Current responsive devices for synchronous generators
Karlicek, Robert F.
1983-01-01
A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current.
Current responsive devices for synchronous generators
Karlicek, R.F.
1983-09-27
A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current. 11 figs.
Method and apparatus for clockless analog-to-digital conversion and peak detection
DeGeronimo, Gianluigi
2007-03-06
An apparatus and method for analog-to-digital conversion and peak detection includes at least one stage, which includes a first switch, second switch, current source or capacitor, and discriminator. The discriminator changes state in response to a current or charge associated with the input signal exceeding a threshold, thereby indicating whether the current or charge associated with the input signal is greater than the threshold. The input signal includes a peak or a charge, and the converter includes a peak or charge detect mode in which a state of the switch is retained in response to a decrease in the current or charge associated with the input signal. The state of the switch represents at least a portion of a value of the peak or of the charge.
NASA Astrophysics Data System (ADS)
Nogueira, Paulo A. B.; Abdu, Mangalathayil A.; Souza, Jonas R.; Denardini, Clezio M.; Barbosa Neto, Paulo F.; Serra de Souza da Costa, João P.; Silva, Ana P. M.
2018-01-01
We have analyzed low-latitude ionospheric current responses to two intense (X-class) solar flares that occurred on 13 May 2013 and 11 March 2015. Sudden intensifications, in response to solar flare radiation impulses, in the Sq and equatorial electrojet (EEJ) currents, as detected by magnetometers over equatorial and low-latitude sites in South America, are studied. In particular we show for the first time that a 5 to 8 min time delay is present in the peak effect in the EEJ, with respect that of Sq current outside the magnetic equator, in response to the flare radiation enhancement. The Sq current intensification peaks close to the flare X-ray peak, while the EEJ peak occurs 5 to 8 min later. We have used the Sheffield University Plasmasphere-Ionosphere Model at National Institute for Space Research (SUPIM-INPE) to simulate the E-region conductivity enhancement as caused by the flare enhanced solar extreme ultraviolet (EUV) and soft X-rays flux. We propose that the flare-induced enhancement in neutral wind occurring with a time delay (with respect to the flare radiation) could be responsible for a delayed zonal electric field disturbance driving the EEJ, in which the Cowling conductivity offers enhanced sensitivity to the driving zonal electric field.
Optical monitoring of ion beam Y-Ba-Cu-O sputtering
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.
1990-11-01
The emission spectra resulting from ion beam sputtering a Y-Ba-Cu-O target were observed as a function of beam voltage and beam current. The spectra were relatively clean with several peaks readily attributed to each of Y, Ba, and Ar. Monitoring of copper and oxygen was more difficult with a single CuO peak and one O peak evident. The intensities of the cation peaks were linear with respect to beam voltage above 400 V. Since target current was found not to be directly proportional to beam current, target power was defined as the product of beam voltage and target current. The response of cation peak height to changes in target power was linear and similar for variations of either beam voltage or target current.
Anomalous satellite inductive peaks in alternating current response of defective carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirai, Daisuke; Watanabe, Satoshi; Yamamoto, Takahiro
2014-05-07
AC response of defective metallic carbon nanotubes is investigated from first principles. We found that capacitive peaks appear at electron scattering states. Moreover, we show that satellite inductive peaks are seen adjacent to a main capacitive peak, which is in contrast to the conductance spectra having no satellite features. The appearance of satellite inductive peaks seems to depend on the scattering states. Our analysis with a simple resonant scattering model reveals that the origin of the satellite inductive peaks can be understood by just one parameter, i.e., the lifetime of electrons at a defect state.
Electromagnetic pulse-induced current measurement device
NASA Astrophysics Data System (ADS)
Gandhi, Om P.; Chen, Jin Y.
1991-08-01
To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.
Tolstykh, Gleb; Belugin, Sergei; Mifflin, Steve
2004-04-23
The inhibitory amino acid GABA is released within the nucleus of the solitary tract (NTS) during hypoxia and modulates the respiratory response to hypoxia. To determine if responses of NTS neurons to activation of GABA(A) receptors are altered following exposure to chronic hypoxia, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from normoxic and chronic hypoxic rats. Chronic hypoxic rats were exposed to 10% O(2) for 9-12 days. Membrane capacitance was the same in neurons from normoxic (6.9+/-0.5 pF, n=16) and hypoxic (6.3+/-0.5 pF, n=15) rats. The EC(50) for peak GABA-evoked current density was significantly greater in neurons from hypoxic (21.7+/-2.2 microM) compared to normoxic rats (12.2+/-0.9 microM) (p<0.001). Peak and 5-s adapted GABA currents evoked by 1, 3 and 10 microM were greater in neurons from normoxic compared to hypoxic rats (p<0.05) whereas peak and 5-s adapted responses to 30 and 100 microM GABA were not different comparing normoxic to hypoxic rats. Desensitization of GABA(A)-evoked currents was observed at concentrations greater than 3 microM and, measured as the ratio of the current 5 s after the onset of 100 microM GABA application to the peak GABA current, was the same in neurons from normoxic (0.37+/-0.03) and hypoxic rats (0.33+/-0.04). Reduced sensitivity to GABA(A) receptor-evoked inhibition in chronic hypoxia could influence chemoreceptor afferent integration by NTS neurons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abd El-Kader, F.H.; Ibrahim, S.S.; Attia, G.
1993-11-15
The influence of neutron irradiation on ultraviolet/visible absorption and thermally stimulated depolarization current in nickel chloride-poly(vinyl alcohol) (PVA) cast films has been investigated. The spectral measurements indicate the responsibility of the Ni[sup 2][sup +] ion in its octahedral symmetry. Dopant concentrations higher than 10 wt % NiCl[sub 2] are found to make the samples more resistant to a degradation effect caused by neutron irradiation. The thermally stimulated depolarization currents (TSDC) of pure PVA revealed the existence of the glass transition T[sub g] and space charge relaxation peaks, whereas doped-PVA samples show a new sub-T[sub g] relaxation peak. A proposed mechanismmore » is introduced to account for the neutron effects on both glass transition and space charge relaxation peaks. The peak positions, peak currents, and stored charges of the sub-T[sub g] relaxation peak are strongly affected by both the concentration of the dopant and neutron exposure doses.« less
Oceanic Lightning versus Continental Lightning: VLF Peak Current Discrepancies
NASA Astrophysics Data System (ADS)
Dupree, N. A., Jr.; Moore, R. C.
2015-12-01
Recent analysis of the Vaisala global lightning data set GLD360 suggests that oceanic lightning tends to exhibit larger peak currents than continental lightning (lightning occurring over land). The GLD360 peak current measurement is derived from distant measurements of the electromagnetic fields emanated during the lightning flash. Because the GLD360 peak current measurement is a derived quantity, it is not clear whether the actual peak currents of oceanic lightning tend to be larger, or whether the resulting electromagnetic field strengths tend to be larger. In this paper, we present simulations of VLF signal propagation in the Earth-ionosphere waveguide to demonstrate that the peak field values for oceanic lightning can be significantly stronger than for continental lightning. Modeling simulations are performed using the Long Wave Propagation Capability (LWPC) code to directly evaluate the effect of ground conductivity on VLF signal propagation in the 5-15 kHz band. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-Ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. Furthermore, we evaluate the effect of return stroke speed on these results.
NASA Astrophysics Data System (ADS)
Sumesh, A.; Sai Ramnadh, L. V.; Manish, P.; Harnath, V.; Lakshman, V.
2016-09-01
Welding is one of the most common metal joining techniques used in industry for decades. As in the global manufacturing scenario the products should be more cost effective. Therefore the selection of right process with optimal parameters will help the industry in minimizing their cost of production. SA 106 Grade B steel has a wide application in Automobile chassis structure, Boiler tubes and pressure vessels industries. Employing central composite design the process parameters for Gas Tungsten Arc Welding was optimized. The input parameters chosen were weld current, peak current and frequency. The joint tensile strength was the response considered in this study. Analysis of variance was performed to determine the statistical significance of the parameters and a Regression analysis was performed to determine the effect of input parameters over the response. From the experiment the maximum tensile strength obtained was 95 KN reported for a weld current of 95 Amp, frequency of 50 Hz and peak current of 100 Amp. With an aim of maximizing the joint strength using Response optimizer a target value of 100 KN is selected and regression models were optimized. The output results are achievable with a Weld current of 62.6148 Amp, Frequency of 23.1821 Hz, and Peak current of 65.9104 Amp. Using Die penetration test the weld joints were also classified in to 2 categories as good weld and weld with defect. This will also help in getting a defect free joint when welding is performed using GTAW process.
Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc
NASA Astrophysics Data System (ADS)
Kano, Ryota; Mitubori, Hironori; Iwao, Toru
2015-11-01
Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.
Glassman, E Katelyn; Hughes, Michelle L
2013-01-01
Current cochlear implants (CIs) have telemetry capabilities for measuring the electrically evoked compound action potential (ECAP). Neural Response Telemetry (Cochlear) and Neural Response Imaging (Advanced Bionics [AB]) can measure ECAP responses across a range of stimulus levels to obtain an amplitude growth function. Software-specific algorithms automatically mark the leading negative peak, N1, and the following positive peak/plateau, P2, and apply linear regression to estimate ECAP threshold. Alternatively, clinicians may apply expert judgments to modify the peak markers placed by the software algorithms, or use visual detection to identify the lowest level yielding a measurable ECAP response. The goals of this study were to: (1) assess the variability between human and computer decisions for (a) marking N1 and P2 and (b) determining linear-regression threshold (LRT) and visual-detection threshold (VDT); and (2) compare LRT and VDT methods within and across human- and computer-decision methods. ECAP amplitude-growth functions were measured for three electrodes in each of 20 ears (10 Cochlear Nucleus® 24RE/CI512, and 10 AB CII/90K). LRT, defined as the current level yielding an ECAP with zero amplitude, was calculated for both computer- (C-LRT) and human-picked peaks (H-LRT). VDT, defined as the lowest level resulting in a measurable ECAP response, was also calculated for both computer- (C-VDT) and human-picked peaks (H-VDT). Because Neural Response Imaging assigns peak markers to all waveforms but does not include waveforms with amplitudes less than 20 μV in its regression calculation, C-VDT for AB subjects was defined as the lowest current level yielding an amplitude of 20 μV or more. Overall, there were significant correlations between human and computer decisions for peak-marker placement, LRT, and VDT for both manufacturers (r = 0.78-1.00, p < 0.001). For Cochlear devices, LRT and VDT correlated equally well for both computer- and human-picked peaks (r = 0.98-0.99, p < 0.001), which likely reflects the well-defined Neural Response Telemetry algorithm and the lower noise floor in the 24RE and CI512 devices. For AB devices, correlations between LRT and VDT for both peak-picker methods were weaker than for Cochlear devices (r = 0.69-0.85, p < 0.001), which likely reflect the higher noise floor of the system. Disagreement between computer and human decisions regarding the presence of an ECAP response occurred for 5 % of traces for Cochlear devices and 2.1 % of traces for AB devices. Results indicate that human and computer peak-picking methods can be used with similar accuracy for both Cochlear and AB devices. Either C-VDT or C-LRT can be used with equal confidence for Cochlear 24RE and CI512 recipients because both methods are strongly correlated with human decisions. However, for AB devices, greater variability exists between different threshold-determination methods. This finding should be considered in the context of using ECAP measures to assist with programming CIs.
Two types of peak emotional responses to music: The psychophysiology of chills and tears
Mori, Kazuma; Iwanaga, Makoto
2017-01-01
People sometimes experience a strong emotional response to artworks. Previous studies have demonstrated that the peak emotional experience of chills (goose bumps or shivers) when listening to music involves psychophysiological arousal and a rewarding effect. However, many aspects of peak emotion are still not understood. The current research takes a new perspective of peak emotional response of tears (weeping, lump in the throat). A psychophysiological experiment showed that self-reported chills increased electrodermal activity and subjective arousal whereas tears produced slow respiration during heartbeat acceleration, although both chills and tears induced pleasure and deep breathing. A song that induced chills was perceived as being both happy and sad whereas a song that induced tears was perceived as sad. A tear-eliciting song was perceived as calmer than a chill-eliciting song. These results show that tears involve pleasure from sadness and that they are psychophysiologically calming; thus, psychophysiological responses permit the distinction between chills and tears. Because tears may have a cathartic effect, the functional significance of chills and tears seems to be different. We believe that the distinction of two types of peak emotions is theoretically relevant and further study of tears would contribute to more understanding of human peak emotional response. PMID:28387335
High yield Cu-Co CPP GMR multilayer sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spallas, J.; Mao, M.; Law, B.
1997-01-15
We have fabricated and tested GMR magnetic flux sensors that operate in the CPP mode. This work is a continuation of the ultra-high density magnetic sensor research introduced at INTERMAG 96. We have made two significant modifications to the process sequence. First, contact to the sensor is made through a metal conduit deposited in situ with the multilayers. This deposition replaces electroplating. This configuration ensures a good electrical interface between the top of multilayer stack and the top contact, and a continuous, conductive current path to the sensor. The consequences of this modification are an increase in yield of operationalmore » devices to {ge}90% per wafer and a significant reduction of the device resistance to {le}560 milliohms and of the uniformity of the device resistance to {le}3%. Second, the as-deposited multilayer structure has been changed from [Cu 30 {angstrom}/Co 20 {angstrom}]{sub 18} (third peak) to [Cu 20.5 {angstrom}/Co 12 {angstrom}]{sub 30} (second peak) to increase the CPP and CIP responses. The sheet film second peak CIP GMR response is 18% and the sensitivity is 0.08 %/Oe. The sheet film third peak CIP GMR response is 8% and the sensitivity is 0. 05 %/Oe. The second peak CPP GMR response averaged over twenty devices on a four inch silicon substrate is 28% {+-} 6%. The response decreases radially from the substrate center. The average response at the center of the substrate is 33% {+-} 4%. The average second peak CPP sensitivity is 0.09 %/Oe {+-} 0.02 %/Oe. The best second peak CPP response from a single device is 39%. The sensitivity of that device is 0.13 %/Oe. The third peak CPP GMR response is approximately 14 %. The third peak CPP response sensitivity is 0.07 %/Oe. 6 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan
2011-06-01
Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.
Improved test methods for determining lightning-induced voltages in aircraft
NASA Technical Reports Server (NTRS)
Crouch, K. E.; Plumer, J. A.
1980-01-01
A lumped parameter transmission line with a surge impedance matching that of the aircraft and its return lines was evaluated as a replacement for earlier current generators. Various test circuit parameters were evaluated using a 1/10 scale relative geometric model. Induced voltage response was evaluated by taking measurements on the NASA-Dryden Digital Fly by Wire F-8 aircraft. Return conductor arrangements as well as other circuit changes were also evaluated, with all induced voltage measurements being made on the same circuit for comparison purposes. The lumped parameter transmission line generates a concave front current wave with the peak di/dt near the peak of the current wave which is more representative of lightning. However, the induced voltage measurements when scaled by appropriate scale factors (peak current or di/dt) resulting from both techniques yield comparable results.
Optical response at 10.6 microns in tungsten silicide Schottky barrier diodes
NASA Technical Reports Server (NTRS)
Kumar, Sandeep; Boyd, Joseph T.; Jackson, Howard E.
1987-01-01
Optical response to radiation at a wavelength of 10.6 microns in tungsten silicide-silicon Schottky barrier diodes has been observed. Incident photons excite electrons by means of junction plasmon assisted inelastic electron tunneling. At 78 K, a peak in the second derivative of current versus junction bias voltage was observed at a voltage corresponding to the energy of photons having a wavelength of 10.6 microns. This peak increased with increasing incident laser power, saturating at the highest laser powers investigated.
Delay of cognitive gamma responses in Alzheimer's disease
Başar, Erol; Emek-Savaş, Derya Durusu; Güntekin, Bahar; Yener, Görsev G.
2016-01-01
Event-related oscillations (EROs) reflect cognitive brain dynamics, while sensory-evoked oscillations (SEOs) reflect sensory activities. Previous reports from our lab have shown that those with Alzheimer's disease (AD) or mild cognitive impairment (MCI) have decreased activity and/or coherence in delta, theta, alpha and beta cognitive responses. In the current study, we investigated gamma responses in visual SEO and ERO in 15 patients with AD and in 15 age-, gender- and education-matched healthy controls. The following parameters were analyzed over the parietal-occipital regions in both groups: (i) latency of the maximum gamma response over a 0–800 ms time window; (ii) the maximum peak-to-peak amplitudes for each participant's averaged SEO and ERO gamma responses in 3 frequency ranges (25–30, 30–35, 40–48 Hz); and (iii) the maximum peak-to-peak amplitudes for each participant's averaged SEO and ERO gamma responses over a 0–800 ms time block containing four divided time windows (0–200, 200–400, 400–600, and 600–800 ms). There were main group effects in terms of both latency and peak-to-peak amplitudes of gamma ERO. However, peak-to-peak gamma ERO amplitude differences became noticeable only when the time block was divided into four time windows. SEO amplitudes in the 25–30 Hz frequency range of the 0–200 ms time window over the left hemisphere were greater in the healthy controls than in those with AD. Gamma target ERO latency was delayed up to 138 ms in AD patients when compared to healthy controls. This finding may be an effect of lagged neural signaling in cognitive circuits, which is reflected by the delayed gamma responses in those with AD. Based on the results of this study, we propose that gamma responses should be examined in a more detailed fashion using multiple frequency and time windows. PMID:26937378
Eddy response to variable atmospheric forcing in the Southern Ocean
NASA Astrophysics Data System (ADS)
Ward, M. L.; McC. Hogg, A.
2009-04-01
Satellite altimeter data of the Southern Ocean (SO) reveal an anomalous peak in eddy kinetic energy (EKE) in the Antarctic Circumpolar Current (ACC) in 2000-2002. This peak has been attributed to a delayed response to an earlier peak in the Southern Annular Mode (SAM) and its associated circumpolar eastward winds that occurred around 1998, where the delay is due to the formation and adjustment of the eddy field associated with the increased winds (Meredith & Hogg, 2006). A more recent analysis reveals that the EKE response varies regionally, with the strongest response in the Pacific, and it has been suggested that this variability is due to the additional influence of ENSO. The 2000-2002 peak in EKE is therefore attributed to the coincident peak in SAM and ENSO 2-3 years earlier, and that the EKE response was weaker in past years when modes were out of phase (Morrow & Pasquet, 2008). We investigate this issue by applying SAM-like and ENSO-like wind forcings to Q-GCM, the eddy-resolving model used in Meredith & Hogg and configured for the Southern Ocean. We analyze the EKE response to each individual forcing as well as a simultaneous forcing of the two, both in and out of phase. From these results, we are able to quantify both the global and regional response to each forcing, and the degree to which each mode is responsible for the EKE strength and distribution across the ACC.
A simplified controller and detailed dynamics of constant off-time peak current control
NASA Astrophysics Data System (ADS)
Van den Bossche, Alex; Dimitrova, Ekaterina; Valchev, Vencislav; Feradov, Firgan
2017-09-01
A fast and reliable current control is often the base of power electronic converters. The traditional constant frequency peak control is unstable above 50 % duty ratio. In contrast, the constant off-time peak current control (COTCC) is unconditionally stable and fast, so it is worth analyzing it. Another feature of the COTCC is that one can combine a current control together with a current protection. The time dynamics show a zero-transient response, even when the inductor changes in a wide range. It can also be modeled as a special transfer function for all frequencies. The article shows also that it can be implemented in a simple analog circuit using a wide temperature range IC, such as the LM2903, which is compatible with PV conversion and automotive temperature range. Experiments are done using a 3 kW step-up converter. A drawback is still that the principle does not easily fit in usual digital controllers up to now.
Kim, Jaeyoun; Soref, Richard; Buchwald, Walter R
2010-08-16
We investigate the electromagnetic response of the concentric multi-ring, or the bull's eye, structure as an extension of the dual-ring metamaterial which exhibits electromagnetically-induced transparency (EIT)-like transmission characteristics. Our results show that adding inner rings produces additional EIT-like peaks, and widens the metamaterial's spectral range of operation. Analyses of the dispersion characteristics and induced current distribution further confirmed the peak's EIT-like nature. Impacts of structural and dielectric parameters are also investigated.
Event-related fields evoked by vocal response inhibition: a comparison of younger and older adults.
Castro-Meneses, Leidy J; Johnson, Blake W; Sowman, Paul F
2016-06-01
The current study examined event-related fields (ERFs) evoked by vocal response inhibition in a stimulus-selective stop-signal task. We compared inhibition-related ERFs across a younger and an older group of adults. Behavioural results revealed that stop-signal reaction times (RTs), go-RTs, ignore-stop RTs and failed stop RTs were longer in the older, relative to the younger group by 38, 123, 149 and 116 ms, respectively. The amplitude of the ERF M2 peak (approximately 200 ms after the stop signal) evoked on successful stop trials was larger compared to that evoked on both failed stop and ignore-stop trials. The M4 peak (approximately 450 ms after stop signal) was of larger amplitude in both successful and failed stops compared to ignore-stop trials. In the older group, the M2, M3 and M4 peaks were smaller in amplitude and peaked later in time (by 24, 50 and 76 ms, respectively). We demonstrate that vocal response inhibition-related ERFs exhibit a similar temporal evolution to those previously described for manual response inhibition: an early peak at 200 ms (i.e. M2) that differentiates successful from failed stopping, and a later peak (i.e. M4) that is consistent with a neural marker of response checking and error processing. Across groups, our data support a more general decline of stimulus processing speed with age.
Toomey, D E; Yang, K H; Van Ee, C A
2014-01-01
Physical biomechanical surrogates are critical for testing the efficacy of injury-mitigating safety strategies. The interpretation of measured Hybrid III neck loads in test scenarios resulting in compressive loading modes would be aided by a further understanding of the correlation between the mechanical responses in the Hybrid III neck and the probability of injury in the human cervical spine. The anthropomorphic test device (ATD) peak upper and lower neck responses were measured during dynamic compressive loading conditions comparable to those of postmortem human subject (PMHS) experiments. The peak ATD response could then be compared to the PMHS injury outcomes. A Hybrid III 50th percentile ATD head and neck assembly was tested under conditions matching those of male PMHS tests conducted on an inverted drop track. This includes variation in impact plate orientation (4 sagittal plane and 2 frontal plane orientations), impact plate surface friction, and ATD initial head/neck orientation. This unique matched data with known injury outcomes were used to evaluate existing ATD neck injury criteria. The Hybrid III ATD head and neck assembly was found to be robust and repeatable under severe loading conditions. The initial axial force response of the ATD head and neck is very comparable to PMHS experiments up to the point of PMHS cervical column buckle or material failure. An ATD lower neck peak compressive force as low as 6,290 N was associated with an unstable orthopedic cervical injury in a PMHS under equivalent impact conditions. ATD upper neck peak compressive force associated with a 5% probability of unstable cervical orthopedic injury ranged from as low as 3,708 to 3,877 N depending on the initial ATD neck angle. The correlation between peak ATD compressive neck response and PMHS test outcome in the current study resulted in a relationship between axial load and injury probability consistent with the current Hybrid III injury assessment reference values. The results add to the current understanding of cervical injury probability based on ATD neck compressive loading in that it is the only known study, in addition to Mertz et al. (1978), formulated directly from ATD compressive loading scenarios with known human injury outcomes.
Fast-scale non-linear distortion analysis of peak-current-controlled buck-boost inverters
NASA Astrophysics Data System (ADS)
Zhang, Hao; Dong, Shuai; Yi, Chuanzhi; Guan, Weimin
2018-02-01
This paper deals with fast-scale non-linear distortion behaviours including asymmetrical period-doubling bifurcation and zero-crossing distortion in peak-current-controlled buck-boost inverters. The underlying mechanisms of the fast-scale non-linear distortion behaviours in inverters are revealed. The folded bifurcation diagram is presented to analyse the asymmetrical phenomenon of fast-scale period-doubling bifurcation. In view of the effect of phase shift and current ripple, the analytical expressions for one pair of critical phase angles are derived by using the design-oriented geometrical current approach. It is shown that the phase shift between inductor current and capacitor voltage should be responsible for the zero-crossing distortion phenomenon. These results obtained here are useful to optimise the circuit design and improve the circuit performance.
NASA Astrophysics Data System (ADS)
Kondapalli, S. P.
2017-12-01
In the present work, pulsed current microplasma arc welding is carried out on AISI 321 austenitic stainless steel of 0.3 mm thickness. Peak current, Base current, Pulse rate and Pulse width are chosen as the input variables, whereas grain size and hardness are considered as output responses. Response surface method is adopted by using Box-Behnken Design, and in total 27 experiments are performed. Empirical relation between input and output response is developed using statistical software and analysis of variance (ANOVA) at 95% confidence level to check the adequacy. The main effect and interaction effect of input variables on output response are also studied.
Material Models for the Human Torso Finite Element Model
2018-04-04
material characterizations drawn from current literature. Biofidelity of the ARL torso was determined by comparing peak force, force-displacement, peak...Flesh simulation. The soft tissue mesh in the upper neck was highly distorted at 21.2 ms (right) compared to the original mesh (left...a realistic response with results comparable to physical experiments to support future efforts to evaluate BABT. 2. Methods 2.1 Review of
NASA Astrophysics Data System (ADS)
Bisaria, Himanshu; Shandilya, Pragya
2018-03-01
Nowadays NiTi SMAs are gaining more prominence due to their unique properties such as superelasticity, shape memory effect, high fatigue strength and many other enriched physical and mechanical properties. The current studies explore the effect of machining parameters namely, peak current (Ip), pulse off time (TOFF), and pulse on time (TON) on wire wear ratio (WWR), and dimensional deviation (DD) in WEDM. It was found that high discharge energy was mainly ascribed to high WWR and DD. The WWR and DD increased with the increase in pulse on time and peak current whereas high pulse off time was favourable for low WWR and DD.
NASA Astrophysics Data System (ADS)
Cao, X.; Du, A.
2014-12-01
We statistically studied the response time of the SYMH to the solar wind energy input ɛ by using the RFA approach. The average response time was 64 minutes. There was no clear trend among these events concerning to the minimum SYMH and storm type. It seems that the response time of magnetosphere to the solar wind energy input is independent on the storm intensity and the solar wind condition. The response function shows one peak even when the solar wind energy input and the SYMH have multi-peak. The response time exhibits as the intrinsic property of the magnetosphere that stands for the typical formation time of the ring current. This may be controlled by magnetospheric temperature, average number density, the oxygen abundance et al.
Asymmetric SOL Current in Vertically Displaced Plasma
NASA Astrophysics Data System (ADS)
Cabrera, J. D.; Navratil, G. A.; Hanson, J. M.
2017-10-01
Experiments at the DIII-D tokamak demonstrate a non-monotonic relationship between measured scrape-off layer (SOL) currents and vertical displacement event (VDE) rates with SOL currents becoming largely n=1 dominant as plasma is displaced by the plasma control system (PCS) at faster rates. The DIII-D PCS is used to displace the magnetic axis 10x slower than the intrinsic growth time of similar instabilities in lower single-null plasmas. Low order (n <=2) mode decomposition is done on toroidally spaced current monitors to attain measures of asymmetry in SOL current. Normalized to peak n=0 response, a 2-4x increase is seen in peak n=1 response in plasmas displaced by the PCS versus previous VDE instabilities observed when vertical control is disabled. Previous inquiry shows VDE asymmetry characterized by SOL current fraction and geometric parameters of tokamak plasmas. We note that, of plasmas displaced by the PCS, short displacement time scales near the limit of the PCS temporal control appear to result in larger n=1/n=2 asymmetries. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-FG02-04ER54761.
Sonic Booms And Building Vibration Revisited
NASA Astrophysics Data System (ADS)
Sutherland, Louis C.; Kryter, Karl D.; Czech, Joseph
2006-05-01
Lessons learned from the 1960's sonic boom tests at St. Louis, Oklahoma City and at Edwards Air Force Base (EAFB) and more recently in communities near EAFB and Nellis AFB are briefly reviewed from the standpoint of building vibration and rattle response induced by the sonic boom signature. Available data on the vibro-acoustic threshold of rattle are considered along with the principal sonic boom signature parameters, peak overpressure and duration, which drive the low frequency vibration response of buildings to sonic booms. Implications for the current effort to develop an acceptable sonic boom signature are considered with this overview of current understanding of building vibration response to sonic booms. Possible gaps in this current knowledge for current technology boom signatures are considered.
Raman, I M; Trussell, L O
1995-01-01
We have examined the mechanisms underlying the voltage sensitivity of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors in voltage-clamped outside-out patches and whole cells taken from the nucleus magnocellularis of the chick. Responses to either glutamate or kainate had outwardly rectifying current-voltage relations. The rate and extent of desensitization during prolonged exposure to agonist, and the rate of deactivation after brief exposure to agonist, decreased at positive potentials, suggesting that a kinetic transition was sensitive to membrane potential. Voltage dependence of the peak conductance and of the deactivation kinetics persisted when desensitization was reduced with aniracetam or blocked with cyclothiazide. Furthermore, the rate of recovery from desensitization to glutamate was not voltage dependent. Upon reduction of extracellular divalent cation concentration, kainate-evoked currents increased but preserved rectifying current-voltage relations. Rectification was strongest at lower kainate concentrations. Surprisingly, nonstationary variance analysis of desensitizing responses to glutamate or of the current deactivation after kainate removal revealed an increase in the mean single-channel conductance with more positive membrane potentials. These data indicate that the rectification of the peak response to a high agonist concentration reflects an increase in channel conductance, whereas rectification of steady-state current is dominated by voltage-sensitive channel kinetics. Images FIGURE 2 FIGURE 3 PMID:8580330
Response of near-surface currents in the Indian Ocean to the anomalous atmospheric condition in 2015
NASA Astrophysics Data System (ADS)
Utari, P. A.; Nurkhakim, M. Y.; Setiabudidaya, D.; Iskandar, I.
2018-05-01
Anomalous ocean-atmosphere conditions were detected in the tropical Indian Ocean during boreal spring to boreal winter 2015. It was suggested that the anomalous conditions were characteristics of the positive Indian Ocean Dipole (pIOD) event. The purpose of this investigation was to investigate the response of near-surface currents in the tropical Indian Ocean to the anomalous atmospheric condition in 2015. Near-surface current from OSCAR (Ocean Surface Current Analyses Real Time) reanalysis data combined with the sea surface temperature (SST) data from OISST – NOAA, sea surface height (SSH) and surface winds from the ECMWF were used in this investigation. The analysis showed that the evolution of 2015 pIOD started in June/July, peaked in the September and terminated in late November 2015. Correlated with the evolution of the pIOD, easterly winds anomalies were detected along the equator. As the oceanic response to these easterly wind anomalies, the surface currents anomalously westward during the peak of the pIOD. It was interesting to note that the evolution of 2015 pIOD event was closely related to the ocean wave dynamics as revealed by the SSH data. Downwelling westward propagating Rossby waves were detected in the southwestern tropical Indian Ocean. Once reached the western boundary of the Indian Ocean, they were redirected back into interior Indian Ocean and propagating eastward as the downwelling Kelvin waves.
The membrane current of single rod outer segments.
Baylor, D A; Lamb, T D; Yau, K W
1979-03-01
1. Outer segments of individual rods in the retina of the toad, Bufo marinus, were drawn into a glass pipette to record the membrane current. 2. Light flashes evoked transient outward currents. The peak response amplitude was related to flash intensity by a Michaelis equation with half-saturating intensity about 1 photon mum-2. 3. The saturating response amplitude ranged up to 27 pA and corresponded closely to complete suppression of the steady inward current present in darkness. 4. For a given cell the saturating response amplitude varied linearly with the length of outer segment within the pipette. This is consistent with a uniform density of light-sensitive channels and negligible gradient of membrane potential along the outer segment. 5. Responses to bright flashes never showed the relaxation from an initial peak seen previously in intracellular voltage recordings, suggesting that the conductance change responsible for the relaxation does not occur in the outer segment. 6. Responses to local illumination of only the recorded outer segment were very similar to those obtained with diffuse light at the same intensity, indicating that peripheral rods made little contribution to the responses. 7. The spectral sensitivity of 'red' rods was consistent with a retinal1-based pigment with lambda max = 498 +/- 2 nm. 8. The kinetics of the response were consistent with four stages of delay affecting action of the internal transmitter. Responses were faster at the basal end of the outer segment than at the distal tip. 9. Background light reduced the sensitivity to a superposed dim test flash and shortened the time course of the response, indicating that adapting light modifies the kinetics and gain of the transduction mechanism within the outer segment. 10. Responses to dim lights exhibited pronounced fluctuations which are attributed in the succeeding paper (Baylor, Lamb & Yau, 1979) to the quantal nature of light.
