae, and the in planta interaction with the endophytic, biocontrol strain Pseudomonas fluorescens PICF7 were determined. Differential fluorescent protein tagging was used for the simultaneous visualization of P. fluorescens PICF7 and V. dahliae in olive tissues. Olive plants were bacterized with PICF7 and then transferred to V. dahliae‐infested soil. Monitoring olive colonization events by V. dahliae and its interaction with PICF7 was conducted using a non‐gnotobiotic system, confocal laser scanner microscopy and tissue vibratoming sections. A yellow fluorescently tagged V. dahliae derivative (VDAT‐36I) was obtained by Agrobacterium tumefaciens‐mediated transformation. Isolate VDAT‐36I quickly colonized olive root surface, successfully invaded root cortex and vascular tissues via macro‐ and micro‐breakages, and progressed to the aerial parts of the plant through xylem vessel cells. Strain PICF7 used root hairs as preferred penetration site, and once established on/in root tissues, hindered pathogen colonization. For the first time using this approach, the entire colonization process of a woody plant by V. dahliae is reported. Early and localized root surface and root endophytic colonization by P. fluorescens PICF7 is needed to impair full progress of verticillium wilt epidemics in olive. PMID:21255281
2011-01-01
Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods. PMID:21592389
1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA ...
1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE
Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops.
Bhandari, Shiva Ram; Jo, Jung Su; Lee, Jun Gu
2015-08-31
Glucosinolate (GSL) profiles and concentrations in various tissues (seeds, sprouts, mature root, and shoot) were determined and compared across nine Brassica species, including cauliflower, cabbage, broccoli, radish, baemuchae, pakchoi, Chinese cabbage, leaf mustard, and kale. The compositions and concentrations of individual GSLs varied among crops, tissues, and growth stages. Seeds had highest total GSL concentrations in most of crops, whereas shoots had the lowest GSL concentrations. Aliphatic GSL concentrations were the highest in seeds, followed by that in sprouts, shoots, and roots. Indole GSL concentration was the highest in the root or shoot tissues in most of the crops. In contrast, aromatic GSL concentrations were highest in roots. Of the nine crops examined, broccoli exhibited the highest total GSL concentration in seeds (110.76 µmol·g(-1)) and sprouts (162.19 µmol·g(-1)), whereas leaf mustard exhibited the highest total GSL concentration in shoots (61.76 µmol·g(-1)) and roots (73.61 µmol·g(-1)). The lowest GSL concentrations were observed in radish across all tissues examined.
Kitamura, Taro; Munakata, Mitsutoshi; Haginoya, Kazuhiro; Tsuchiya, Shigeru; Iinuma, Kazuie
2008-08-01
beta-Phenylethylamine (beta-PEA), an endogenous amine synthesized in the brain, serves as a neuromodulator and is involved in the pathophysiology of various neurological disorders such as depression, schizophrenia, and attention-deficit hyperactivity disorder. beta-PEA fully exerts the physiological effects within the nanomolar concentration range via the trace amine receptors, but beta-PEA also causes convulsions at much higher concentrations via an as yet unknown mechanism. To investigate the electrophysiological mechanism by which beta-PEA induces convulsions, we examined the effect of beta-PEA on ionic currents passing through the cell membrane of dissociated rat cerebral cortical neurons, using a patch-clamp technique. The external application of beta-PEA suppressed ionic currents which continuously flowed when the membrane potential was held at -25 mV. The suppression was in a concentration-dependent manner and a half-maximal effective concentration was 540 muM. These currents suppressed by beta-PEA consisted of two K(+) currents: a time- and voltage-dependent K(+) current (M-current) and a leakage K(+) current. The suppression of the M-current reduces the efficacy of the current in limiting excessive neuronal firing, and the suppression of the leakage K(+) current can cause membrane depolarization and thus promote neuronal excitation. Reducing both of these currents in concert may produce neuronal seizing activity, which could conceivably underlie the convulsions induced by high-dose beta-PEA.
VizieR Online Data Catalog: Lyα profile in 43 Green Pea galaxies (Yang+, 2017)
NASA Astrophysics Data System (ADS)
Yang, H.; Malhotra, S.; Gronke, M.; Rhoads, J. E.; Leitherer, C.; Wofford, A.; Jiang, T.; Dijkstra, M.; Tilvi, V.; Wang, J.
2018-03-01
In SDSS DR7, a sample of 251 Green Peas was observed as serendipitous spectroscopic targets (Cardamone+ 2009MNRAS.399.1191C). A subset of 66 Green Peas have sufficient signal-to-noise ratio (S/N) in both continuum and emission lines (Hα, Hβ, and [OIII]λ5007) to study galactic properties. In Paper I (Yang+ 2016ApJ...820..130Y), we matched these 66 Green Peas with the COS archive and studied Lyα escape in a sample of 12 Green Peas with COS UV spectra. To address the bias and expand the sample size, we took the Lyα spectra of 20 additional Green Peas (PI S. Malhotra, GO 14201). We also supplement this sample with 11 additional Green Peas from published literature. In total, we have 43 Green Peas from six HST programs -- 20 galaxies from GO 14201 (PI S. Malhotra), 9 galaxies from GO 12928 (PI A. Henry; Henry+ 2015ApJ...809...19H), 7 galaxies from GO 11727 and GO 13017 (PI T. Heckman; Heckman+ 2011ApJ...730....5H ; Alexandroff+ 2015ApJ...810..104A), 2 galaxies from GO 13293 (PI A. Jaskot; Jaskot & Oey 2014ApJ...791L..19J), and 5 galaxies from GO 13744 (PI T. Thuan; Izotov+ 2016MNRAS.461.3683I). (4 data files).
Management of gingival recession by the use of an acellular dermal graft material: a 12-case series.
Santos, A; Goumenos, G; Pascual, A
2005-11-01
Different soft tissue defects can be treated by a variety of surgical procedures. Most of these techniques require the palatal area as a donor site. Recently, an acellular dermal graft has become available that can substitute for palatal donor tissue. This study describes the surgical technique for gingival augmentation and root coverage and the results of 12 clinical cases. A comparison between the three most popular mucogingival procedures for root coverage is also presented. The results of the 12 patients and the 26 denuded surfaces have shown that we can obtain a mean root coverage of 74% with the acellular dermal graft. Thirteen out of the 26 denuded surfaces had complete root coverage. The average increase in keratinized tissue was 1.19 mm. It seems that the long-term results of the cases are stable. The proposed technique of root coverage with an acellular dermal graft can be a good alternative to soft tissue grafts for root coverage, and it should be part of our periodontal plastic surgery armamentarium.
Dare, Kunle; Akin-Ajani, Dorothy O; Odeku, Oluwatoyin A; Itiola, Oludele A; Odusote, Omotunde M
2006-03-01
A study has been made of the effects of pigeon pea starch obtained from the plant Cajanus cajan (L) Millisp. (family Fabaceae) and plantain starch obtained from the unripe fruit of Musa paradisiaca L. (family Musaceae) on the compressional, mechanical, and disintegration properties of paracetamol tablets in comparison with official corn starch BP. Analysis of compressional properties was done by using density measurements, and the Heckel and Kawakita equations, whereas the mechanical properties of the tablets were evaluated by using tensile strength (T--a measure of bond strength) and brittle fracture index (BFI--a measure of lamination tendency). The ranking for the mean yield pressure, P(y), for the formulations containing the different starches was generally corn < pigeon pea < plantain starch while the ranking for P(k), an inverse measure of the amount of plasticity, was pigeon pea < plantain < corn starch, which indicated that formulations containing corn starch generally exhibited the fastest onset of plastic deformation, whereas those formulations containing pigeon pea starch exhibited the highest amount of plastic deformation during tableting. The tensile strength of the tablets increased with increase in concentration of the starches while the Brittle Fracture Index decreased. The ranking for T was pigeon pea > plantain > corn starch while the ranking for BFI was corn > plantain > pigeon pea starch. The bonding capacity of the formulations was in general agreement with the tensile strength results. The disintegration time (DT) of the formulation increased with concentration of plantain and corn starches but decreased with concentration of pigeon pea starch. The general ranking of DT values was plantain < pigeon pea < corn starch. Notably, formulations containing pigeon pea starch exhibited the highest bond strength and lowest brittleness, suggesting the usefulness of pigeon pea starch in producing strong tablets with minimal lamination tendency. Plantain starch, on the other hand, would be more useful where faster disintegration of tablet is desired. The results show that the starches could be useful in various formulations depending on the intended use of the tablets with the implication that the experimental starches can be developed for commercial purposes.
Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine
2009-01-01
Objectives To investigate the expression of matrix metalloproteinases (MMPs) in apical periodontitis and during the periapical healing phase following root canal treatment. Methods Apical periodontitis was induced in dog teeth and root canal treatment was performed in a single visit or using an additional calcium hydroxide root canal dressing. One hundred and eighty days following treatment the presence of inflammation was examined and tissues were stained to detect bacteria. Bacterial status was correlated to the degree of tissue organization, and to further investigate molecules involved in this process, tissues were stained for MMP-1, MMP-2, MMP-8, and MMP-9. Data were analyzed using one-way ANOVA followed by Tukey test or Kruskal-Wallis followed by Dunn. Results Teeth with apical periodontitis that had root canal therapy performed in a single visit presented an intense inflammatory cell infiltrate. Periapical tissue was extremely disorganized, and this was correlated with the presence of bacteria. Higher MMP expression was evident, similar to teeth with untreated apical periodontitis. In contrast, teeth with apical periodontitis submitted to root canal treatment using calcium hydroxide presented a lower inflammatory cell infiltrate. This group had a moderately organized connective tissue, a lower prevalence of bacteria, and a lower number of MMP-positive cells, similar to healthy teeth submitted to treatment. Conclusion Teeth treated with calcium hydroxide root canal dressing exhibited a lower percentage of bacterial contamination, a lower MMP expression, and a more organized ECM, unlike those treated in a single visit. This suggests that calcium hydroxide may be beneficial in tissue repair processes. PMID:20113780
Free radical development in phacoemulsification cataract surgery.
Takahashi, Hiroshi
2005-02-01
Phacoemulsification and aspiration (PEA) has become the most popular cataract surgery, due to the establishment of safe surgical techniques and development of associated instruments. However, corneal endothelial damage still represents a serious complication, as excessive damage can lead to irreversible bullous keratopathy. In addition to causes such as mechanical or heat injuries, free radical formation due to ultrasound has been posited as another cause of corneal endothelium damage in PEA. Ultrasound in aqueous solution induces cavitation, directly causing water molecule disintegration and resulting in the formation of hydroxylradicals, the most potent of the reactive oxygen species. Considering the oxidative insult to endothelial cells caused by free radicals, their presence in the anterior chamber may represent one of the most harmful factors during these procedures. Indeed, some researchers have recently started to evaluate PEA from the perspective of oxidative stress. Conversely, the major ingredient in ophthalmic viscosurgical devices (OVDs), which are indispensable for maintaining the anterior chamber in PEA surgery, is sodium hyaluronate, a known free radical scavenger. OVDs can thus be expected to provide some anti-free radical effect during PEA procedures. In addition, since commercially available OVDs display different properties regarding retention in the anterior chamber during PEA, the anti-free radical effect of OVDs is likely to depend on behavior during irrigation and aspiration. The present study followed standard PEA procedures in an eye model and measured hydroxylradicals in the anterior chamber using electron spin resonance. The kinetics of free radical intensity and effects of several OVDs during clinical PEA were also demonstrated. These studies may be of significance in re-evaluating OVDs as a chemical protectant for corneal endothelium, since the OVD has thus far only been regarded as a physical barrier. In addition, many reports about corneal endothelium damage during PEA have been published, but objective evaluation of various damaging factors has been difficult. The present assay of free radicals in a simulation of clinical PEA offers the first method to quantitatively assess stress on the corneal endothelium.