The role of optoelectronic feedback on Franz-Keldysh voltage modulation of transistor lasers
NASA Astrophysics Data System (ADS)
Chang, Chi-Hsiang; Chang, Shu-Wei; Wu, Chao-Hsin
2016-03-01
Possessing both the high-speed characteristics of heterojunction bipolar transistors (HBTs) and enhanced radiative recombination of quantum wells (QWs), the light-emitting transistor (LET) which operates in the regime of spontaneous emissions has achieved up to 4.3 GHz modulation bandwidth. A 40 Gbit/s transmission rate can be even achieved using transistor laser (TL). The transistor laser provides not only the current modulation but also direct voltage-controlled modulation scheme of optical signals via Franz-Keldysh (FK) photon-assisted tunneling effect. In this work, the effect of FK absorption on the voltage modulation of TLs is investigated. In order to analyze the dynamics and optical responses of voltage modulation in TLs, the conventional rate equations relevant to diode lasers (DLs) are first modified to include the FK effect intuitively. The theoretical results of direct-current (DC) and small-signal alternating-current (AC) characteristics of optical responses are both investigated. While the DC characteristics look physical, the intrinsic optical response of TLs under the FK voltage modulation shows an AC enhancement with a 20 dB peak, which however is not observed in experiment. A complete model composed of the intrinsic optical transfer function and an electrical transfer function fed back by optical responses is proposed to explain the behaviors of voltage modulation in TLs. The abnormal AC peak disappears through this optoelectronic feedback. With the electrical response along with FK-included photon-carrier rate equations taken into account, the complete voltage-controlled optical modulation response of TLs is demonstrated.
Near-infrared signals associated with electrical stimulation of peripheral nerves
NASA Astrophysics Data System (ADS)
Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.
2009-02-01
We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).
Experimental Investigations on Combustion Behaviors of Live PVC Cables
NASA Astrophysics Data System (ADS)
Wang, Liufang; Zhang, Jiaqing; Zhang, Bosi; Liu, Min; Fan, Minghao; Li, Qiang
2018-03-01
This paper investigated the combustion behaviors of live PVC cables with overload currents experimentally. The smoke coefficient of released smoke and the released gas concentration were examined. The results indicate that the combustion of live PVC cables can be divided into four stages, i.e., core exposed with a little smoke, obvious flame, maximum smoke and smoke depress. For most cases, using blue laser is better than using rad laser, since the extinction coefficient of the rad laser was larger than that of the blue laser. The response time of the detection of the released typical gases due to cable pyrolysis decreased and the peak values of the typical gases increased with the overload currents. In addition, the time to reach the peak value of gas concentration also decreased with the overload currents.
Takahashi, Shigehiro; Suzuki, Iwao; Ojima, Takuto; Minaki, Daichi; Anzai, Jun-Ichi
2018-01-22
Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at -0.50 and -0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at -0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at -0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds.
Controlling Gilbert damping in a YIG film using nonlocal spin currents
NASA Astrophysics Data System (ADS)
Haidar, M.; Dürrenfeld, P.; Ranjbar, M.; Balinsky, M.; Fazlali, M.; Dvornik, M.; Dumas, R. K.; Khartsev, S.; Åkerman, J.
2016-11-01
We demonstrate the control of Gilbert damping in 65-nm-thick yttrium iron garnet (YIG) films using a spin-polarized current generated by a direct current through a nanocontact, spin filtered by a thin Co layer. The magnetodynamics of both the YIG and the Co layers can be excited by a pulse-modulated microwave current injected through the nanocontact and the response detected as a lock-in amplified voltage over the device. The spectra show three clear peaks, two associated with the ferromagnetic resonance (FMR) in each layer, and an additional Co mode with a higher wave vector proportional to the inverse of the nanocontact diameter. By varying the sign and magnitude of the direct nanocontact current, we can either increase or decrease the linewidth of the YIG FMR peak consistent with additional positive or negative damping being exerted by the nonlocal spin current injected into the YIG film. Our nanocontact approach thus offers an alternative route in the search for auto-oscillations in YIG films.
Central and peripheral components of short latency vestibular responses in the chicken
NASA Technical Reports Server (NTRS)
Nazareth, A. M.; Jones, T. A.
1998-01-01
Far-field recordings of short latency vestibular responses to pulsed cranial translation are composed of a series of positive and negative peaks occurring within 10 ms following stimulus onset. In the bird, these vestibular evoked potentials (VsEPs) can be recorded noninvasively and have been shown in the chicken and quail to depend strictly upon the activation of the vestibular component of the eighth nerve. The utility of the VsEP in the study of vestibular systems is dependent upon a clear understanding of the neural sources of response components. The primary aim of the current research in the chicken was to critically test the hypotheses that 1) responses are generated by both peripheral and central neurons and 2) peaks P1 and N1 originate from first order vestibular neurons, whereas later waves primarily depend on activity in higher order neurons. The principal strategy used here was to surgically isolate the eighth nerve as it enters the brainstem. Interruption of primary afferents of the eighth nerve in the brainstem substantially reduced or eliminated peaks beyond P2, whereas P1 and N1 were generally spared. Surgical sections that spared vestibular pathways had little effect on responses. The degree of change in response components beyond N1 was correlated with the extent of damage to central vestibular relays. These findings support the conclusion that responses are produced by both peripheral and central elements of the vestibular system. Further, response peaks later than N1 appear to be dependent upon central relays, whereas P1 and N1 reflect activity of the peripheral nerve. These findings clarify the roles of peripheral and central neurons in the generation of vestibular evoked potentials and provide the basis for a more useful and detailed interpretation of data from vestibular response testing.
Response of nickel to zinc cells to electric vehicle chopper discharge waveforms
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1981-01-01
The preliminary results of simulated electric vehicle chopper controlled discharge of a Nickel/Zinc battery shows delivered energy increases of 5 to 25 percent compared to constant current discharges of the same average current. The percentage increase was a function of chopper frequency, the ratio of peak to average current, and the magnitude of the discharge current. Because the chopper effects are of a complex nature, electric vehicle battery/speed controller interaction must be carefully considered in vehicle design to optimize battery performance.
Sugawara, Y
1989-02-01
In the isolated sensory epithelium of the Plotosus electroreceptor, the receptor current has been dissected into inward Ca current, ICa, and superimposed outward transient of Ca-gated K current, IK(Ca). In control saline (170 mM/liter Na), with IK(Ca) abolished by K blockers, ICa declined in two successive exponential phases with voltage-dependent time constants. Double-pulse experiments revealed that the test ICa was partially depressed by prepulses, maximally near voltage levels for the control ICa maximum, which suggests current-dependent inactivation. In low Na saline (80 mM/liter), ICa declined in a single phase with time constants similar to those of the slower phase in control saline. The test ICa was then unaffected by prepulses. The implied presence of two Ca current components, the fast and slow ICa's, were further examined. In control saline, the PSP externally recorded from the afferent nerve showed a fast peak and a slow tonic phase. The double-pulse experiments revealed that IK(Ca) and the peak PSP were similarly depressed, i.e., secondarily to inactivation of the peak current. The steady inward current, however, was unaffected by prolonged prepulses that were stepped to 0 mV, the in situ DC level. Therefore, the fast ICa seems to initiate IK(Ca) and phasic release of transmitter, which serves for phasic receptor responses. The slow ICa may provide persistent active current, which has been shown to maintain tonic receptor operation.
Method and apparatus for current-output peak detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Geronimo, Gianluigi
2017-01-24
A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.
NASA Astrophysics Data System (ADS)
Ozkaya, Efe; Yilmaz, Cetin
2017-02-01
The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.
Palma, F; Roncagliolo, P; Bacigalupo, J; Palacios, A G
2001-01-01
We investigated the photocurrents from isolated rods of the South American anuran, Caudiverbera caudiverbera. Rod outer segments were on average 66.4 +/- 11.2 microm (mean +/- S.D., n = 104) in length and 6.6 +/- 0.9 microm (mean +/- S.D.) in diameter: 40 +/- 22 photoisomerizations (mean +/- S.D., range 10-99, n = 16) were required for eliciting a half-saturating photocurrent response. The time-to-peak was 911 +/- 217 ms (mean +/- S.D., n = 14, 20 degrees C) in the linear range of the response and the integration time of the current response was 1744 +/- 451 ms (mean +/- S.D., n = 14). The time-to-peak appears to be slower and the integration time shorter in Caudiverbera than in Ambystoma tigrinum, Rana pipiens or Xenopus laevis rods under similar experimental conditions. The a-band of rod spectral sensitivity has a lambda(max) at 520 +/- 2.1 nm (mean +/- S.D., range 516-525 nm, n = 24) and the bandwidth fits a porphyropsin visual pigment. The single-event response amplitude ranges from 0.31-0.51 pA, depending on the calculation method. The intrinsic dark current (variance at dark minus variance under bright light) was 0.045 +/- 0.040 pA2 (mean +/- S.D., n = 24). Our results support the presence of a dark-noise component below 1 Hz, with kinetics similar to the single-photon evoked response and a rate of 0.006 events s(-1) (n = 9).
Loss of interplane correlation in Bi2Sr2CaCu2O8 single crystals
NASA Astrophysics Data System (ADS)
Arribére, A.; Pastoriza, H.; Goffman, M. F.; de La Cruz, F.; Mitzi, D. B.; Kapitulnik, A.
1993-09-01
By means of dc magnetization and the ac response of Bi2Sr2CaCu2O6 single crystals it is shown that at the dc irreversibility line the vortex system has no long-range order in the c direction. We find an energy dissipation peak at 7 Hz for interplane current that takes place at a temperature well below the irreversibility line. In this sense, the irreversibility line marks the temperature where quasi-two-dimensional vortices are depinned. The experimental data clearly show the different nature of two dissipation peaks in the susceptibility: one related to the interplane currents and the other associated with the intraplane ones.
Impact of the definition of peak standardized uptake value on quantification of treatment response.
Vanderhoek, Matt; Perlman, Scott B; Jeraj, Robert
2012-01-01
PET-based treatment response assessment typically measures the change in maximum standardized uptake value (SUV(max)), which is adversely affected by noise. Peak SUV (SUV(peak)) has been recommended as a more robust alternative, but its associated region of interest (ROI(peak)) is not uniquely defined. We investigated the impact of different ROI(peak) definitions on quantification of SUV(peak) and tumor response. Seventeen patients with solid malignancies were treated with a multitargeted receptor tyrosine kinase inhibitor resulting in a variety of responses. Using the cellular proliferation marker 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT), whole-body PET/CT scans were acquired at baseline and during treatment. (18)F-FLT-avid lesions (∼2/patient) were segmented on PET images, and tumor response was assessed via the relative change in SUV(peak). For each tumor, 24 different SUV(peaks) were determined by changing ROI(peak) shape (circles vs. spheres), size (7.5-20 mm), and location (centered on SUV(max) vs. placed in highest-uptake region), encompassing different definitions from the literature. Within each tumor, variations in the 24 SUV(peaks) and tumor responses were measured using coefficient of variation (CV), standardized deviation (SD), and range. For each ROI(peak) definition, a population average SUV(peak) and tumor response were determined over all tumors. A substantial variation in both SUV(peak) and tumor response resulted from changing the ROI(peak) definition. The variable ROI(peak) definition led to an intratumor SUV(peak) variation ranging from 49% above to 46% below the mean (CV, 17%) and an intratumor SUV(peak) response variation ranging from 49% above to 35% below the mean (SD, 9%). The variable ROI(peak) definition led to a population average SUV(peak) variation ranging from 24% above to 28% below the mean (CV, 14%) and a population average SUV(peak) response variation ranging from only 3% above to 3% below the mean (SD, 2%). The size of ROI(peak) caused more variation in intratumor response than did the location or shape of ROI(peak). Population average tumor response was independent of size, shape, and location of ROI(peak). Quantification of individual tumor response using SUV(peak) is highly sensitive to the ROI(peak) definition, which can significantly affect the use of SUV(peak) for assessment of treatment response. Clinical trials are necessary to compare the efficacy of SUV(peak) and SUV(max) for quantification of response to therapy.
Transient Response in a Dendritic Neuron Model for Current Injected at One Branch
Rinzel, John; Rall, Wilfrid
1974-01-01
Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma. PMID:4424185
Shen, Y; Lu, T; Yang, X L
1999-03-01
In horizontal cells freshly dissociated from crucian carp (Carassius auratus) retina, we examined the effects of modulators of glutamate receptor desensitization, concanavalin A, cyclothiazide, aniracetam and 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetam ide (PEPA), on responses to rapid application of glutamate and kainate, using whole-cell voltage-clamp techniques. Incubation of concanavalin A suppressed the peak response but weakly potentiated the equilibrium response of horizontal cells to glutamate. Cyclothiazide blocked glutamate-induced desensitization in a dose-dependent manner, which resulted in a steady increase of the equilibrium current. The concentration of cyclothiazide causing a half-maximal potentiation for the equilibrium response was 85 microM. Furthermore, cyclothiazide shifted the dose-response relationship of the equilibrium current to the right, but slightly suppressed the kainate-induced sustained current. These effects of concanavalin A and cyclothiazide are consistent with the supposition that glutamate receptors of carp horizontal cells may be an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-preferring subtype. In order to further characterize the AMPA receptors of horizontal cells, modulation by aniracetam and PEPA of glutamate- and kainate-induced currents was studied. Aniracetam, a preferential modulator of flop variants of AMPA receptors, considerably blocked desensitization of glutamate-induced currents, but only slightly potentiated kainate-induced currents. It was further found that PEPA, a flop-preferring allosteric modulator of AMPA receptor desensitization, slightly suppressed the peak current, while it dramatically potentiated the equilibrium current induced by glutamate in a dose-dependent manner. PEPA was much potent than aniracetam at these receptors and showed the effect on glutamate-induced desensitization even at a concentration as low as 3 microM. PEPA also potentiated non-desensitizing currents induced by kainate, but with much less extent. These modulatory effects of concanavalin A, cyclothiazide, aniracetam and PEPA on AMPA receptors in carp horizontal cells were rather similar to those obtained at AMPA receptors assembled from flop variants expressed in Xenopus oocyte and HEK cell. Consequently, we speculate that the AMPA receptor on carp horizontal cells may predominantly carry the flop splice variants.
2012-01-01
Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798
The 640 × 512 LWIR type-II superlattice detectors operating at 110 K
NASA Astrophysics Data System (ADS)
Tan, Bi-Song; Zhang, Chuan-Jie; Zhou, Wen-Hong; Yang, Xiao-Jie; Wang, Guo-Wei; Li, Yun-Tao; Ding, Yan-Yan; Zhang, Zhou; Lei, Hua-Wei; Liu, Wei-Hua; Du, Yu; Zhang, Li-Fang; Liu, Bin; Wang, Li-Bao; Huang, Li
2018-03-01
The type-II InAs/GaSb superlattices (T2SLs)-based 640 × 512 long wavelength infrared (LWIR) Focal Plane Array (FPA) detector with15 μm pitch and 50% cut-off wavelength of 10.5 μm demonstrates a peak quantum efficiency of 38.6% and peak detectivity of 1.65 × 1011 cm Hz1/2 W-1 at 8.1 μm, high pixel operability of 99.5% and low responsivity non-uniformity of 2.69% at 80 K. The FPA exhibits clear infrared imaging at 110 K and diffusion-limited dark current densities below Tennant's 'Rule07' at temperature above 100 K, which is attributed to the efficient suppression of diffusion dark current and surface leak current by introducing M-structure barrier and double hetero-structure passivation layers.
Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V
2013-09-01
Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis , the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai
2013-05-13
Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.
NASA Astrophysics Data System (ADS)
McPherron, R. L.; Anderson, B. J.; Chu, Xiangning
2018-03-01
The strength of field-aligned currents coupling the magnetosphere to the ionosphere was obtained by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) using the network of Iridium® spacecraft. The distribution of current was integrated giving total current in and out of the ionosphere on the dayside and nightside of the Earth in both hemispheres. The onset of auroral zone negative bays and midlatitude positive bays corresponds to an increase in nightside upward current. The total outward current tends toward saturation with increasing solar wind driver strength. The optimum solar wind coupling function for AL index predicts 73% of the variance in nightside upward current. The dayside and nightside predictors of upward current rise to a peak at 30-45 min and decay slowly over 2.5 hr. Nightside response is delayed relative to dayside.
NASA Astrophysics Data System (ADS)
Aguiló-Aguayo, Noemí; Bechtold, Thomas
2014-05-01
New electrode designs are required for electrochemical applications such as batteries or fuel cells. Embroidered 3D Cu porous electrodes with a geometric surface of 100 cm2 are presented and characterised by means of the anthraquinone-1,5-disfulfonic acid (AQDS2-) redox system in alkaline solution. The electrochemical behaviour of the 3D electrode is established by the comparison of cyclic voltammetry responses using a micro cell and a 100 cm2 plane Cu-plate electrode. Dependencies of the peak currents and peak-to-peak potential separation on scan rate and AQDS2- concentration are studied. The AQDS2- characterisation is also performed by means of spectroelectrochemical experiments.
Integrating an MR head into a peak detection channel
NASA Astrophysics Data System (ADS)
Curland, Nathan; Machelski, Russell J.
1994-03-01
Integrating a magnetoresistive (MR) head into a peak detection channel requires the engineer to deal with basic differences between MR and thin film heads. These differences result from nonlinear sensor response, separate write and read elements, and having an active element at the air bearing surface (ABS). A simple model for flux superposition can adequately address nonlinear effects and be used for equalization design. Timing budgets can be developed which demonstrate the dominance of media noise for present day systems. Single threshold qualification can handle most current system requirements. Separate read/write elements mean that more attention needs to be paid to offtrack equalization design and head dimensional tolerancing. An active element at the ABS requires better control of the head-disc potential and leakage currents.
Takahashi, Shigehiro; Suzuki, Iwao; Ojima, Takuto; Minaki, Daichi
2018-01-01
Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at −0.50 and −0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at −0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at −0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds. PMID:29361775
Discharging dynamics in an electrolytic cell
NASA Astrophysics Data System (ADS)
Feicht, Sarah E.; Frankel, Alexandra E.; Khair, Aditya S.
2016-07-01
We analyze the dynamics of a discharging electrolytic cell comprised of a binary symmetric electrolyte between two planar, parallel blocking electrodes. When a voltage is initially applied, ions in the electrolyte migrate towards the electrodes, forming electrical double layers. After the system reaches steady state and the external current decays to zero, the applied voltage is switched off and the cell discharges, with the ions eventually returning to a uniform spatial concentration. At voltages on the order of the thermal voltage VT=kBT /q ≃25 mV, where kB is Boltzmann's constant, T is temperature, and q is the charge of a proton, experiments on surfactant-doped nonpolar fluids observe that the temporal evolution of the external current during charging and discharging is not symmetric [V. Novotny and M. A. Hopper, J. Electrochem. Soc. 126, 925 (1979), 10.1149/1.2129195; P. Kornilovitch and Y. Jeon, J. Appl. Phys. 109, 064509 (2011), 10.1063/1.3554445]. In fact, at sufficiently large voltages (several VT), the current during discharging is no longer monotonic: it displays a "reverse peak" before decaying in magnitude to zero. We analyze the dynamics of discharging by solving the Poisson-Nernst-Planck equations governing ion transport via asymptotic and numerical techniques in three regimes. First, in the "linear regime" when the applied voltage V is formally much less than VT, the charging and discharging currents are antisymmetric in time; however, the potential and charge density profiles during charging and discharging are asymmetric. The current evolution is on the R C timescale of the cell, λDL /D , where L is the width of the cell, D is the diffusivity of ions, and λD is the Debye length. Second, in the (experimentally relevant) thin-double-layer limit ɛ =λD/L ≪1 , there is a "weakly nonlinear" regime defined by VT≲V ≲VTln(1 /ɛ ) , where the bulk salt concentration is uniform; thus the R C timescale of the evolution of the current magnitude persists. However, nonlinear, voltage-dependent, capacitance of the double layer is responsible for a break in temporal antisymmetry of the charging and discharging currents. Third, the reverse peak in the discharging current develops in a "strongly nonlinear" regime V ≳VTln(1 /ɛ ) , driven by neutral salt adsorption into the double layers and consequent bulk depletion during charging. The strongly nonlinear regime features current evolution over three timescales. The current decays in magnitude on the double layer relaxation timescale, λD2/D ; then grows exponentially in time towards the reverse peak on the diffusion timescale, L2/D , indicating that the reverse peak is the results of fast diffusion of ions from the double layer layer to the bulk. Following the reverse peak, the current decays exponentially to zero on the R C timescale. Notably, the current at the reverse peak and the time of the reverse peak saturate at large voltages V ≫VTln(1 /ɛ ) . We provide semi-analytic expressions for the saturated reverse peak time and current, which can be used to infer charge carrier diffusivity and concentration from experiments.
A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes.
Pandit, S V; Clark, R B; Giles, W R; Demir, S S
2001-01-01
Mathematical models were developed to reconstruct the action potentials (AP) recorded in epicardial and endocardial myocytes isolated from the adult rat left ventricle. The main goal was to obtain additional insight into the ionic mechanisms responsible for the transmural AP heterogeneity. The simulation results support the hypothesis that the smaller density and the slower reactivation kinetics of the Ca(2+)-independent transient outward K(+) current (I(t)) in the endocardial myocytes can account for the longer action potential duration (APD), and more prominent rate dependence in that cell type. The larger density of the Na(+) current (I(Na)) in the endocardial myocytes results in a faster upstroke (dV/dt(max)). This, in addition to the smaller magnitude of I(t), is responsible for the larger peak overshoot of the simulated endocardial AP. The prolonged APD in the endocardial cell also leads to an enhanced amplitude of the sustained K(+) current (I(ss)), and a larger influx of Ca(2+) ions via the L-type Ca(2+) current (I(CaL)). The latter results in an increased sarcoplasmic reticulum (SR) load, which is mainly responsible for the higher peak systolic value of the Ca(2+) transient [Ca(2+)](i), and the resultant increase in the Na(+)-Ca(2+) exchanger (I(NaCa)) activity, associated with the simulated endocardial AP. In combination, these calculations provide novel, quantitative insights into the repolarization process and its naturally occurring transmural variations in the rat left ventricle. PMID:11720973
Photoinduced currents in pristine and ion irradiated kapton-H polyimide
NASA Astrophysics Data System (ADS)
Sharma, Anu; Sridharbabu, Y.; Quamara, J. K.
2014-10-01
The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200°C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.
Photoinduced currents in pristine and ion irradiated kapton-H polyimide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Anu, E-mail: sharmaanu81@gmail.com; Sridharbabu, Y., E-mail: sharmaanu81@gmail.com; Quamara, J. K., E-mail: sharmaanu81@gmail.com
2014-10-15
The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200°C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.
Robert C. Musselman; Allen S. Lefohn; William J. Massman; Robert L. Heath
2006-01-01
Early studies of plant response to ozone (O3) utilized concentration-based metrics, primarily by summarizing the commonly monitored hourly average data sets. Research with the O3 concentration parameter led to the recognition that both peak concentrations and cumulative effects are important when relating plant response to O3. The US and Canada currently use O3...
Flux-line response in 2H-NbSe 2 investigated by means of the vibrating superconductor method
NASA Astrophysics Data System (ADS)
D'Anna, G.; André, M.-O.; Benoit, W.; Rodríguez, E.; Rodríguez, D. S.; Luzuriaga, J.; Wasczak, J. V.
1993-12-01
We measure transverse AC losses in the low- and high-amplitude regime of 2H-NbSe 2 single crystals using vibrating superconductor methods. The measurements are sensitive to small deviations of the critical state. The data constitute evidence for a peak effect of the critical current as a function of the temperature in this compound. We construct in the H- T phase diagram the “peak-effect” line which is supposed to mark an abrupt cross-over in the vortex-pinning regime.
A Fully Automated Stage for Optical Waveguide Measurements
1993-09-01
method, as in the case of the out-of-plane method, also relies on a certain level of uniformity in the waveguide. Accurate loss measurements over a...2 . The S1227-66BQ has a response from 190 nm to 1000 nm with a peak at 720 nm and a typical radiant sensitivity of 0.35 A/W at the peak wavelength 3... levels . The current generated in the detector due to incident light is converted to a voltage at the output of the operational amplifier (op-amp
Climate Change Impacts on Peak Electricity Consumption: US vs. Europe.
NASA Astrophysics Data System (ADS)
Auffhammer, M.
2016-12-01
It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond. This finding is at odds with the relatively modest increase in climate driven impacts on consumption. Comprehensive high frequency load balancing authority level data have not been used previously to parameterize the relationship between electric demand and temperature for any major economy. Using statistical models we analyze multi-year data from load balancing authorities in the United States of America and the European Union, which are responsible for more than 90% of the electricity delivered to residential, industrial, commercial and agricultural customers. We couple the estimated response functions between total daily consumption and daily peak load with an ensemble of downscaled GCMs from the CMIP5 archive to simulate climate change driven impacts on both outcomes. We show moderate and highly spatially heterogeneous changes in consumption. The results of our peak load simulations, however, suggest significant changes in the intensity and frequency of peak events throughout the United States and Europe. As the electricity grid is built to endure maximum load, which usually occurs on the hottest day of the year, our findings have significant implications for the construction of costly peak generating and transmission capacity.
Fukatsu, Y; Miyake, Y; Sugita, S; Saito, A; Watanabe, S
1990-11-01
To analyze the Electrically evoked response (EER) in relation to the central visual pathway, the authors studied the properties of wave patterns and peak latencies of EER in 35 anesthetized adult cats. The cat EER showed two early positive waves on outward current (cornea cathode) stimulus and three or four early positive waves on inward current (cornea anode) stimulus. These waves were recorded within 50 ms after stimulus onset, and were the most consistent components in cat EER. The stimulus threshold for EER showed a less individual variation than amplitude. The difference of stimulus threshold between outward and inward current stimulus was also essentially negligible. The stimulus threshold was higher in early components than in late components. The peak latency of EER became shorter and the amplitude became higher, as the stimulus intensity was increased. However, this tendency was reversed and some wavelets started to appear when the stimulus was extremely strong. The recording using short stimulus duration and bipolar electrodes enabled us to reduce the electrical artifact of EER. These results obtained from cats were compared with those of humans and rabbits.
Electroactivity of Aptamer at Soft Microinterface Arrays.
Felisilda, Bren Mark B; Arrigan, Damien W M
2018-06-26
The electrochemical behavior of a synthetic oligonucleotide, thrombin-binding aptamer (TBA, 15-mer), was explored at a liquid-organogel microinterface array. TBA did not display any response when only background electrolytes were present in both phases. On the basis of literature reports that surfactants can influence nucleic acid detection, the response in the presence of cetyltrimethylammonium (CTA + ) was examined. With both TBA and CTA + in the aqueous phase, the transfer current for CTA + was diminished, signifying the interaction of CTA + with TBA. Experiments with CTA + spiked into the organic phase revealed a sharp current peak, consistent with the interfacial formation of a CTA + -TBA complex. However, use of CTA + as the organic phase electrolyte cation, as the salt with tetrakis(4-chlorophenyl)borate, greatly improved the response to TBA. In this case, a distinctive peak response (at ca. -0.25 V) was attributed to the transfer of CTA + across the soft interface to complex with aqueous phase TBA. Employing this process as a detection step enabled a detection limit of 0.11 μM TBA (by cyclic voltammetry). Furthermore, the presence of magnesium cations at physiological concentration resulted in the disappearance of the TBA response because of Mg 2+ -induced folding of TBA. Also, the current response of TBA was decreased by the addition of thrombin, indicating TBA interacted with this binding partner. Finally, the interfacial surfactant-aptamer interaction was explored in a synthetic urine matrix that afforded a detection limit of 0.29 μM TBA. These results suggest that aptamer-binding interactions can be monitored by electrochemistry at aqueous-organic interfaces and open up a new possibility for detection in aptamer-binding assays.
A Study of Applying Pulsed Remote Field Eddy Current in Ferromagnetic Pipes Testing
Luo, Qingwang; Shi, Yibing; Wang, Zhigang; Zhang, Wei; Li, Yanjun
2017-01-01
Pulsed Remote Field Eddy Current Testing (PRFECT) attracts the attention in the testing of ferromagnetic pipes because of its continuous spectrum. This paper simulated the practical PRFECT of pipes by using ANSYS software and employed Least Squares Support Vector Regression (LSSVR) to extract the zero-crossing time to analyze the pipe thickness. As a result, a secondary peak is found in zero-crossing time when transmitter passed by a defect. The secondary peak will lead to wrong quantification and the localization of defects, especially when defects are found only at the transmitter location. Aiming to eliminate the secondary peaks, double sensing coils are set in the transition zone and Wiener deconvolution filter is applied. In the proposed method, position dependent response of the differential signals from the double sensing coils is calibrated by employing zero-mean normalization. The methods proposed in this paper are validated by analyzing the simulation signals and can improve the practicality of PRFECT of ferromagnetic pipes. PMID:28475141
Study of Drug Metabolism by Xanthine Oxidase
Zhao, Jing; He, Xiaolin; Yang, Nana; Sun, Lizhou; Li, Genxi
2012-01-01
In this work, we report the studies of drug metabolism by xanthine oxidase (XOD) with electrochemical techniques. Firstly, a pair of stable, well-defined and quasi-reversible oxidation/reduction peaks is obtained with the formal potential at −413.1 mV (vs. SCE) after embedding XOD in salmon sperm DNA membrane on the surface of pyrolytic graphite electrode. Then, a new steady peak can be observed at −730 mV (vs. SCE) upon the addition of 6-mercaptopurine (6-MP) to the electrochemical system, indicating the metabolism of 6-MP by XOD. Furthermore, the chronoamperometric response shows that the current of the catalytic peak located at −730 mV increases with addition of 6-MP in a concentration-dependent manner, and the increase of the chronoamperometric current can be inhibited by an XOD inhibitor, quercetin. Therefore, our results prove that XOD/DNA modified electrode can be efficiently used to study the metabolism of 6-MP, which may provide a convenient approach for in vitro studies on enzyme-catalyzed drug metabolism. PMID:22606015
A Study of Applying Pulsed Remote Field Eddy Current in Ferromagnetic Pipes Testing.
Luo, Qingwang; Shi, Yibing; Wang, Zhigang; Zhang, Wei; Li, Yanjun
2017-05-05
Pulsed Remote Field Eddy Current Testing (PRFECT) attracts the attention in the testing of ferromagnetic pipes because of its continuous spectrum. This paper simulated the practical PRFECT of pipes by using ANSYS software and employed Least Squares Support Vector Regression (LSSVR) to extract the zero-crossing time to analyze the pipe thickness. As a result, a secondary peak is found in zero-crossing time when transmitter passed by a defect. The secondary peak will lead to wrong quantification and the localization of defects, especially when defects are found only at the transmitter location. Aiming to eliminate the secondary peaks, double sensing coils are set in the transition zone and Wiener deconvolution filter is applied. In the proposed method, position dependent response of the differential signals from the double sensing coils is calibrated by employing zero-mean normalization. The methods proposed in this paper are validated by analyzing the simulation signals and can improve the practicality of PRFECT of ferromagnetic pipes.
Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei
2013-05-01
The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol-gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. Copyright © 2013 Elsevier B.V. All rights reserved.
Frequency Responses of Rat Retinal Ganglion Cells
Cloherty, Shaun L.; Hung, Yu-Shan; Kameneva, Tatiana; Ibbotson, Michael R.