Nitrate uptake and nitrite release by tomato roots in response to anoxia.
Morard, Philippe; Silvestre, Jérôme; Lacoste, Ludovic; Caumes, Edith; Lamaze, Thierry
2004-07-01
Excised root systems of tomato plants (early fruiting stage, 2nd flush) were subjected to a gradual transition from normoxia to anoxia by seating the hydroponic root medium while aeration was stopped. Oxygen level in the medium and respiration rate decreased and reached very low values after 12 h of treatment, indicating that the tissues were anoxic thereafter. Nitrate loss from the nutrient solution was strongly stimulated by anoxia (after 26 h) concomitantly with a release of nitrite starting only after 16 h of treatment. This effect was not observed in the absence of roots or in the presence of tungstate, but occurred with whole plants or with sterile in vitro cultured root tissues. These results indicate that biochemical processes in the root involve nitrate reductase. NR activity assayed in tomato roots increased during anoxia. This phenomenon appeared in intact plants and in root tissues of detopped plants. The stimulating effect of oxygen deprivation on nitrate uptake was specific; anoxia simultaneously entailed a release of orthophosphate, sulfate, and potassium by the roots. Anoxia enhanced nitrate reduction by root tissues, and nitrite ions were released into xylem sap and into medium culture. In terms of the overall balance, the amount of nitrite recovered represented only half of the amount of nitrate utilized. Nitrite reduction into nitric oxide and perhaps into nitrogen gas could account for this discrepancy. These results appear to be the first report of an increase in nitrate uptake by plant roots under anoxia of tomato at the early fruiting stage, and the rates of nitrite release in nutrient medium by the asphyxiated roots are the fastest yet reported.
NASA Technical Reports Server (NTRS)
Westberg, J.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)
1994-01-01
In Phaseolus vulgaris, primary roots show gravitational sensitivity soon after emerging from the seed. In contrast, lateral roots are agravitropic during early development, and become gravitropic after several cm growth. Primary and lateral root tissues were examined by polyacrylamide gel electrophoresis, coupled with western blotting techniques, to compare proteins which may contribute to the acquisition of gravitational sensitivity. Root tips and zones of cell elongation were compared for each root type, using immunological probes for calmodulin, alpha-actin, alpha-tubulin, and proteins of the plastid envelope. Lateral roots contained qualitatively less calmodulin, and showed a slightly different pattern of actin-related epitope proteins, than did primary root tissues, suggesting that polypeptide differences may contribute to the gravitational sensitivity which these root types express.
Paiva, N L; Sun, Y; Dixon, R A; VanEtten, H D; Hrazdina, G
1994-08-01
Isoflavone reductase (IFR) reduces achiral isoflavones to chiral isoflavanones during the biosynthesis of chiral pterocarpan phytoalexins. A cDNA clone for IFR from pea (Pisum sativum) was isolated using the polymerase chain reaction and expressed in Escherichia coli. Analysis of circular dichroism (CD) spectra of the reduction product sophorol obtained using the recombinant enzyme indicated that the isoflavanone possessed the 3R stereochemistry, in contrast to previous reports indicating a 3S-isoflavanone as the product of the pea IFR. Analysis of CD spectra of sophorol produced using enzyme extracts of CuCl2-treated pea seedlings confirmed the 3R stereochemistry. Thus, the stereochemistry of the isoflavanone intermediate in (+)-pisatin biosynthesis in pea is the same as that in (-)-medicarpin biosynthesis in alfalfa, although the final pterocarpans have the opposite stereochemistry. At the amino acid level the pea IFR cDNA was 91.8 and 85.2% identical to the IFRs from alfalfa and chickpea, respectively. IFR appears to be encoded by a single gene in pea. Its transcripts are highly induced in CuCl2-treated seedlings, consistent with the appearance of IFR enzyme activity and pisatin accumulation.
Oxidative processes in soybean and pea seeds: effect of light, temperature, and water content
NASA Technical Reports Server (NTRS)
Vertucci, C. W.; Leopold, A. C.
1987-01-01
Oxidative processes are probable determinants of longevity of seeds in storage. Measurements of actual oxygen uptake rates were made for soybean and pea seeds as a comparison of short and long lived seeds when light, temperature, and moisture contents were varied. In both peas and soybeans, the oxygen uptake was depressed at low temperatures (<16 degrees C) and low water contents (< 0.25 gram H2O per gram dry weight). Apparent activation energies under these conditions are very high, while apparent activation energies of seeds at higher water contents and at temperatures greater than 22 degrees C are much less. Light enhances the level of oxygen uptake in pea, but reduces the level of oxygen uptake in soybean. The complexities of the interactions of oxygen uptake with environmental conditions in soybean compared to pea suggest that oxidative processes occur in soybean at low water contents, but are essentially absent in pea. It is suggested that the additional oxidative processes in soybean with moisture contents between 0.10 and 0.24 gram per gram may contribute to the poorer longevity of soybean seed compared to pea seed.
Response of Pea Varieties to Damage Degree of Pea Weevil, Bruchus pisorum L.
Nikolova, Ivelina Mitkova
2016-01-01
A study was conducted to determine the response of five pea varieties (Pisum sativum L.) to damage degree of Bruchus pisorum: Glyans, Modus, Kamerton, and Svit (Ukrainian cultivars) and Pleven 4 (Bulgarian cultivar). The seeds were classified into three types: healthy seeds (type 1), damaged seeds with parasitoid emergence hole (type 2), and damaged seeds with bruchid emergence hole (type 3) and they were sown. It was found that the weight of 1000 seeds did not affect the field germination of the pea varieties. Healthy and damaged seeds with parasitoid emergence holes (first and second seed types) provide a very good opportunity for growth and development while plants from damaged seeds with bruchid emergence holes had poor germination and vigor and low productivity. These seeds cannot provide the creation of well-garnished seeding and stable crop yields. Among tested varieties, the Ukrainian variety Glyans had considerably higher seed weight, field germination, and index germination and weak egg-laying activity of B. pisorum compared to others. Use of spring pea cultivars that are weakly preferred by the pea weevil in breeding programs would reduce losses due to pea weevil and provide an environmentally safer option to its control. PMID:27042379
Park, Yong-Soon; Ryu, Choong-Min
2014-01-03
Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation. Copyright © 2013 Elsevier Inc. All rights reserved.
Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.
2014-01-01
Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits. PMID:24363335
Cosgrove, D J; Van Volkenburgh, E; Cleland, R E
1984-01-01
Theory predicts that, for growing plant cells isolated from a supply of water, stress relaxation of the cell wall should decrease cell turgor pressure (P) until the yield threshold for cell explanation is reached. This prediction was tested by direct P measurements of pea (Pisum sativum L.) stem cortical cells before and after excision of the growing region and isolation of the growing tissue from an external water supply. Cell P was measured with the micro-pressure probe under conditions which eliminated transpiration. Psychrometric measurements of water potential confirmed the pressure-probe measurements. Following excision, P of the growing cells decreased in 1 h by an average of 1.8 bar to a mean plateau value of 2.8 bar, and remained constant thereafter. Treatment with 10(-5) M indole-3-acetic acid or 10(-5) M fusicoccin (known growth stimulants) accelerated the rate of P relaxation, whereas various treatments which inhibit growth slowed down or completely stopped P relaxation in apical segments. In contrast, P of basal (nongrowing) segments gradually increased because of absorption of solutes from the cell-wall free space of the tissue. Such solute absorption also occurred in apical segments, but wall relaxation held P at the yield threshold in those segments which were isolated from an external water supply. These results provide a new and rapid method for measuring the yield threshold and they show that P in intact growing pea stems exceeds the yield threshold by about 2 bar. Wall relaxation is shown here to affect the water potential and turgor pressure of excised growing segments. In addition, solute release and absorption upon excision may influence the water potential and turgor pressure of nongrowing excised plant tissues.
Llauradó, Marta; Abal, Miguel; Castellví, Josep; Cabrera, Sílvia; Gil-Moreno, Antonio; Pérez-Benavente, Asumpció; Colás, Eva; Doll, Andreas; Dolcet, Xavier; Matias-Guiu, Xavier; Vazquez-Levin, Mónica; Reventós, Jaume; Ruiz, Anna
2012-04-01
Epithelial ovarian cancer is the most lethal gynecological malignancy and the fifth leading cause of cancer deaths in women in the Western world. ETS transcription factors are known to act as positive or negative regulators of the expression of genes that are involved in various biological processes, including those that control cellular proliferation, differentiation, apoptosis, tissue remodeling, angiogenesis and transformation. ETV5 belongs to the PEA3 subfamily. PEA3 subfamily members are able to activate the transcription of proteases, matrix metalloproteinases and tissue inhibitor of metalloproteases, which is central to both tumor invasion and angiogenesis. Here, we examined the role of the ETV5 transcription factor in epithelial ovarian cancer and we found ETV5 was upregulated in ovarian tumor samples compared to ovarian tissue controls. The in vitro inhibition of ETV5 decreased cell proliferation in serum-deprived conditions, induced EMT and cell migration and decreased cell adhesion to extracellular matrix components. ETV5 inhibition also decreased cell-cell adhesion and induced apoptosis in anchorage-independent conditions. Accordingly, upregulation of ETV5 induced the expression of cell adhesion molecules and enhanced cell survival in a spheroid model. Our findings suggest that the overexpression of ETV5 detected in ovarian cancer cells may contribute to ovarian tumor progression through the ability of ETV5 to enhance proliferation of ovarian cancer cells. In addition, upregulation of ETV5 would play a role in ovarian cancer cell dissemination and metastasis into the peritoneal cavity by protecting ovarian cancer cells from apoptosis and by increasing the adhesion of ovarian cancer cells to the peritoneal wall through the regulation of cell adhesion molecules. Copyright © 2011 UICC.
Condemine, Guy; Rahbé, Yvan
2012-01-01
Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 108 cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria. PMID:22292023
Costechareyre, Denis; Balmand, Séverine; Condemine, Guy; Rahbé, Yvan
2012-01-01
Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8) cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.
Konnerup, Dennis; Toro, Guillermo; Pedersen, Ole; Colmer, Timothy David
2018-03-14
Soil waterlogging adversely impacts most plants. Melilotus siculus is a waterlogging-tolerant annual forage legume, but data were lacking for the effects of root-zone hypoxia on nodulated plants reliant on N2 fixation. The aim was to compare the waterlogging tolerance and physiology of M. siculus reliant on N2 fixation or with access to NO3-. A factorial experiment imposed treatments of water level (drained or waterlogged), rhizobia (nil or inoculated) and mineral N supply (nil or 11 mm NO3-) for 21 d on plants in pots of vermiculite in a glasshouse. Nodulation, shoot and root growth and tissue N were determined. Porosity (gas volume per unit tissue volume) and respiration rates of root tissues and nodules, and O2 microelectrode profiling across nodules, were measured in a second experiment. Plants inoculated with the appropriate rhizobia, Ensifer (syn. Sinorhizobium) medicae, formed nodules. Nodulated plants grew as well as plants fed NO3-, both in drained and waterlogged conditions. The growth and total N content of nodulated plants (without any NO3- supplied) indicated N2 fixation. Respiration rates (mass basis) were highest in nodules and root tips and lowest in basal root tissues. Secondary aerenchyma (phellem) formed along basal root parts and a thin layer of this porous tissue also covered nodules, which together enhanced gas-phase diffusion of O2 to the nodules; O2 was below detection within the infected zone of the nodule interior. Melilotus siculus reliant on N2 fixation grew well both in drained and waterlogged conditions, and had similar tissue N concentrations. In waterlogged conditions the relatively high respiration rates of nodules must rely on O2 movement via the aerenchymatous phellem in hypocotyl, roots and the outer tissue layers of nodules.
40 CFR 180.574 - Fluazinam; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Ginseng 4.5 Lettuce, head 0.02 Lettuce, leaf 2.0 Onion, bulb, subgroup 3-07A 0.20 Pea and bean, dried shelled, except soybean, subgroup 6C, except pea 0.02 Pea and bean, succulent shelled, subgroup 6B, except...
Ersiphe trifolii-a newly recognized powdery mildew pathogen of pea.
USDA-ARS?s Scientific Manuscript database
Population diversity of powdery mildews infecting pea (Pisum sativum) in the US Pacific Northwest was investigated in order to assess inconsistent resistance performances of pea genotypes in different environments. Phylogenetic analyses based on ITS sequences, in combination with assessment of morph...
Abu, Joseph Oneh; Enyinnaya, Chinma Chiemela; James, Samaila; Okeleke, Ezinne
2012-06-01
Quality attributes of stiff porridges prepared from Irish potato and pigeon pea starch blends were studied. Starches were extracted from Irish potato and pigeon pea using a wet extraction method. Various ratios of the starches were mixed and analyzed for chemical, functional and pasting properties. The starch blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of Irish potato starch with pigeon pea starch led to increases in protein (0.15 to 1.2%), fat (0.26 to 0.56%) and ash (0.30 to 0.69%) while the amylose content of the starch blends decreased (from 23.8 to 18.4%) respectively. Functional properties such as bulk density (0.75 to 0.60 g/cm(3)), water absorption capacity (3.1 to 2.6 g water/ g sample) and dispersibility (58.6 to 42.7%) decreased significantly (P < 0.05) at the highest concentration (50%) of pigeon pea starch respectively. Pasting properties such as peak, breakdown, final and setback viscosities increased with increasing levels of pigeon pea starch while peak time and pasting temperature decreased. The sensory attributes of stiff porridges were not adversely affected by pigeon pea starch inclusion. Therefore it should be possible to incorporate up to 50% of low digestible pigeon pea starch into Irish potato starch from legumes such as pigeon pea as alternatives to cassava starch in the preparation of stiff porridges. Such porridges made from Irish potato and legume starches could provide additional incentive for individuals requiring decreased and or slow starch digestibility such as diabetics.
Nautiyal, C. S.; Hegde, S. V.; van Berkum, P.
1988-01-01
The pigeon pea strains of Bradyrhizobium CC-1, CC-8, UASGR(S), and F4 were evaluated for nodulation, effectiveness for N2 fixation, and H2 oxidation with homologous and nonhomologous host plants. Strain CC-1 nodulated Macroptilium atropurpureum, Vigna unguiculata, Glycine max, and G. soja but did not nodulate Pisum sativum, Phaseolus vulgaris, Trigonella foenum-graecum, and Trifolium repens. Strain F4 nodulated G. max cv. Peking and PI 434937 (Malayan), but the symbioses formed were poor. Similarly, G. max cv. Peking, cv. Bragg, PI 434937, PR 13-28-2-8-7, and HM-1 were nodulated by strain CC-1, and symbioses were also poor. G. max cv. Williams and cv. Clark were not nodulated. H2 uptake activity was expressed with pigeon pea and cowpea, but not with soybean. G. max cv. Bragg grown in Bangalore, India, in local soil not previously exposed to Bradyrhizobium japonicum formed nodules with indigenous Bradyrhizobium spp. Six randomly chosen isolates, each originating from a different nodule, formed effective symbioses with pigeon pea host ICPL-407, nodulated PR 13-28-2-8-7 soybean forming moderately effective symbioses, and did not nodulate Williams soybean. These results indicate the six isolates to be pigeon pea strains although they originated from soybean nodules. Host-determined nodulation of soybean by pigeon pea Bradyrhizobium spp. may depend upon the ancestral backgrounds of the cultivars. The poor symbioses formed by the pigeon pea strains with soybean indicate that this crop should be inoculated with B. japonicum for its cultivation in soils containing only pigeon pea Bradyrhizobium spp. PMID:16347542
Ly α and UV Sizes of Green Pea Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Wang, Junxian; Malhotra, Sangeeta
Green Peas are nearby analogs of high-redshift Ly α -emitting galaxies (LAEs). To probe their Ly α escape, we study the spatial profiles of Ly α and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope . We extract the spatial profiles of Ly α emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Ly α emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Lymore » α spatial profile is about 2–4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high- z LAEs probably have larger Ly α sizes than UV sizes. We also compare the spatial profiles of Ly α photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Ly α line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Ly α line wings. We show that Green Peas and MUSE z = 3–6 LAEs have similar Ly α and UV continuum sizes, which probably suggests that starbursts in both low- z and high- z LAEs drive similar gas outflows illuminated by Ly α light. Five Lyman continuum (LyC) leakers in this sample have similar Ly α to UV continuum size ratios (∼1.4–4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.« less
PEA: an integrated R toolkit for plant epitranscriptome analysis.
Zhai, Jingjing; Song, Jie; Cheng, Qian; Tang, Yunjia; Ma, Chuang
2018-05-29
The epitranscriptome, also known as chemical modifications of RNA (CMRs), is a newly discovered layer of gene regulation, the biological importance of which emerged through analysis of only a small fraction of CMRs detected by high-throughput sequencing technologies. Understanding of the epitranscriptome is hampered by the absence of computational tools for the systematic analysis of epitranscriptome sequencing data. In addition, no tools have yet been designed for accurate prediction of CMRs in plants, or to extend epitranscriptome analysis from a fraction of the transcriptome to its entirety. Here, we introduce PEA, an integrated R toolkit to facilitate the analysis of plant epitranscriptome data. The PEA toolkit contains a comprehensive collection of functions required for read mapping, CMR calling, motif scanning and discovery, and gene functional enrichment analysis. PEA also takes advantage of machine learning technologies for transcriptome-scale CMR prediction, with high prediction accuracy, using the Positive Samples Only Learning algorithm, which addresses the two-class classification problem by using only positive samples (CMRs), in the absence of negative samples (non-CMRs). Hence PEA is a versatile epitranscriptome analysis pipeline covering CMR calling, prediction, and annotation, and we describe its application to predict N6-methyladenosine (m6A) modifications in Arabidopsis thaliana. Experimental results demonstrate that the toolkit achieved 71.6% sensitivity and 73.7% specificity, which is superior to existing m6A predictors. PEA is potentially broadly applicable to the in-depth study of epitranscriptomics. PEA Docker image is available at https://hub.docker.com/r/malab/pea, source codes and user manual are available at https://github.com/cma2015/PEA. chuangma2006@gmail.com. Supplementary data are available at Bioinformatics online.
Lyα and UV Sizes of Green Pea Galaxies
NASA Astrophysics Data System (ADS)
Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Wang, Junxian
2017-03-01
Green Peas are nearby analogs of high-redshift Lyα-emitting galaxies (LAEs). To probe their Lyα escape, we study the spatial profiles of Lyα and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope. We extract the spatial profiles of Lyα emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Lyα emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Lyα spatial profile is about 2-4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high-z LAEs probably have larger Lyα sizes than UV sizes. We also compare the spatial profiles of Lyα photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Lyα line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Lyα line wings. We show that Green Peas and MUSE z = 3-6 LAEs have similar Lyα and UV continuum sizes, which probably suggests that starbursts in both low-z and high-z LAEs drive similar gas outflows illuminated by Lyα light. Five Lyman continuum (LyC) leakers in this sample have similar Lyα to UV continuum size ratios (˜1.4-4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.
Requirement of PEA3 for Transcriptional Activation of FAK Gene in Tumor Metastasis
Li, Shufeng; Huang, Xiaofeng; Zhang, Dapeng; Huang, Qilai; Pei, Guoshun; Wang, Lixiang; Jiang, Wenhui; Hu, Qingang; Tan, Renxiang; Hua, Zi-Chun
2013-01-01
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase critically involved in cancer metastasis. We found an elevation of FAK expression in highly metastatic melanoma B16F10 cells compared with its less metastatic partner B16F1 cells. Down-regulation of the FAK expression by either small interfering RNA or dominant negative FAK (FAK Related Non-Kinase, FRNK) inhibited the B16F10 cell migration in vitro and invasiveness in vivo. The mechanism by which FAK activity is up-regulated in highly metastatic cells remains unclear. In this study, we reported for the first time that one of the Est family proteins, PEA3, is able to transactivate FAK expression through binding to the promoter region of FAK. We identified a PEA3-binding site between nucleotides −170 and +43 in the FAK promoter that was critical for the responsiveness to PEA3. A stronger affinity of PEA3 to this region contributed to the elevation of FAK expression in B16F10 cells. Both in vitro and in vivo knockdown of PEA3 gene successfully mimicked the cell migration and invasiveness as that induced by FAK down-regulation. The activation of the well-known upstream of PEA3, such as epidermal growth factor, JNK, and ERK can also induce FAK expression. Furthermore, in the metastatic human clinic tumor specimens from the patients with human primary oral squamous cell carcinoma, we observed a strong positive correlation among PEA3, FAK, and carcinoma metastasis. Taking together, we hypothesized that PEA3 might play an essential role in the activation of the FAK gene during tumor metastasis. PMID:24260201
Response of Ca2+-ATPase to clinorotaion of pea seedlings. O. M. Nedukha and E. L. Kordyum
NASA Astrophysics Data System (ADS)
Nedukha, Olena
2016-07-01
The present study was aimed to reveal of response of Ca2+-ATPase activity of cortex cells in distal elongation zone of Pisum sativum root to slow clinorotation. Pea seedlings were grown on a horizontal clinostat (2 rpm) and in the stationary control for 6 days. The electron-cytochemical method was used to examine the effects of imitated microgravity on the distribution of Ca2+-ATPase in outer layers of root cortex. The quantitative analysis of the density of cytochemical reaction products was measured using the Image J program. Electron microscopy showed the presence of electron-dense lead phosphate precipitated grains, the enzymatic activity reaction products on the plasma membrane, membranes of vesicular structures, endoplasmic reticulum (ER) and on organelles envelope in both of samples of the stationary control and clinorotated seedlings. We revealed the sensitivity of Ca2+-ATPase to clinorotation. The quantitative analysis of the area and density of enzymatic activity reaction products revealed that clinorotation led to the decrease of 3.4 times the density of reaction products on the plasma membrane and the increase of reaction products density on endomembranes and organelles membranes, in particular: in 2.2 times on mitochondria membranes; in 1.3 times - on membranes of ER; in 2.5 times - on tonoplast; by an order of magnitude greater - on contacting membranes of organelles with plasma membrane in comparison with such in cells of control samples. The data analysis can indicate an intensification of calcium pump on endomembranes, on envelopes of cytoplasmic organelles and nucleus. The obtained data suggest that the redistribution of Ca2+-ATPase activity in cells can be mediated by the activation of certain isoforms of enzyme or/and by an activation of Ca2+/H+ antiporter in plasma membrane that helps to maintain optimal calcium balance in plant cells under imitated microgravity.