2016-01-01
There are 15–20 different types of retinal ganglion cells (RGC) in the mammalian retina, each encoding different aspects of the visual scene. The mechanism by which post-synaptic signals from the retinal network generate spikes is determined by each cell’s intrinsic electrical properties. Here we investigate the frequency responses of morphologically identified rat RGCs using intracellular injection of sinusoidal current waveforms, to assess their intrinsic capabilities with minimal contributions from the retinal network. Recorded cells were classified according to their morphological characteristics (A, B, C or D-type) and their stratification (inner (i), outer (o) or bistratified) in the inner plexiform layer (IPL). Most cell types had low- or band-pass frequency responses. A2, C1 and C4o cells were band-pass with peaks of 15–30 Hz and low-pass cutoffs above 56 Hz (A2 cells) and ~42 Hz (C1 and C4o cells). A1 and C2i/o cells were low-pass with peaks of 10–15 Hz (cutoffs 19–25 Hz). Bistratified D1 and D2 cells were also low-pass with peaks of 5–10 Hz (cutoffs ~16 Hz). The least responsive cells were the B2 and C3 types (peaks: 2–5 Hz, cutoffs: 8–11 Hz). We found no difference between cells stratifying in the inner and outer IPL (i.e., ON and OFF cells) or between cells with large and small somas or dendritic fields. Intrinsic physiological properties (input resistance, spike width and sag) had little impact on frequency response at low frequencies, but account for 30–40% of response variability at frequencies >30 Hz. PMID:27341669
Dong, Wenbo; Wang, Kaiyin; Chen, Yu; Li, Weiping; Ye, Yanchun; Jin, Shaohua
2017-07-28
An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT) and β-cyclodextrin-included-ferrocene (β-CD-FE) complex for the determination of H₂O₂. Ferrocene (FE) was included in β-cyclodextrin (β-CD) to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H₂O₂. It was found that the CTS-CAT could produce a strong reduction peak current in response to H₂O₂ and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H₂O₂ concentration in the range of 1.0 × 10 -7 -6.0 × 10 -3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin.
Frequency response control of semiconductor laser by using hybrid modulation scheme.
Mieda, Shigeru; Yokota, Nobuhide; Isshiki, Ryuto; Kobayashi, Wataru; Yasaka, Hiroshi
2016-10-31
A hybrid modulation scheme that simultaneously applies the direct current modulation and intra-cavity loss modulation to a semiconductor laser is proposed. Both numerical calculations using rate equations and experiments using a fabricated laser show that the hybrid modulation scheme can control the frequency response of the laser by changing a modulation ratio and time delay between the two modulations. The modulation ratio and time delay provide the degree of signal mixing of the two modulations and an optimum condition is found when a non-flat frequency response for the intra-cavity loss modulation is compensated by that for the direct current modulation. We experimentally confirm a 8.64-dB improvement of the modulation sensitivity at 20 GHz compared with the pure direct current modulation with a 0.7-dB relaxation oscillation peak.
Cell membrane organization is important for inner hair cell MET-channel gating
NASA Astrophysics Data System (ADS)
Effertz, Thomas; Scharr, Alexandra L.; Ricci, Anthony J.
2018-05-01
Specialized sensory cells, hair cells, translate mechanical stimuli into electro/chemical responses. This process, termed mechano-electrical transduction (MET), is localized to the hair cell's sensory organelle, the hair bundle. The mature hair bundle comprises three rows of actin filled stereocilia, arranged in a staircase pattern. Deflections towards the tallest row of stereocilia activate MET channels, residing at the top of stereocilia. While other MET channels can be activated or modulated by changes to their lipid environment, this remains unknown for the mammalian auditory MET channel. We show here that the effect of lipid and cholesterol depletion from the cell membrane affect the MET current as well. We used γ-cyclodextrin to extract lipids form the membrane, reversibly reducing the peak MET current, current adaptation, and decreasing the channels resting open probability. The recovery after γ-cyclodextrin treatment was slower than the initial peak current reduction, suggesting that a specific lipid organization is required for normal MET channel function, which requires time reestablish. Extraction of cholesterol, using Mβ-cyclodextrin, irreversibly reduces the peak MET current and reversibly increases the channel resting open probability, suggesting that cholesterol restricts MET channel opening. This restriction could be useful to increase the channel's signal to noise ratio. Together this data suggests that the cell membrane is part of the force relay machinery to the MET channel and could possibly restrict gating associated conformational changes of the MET channel.
RAPID CLONING OF HIGH AFFINITY HUMAN MONOCLONAL ANTIBODIES AGAINST INFLUENZA VIRUS
Wrammert, Jens; Smith, Kenneth; Miller, Joe; Langley, Trey; Kokko, Kenneth; Larsen, Christian; Zheng, Nai-Ying; Mays, Israel; Garman, Lori; Helms, Christina; James, Judith; Air, Gillian M.; Capra, J. Donald; Ahmed, Rafi; Wilson, Patrick C.
2008-01-01
Pre-existing neutralizing antibody provides the first line of defense against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14 to 21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B cell receptor (BCR) repertoire that in some donors were dominated by only a few B cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over fifty human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high affinity mAbs from humans within a month after vaccination. The panel of influenza virus specific human mAbs allowed us to address the issue of original antigenic sin (OAS) - the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared to the virus strain present in the vaccine1. However, we found that the vast majority of the influenza virus specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal healthy adults receiving influenza vaccination. PMID:18449194
Rapid cloning of high-affinity human monoclonal antibodies against influenza virus.
Wrammert, Jens; Smith, Kenneth; Miller, Joe; Langley, William A; Kokko, Kenneth; Larsen, Christian; Zheng, Nai-Ying; Mays, Israel; Garman, Lori; Helms, Christina; James, Judith; Air, Gillian M; Capra, J Donald; Ahmed, Rafi; Wilson, Patrick C
2008-05-29
Pre-existing neutralizing antibody provides the first line of defence against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14-21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B-cell receptor (BCR) repertoire that in some donors was dominated by only a few B-cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over 50 human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high-affinity mAbs from humans within a month after vaccination. The panel of influenza-virus-specific human mAbs allowed us to address the issue of original antigenic sin (OAS): the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared with the virus strain present in the vaccine. However, we found that most of the influenza-virus-specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal, healthy adults receiving influenza vaccination.
Deng, Peihong; Xu, Zhifeng; Feng, Yonglan
2014-02-01
A reliable sensor was fabricated by modifying an acetylene black paste electrode with graphene (denoted as GR/ABPE) for sensitive and selective determination of tryptophan (Trp). Due to the high sorption ability, large surface area and numerous active sites, the GR/ABPE showed a strong enhancement effect on the oxidation of Trp, and greatly increased the peak current. The parameters affecting the Trp determination were investigated. In 1.0 M H2SO4 the voltammetric responses of Trp and tyrosine (Tyr) were well separated into two distinct peaks with peak potential difference (ΔE(pa)) of 115 mV. Under the optimized conditions, in the presence of 0.1 mM Tyr, the oxidation peak current of Trp was proportional to its concentration in the range between 0.1 μM and 0.1 mM, with the limit of detection of 60 nM (S/N=3). The GR/ABPE was applied to the direct detection of Trp in pharmaceutical and biological samples with satisfactory results. This work provides a simple and easy approach to selective detection of Trp in the presence of Tyr. © 2013.
Warming caused by cumulative carbon emissions towards the trillionth tonne.
Allen, Myles R; Frame, David J; Huntingford, Chris; Jones, Chris D; Lowe, Jason A; Meinshausen, Malte; Meinshausen, Nicolai
2009-04-30
Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.
NASA Technical Reports Server (NTRS)
Idone, V. P.; Orville, R. E.
1985-01-01
The correlation between peak relative light intensity L(R) and stroke peak current I(R) is examined for 39 subsequent return strokes in two triggered lightning flashes. One flash contained 19 strokes and the other 20 strokes for which direct measurements were available of the return stroke peak current at ground. Peak currents ranged from 1.6 to 21 kA. The measurements of peak relative light intensity were obtained from photographic streak recordings using calibrated film and microsecond resolution. Correlations, significant at better than the 0.1 percent level, were found for several functional relationships. Although a relation between L(R) and I(R) is evident in these data, none of the analytical relations considered is clearly favored. The correlation between L(R) and the maximum rate of current rise is also examined, but less correlation than between L(R) and I(R) is found. In addition, the peak relative intensity near ground is evaluated for 22 dart leaders, and a mean ratio of peak dart leader to peak return stroke relative light intensity was found to be 0.1 with a range of 0.02-0.23. Using two different methods, the peak current near ground in these dart leaders is estimated to range from 0.1 to 6 kA.
Screening for Chronic Obstructive Pulmonary Disease (COPD) in an Urban HIV Clinic: A Pilot Study
Kaner, Robert J.; Glesby, Marshall J.
2015-01-01
Abstract Increased smoking and a detrimental response to tobacco smoke in the lungs of HIV/AIDS patients result in an increased risk for COPD. We aimed to determine the predictive value of a COPD screening strategy validated in the general population and to identify HIV-related factors associated with decreased lung function. Subjects at least 35 years of age at an HIV clinic in New York City completed a COPD screening questionnaire and peak flow measurement. Those with abnormal results and a random one-third of normal screens had spirometry. 235 individuals were included and 89 completed spirometry. Eleven (12%) had undiagnosed airway obstruction and 5 had COPD. A combination of a positive questionnaire and abnormal peak flow yielded a sensitivity of 20% (specificity 93%) for detection of COPD. Peak flow alone had a sensitivity of 80% (specificity 80%). Abnormal peak flow was associated with an AIDS diagnosis (p=0.04), lower nadir (p=0.001), and current CD4 counts (p=0.001). Nadir CD4 remained associated in multivariate analysis (p=0.05). Decreased FEV1 (<80% predicted) was associated with lower CD4 count nadir (p=0.04) and detectable current HIV viral load (p=0.01) in multivariate analysis. Questionnaire and peak flow together had low sensitivity, but abnormal peak flow shows potential as a screening tool for COPD in HIV/AIDS. These data suggest that lung function may be influenced by HIV-related factors. PMID:25723842
Evaluating transient performance of servo mechanisms by analysing stator current of PMSM
NASA Astrophysics Data System (ADS)
Zhang, Qing; Tan, Luyao; Xu, Guanghua
2018-02-01
Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.
North–south polarization of European electricity consumption under future warming
Wenz, Leonie; Levermann, Anders; Auffhammer, Maximilian
2017-01-01
There is growing empirical evidence that anthropogenic climate change will substantially affect the electric sector. Impacts will stem both from the supply side—through the mitigation of greenhouse gases—and from the demand side—through adaptive responses to a changing environment. Here we provide evidence of a polarization of both peak load and overall electricity consumption under future warming for the world’s third-largest electricity market—the 35 countries of Europe. We statistically estimate country-level dose–response functions between daily peak/total electricity load and ambient temperature for the period 2006–2012. After removing the impact of nontemperature confounders and normalizing the residual load data for each country, we estimate a common dose–response function, which we use to compute national electricity loads for temperatures that lie outside each country’s currently observed temperature range. To this end, we impose end-of-century climate on today’s European economies following three different greenhouse-gas concentration trajectories, ranging from ambitious climate-change mitigation—in line with the Paris agreement—to unabated climate change. We find significant increases in average daily peak load and overall electricity consumption in southern and western Europe (∼3 to ∼7% for Portugal and Spain) and significant decreases in northern Europe (∼−6 to ∼−2% for Sweden and Norway). While the projected effect on European total consumption is nearly zero, the significant polarization and seasonal shifts in peak demand and consumption have important ramifications for the location of costly peak-generating capacity, transmission infrastructure, and the design of energy-efficiency policy and storage capacity. PMID:28847939
North-south polarization of European electricity consumption under future warming.
Wenz, Leonie; Levermann, Anders; Auffhammer, Maximilian
2017-09-19
There is growing empirical evidence that anthropogenic climate change will substantially affect the electric sector. Impacts will stem both from the supply side-through the mitigation of greenhouse gases-and from the demand side-through adaptive responses to a changing environment. Here we provide evidence of a polarization of both peak load and overall electricity consumption under future warming for the world's third-largest electricity market-the 35 countries of Europe. We statistically estimate country-level dose-response functions between daily peak/total electricity load and ambient temperature for the period 2006-2012. After removing the impact of nontemperature confounders and normalizing the residual load data for each country, we estimate a common dose-response function, which we use to compute national electricity loads for temperatures that lie outside each country's currently observed temperature range. To this end, we impose end-of-century climate on today's European economies following three different greenhouse-gas concentration trajectories, ranging from ambitious climate-change mitigation-in line with the Paris agreement-to unabated climate change. We find significant increases in average daily peak load and overall electricity consumption in southern and western Europe (∼3 to ∼7% for Portugal and Spain) and significant decreases in northern Europe (∼-6 to ∼-2% for Sweden and Norway). While the projected effect on European total consumption is nearly zero, the significant polarization and seasonal shifts in peak demand and consumption have important ramifications for the location of costly peak-generating capacity, transmission infrastructure, and the design of energy-efficiency policy and storage capacity.
Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H.; Gambhir, Manoj; Fu, Joshua S.; Liu, Yang; Remais, Justin V.
2014-01-01
Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001–2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057–2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate. PMID:24772388
Slew-rate dependence of tracer magnetization response in magnetic particle imaging.
Shah, Saqlain A; Ferguson, R M; Krishnan, K M
2014-10-28
Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ 0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude ( H o ) and frequency ( ω ). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ 0 . For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate ( ωH o ) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.
Slew-rate dependence of tracer magnetization response in magnetic particle imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Saqlain A.; Krishnan, K. M., E-mail: kannanmk@uw.edu; Ferguson, R. M.
2014-10-28
Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ{sub 0} excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (H{sub o}) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particlemore » Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ{sub 0}. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωH{sub o}) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.« less
Role of peak current in conversion of patients with ventricular fibrillation.
Anantharaman, Venkataraman; Wan, Paul Weng; Tay, Seow Yian; Manning, Peter George; Lim, Swee Han; Chua, Siang Jin Terrance; Mohan, Tiru; Rabind, Antony Charles; Vidya, Sudarshan; Hao, Ying
2017-07-01
Peak currents are the final arbiter of defibrillation in patients with ventricular fibrillation (VF). However, biphasic defibrillators continue to use energy in joules for electrical conversion in hopes that their impedance compensation properties will address transthoracic impedance (TTI), which must be overcome when a fixed amount of energy is delivered. However, optimal peak currents for conversion of VF remain unclear. We aimed to determine the role of peak current and optimal peak levels for conversion in collapsed VF patients. Adult, non-pregnant patients presenting with non-traumatic VF were included in the study. All defibrillations that occurred were included. Impedance values during defibrillation were used to calculate peak current values. The endpoint was return of spontaneous circulation (ROSC). Of the 197 patients analysed, 105 had ROSC. Characteristics of patients with and without ROSC were comparable. Short duration of collapse < 10 minutes correlated positively with ROSC. Generally, patients with average or high TTI converted at lower peak currents. 25% of patients with high TTI converted at 13.3 ± 2.3 A, 22.7% with average TTI at 18.2 ± 2.5 A and 18.6% with low TTI at 27.0 ± 4.7 A (p = 0.729). Highest peak current conversions were at < 15 A and 15-20 A. Of the 44 patients who achieved first-shock ROSC, 33 (75.0%) received < 20 A peak current vs. > 20 A for the remaining 11 (25%) patients (p = 0.002). For best effect, priming biphasic defibrillators to deliver specific peak currents should be considered. Copyright: © Singapore Medical Association
Role of peak current in conversion of patients with ventricular fibrillation
Anantharaman, Venkataraman; Wan, Paul Weng; Tay, Seow Yian; Manning, Peter George; Lim, Swee Han; Chua, Siang Jin Terrance; Mohan, Tiru; Rabind, Antony Charles; Vidya, Sudarshan; Hao, Ying
2017-01-01
INTRODUCTION Peak currents are the final arbiter of defibrillation in patients with ventricular fibrillation (VF). However, biphasic defibrillators continue to use energy in joules for electrical conversion in hopes that their impedance compensation properties will address transthoracic impedance (TTI), which must be overcome when a fixed amount of energy is delivered. However, optimal peak currents for conversion of VF remain unclear. We aimed to determine the role of peak current and optimal peak levels for conversion in collapsed VF patients. METHODS Adult, non-pregnant patients presenting with non-traumatic VF were included in the study. All defibrillations that occurred were included. Impedance values during defibrillation were used to calculate peak current values. The endpoint was return of spontaneous circulation (ROSC). RESULTS Of the 197 patients analysed, 105 had ROSC. Characteristics of patients with and without ROSC were comparable. Short duration of collapse < 10 minutes correlated positively with ROSC. Generally, patients with average or high TTI converted at lower peak currents. 25% of patients with high TTI converted at 13.3 ± 2.3 A, 22.7% with average TTI at 18.2 ± 2.5 A and 18.6% with low TTI at 27.0 ± 4.7 A (p = 0.729). Highest peak current conversions were at < 15 A and 15–20 A. Of the 44 patients who achieved first-shock ROSC, 33 (75.0%) received < 20 A peak current vs. > 20 A for the remaining 11 (25%) patients (p = 0.002). CONCLUSION For best effect, priming biphasic defibrillators to deliver specific peak currents should be considered. PMID:28741007
Bushart, T J; Cannon, A; Clark, G; Roux, S J
2014-01-01
Spores of the fern Ceratopteris richardii have proven to be a valuable single-cell system for studying gravity responses. The earliest cellular change directed by gravity in these cells is a trans-cell calcium current, which peaks near 10 h after the spores are induced to germinate. This current is needed for gravity-directed axis alignment, and its peak is coincident with the time period when gravity polarises the direction of subsequent nuclear migration and rhizoid growth. Transcriptomic analysis of genes expressed at the 10-h time point revealed several that encode proteins likely to be key components that either drive the current or regulate it. Notable among these is a plasma membrane (PM)-type Ca(2+) ATPase, CrACA1, whose activity pumping Ca(2+) out of cells is regulated by gravity. This report provides an initial characterisation of the structure and expression of this protein, and demonstrates its heterologous function complementing the K616 mutant of yeast, which is deficient in PM-type Ca(2+) pump activity. Gravity-induced changes in the trans-cell Ca(2+) current occur within seconds, a result consistent with the hypothesis that the force of gravity can rapidly alter the post-translational state of the channels and pumps that drive this current across spore cells. This report identifies a transporter likely to be a key driver of the current, CrACA1, and characterises the role of this protein in early germination and gravity-driven polarity fixation through analysis of expression levels, functional complementation and pharmacological treatments. These data, along with newly available transcriptomic data obtained at the 10-h time point, indicate that CrACA1 is present, functional and likely a major contributing component of the trans-cell Ca(2+) efflux. CrACA1 is not necessary for polar axis alignment, but pharmacological perturbations of it disrupt rhizoid development. These data support and help refine the post-translational modification model for gravity responses. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Kaafarani, Mirna; Schroer, Christian; Takken, Tim
2017-12-01
Hemodynamic responses to exercise are used as markers of diagnosis for cardiac diseases, systolic blood pressure (SBP) especially. However, the reference values for SBP in children at peak exertion level are outdated. This study aimed to establish current reference values for SBP, rate pressure product (RPP), and circulatory power (CircP). Data from children who previously underwent cardiopulmonary exercise testing were categorized as healthy (N = 184; age 12.6 ± 2.9 years), and CoA patients (N = 25; age 13.0 ± 3.2 years). With the Lambda-Mu-Sigma (LMS) method, percentile curves were made for SBP, CircP, and RPP in function of peak work rate (Wpeak). Data of CoA patients were used to validate the reference values. Wpeak was the best predictor of peak SBP during exercise. The prediction equations for SBP, CircP and RPP were: (0.2853 x Wpeak) + 111.46; (10.56 x Wpeak) + 2550.2 and (61.879 x Wpeak) + 19.887, respectively. CoA patients showed significantly increased values for peak SBP (Z-score 1.063 ± 1.347). This study provides reference values for SBP, RPP, and CircP at peak exercise. These values can be used for objective evaluation of participants 6-18 years of age in a Dutch population.
Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions.
Patel, Jay; Radhakrishnan, Logudurai; Zhao, Bo; Uppalapati, Badharinadh; Daniels, Rodney C; Ward, Kevin R; Collinson, Maryanne M
2013-12-03
The effect of electrode porosity on the electrochemical response of redox active molecules (potassium ferricyanide, ruthenium(III) hexammine, and ferrocene methanol) in the presence of bovine serum albumin or fibrinogen was studied at macroporous (pore diameter: 1200 nm), hierarchical (1200/60 nm), and nanoporous (<50 nm) gold. These electrodes were prepared using standard templating or dealloying techniques, and cyclic voltammetry (CV) was utilized to evaluate the effect of protein adsorption on the electron transfer of the diffusing redox probes. Following exposure to albumin (or fibrinogen) under near neutral pH conditions, planar gold electrodes showed an immediate reduction in Faradaic peak current and increase in peak splitting for potassium ferricyanide. The rate at which the CV curves changed was highly dependent on the morphology of the electrode. For example, the time required for the Faradaic current to drop to one-half of its original value was 3, 12, and 38 min for planar gold, macroporous gold, and hierarchical gold, respectively. Remarkably, for nanoporous gold, only a few percent drop in the peak Faradaic current was observed after an hour in solution. A similar suppression in the voltammetry at planar gold was also noted for ruthenium hexammine at pH 3 after exposure to albumin for several hours. At nanoporous gold, no significant loss in response was observed. The order of performance of the electrodes as judged by their ability to efficiently transfer electrons in the presence of biofouling agents tracked porosity with the electrode having the smallest pore size and largest surface area, providing near ideal results. Nanoporous gold electrodes when immersed in serum or heparinized blood containing potassium ferricyanide showed ideal voltammetry while significant fouling was evident in the electrochemical response at planar gold. The small nanopores in this 3D open framework are believed to restrict the transport of large biomolecules, thus minimizing passivation of the inner surfaces while permitting access to small redox probes to efficiently exchange electrons.
Rubart, M; Lopshire, J C; Fineberg, N S; Zipes, D P
2000-06-01
We previously demonstrated in dogs that a transient rate increase superimposed on bradycardia causes prolongation of ventricular refractoriness that persists for hours after resumption of bradycardia. In this study, we examined changes in membrane currents that are associated with this phenomenon. The whole cell, patch clamp technique was used to record transmembrane voltages and currents, respectively, in single mid-myocardial left ventricular myocytes from dogs with 1 week of complete AV block; dogs either underwent 1 hour of left ventricular pacing at 120 beats/min or did not undergo pacing. Pacing significantly heightened mean phase 1 and peak plateau amplitudes by approximately 6 and approximately 3 mV, respectively (P < 0.02), and prolonged action potential duration at 90% repolarization from 235+/-8 msec to 278+/-8 msec (1 Hz; P = 0.02). Rapid pacing-induced changes in transmembrane ionic currents included (1) a more pronounced cumulative inactivation of the 4-aminopyridine-sensitive transient outward K+ current, Ito, over the range of physiologic frequencies, resulting from a approximately 30% decrease in the population of quickly reactivating channels; (2) increases in peak density of L-type Ca2+ currents, I(Ca.L), by 15% to 35 % between +10 and +60 mV; and (3) increases in peak density of the Ca2+-activated chloride current, I(Cl.Ca), by 30% to 120% between +30 and +50 mV. Frequency-dependent reduction in Ito combined with enhanced I(Ca.L) causes an increase in net inward current that may be responsible for the observed changes in ventricular repolarization. This augmentation of net cation influx is partially antagonized by an increase in outward I(Ca.Cl).
Park, Yul Young; Johnston, Daniel
2013-01-01
The properties of voltage-gated ion channels on the neuronal membrane shape electrical activity such as generation and backpropagation of action potentials, initiation of dendritic spikes, and integration of synaptic inputs. Subthreshold currents mediated by sodium channels are of interest because of their activation near rest, slow inactivation kinetics, and consequent effects on excitability. Modulation of these currents can also perturb physiological responses of a neuron that might underlie pathological states such as epilepsy. Using nucleated patches from the peri-somatic region of hippocampal CA1 neurons, we recorded a slowly inactivating component of the macroscopic Na+ current (which we have called INaS) that shared many biophysical properties with the persistent Na+ current, INaP, but showed distinctively faster inactivating kinetics. Ramp voltage commands with a velocity of 400 mV/s were found to elicit this component of Na+ current reliably. INaS also showed a more hyperpolarized I-V relationship and slower inactivation than those of the fast transient Na+ current (INaT) recorded in the same patches. The peak amplitude of INaS was proportional to the peak amplitude of INaT but was much smaller in amplitude. Hexanol, riluzole, and ranolazine, known Na+ channel blockers, were tested to compare their effects on both INaS and INaT. The peak conductance of INaS was preferentially blocked by hexanol and riluzole, but the shift of half-inactivation voltage (V1/2) was only observed in the presence of riluzole. Current-clamp measurements with hexanol suggested that INaS was involved in generation of an action potential and in upregulation of neuronal excitability. PMID:23236005
Chen, Bihua; Yu, Tao; Ristagno, Giuseppe; Quan, Weilun; Li, Yongqin
2014-10-01
Defibrillation current has been shown to be a clinically more relevant dosing unit than energy. However, the effects of average and peak current in determining shock outcome are still undetermined. The aim of this study was to investigate the relationship between average current, peak current and defibrillation success when different biphasic waveforms were employed. Ventricular fibrillation (VF) was electrically induced in 22 domestic male pigs. Animals were then randomized to receive defibrillation using one of two different biphasic waveforms. A grouped up-and-down defibrillation threshold-testing protocol was used to maintain the average success rate of 50% in the neighborhood. In 14 animals (Study A), defibrillations were accomplished with either biphasic truncated exponential (BTE) or rectilinear biphasic waveforms. In eight animals (Study B), shocks were delivered using two BTE waveforms that had identical peak current but different waveform durations. Both average and peak currents were associated with defibrillation success when BTE and rectilinear waveforms were investigated. However, when pathway impedance was less than 90Ω for the BTE waveform, bivariate correlation coefficient was 0.36 (p=0.001) for the average current, but only 0.21 (p=0.06) for the peak current in Study A. In Study B, a high defibrillation success (67.9% vs. 38.8%, p<0.001) was observed when the waveform delivered more average current (14.9±2.1A vs. 13.5±1.7A, p<0.001) while keeping the peak current unchanged. In this porcine model of VF, average current was better than peak current to be an adequate parameter to describe the therapeutic dosage when biphasic defibrillation waveforms were used. The institutional protocol number: P0805. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Hsu, Cheng-Liang; Li, Hsieh-Heng; Hsueh, Ting-Jen
2013-11-13
High-density La-doped ZnO nanowires (NWs) were grown hydrothermally on flexible polyimide substrate. The length and diameter of the NWs were around 860 nm and 80-160 nm, respectively. All XRD peaks of the La-doped sample shift to a larger angle. The strong PL peak of the La-doped sample is 380 nm, which is close to the 3.3 eV ZnO bandgap. That PL dominated indicates that the La-doped sample has a great amount of oxygen vacancies. The lattice constants ~0.514 nm of the ZnO:La NW were smaller when measured by HR-TEM. The EDX spectrum determined that the La-doped sample contains approximately 1.27 at % La. The La-doped sample was found to be p-type by Hall Effect measurement. The dark current of the p-ZnO:La NWs decreased with increased relative humidity (RH), while the photocurrent of the p-ZnO:La nanowires increased with increased RH. The higher RH environment was improved that UV response performance. Based on the highest 98% RH, the photocurrent/dark current ratio was around 47.73. The UV response of water drops on the p-ZnO:La NWs was around 2 orders compared to 40% RH. In a water environment, the photocurrent/dark current ratio of p-ZnO:La NWs was 212.1, which is the maximum UV response.
Dong, Wenbo; Wang, Kaiyin; Chen, Yu; Li, Weiping; Ye, Yanchun; Jin, Shaohua
2017-01-01
An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT) and β-cyclodextrin-included-ferrocene (β-CD-FE) complex for the determination of H2O2. Ferrocene (FE) was included in β-cyclodextrin (β-CD) to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H2O2. It was found that the CTS-CAT could produce a strong reduction peak current in response to H2O2 and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H2O2 concentration in the range of 1.0 × 10−7–6.0 × 10−3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin. PMID:28773229
A High Peak Current Source for the CEBAF Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunn, Byung; Sinclair, Charles; Krafft, Geoffrey
1992-07-01
The CEBAF accelerator can drive high power IR and UV FELs, if a high peak current source is added to the existing front end. We present a design for a high peak current injector which is compatible with simultaneous operation of the accelerator for cw nulear physics (NP) beam. The high peak current injector provides 60 A peak current in 2 psec long bunches carrying 120 pC charge at 7.485 MHz. At 10 MeV that beam is combined with 5 MeV NP beam (0.13pC, 2 psec long bunches at 1497 MHz) in an energy combination chicane for simultaneous acceleration inmore » the injector linac. The modifications to the low-energy NP transport are described. Results of optical and beam dynamics calculations for both high peak current and NP beams in combined operation are presented.« less
Simurda, J; Simurdová, M; Bravený, P; Sumbera, J
1992-01-01
1. The slow inward current component related to contraction (Isic) was studied in voltage clamp experiments on canine ventricular trabeculae at 30 degrees C with the aims of (a) estimating its relation to electrogenic Na(+)-Ca2+ exchange and (b) comparing it with similar currents as reported in cardiac myocytes. 2. Isic may be recorded under conditions of augmented contractility in response to depolarizing pulses below the threshold of the classic slow inward current (presumably mediated by L-type Ca2+ channels). In responses to identical depolarizing clamp pulses the peak value of Isic is directly related to the amplitude of contraction (Fmax). Isic peaks about 60 ms after the onset of depolarization and declines with a half-time of about 110 ms. 3. The voltage threshold of Isic activation is the same as the threshold of contraction. The positive inotropic clamp preconditions shift both thresholds to more negative values of membrane voltage, i.e. below the threshold of the classic slow inward current. 4. Isic may also be recorded as a slowly decaying inwardly directed current 'tail' after depolarizing pulses. In this representation the peak value of Isic changes with duration of the depolarizing pulses, again in parallel with Fmax. In response to pulses shorter than 100 ms both variables increase with depolarization time. If initial conditions remain constant, further prolongation of the pulse does not significantly influence either one (tail currents follow a common envelope). 5. Isic differs from classic slow inward current by: (a) its direct relation to contraction, (b) the slower decay of the current tail on repolarization, (c) slower restitution corresponding to the mechanical restitution, (d) its relative insensitivity to Ca(2+)-blocking agents (the decrease of Isic is secondary to the negative inotropic of Ca(2+)-blocking agents (the decrease of Isic is secondary to the negative inotropic effect) and (e) its disappearance after Sr2+ substitution for Ca2+. 6. The manifestations of Isic in multicellular preparations do not differ significantly from those reported in isolated myocytes (in contrast to calcium current). 7. The analysis of the correlation between Isic and Fmax transients during trains of identical test depolarizing pulses at variable extra- and intracellular ionic concentrations (changes of [Ca2+]o, 50% Li+ substitution for Na+, strophanthidin) indicate that the observed effects conform to the predictions based on a quantitative model of Na(+)-Ca2+ exchange. 8. It is concluded that Isic is activated by a transient increase of [Ca2+]i, in consequence of the release from the reticular stores.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1293284
High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, M. M.; State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, 130033 Changchun; Liu, K. W., E-mail: liukw@ciomp.ac.cn, E-mail: shendz@ciomp.ac.cn
High Mg content mixed-phase Zn{sub 0.38}Mg{sub 0.62}O was deposited on a-face sapphire by plasma-assisted molecular beam epitaxy, based on which a metal-semiconductor-metal solar-blind ultraviolet (UV) photodetector was fabricated. The dark current is only 0.25 pA at 5 V, which is much lower than that of the reported mixed-phase ZnMgO photodetectors. More interestingly, different from the other mixed-phase ZnMgO photodetectors containing two photoresponse bands, this device shows only one response peak and its −3 dB cut-off wavelength is around 275 nm. At 10 V, the peak responsivity is as high as 1.664 A/W at 260 nm, corresponding to an internal gain of ∼8. The internal gain is mainlymore » ascribed to the interface states at the grain boundaries acting as trapping centers of photogenerated holes. In view of the advantages of mixed-phase ZnMgO photodetectors over single-phase ZnMgO photodetectors, including easy fabrication, high responsivity, and low dark current, our findings are anticipated to pave a new way for the development of ZnMgO solar-blind UV photodetectors.« less
Horowitz, Y; Fuks, E; Datz, H; Oster, L; Livingstone, J; Rosenfeld, A
2011-06-01
Three outstanding effects of ionisation density on the thermoluminescence (TL) mechanisms giving rise to the glow peaks of LiF:Mg,Ti (TLD-100) are currently under investigation: (1) the dependence of the heavy charged particle (HCP) relative efficiency with increasing ionisation density and the effectiveness of its modelling by track structure theory (TST), (2) the behaviour of the TL efficiency, f(D), as a function of photon energy and dose. These studies are intended to promote the development of a firm theoretical basis for the evaluation of relative TL efficiencies to assist in their application in mixed radiation fields. And (3) the shape of composite peak 5 in the glow curve for various HCP types and energies and following high-dose electron irradiation, i.e. the ratio of the intensity of peak 5a to peak 5. Peak 5a is a low-temperature satellite of peak 5 arising from electron-hole capture in a spatially correlated trapping centre/luminescent centre (TC/LC) complex that has been suggested to possess a potential as a solid-state nanodosemeter due to the preferential electron/hole population of the TC/LC at high ionisation density. It is concluded that (1) the predictions of TST are very strongly dependent on the choice of photon energy used in the determination of f(D); (2) modified TST employing calculated values of f(D) at 2 keV is in agreement with 5-MeV alpha particle experimental results for composite peak 5 but underestimates the 1.5-MeV proton relative efficiencies. Both the proton and alpha particle relative TL efficiencies of the high-temperature TL (HTTL) peaks 7 and 8 are underestimated by an order of magnitude suggesting that the HTTL efficiencies are affected by other factors in addition to radial electron dose; (3) the dose-response supralinearity of peaks 7 and 8 change rapidly with photon energy: this behaviour is explained in the framework of the unified interaction model as due to a very strong dependence on photon energy of the relative intensity of localised recombination and (4) the increased width and decrease in T(max) of composite peak 5 as a function of ionisation density is due to the greater relative intensity of peak 5a (a low-temperature component of peak 5 arising from two-energy transfer events, which leads to localised recombination).
Horowitz, Y.; Fuks, E.; Datz, H.; Oster, L.; Livingstone, J.; Rosenfeld, A.
2011-01-01
Three outstanding effects of ionisation density on the thermoluminescence (TL) mechanisms giving rise to the glow peaks of LiF:Mg,Ti (TLD-100) are currently under investigation: (1) the dependence of the heavy charged particle (HCP) relative efficiency with increasing ionisation density and the effectiveness of its modelling by track structure theory (TST), (2) the behaviour of the TL efficiency, f(D), as a function of photon energy and dose. These studies are intended to promote the development of a firm theoretical basis for the evaluation of relative TL efficiencies to assist in their application in mixed radiation fields. And (3) the shape of composite peak 5 in the glow curve for various HCP types and energies and following high-dose electron irradiation, i.e. the ratio of the intensity of peak 5a to peak 5. Peak 5a is a low-temperature satellite of peak 5 arising from electron-hole capture in a spatially correlated trapping centre/luminescent centre (TC/LC) complex that has been suggested to possess a potential as a solid-state nanodosemeter due to the preferential electron/hole population of the TC/LC at high ionisation density. It is concluded that (1) the predictions of TST are very strongly dependent on the choice of photon energy used in the determination of f(D); (2) modified TST employing calculated values of f(D) at 2 keV is in agreement with 5-MeV alpha particle experimental results for composite peak 5 but underestimates the 1.5-MeV proton relative efficiencies. Both the proton and alpha particle relative TL efficiencies of the high-temperature TL (HTTL) peaks 7 and 8 are underestimated by an order of magnitude suggesting that the HTTL efficiencies are affected by other factors in addition to radial electron dose; (3) the dose–response supralinearity of peaks 7 and 8 change rapidly with photon energy: this behaviour is explained in the framework of the unified interaction model as due to a very strong dependence on photon energy of the relative intensity of localised recombination and (4) the increased width and decrease in Tmax of composite peak 5 as a function of ionisation density is due to the greater relative intensity of peak 5a (a low-temperature component of peak 5 arising from two-energy transfer events, which leads to localised recombination). PMID:21106636
F2 layer characteristics and electrojet strength over an equatorial station
NASA Astrophysics Data System (ADS)
Adebesin, B. O.; Adeniyi, J. O.; Adimula, I. A.; Reinisch, B. W.; Yumoto, K.
2013-09-01
The data presented in this work describes the diurnal and seasonal variation in hmF2, NmF2, and the electrojet current strength over an African equatorial station during a period of low solar activity. The F2 region horizontal magnetic element H revealed that the Solar quiet Sq(H) daily variation rises from early morning period to maximum around local noon and falls to lower values towards evening. The F2 ionospheric current responsible for the magnetic field variations is inferred to build up at the early morning hours, attaining maximum strength around 1200 LT. The Sq variation across the entire months was higher during the daytime than nighttime. This is ascribed to the variability of the ionospheric parameters like conductivity and winds structure in this region. Seasonal daytime electrojet (EEJ) current strength for June solstice, March and September equinoxes, respectively had peak values ranging within 27-35 nT (at 1400 LT) , 30-40 nT (at 1200 LT) and 35-45 nT (at 1500 LT). The different peak periods of the EEJ strength were attributed to the combined effects of the peak electron density and electric field. Lastly, the EEJ strength was observed to be higher during the equinoxes than the solstice period.
NASA Astrophysics Data System (ADS)
Ekrami-Kakhki, Mehri-Saddat; Abbasi, Sedigheh; Farzaneh, Nahid
2018-01-01
The purpose of this study is to statistically analyze the anodic current density and peak potential of methanol oxidation at Pt nanoparticles supported on functionalized reduced graphene oxide (RGO), using design of experiments methodology. RGO is functionalized with methyl viologen (MV) and chitosan (CH). The novel Pt/MV-RGO-CH catalyst is successfully prepared and characterized with transmission electron microscopy (TEM) image. The electrocatalytic activity of Pt/MV-RGOCH catalyst is experimentally evaluated for methanol oxidation. The effects of methanol concentration and scan rate factors are also investigated experimentally and statistically. The effects of these two main factors and their interactions are investigated, using analysis of variance test, Duncan's multiple range test and response surface method. The results of the analysis of variance show that all the main factors and their interactions have a significant effect on anodic current density and peak potential of methanol oxidation at α = 0.05. The suggested models which encompass significant factors can predict the variation of the anodic current density and peak potential of methanol oxidation. The results of Duncan's multiple range test confirmed that there is a significant difference between the studied levels of the main factors. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu
2015-06-07
The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.
NASA Astrophysics Data System (ADS)
Pivovaroff, A. L.; Pesqueira, A.; Sun, W.; Seibt, U.
2016-12-01
Mediterranean-type ecosystems are biodiversity hotspots, but increasing temperature and changes in precipitation will have significant impacts on vegetation, as evidenced by the current die-back of many woody species in southern California, USA, due to exceptional drought conditions. We installed flow-through chambers on four native woody plant species at Stunt Ranch, a University of California Natural Reserve System site, in order to continuously monitor fluxes of carbon and water at the branch-scale from the growing season through the annual seasonal drought period. Study species included Heteromeles arbutifolia, Malosma laurina, Salvia leucophylla, and Quercus agrifolia. Here we present the results of diurnal flux patterns before, during, and after two extreme heat waves events, when daily maximum temperatures doubled. Under typical summer conditions, which include hot, sunny days, study species exhibited two peaks in carbon assimilation during a diurnal cycle: a peak in the morning and a smaller, secondary peak in the afternoon, separated by a midday depression. During heat wave events, which generally lasted 3 days, species exhibited a small morning peak and no afternoon peak at all. All study species returned to their pre-heat wave diurnal flux patterns, which included the second afternoon peak, when weather conditions returned to normal. Since soil moisture was not affected by the short-term heat wave events, we conclude that the pronounced changes in diurnal patterns, including disappearance of the secondary afternoon peak, are the result of stomatal regulation in response to atmospheric water demand rather than root responses to soil moisture deficits. Our results demonstrate that carbon uptake of native species may be impacted under ongoing climate change when increased temperatures and drought conditions may be sustained.
Parameters of triggered-lightning flashes in Florida and Alabama
NASA Astrophysics Data System (ADS)
Fisher, R. J.; Schnetzer, G. H.; Thottappillil, R.; Rakov, V. A.; Uman, M. A.; Goldberg, J. D.
1993-12-01
Channel base currents from triggered lightning were measured at the NASA Kennedy Space Center, Florida, during summer 1990 and at Fort McClellan, Alabama, during summer 1991. Additionally, 16-mm cinematic records with 3- or 5-ms resolution were obtained for all flashes, and streak camera records were obtained for three of the Florida flashes. The 17 flashes analyzed here contained 69 strokes, all lowering negative charge from cloud to ground. Statistics on interstroke interval, no-current interstroke interval, total stroke duration, total stroke charge, total stroke action integral (∫ i2dt), return stroke current wave front characteristics, time to half peak value, and return stroke peak current are presented. Return stroke current pulses, characterized by rise times of the order of a few microseconds or less and peak values in the range of 4 to 38 kA, were found not to occur until after any preceding current at the bottom of the lightning channel fell below the noise level of less than 2 A. Current pulses associated with M components, characterized by slower rise times (typically tens to hundreds of microseconds) and peak values generally smaller than those of the return stroke pulses, occurred during established channel current flow of some tens to some hundreds of amperes. A relatively strong positive correlation was found between return stroke current average rate of rise and current peak. There was essentially no correlation between return stroke current peak and 10-90% rise time or between return stroke peak and the width of the current waveform at half of its peak value. Parameters of the lightning flashes triggered in Florida and Alabama are similar to each other but are different from those of triggered lightning recorded in New Mexico during the 1981 Thunderstorm Research International Program. Continuing currents that follow return stroke current peaks and last for more than 10 ms exhibit a variety of wave shapes that we have subdivided into four categories. All such continuing currents appear to start with a current pulse presumably associated with an M component. A brief summary of lightning parameters important for lightning protection, in a form convenient for practical use, is presented in an appendix.
A dynamic model of the radiation-belt electron phase-space density based on POLAR/HIST measurements
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Green, J. C.
2007-12-01
The response of the energetic-electron phase-space density (PSD) in the radiation belts is subject to a delicate combination of acceleration and loss processes which are strongly determined by the magnetospheric configuration and field disturbance level. We quantify the response of the density to stormtime fields as observed by the HIST detector on board POLAR. Several distinct modes are identified, characterized by peak second- and third- adiabatic invariants and peak delay time. The modes represent quasiadiabatic transport due to ring current activity; high L* (~6), day-long acceleration linked to ULF wave-particle interaction; and low-L* (~3), minute- to hour-long acceleration interpreted to be due to transient inductive fields or VLF wave-particle interaction. The net transport due to these responses is not always or everywhere diffusive, therefore we quantify the degree of departure from diffusive transport for specific storm intervals and radial ranges. Taken together the response modes comprise a dynamic, nonlinear model which allows us to better understand the historic variability of the high-energy tail of the electron distribution in the inner magnetosphere.
Speech Evoked Auditory Brainstem Response in Stuttering
Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad
2014-01-01
Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262
The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis.
Baylor, D A; Nunn, B J; Schnapf, J L
1984-01-01
Visual transduction in rods of the cynomolgus monkey, Macaca fascicularis, was studied by recording membrane current from single outer segments projecting from small pieces of retina. Light flashes evoked transient outward-going photocurrents with saturating amplitudes of up to 34 pA. A flash causing twenty to fifty photoisomerizations gave a response of half the saturating amplitude. The response-stimulus relation was of the form 1-e-x where x is flash strength. The response to a dim flash usually had a time to peak of 150-250 ms and resembled the impulse response of a series of six low-pass filters. From the average spectral sensitivity of ten rods the rhodopsin was estimated to have a peak absorption near 491 nm. The spectral sensitivity of the rods was in good agreement with the average human scotopic visibility curve determined by Crawford (1949), when the human curve was corrected for lens absorption and self-screening of rhodopsin. Fluctuations in the photocurrent evoked by dim lights were consistent with a quantal event about 0.7 pA in peak amplitude. A steady light causing about 100 photoisomerizations s-1 reduced the flash sensitivity to half the dark-adapted value. At higher background levels the rod rapidly saturated. These results support the idea that dim background light desensitizes human scotopic vision by a mechanism central to the rod outer segments while scotopic saturation may occur within the outer segments. Recovery of the photocurrent after bright flashes was marked by quantized step-like events. The events had the properties expected if bleached rhodopsin in the disks occasionally caused an abrupt blockage of the dark current over about one-twentieth of the length of the outer segment. It is suggested that superposition of these events after bleaching may contribute to the threshold elevation measured psychophysically. The current in darkness showed random fluctuations which disappeared in bright light. The continuous component of the noise had a variance of about 0.03 pA2 and a power spectrum that fell to half near 3 Hz. A second component, consisting of discrete events resembling single-photon responses, was estimated to occur at a rate of 0.006 s-1. It is suggested that the continuous component of the noise may be removed from scotopic vision by a thresholding operation near the rod output. PMID:6512705
The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis.
Baylor, D A; Nunn, B J; Schnapf, J L
1984-12-01
Visual transduction in rods of the cynomolgus monkey, Macaca fascicularis, was studied by recording membrane current from single outer segments projecting from small pieces of retina. Light flashes evoked transient outward-going photocurrents with saturating amplitudes of up to 34 pA. A flash causing twenty to fifty photoisomerizations gave a response of half the saturating amplitude. The response-stimulus relation was of the form 1-e-x where x is flash strength. The response to a dim flash usually had a time to peak of 150-250 ms and resembled the impulse response of a series of six low-pass filters. From the average spectral sensitivity of ten rods the rhodopsin was estimated to have a peak absorption near 491 nm. The spectral sensitivity of the rods was in good agreement with the average human scotopic visibility curve determined by Crawford (1949), when the human curve was corrected for lens absorption and self-screening of rhodopsin. Fluctuations in the photocurrent evoked by dim lights were consistent with a quantal event about 0.7 pA in peak amplitude. A steady light causing about 100 photoisomerizations s-1 reduced the flash sensitivity to half the dark-adapted value. At higher background levels the rod rapidly saturated. These results support the idea that dim background light desensitizes human scotopic vision by a mechanism central to the rod outer segments while scotopic saturation may occur within the outer segments. Recovery of the photocurrent after bright flashes was marked by quantized step-like events. The events had the properties expected if bleached rhodopsin in the disks occasionally caused an abrupt blockage of the dark current over about one-twentieth of the length of the outer segment. It is suggested that superposition of these events after bleaching may contribute to the threshold elevation measured psychophysically. The current in darkness showed random fluctuations which disappeared in bright light. The continuous component of the noise had a variance of about 0.03 pA2 and a power spectrum that fell to half near 3 Hz. A second component, consisting of discrete events resembling single-photon responses, was estimated to occur at a rate of 0.006 s-1. It is suggested that the continuous component of the noise may be removed from scotopic vision by a thresholding operation near the rod output.
Research on Shock Responses of Three Types of Honeycomb Cores
NASA Astrophysics Data System (ADS)
Peng, Fei; Yang, Zhiguang; Jiang, Liangliang; Ren, Yanting
2018-03-01
The shock responses of three kinds of honeycomb cores have been investigated and analyzed based on explicit dynamics analysis. According to the real geometric configuration and the current main manufacturing methods of aluminum alloy honeycomb cores, the finite element models of honeycomb cores with three different cellular configurations (conventional hexagon honeycomb core, rectangle honeycomb core and auxetic honeycomb core with negative Poisson’s ratio) have been established through FEM parametric modeling method based on Python and Abaqus. In order to highlight the impact response characteristics of the above three honeycomb cores, a 5 mm thick panel with the same mass and material was taken as contrast. The analysis results showed that the peak values of longitudinal acceleration history curves of the three honeycomb cores were lower than those of the aluminum alloy panel in all three reference points under the loading of a longitudinal pulse pressure load with the peak value of 1 MPa and the pulse width of 1 μs. It could be concluded that due to the complex reflection and diffraction of stress wave induced by shock in honeycomb structures, the impact energy was redistributed which led to a decrease in the peak values of the longitudinal acceleration at the measuring points of honeycomb cores relative to the panel.
NASA Astrophysics Data System (ADS)
Liu, Chun-Xiao; Sau, Jay D.; Das Sarma, S.
2018-06-01
Trivial Andreev bound states arising from chemical-potential variations could lead to zero-bias tunneling conductance peaks at finite magnetic field in class-D nanowires, precisely mimicking the predicted zero-bias conductance peaks arising from the topological Majorana bound states. This finding raises a serious question on the efficacy of using zero-bias tunneling conductance peaks, by themselves, as evidence supporting the existence of topological Majorana bound states in nanowires. In the current work, we provide specific experimental protocols for tunneling spectroscopy measurements to distinguish between Andreev and Majorana bound states without invoking more demanding nonlocal measurements which have not yet been successfully performed in nanowire systems. In particular, we discuss three distinct experimental schemes involving the response of the zero-bias peak to local perturbations of the tunnel barrier, the overlap of bound states from the wire ends, and, most compellingly, introducing a sharp localized potential in the wire itself to perturb the zero-bias tunneling peaks. We provide extensive numerical simulations clarifying and supporting our theoretical predictions.
Kaiser, Philipp; Surmann, Peter; Fuhrmann, Herbert
2009-01-01
Astaxanthin shows peak deformation and reduced peak area response when eluted with methanol and methyl tert-butyl ether on nonendcapped polymeric C30-bonded HPLC phases. The present study tested different column manufacturers, column batches, and ten mobile phase additives including acids, bases, buffers, complexing and antioxidant agents for improvement of peak shape and peak area response. Concerning chromatographic benefits and feasibility, ammonium acetate was found to be the best additive followed by triethylamine for all columns tested. Variation of the mobile phase pH equivalent and the column temperature showed no synergistic effects on peak shape and peak area response. Results indicate that peak tailing and variation of peak area response are due to different on-column effects. Possible mechanisms of the observed phenomenon will be discussed.
Reducing Conservatism of Analytic Transient Response Bounds via Shaping Filters
NASA Technical Reports Server (NTRS)
Kwan, Aiyueh; Bedrossian, Nazareth; Jan, Jiann-Woei; Grigoriadis, Karolos; Hua, Tuyen (Technical Monitor)
1999-01-01
Recent results show that the peak transient response of a linear system to bounded energy inputs can be computed using the energy-to-peak gain of the system. However, analytically computed peak response bound can be conservative for a class of class bounded energy signals, specifically pulse trains generated from jet firings encountered in space vehicles. In this paper, shaping filters are proposed as a Methodology to reduce the conservatism of peak response analytic bounds. This Methodology was applied to a realistic Space Station assembly operation subject to jet firings. The results indicate that shaping filters indeed reduce the predicted peak response bounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D. Y., E-mail: cdy7659@126.com; Nanjing University of posts and Telecommunications, Nanjing 210046; Sun, Y.
We have investigated carrier transport in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V{sup 2}) as a function of 1/V and ln(I) as a function of V{sup 1/2}. Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratiomore » (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages.« less
Application of multi response optimization with grey relational analysis and fuzzy logic method
NASA Astrophysics Data System (ADS)
Winarni, Sri; Wahyu Indratno, Sapto
2018-01-01
Multi-response optimization is an optimization process by considering multiple responses simultaneously. The purpose of this research is to get the optimum point on multi-response optimization process using grey relational analysis and fuzzy logic method. The optimum point is determined from the Fuzzy-GRG (Grey Relational Grade) variable which is the conversion of the Signal to Noise Ratio of the responses involved. The case study used in this research are case optimization of electrical process parameters in electrical disharge machining. It was found that the combination of treatments resulting to optimum MRR and SR was a 70 V gap voltage factor, peak current 9 A and duty factor 0.8.
Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining.
Ramulu, M; Spaulding, Mathew
2016-09-01
An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application.
Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining
Ramulu, M.; Spaulding, Mathew
2016-01-01
An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application. PMID:28773866
Watershed analysis of the Salmon River watershed, Washington : hydrology
Bidlake, William R.
2003-01-01
The U.S. Geological Survey analyzed selected hydrologic conditions as part of a watershed analysis of the Salmon River watershed, Washington, conducted by the Quinault Indian Nation. The selected hydrologic conditions were analyzed according to a framework of hydrologic key questions that were identified for the watershed. The key questions were posed to better understand the natural, physical, and biological features of the watershed that control hydrologic responses; to better understand current streamflow characteristics, including peak and low flows; to describe any evidence that forest harvesting and road construction have altered frequency and magnitude of peak and low flows within the watershed; to describe what is currently known about the distribution and extent of wetlands and any impacts of land management activities on wetlands; and to describe how hydrologic monitoring within the watershed might help to detect future hydrologic change, to preserve critical ecosystem functions, and to protect public and private property.
Zhang, Liying; Makwana, Rahul; Sharma, Sumit
2013-01-01
Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen curves for lung injury. PMID:23935591
Acceleration characteristics of human ocular accommodation.
Bharadwaj, Shrikant R; Schor, Clifton M
2005-01-01
Position and velocity of accommodation are known to increase with stimulus magnitude, however, little is known about acceleration properties. We investigated three acceleration properties: peak acceleration, time-to-peak acceleration and total duration of acceleration to step changes in defocus. Peak velocity and total duration of acceleration increased with response magnitude. Peak acceleration and time-to-peak acceleration remained independent of response magnitude. Independent first-order and second-order dynamic components of accommodation demonstrate that neural control of accommodation has an initial open-loop component that is independent of response magnitude and a closed-loop component that increases with response magnitude.
Speech-perception training for older adults with hearing loss impacts word recognition and effort.
Kuchinsky, Stefanie E; Ahlstrom, Jayne B; Cute, Stephanie L; Humes, Larry E; Dubno, Judy R; Eckert, Mark A
2014-10-01
The current pupillometry study examined the impact of speech-perception training on word recognition and cognitive effort in older adults with hearing loss. Trainees identified more words at the follow-up than at the baseline session. Training also resulted in an overall larger and faster peaking pupillary response, even when controlling for performance and reaction time. Perceptual and cognitive capacities affected the peak amplitude of the pupil response across participants but did not diminish the impact of training on the other pupil metrics. Thus, we demonstrated that pupillometry can be used to characterize training-related and individual differences in effort during a challenging listening task. Importantly, the results indicate that speech-perception training not only affects overall word recognition, but also a physiological metric of cognitive effort, which has the potential to be a biomarker of hearing loss intervention outcome. Copyright © 2014 Society for Psychophysiological Research.
Surrogate modeling of joint flood risk across coastal watersheds
NASA Astrophysics Data System (ADS)
Bass, Benjamin; Bedient, Philip
2018-03-01
This study discusses the development and performance of a rapid prediction system capable of representing the joint rainfall-runoff and storm surge flood response of tropical cyclones (TCs) for probabilistic risk analysis. Due to the computational demand required for accurately representing storm surge with the high-fidelity ADvanced CIRCulation (ADCIRC) hydrodynamic model and its coupling with additional numerical models to represent rainfall-runoff, a surrogate or statistical model was trained to represent the relationship between hurricane wind- and pressure-field characteristics and their peak joint flood response typically determined from physics based numerical models. This builds upon past studies that have only evaluated surrogate models for predicting peak surge, and provides the first system capable of probabilistically representing joint flood levels from TCs. The utility of this joint flood prediction system is then demonstrated by improving upon probabilistic TC flood risk products, which currently account for storm surge but do not take into account TC associated rainfall-runoff. Results demonstrate the source apportionment of rainfall-runoff versus storm surge and highlight that slight increases in flood risk levels may occur due to the interaction between rainfall-runoff and storm surge as compared to the Federal Emergency Management Association's (FEMAs) current practices.
Mid-infrared GaSb-based resonant tunneling diode photodetectors for gas sensing applications
NASA Astrophysics Data System (ADS)
Rothmayr, F.; Pfenning, A.; Kistner, C.; Koeth, J.; Knebl, G.; Schade, A.; Krueger, S.; Worschech, L.; Hartmann, F.; Höfling, S.
2018-04-01
We present resonant tunneling diode-photodetectors (RTD-PDs) with GaAs0.15Sb0.85/AlAs0.1Sb0.9 double barrier structures combined with an additional quaternary Ga0.64In0.36As0.33Sb0.67 absorption layer covering the fingerprint absorption lines of various gases in the mid-infrared wavelength spectral region. The absorption layer cut-off wavelength is determined to be 3.5 μm, and the RTD-PDs show peak-to-valley current ratios up to 4.3 with a peak current density of 12 A/cm-2. The incorporation of the quaternary absorption layer enables the RTD-PDs to be sensitive to illumination with light up to the absorption lines of HCl at 3395 nm. At this wavelength, the detector shows a responsivity of 6.3 mA/W. At the absorption lines of CO2 and CO at 2004 nm and 2330 nm, respectively, the RTD-PDs reach responsivities up to 0.97 A/W. Thus, RTD-PDs pave the way towards high sensitive mid-infrared detectors that can be utilized in tunable laser absorption spectroscopy.
NASA Astrophysics Data System (ADS)
Ozturk, Dogacan Su; Zou, Shasha; Slavin, James A.
2017-05-01
During sudden solar wind dynamic pressure enhancements, the magnetosphere undergoes rapid compression resulting in a reconfiguration of the global current systems, most notably the field-aligned currents (FACs). Ground-based magnetometers are traditionally used to study such compression events. However, factors affecting the polarity and magnitude of the ground-based magnetic perturbations are still not well understood. In particular, interplanetary magnetic field (IMF) By is known to create significant asymmetries in the FAC patterns. We use the University of Michigan Block Adaptive Tree Roe Upwind Scheme (BATS'R'US) magnetohydrodynamic code to investigate the effects of IMF By on the global variations of ground magnetic perturbations during solar wind dynamic pressure enhancements. Using virtual magnetometers in three idealized simulations with varying IMF By, we find asymmetries in the peak amplitude and magnetic local time of the ground magnetic perturbations during the preliminary impulse (PI) and the main impulse (MI) phases. These asymmetries are especially evident at high-latitude ground magnetometer responses where the peak amplitudes differ by 50 nT at different locations. We show that the FACs related with the PI are due to magnetopause deformation, and the FACs related with the MI are generated by vortical flows within the magnetosphere, consistent with other simulation results. The perturbation FACs due to pressure enhancements and their magnetospheric sources do not differ much under different IMF By polarities. However, the conductance profile affected by the superposition of the preexisting FACs and the perturbation FACs including their closure currents is responsible for the magnitude and location asymmetries in the ground magnetic perturbations.
NASA Astrophysics Data System (ADS)
Vassiliadis, D.
2008-11-01
The solar wind velocity is the primary driver of the electron flux variability in Earth's radiation belts. The response of the logarithmic flux ("log-flux") to this driver has been determined at the geosynchronous orbit and at a fixed energy [Baker, D.N., McPherron, R.L., Cayton, T.E., Klebesadel, R.W., 1990. Linear prediction filter analysis of relativistic electron properties at 6.6 RE. Journal of Geophysical Research 95(A9), 15,133-15,140) and as a function of L shell and fixed energy [Vassiliadis, D., Klimas, A.J., Kanekal, S.G., Baker, D.N., Weigel, R.S., 2002. Long-term average, solar-cycle, and seasonal response of magnetospheric energetic electrons to the solar wind speed. Journal of Geophysical Research 107, doi:10.1029/2001JA000506). In this paper we generalize the response model as a function of particle energy (0.8-6.4 MeV) using POLAR HIST measurements. All three response peaks identified earlier figure prominently in the high-altitude POLAR measurements. The positive response around the geosynchronous orbit is peak P1 ([tau]=2±1 d; L=5.8±0.5; E=0.8-6.4 MeV), associated with high-speed, low-density streams and the ULF wave activity they produce. Deeper in the magnetosphere, the response is dominated by a positive peak P0 (0±1 d; 2.9±0.5RE; 0.8-1.1 MeV), of a shorter duration and producing lower-energy electrons. The P0 response occurs during the passage of geoeffective structures containing high IMF and high-density parts, such as ICMEs and other mass ejecta. Finally, the negative peak V1 (0±0.5 d; 5.7±0.5RE; 0.8-6.4 MeV) is associated with the "Dst effect" or the quasiadiabatic transport produced by ring-current intensifications. As energies increase, the P1 and V1 peaks appear at lower L, while the Dst effect becomes more pronounced in the region L<3. The P0 effectively disappears for E>1.6 MeV because of low statistics, although it is evident in individual events. The continuity of the response across radial and energy scales supports the earlier hypothesis that each of the three modes corresponds to a qualitatively different type of large-scale electron acceleration and transport.
Silicon-Based Quantum MOS Technology Development
2000-03-07
resonant interband tunnel diodes were demonstrated with peak current density greater than 104 A/cm2; peak-to-valley current ratio exceeding 2 was...photon emission reduce the peak-to-valley current ratio and device performance. Therefore, interband tunnel devices should be more resilient to...Comparison of bipolar interband tunnel and optical devices: (a) Esaki diode biased into the valley current region and (b) optical light emitter. The Esaki
Voltage-Clamp Studies on Uterine Smooth Muscle
Anderson, Nels C.
1969-01-01
These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism. PMID:5796366
Estejab, Ali; Daramola, Damilola A; Botte, Gerardine G
2015-06-15
A mathematical model was developed for the simulation of a parallel plate ammonia electrolyzer to convert ammonia in wastewater to nitrogen and hydrogen under basic conditions. The model consists of fundamental transport equations, the ammonia oxidation kinetics at the anode, and the hydrogen evolution kinetics at the cathode of the electrochemical reactor. The model shows both qualitative and quantitative agreement with experimental measurements at ammonia concentrations found within wastewater (200-1200 mg L(-1)). The optimum electrolyzer performance is dependent on both the applied voltage and the inlet concentrations. Maximum conversion of ammonia to nitrogen at the rates of 0.569 and 0.766 mg L(-1) min(-1) are achieved at low (0.01 M NH4Cl and 0.1 M KOH) and high (0.07 M NH4Cl and 0.15 M KOH) inlet concentrations, respectively. At high and low concentrations, an initial increase in the cell voltage will cause an increase in the system response - current density generated and ammonia converted. These system responses will approach a peak value before they start to decrease due to surface blockage and/or depletion of solvated species at the electrode surface. Furthermore, the model predicts that by increasing the reactant and electrolyte concentrations at a certain voltage, the peak current density will plateau, showing an asymptotic response. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermal power and heat energy of cloud-to-ground lightning process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuejuan; Yuan, Ping; Xue, Simin
2016-07-15
A cloud-to-ground lightning flash with nine return strokes has been recorded using a high speed slitless spectrograph and a system composed of a fast antenna and a slow antenna. Based on the spectral data and the synchronous electric field changes that were caused by the lightning, the electrical conductivity, the channel radii, the resistance per unit length, the peak current, the thermal power at the instant of peak current, and the heat energy per unit length during the first 5 μs in the discharge channel have all been calculated. The results indicate that the channel radii have linear relationships with themore » peak current. The thermal power at the peak current time increases with increasing resistance, but exponential decays with the square of the peak current.« less
Kabella, Danielle M; Flynn, Lucinda; Peters, Amanda; Kodituwakku, Piyadasa; Stephen, Julia M
2018-05-24
Prior studies indicate that the auditory mismatch response is sensitive to early alterations in brain development in multiple developmental disorders. Prenatal alcohol exposure is known to impact early auditory processing. The current study hypothesized alterations in the mismatch response in young children with fetal alcohol spectrum disorders (FASD). Participants in this study were 9 children with a FASD and 17 control children (Control) aged 3 to 6 years. Participants underwent magnetoencephalography and structural magnetic resonance imaging scans separately. We compared groups on neurophysiological mismatch negativity (MMN) responses to auditory stimuli measured using the auditory oddball paradigm. Frequent (1,000 Hz) and rare (1,200 Hz) tones were presented at 72 dB. There was no significant group difference in MMN response latency or amplitude represented by the peak located ~200 ms after stimulus presentation in the difference time course between frequent and infrequent tones. Examining the time courses to the frequent and infrequent tones separately, repeated measures analysis of variance with condition (frequent vs. rare), peak (N100m and N200m), and hemisphere as within-subject factors and diagnosis and sex as the between-subject factors showed a significant interaction of peak by diagnosis (p = 0.001), with a pattern of decreased amplitude from N100m to N200m in Control children and the opposite pattern in children with FASD. However, no significant difference was found with the simple effects comparisons. No group differences were found in the response latencies of the rare auditory evoked fields. The results indicate that there was no detectable effect of alcohol exposure on the amplitude or latency of the MMNm response to simple tones modulated by frequency change in preschool-aged children with FASD. However, while discrimination abilities to simple tones may be intact, early auditory sensory processing revealed by the interaction between N100m and N200m amplitude indicates that auditory sensory processing may be altered in children with FASD. Copyright © 2018 by the Research Society on Alcoholism.