You, Xinru; Gu, Zhipeng; Huang, Jun; Kang, Yang; Chu, Chih-Chang; Wu, Jun
2018-05-25
Many different types of polycations have been vigorously studied for nucleic acid delivery, but a systematical investigation of the structure-property relationships of polycations for nucleic acid delivery is still lacking. In this study, a new library of biodegradable and biocompatible arginine-based poly(ester amide) (Arg-PEA) biomaterials was designed and synthesized with a tunable structure for such a comprehensive structure-property research. Nanoparticle (NP) complexes were formed through the electrostatic interactions between the polycationic Arg-PEAs and anionic nucleic acids. The following structure effects of the Arg-PEAs on the transfection efficiency of nucleic acids were investigated: 1) the linker/spacer length (length effect and odd-even effect); 2) salt type of arginine; 3) the side chain; 4) chain stiffness; 5) molecular weight (MW). The data obtained revealed that a slight change in the Arg-PEA structure could finely tune its physicochemical property such as hydrophobicity, and this could subsequently affect the nanoparticle size and zeta potential, which, in turn, regulate the transfection efficiency and silencing outcomes. A further study of the Arg-PEA/CpG oligodeoxynucleotide NP complexes indicated that the polymer structure could precisily regulate the immune response of CpG, thus providing a new potential nano-immunotherapy strategy. The in vitro data have further confirmed that the Arg-PEA NPs showed a satisfactory delivery performance for a variety of nucleic acids. Therefore, the data from the current study provide comprehensive information about the Arg-PEA structure-transfection property relationship; the tunable property of the library of Arg-PEA biomaterials can be one of the promising candidates for nucleic acid delivery and other biomedical applications. Polycations have being intensive utilized for nucleic acid delivery. However, there has not been elucidated about the relationship between polycation's structure and the physicochemical properties/biological function. In this timely report, an arginine based poly(ester amide) (Arg-PEA) library was prepared with finely tunable structure to systematically investigate the structure-property relationships of polycations for nucleic acid delivery. The results revealed that slight change of Arg-PEA structure could finely tune the physicochemical property (such as hydrophobicity), which subsequently affect the size and zeta potential of Arg-PEA/nucleic acid nanoparticles(NPs), and finally regulate the resulting transfection or silencing outcomes. Further study of Arg-PEA/CpG NPs indicated that the polymer structure could precisely regulate immuno response of CpG, providing new potential nano-immunotherapy strategy. In vitro evaluations confirmed that the NPs showed satisfied delivery performance for a variety types of nucleic acids. Therefore, these studies provide comprehensive information of Arg-PEA structure-property relationship, and the tunable properties of Arg-PEAs make them promising candidates for nucleic acid delivery and other biomedical applications. Overall, we have shown enough significance and novelty in terms of nucleic acid delivery, biomaterials, pharmaceutical science and nanomedicine. Copyright © 2018. Published by Elsevier Ltd.
Yield potential of pigeon pea cultivars
USDA-ARS?s Scientific Manuscript database
Yield potential of twelve vegetable pigeon pea (Cajanus cajun) cultivars was evaluated at two locations in eastern Kenya during 2012 and 2013 cropping years. Pigeon pea pod numbers, seeds per pod, seed mass, grain yield and shelling percentage were quantified in three replicated plots, arranged in a...
Cercós, M; Santamaría, S; Carbonell, J
1999-04-01
A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.
Probabilistic Exposure Analysis for Chemical Risk Characterization
Bogen, Kenneth T.; Cullen, Alison C.; Frey, H. Christopher; Price, Paul S.
2009-01-01
This paper summarizes the state of the science of probabilistic exposure assessment (PEA) as applied to chemical risk characterization. Current probabilistic risk analysis methods applied to PEA are reviewed. PEA within the context of risk-based decision making is discussed, including probabilistic treatment of related uncertainty, interindividual heterogeneity, and other sources of variability. Key examples of recent experience gained in assessing human exposures to chemicals in the environment, and other applications to chemical risk characterization and assessment, are presented. It is concluded that, although improvements continue to be made, existing methods suffice for effective application of PEA to support quantitative analyses of the risk of chemically induced toxicity that play an increasing role in key decision-making objectives involving health protection, triage, civil justice, and criminal justice. Different types of information required to apply PEA to these different decision contexts are identified, and specific PEA methods are highlighted that are best suited to exposure assessment in these separate contexts. PMID:19223660
Kohout, George D; He, Jianing; Primus, Carolyn M; Opperman, Lynne A; Woodmansey, Karl F
2015-02-01
Quick-Set (Avalon Biomed Inc, Bradenton, FL) is a calcium aluminosilicate cement that is a potential alternative to mineral trioxide aggregate (MTA) with greater acid resistance and faster setting. The purpose of this study was to compare the regeneration of apical tissues after root-end surgery when the apical tissues were exposed to Quick-Set or White ProRoot MTA (Dentsply Tulsa Dental Specialties, Tulsa, OK) by root-end resection. The root canals of 42 mandibular premolars in 7 beagle dogs were accessed, cleaned and shaped, and obturated with Quick-Set or white MTA. Osteotomies and root-end resections were performed immediately. The dogs were sacrificed at 90 days, and the teeth and surrounding tissues were removed and prepared for histologic analysis. The sections of the apical areas were scored for inflammation, new cementum formation, periodontal ligament formation, and bone quality. At 90 days, both materials supported some degree of cementum formation on the surface of the material, periodontal ligament regeneration, and excellent bone quality. The only significant difference was greater inflammation found in the Quick-Set group. Quick-Set and White ProRoot MTA had a similar effect on bone quality, cementum formation, and periodontal ligament formation after root-end surgery in dogs. Quick-Set was associated with greater inflammation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Synchrotron study of metal localization in Typha latifolia L. root sections
Qian, Yu; Jones, Keith W.; Feng, Huan; ...
2015-09-15
Understanding mechanisms that control plant root metal assimilation in soil is critical to the sustainable management of metal-contaminated land. With the assistance of the synchrotron X-ray fluorescence technique, this study investigated possible mechanisms that control the localization of Fe, Cu, Mn, Pb and Zn in the root tissues of Typha latifolia L. collected from a contaminated wetland. Metal localizations especially in the case of Fe and Pb in the dermal tissue and the vascular bundles were different. Cluster analysis was performed to divide the dermal tissue into iron-plaque-enriched dermal tissue and regular dermal tissue based on the spatial distribution ofmore » Pb and Fe. Factor analysis showed that Cu and Zn were closely correlated to each other in the dermal tissues. The association of Cu, Zn and Mn with Fe was strong in both regular dermal tissue and iron-plaque-enriched dermal tissue, while significant (p < 0.05) correlation of Fe with Pb was only observed in tissues enriched with iron plaque. In the vascular bundles, Zn, Mn and Cu showed strong association, suggesting that the localization of these three elements was controlled by a similar mechanism. Iron plaque in the peripheral dermal tissues acted as a barrier for Pb and a buffer for Zn, Cu and Mn. Furthermore, the Casparian strip regulated the transportation of metals from dermal tissues to the vascular bundles. The results suggested that the mechanisms controlling metal localization in root tissues varied with both tissue types and metals.« less
Sirtori, Cesare R; Triolo, Michela; Bosisio, Raffaella; Bondioli, Alighiero; Calabresi, Laura; De Vergori, Viviana; Gomaraschi, Monica; Mombelli, Giuliana; Pazzucconi, Franco; Zacherl, Christian; Arnoldi, Anna
2012-04-01
The present study was aimed to evaluate the effect of plant proteins (lupin protein or pea protein) and their combinations with soluble fibres (oat fibre or apple pectin) on plasma total and LDL-cholesterol levels. A randomised, double-blind, parallel group design was followed: after a 4-week run-in period, participants were randomised into seven treatment groups, each consisting of twenty-five participants. Each group consumed two bars containing specific protein/fibre combinations: the reference group consumed casein+cellulose; the second and third groups consumed bars containing lupin or pea proteins+cellulose; the fourth and fifth groups consumed bars containing casein and oat fibre or apple pectin; the sixth group and seventh group received bars containing combinations of pea protein and oat fibre or apple pectin, respectively. Bars containing lupin protein+cellulose ( - 116 mg/l, - 4·2%), casein+apple pectin ( - 152 mg/l, - 5·3%), pea protein+oat fibre ( - 135 mg/l, - 4·7%) or pea protein+apple pectin ( - 168 mg/l, - 6·4%) resulted in significant reductions of total cholesterol levels (P<0·05), whereas no cholesterol changes were observed in the subjects consuming the bars containing casein+cellulose, casein+oat fibre or pea protein+cellulose. The present study shows the hypocholesterolaemic activity and potential clinical benefits of consuming lupin protein or combinations of pea protein and a soluble fibre, such as oat fibre or apple pectin.
Borah, Anupom; Paul, Rajib; Mazumder, Muhammed Khairujjaman; Bhattacharjee, Nivedita
2013-10-01
While the cause of dopaminergic neuronal cell death in Parkinson's disease (PD) is not yet understood, many endogenous molecules have been implicated in its pathogenesis. β-phenethylamine (β-PEA), a component of various food items including chocolate and wine, is an endogenous molecule produced from phenylalanine in the brain. It has been reported recently that long-term administration of β-PEA in rodents causes neurochemical and behavioral alterations similar to that produced by parkinsonian neurotoxins. The toxicity of β-PEA has been linked to the production of hydroxyl radical ((·)OH) and the generation of oxidative stress in dopaminergic areas of the brain, and this may be mediated by inhibition of mitochondrial complex-I. Another significant observation is that administration of β-PEA to rodents reduces striatal dopamine content and induces movement disorders similar to those of parkinsonian rodents. However, no reports are available on the extent of dopaminergic neuronal cell death after administration of β-PEA. Based on the literature, we set out to establish β-PEA as an endogenous molecule that potentially contributes to the progressive development of PD. The sequence of molecular events that could be responsible for dopaminergic neuronal cell death in PD by consumption of β-PEA-containing foods is proposed here. Thus, long-term over-consumption of food items containing β-PEA could be a neurological risk factor having significant pathological consequences.