Chomsky, D B; Lang, C C; Rayos, G H; Shyr, Y; Yeoh, T K; Pierson, R N; Davis, S F; Wilson, J R
1996-12-15
Peak exercise oxygen consumption (Vo2), a noninvasive index of peak exercise cardiac output (CO), is widely used to select candidates for heart transplantation. However, peak exercise Vo2 can be influenced by noncardiac factors such as deconditioning, motivation, or body composition and may yield misleading prognostic information. Direct measurement of the CO response to exercise may avoid this problem and more accurately predict prognosis. Hemodynamic and ventilatory responses to maximal treadmill exercise were measured in 185 ambulatory patients with chronic heart failure who had been referred for cardiac transplantation (mean left ventricular ejection fraction, 22 +/- 7%; mean peak Vo2, 12.9 +/- 3.0 mL. min-1.kg-1). CO response to exercise was normal in 83 patients and reduced in 102. By univariate analysis, patients with normal CO responses had a better 1-year survival rate (95%) than did those with reduced CO responses (72%) (P < .0001). Survival in patients with peak Vo2 of > 14 mL.min-1.kg-1 (88%) was not different from that of patients with peak Vo2 of < or = 14 mL.min-1.kg-1 (79%) (P = NS). However, survival was worse in patients with peak Vo2 of < or = 10 mL.min-1.kg-1 (52%) versus those with peak Vo2 of > 10 mL.min-1.kg-1 (89%) (P < .0001). By Cox regression analysis, exercise CO response was the strongest independent predictor of survival (risk ratio, 4.3), with peak Vo2 dichotomized at 10 mL. min-1.kg-1 (risk ratio, 3.3) as the only other independent predictor. Patients with reduced CO responses and peak Vo2 of < or = 10 mL.min-1.kg-1 had an extremely poor 1-year survival rate (38%). Both CO response to exercise and peak exercise Vo2 provide valuable independent prognostic information in ambulatory patients with heart failure. These variables should be used in combination to select potential heart transplantation candidates.
Brommer, Jon E; Pietiäinen, Hannu; Kokko, Hanna
2002-01-01
Plastic life-history traits can be viewed as adaptive responses to environmental conditions, described by a reaction norm. In birds, the decline in clutch size with advancing laying date has been viewed as a reaction norm in response to the parent's own (somatic or local environmental) condition and the seasonal decline in its offspring's reproductive value. Theory predicts that differences in the seasonal recruitment are mirrored in the seasonal decrease in clutch size. We tested this prediction in the Ural owl. The owl's main prey, voles, show a cycle of low, increase and peak phases. Recruitment probability had a humped distribution in both increase and peak phases. Average recruitment probability was two to three times higher in the increase phase and declined faster in the latter part of the season when compared with the peak phase. Clutch size decreased twice as steep in the peak (0.1 eggs day-1) as in the increase phase (0.05 eggs day-1). This result appears to refute theoretical predictions of seasonal clutch size declines. However, a re-examination of current theory shows that the predictions of modelling are less robust to details of seasonal condition accumulation in birds than originally thought. The observed pattern can be predicted, assuming specifically shaped seasonal increases in condition across individuals. PMID:11916482
Variation in light intensity with height and time from subsequent lightning return strokes
NASA Technical Reports Server (NTRS)
Jordan, D. M.; Uman, M. A.
1983-01-01
Photographic measurements of relative light intensity as a function of height and time have been conducted for seven return strokes in two lightning flashes at 7.8 and 8.7 km ranges, using film which possesses an approximately constant spectral response in the 300-670 nm range. The amplitude of the initial light peak is noted to decrease exponentially with height, with a decay constant of 0.6-0.8 km. The logarithm of the peak light intensity near the ground is found to be approximately proportional to the initial peak electric field intensity, implying that the current decrease with height may be much slower than the light decrease. Absolute light intensity is presently estimated through the integration of the photographic signals from individual channel segments, in order to simulate the calibrated, all-sky photoelectric data of Guo and Krider (1982).
Detection of cephradine through the electrochemical study of the degradation product of cephradine
NASA Astrophysics Data System (ADS)
Jiang, Qingfeng; Ying, Yibin; Wang, Jianping; Ye, Zunzhong; Li, Yanbin
2005-11-01
The degradation product of cephradine(CEP), a broad spectrum antibiotic, with NaOH was studied in solution by Cyclic Voltammetry and Differential Pulse Voltammetry at a three electrode system (Gold working electrode, Hg/HgCl reference electrode and Platinum counter electrode). Our experiment was based on that the R-SH in degradation product could cause a deoxidization peak at gold working electrode. The response was optimized with respect to accumulation time, ionic strength, drug concentration, reproducibility and other variables. We found that the degradation product of CEP in Na2HPO4-NaH2PO4 buffer could cause a sensitive deoxidization peak at -0.68V. A linear dependence of peak currents on the concentration was observed in the range of 10-7 - 10-6 mol/L, with a detection limit of 0.5*10-7mol/L. This method can achieve satisfactory results in the application of detecting human-made CEP.
Reduced exercise capacity in persons with Down syndrome: cause, effect, and management
Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo
2010-01-01
Persons with Down syndrome (DS) have reduced peak and submaximal exercise capacity. Because ambulation is one predictor of survival among adults with DS, a review of the current knowledge of the causes, effects, and management of reduced exercise capacity in these individuals would be important. Available data suggest that reduced exercise capacity in persons with DS results from an interaction between low peak oxygen uptake (VO2peak) and poor exercise economy. Of several possible explanations, chronotropic incompetence has been shown to be the primary cause of low VO2peak in DS. In contrast, poor exercise economy is apparently dependent on disturbed gait kinetics and kinematics resulting from joint laxity and muscle hypotonia. Importantly, there is enough evidence to suggest that such low levels of physical fitness (reduced exercise capacity and muscle strength) limit the ability of adults with DS to perform functional tasks of daily living. Consequently, clinical management of reduced exercise capacity in DS seems important to ensure that these individuals remain productive and healthy throughout their lives. However, few prospective studies have examined the effects of structured exercise training in this population. Existent data suggest that exercise training is beneficial for improving exercise capacity and physiological function in persons with DS. This article reviews the current knowledge of the causes, effects, and management of reduced exercise capacity in DS. This review is limited to the acute and chronic responses to submaximal and peak exercise intensities because data on supramaximal exercise capacity of persons with DS have been shown to be unreliable. PMID:21206759
A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currents.
Rigby, J R; Poelzing, S
2012-04-01
Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, K(ir)2.1, and the channel encoding the cardiac fast sodium current, Na(v)1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses.
Transport simulation of EAST long-pulse H-mode discharge with integrated modeling
NASA Astrophysics Data System (ADS)
Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.
2018-04-01
In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.
NASA Astrophysics Data System (ADS)
Gu, Xin; Jiang, Bailing; Li, Hongtao; Liu, Cancan; Shao, Lianlian
2018-05-01
Micro-arc oxidation coatings were fabricated on 6061 aluminum alloy using whereby bipolar pulse mode in the case of different negative peak current densities. The phase composition, microstructures and wear properties were studied using x-ray diffraction, scanning electron microscopy and ball-on-disk wear tester, respectively. As results indicate, by virtue of negative peak current density, the oxygen can be expelled by produced hydrogen on anode in the case of negative pulse width and via the opened discharge channel. The results of x-ray diffraction, surface and cross-sectional morphology indicated that the coating was structured compactly taking on less small-diameter micro-pores and defects with negative peak current density of 75 A dm‑2. Additionally, as the results of wear tracks and weight loss bespeak, by virtue of appropriate negative peak current density, coatings resisted the abrasive wear and showed excellent wear resistance.
NASA Astrophysics Data System (ADS)
Fiechter, Jerome; Edwards, Christopher A.; Moore, Andrew M.
2018-04-01
A physical-biogeochemical model is used to produce a retrospective analysis at 3-km resolution of alongshore phytoplankton variability in the California Current during 1988-2010. The simulation benefits from downscaling a regional circulation reanalysis, which provides improved physical ocean state estimates in the high-resolution domain. The emerging pattern is one of local upwelling intensification in response to increased alongshore wind stress in the lee of capes, modulated by alongshore meanders in the geostrophic circulation. While stronger upwelling occurs near most major topographic features, substantial increases in phytoplankton biomass only ensue where local circulation patterns are conducive to on-shelf retention of upwelled nutrients. Locations of peak nutrient delivery and chlorophyll accumulation also exhibit interannual variability and trends noticeably larger than the surrounding shelf regions, thereby suggesting that long-term planktonic ecosystem response in the California Current exhibits a significant local scale (O(100 km)) alongshore component.
Han, Ping; Xu, Shimei; Feng, Shun; Hao, Yanjun; Wang, Jide
2016-05-01
In this work, the direct determination of creatinine was achieved using a poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode with the assistance of Copper(II) ions by cyclic voltammetry. The quantity of creatinine were determined by measuring the redox peak current of Cu(II)-creatinine complex/Cu(I)-creatinine complex. Factors affecting the response current of creatinine at the modified electrode were optimized. A linear relationship between the response current and the concentration of creatinine ranging from 0.125 to 62.5μM was obtained with a detection limit of 0.06μM. The proposed method was applied to determine creatinine in human urine, and satisfied results were gotten which was validated in accordance with high performance liquid chromatography. The proposed electrode provided a promising alternative in routine sensing for creatinine without enzymatic assistance. Copyright © 2016 Elsevier B.V. All rights reserved.
Frequency response of portable PEF meters.
Hankinson, J L; Das, M K
1995-08-01
Peak expiratory flow (PEF) is a dynamic parameter and therefore requires a measuring device with a high-frequency response. This study evaluated the frequency-response characteristics of eight commercially available PEF meters, using simulated forced-expiratory maneuvers with a computer-controlled mechanical pump. Three different PEF levels were used (200, 400, and 600 L/min) at six levels of harmonic-frequency content similar to those observed in human subjects. For waveforms with higher frequency content (at the high end or above the physiologic range), the Assess, Vitalograph, Pocket Peak, and Spir-O-Flow PEF meters all overread PEF (greater than 15% difference from target values) at all three PEF levels. These results suggest that the frequency response of PEF meters is an important consideration in the selection of such meters and should be included in device requirements. The current practice of using various levels of American Thoracic Society (ATS) waveform 24 with its low-frequency content may not adequately evaluate the frequency characteristics of PEF meters. An upper range (5% of the fundamental frequency) of 12 Hz, within the range observed in normal subjects, appears to be more practical than an upper limit of 20 Hz.
1300 nm wavelength InAs quantum dot photodetector grown on silicon.
Sandall, Ian; Ng, Jo Shien; David, John P R; Tan, Chee Hing; Wang, Ting; Liu, Huiyun
2012-05-07
The optical and electrical properties of InAs quantum dots epitaxially grown on a silicon substrate have been investigated to evaluate their potential as both photodiodes and avalanche photodiodes (APDs) operating at a wavelength of 1300 nm. A peak responsivity of 5 mA/W was observed at 1280 nm, with an absorption tail extending beyond 1300 nm, while the dark currents were two orders of magnitude lower than those reported for Ge on Si photodiodes. The diodes exhibited avalanche breakdown at 22 V reverse bias which is probably dominated by impact ionisation occurring in the GaAs and AlGaAs barrier layers. A red shift in the absorption peak of 61.2 meV was measured when the reverse bias was increased from 0 to 22 V, which we attributed to the quantum confined stark effect. This shift also leads to an increase in the responsivity at a fixed wavelength as the bias is increased, yielding a maximum increase in responsivity by a factor of 140 at the wavelength of 1365 nm, illustrating the potential for such a structure to be used as an optical modulator.
The rod-driven a-wave of the dark-adapted mammalian electroretinogram.
Robson, John G; Frishman, Laura J
2014-03-01
The a-wave of the electroretinogram (ERG) reflects the response of photoreceptors to light, but what determines the exact waveform of the recorded voltage is not entirely understood. We have now simulated the trans-retinal voltage generated by the photocurrent of dark-adapted mammalian rods, using an electrical model based on the in vitro measurements of Hagins et al. (1970) and Arden (1976) in rat retinas. Our simulations indicate that in addition to the voltage produced by extracellular flow of photocurrent from rod outer to inner segments, a substantial fraction of the recorded a-wave is generated by current that flows in the outer nuclear layer (ONL) to hyperpolarize the rod axon and synaptic terminal. This current includes a transient capacitive component that contributes an initial negative "nose" to the trans-retinal voltage when the stimulus is strong. Recordings in various species of the a-wave, including the peak and initial recovery towards the baseline, are consistent with simulations showing an initial transient primarily related to capacitive currents in the ONL. Existence of these capacitive currents can explain why there is always a substantial residual transient a-wave when post-receptoral responses are pharmacologically inactivated in rodents and nonhuman primates, or severely genetically compromised in humans (e.g. complete congenital stationary night blindness) and nob mice. Our simulations and analysis of ERGs indicate that the timing of the leading edge and peak of dark-adapted a-waves evoked by strong stimuli could be used in a simple way to estimate rod sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.
2010-01-01
The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.
Tan, Jiunn-Liang; Yong, Zheng-Xin; Liam, Chong-Kin
2016-10-01
Breath alkanes are reported to be able to discriminate lung cancer patients from healthy people. A simple chemiresistor-based sensor was designed to respond to alkanes by a change in resistance measured by a digital multimeter connected to the sensor. In preclinical experiments, the sensor response was found to have a strong positive linear relationship with alkane compounds and not responsive to water. This study aimed to determine the ability of the alkane sensor to distinguish the exhaled breaths of lung cancer patients from that of chronic obstructive pulmonary disease (COPD) patients and control subjects without lung cancer. In this cross-sectional study, 12 treatment-naive patients with lung cancer, 12 ex- or current smokers with COPD and 13 never-smokers without lung disease were asked to exhale through a drinking straw into a prototype breath-in apparatus made from an empty 125 mL Vitagen ® bottle with the chemiresistor sensor attached at its inside bottom to measure the sensor peak output (percentage change of baseline resistance measured before exhalation to peak resistance) and the time taken for the baseline resistance to reach peak resistance. Analysis of multivariate variance and post-hoc Tukey test revealed that the peak output and the time to peak values for the lung cancer patients were statistically different from that for both the COPD patients and the controls without lung disease, Pillai's Trace =0.393, F=3.909, df = (4, 64), P=0.007. A 2.20% sensor peak output and a 90-s time to peak gave 83.3% sensitivity and 88% specificity in diagnosing lung cancer. Tobacco smoking did not affect the diagnostic accuracy of the sensor. The alkane sensor could discriminate patients with lung cancer from COPD patients and people without lung disease. Its potential utility as a simple, cheap and non-invasive test for early lung cancer detection needs further studies.
Tan, Jiunn-Liang; Yong, Zheng-Xin
2016-01-01
Background Breath alkanes are reported to be able to discriminate lung cancer patients from healthy people. A simple chemiresistor-based sensor was designed to respond to alkanes by a change in resistance measured by a digital multimeter connected to the sensor. In preclinical experiments, the sensor response was found to have a strong positive linear relationship with alkane compounds and not responsive to water. This study aimed to determine the ability of the alkane sensor to distinguish the exhaled breaths of lung cancer patients from that of chronic obstructive pulmonary disease (COPD) patients and control subjects without lung cancer. Methods In this cross-sectional study, 12 treatment-naive patients with lung cancer, 12 ex- or current smokers with COPD and 13 never-smokers without lung disease were asked to exhale through a drinking straw into a prototype breath-in apparatus made from an empty 125 mL Vitagen® bottle with the chemiresistor sensor attached at its inside bottom to measure the sensor peak output (percentage change of baseline resistance measured before exhalation to peak resistance) and the time taken for the baseline resistance to reach peak resistance. Results Analysis of multivariate variance and post-hoc Tukey test revealed that the peak output and the time to peak values for the lung cancer patients were statistically different from that for both the COPD patients and the controls without lung disease, Pillai’s Trace =0.393, F=3.909, df = (4, 64), P=0.007. A 2.20% sensor peak output and a 90-s time to peak gave 83.3% sensitivity and 88% specificity in diagnosing lung cancer. Tobacco smoking did not affect the diagnostic accuracy of the sensor. Conclusions The alkane sensor could discriminate patients with lung cancer from COPD patients and people without lung disease. Its potential utility as a simple, cheap and non-invasive test for early lung cancer detection needs further studies. PMID:27867553
van Schie, Carine H M; Slim, Frederik J; Keukenkamp, Renske; Faber, William R; Nollet, Frans
2013-03-01
Not only plantar pressure but also weight-bearing activity affects accumulated mechanical stress to the foot and may be related to foot ulceration. To date, activity has not been accounted for in leprosy. The purpose was to compare barefoot pressure, in-shoe pressure and daily cumulative stress between persons affected by leprosy with and without previous or current foot ulceration. Nine persons with current plantar ulceration were compared to 15 with previous and 15 without previous ulceration. Barefoot peak pressure (EMED-X), in-shoe peak pressure (Pedar-X) and daily cumulative stress (in-shoe forefoot pressure time integral×mean daily strides (Stepwatch™ Activity Monitor)) were measured. Barefoot peak pressure was increased in persons with current and previous compared to no previous foot ulceration (mean±SD=888±222 and 763±335 vs 465±262kPa, p<0.05). In-shoe peak pressure was only increased in persons with current compared to without previous ulceration (mean±SD=412±145 vs 269±70kPa, p<0.05). Daily cumulative stress was not different between groups, although persons with current and previous foot ulceration were less active. Although barefoot peak pressure was increased in people with current and previous plantar ulceration, it did not discriminate between these groups. While in-shoe peak pressure was increased in persons with current ulceration, they were less active, resulting in no difference in daily cumulative stress. Increased in-shoe peak pressure suggests insufficient pressure reducing footwear in persons with current ulceration, highlighting the importance of pressure reducing qualities of footwear. Copyright © 2012 Elsevier B.V. All rights reserved.
Eto, Kei; Arimura, Yukiko; Mizuguchi, Hiroko; Nishikawa, Masazumi; Noda, Mami; Ishibashi, Hitoshi
2006-11-01
The effects of docosahexaenoic acid (DHA) and other fatty acids on P2X-receptor-mediated inward currents in rat nodose ganglion neurons were studied using the nystatin perforated patch-clamp technique. DHA accelerated the desensitization rate of the ATP-induced current. DHA showed use-dependent inhibition of the peak ATP-induced current. Other polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, displayed a similar use-dependent inhibition. The inhibitory effects of saturated fatty acids including palmitic acid and arachidic acid were weaker than those of polyunsaturated fatty acids. The results suggest that fatty acids may modulate the P2X receptor-mediated response when the channel is in the open-state.
Pulse charging of lead-acid traction cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1980-01-01
Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.
Uncooled infrared photon detection concepts and devices
NASA Astrophysics Data System (ADS)
Piyankarage, Viraj Vishwakantha Jayaweera
This work describes infrared (IR) photon detector techniques based on novel semiconductor device concepts and detector designs. The aim of the investigation was to examine alternative IR detection concepts with a view to resolve some of the issues of existing IR detectors such as operating temperature and response range. Systems were fabricated to demonstrate the following IR detection concepts and determine detector parameters: (i) Near-infrared (NIR) detection based on dye-sensitization of nanostructured semiconductors, (ii) Displacement currents in semiconductor quantum dots (QDs) embedded dielectric media, (iii) Split-off band transitions in GaAs/AlGaAs heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors. A far-infrared detector based on GaSb homojunction interfacial workfunction internal photoemission (HIWIP) structure is also discussed. Device concepts, detector structures, and experimental results discussed in the text are summarized below. Dye-sensitized (DS) detector structures consisting of n-TiO 2/Dye/p-CuSCN heterostructures with several IR-sensitive dyes showed response peaks at 808, 812, 858, 866, 876, and 1056 nm at room temperature. The peak specific-detectivity (D*) was 9.5x1010 cm Hz-1/2 W-1 at 812 nm at room temperature. Radiation induced carrier generation alters the electronic polarizability of QDs provided the quenching of excitation is suppressed by separation of the QDs. A device constructed to illustrate this concept by embedding PbS QDs in paraffin wax showed a peak D* of 3x108 cm Hz 1/2 W-1 at ˜540 nm at ambient temperature. A typical HEIWIP/HIWIP detector structures consist of single (or multiple) period(s) of doped emitter(s) and undoped barrier(s) which are sandwiched between two highly doped contact layers. A p-GaAs/AlGaAs HEIWIP structure showed enhanced absorption in NIR range due to heavy/light-hole band to split-off band transitions and leading to the development of GaAs based uncooled sensors for IR detection in the 2--5 microm wavelength range with a peak D* of 6.8x105 cm Hz1/2 W-1. A HIWIP detector based on p-GaSb/GaSb showed a free carrier response threshold wavelength at 97 microm (˜3 THz) with a peak D* of 5.7x1011 cm Hz1/2 W-1 at 36 microm and 4.9 K. In this detector, a bolometric type response in the 97--200 microm (3--1.5 THz) range was also observed. INDEX WORDS: Infrared detectors, Photon detection, NIR detectors, THz detectors, Uncooled detectors, Dye-sensitized, IR dye, Quantum dot, Split-off band, GaSb, GaAs, AlGaAs, TiO2, CuSCN, PbS, Homojunction, Heterojunction, Workfunction, Photoemission, Displacement currents, 1/f noise.
Fehérvári, Tamás Dávid; Sawai, Hajime; Yagi, Tetsuya
2015-01-01
In the mammalian primary visual cortex (V1), lateral spreading of excitatory potentials is believed to be involved in spatial integrative functions, but the underlying cortical mechanism is not well understood. Visually-evoked population-level responses have been shown to propagate beyond the V1 initial activation site in mouse, similar to higher mammals. Visually-evoked responses are, however, affected by neuronal circuits prior to V1 (retina, LGN), making the separate analysis of V1 difficult. Intracortical stimulation eliminates these initial processing steps. We used in vivo RH1691 voltage-sensitive dye (VSD) imaging and intracortical microstimulation in adult C57BL/6 mice to elucidate the spatiotemporal properties of population-level signal spreading in V1 cortical circuits. The evoked response was qualitatively similar to that measured in single-cell electrophysiological experiments in rodents: a fast transient fluorescence peak followed by a fast and a slow decrease or hyperpolarization, similar to EPSP and fast and slow IPSPs in single cells. The early cortical response expanded at speeds commensurate with long horizontal projections (at 5% of the peak maximum, 0.08–0.15 m/s) however, the bulk of the VSD signal propagated slowly (at half-peak maximum, 0.05–0.08 m/s) suggesting an important role of regenerative multisynaptic transmission through short horizontal connections in V1 spatial integrative functions. We also found a tendency for a widespread and fast cortical response suppression in V1, which was eliminated by GABAA-antagonists gabazine and bicuculline methiodide. Our results help understand the neuronal circuitry involved in lateral spreading in V1. PMID:26230520
Beyer, Peter L; Caviar, Elena M; McCallum, Richard W
2005-10-01
Fructose intake has increased considerably in the United States, primarily as a result of increased consumption of high-fructose corn syrup, fruits and juices, and crystalline fructose. The purpose was to determine how often fructose, in amounts commonly consumed, would result in malabsorption and/or symptoms in healthy persons. Fructose absorption was measured using 3-hour breath hydrogen tests and symptom scores were used to rate subjective responses for gas, borborygmus, abdominal pain, and loose stools. The study included 15 normal, free-living volunteers from a medical center community and was performed in a gastrointestinal specialty clinic. Subjects consumed 25- and 50-g doses of crystalline fructose with water after an overnight fast on separate test days. Mean peak breath hydrogen, time of peak, area under the curve (AUC) for breath hydrogen and gastrointestinal symptoms were measured during a 3-hour period after subjects consumed both 25- and 50-g doses of fructose. Differences in mean breath hydrogen, AUC, and symptom scores between doses were analyzed using paired t tests. Correlations among peak breath hydrogen, AUC, and symptoms were also evaluated. More than half of the 15 adults tested showed evidence of fructose malabsorption after 25 g fructose and greater than two thirds showed malabsorption after 50 g fructose. AUC, representing overall breath hydrogen response, was significantly greater after the 50-g dose. Overall symptom scores were significantly greater than baseline after each dose, but scores were only marginally greater after 50 g than 25 g. Peak hydrogen levels and AUC were highly correlated, but neither was significantly related to symptoms. Fructose, in amounts commonly consumed, may result in mild gastrointestinal distress in normal people. Additional study is warranted to evaluate the response to fructose-glucose mixtures (as in high-fructose corn syrup) and fructose taken with food in both normal people and those with gastrointestinal dysfunction. Because breath hydrogen peaks occurred at 90 to 114 minutes and were highly correlated with 180-minute breath hydrogen AUC, the use of peak hydrogen measures may be considered to shorten the duration of the exam.
The Sandia transportable triggered lightning instrumentation facility
NASA Technical Reports Server (NTRS)
Schnetzer, George H.; Fisher, Richard J.
1991-01-01
Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications.
Kalantari, Zahra; Briel, Annemarie; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart
2014-03-15
Road drainage structures are often designed using methods that do not consider process-based representations of a landscape's hydrological response. This may create inadequately sized structures as coupled land cover and climate changes can lead to an amplified hydrological response. This study aims to quantify potential increases of runoff in response to future extreme rain events in a 61 km(2) catchment (40% forested) in southwest Sweden using a physically-based hydrological modelling approach. We simulate peak discharge and water level (stage) at two types of pipe bridges and one culvert, both of which are commonly used at Swedish road/stream intersections, under combined forest clear-cutting and future climate scenarios for 2050 and 2100. The frequency of changes in peak flow and water level varies with time (seasonality) and storm size. These changes indicate that the magnitude of peak flow and the runoff response are highly correlated to season rather than storm size. In all scenarios considered, the dimensions of the current culvert are insufficient to handle the increase in water level estimated using a physically-based modelling approach. It also appears that the water level at the pipe bridges changes differently depending on the size and timing of the storm events. The findings of the present study and the approach put forward should be considered when planning investigations on and maintenance for areas at risk of high water flows. In addition, the research highlights the utility of physically-based hydrological models to identify the appropriateness of road drainage structure dimensioning. Copyright © 2014 Elsevier B.V. All rights reserved.
Calcium currents and graded synaptic transmission between heart interneurons of the leech.
Angstadt, J D; Calabrese, R L
1991-03-01
Synaptic transmission between reciprocally inhibitory heart interneurons (HN cells) of the medicinal leech was examined in the absence of Na-mediated action potentials. Under voltage clamp, depolarizing steps from a holding potential of -60 mV elicited 2 kinetically distinct components of inward current in the presynaptic HN cell: an early transient current that inactivates within 200 msec and a persistent current that only partially decays over several seconds. Both currents begin to activate near -60 mV. Steady-state inactivation occurs over the voltage range between -70 and -45 mV and is completely removed by 1-2-sec hyperpolarizing voltage steps to -80 mV. The inward currents are carried by Ca2+, Ba2+, or Sr2+ ions, but not by Co2+, Mn2+, or Ni2+. These same inward currents underlie the burst-generating plateau potentials previously described in HN cells (Arbas and Calabrese, 1987a,b). With a presynaptic holding potential of -60 mV, the threshold for transmitter release is near -45 mV. Postsynaptic currents in the contralateral HN cell have a reversal potential near -60 mV. The largest postsynaptic currents (300-400 pA) exhibit an initial peak response that is followed by a more slowly decaying component. The persistent component of Ca2+ current in the presynaptic neuron is strongly correlated with the prolonged component of the postsynaptic current, while the transient presynaptic Ca2+ current appears to correspond to the early peak of postsynaptic current. These data are consistent with the hypothesis that voltage-dependent calcium currents contribute to the oscillatory capability of reciprocally inhibitory HN cells by (1) generating the plateau potential that drives the burst of action potentials and (2) underlying the release of inhibitory transmitter onto the contralateral cell.
Amare, Meareg; Abicho, Samuel; Admassie, Shimelis
2014-01-01
A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT. Under optimized solution and method parameters, the adsorptive stripping square wave voltammetric reductive peak current of FT was linear to FT concentration in the range of 0.001 to 6.6 x 10(-6) M, and the LOD obtained (3delta/m) was 7.95 x 10(-10) M. Recoveries in the range 96-98% of spiked FT in tap water and reproducible results with RSD of 2.6% (n = 5) were obtained, indicating the potential applicability of the method for the determination of trace levels of FT in environmental samples.
Voltammetric detection of biological molecules using chopped carbon fiber.
Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira
2010-01-01
Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules.
Simulating the Fate of an Ionospheric Mass Ejection
NASA Astrophysics Data System (ADS)
Moore, T. E.; Fok, M. H.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.
2008-12-01
We report global ion kinetic (GIK) simulations of the 24-25 Sep 1998 storm, with all relevant ionospheric outflows including polar, auroral, and plasmaspheric winds. This storm included substantial periods of northward interplanetary magnetic field, but did develop a Dst of -200 nT at its peak. The solar disturbance resulted form a coronal mass ejection that reached a peak dynamic pressure at the magnetosphere of 6.2 nPa, and produced a substantial enhancement of auroral wind oxygen outflow from the dayside, which has been termed an "ionospheric mass ejection" in an earlier observational paper. We use the LFM global simulation model to produce electric and magnetic fields in the outer magnetosphere, the Strangeway-Zheng outflow scalings with Delcourt ion trajectories to include ionospheric outflows, and the Fok-Ober inner magnetospheric model for the plasmaspheric and ring current response to all particle populations. We assess the combined contributions of heliospheric and geospheric plasmas to the ring current for this event.
Zhu, Zhihong; Li, Xia; Zeng, Yan; Sun, Wei
2010-06-15
In this paper the direct electrochemistry of double-stranded DNA (dsDNA) was investigated on ordered mesoporous carbon (OMC) modified carbon ionic liquid electrode (CILE). CILE was prepared by mixing graphite powder with 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM]EtOSO(3)) and liquid paraffin. A stable OMC film was formed on the surface of CILE with the help of Nafion to get a modified electrode denoted as Nafion-OMC/CILE. Due to the specific characteristics of OMC and IL present on the electrode surface, the fabricated electrode showed good electrochemical performances to different electroactive molecules. The electrochemical responses of dsDNA were carefully investigated on this electrode with two irreversible oxidation peak appeared at +1.250 V and +0.921 V (vs. SCE), which was corresponding to the oxidation of adenine and guanine residues in dsDNA structure. The electrochemical behaviors of dsDNA were carefully investigated on the Nafion-OMC/CILE. Experimental results indicated that the electron transfer rate was promoted with the increase of the oxidation peak current and the decrease of the oxidation peak potential, which was due to the electrocatalytic ability of OMC on the electrode surface. Under the optimal conditions the oxidation peak current increased with dsDNA concentration in the range of 10.0-600.0 microg mL(-1) by differential pulse voltammetry (DPV) with the detection limit of 1.2 microg mL(-1) (3sigma). Copyright 2010 Elsevier B.V. All rights reserved.
Noh, S J; Kim, M J; Shim, S; Han, J K
1998-08-01
In Xenopus oocytes, both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) activate Ca2+-dependent oscillatory Cl- currents by acting through membrane-bound receptors. External application of 50 microM S1P elicited a long-lasting oscillatory current that continued over 30 min from the beginning of oscillation, with 300 nA (n = 11) as a usual maximum peak of current, whereas 1-microM LPA treatment showed only transiently oscillating but more vigorous current responses, with 2,800 nA (n = 18) as a maximum peak amplitude. Both phospholipid-induced Ca2+-dependent Cl- currents were observed in the absence of extracellular Ca2+, were blocked by intracellular injection of the Ca2+ chelator, EGTA, and could not be elicited by treatment with thapsigargin, an inhibitor of endoplasmic reticulum (ER) Ca2+ ATPase. Intracellular Ca2+ release appeared to be from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, because Cl- currents were blocked by heparin injection. Pretreatment with the aminosteroid, U-73122, an inhibitor of G protein-mediated phospholipase C (PLC) activation, to oocytes inhibited the current responses evoked both by S1P and LPA. However, when they were injected with 10 ng of antisense oligonucleotide (AS-ODN) against Xenopus phospholipase C (PLC-xbeta), oocytes could not respond to S1P application, whereas they responded normally to LPA, indicating that the S1P signaling pathway goes through PLC-xbeta, whereas LPA signaling goes through another unknown PLC. To determine the types of G proteins involved, we introduced AS-ODNs against four types of G-protein alpha subunits that were identified in Xenopus laevis; G(q)alpha, G11alpha, G0alpha, and G(i1)alpha. Among AS-ODNs against the G alphas tested, AS-G(q)alpha and AS-G(i1)alpha to S1P and AS-G(q)alpha and AS-G11alpha to LPA specifically reduced current responses, respectively, to about 20-30% of controls. These results demonstrate that LPA and S1P, although they have similar structural features, release intracellular Ca2+ from the IP3-sensitive pool, use different components in their signal transduction pathways in Xenopus oocytes.
Assessment of the magnetic field exposure due to the battery current of digital mobile phones.