Ariz, Idoia; Asensio, Aaron C; Zamarreño, Angel M; García-Mina, Jose M; Aparicio-Tejo, Pedro M; Moran, Jose F
2013-08-01
An understanding of the mechanisms underlying ammonium (NH(4)(+)) toxicity in plants requires prior knowledge of the metabolic uses for nitrogen (N) and carbon (C). We have recently shown that pea plants grown at high NH(4)(+) concentrations suffer an energy deficiency associated with a disruption of ionic homeostasis. Furthermore, these plants are unable to adequately regulate internal NH4(+) levels and the cell-charge balance associated with cation uptake. Herein we show a role for an extra-C application in the regulation of C-N metabolism in NH(4)(+) -fed plants. Thus, pea plants (Pisum sativum) were grown at a range of NH(4)(+) concentrations as sole N source, and two light intensities were applied to vary the C supply to the plants. Control plants grown at high NH(4)(+) concentration triggered a toxicity response with the characteristic pattern of C-starvation conditions. This toxicity response resulted in the redistribution of N from amino acids, mostly asparagine, and lower C/N ratios. The C/N imbalance at high NH(4)(+) concentration under control conditions induced a strong activation of root C metabolism and the upregulation of anaplerotic enzymes to provide C intermediates for the tricarboxylic acid cycle. A high light intensity partially reverted these C-starvation symptoms by providing higher C availability to the plants. The extra-C contributed to a lower C4/C5 amino acid ratio while maintaining the relative contents of some minor amino acids involved in key pathways regulating the C/N status of the plants unchanged. C availability can therefore be considered to be a determinant factor in the tolerance/sensitivity mechanisms to NH(4)(+) nutrition in plants. Copyright © Physiologia Plantarum 2012.
7 CFR 457.140 - Dry pea crop insurance provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Dry pea crop insurance provisions. 457.140 Section 457.140 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.140 Dry pea crop insurance...
7 CFR 457.137 - Green pea crop insurance provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Green pea crop insurance provisions. 457.137 Section 457.137 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop insurance...
Code of Federal Regulations, 2014 CFR
2014-04-01
... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...
Code of Federal Regulations, 2012 CFR
2012-04-01
... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...
Code of Federal Regulations, 2013 CFR
2013-04-01
... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...
McGhee, Gayle C; Guasco, Jesse; Bellomo, Lisa M; Blumer-Schuette, Sara E; Shane, William W; Irish-Brown, Amy; Sundin, George W
2011-02-01
Streptomycin-resistant (Sm(R)) strains of the fire blight pathogen Erwinia amylovora were first isolated in southwest Michigan in 1991. Since that time, resistant strains have progressed northward to other apple-producing regions in the state. A total of 98.7% of Sm(R) strains isolated between 2003 and 2009 in Michigan harbored the strA-strB genes on transposon Tn5393. strA and strB encode phosphotransferase enzymes that modify streptomycin to a nonbactericidal form. Mutational resistance to streptomycin, caused by a point mutation-mediated target-site alteration of the ribosomal S12 protein, occurred in 1.3% of E. amylovora strains from Michigan. Tn5393 was originally introduced to E. amylovora on the plasmid pEa34; thus, the first Sm(R) strains isolated contained both pEa34 and the ubiquitous nonconjugative plasmid pEA29. More recently, we have observed Sm(R) strains in which Tn5393 is present on pEA29, suggesting that the transposon has moved via transposition from pEa34 to pEA29. Almost all of the strains containing Tn5393 on pEA29 had lost pEa34. Of 210 pEA29::Tn5393 plasmids examined, the transposon was inserted at either nucleotide position 1,515 or 17,527. Both of these positions were in noncoding regions of pEA29. Comparative sequencing of the housekeeping genes groEL and potentially variable sequences on pEA29 was done in an attempt to genetically distinguish Sm(R) strains from streptomycin-sensitive (Sm(S)) strains isolated in Michigan. Only 1 nucleotide difference within the total 2,660 bp sequenced from each strain was observed in 2 of 29 strains; multiple sequence differences were observed between the Michigan strains and E. amylovora control strains isolated in the western United States or from Rubus spp. Alterations in virulence observable using an immature pear fruit assay were detected in three of eight Sm(R) strains examined. Our current genetic data indicate that only two Sm(R) strain genotypes (strains containing pEA29::Tn5393 with Tn5393 inserted at either nucleotide position 1,515 or 17,527 on the plasmid) are responsible for the dissemination of Tn5393-encoded streptomycin resistance in Michigan, and that the Sm(R) and Sm(S) strains in Michigan compose a homogenous group.
Congdon, B S; Coutts, B A; Renton, M; Flematti, G R; Jones, R A C
2017-09-15
Pea seed-borne mosaic virus (PSbMV) infection causes a serious disease of field pea (Pisum sativum) crops worldwide. The PSbMV transmission efficiencies of five aphid species previously found landing in south-west Australian pea crops in which PSbMV was spreading were studied. With plants of susceptible pea cv. Kaspa, the transmission efficiencies of Aphis craccivora, Myzus persicae, Acyrthosiphon kondoi and Rhopalosiphum padi were 27%, 26%, 6% and 3%, respectively. Lipaphis erysimi did not transmit PSbMV in these experiments. The transmission efficiencies found for M. persicae and A. craccivora resembled earlier findings, but PSbMV vector transmission efficiency data were unavailable for A. kondoi, R. padi and L. erysimi. With plants of partially PSbMV resistant pea cv. PBA Twilight, transmission efficiencies of M. persicae, A. craccivora and R. padi were 16%, 12% and 1%, respectively, reflecting putative partial resistance to aphid inoculation. To examine aphid alighting preferences over time, free-choice assays were conducted with two aphid species representing efficient (M. persicae) and inefficient (R. padi) vector species. For this, alatae were set free on multiple occasions (10-15 repetitions each) amongst PSbMV-infected and mock-inoculated pea or faba bean (Vicia faba) plants. Following release, non-viruliferous R. padi alatae exhibited a general preference for PSbMV-infected pea and faba bean plants after 30min-4h, but preferred mock-inoculated plants after 24h. In contrast, non-viruliferous M. persicae alatae alighted on mock-inoculated pea plants preferentially for up to 48h following their release. With faba bean, M. persicae preferred infected plants at the front of assay cages, but mock-inoculated ones their backs, apparently due to increased levels of natural light there. When preliminary analyses were performed to detect PSbMV-induced changes in the volatile organic compound profiles of pea and faba bean plants, higher numbers of volatiles representing a range of compound groups (such as aldehydes, ketones and esters) were found in the headspaces of PSbMV-infected than of mock-inoculated pea or faba bean plants. This indicates PSbMV induces physiological changes in these hosts which manifest as altered volatile emissions. These alterations could be responsible for the differences in alighting preferences. Information from this study enhances understanding of virus-vector relationships in the PSbMV-pea and faba bean pathosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?
NASA Technical Reports Server (NTRS)
Edwards, K. L.
1985-01-01
The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.
Crozier, Louise; Hedley, Pete E.; Morris, Jenny; Wagstaff, Carol; Andrews, Simon C.; Toth, Ian; Jackson, Robert W.; Holden, Nicola J.
2016-01-01
Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 ‘Sakai,’ to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant–microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai. PMID:27462311
Linder, Cecilia Halling; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per
2009-01-01
Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD10, a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PPi), pyridoxal 5′-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The kcat/KM was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD10 was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin-binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP-flag and the sALP-FcD10 isoforms faithfully mimic the biological properties of the human BALP isoforms in vivo validating the use of these recombinant enzymes in studies aimed at dissecting the pathophysiology and treating hypophosphatasia. PMID:19631305
Halling Linder, Cecilia; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per
2009-11-01
Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD(10), a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PP(i)), pyridoxal 5'-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The k(cat)/K(M) was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD(10) was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP-flag and the sALP-FcD(10) isoforms faithfully mimic the biological properties of the human BALP isoforms in vivo validating the use of these recombinant enzymes in studies aimed at dissecting the pathophysiology and treating hypophosphatasia.
15N Abundance of Nodules as an Indicator of N Metabolism in N2-Fixing Plants 1
Shearer, Georgia; Feldman, Lori; Bryan, Barbara A.; Skeeters, Jerri L.; Kohl, Daniel H.; Amarger, Nöelle; Mariotti, Françoise; Mariotti, André
1982-01-01
This paper expands upon previous reports of 15N elevation in nodules (compared to other tissues) of N2-fixing plants. N2-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in 15N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N2-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in 15N. Thus, 15N elevation in nodules of these plants depends on active N2-fixation. Results obtained so far on the generality of 15N enrichment in N2-fixing nodules suggest that only the nodules of plants which actively fix N2 and which transport allantoin or allantoic acid exhibit 15N enrichment. PMID:16662517
Growth parameters of vegetable pigeon pea cultivars
USDA-ARS?s Scientific Manuscript database
Pigeon pea is an important crop in the dry regions of eastern Kenya, due to its drought tolerance and high protein content; however, farmer’s yield is limiting. Ojwang et al. (HortTech Vol 26 (1), 2016) evaluated twelve pigeon pea cultivars for flowering, plant height, branches, pod length and yield...
7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Legume or pea family, Fabaceae (Leguminosae). 201.56-6 Section 201.56-6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...-6 Legume or pea family, Fabaceae (Leguminosae). Kinds of seed: Alfalfa, alyceclover, asparagusbean...
7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Legume or pea family, Fabaceae (Leguminosae). 201.56-6 Section 201.56-6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...-6 Legume or pea family, Fabaceae (Leguminosae). Kinds of seed: Alfalfa, alyceclover, asparagusbean...
75 FR 53581 - Spiromesifen; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... regulation establishes tolerances for residues of spiromesifen in or on leaf petioles subgroup 4B, dry pea... equivalents, in or on pea, dry, seed at 0.15 parts per million (ppm); spearmint, tops at 25 ppm; and... for tolerances levels different from those proposed in the petitions for dry pea seed, spearmint tops...
The Pisum Genus: Getting out of Pea Soup!
USDA-ARS?s Scientific Manuscript database
Pea (Pisum sativum L.) has long been a model for plant genetics and is a widely grown pulse crop producing protein-rich seeds in a sustainable manner. However, many questions remain open about (sub)species relationships in the Pisumgenus. The ongoing pea genome sequencing project and the recent geno...
Saponin content and trypsin inhibitor activity in processed and cooked pigeon pea cultivars.
Duhan, A; Khetarpaul, N; Bishnoi, S
2001-01-01
Four high-yielding varieties of pigeon pea namely UPAS-120, Manak, JCPL-151. ICPL-87 had considerable amounts of antinutrients i.e. saponins and trypsin inhibitors. Saponin content of these unprocessed cultivars ranged from 2164 to 3494 mg/100 g. There were significant varietal variations in trypsin inhibitor activity (1007-1082 TIU/g) of these pigeon pea cultivars. Some simple, inexpensive and easy-to-use domestic processing and cooking methods, namely, soaking (6, 12, 18 h), soaking (12 h)-dehulling, ordinary cooking, pressure cooking and germination (24, 36, 48 h) were found to be quite effective in lowering the level of saponins and trypsin inhibitors in all the pigeon pea cultivars. Pressure cooking of soaked and dehulled seeds lowered the content of saponins to a maximum extent (28 to 38%) followed by ordinary cooking of soaked and dehulled seeds (28 to 35%), soaked dehulled raw seeds (22 to 27%) and 48 h germinated seeds (15 to 19%). Loss of TIA was marginal due to soaking but ordinary as well as pressure cooking of unsoaked and soaked-dehulled pigeon pea seeds reduced the TIA drastically. Pressure cooking of pigeon pea seeds completely destroyed the TIA while it was reduced to the extent of 86-88% against the control in 48 h pigeon pea sprouts.
EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas.
Hadwiger, Lee A; Tanaka, Kiwamu
2014-12-23
Pea pod endocarp suppresses the growth of an inappropriate fungus or non-pathogen by generating a "non-host resistance response" that completely suppresses growth of the challenging fungus within 6 h. Most of the components of this resistance response including pisatin production can be elicited by an extensive number of both biotic and abiotic inducers. Thus this phytoalexin serves as an indicator to be used in evaluating the chemical properties of inducers that can initiate the resistance response. Many of the pisatin inducers are reported to interact with DNA and potentially cause DNA damage. Here we propose that EDTA (ethylenediaminetetraacetic acid) is an elicitor to evoke non-host resistance in plants. EDTA is manufactured as a chelating agent, however at low concentration it is a strong elicitor, inducing the phytoalexin pisatin, cellular DNA damage and defense-responsive genes. It is capable of activating complete resistance in peas against a pea pathogen. Since there is also an accompanying fragmentation of pea DNA and alteration in the size of pea nuclei, the potential biochemical insult as a metal chelator may not be its primary action. The potential effects of EDTA on the structure of DNA within pea chromatin may assist the transcription of plant defense genes.
Xie, Min; Qi, Yajing; Hu, Yongjun
2011-04-14
2-Phenylethylamine (PEA) is the simplest aromatic amine neurotransmitter, as well as one of the most important. In this work, the conformational equilibrium and hydrogen bonding in liquid PEA were studied by means of Raman spectroscopy and theoretical calculations (DFT/MP2). By changing the orientation of the ethyl and the NH(2) group, nine possible conformers of PEA were found, including four degenerate conformers. Comparison of the experimental Raman spectra of liquid PEA and the calculated Raman spectra of the five typical conformers in selected regions (550-800 and 1250-1500 cm(-1)) revealed that the five conformers can coexist in conformational equilibrium in the liquid. The NH(2) stretching mode of the liquid is red-shifted by ca. 30 cm(-1) relative to that of an isolated PEA molecule (measured previously), implying that intermolecular N-H···N hydrogen bonds play an important role in liquid PEA. The relative intensity of the Raman band at 762 cm(-1) was found to increase with increasing temperature, indicating that the anti conformer might be favorable in liquid PEA at room temperature. The blue shift of the band for the bonded N-H stretch with increasing temperature also provides evidence of the existence of intermolecular N-H···N hydrogen bonds.
Greenshaw, A J; Turrkish, S; Davis, B A
2002-01-01
The functional aversive stimulus properties of several IP doses of (+/-)-amphetamine (1.25-10 mg.kg-1), 2-phenylethylamine (PEA, 2.5-10 mg.kg-1, following inhibition of monoamine oxidase with pargyline 50 mg.kg-1) and phenylethanolamine (6.25-50 mg.kg-1) were measured with the conditioned taste aversion (CTA) paradigm. A two-bottle choice procedure was used, water vs. 0.1 % saccharin with one conditioning trial and three retention trials. (+/-)-Amphetamine and phenylethanolamine induced a significant conditioned taste aversion but PEA did not. (+/-)-Amphetamine and PEA increased spontaneous locomotor activity but phenylethanolamine had no effects on this measure. Measurement of whole brain levels of these drugs revealed that the peak brain elevation of PEA occurred at approximately 10 min whereas the peak elevations of (+/-)-amphetamine and phenylethanolamine occurred at approximately 20 min. The present failure of PEA to elicit conditioned taste aversion learning is consistent with previous reports for this compound. The differential functional aversive stimulus effects of these three compounds are surprising since they exhibit similar discriminative stimulus properties and both (+/-)-amphetamine and PEA are self-administered by laboratory animals. The present data suggest that time to maximal brain concentrations following peripheral injection may be a determinant of the aversive stimulus properties of PEA derivatives.
Ben-Harari, R.R.; Lanir, A.; Youdim, M.B.H.
1981-01-01
1 The uptake of 5-hydroxytryptamine (5—HT) and β-phenylethylamine (PEA) and their deamination by monoamine oxidase (MAO) were studied in perfused lung from male and female rats exposed to 100% O2 at 1 ATA for up to 60 h. 2 The uptake and metabolism of 5-HT in lungs from both male and female rats was not changed by exposure to O2. 3 The uptake and metabolism of PEA by lungs from male rats was unchanged. Uptake of PEA by lungs from female rats was inhibited 20% and 62% after 37 h and 50 h exposure respectively. 4 MAO activity, both in vitro and in perfused lung, was increased towards PEA after 35 h of hyperoxia. 5 Metabolism of PEA in perfused lung, measured over 30 min, was inhibited 52% after 50 h of O2 hyperoxia. 6 These results show that exposure to high concentrations of O2 damages lung, resulting in inhibition of uptake of PEA and consequently in inhibition of metabolism of PEA. 7 These results also indicate that, in lung from female rats, MAO-type B is more susceptible to changes in O2 tension than MAO type A. PMID:7236995
Fischer, Wiebke; Neubert, Reinhard H H; Brandsch, Matthias
2010-02-01
This study was performed to characterize the intestinal transport of beta-phenylethylamine (PEA). Uptake of [(14)C]PEA into Caco-2 cells was Na(+)-independent but strongly stimulated by an outside directed H(+) gradient. At extracellular pH 7.5, the concentration-dependent uptake of PEA was saturable with kinetic parameters of 2.6mM (K(t)) and 96.2nmol/min per mg of protein (V(max)). Several biogenic amines such as harmaline and N-methylphenylethylamine as well as cationic drugs such as phenelzine, tranylcypromine, d,l-amphetamine, methadone, chlorphenamine, diphenhydramine and promethazine strongly inhibited the [(14)C]PEA uptake with K(i) values around 1mM. Tetraethylammonium, N-methyl-4-phenylpyridinium and choline had no effect. We also studied the bidirectional transepithelial transport of [(14)C]PEA at cell monolayers cultured on permeable filters. Net transepithelial flux of [(14)C]PEA from apical-to-basolateral side exceeded basolateral-to-apical flux 5-fold. We conclude that PEA is transported into Caco-2 cells by a highly active, saturable, H(+)-dependent (antiport) process. The transport characteristics do not correspond to those of the known carriers for organic cations of the SLC22, SLC44, SLC47 and other families. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Barbierato, Massimo; Facci, Laura; Marinelli, Carla; Zusso, Morena; Argentini, Carla; Skaper, Stephen D; Giusti, Pietro
2015-11-18
Oligodendrocytes have limited ability to repair the damage to themselves or to other nerve cells, as seen in demyelinating diseases like multiple sclerosis. An important strategy may be to replace the lost oligodendrocytes and/or promote the maturation of undifferentiated oligodendrocyte precursor cells (OPCs). Recent studies show that a composite of co-ultramicronized N-palmitoylethanolamine (PEA) and luteolin (co-ultramicronized PEA/luteolin, 10:1 by mass) is efficacious in improving outcome in experimental models of spinal cord and traumatic brain injuries. Here, we examined the ability of co-ultramicronized PEA/luteolin to promote progression of OPCs into a more differentiated phenotype. OPCs derived from newborn rat cortex were placed in culture and treated the following day with 10 μM co-ultramicronized PEA/luteolin. Cells were collected 1, 4 and 8 days later and analyzed for expression of myelin basic protein (MBP). qPCR and Western blot analyses revealed a time-dependent increase in expression of both mRNA for MBP and MBP content, along with an increased expression of genes involved in lipid biogenesis. Ultramicronized PEA or luteolin, either singly or in simple combination, were ineffective. Further, co-ultramicronized PEA/luteolin promoted morphological development of OPCs and total protein content without affecting proliferation. Co-ultramicronized PEA/luteolin may represent a novel pharmacological strategy to promote OPC maturation.
Changes in the germination process and growth of pea in effect of laser seed irradiation
NASA Astrophysics Data System (ADS)
Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech
2015-10-01
The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.
Parallel evolution of storage roots in morning glories (Convolvulaceae).
Eserman, Lauren A; Jarret, Robert L; Leebens-Mack, James H
2018-05-29
Storage roots are an ecologically and agriculturally important plant trait that have evolved numerous times in angiosperms. Storage roots primarily function to store carbohydrates underground as reserves for perennial species. In morning glories, storage roots are well characterized in the crop species sweetpotato, where starch accumulates in storage roots. This starch-storage tissue proliferates, and roots thicken to accommodate the additional tissue. In morning glories, storage roots have evolved numerous times. The primary goal of this study is to understand whether this was through parallel evolution, where species use a common genetic mechanism to achieve storage root formation, or through convergent evolution, where storage roots in distantly related species are formed using a different set of genes. Pairs of species where one forms storage roots and the other does not were sampled from two tribes in the morning glory family, the Ipomoeeae and Merremieae. Root anatomy in storage roots and fine roots was examined. Furthermore, we sequenced total mRNA from storage roots and fine roots in these species and analyzed differential gene expression. Anatomical results reveal that storage roots of species in the Ipomoeeae tribe, such as sweetpotato, accumulate starch similar to species in the Merremieae tribe but differ in vascular tissue organization. In both storage root forming species, more genes were found to be upregulated in storage roots compared to fine roots. Further, we find that fifty-seven orthologous genes were differentially expressed between storage roots and fine roots in both storage root forming species. These genes are primarily involved in starch biosynthesis, regulation of starch biosynthesis, and transcription factor activity. Taken together, these results demonstrate that storage roots of species from both morning glory tribes are anatomically different but utilize a common core set of genes in storage root formation. This is consistent with a pattern of parallel evolution, thus highlighting the importance of examining anatomy together with gene expression to understand the evolutionary origins of ecologically and economically important plant traits.
Periodontal regeneration in gingival recession defects.