Jokela, Kari; Puranen, Lauri; Sihvonen, Ari-Pekka
2004-01-01
Hand-held digital mobile phones generate pulsed magnetic fields associated with the battery current. The peak value and the waveform of the battery current were measured for seven different models of digital mobile phones, and the results were applied to compute approximately the magnetic flux density and induced currents in the phone-user's head. A simple circular loop model was used for the magnetic field source and a homogeneous sphere consisting of average brain tissue equivalent material simulated the head. The broadband magnetic flux density and the maximal induced current density were compared with the guidelines of ICNIRP using two various approaches. In the first approach the relative exposure was determined separately at each frequency and the exposure ratios were summed to obtain the total exposure (multiple-frequency rule). In the second approach the waveform was weighted in the time domain with a simple low-pass RC filter and the peak value was divided by a peak limit, both derived from the guidelines (weighted peak approach). With the maximum transmitting power (2 W) the measured peak current varied from 1 to 2.7 A. The ICNIRP exposure ratio based on the current density varied from 0.04 to 0.14 for the weighted peak approach and from 0.08 to 0.27 for the multiple-frequency rule. The latter values are considerably greater than the corresponding exposure ratios 0.005 (min) to 0.013 (max) obtained by applying the evaluation based on frequency components presented by the new IEEE standard. Hence, the exposure does not seem to exceed the guidelines. The computed peak magnetic flux density exceeded substantially the derived peak reference level of ICNIRP, but it should be noted that in a near-field exposure the external field strengths are not valid indicators of exposure. Currently, no biological data exist to give a reason for concern about the health effects of magnetic field pulses from mobile phones.
Increasing the Life of a Xenon-Ion Spacecraft Thruster
NASA Technical Reports Server (NTRS)
Goebel, Dan; Polk, James; Sengupta, Anita; Wirz, Richard
2007-01-01
A short document summarizes the redesign of a xenon-ion spacecraft thruster to increase its operational lifetime beyond a limit heretofore imposed by nonuniform ion-impact erosion of an accelerator electrode grid. A peak in the ion current density on the centerline of the thruster causes increased erosion in the center of the grid. The ion-current density in the NSTAR thruster that was the subject of this investigation was characterized by peak-to-average ratio of 2:1 and a peak-to-edge ratio of greater than 10:1. The redesign was directed toward distributing the same beam current more evenly over the entire grid andinvolved several modifications of the magnetic- field topography in the thruster to obtain more nearly uniform ionization. The net result of the redesign was to reduce the peak ion current density by nearly a factor of two, thereby halving the peak erosion rate and doubling the life of the thruster.
Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Vaughan, W. W.
1999-01-01
This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.
Tronstad, Christian; Kalvøy, Håvard; Grimnes, Sverre; Martinsen, Ørjan G
2013-11-01
The shapes of skin conductance (SC) and skin potential (SP) responses are often similar, but can also be very different due to an unexplained cause. Using a new method to measure SC and SP simultaneously at the same electrode, this difference was investigated in a new way by comparing their temporal peak differences. SC, SP, skin susceptance (SS), and transepidermal water loss (TEWL) were recorded from 40 participants during relaxation and stress. The SP response could peak anywhere between the onset of an SC response to some time after the peak of an SC response. This peak time difference was associated with the magnitude of the SCR, the hydration of the skin, and the filling of the sweat ducts. Interpretation of the results in light of existing biophysical theories suggests that this peak difference may indicate the hydraulic capacity state of the sweat ducts at the time of a response. Copyright © 2013 Society for Psychophysiological Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Hongwei; Pan, Shanlin; Hu, Dehong
In this paper, we studied the luminescence property and fluorescence lifetime mapping of MEH-PPV/PCBM system by using electrogenerated chemiluminescence (ECL) and time-correlated single photo counting (TC-SPC) technologies. The ECL results showed that the oxidation peak of MEH-PPV near 0.7 V (vs. SCE) and ECL response of films shifted positively towards 1.2 V when in the presence of PCBM. At the same time, the oxidation peak current density of MEH-PPV increases while the ECL response decreased with the loading of PCBM in the composite films. The fluorescence lifetime images clearly show that the lifetime fluctuation is effected by different substrates andmore » MEH-PPV/PCBM ratios. Meanwhile, the lifetime of MEH-PPV decreases with the increasing of film thickness. The lifetimes of MEH-PPV films on TiO2 substrate are lower than them of films on cover slips.« less
Liu, Tongran; Xiao, Tong; Shi, Jiannong
2013-02-13
Response inhibition and preattentive processing are two important cognitive abilities for child development, and the current study adopted both behavioral and electrophysiological protocols to examine whether young children's response inhibition correlated with their preattentive processing. A Go/Nogo task was used to explore young children's response inhibition performances and an Oddball task with event-related potential recordings was used to measure their preattentive processing. The behavioral results showed that girls committed significantly fewer commission error rates, which showed that girls had stronger inhibition control abilities than boys. Girls also achieved higher d' scores in the Go/Nogo task, which indicated that they were more sensitive to the stimulus signals than boys. Although the electrophysiological results of preattentive processing did not show any sex differences, the correlation patterns between children's response inhibition and preattentive processing were different between these two groups: the neural response speed of preattentive processing (mismatch negativity peak latency) negatively correlated with girls' commission error rates and positively correlated with boys' correct hit rates. The current findings supported that the preattentive processing correlated with human inhibition control performances, and further showed that girls' better inhibition responses might be because of the influence of their preattentive processing.
Olson, Kayla M; Augeri, Amanda L; Seip, Richard L; Tsongalis, Gregory J; Thompson, Paul D; Pescatello, Linda S
2012-05-01
An elevated systolic blood pressure (SBP) response to a graded maximal exercise stress test (GEST) may be a predictor of endothelial dysfunction and hypertension. We examined relationships among the GEST peak SBP response and indicators of endothelial function. Men (n=48, 43.7±1.4 yr) with high BP (145.1±1.5/85.5±1.1 mmHg) completed a GEST. Peak SBP was the highest SBP achieved during the GEST. Blood samples were taken for fasting glucose and insulin, nitric oxide (NO), and DNA. Endothelial nitric oxide synthase (NOS3, rs2070744) -786 T>C genotyping was determined by PCR. NOS3 genotypes were combined using a dominant model [TT (n=24); TC/CC (n=24)]. Brachial artery reactivity (BAR) was determined via ultrasound before, 1 min, and 3 min post occlusion and calculated as % change. Analysis of variance (ANOVA) tested changes in the peak SBP GEST response by NOS3 genotype. Multiple variable regression analyses examined relationships among the GEST peak SBP response and measures of endothelial function. %BAR change at 1 min (r(2)=0.093, p=0.020), glucose (r(2)=0.062, p=0.014), NOS3 -786 T>C (r(2)=0.040, p=0.024), NO (r(2)=0.037, p=0.064), and age (r(2)=0.009, p=0.014) explained 24.1% of the GEST peak SBP response (p=0.043). The GEST peak SBP change from baseline was 11.1±5.0 mmHg higher among those with the NOS3 C allele (92.4 mmHg+3.8) than the NOS3 TT genotype (81.3 mmHg+3.2) (p=0.03). Indicators of endothelial function appear to explain a clinically significant portion of the GEST peak SBP response. Further investigation is needed to unravel the mechanisms by which endothelial function influences the GEST peak SBP response. Published by Elsevier Ireland Ltd.
Combined effect of storm movement and drainage network configuration on flood peaks
NASA Astrophysics Data System (ADS)
Seo, Yongwon; Son, Kwang Ik; Choi, Hyun Il
2016-04-01
This presentation reports the combined effect of storm movement and drainage network layout on resulting hydrographs and its implication to flood process and also flood mitigation. First, we investigate, in general terms, the effects of storm movement on the resulting flood peaks, and the underlying process controls. For this purpose, we utilize a broad theoretical framework that uses characteristic time and space scales associated with stationary rainstorms as well as moving rainstorms. For a stationary rainstorm the characteristic timescales that govern the peak response include two intrinsic timescales of a catchment and one extrinsic timescale of a rainstorm. On the other hand, for a moving rainstorm, two additional extrinsic scales are required; the storm travel time and storm size. We show that the relationship between the peak response and the timescales appropriate for a stationary rainstorm can be extended in a straightforward manner to describe the peak response for a moving rainstorm. For moving rainstorms, we show that the augmentation of peak response arises from both effect of overlaying the responses from subcatchments (resonance condition) and effect of increased responses from subcatchments due to increased duration (interdependence), which results in maximum peak response when the moving rainstorm is slower than the channel flow velocity. Second, we show the relation between channel network configurations and hydrograph sensitivity to storm kinematics. For this purpose, Gibbs' model is used to evaluate the network characteristics. The results show that the storm kinematics that produces the maximum peak discharge depends on the network configuration because the resonance condition changes with the network configuration. We show that an "efficient" network layout is more sensitive and results in higher increase in peak response compared to "inefficient" one. These results imply different flood potential risks for river networks depending on network characteristics. In addition, they imply a possibility of an alternative drainage network layout as an effective measure for flood mitigation in urban environments.
Optically controlled resonant tunneling in a double-barrier diode
NASA Astrophysics Data System (ADS)
Kan, S. C.; Wu, S.; Sanders, S.; Griffel, G.; Yariv, A.
1991-03-01
The resonant tunneling effect is optically enhanced in a GaAs/GaAlAs double-barrier structure that has partial lateral current confinement. The peak current increases and the valley current decreases simultaneously when the device surface is illuminated, due to the increased conductivity of the top layer of the structure. The effect of the lateral current confinement on the current-voltage characteristic of a double-barrier resonant tunneling structure was also studied. With increased lateral current confinement, the peak and valley current decrease at a different rate such that the current peak-to-valley ratio increases up to three times. The experimental results are explained by solving the electrostatic potential distribution in the structure using a simple three-layer model.
Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.
Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z
2017-03-01
A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.
NASA Astrophysics Data System (ADS)
Shin, Sunhae; Rok Kim, Kyung
2015-06-01
In this paper, we propose a novel multiple negative differential resistance (NDR) device with ultra-high peak-to-valley current ratio (PVCR) over 106 by combining tunnel diode with a conventional MOSFET, which suppresses the valley current with transistor off-leakage level. Band-to-band tunneling (BTBT) in tunnel junction provides the first peak, and the second peak and valley are generated from the suppression of diffusion current in tunnel diode by the off-state MOSFET. The multiple NDR curves can be controlled by doping concentration of tunnel junction and the threshold voltage of MOSFET. By using complementary multiple NDR devices, five-state memory is demonstrated only with six transistors.
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Vaughan, William W.
1998-01-01
A summary is presented of basic lightning characteristics/criteria for current and future NASA aerospace vehicles. The paper estimates the probability of occurrence of a 200 kA peak lightning return current, should lightning strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating probabilities of launch vehicles/objects being struck by lightning. This paper presents these results.
Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop
2016-03-20
This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer.
Relation of field-aligned currents measured by AMPERE project to solar wind and substorms
NASA Astrophysics Data System (ADS)
McPherron, R. L.; Anderson, B. J.; Chu, X.
2016-12-01
Magnetic perturbations measured in the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) by the Iridium constellation of spacecraft have been processed to obtain the time history of field-aligned currents (FAC) connecting the magnetosphere to the ionosphere. We find that the strength of these currents is closely related to the strength of the solar wind driver defined as a running average of the previous three hours of the optimum AL (auroral lower) coupling function. The relation is well represented by a saturation model I = A*S*Ss/(S+Ss) with I the current strength in mega Amps, S the driver strength in mV/m, Ss the saturation value of 7.78 mV/m, and A = 2.55 scales the relation to units of current. We also find that in general the upward current on the nightside increases with each substorm expansion onset defined by a combination of the SuperMag SML (SuperMag AL) and midlatitude positive bay (MPB) onset lists. A superposed epoch analysis using 700 onsets in 2010 shows the following: solar wind coupling peaks at expansion onset; dayside outward current starts to increase one hour before onset while nightside outward current starts suddenly at onset; nightside outward current reaches a peak at 28 minutes as do SML and MPB indices; FAC, SML, and MPB respectively take 1, 2, and 3 hours to decay to background. The data indicate that the substorm current wedge is superposed on a pre-existing field-aligned current system and that the location and properties of the current wedge can be studied with the AMPERE data.
Versini, Pierre-Antoine; Gires, Auguste; Tchinguirinskaia, Ioulia; Schertzer, Daniel
2016-10-01
Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale: decrease and slow-down of the peak discharge, and decrease of runoff volume. The present work aims to study their possible impact at the catchment scale, more compatible with stormwater management issues. For this purpose, a specific module dedicated to simulating the hydrological behaviour of a green roof has been developed in the distributed rainfall-runoff model (Multi-Hydro). It has been applied on a French urban catchment where most of the building roofs are flat and assumed to accept the implementation of a green roof. Catchment responses to several rainfall events covering a wide range of meteorological situations have been simulated. The simulation results show green roofs can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and initial saturation of the substrate. Additional tests have been made to assess the susceptibility of this response regarding both spatial distributions of green roofs and precipitation. It appears that the total area of greened roofs is more important than their locations. On the other hand, peak discharge reduction seems to be clearly dependent on spatial distribution of precipitation.
Jones, Perry M.; Winterstein, Thomas A.
2000-01-01
The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources and the Heron Lake Watershed District, conducted a study to characterize the rainfall-runoff response and to examine the effects of wetland restoration on the rainfall-runoff response within the Heron Lake Basin in southwestern Minnesota. About 93 percent of the land cover in the Heron Lake Basin consists of agricultural lands, consisting almost entirely of row crops, with less than one percent consisting of wetlands. The Hydrological Simulation Program – Fortran (HSPF), Version 10, was calibrated to continuous discharge data and used to characterize rainfall-runoff responses in the Heron Lake Basin between May 1991 and August 1997. Simulation of the Heron Lake Basin was done as a two-step process: (1) simulations of five small subbasins using data from August 1995 through August 1997, and (2) simulations of the two large basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Simulations of the five small subbasins was done to determine basin parameters for the land segments and assess rainfall-runoff response variability in the basin. Simulations of the two larger basins were done to verify the basin parameters and assess rainfall-runoff responses over a larger area and for a longer time period. Best-fit calibrations of the five subbasin simulations indicate that the rainfall-runoff response is uniform throughout the Heron Lake Basin, and 48 percent of the total rainfall for storms becomes direct (surface and interflow) runoff. Rainfall-runoff response variations result from variations in the distribution, intensity, timing, and duration of rainfall; soil moisture; evapotranspiration rates; and the presence of lakes in the basin. In the spring, the amount and distribution of rainfall tends to govern the runoff response. High evapotranspiration rates in the summer result in a depletion of moisture from the soils, substantially affecting the rainfall-runoff relation. Five wetland restoration simulations were run for each of five subbasins using data from August 1995 through August 1997, and for the two larger basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Results from linear regression analysis of total simulated direct runoff and total rainfall data for simulated storms in the wetland-restoration simulations indicate that the portion of total rainfall that becomes runoff will be reduced by 46 percent if 45 percent of current cropland is converted to wetland. The addition of wetlands reduced peak runoff in most of the simulations, but the reduction varied with antecedent soil moisture, the magnitude of the peak flow, and the presence of current wetlands and lakes. Reductions in the simulated total and peak runoff from the Jack Creek Basin for most of the simulated storms were greatest when additional wetlands were simulated in the North Branch Jack Creek or the Upper Jack Creek Subbasins. In the Okabena Creek Basin, reductions in simulated peak runoff for most of the storms were greatest when additional wetlands were simulated in the Lower Okabena Creek Subbasin.
Chao, Chung-Hua; Wei, Da-Hua
2015-01-01
In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 oC. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 oC. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 oC by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application. PMID:26484561
Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H
2017-02-21
It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment ]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today's technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual.
Large and persistent electrical currents enter the transected lamprey spinal cord.
Borgens, R B; Jaffe, L F; Cohen, M J
1980-01-01
The electrical currents at the surface of the proximal portion of an isolated and transected lamprey spinal cord were measured with an extracellular vibrating probe. Soon after transection, currents of about 0.5 mA/cm2 enter the cut surface of the spinal cord. These currents fall to about a quarter of their initial value within an hour; within the next 2 days they gradually decline from about 100 microA/cm2 to about 4 microA/cm2; they then remain constant up to 6 days posttransection, when the measurements were ended. The pattern of current entry included substantial peaks opposite (and presumably into) the cut ends of giant axons. Response to changes in the ionic composition of the medium indicates that about half of the injury current consists of Na+, and that much of the rest may consist of Ca2+. The measured influx of ions, which adds up to several coulombs per cm2 in a few days, should radically alter the ionic composition of the terminal few millimeters of neural tissue. Thus it may be important in the degenerative and regenerative responses of neurons to axotomy. Images PMID:6928670
Dospinescu, Ciprian; Widmer, Hélène; Rowe, Iain; Wainwright, Cherry; Cruickshank, Stuart F
2012-09-01
Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K(+) current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca(2+) and was sensitive to Ca(2+) channel blockade. Blockade of K(+) channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of -36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K(+) current (I(KH)) that was hypoxia, TEA, and 4-AP sensitive. I(KH) was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was -32 mV, suggesting that I(KH) may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv(1.5), Kv(2.1), and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of I(KH) would contribute to hypoxic-induced contraction in PVSMC.
Chakrabarti, Sampurna; Qian, Mingxing; Krishnan, Kathiresan; Covey, Douglas F.; Mennerick, Steven
2016-01-01
Neuroactive steroids are efficacious modulators of γ-aminobutyric acid type A receptor (GABAA) receptor function. The effects of steroids on the GABAA receptor are typically determined by comparing steady-state single-channel open probability or macroscopic peak responses elicited by GABA in the absence and presence of a steroid. Due to differences in activation conditions (exposure duration, concentration of agonist), it is not obvious whether modulation measured using typical experimental protocols can be used to accurately predict the effect of a modulator on native receptors under physiologic conditions. In the present study, we examined the effects of 14 neuroactive steroids and analogs on the properties of spontaneous inhibitory postsynaptic currents (sIPSCs) in cultured rat hippocampal neurons. The goal was to determine whether the magnitude of modulation of the decay time course of sIPSCs correlates with the extent of modulation and kinetic properties of potentiation as determined in previous single-channel studies. The steroids were selected to cover a wide range of efficacy on heterologously expressed rat α1β2γ2L GABAA receptors, ranging from essentially inert to highly efficacious (strong potentiators of single-channel and macroscopic peak responses). The data indicate a strong correlation between prolongation of the decay time course of sIPSCs and potentiation of single-channel open probability. Furthermore, changes in intracluster closed time distributions were the single best predictor of prolongation of sIPSCs. We infer that the information obtained in steady-state single-channel recordings can be used to forecast modulation of synaptic currents. PMID:26769414
Cardiopulmonary Responses to Supine Cycling during Short-Arm Centrifugation
NASA Technical Reports Server (NTRS)
Vener, J. M.; Simonson, S. R.; Stocks, J.; Evettes, S.; Bailey, K.; Biagini, H.; Jackson, C. G. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
The purpose of this study was to investigate cardiopulmonary responses to supine cycling with concomitant +G(sub z) acceleration using the NASA/Ames Human Powered Short-Arm Centrifuge (HPC). Subjects were eight consenting males (32+/-5 yrs, 178+/-5 cm, 86.1+/- 6.2 kg). All subjects completed two maximal exercise tests on the HPC (with and without acceleration) within a three-day period. A two tailed t-test with statistical significance set at p less than or equal to 0.05 was used to compare treatments. Peak acceleration was 3.4+/-0.1 G(sub z), (head to foot acceleration). Peak oxygen uptake (VO2(sub peak) was not different between treatment groups (3.1+/-0.1 Lmin(exp -1) vs. 3.2+/-0.1 Lmin(exp -1) for stationary and acceleration trials, respectively). Peak HR and pulmonary minute ventilation (V(sub E(sub BTPS))) were significantly elevated (p less than or equal to 0.05) for the acceleration trial (182+/-3 BPM (Beats per Minute); 132.0+/-9.0 Lmin(exp -1)) when compared to the stationary trial (175+/-3 BPM; 115.5+/-8.5 Lmin(exp -1)). Ventilatory threshold expressed as a percent of VO2(sub peak) was not different for acceleration and stationary trials (72+/-2% vs. 68+/-2% respectively). Results suggest that 3.4 G(sub z) acceleration does not alter VO2(sub peak) response to supine cycling. However, peak HR and V(sub E(sub BTPS)) response may be increased while ventilatory threshold response expressed as a function of percent VO2(sub peak) is relatively unaffected. Thus, traditional exercise prescription based on VO2 response would be appropriate for this mode of exercise. Prescriptions based on HR response may require modification.
In situ electrochemical detection of embryonic stem cell differentiation.
Yea, Cheol-Heon; An, Jeung Hee; Kim, Jungho; Choi, Jeong-Woo
2013-06-20
Stem cell sensors have emerged as a promising technique to electrochemically monitor the functional status and viability of stem cells. However, efficient electrochemical analysis techniques are required for the development of effective electrochemical stem cell sensors. In the current study, we report a newly developed electrochemical cyclic voltammetry (CV) system to determine the status of mouse embryonic stem (ES) cells. 1-Naphthly phosphate (1-NP), which was dephosphorylated by alkaline phosphatase into a 1-naphthol on an undifferentiated mouse ES cell, was used as a substrate to electrochemically monitor the differentiation status of mouse ES cells. The peak current in the cyclic voltammetry of 1-NP increased linearly with the concentration of pure 1-NP (R(2)=0.9623). On the other hand, the peak current in the electrochemical responses of 1-NP decreased as the number of undifferentiated ES cells increased. The increased dephosphorylation of 1-NP to 1-naphthol made a decreased electrochemical signal. Non-toxicity of 1-NP was confirmed. In conclusion, the proposed electrochemical analysis system can be applied to an electrical stem cell chip for diagnosis, drug detection and on-site monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.
Verrico, Christopher D; Haile, Colin N; De La Garza, Richard; Grasing, Kenneth; Kosten, Thomas R; Newton, Thomas F
2016-07-01
Our pilot study suggested that the angiotensin-converting enzyme inhibitor perindopril might reduce some subjective effects produced by i.v. methamphetamine. We characterized the impact of a wider range of perindopril doses on methamphetamine-induced effects in a larger group of non-treatment-seeking, methamphetamine-using volunteers. Before treatment, participants received 30mg methamphetamine. After 5 to 7 days of perindopril treatment (0, 4, 8, or 16mg/d), participants received 15 and 30mg of methamphetamine on alternate days. Before and after treatment, participants rated subjective effects and cardiovascular measures were collected. Prior to treatment with perindopril, there were no significant differences between treatment groups on maximum or peak subjective ratings or on peak cardiovascular effects. Following perindopril treatment, there were significant main effects of treatment on peak subjective ratings of "anxious" and "stimulated"; compared to placebo treatment, treatment with 8mg perindopril significantly reduced peak ratings of both anxious (P=.0009) and stimulated (P=.0070). There were no significant posttreatment differences between groups on peak cardiovascular effects. Moderate doses of perindopril (8mg) significantly reduced peak subjective ratings of anxious and stimulated as well as attenuated many other subjective effects produced by methamphetamine, likely by inhibiting angiotensin II synthesis. Angiotensin II is known to facilitate the effects of norepinephrine, which contributes to methamphetamine's subjective effects. The lack of a classic dose-response function likely results from either nonspecific effects of perindopril or from between-group differences that were not accounted for in the current study (i.e., genetic variations and/or caffeine use). The current findings suggest that while angiotensin-converting enzyme inhibitors can reduce some effects produced by methamphetamine, more consistent treatment effects might be achieved by targeting components of the renin-angiotensin system that are downstream of angiotensin-converting enzyme. © The Author 2016. Published by Oxford University Press on behalf of CINP.
InP tunnel junctions for InP/InGaAs tandem solar cells
NASA Technical Reports Server (NTRS)
Vilela, Mauro F.; Freundlich, Alex; Renaud, P.; Medelci, N.; Bensaoula, A.
1996-01-01
We report, for the first time, an epitaxially grown InP p(+)/n(++) tunnel junction. A diode with peak current densities up to 1600 A/cm and maximum specific resistivities (Vp/Ip - peak voltage to peak current ratio) in the range of 10(exp -4)Omega cm(exp 2) is obtained. This peak current density is comparable to the highest results previously reported for lattice matched In(0.53)Ga(0.47)As tunnel junctions. Both results were obtained using chemical beam epitaxy (CBE). In this paper we discuss the electrical characteristics of these tunnel diodes and how the growth conditions influence them.
InP Tunnel Junctions for InP/InGaAs Tandem Solar Cells
NASA Technical Reports Server (NTRS)
Vilela, M. F.; Medelci, N.; Bensaoula, A.; Freundlich, A.; Renaud, P.
1995-01-01
We report, for the first time, an epitaxially grown InP p(+)/n(++) tunnel junction. A diode with peak current densities up to 1600 Al/sq cm and maximum specific resistivities (Vp/lp - peak voltage to peak current ratio) in the range of 10(exp -4)Om sq cm is obtained. This peak current density is comparable to the highest results previously reported for lattice matched In(0.53)Ga(0.47)As tunnel junctions. Both results were obtained using chemical beam epitaxy (CBE). In this paper we discuss the electrical characteristics of these tunnel diodes and how the growth conditions influence them.
Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes
NASA Technical Reports Server (NTRS)
Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.
1991-01-01
InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.
The properties of single cones isolated from the tiger salamander retina
Attwell, David; Werblin, Frank S.; Wilson, Martin
1982-01-01
1. The properties of isolated single cones were studied using the voltage-clamp technique, with two micro-electrodes inserted under visual control. 2. Single cones had input resistances, when impaled with two electrodes, of up to 270 MΩ. This is probably lower than the true membrane resistance, because of damage by the impaling electrodes. The cone capacitance was about 85 pF. 3. The cone membrane contains a time-dependent current, IB, controlled by voltage, and a separate photosensitive current. 4. The gated current, IB, is an inward current with a reversal potential around -25 mV. It is activated by hyperpolarization over the range -30 to -80 mV, and at constant voltage obeys first order (exponential) kinetics. The gating time constant is typically 50 ms at the resting potential of -45 mV, rises to 170 ms at -70 mV, and decreases for further hyperpolarization. 5. The spectral sensitivity curve of the cone light response peaks at 620 nm wave-length, and is narrower than the nomogram for vitamin A2-based pigments. The light responses of isolated cones are spectrally univariant. 6. Voltage-clamped photocurrents were recorded at various membrane potentials, for light steps of various intensities. The photocurrent reversed at around -8 mV. The time course of the photocurrent, for a given intensity, was approximately independent of voltage (although its magnitude was voltage-dependent). The shape of the peak current—voltage relation of the light-sensitive current was independent of light intensity (although its magnitude was intensity-dependent). 7. These results can be explained if: (a) light simply changes the number of photosensitive channels open, without altering the properties of an open channel; (b) the reactions controlling the production of internal transmitter, the binding of internal transmitter to the photosensitive channels, and the closing and opening of the channels are unaffected by the electric field in the cone membrane, even though at least some of these reactions take place in the membrane. 8. IB plays only a small role in shaping the cone voltage response to light. ImagesPlate 1 PMID:7131315
Electrical filtering in gerbil isolated type I semicircular canal hair cells
NASA Technical Reports Server (NTRS)
Rennie, K. J.; Ricci, A. J.; Correia, M. J.
1996-01-01
1. Membrane potential responses of dissociated gerbil type I semicircular canal hair cells to current injections in whole cell current-clamp have been measured. The input resistance of type I cells was 21.4 +/- 14.3 (SD) M omega, (n = 25). Around the zero-current potential (Vz = -66.6 +/- 9.3 mV, n = 25), pulsed current injections (from approximately -200 to 750 pA) produced only small-amplitude, pulse-like changes in membrane potential. 2. Injecting constant current to hyperpolarize the membrane to around -100 mV resulted in a approximately 10-fold increase in membrane resistance. Current pulses superimposed on this constant hyperpolarization produced larger and more complex membrane potential changes. Depolarizing currents > or = 200 pA caused a rapid transient peak voltage before a plateau. 3. Membrane voltage was able to faithfully follow sine-wave current injections around Vz over the range 1-1,000 Hz with < 25% attenuation at 1 kHz. A previously described K conductance, IKI, which is active at Vz, produces the low input resistance and frequency response. This was confirmed by pharmacologically blocking IKI. This conductance, present in type I cells but not type II hair cells, would appear to confer on type I cells a lower gain, but a much broader bandwidth at Vz, than seen in type II cells.
Blood Pressure Response to Exercise and Cardiovascular Disease.
Schultz, Martin G; La Gerche, Andre; Sharman, James E
2017-10-18
This review aimed to provide a clinical update on exercise blood pressure (BP) and its relationship to cardiovascular disease (CVD), outlining key determinants of abnormal exercise BP responses. We also highlight current evidence gaps that need addressing in order to optimise the relevance of exercise BP as clinical CVD risk factor. Abnormal exercise BP manifests as either exercise hypotension (low BP response) or as exaggerated exercise BP (high BP response). Exercise hypotension is an established sign of existing and likely severe CVD, but exaggerated exercise BP also carries elevated CVD risk due to its association with sub-clinical hypertension. Although exaggerated exercise BP is related to heightened CVD risk at any exercise intensity, recent data suggest that the BP response to submaximal intensity exercise holds greater prognostic and clinical significance than BP achieved at peak/maximal intensity exercise. Cardiorespiratory fitness is a strong modifier of the exercise BP response, and should be taken into consideration when assessing the association with CVD. Both exercise hypotension and exaggerated exercise BP serve as markers that should prompt evaluation for potential underlying CVD. However, the clinical utility of these markers is currently inhibited by the lack of consensus informing the definitions and thresholds for abnormalities in exercise BP.
SENSITIVITY OF STRUCTURAL RESPONSE TO GROUND MOTION SOURCE AND SITE PARAMETERS.
Safak, Erdal; Brebbia, C.A.; Cakmak, A.S.; Abdel Ghaffar, A.M.
1985-01-01
Designing structures to withstand earthquakes requires an accurate estimation of the expected ground motion. While engineers use the peak ground acceleration (PGA) to model the strong ground motion, seismologists use physical characteristics of the source and the rupture mechanism, such as fault length, stress drop, shear wave velocity, seismic moment, distance, and attenuation. This study presents a method for calculating response spectra from seismological models using random vibration theory. It then investigates the effect of various source and site parameters on peak response. Calculations are based on a nonstationary stochastic ground motion model, which can incorporate all the parameters both in frequency and time domains. The estimation of the peak response accounts for the effects of the non-stationarity, bandwidth and peak correlations of the response.
REVERSING CYCLIC ELASTO-PLASTIC DEMANDS ON STRUCTURES DURING STRONG MOTION EARTHQUAKE EXCITATION.
Perez, V.; Brady, A.G.; Safak, E.
1986-01-01
Using the horizontal components from El Centro 1940, Taft 1952, and 4 accelerograms from the San Fernando earthquake of 2/9/71, the time history of the elasto-plastic displacement response was calculated for oscillators having periods within the range of 1 to 6 s and ductility factors within the range of 3 to 6. The Nth largest peak of the elasto-plastic response (N equals 2,4,8,16), when expressed as a percentage of maximum response (that is, N equals 1), is fairly independent of period within our period range. When considering only plastic peaks occurring, sometimes in a one-directional group of peaks, in the reverse direction from the preceding plastic peak, the amplitude of the Nth reversing plastic peak is similar to the Nth elastic peak, regardless of the ductility factor.
Lightning Strike Peak Current Probabilities as Related to Space Shuttle Operations
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Vaughan, William W.
2000-01-01
A summary is presented of basic lightning characteristics/criteria applicable to current and future aerospace vehicles. The paper provides estimates on the probability of occurrence of a 200 kA peak lightning return current, should lightning strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating the probabilities of launch vehicles/objects being struck by lightning. This paper presents a summary of these results.
The calcium–frequency response in the rat ventricular myocyte: an experimental and modelling study
Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E.; Niederer, Steven A.