Trombelli, L
1999-02-01
Surgical treatment of gingival recession defects aims at obtaining soft tissue coverage of exposed root surfaces and/or augmentation of gingival tissue dimensions. A variety of protocols have been developed to manage these clinical problems. Since one goal of periodontal therapy is the regeneration of the lost attachment apparatus of the tooth, full restoration of defect should be accomplished following mucogingival procedures. This implies regeneration of all periodontal structures, including formation of new cementum with inserting connective tissue fibers, alveolar bone regeneration and recreation of a functional and aesthetic morphology of the mucogingival complex. Animal and human histological studies have shown that healing at gingiva-root interface following pedicle flaps or free soft tissue grafts generally includes a long junctional epithelium with varying amounts of a new connective tissue attachment in the most apical aspect of the covered root surface. Limited bone regeneration has been observed. Adjunctive use of root conditioning agents and cell excluding, wound-stabilizing devices may amplify regenerative outcomes. Changes in the amount of keratinized tissue, which can significantly affect the aesthetic outcome of treatment, have been shown to depend on the interactions among various tissues involved in the healing process and the selected surgical procedure.
Christensen-Dalsgaard, Karen K; Ennos, Anthony R; Fournier, Meriem
2007-01-01
Roots have been described as having larger vessels and so greater hydraulic efficiency than the stem. Differences in the strength and stiffness of the tissue within the root system itself are thought to be an adaptation to the loading conditions experienced by the roots and to be related to differences in density. It is not known how potential mechanical adaptations may affect the hydraulic properties of the roots. The change in strength, stiffness, conductivity, density, sapwood area, and second moment of area distally along the lateral roots of two tropical tree species in which the strain is known to decrease rapidly was studied and the values were compared with those of the trunk. It was found that as the strain fell distally along the roots, so did the strength and stiffness of the tissue, whereas the conductivity increased exponentially. These changes appeared to be related to differences in density. In contrast to the distal-most roots, the tissue of the proximal roots had a lower conductivity and higher strength than that of the trunk. This suggests that mechanical requirements on the structure rather than the water potential gradient from roots to branches are responsible for the general pattern that roots have larger vessels than the stem. In spite of their increased transectional area, the buttressed proximal roots were subjected to higher levels of stress and had a lower total conductivity than the rest of the root system.
Qian, D; Zhou, D; Ju, R; Cramer, C L; Yang, Z
1996-01-01
Farnesylation is required for membrane targeting, protein-protein interactions, and the biological activity of key regulatory proteins, such as Ras small GTPases and protein kinases in a wide range of eukaryotes. In this report, we describe the molecular identification of a plant protein farnesyltransferase (FTase) and evidence for its role in the control of the cell cycle in plants. A pea gene encoding a homolog of the FTase beta subunit was previously cloned using a polymerase chain reaction-based strategy. A similar approach was used to clone a pea gene encoding a homolog of the FTase alpha subunit. The biochemical function of the pea FTase homologs was demonstrated by the reconstitution of FTase enzyme activity using FTase fusion proteins coexpressed in Escherichia coll. RNA gel blot analyses showed that levels of FTase mRNAs are generally higher in tissues, such as those of nodules, that are active in cell division. The relationship of FTase to cell division was further analyzed during the growth of suspension-cultured tobacco BY-2 cells. A biphasic fluctuation of FTase enzyme activity preceded corresponding changes in mitotic activity at the early log phase of cell growth. Moreover, manumycin, a specific inhibitor of FTase, was effective in inhibiting mitosis and growth in these cells. Using synchronized BY-2 cells, manumycin completely blocked mitosis when added at the early S phase but not when added at the G2 phase. These data suggest that FTase is required for the plant cell cycle, perhaps by modulating the progression through the S phase and the transition from G1 to the S phase. PMID:8989889
Rodríguez-Serrano, María; Romero-Puertas, María C.; Pazmiño, Diana M.; Testillano, Pilar S.; Risueño, María C.; del Río, Luis A.; Sandalio, Luisa M.
2009-01-01
Cadmium (Cd) toxicity has been widely studied in different plant species; however, the mechanism involved in its toxicity as well as the cell response against the metal have not been well established. In this work, using pea (Pisum sativum) plants, we studied the effect of Cd on antioxidants, reactive oxygen species (ROS), and nitric oxide (NO) metabolism of leaves using different cellular, molecular, and biochemical approaches. The growth of pea plants with 50 μm CdCl2 affected differentially the expression of superoxide dismutase (SOD) isozymes at both transcriptional and posttranscriptional levels, giving rise to a SOD activity reduction. The copper/zinc-SOD down-regulation was apparently due to the calcium (Ca) deficiency induced by the heavy metal. In these circumstances, the overproduction of the ROS hydrogen peroxide and superoxide could be observed in vivo by confocal laser microscopy, mainly associated with vascular tissue, epidermis, and mesophyll cells, and the production of superoxide radicals was prevented by exogenous Ca. On the other hand, the NO synthase-dependent NO production was strongly depressed by Cd, and treatment with Ca prevented this effect. Under these conditions, the pathogen-related proteins PrP4A and chitinase and the heat shock protein 71.2, were up-regulated, probably to protect cells against damages induced by Cd. The regulation of these proteins could be mediated by jasmonic acid and ethylene, whose contents increased by Cd treatment. A model is proposed for the cellular response to long-term Cd exposure consisting of cross talk between Ca, ROS, and NO. PMID:19279198
Increased growth and germination success in plants following hydrogen sulfide administration.
Dooley, Frederick D; Nair, Suven P; Ward, Peter D
2013-01-01
This study presents a novel way of enhancing plant growth through the use of a non-petroleum based product. We report here that exposing either roots or seeds of multicellular plants to extremely low concentrations of dissolved hydrogen sulfide at any stage of life causes statistically significant increases in biomass including higher fruit yield. Individual cells in treated plants were smaller (~13%) than those of controls. Germination success and seedling size increased in, bean, corn, wheat, and pea seeds while time to germination decreases. These findings indicated an important role of H2S as a signaling molecule that can increase the growth rate of all species yet tested. The increased crop yields reported here has the potential to effect the world's agricultural output.
Pain, Rachel E; Shaw, Ruth G; Sheth, Seema N
2018-05-16
Mutualistic relationships with microbes may aid plants in overcoming environmental stressors and increase the range of abiotic environments where plants can persist. Rhizobia, nitrogen-fixing bacteria associated with legumes, often confer fitness benefits to their host plants by increasing access to nitrogen in nitrogen-limited soils, but effects of rhizobia on host fitness under other stresses, such as drought, remain unclear. In this greenhouse study, we varied the application of rhizobia (Bradyrhizobium sp.) inoculum and drought to examine whether the fitness benefits of rhizobia to their host, partridge pea (Chamaecrista fasciculata), would differ between drought and well-watered conditions. Plants were harvested 9 weeks after seeds were sown. Young C. fasciculata plants that had been inoculated had lower biomass, leaf relative growth rate, and stem relative growth rate compared to young uninoculated plants in both drought and well-watered environments. Under the conditions of this study, the rhizobial interaction imposed a net cost to their hosts early in development. Potential reasons for this cost include allocating more carbon to nodule and root development than to aboveground growth and a geographic mismatch between the source populations of host plants and rhizobia. If developing plants incur such costs from rhizobia in nature, they may suffer an early disadvantage relative to other plants, whether conspecifics lacking rhizobia or heterospecifics. © 2018 Botanical Society of America.
Belimov, Andrey A; Dodd, Ian C; Hontzeas, Nikos; Theobald, Julian C; Safronova, Vera I; Davies, William J
2009-01-01
Decreased soil water availability can stimulate production of the plant hormone ethylene and inhibit plant growth. Strategies aimed at decreasing stress ethylene evolution might attenuate its negative effects. An environmentally benign (nonchemical) method of modifying crop ethylene relations - soil inoculation with a natural root-associated bacterium Variovorax paradoxus 5C-2 (containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that degrades the ethylene precursor ACC), was assessed with pea (Pisum sativum) plants grown in drying soil. Inoculation with V. paradoxus 5C-2, but not with a transposome mutant with massively decreased ACC deaminase activity, improved growth, yield and water-use efficiency of droughted peas. Systemic effects of V. paradoxus 5C-2 included an amplified soil drying-induced increase of xylem abscisic acid (ABA) concentration, but an attenuated soil drying-induced increase of xylem ACC concentration. A local bacterial effect was increased nodulation by symbiotic nitrogen-fixing bacteria, which prevented a drought-induced decrease in nodulation and seed nitrogen content. Successfully deploying a single bacterial gene in the rhizosphere increased yield and nutritive value of plants grown in drying soil, via both local and systemic hormone signalling. Such bacteria may provide an easily realized, economic means of sustaining crop yields and using irrigation water more efficiently in dryland agriculture.
Röhe, I; Boroojeni, F Goodarzi; Zentek, J
2017-09-01
Peas are locally grown legumes being rich in protein and starch. However, the broad usage of peas as a feed component in poultry nutrition is limited to anti-nutritional factors, which might impair gut morphology and function. This study investigated the effect of feeding raw or differently processed peas compared with feeding a soybean meal-based control diet (C) on intestinal morphology and nutrient transport in broilers. A total of 360 day-old broiler chicks were fed with one of the following diets: The C diet, and 3 diets containing raw peas (RP), fermented peas (FP) and enzymatically pre-digested peas (EP), each supplying 30% of dietary crude protein. After 35 d, jejunal samples of broilers were taken for analyzing histomorphological parameters, active glucose transport in Ussing chambers and the expression of genes related to glucose absorption, intestinal permeability and cell maturation. Villus length (P = 0.017) and crypt depth (P = 0.009) of EP-fed broilers were shorter compared to birds received C. The villus surface area was larger in broilers fed C compared to those fed with the pea-containing feed (P = 0.005). Glucose transport was higher for broilers fed C in comparison to birds fed with the EP diet (P = 0.044). The sodium-dependent glucose co-transporter 1 (SGLT-1) expression was down-regulated in RP (P = 0.028) and FP (P = 0.015) fed broilers. Correlation analyses show that jejunal villus length negatively correlates with the previously published number of jejunal intraepithelial T cells (P = 0.014) and that jejunal glucose transport was negatively correlated with the occurrence of jejunal intraepithelial leukocytes (P = 0.041). To conclude, the feeding of raw and processed pea containing diets compared to a soybean based diet reduced the jejunal mucosal surface area of broilers, which on average was accompanied by lower glucose transport capacities. These morphological and functional alterations were associated with observed mucosal immune reactions. Further studies are required elucidating the specific components in peas provoking such effects and whether these effects have a beneficial or detrimental impact on gut function and animal health. © 2017 Poultry Science Association Inc.
Psychomotor stimulant effects of beta-phenylethylamine in monkeys treated with MAO-B inhibitors.
Bergman, J; Yasar, S; Winger, G
2001-12-01
Sufficiently high doses of beta-phenylethylamine (beta-PEA), a trace amine that is rapidly metabolized by monoamine oxidase-type B (MAO-B), can produce effects comparable to those of cocaine or methamphetamine (MA). The present experiments were conducted to study how the discriminative-stimulus (S(D)) and reinforcing-stimulus (S(R)) effects of beta-PEA in monkeys are modified by treatment with inhibitors of MAO-B [R-(-)-deprenyl and MDL 72974]. In studies of its S(D) effects, doses of beta-PEA up to 30 mg/kg engendered only sporadic responding on the drug-associated lever in squirrel monkeys that discriminated intramuscular injections of 0.3 mg/kg MA from vehicle whereas lower doses of 0.3-1.0 mg/kg beta-PEA produced full substitution when administered after either R-(-)-deprenyl or MDL 72974 (0.3 mg/kg). The MA-like S(D) effects of beta-PEA were attenuated by either dopamine D(1) or D(2) receptor blockers. In studies of its S(R) effects, high doses of beta-PEA maintained responding in two of three monkeys under a second-order fixed-interval schedule (3.0 or 10 mg/kg per injection) and two of three monkeys under a simple fixed ratio (FR) schedule (0.3-1.0 mg/kg per injection) of intravenous (i.v.) self-administration. MAO-B inhibition by R-(-)-deprenyl or MDL 72974 enhanced the S(R) effects of beta-PEA in all monkeys and, under the FR schedule, induced a 30-fold or greater leftward shift in the dose-response function for its i.v. self-administration. Based on time-course determinations, the enhanced S(R) effects of beta-PEA under the FR schedule were long-lasting and dissipated gradually over 3-7 days. These results show that inhibition of MAO-B enhances S(D) and S(R) effects of beta-PEA in monkeys, presumably by delaying its inactivation. MAO-B inhibition leading to increased levels of beta-PEA may be useful, alone or in combination with other therapeutic agents, in the pharmacological management of selected aspects of drug dependence.
Mutant Peas as Probes in the Understanding of Growth and Gravitropism
NASA Technical Reports Server (NTRS)
Jaffe, M. J.; Takashi, H.
1985-01-01
One mutant of Pism sativum CREEP grows normally up to the first internode stage, and then begins to grow plagiotropically. The upper internodes bend slowly downward according to a programmed sequence which follows circumnutation of the previous internode and opening of the previous leaves, but preceeds expansion of the previous leaves. The bending is partially inhibited by excission of the opposing stipules. The second mutant, AGEOTROPUM is gravitropically incompetant when grown etiolated, in the dark. When etiolated plants are illuminated with white light, the stems become gravitropically competant, but the roots do not. If the plants are grown in the light in particulate medium, some secondary roots, growing randomly, emerge into the air, and turn and grow downward toward moist soil. When etiolated AGEOTROPUM plants are illuminated, the shoots then become able to respond to gravity in a normal, negatively orthogravitropic manner. The response is to red light and is reversed by far red light. The mutation may involve one or more of the following: (1) release of sequestered calcium for redistribution; (2) radial transport of released calcium; or (3) net calcium flux in the upward direction.
Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil.
Ranieri, Ezio; Fratino, Umberto; Petrella, Andrea; Torretta, Vincenzo; Rada, Elena Cristina
2016-08-01
The comparative effectiveness for hexavalent chromium removal from irrigation water, using two selected plant species (Phragmites australis and Ailanthus altissima) planted in soil contaminated with hexavalent chromium, has been studied in the present work. Total chromium removal from water was ranging from 55 % (Phragmites) to 61 % (Ailanthus). After 360 days, the contaminated soil dropped from 70 (initial) to 36 and 41 mg Cr/kg (dry soil), for Phragmites and Ailanthus, respectively. Phragmites accumulated the highest amount of chromium in the roots (1910 mg Cr/kg(dry tissue)), compared with 358 mg Cr/kg(dry tissue) for Ailanthus roots. Most of chromium was found in trivalent form in all plant tissues. Ailanthus had the lowest affinity for Cr(VI) reduction in the root tissues. Phragmites indicated the highest chromium translocation potential, from roots to stems. Both plant species showed good potentialities to be used in phytoremediation installations for chromium removal.
Zambrana-Infantes, Emma; Rosell Del Valle, Cristina; Ladrón de Guevara-Miranda, David; Galeano, Pablo; Castilla-Ortega, Estela; Rodríguez De Fonseca, Fernando; Blanco, Eduardo; Santín, Luis Javier
2018-03-01
Cocaine addiction is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking behaviors. Previous studies have demonstrated that cocaine, as well as other drugs of abuse, alters the levels of lipid-based signaling molecules, such as N-acylethanolamines (NAEs). Moreover, brain levels of NAEs have shown sensitivity to cocaine self-administration and extinction training in rodents. Given this background, the aim of this study was to investigate the effects of repeated or acute administration of palmitoylethanolamide (PEA), an endogenous NAE, on psychomotor sensitization and cocaine-induced contextual conditioning. To this end, the potential ability of repeated PEA administration (1 or 10 mg/kg, i.p.) to modulate the acquisition of cocaine-induced behavioral sensitization (BS) and conditioned place preference (CPP) was assessed in male C57BL/6J mice. In addition, the expression of cocaine-induced BS and CPP following acute PEA administration were also studied. Results showed that repeated administration of both doses of PEA were able to block the acquisition of cocaine-induced BS. Furthermore, acute administration of both doses of PEA was able to abolish the expression of BS, while the highest dose also abolished the expression of cocaine-induced CPP. Taken together, these results indicate that exogenous administration of PEA attenuated psychomotor sensitization, while the effect of PEA in cocaine-induced CPP depended on whether PEA was administered repeatedly or acutely. These findings could be relevant to understand the role that NAEs play in processes underlying the development and maintenance of cocaine addiction. Copyright © 2018 Elsevier Inc. All rights reserved.
Mateos-Aparicio, Inmaculada; Redondo-Cuenca, Araceli; Villanueva-Suárez, María-José
2012-02-01
By-products generated during the processing of plant food can be considered a promising source of dietary fibre as a functional compound. The dietary fibre composition, soluble sugars and antioxidant activity of the extractable polyphenols of pea and broad bean by-products have been analysed in this study. Total dietary fibre using AOAC methods plus hydrolysis (broad bean pod: 337.3 g kg⁻¹; pea pod: 472.6 g kg⁻¹) is higher (P < 0.05) in both by-products than with the Englyst method (broad bean pod: 309.7 g kg⁻¹; pea pod: 434.6 g kg⁻¹). The main monomers are uronic acids, glucose, arabinose and galactose in broad bean pods. However, pea pods are very rich in glucose and xylose. The soluble sugars analysed by high-performance liquid chromatography in both by-products have glucose as the most important component, followed by sucrose and fructose. The ferric reducing antioxidant power (broad bean pod: 406.4 µmol Trolox equivalents g⁻¹; pea pod: 25.9 µmol Trolox equivalents g⁻¹) and scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radical (EC₅₀ of broad bean pod: 0.4 mg mL⁻¹; EC₅₀ of pea pod: 16.0 mg mL⁻¹) were also measured. Broad bean and pea by-products are very rich in dietary fibre, particularly insoluble dietary fibre and their extractable polyphenols demonstrate antioxidant activity. Therefore they might be regarded as functional ingredients. Copyright © 2011 Society of Chemical Industry.
Coverage Root after Removing Peripheral Ossifying Fibroma: 5-Year Follow-Up Case Report
Okajima, Luciana S.; Nunes, Marcelo P.; Montalli, Victor A. M.
2016-01-01
When lesions in soft tissue reach the gingival margin, they can produce aesthetic defects during its permanence and after its removal. Periodontal plastic surgery allows the correction of the gingival contour using different techniques. This paper is a case report of a peripheral ossifying fibroma removal in the interproximal area of teeth 21 and 22 in addition to root coverage of the affected area through two surgical phases: keratinized gingival tissue augmentation surgery with free gingival graft concurrent with removal of the lesion and, in a second stage, root coverage by performing coronally advanced flap technique with a follow-up of five years. The initial results achieved, which were root coverage of 100% after 6 months, promoted an adequate gingival contour and prevented the development of a mucogingival defect or a root exposure with its functional and aesthetic consequences. After five years, the results showed long term success of the techniques, where the margin remained stable with complete root coverage and tissues were stable and harmonic in color. PMID:27891263
Coverage Root after Removing Peripheral Ossifying Fibroma: 5-Year Follow-Up Case Report.
Henriques, Paulo S G; Okajima, Luciana S; Nunes, Marcelo P; Montalli, Victor A M
2016-01-01
When lesions in soft tissue reach the gingival margin, they can produce aesthetic defects during its permanence and after its removal. Periodontal plastic surgery allows the correction of the gingival contour using different techniques. This paper is a case report of a peripheral ossifying fibroma removal in the interproximal area of teeth 21 and 22 in addition to root coverage of the affected area through two surgical phases: keratinized gingival tissue augmentation surgery with free gingival graft concurrent with removal of the lesion and, in a second stage, root coverage by performing coronally advanced flap technique with a follow-up of five years. The initial results achieved, which were root coverage of 100% after 6 months, promoted an adequate gingival contour and prevented the development of a mucogingival defect or a root exposure with its functional and aesthetic consequences. After five years, the results showed long term success of the techniques, where the margin remained stable with complete root coverage and tissues were stable and harmonic in color.
Ceccon, Christian; Tagliavini, Massimo; Schmitt, Armin Otto; Eissenstat, David M.
2016-01-01
Root respiration is a major contributor to terrestrial carbon flux. Many studies have shown root respiration to increase with an increase in root tissue nitrogen (N) concentration across species and study sites. Studies have also shown that both root respiration and root N concentration typically decrease with root age. The effects of added N may directly increase respiration of existing roots or may affect respiration by shifting the age structure of a root population by stimulating growth. To the best of our knowledge, no study has ever examined the effect of added N as a function of root age on root respiration. In this study, root respiration of 13-year-old Populus tremuloides Michx. trees grown in the field and 1-year-old P. tremuloides seedlings grown in containers was analyzed for the relative influence of root age and root N concentration independent of root age on root respiration. Field roots were first tracked using root windows and then sampled at known age. Nitrogen was either applied or not to small patches beneath the windows. In a pot experiment, each plant was grown with its root system split between two separate pots and N was applied at three different levels, either at the same or at different rates between pots. Root N concentration ranged between 1.4 and 1.7% in the field experiment and 1.8 and 2.6% in the seedling experiment. We found that addition of N increased root N concentration of only older roots in the field but of roots of all ages in the potted seedlings. In both experiments, the age-dependent decline in root respiration was largely consistent, and could be explained by a negative power function. Respiration decreased ∼50% by 3 weeks of age. Although root age was the dominant factor affecting respiration in both experiments, in the field experiment, root N also contributed to root respiration independent of root age. These results add further insight into respiratory responses of roots to N addition and mechanisms underlying the tissue N–respiration relationship. PMID:27095257
Becker, Talon M.; Juvik, John A.
2017-01-01
Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market. PMID:28945821
Lee, Young-Sang; Ku, Kang-Mo; Becker, Talon M; Juvik, John A
2017-01-01
Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market.
Plant characteristics and growth parameters of vegetable pigeon pea cultivars
USDA-ARS?s Scientific Manuscript database
Pigeon pea is an important crop in dry land and semi-arid regions and is a supplementary source of dietary protein for the resource-constrained farmers. The aim of this research was to evaluate growth parameters of twelve vegetable pigeon pea genotypes at two locations in Eastern Kenya. The number o...