2016-01-01
Key points In the majority of species, including humans, increased heart rate increases cardiac contractility. This change is known as the force–frequency response (FFR). The majority of mammals have a positive force–frequency relationship (FFR). In rat the FFR is controversial.We derive a species‐ and temperature‐specific data‐driven model of the rat ventricular myocyte.As a measure of the FFR, we test the effects of changes in frequency and extracellular calcium on the calcium–frequency response (CFR) in our model and three altered models.The results show a biphasic peak calcium–frequency response, due to biphasic behaviour of the ryanodine receptor and the combined effect of the rapid calmodulin buffer and the frequency‐dependent increase in diastolic calcium.Alterations to the model reveal that inclusion of Ca2+/calmodulin‐dependent protein kinase II (CAMKII)‐mediated L‐type channel and transient outward K+ current activity enhances the positive magnitude calcium–frequency response, and the absence of CAMKII‐mediated increase in activity of the sarco/endoplasmic reticulum Ca2+‐ATPase induces a negative magnitude calcium–frequency response. Abstract An increase in heart rate affects the strength of cardiac contraction by altering the Ca2+ transient as a response to physiological demands. This is described by the force–frequency response (FFR), a change in developed force with pacing frequency. The majority of mammals, including humans, have a positive FFR, and cardiac contraction strength increases with heart rate. However, the rat and mouse are exceptions, with the majority of studies reporting a negative FFR, while others report either a biphasic or a positive FFR. Understanding the differences in the FFR between humans and rats is fundamental to interpreting rat‐based experimental findings in the context of human physiology. We have developed a novel model of rat ventricular electrophysiology and calcium dynamics, derived predominantly from experimental data recorded under physiological conditions. As a measure of FFR, we tested the effects of changes in stimulation frequency and extracellular calcium concentration on the simulated Ca2+ transient characteristics and showed a biphasic peak calcium–frequency relationship, consistent with recent observations of a shift from negative to positive FFR when approaching the rat physiological frequency range. We tested the hypotheses that (1) inhibition of Ca2+/calmodulin‐dependent protein kinase II (CAMKII)‐mediated increase in sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) activity, (2) CAMKII modulation of SERCA, L‐type channel and transient outward K+ current activity and (3) Na+/K+ pump dynamics play a significant role in the rat FFR. The results reveal a major role for CAMKII modulation of SERCA in the peak Ca2+–frequency response, driven most significantly by the cytosolic calcium buffering system and changes in diastolic Ca2+. PMID:26916026
NASA Technical Reports Server (NTRS)
Hoffman, L. F.; Horowitz, J. M.
1984-01-01
The effect of decreasing of brain temperature on the brainstem auditory evoked response (BAER) in rats was investigated. Voltage pulses, applied to a piezoelectric crystal attached to the skull, were used to evoke stimuli in the auditory system by means of bone-conducted vibrations. The responses were recorded at 37 C and 34 C brain temperatures. The peaks of the BAER recorded at 34 C were delayed in comparison with the peaks from the 37 C wave, and the later peaks were more delayed than the earlier peaks. These results indicate that an increase in the interpeak latency occurs as the brain temperature is decreased. Preliminary experiments, in which responses to brief angular acceleration were used to measure the brainstem vestibular evoked response (BVER), have also indicated increases in the interpeak latency in response to the lowering of brain temperature.
NASA Astrophysics Data System (ADS)
Rahim, Alhan Farhanah Abd; Zainal Badri, Nur'Amirah; Radzali, Rosfariza; Mahmood, Ainorkhilah
2017-11-01
In this paper, an investigation of design and simulation of silicon germanium (SiGe) islands on silicon (Si) was presented for potential visible metal semiconductor metal (MSM) photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD) tools. The different structures of the silicon germanium (SiGe) island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM) photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM) photodetector was evaluated by photo and dark current-voltage (I-V) characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow) which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.
Intraglomerular inhibition maintains mitral cell response contrast across input frequencies
Shao, Zuoyi; Puche, Adam C.
2013-01-01
Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MTCs) and external tufted cells (ETCs); ETCs provide additional feed-forward excitation to MTCs. Both are strongly regulated by intraglomerular inhibition that can last up to 1 s and, when blocked, dramatically increases ON-evoked MC spiking. Intraglomerular inhibition thus limits the magnitude and duration of MC spike responses to sensory input. In vivo, sensory input is repetitive, dictated by sniffing rates from 1 to 8 Hz, potentially summing intraglomerular inhibition. To investigate this, we recorded MTC responses to 1- to 8-Hz ON stimulation in slices. Inhibitory postsynaptic current area (charge) following each ON stimulation was unchanged from 1 to 5 Hz and modestly paired-pulse attenuated at 8 Hz, suggesting there is no summation and only limited decrement at the highest input frequencies. Next, we investigated frequency independence of intraglomerular inhibition on MC spiking. MCs respond to single ON shocks with an initial spike burst followed by reduced spiking decaying to baseline. Upon repetitive ON stimulation peak spiking is identical across input frequencies but the ratio of peak-to-minimum rate before the stimulus (max-min) diminishes from 30:1 at 1 Hz to 15:1 at 8 Hz. When intraglomerular inhibition is selectively blocked, peak spike rate is unchanged but trough spiking increases markedly decreasing max-min firing ratios from 30:1 at 1 Hz to 2:1 at 8 Hz. Together, these results suggest intraglomerular inhibition is relatively frequency independent and can “sharpen” MC responses to input across the range of frequencies. This suggests that glomerular circuits can maintain “contrast” in MC encoding during sniff-sampled inputs. PMID:23926045
Intraglomerular inhibition maintains mitral cell response contrast across input frequencies.
Shao, Zuoyi; Puche, Adam C; Shipley, Michael T
2013-11-01
Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MTCs) and external tufted cells (ETCs); ETCs provide additional feed-forward excitation to MTCs. Both are strongly regulated by intraglomerular inhibition that can last up to 1 s and, when blocked, dramatically increases ON-evoked MC spiking. Intraglomerular inhibition thus limits the magnitude and duration of MC spike responses to sensory input. In vivo, sensory input is repetitive, dictated by sniffing rates from 1 to 8 Hz, potentially summing intraglomerular inhibition. To investigate this, we recorded MTC responses to 1- to 8-Hz ON stimulation in slices. Inhibitory postsynaptic current area (charge) following each ON stimulation was unchanged from 1 to 5 Hz and modestly paired-pulse attenuated at 8 Hz, suggesting there is no summation and only limited decrement at the highest input frequencies. Next, we investigated frequency independence of intraglomerular inhibition on MC spiking. MCs respond to single ON shocks with an initial spike burst followed by reduced spiking decaying to baseline. Upon repetitive ON stimulation peak spiking is identical across input frequencies but the ratio of peak-to-minimum rate before the stimulus (max-min) diminishes from 30:1 at 1 Hz to 15:1 at 8 Hz. When intraglomerular inhibition is selectively blocked, peak spike rate is unchanged but trough spiking increases markedly decreasing max-min firing ratios from 30:1 at 1 Hz to 2:1 at 8 Hz. Together, these results suggest intraglomerular inhibition is relatively frequency independent and can "sharpen" MC responses to input across the range of frequencies. This suggests that glomerular circuits can maintain "contrast" in MC encoding during sniff-sampled inputs.
Effects of small-dose dexmedetomidine on hyperdynamic responses to electroconvulsive therapy.
Li, Xiang; Tan, Fang; Jian, Chao-Jun; Guo, Na; Zhong, Zhi-Yong; Hei, Zi-Qing; Zhou, Shao-Li
2017-08-01
Acute hemodynamic responses to electroconvulsive therapy (ECT) may increase the risk of cardiovascular complications in vulnerable patients. The aim of the current study was to assess the effect of small-dose dexmedetomidine on hyperdynamic responses to ECT. Seventy-eight patients were enrolled and randomly allocated to receive either 0.2 μg/kg dexmedetomidine (Dex group, n = 39) or saline (Control group, n = 39) prior to ECT. Heart rate (HR) and mean arterial pressure (MAP) were recorded immediately after the administration of dexmedetomidine (T1), and 0, 1, 3, 5 and 10 min after the electrical stimuli ended (T2, T3, T4, T5 and T6). In addition, the peak HR after ECT, seizure duration, recovery time, and incidence rates of post-ECT adverse effects (agitation, headache and nausea) were also recorded. HR and MAP in the Dex group were significantly lower than those in the Control group from T2 to T5. In addition, peak HR was significantly lower in the Dex group compared with that in the Control group. Seizure length and time to spontaneous breathing, eye opening, and obeying commands in the Dex group were similar to those in the Control group. The incidence rates of post-ECT agitation and headache in the Dex group were significantly lower than that in the Control group. The administration of 0.2 μg/kg dexmedetomidine to patients receiving ECT leads to a significant reduction in HR, MAP, and peak HR responses to ECT without altering seizure duration or delaying recovery. Furthermore, dexmedetomidine effectively reduced the incidence rates of post-ECT adverse effects such as agitation and headache. Copyright © 2017. Published by Elsevier Taiwan LLC.
Saving Power at Peak Hours (LBNL Science at the Theater)
Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-23
California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.
Electromagnetic sensors for general lightning application
NASA Technical Reports Server (NTRS)
Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.
1980-01-01
Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.
Zhang, Haijun; Jiang, Hui; Sun, Feifei; Wang, Huangping; Zhao, Juan; Chen, Baoan; Wang, Xuemei
2011-03-15
The multidrug resistance (MDR) in cancer is a major chemotherapy obstacle, rendering many currently available chemotherapeutic drugs ineffective. The aim of this study was to explore the new strategy to early diagnose the MDR by electrochemical sensor based on carbon nanotubes-drug supramolecular interaction. The carbon nanotubes modified glassy carbon electrodes (CNTs/GCE) were directly immersed into the cells suspension of the sensitive leukemia cells K562 and/or its MDR cells K562/A02 to detect the response of the electrochemical probe of daunorubicin (DNR) residues after incubated with cells for 1h. The fresh evidence from the electrochemical studies based on CNTs/GCE demonstrated that the homogeneous, label-free strategy could directly measure the function of cell membrane transporters in MDR cancer cells, identify the cell phenotype (sensitive or MDR). When the different ratios of the sensitive leukemia cells K562 and its MDR ones K562/A02 were applied as a model of MDR levels to simulate the MDR occurrence in cancer, the cathodic peak current showed good linear response to the fraction of MDR with a correlation coefficient of 0.995. Therefore, the MDR fraction can be easily predicted based on the calibration curve of the cathodic peak current versus the fraction of MDR. These results indicated that the sensing strategy could provide a powerful tool for assessment of MDR in cancer. The new electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites could represent promising approach in the rapid diagnosis of MDR in cancer. Copyright © 2011 Elsevier B.V. All rights reserved.
Amey, David L.; Degner, Michael W.
2002-01-01
A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.
Kalchmair, S; Gansch, R; Ahn, S I; Andrews, A M; Detz, H; Zederbauer, T; Mujagić, E; Reininger, P; Lasser, G; Schrenk, W; Strasser, G
2012-02-27
We characterize the performance of a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS) resonator. The strongest resonance of the PCS is designed to coincide with the absorption peak frequency at 7.6 µm of the QWIP. To accurately characterize the detector performance, it is illuminated by using single mode mid-infrared lasers. The strong resonant absorption enhancement yields a detectivity increase of up to 20 times. This enhancement is a combined effect of increased responsivity and noise current reduction. With increasing temperature, we observe a red shift of the PCS-QWIP resonance peak of -0.055 cm(-1)/K. We attribute this effect to a refractive index change and present a model based on the revised plane wave method.
Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology
NASA Astrophysics Data System (ADS)
Kumar, Amit; Soota, Tarun; Kumar, Jitendra
2018-03-01
Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.
Pandey, AK; Kamarajan, C; Tang, Y; Chorlian, DB; Roopesh, BN; Manz, N; Stimus, A; Rangaswamy, M; Porjesz, B
2011-01-01
In alcoholism research, studies concerning time-locked electrophysiological aspects of response inhibition have concentrated mainly on the P3 component of the event-related potential (ERP). The objective of the present study was to investigate the N2 component of the ERP to elucidate possible brain dysfunction related to the motor response and its inhibition using a Go/NoGo task in alcoholics. The sample consisted of 78 abstinent alcoholic males and 58 healthy male controls. The N2 peak was compared across group and task conditions. Alcoholics showed significantly reduced N2 peak amplitudes compared to normal controls for Go as well as NoGo task conditions. Control subjects showed significantly larger NoGo than Go N2 amplitudes at frontal regions, whereas alcoholics did not show any differences between task conditions at frontal regions. Standardized Low Resolution Electromagnetic Tomography Analysis (sLORETA) indicated that alcoholics had significantly lower current density at the source than control subjects for the NoGo condition at bilateral anterior prefrontal regions, whereas the differences between groups during the Go trials was not statistically significant. Furthermore, NoGo current density across both groups revealed significantly more activation in bilateral anterior cingulate cortical (ACC) areas, with the maximum activation in the right cingulate regions. However, the magnitude of this difference was much less in alcoholics compared to control subjects. These findings suggest that alcoholics may have deficits in effortful processing during the motor response and its inhibition, suggestive of possible frontal lobe dysfunction. PMID:22024409
Submicrosecond characteristics of lightning return-stroke currents
NASA Technical Reports Server (NTRS)
Leteinturier, Christiane; Hamelin, Joel H.; Eybert-Berard, Andre
1991-01-01
The authors describe the experimental results obtained during 1987 and 1988 triggered-lightning experiments in Florida. Seventy-four simultaneous submicrosecond time-resolved measurements of triggered return-stroke current (I) and current derivative (dI/dt) were made in Florida in 1987 and 1988. Peak currents ranged from about 5 to 76 kA, peak dI/dt amplitude from 13 to 411 kA/microsec and rise time from 90 to 1000 ns. The mean peak dI/dt values of 110 kA/microsec were 2-3 times higher than data from instrumented towers and peak I and dI/dt appear to be positively correlated. These data confirm previous experiments and conclusions supported by forty measurements. They are important in order to define, for example, standards for lightning protection. Present standards give a dI/dt maximum of 140 kA/microsec.
Conwell, Darwin L; Zuccaro, Gregory; Morrow, J Brad; Van Lente, Frederick; Obuchowski, Nancy; Vargo, John J; Dumot, John A; Trolli, Patricia; Shay, Steven S
2002-06-01
Hormonal stimulation with secretin or cholecystokinin (CCK) is the most sensitive means of assessing pancreatic function. Secretin is not available, and current CCK tests are cumbersome, requiring dual tube intubation and marker perfusion techniques. The aim of this study was to test the efficacy of a new CCK-stimulated pancreatic function test measuring peak lipase concentration. A Dreiling gastroduodenal tube was inserted to the ligament of Treitz, and fluid was collected on ice for 80 min in four 20-min aliquots. CCK was infused i.v. at a constant rate of 40 ng/kg/h. Gastric aspirations were discarded. Duodenal aspirates were analyzed for volume and enzyme concentration with a clinical laboratory autoanalyzer. Nineteen healthy volunteers and 18 chronic pancreatitis patients were studied. Lipase concentration and secretory volume showed a peak response by 40 min of stimulation, whereas amylase response was variable. The mean peak lipase concentrations (+/-SEM) for normal volunteers and mild, moderate, and advanced chronic pancreatitis patients were 16.9+/-1.9, 7.9+/-1.7, 3.7+/-1.2, and 2.1+/-0.6 x 10 5 IU/L, respectively. Lower peak lipase concentrations were significantly associated with more advanced chronic pancreatitis (p < 0.001). The receiver operating characteristic curve area for all chronic pancreatitis patients was 0.944 (95% CI = 0.825-0.985). A peak lipase concentration of 780,000 IU/L provided a sensitivity and specificity of 0.833 and 0.867, respectively. This CCK test was well tolerated and without complications. Lipase concentration in duodenal fluid increases nearly 3-fold from baseline after CCK stimulation in healthy volunteers but is markedly reduced in patients with chronic pancreatic disease. Peak lipase concentration is a significant predictor of chronic pancreatitis and correlates with severity of pancreatic disease. Aspiration of duodenal drainage fluid with a Dreiling tube and analysis with a laboratory autoanalyzer are less cumbersome than marker perfusion and back titration techniques. Measurement of enzyme concentration instead of output could lead to the development of an endoscopic or through-the-scope screening method for assessing patients with suspected chronic pancreatitis or chronic abdominal pain.
Suzuki, Taku; Yoshihara, Midori; Sakai, Shogo; Tsuji, Kojun; Nagoya, Kouta; Magara, Jin; Tsujimura, Takanori; Inoue, Makoto
2018-05-03
This study aimed to investigate whether the jaw-opening (JOR) and jaw-closing reflexes (JCR) are modulated during not only peripherally, but also centrally, evoked swallowing. Experiments were carried out on 24 adult male Japanese white rabbits. JORs were evoked by trigeminal stimulation at 1 Hz for 30 sec. In the middle 10 sec, either the superior laryngeal nerve (SLN) or cortical swallowing area (Cx) was simultaneously stimulated to evoke swallowing. The peak-to-peak JOR amplitude was reduced during the middle and late 10-sec periods (i.e., during and after SLN or Cx stimulation), and the reduction was dependent on the current intensity of SLN/Cx stimulation: greater SLN/Cx stimulus current resulted in greater JOR inhibition. The reduction rate was significantly greater during Cx stimulation than during SLN stimulation. The amplitude returned to baseline 2 min after 10-sec SLN/Cx stimulation. The effect of co-stimulation of SLN and Cx was significantly greater than that of SLN stimulation alone. There were no significant differences in any parameters of the JCR between conditions. These results clearly showed that JOR responses were significantly suppressed, not only during peripherally evoked swallowing but also during centrally evoked swallowing, and that the inhibitory effect is likely to be larger during centrally compared with peripherally evoked swallowing. The functional implications of these results are discussed. Copyright © 2018. Published by Elsevier B.V.
Tracking speech comprehension in space and time.
Pulvermüller, Friedemann; Shtyrov, Yury; Ilmoniemi, Risto J; Marslen-Wilson, William D
2006-07-01
A fundamental challenge for the cognitive neuroscience of language is to capture the spatio-temporal patterns of brain activity that underlie critical functional components of the language comprehension process. We combine here psycholinguistic analysis, whole-head magnetoencephalography (MEG), the Mismatch Negativity (MMN) paradigm, and state-of-the-art source localization techniques (Equivalent Current Dipole and L1 Minimum-Norm Current Estimates) to locate the process of spoken word recognition at a specific moment in space and time. The magnetic MMN to words presented as rare "deviant stimuli" in an oddball paradigm among repetitive "standard" speech stimuli, peaked 100-150 ms after the information in the acoustic input, was sufficient for word recognition. The latency with which words were recognized corresponded to that of an MMN source in the left superior temporal cortex. There was a significant correlation (r = 0.7) of latency measures of word recognition in individual study participants with the latency of the activity peak of the superior temporal source. These results demonstrate a correspondence between the behaviorally determined recognition point for spoken words and the cortical activation in left posterior superior temporal areas. Both the MMN calculated in the classic manner, obtained by subtracting standard from deviant stimulus response recorded in the same experiment, and the identity MMN (iMMN), defined as the difference between the neuromagnetic responses to the same stimulus presented as standard and deviant stimulus, showed the same significant correlation with word recognition processes.
Doane, Leah D.; Franz, Carol E.; Prom-Wormley, Elizabeth; Eaves, Lindon J.; Mendoza, Sally P.; Hellhammer, Dirk H.; Lupien, Sonia; Xian, Hong; Lyons, Michael J.; Kremen, William; Jacobson, Kristen C.
2011-01-01
Prior research suggests that individuals with particular personality traits, like negative emotionality, are at greater risk for adverse health outcomes. Despite bivariate associations between negative emotionality, depressive symptoms and the hypothalamic pituitary adrenal axis (HPA axis), few studies have sought to understand the biological pathways through which negative emotionality, depressive symptomology and cortisol--one of the primary hormonal products of the HPA axis--are associated. The present study explored whether negative emotionality influenced cortisol dysregulation through current depressive symptomatology and whether negative emotionality served as a moderator of the relationship between depressive symptoms and cortisol. In the community-based Vietnam Era Twin Study of Aging, 783 male twins completed two days of cortisol saliva sampling in their natural environments. Three measures of cortisol were analyzed: waking levels, the cortisol awakening response, and the peak to bed slope. Depressive symptoms significantly mediated the associations between negative emotionality and the peak to bed slope. A 2-way interaction between depressive symptoms and negative emotionality was significant for the peak to bed slope and for waking levels of cortisol. Exploration of the interactions illustrated that depressive symptoms only affected cortisol slopes at average or high levels of negative emotionality and only affected waking levels at low levels of negative emotionality. Negative emotionality and depressive symptoms were not related to the cortisol awakening response. This is the first study to find indirect associations between negative emotionality and peak to bed cortisol slopes through depressive symptoms. These findings illustrate the complex interplay between personality characteristics, depressive symptoms and different indices of the cortisol diurnal rhythm. PMID:21619882
Cloud-to-ground lightning flash characteristics from June 1984 through May 1985
NASA Technical Reports Server (NTRS)
Orville, Richard E.; Weisman, Robert A.; Pyle, Richard B.; Henderson, Ronald W.; Orville, Richard E., Jr.
1987-01-01
A magnetic direction-finding network for the detection of lightning cloud-to-ground strikes has been installed along the east coast of the United States. Time, location, flash polarity, stroke count, and peak signal amplitude are recorded in real time. The data were recorded from Maine to North Carolina and as far west as Ohio; analyses were restricted to flashes within 300 km of a direction finder. Measurements of peak signal strength have been obtained from 720,284 first return strokes lowering negative charge. The resulting distribution indicates that few negative strokes have peak currents exceeding 100 kA. Measurements have also been obtained of peak signal strength from 17,694 first return strokes lowering positive charge. These strokes have a median peak current of 45 kA, with some peak currents reaching 300-400 kA. The median peak signal strength and the peak current, double from summer to winter for both negative and positive first return strokes. The polarity of ground flashes is observed to be less than 5 percent positive throughout the summer and early fall, then increases to over 50 percent during the winter, and returns to less than 10 percent in early spring. The percent of positive flashes with one stroke is observed to be approximately 90 percent throughout the year. The percent of negative flashes with one stroke is observed to increase from 40 percent in the summer to approximately 80 percent in January, returning to less than 50 percent in the spring.
Design and testing of a magnetically driven implosion peak current diagnostic
NASA Astrophysics Data System (ADS)
Hess, M. H.; Peterson, K. J.; Ampleford, D. J.; Hutsel, B. T.; Jennings, C. A.; Gomez, M. R.; Dolan, D. H.; Robertson, G. K.; Payne, S. L.; Stygar, W. A.; Martin, M. R.; Sinars, D. B.
2018-04-01
A critical component of the magnetically driven implosion experiments at Sandia National Laboratories is the delivery of high-current, 10s of MA, from the Z pulsed power facility to a target. In order to assess the performance of the experiment, it is necessary to measure the current delivered to the target. Recent Magnetized Liner Inertial Fusion (MagLIF) experiments have included velocimetry diagnostics, such as PDV (Photonic Doppler Velocimetry) or Velocity Interferometer System for Any Reflector, in the final power feed section in order to infer the load current as a function of time. However, due to the nonlinear volumetrically distributed magnetic force within a velocimetry flyer, a complete time-dependent load current unfold is typically a time-intensive process and the uncertainties in the unfold can be difficult to assess. In this paper, we discuss how a PDV diagnostic can be simplified to obtain a peak current by sufficiently increasing the thickness of the flyer. This effectively keeps the magnetic force localized to the flyer surface, resulting in fast and highly accurate measurements of the peak load current. In addition, we show the results of experimental peak load current measurements from the PDV diagnostic in recent MagLIF experiments.
Photoelectric return-stroke velocity and peak current estimates in natural and triggered lightning
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. David
1989-01-01
Two-dimensional photoelectric return stroke velocities from 130 strokes are presented, including 86 negative natural, 41 negative triggered, one positive triggered, and two positive natural return strokes. For strokes starting near the ground and exceeding 500 m in length, the average velocity is 1.3 + or - 0.3 X 10 to the 8th m/s for natural return strokes and 1.2 + or - 0.3 X 10 to the 8th m/s for triggered return strokes. For strokes with lengths less than 500 m, the average velocities are slightly higher. Using the transmission line model (TLM), the shortest segment one-dimensional return stroke velocity, and either the maximum or plateau electric field, it is shown that natural strokes have a peak current distribution that is lognormal with a median value of 16 kA (maximum E) or 12 kA (plateau E). Triggered lightning has a medium peak current value of 21 kA (maximum E) or 15 kA (plateau E). Correlations are found between TLM peak currents and velocities for triggered and natural subsequent return strokes, but not between TLM peak currents and natural first return stroke velocities.
Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H.
2017-01-01
It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today’s technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual. PMID:28167756
Sevagan, Gopinath; Zhu, Feng; Jiang, Binhui; Yang, King H
2013-07-01
This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics.
Cardiorespiratory responses to Yo-yo Intermittent Endurance Test in nonelite youth soccer players.
Castagna, Carlo; Impellizzeri, Franco M; Belardinelli, Romualdo; Abt, Grant; Coutts, Aaron; Chamari, Karim; D'Ottavio, Stefano
2006-05-01
This study examined the validity of the Yo-yo Intermittent Endurance Test (Level 1; YYIET) as indicator of aerobic power in youth soccer players. Cardiorespiratory responses were determined in 18 moderately trained nonelite youth soccer players (age, 16.6 +/- 0.8 years; height, 178.7 +/- 6.2 cm; body mass, 69.8 +/- 6.0 kg; VO2peak, 52.8 +/- 7.4 ml x kg(-1) x min(-1)) while performing the YYIET and an incremental treadmill test. Maximal heart rate (HRmax), respiratory exchange ratio (RER), O2 pulse, VO2peak, and maximal ventilation (VEmax) were measured. Group YYIET VO2peak, HRmax, RER, and O2 pulse were not significantly different from treadmill responses (p > 0.05). VEmax was significantly lower (p < 0.05) during the YYIET compared to the treadmill condition. No significant correlation was found between treadmill VO2peak and YYIET performance (p > 0.05). This study showed that the YYIET elicits peak VO2 and HR responses. However, YYIET performance results were not related to VO2peak measured in laboratory. Furthermore, the individual VO2peak reached during the TM did not reflect the VO2peak obtained during the YYIET, as shown by the large limits of agreement. As a consequence, compared to other shuttle run field tests, YYIET seems to be a weak indicator of aerobic power in youth moderately trained youth soccer player.
Wide step width reduces knee abduction moment of obese adults during stair negotiation.
Yocum, Derek; Weinhandl, Joshua T; Fairbrother, Jeffrey T; Zhang, Songning
2018-05-15
An increased likelihood of developing obesity-related knee osteoarthritis may be associated with increased peak internal knee abduction moments (KAbM). Increases in step width (SW) may act to reduce this moment. The purpose of this study was to determine the effects of increased SW on knee biomechanics during stair negotiation of healthy-weight and obese participants. Participants (24: 10 obese and 14 healthy-weight) used stairs and walked over level ground while walking at their preferred speed in two different SW conditions - preferred and wide (200% preferred). A 2 × 2 (group × condition) mixed model analysis of variance was performed to analyze differences between groups and conditions (p < 0.05). Increased SW increased the loading-response peak knee extension moment during descent and level gait, decreased loading-response KAbMs, knee extension and abduction range of motion (ROM) during ascent, and knee adduction ROM during descent. Increased SW increased loading-response peak mediolateral ground reaction force (GRF), increased peak knee abduction angle during ascent, and decreased peak knee adduction angle during descent and level gait. Obese participants experienced disproportionate changes in loading-response mediolateral GRF, KAbM and peak adduction angle during level walking, and peak knee abduction angle and ROM during ascent. Increased SW successfully decreased loading-response peak KAbM. Implications of this finding are that increased SW may decrease medial compartment knee joint loading, decreasing pain and reducing joint deterioration. Increased SW influenced obese and healthy-weight participants differently and should be investigated further. Copyright © 2018. Published by Elsevier Ltd.
Kong, Dexian; Zhuang, Qizhao; Han, Yejian; Xu, Lanping; Wang, Zeming; Jiang, Lili; Su, Jinwei; Lu, Chun-Hua; Chi, Yuwu
2018-08-01
In the present study, procaterol hydrochloride (ProH) was successfully electropolymerized onto a glass carbon electrode (GCE) with simply cyclic voltammetry scans to construct a poly(procaterol hydrochloride) (p-ProH) membrane modified electrode. Compared with the bare GCE, much higher oxidation peak current responses and better peak potentials separation could be obtained for the simultaneous oxidation of dopamine (DA) and uric acid (UA), owning to the excellent electrocatalytic ability of the p-ProH membrane. And it's based on that a square wave voltammetry (SWV) method was developed to selective and simultaneous measurement of DA and UA. Under the optimum conditions, the linear dependence of oxidation peak current on analyte concentrations were found to be 1.0-100 μmol/L and 2-100 μmol/L, giving detection limits of 0.3 μmol/L and 0.5 μmol/L for DA and UA, separately. The as prepared modified electrode shows simplicity in construction with the merits of good reproducibility, high stability, passable selectivity and nice sensitivity. Finally, the proposed p-ProH membrane modified electrode was successfully devoted to the detection of DA and UA in biological fluids such as human serum and urine with acceptable results. Copyright © 2018 Elsevier B.V. All rights reserved.
Livingstone, J; Horowitz, Y S; Oster, L; Datz, H; Lerch, M; Rosenfeld, A; Horowitz, A
2010-03-01
The dose response of LiF:Mg,Ti (TLD-100) chips was measured from 1 to 50,000 Gy using 100 keV X rays at the European Synchroton Radiation Facility. Glow curves were deconvoluted into component glow peaks using a computerised glow curve deconvolution (CGCD) code based on first-order kinetics. The normalised dose response, f(D), of glow peaks 4 and 5 and 5b (the major components of composite peak 5), as well as peaks 7 and 8 (two of the major components of the high-temperature thermoluminescence (HTTL) at high levels of dose) was separately determined and theoretically interpreted using the unified interaction model (UNIM). The UNIM is a nine-parameter model encompassing both the irradiation/absorption stage and the thermally induced relaxation/recombination stage with an admixture of both localised and delocalised recombination mechanisms. The effects of radiation damage are included in the present modelling via the exponential removal of luminescent centres (LCs) at high dose levels. The main features of the experimentally measured dose response are: (i) increase in f(D)(max) with glow peak temperature, (ii) increase in D(max) (the dose level at which f(D)(max) occurs) with increasing glow peak temperature, and (iii) decreased effects of radiation damage with increasing glow peak temperature. The UNIM interpretation of this behaviour requires both strongly decreasing values of ks (the relative contribution of localised recombination) as a function of glow peak temperature and, as well, significantly different values of the dose-filling constants of the trapping centre (TC) and LC for peaks 7 and 8 than those used for peaks 4 and 5. This suggests that different TC/LC configurations are responsible for HTTL. The relative intensity of peak 5a (a low-temperature satellite of peak 5 arising from localised recombination) was found to significantly increase at higher dose levels due to preferential electron and hole population of the trapping/recombination complex giving rise to composite glow peak 5. It is also demonstrated that possible changes in the trapping cross section of the LC and the competitive centres due to increasing sample/glow peak temperature do not significantly influence these observations/conclusions.
Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers.
Auton, Gregory; But, Dmytro B; Zhang, Jiawei; Hill, Ernie; Coquillat, Dominique; Consejo, Christophe; Nouvel, Philippe; Knap, Wojciech; Varani, Luca; Teppe, Frederic; Torres, Jeremie; Song, Aimin
2017-11-08
A graphene ballistic rectifier is used in conjunction with an antenna to demonstrate a rectenna as a terahertz (THz) detector. A small-area (<1 μm 2 ) local gate is used to adjust the Fermi level in the device to optimize the output while minimizing the impact on the cutoff frequency. The device operates in both n- and p-type transport regimes and shows a peak extrinsic responsivity of 764 V/W and a corresponding noise equivalent power of 34 pW Hz -1/2 at room temperature with no indications of a cutoff frequency up to 0.45 THz. The device also demonstrates a linear response for more than 3 orders of magnitude of input power due to its zero threshold voltage, quadratic current-voltage characteristics and high saturation current. Finally, the device is used to take an image of an optically opaque object at 0.685 THz, demonstrating potential in both medical and security imaging applications.
Hong, Xiao-ping; Zhu, Yan; Zhang, Yan-zhen
2012-01-01
A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of poly(CoIITAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L. PMID:22661213
Dilgin, Didem Giray; Karakaya, Serkan
2016-06-01
In this study, a new selective and sensitive voltammetric procedure for determination of acyclovir (ACV) was proposed using a disposable electrode, pencil graphite electrode (PGE). Cyclic and differential pulse voltammograms of ACV were recorded in Britton-Robinson buffer solution containing 0.10 M KCl with pH of 4.0 at PGE. The PGE displayed a very good electrochemical behavior with significant enhancement of the peak current compared to a glassy carbon electrode (GCE). Under experimental conditions, the PGE had a linear response range from 1.0 μM to 100.0 μM ACV with a detection limit of 0.3 μM (based on 3 Sb). Relative standard deviations of 4.8 and 3.6% were obtained for five successive determinations of 10.0 and 50.0 μM ACV, respectively, which indicate acceptable repeatability. This voltammetric method was successfully applied to the direct determination of ACV in real pharmaceutical samples. The effect of various interfering compounds on the ACV peak current was studied. Copyright © 2016 Elsevier B.V. All rights reserved.
Correlated observations of three triggered lightning flashes
NASA Technical Reports Server (NTRS)
Idone, V. P.; Orville, R. E.; Hubert, P.; Barret, L.; Eybert-Berard, A.
1984-01-01
Three triggered lightning flashes, initiated during the Thunderstorm Research International Program (1981) at Langmuir Laboratory, New Mexico, are examined on the basis of three-dimensional return stroke propagation speeds and peak currents. Nonlinear relationships result between return stroke propagation speed and stroke peak current for 56 strokes, and between return stroke propagation speed and dart leader propagation speed for 32 strokes. Calculated linear correlation coefficients include dart leader propagation speed and ensuing return stroke peak current (32 strokes; r = 0.84); and stroke peak current and interstroke interval (69 strokes; r = 0.57). Earlier natural lightning data do not concur with the weak positive correlation between dart leader propagation speed and interstroke interval. Therefore, application of triggered lightning results to natural lightning phenomena must be made with certain caveats. Mean values are included for the three-dimensional return stroke propagation speed and for the three-dimensional dart leader propagation speed.
Selection of patients for heart transplantation in the current era of heart failure therapy.
Butler, Javed; Khadim, Ghazanfar; Paul, Kimberly M; Davis, Stacy F; Kronenberg, Marvin W; Chomsky, Don B; Pierson, Richard N; Wilson, John R
2004-03-03
We sought to assess the relationship between survival, peak exercise oxygen consumption (VO(2)), and heart failure survival score (HFSS) in the current era of heart failure (HF) therapy. Based on predicted survival, HF patients with peak VO(2) <14 ml/min/kg or medium- to high-risk HFSS are currently considered eligible for heart transplantation. However, these criteria were developed before the widespread use of beta-blockers, spironolactone, and defibrillators-interventions known to improve the survival of HF patients. Peak VO(2) and HFSS were assessed in 320 patients followed from 1994 to 1997 (past era) and in 187 patients followed from 1999 to 2001 (current era). Outcomes were compared between these two groups of patients and those who underwent heart transplantation from 1993 to 2000. Survival in the past era was 78% at one year and 67% at two years, as compared with 88% and 79%, respectively, in the current era (both p < 0.01). One-year event-free survival (without urgent transplantation or left ventricular assist device) was improved in the current era, regardless of initial peak VO(2): 64% vs. 48% for peak VO(2) <10 ml/min/kg (p = 0.09), 81% vs. 70% for 10 to 14 ml/min/kg (p = 0.05), and 93% vs. 82% for >14 ml/min/kg (p = 0.04). Of the patients with peak VO(2) of 10 to 14 ml/min/kg, 55% had low-risk HFSS and exhibited 88% one-year event-free survival. One-year survival after transplantation was 88%, which is similar to the 85% rate reported by the United Network for Organ Sharing for 1999 to 2000. Survival for HF patients in the current era has improved significantly, necessitating re-evaluation of the listing criteria for heart transplantation.
Peak-locking centroid bias in Shack-Hartmann wavefront sensing
NASA Astrophysics Data System (ADS)
Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.
2018-05-01
Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.
Fei, Qi; Yang, Xiaoqin; Jiang, Hua; Wang, Qian; Yu, Yanyan; Yu, Yiling; Yi, Wei; Zhou, Shaolian; Chen, Taiping; Lu, Chris; Atadja, Peter; Liu, Xiaole Shirley; Li, En; Zhang, Yong; Shou, Jianyong
2015-01-01
SETDB1, a histone methyltransferase responsible for methylation of histone H3 lysine 9 (H3K9), is involved in maintenance of embryonic stem (ES) cells and early embryonic development of the mouse. However, how SETDB1 regulates gene expression during development is largely unknown. Here, we characterized genome-wide SETDB1 binding and H3K9 trimethylation (H3K9me3) profiles in mouse ES cells and uncovered two distinct classes of SETDB1 binding sites, termed solo and ensemble peaks. The solo peaks were devoid of H3K9me3 and enriched near developmental regulators while the ensemble peaks were associated with H3K9me3. A subset of the SETDB1 solo peaks, particularly those near neural development–related genes, was found to be associated with Polycomb Repressive Complex 2 (PRC2) as well as PRC2-interacting proteins JARID2 and MTF2. Genetic deletion of Setdb1 reduced EZH2 binding as well as histone 3 lysine 27 (H3K27) trimethylation level at SETDB1 solo peaks and facilitated neural differentiation. Furthermore, we found that H3K27me3 inhibits SETDB1 methyltransferase activity. The currently identified reciprocal action between SETDB1 and PRC2 reveals a novel mechanism underlying ES cell pluripotency and differentiation regulation. PMID:26160163
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Martin, Gregory; Hurtt, James
As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 with Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and volt-age/frequency ride-through, among others. A comparative experimental evaluation has been completed on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and the effect on abnormal grid conditionmore » response. This study examines the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. This report reviews comparative test data, which shows that GSFs have little impact on the metrics of interest in most tests cases.« less
Experimental Evaluation of Grid Support Enabled PV Inverter Response to Abnormal Grid Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin A; Martin, Gregory D; Hurtt, James
As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and voltage/frequency ride-through, among others. This paper describes the results of a comparative experimental evaluation on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and its effect on abnormalmore » grid condition response. The evaluation examined the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. Testing results indicated a wide variance in the performance of GSF enabled inverters to various test cases.« less
Ammar, Hafedh Belhadj; Brahim, Mabrouk Ben; Abdelhédi, Ridha; Samet, Youssef
2016-02-01
The performance of boron-doped diamond (BDD) electrode for the detection of metronidazole (MTZ) as the most important drug of the group of 5-nitroimidazole was proven using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. A comparison study between BDD, glassy carbon and silver electrodes on the electrochemical response was carried out. The process is pH-dependent. In neutral and alkaline media, one irreversible reduction peak related to the hydroxylamine derivative formation was registered, involving a total of four electrons. In acidic medium, a prepeak appears probably related to the adsorption affinity of hydroxylamine at the electrode surface. The BDD electrode showed higher sensitivity and reproducibility analytical response, compared with the other electrodes. The higher reduction peak current was registered at pH11. Under optimal conditions, a linear analytical curve was obtained for the MTZ concentration in the range of 0.2-4.2μmolL(-1), with a detection limit of 0.065μmolL(-1). Copyright © 2015 Elsevier B.V. All rights reserved.
Vandeleest, Jessica J.; Capitanio, John P.
2012-01-01
There is a great deal of variability in mother-infant interactions and infant behavior across the first year of life in rhesus monkeys. The current paper has two specific aims: 1) to determine if birth timing predicts variability in the mother-infant relationship and infant behavior during weaning and maternal breeding, and 2) to identify predictors of infant behavior during a period of acute challenge, maternal breeding. Forty-one mother-infant pairs were observed during weaning when infants were 4.5 months old, and 33 were followed through maternal breeding. Subjective ratings of 16 adjectives reflecting qualities of maternal attitude, mother-infant interactions, and infant attitude were factor analyzed to construct factors relating to the mother-infant relationship (Relaxed and Aggressive), and infant behavior (Positive Engagement and Distress). During weaning, late born infants were more Positively Engaged than peak born infants (ANOVA, P < 0.05); however, birth timing did not affect the mother-infant relationship factors Relaxed and Aggressive or the infant attitude factor Distress. During maternal breeding early born infants had less Relaxed relationships with their mothers than peak or late born infants, higher Positive Engagement scores than peak or late born infants, and tended to have higher Distress scores than peak born infants (Repeated-measures ANOVA, P < 0.05). In addition, Distress scores were higher during maternal breeding than during the pre- and post-breeding phases. Finally, multiple regression (P < 0.05) indicated that while infant behavioral responsiveness predicted infant Positive Engagement during the acute challenge of maternal breeding, qualities of the mother-infant relationship predicted infant Distress. These data suggest that birth timing influences the patterns of mother-infant interactions during weaning and maternal breeding. Additionally, infant behavioral responsiveness and mother-infant relationship quality impact infant social engagement and affect expression, respectively. PMID:24436198
Wang, X; Xiao, H; Dai, X; Liu, X; Yu, X; Wu, J
2000-05-01
To study the joint neurotoxic effects of phoxim (Pho) and fenvalerate (Fen) on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na(+) currents in dorsal root ganglion (DRG) neurons of adult rat. Whole cell patch clamp technique was used to test the effects of Pho and Fen on TTX-S and TTX-R sodium currents in DRG neurons. The inactivation of TTX-R sodium channel was obviously slowed down by Fen. The tau(Na) of peak currents at doses of 10, 50 and 100 micromol/L Fen and control groups were (8.10 +/- 2.41) ms, (11.78 +/- 2.76) ms, P < 0.01, (8.76 +/-1.94) ms, P < 0.05 and (6.41 +/- 1.32) ms respectively. The inactivation of TTX-R sodium channel tail currents was also significantly delayed by Fen. The tau(Na) of the tail currents at doses of 10, 50, 100 micromol/L Fen and control groups were 6.11 +/- 0.52 (P < 0.05), 7.82 +/- 0.82 (P < 0.05), 7.23 +/- 1.09 (P < 0.05) and (4.91 +/- 0.97) ms separately. As compared with TTX-R sodium channel, the TTX-S sodium channel was less responsive to Fen exposure, which only led to slowly decay TTX-S sodium tail currents. There was no any effect of Pho on the TTX-S and TTX-R sodium channels. The mixed treatment of a Pho and Fen did not show joint effect on the sodium currents. Both the peak and tail currents are changed by Fen, however, Fen has more remarkable effects on TTX-R than on TTX-S sodium channel. The combined exposure to Pho and Fen shows no joint effect on the sodium channel.
An experimental system for controlled exposure of biological samples to electrostatic discharges.
Marjanovič, Igor; Kotnik, Tadej
2013-12-01
Electrostatic discharges occur naturally as lightning strokes, and artificially in light sources and in materials processing. When an electrostatic discharge interacts with living matter, the basic physical effects can be accompanied by biophysical and biochemical phenomena, including cell excitation, electroporation, and electrofusion. To study these phenomena, we developed an experimental system that provides easy sample insertion and removal, protection from airborne particles, observability during the experiment, accurate discharge origin positioning, discharge delivery into the sample either through an electric arc with adjustable air gap width or through direct contact, and reliable electrical insulation where required. We tested the system by assessing irreversible electroporation of Escherichia coli bacteria (15 mm discharge arc, 100 A peak current, 0.1 μs zero-to-peak time, 0.2 μs peak-to-halving time), and gene electrotransfer into CHO cells (7 mm discharge arc, 14 A peak current, 0.5 μs zero-to-peak time, 1.0 μs peak-to-halving time). Exposures to natural lightning stroke can also be studied with this system, as due to radial current dissipation, the conditions achieved by a stroke at a particular distance from its entry are also achieved by an artificial discharge with electric current downscaled in magnitude, but similar in time course, correspondingly closer to its entry. © 2013.
Self-stimulation in the rat: quantitative characteristics of the reward pathway.
Gallistel, C R
1978-12-01
Quantitative characteristics of the neural pathway that carries the reinforcing signal in electrical self-stimulation of the brain were established by finding which combinations of stimulation parameters give the same performance in a runway. The reward for each run was a train of evenly spaced monophasic cathodal pulses from a monopolar electrode. With train duration and pulse frequency held constant, the required current was a hyperbolic function of pulse duration, with chronaxie c approximately 1.5 msec. With pulse duration held constant, the required strength of the train (the charge delivered per second) was a hyperbolic function of train duration, with chronaxie C approximately 500 msec. To a first approximation, the values of c and C were independent of the choice either of train duration and pulse frequency or of pulse duration, respectively. Hence, the current intensity required by any choice of train duration, pulse frequency, and pulse duration dependent on only two basic parameters, c and C, and one quantity, Qi, the required impulse charge. These may reflect, respectively, current integration by directly excited neurons; temporal integration of neural activity by synaptic processes in a neural network; and the peak of the impulse response of the network, assuming that the network has linear dynamics and that the reward depends on the peak of the output of the network.
METHOD OF PEAK CURRENT MEASUREMENT
Baker, G.E.
1959-01-20
The measurement and recording of peak electrical currents are described, and a method for utilizing the magnetic field of the current to erase a portion of an alternating constant frequency and amplitude signal from a magnetic mediums such as a magnetic tapes is presented. A portion of the flux from the current carrying conductor is concentrated into a magnetic path of defined area on the tape. After the current has been recorded, the tape is played back. The amplitude of the signal from the portion of the tape immediately adjacent the defined flux area and the amplitude of the signal from the portion of the tape within the area are compared with the amplitude of the signal from an unerased portion of the tape to determine the percentage of signal erasure, and thereby obtain the peak value of currents flowing in the conductor.
NASA Astrophysics Data System (ADS)
Lei, J.; Geng, Y.; Liu, K.; Zhu, W.; Zheng, Z.; Hu, H.
2017-12-01
In this paper, pulsating direct current air-water plasma jet, which can increase the production of •OH and decrease the temperature, is studied. The results show that the discharge mode changes in one cycle from corona discharge with steep Trichel current pulse to glow-like discharge. It is unknown whether the different discharge modes and water ratio have an effect on the transient process of the excited O and •OH production and the mechanism of plasma propagation. So, a series of experiments are done in this paper. The results show that the changing rules of both the excited state O and the discharge current reach their two peak values synchronously. And its maximum appears at the time of the first peak current value in corona mode. However, the change of the excited state •OH is different. It increases to its maximum at the time of the second peak current value in glow-like mode. Besides, the intensified charge coupled device photographs show that the luminous intensity of the discharge zone at the first peak current value in corona mode is stronger than the second peak current value in glow-like mode. At the same time, the discharge area of the former is larger than the latter. Nevertheless, with the increase in water ratio, the discharge area change reversed. Additionally, the air plasma plume propagation depends on the gas flow. The initial propagation velocity decreases with the increase in water ratio.
Henry, Molly J; Obleser, Jonas
2013-01-01
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.
Henry, Molly J.; Obleser, Jonas
2013-01-01
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. PMID:24205309
Intense terahertz pulses from SLAC electron beams using coherent transition radiation.
Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron
2013-02-01
SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.
Kannan, V; Kim, M R; Chae, Y S; Ramana, Ch V V; Rhee, J K
2011-01-14
Multi-layer heterostructure negative differential resistance devices based on poly-[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conducting polymer and CdSe quantum dots is reported. The conducting polymer MEH-PPV acts as a barrier while CdSe quantum dots form the well layer. The devices exhibit negative differential resistance (NDR) at low voltages. For these devices, strong negative differential resistance is observed at room temperature. A maximum value of 51 for the peak-to-valley ratio of current is reported. Tunneling of electrons through the discrete quantum confined states in the CdSe quantum dots is believed to be responsible for the multiple peaks observed in the I-V measurement. Depending on the observed NDR signature, operating mechanisms are explored based on resonant tunneling and Coulomb blockade effects.
Mathematical modeling provides kinetic details of the human immune response to vaccination
Le, Dustin; Miller, Joseph D.; Ganusov, Vitaly V.
2015-01-01
With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data. PMID:25621280
Mathematical modeling provides kinetic details of the human immune response to vaccination.
Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V
2014-01-01
With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.
NASA Astrophysics Data System (ADS)
Lievens, Klaus; Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter
2016-09-01
In civil engineering and architecture, the availability of high strength materials and advanced calculation techniques enables the construction of slender footbridges, generally highly sensitive to human-induced excitation. Due to the inherent random character of the human-induced walking load, variability on the pedestrian characteristics must be considered in the response simulation. To assess the vibration serviceability of the footbridge, the statistics of the stochastic dynamic response are evaluated by considering the instantaneous peak responses in a time range. Therefore, a large number of time windows are needed to calculate the mean value and standard deviation of the instantaneous peak values. An alternative method to evaluate the statistics is based on the standard deviation of the response and a characteristic frequency as proposed in wind engineering applications. In this paper, the accuracy of this method is evaluated for human-induced vibrations. The methods are first compared for a group of pedestrians crossing a lightly damped footbridge. Small differences of the instantaneous peak value were found by the method using second order statistics. Afterwards, a TMD tuned to reduce the peak acceleration to a comfort value, was added to the structure. The comparison between both methods in made and the accuracy is verified. It is found that the TMD parameters are tuned sufficiently and good agreements between the two methods are found for the estimation of the instantaneous peak response for a strongly damped structure.
Devin, James L; Sax, Andrew T; Hughes, Gareth I; Jenkins, David G; Aitken, Joanne F; Chambers, Suzanne K; Dunn, Jeffrey C; Bolam, Kate A; Skinner, Tina L
2016-06-01
Following colorectal cancer diagnosis and anti-cancer therapy, declines in cardiorespiratory fitness and body composition lead to significant increases in morbidity and mortality. There is increasing interest within the field of exercise oncology surrounding potential strategies to remediate these adverse outcomes. This study compared 4 weeks of moderate-intensity exercise (MIE) and high-intensity exercise (HIE) training on peak oxygen consumption (V̇O2peak) and body composition in colorectal cancer survivors. Forty seven post-treatment colorectal cancer survivors (HIE = 27 months post-treatment; MIE = 38 months post-treatment) were randomised to either HIE [85-95 % peak heart rate (HRpeak)] or MIE (70 % HRpeak) in equivalence with current physical activity guidelines and completed 12 training sessions over 4 weeks. HIE was superior to MIE in improving absolute (p = 0.016) and relative (p = 0.021) V̇O2peak. Absolute (+0.28 L.min(-1), p < 0.001) and relative (+3.5 ml.kg(-1).min(-1), p < 0.001) V̇O2 peak were increased in the HIE group but not the MIE group following training. HIE led to significant increases in lean mass (+0.72 kg, p = 0.002) and decreases in fat mass (-0.74 kg, p < 0.001) and fat percentage (-1.0 %, p < 0.001), whereas no changes were observed for the MIE group. There were no severe adverse events. In response to short-term training, HIE is a safe, feasible and efficacious intervention that offers clinically meaningful improvements in cardiorespiratory fitness and body composition for colorectal cancer survivors. HIE appears to offer superior improvements in cardiorespiratory fitness and body composition in comparison to current physical activity recommendations for colorectal cancer survivors and therefore may be an effective clinical utility following treatment.
NASA Astrophysics Data System (ADS)
Jiang, Jingjing; Du, Xuezhong
2014-09-01
Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing.Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing. Electronic supplementary information (ESI) available: pH optimization, comparison of sensor performances, interference experiments, and detection in urine samples. See DOI: 10.1039/c4nr01774a
Horn, Kevin M.
2013-07-09
A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.
NASA Astrophysics Data System (ADS)
Mejid Elsiti, Nagwa; Noordin, M. Y.; Idris, Ani; Saed Majeed, Faraj
2017-10-01
This paper presents an optimization of process parameters of Micro-Electrical Discharge Machining (EDM) process with (γ-Fe2O3) nano-powder mixed dielectric using multi-response optimization Grey Relational Analysis (GRA) method instead of single response optimization. These parameters were optimized based on 2-Level factorial design combined with Grey Relational Analysis. The machining parameters such as peak current, gap voltage, and pulse on time were chosen for experimentation. The performance characteristics chosen for this study are material removal rate (MRR), tool wear rate (TWR), Taper and Overcut. Experiments were conducted using electrolyte copper as the tool and CoCrMo as the workpiece. Experimental results have been improved through this approach.
A model to forecast peak spreading.
DOT National Transportation Integrated Search
2012-04-01
As traffic congestion increases, the K-factor, defined as the proportion of the 24-hour traffic volume that occurs during the peak hour, may decrease. This behavioral response is known as peak spreading: as congestion grows during the peak travel tim...
Alcohol consumption and cardiorespiratory fitness in five population-based studies.
Baumeister, Sebastian E; Finger, Jonas D; Gläser, Sven; Dörr, Marcus; Markus, Marcello Rp; Ewert, Ralf; Felix, Stephan B; Grabe, Hans-Jörgen; Bahls, Martin; Mensink, Gert Bm; Völzke, Henry; Piontek, Katharina; Leitzmann, Michael F
2018-01-01
Background Poor cardiorespiratory fitness is a risk factor for cardiovascular morbidity. Alcohol consumption contributes substantially to the burden of disease, but its association with cardiorespiratory fitness is not well described. We examined associations between average alcohol consumption, heavy episodic drinking and cardiorespiratory fitness. Design The design of this study was as a cross-sectional population-based random sample. Methods We analysed data from five independent population-based studies (Study of Health in Pomerania (2008-2012); German Health Interview and Examination Survey (2008-2011); US National Health and Nutrition Examination Survey (NHANES) 1999-2000; NHANES 2001-2002; NHANES 2003-2004) including 7358 men and women aged 20-85 years, free of lung disease or asthma. Cardiorespiratory fitness, quantified by peak oxygen uptake, was assessed using exercise testing. Information regarding average alcohol consumption (ethanol in grams per day (g/d)) and heavy episodic drinking (5+ or 6+ drinks/occasion) was obtained from self-reports. Fractional polynomial regression models were used to determine the best-fitting dose-response relationship. Results Average alcohol consumption displayed an inverted U-type relation with peak oxygen uptake ( p-value<0.0001), after adjustment for age, sex, education, smoking and physical activity. Compared to individuals consuming 10 g/d (moderate consumption), current abstainers and individuals consuming 50 and 60 g/d had significantly lower peak oxygen uptake values (ml/kg/min) (β coefficients = -1.90, β = -0.06, β = -0.31, respectively). Heavy episodic drinking was not associated with peak oxygen uptake. Conclusions Across multiple adult population-based samples, moderate drinkers displayed better fitness than current abstainers and individuals with higher average alcohol consumption.
NASA Astrophysics Data System (ADS)
Sundar, Shyam; Mosqueira, J.; Alvarenga, A. D.; Sóñora, D.; Sefat, A. S.; Salem-Sugui, S., Jr.
2017-12-01
Isothermal magnetic field dependence of magnetization and magnetic relaxation measurements were performed for the H\\parallel {{c}} axis on a single crystal of Ba(Fe0.935 Co0.065)2As2 pnictide superconductor having T c = 21.7 K. The second magnetization peak (SMP) for each isothermal M(H) was observed in a wide temperature range from T c to the lowest temperature of measurement (2 K). The magnetic field dependence of relaxation rate R(H), showed a peak (H spt) between H on (onset of SMP in M(H)) and H p (peak field of SMP in M(H)), which is likely to be related to a vortex-lattice structural phase transition, as suggested in the literature for a similar sample. In addition, the magnetic relaxation measured for magnetic fields near H spt showed some noise, which might be the signature of the structural phase transition of the vortex lattice. Analysis of the magnetic relaxation data using Maley’s criterion and the collective pinning theory suggested that the SMP in the sample was due to the collective (elastic) to plastic creep crossover, which was also accompanied by a rhombic to square vortex lattice phase transition. Analysis of the pinning force density suggested a single dominating pinning mechanism in the sample, which did not showing the usual δ {l} and δ {T}{{c}} nature of pinning. The critical current density (J c), estimated using the Bean critical state model, was found to be 5 × 105 A cm- 2 at 2 K in the zero magnetic field limit. Surprisingly, the maximum of the pinning force density was not responsible for the maximum value of the critical current density in the sample.
Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode.
Chen, Qianjin; Luo, Long; White, Henry S
2015-04-21
We report the electrochemical generation of a single hydrogen bubble within the cavity of a recessed Pt nanopore electrode. The recessed Pt electrode is a conical pore in glass that contains a micrometer-scale Pt disk (1-10 μm radius) at the nanopore base and a nanometer-scale orifice (10-100 nm radius) that restricts diffusion of electroactive molecules and dissolved gas between the nanopore cavity and bulk solution. The formation of a H2 bubble at the Pt disk electrode in voltammetric experiments results from the reduction of H(+) in a 0.25 M H2SO4 solution; the liquid-to-gas phase transformation is indicated in the voltammetric response by a precipitous decrease in the cathodic current due to rapid bubble nucleation and growth within the nanopore cavity. Finite element simulations of the concentration distribution of dissolved H2 within the nanopore cavity, as a function of the H(+) reduction current, indicate that H2 bubble nucleation at the recessed Pt electrode surface occurs at a critical supersaturation concentration of ∼0.22 M, in agreement with the value previously obtained at (nonrecessed) Pt disk electrodes (∼0.25 M). Because the nanopore orifice limits the diffusion of H2 out of the nanopore cavity, an anodic peak corresponding to the oxidation of gaseous and dissolved H2 trapped in the recessed cavity is readily observed on the reverse voltammetric scan. Integration of the charge associated with the H2 oxidation peak is found to approach that of the H(+) reduction peak at high scan rates, confirming the assignment of the anodic peak to H2 oxidation. Preliminary results for the electrochemical generation of O2 bubbles from water oxidation at a recessed nanopore electrode are consistent with the electrogeneration of H2 bubbles.
How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?
NASA Technical Reports Server (NTRS)
Newby, N.; Somers, J. T.; Caldwell, E.; Gernhardt, M.
2014-01-01
One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post-mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi-purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two-parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x-acceleration peak response correlated with the human response at 8 and 10-G 100 ms but not 10-G 70 ms. The phase lagged the human response. Head z-acceleration was not correlated. Chest x-acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x-displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x-displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x-acceleration was not well correlated. Head and chest z-acceleration was in phase but had a higher peak response. Chest z-acceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder z-displacement but the THOR was in phase and was comparable to the mean peak response. Head xand z-displacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NASA
Amplitude, Latency, and Peak Velocity in Accommodation and Disaccommodation Dynamics
Papadatou, Eleni; Ferrer-Blasco, Teresa; Montés-Micó, Robert
2017-01-01
The aim of this work was to ascertain whether there are differences in amplitude, latency, and peak velocity of accommodation and disaccommodation responses when different analysis strategies are used to compute them, such as fitting different functions to the responses or for smoothing them prior to computing the parameters. Accommodation and disaccommodation responses from four subjects to pulse changes in demand were recorded by means of aberrometry. Three different strategies were followed to analyze such responses: fitting an exponential function to the experimental data; fitting a Boltzmann sigmoid function to the data; and smoothing the data. Amplitude, latency, and peak velocity of the responses were extracted. Significant differences were found between the peak velocity in accommodation computed by fitting an exponential function and smoothing the experimental data (mean difference 2.36 D/s). Regarding disaccommodation, significant differences were found between latency and peak velocity, calculated with the two same strategies (mean difference of 0.15 s and −3.56 D/s, resp.). The strategy used to analyze accommodation and disaccommodation responses seems to affect the parameters that describe accommodation and disaccommodation dynamics. These results highlight the importance of choosing the most adequate analysis strategy in each individual to obtain the parameters that characterize accommodation and disaccommodation dynamics. PMID:29226128
Nonlinear dynamic modeling of surface defects in rolling element bearing systems
NASA Astrophysics Data System (ADS)
Rafsanjani, Ahmad; Abbasion, Saeed; Farshidianfar, Anoushiravan; Moeenfard, Hamid
2009-01-01
In this paper an analytical model is proposed to study the nonlinear dynamic behavior of rolling element bearing systems including surface defects. Various surface defects due to local imperfections on raceways and rolling elements are introduced to the proposed model. The contact force of each rolling element described according to nonlinear Hertzian contact deformation and the effect of internal radial clearance has been taken into account. Mathematical expressions were derived for inner race, outer race and rolling element local defects. To overcome the strong nonlinearity of the governing equations of motion, a modified Newmark time integration technique was used to solve the equations of motion numerically. The results were obtained in the form of time series, frequency responses and phase trajectories. The validity of the proposed model verified by comparison of frequency components of the system response with those obtained from experiments. The classical Floquet theory has been applied to the proposed model to investigate the linear stability of the defective bearing rotor systems as the parameters of the system changes. The peak-to-peak frequency response of the system for each case is obtained and the basic routes to periodic, quasi-periodic and chaotic motions for different internal radial clearances are determined. The current study provides a powerful tool for design and health monitoring of machine systems.
NASA Astrophysics Data System (ADS)
Gannon, J. L.; Birchfield, A. B.; Shetye, K. S.; Overbye, T. J.
2017-11-01
Geomagnetically induced currents (GICs) are a result of the changing magnetic fields during a geomagnetic disturbance interacting with the deep conductivity structures of the Earth. When assessing GIC hazard, it is a common practice to use layer-cake or one-dimensional conductivity models to approximate deep Earth conductivity. In this paper, we calculate the electric field and estimate GICs induced in the long lines of a realistic system model of the Pacific Northwest, using the traditional 1-D models, as well as 3-D models represented by Earthscope's Electromagnetic transfer functions. The results show that the peak electric field during a given event has considerable variation across the analysis region in the Pacific Northwest, but the 1-D physiographic approximations may accurately represent the average response of an area, although corrections are needed. Rotations caused by real deep Earth conductivity structures greatly affect the direction of the induced electric field. This effect may be just as, or more, important than peak intensity when estimating GICs induced in long bulk power system lines.
Zhang, Fuping; Ji, Ming; Xu, Quan; Yang, Li; Bi, Shuping
2005-09-01
The biological effects of aluminum (Al) have received much attention in recent years. Al is of basic relevance as concern with its reactivity and bioavailability. In this paper, the electrochemical behaviors of norepinephrine (NE) in the absence and presence of Al(III) at the hanging mercury drop electrode have been studied and applied to the practical analysis. Highly selective catalytic cathodic peak of NE is yielded by linear scan voltammetry (LSV) at -1.32 V (vs. SCE). A linear relationship holds between the cathodic peak current and the Al(III) concentration. It has been successfully applied to the determination of Al(III) in real waters and synthetic biological samples with satisfying results, which are in accordance with those obtained by ICP-AES method. The electrochemical properties and the mechanisms of the peaks in the presence and absence of Al(III) have been explored. The results show that they are irreversible adsorptive hydrogen catalytic waves. These studies not only enrich the methods of determining Al, but also lay foundations of further understanding of the mechanisms of neurodementia.
NASA Astrophysics Data System (ADS)
Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.
2008-01-01
The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC™ PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study.
Devin, James L; Jenkins, David G; Sax, Andrew T; Hughes, Gareth I; Aitken, Joanne F; Chambers, Suzanne K; Dunn, Jeffrey C; Bolam, Kate A; Skinner, Tina L
2018-06-01
Deteriorations in cardiorespiratory fitness (V˙o 2peak ) and body composition are associated with poor prognosis after colorectal cancer treatment. However, the optimal intensity and frequency of aerobic exercise training to improve these outcomes in colorectal cancer survivors is unknown. This trial compared 8 weeks of moderate-intensity continuous exercise (MICE; 50 minutes; 70% peak heart rate [HR peak ]; 24 sessions), with high-intensity interval exercise (HIIE; 4 × 4 minutes; 85%-95% HR peak ) at an equivalent (HIIE; 24 sessions) and tapered frequency (HIIE-T; 16 sessions) on V˙o 2peak and on lean and fat mass, measured at baseline, 4, 8, and 12 weeks. Increases in V˙o 2peak were significantly greater after both 4 (+3.0 mL·kg -1 ·min -1 , P = .008) and 8 (+2.3 mL·kg -1 ·min -1 , P = .049) weeks of HIIE compared to MICE. After 8 weeks, there was a significantly greater reduction in fat mass after HIIE compared to MICE (-0.7 kg, P = .038). Four weeks after training, the HIIE group maintained elevated V˙o 2peak (+3.3 mL·kg -1 ·min -1 , P = .006) and reduced fat mass (-0.7 kg, P = .045) compared to the MICE group, with V˙o 2peak in the HIIE-T also being superior to the MICE group (+2.8 mL·kg -1 ·min -1 , P = .013). Compared to MICE, HIIE promotes superior improvements and short-term maintenance of V˙o 2peak and fat mass improvements. HIIE training at a reduced frequency also promotes maintainable cardiorespiratory fitness improvements. In addition to promoting accelerated and superior benefits to the current aerobic exercise guidelines, HIIE promotes clinically relevant improvements even with a substantial reduction in exercise training and for a period after withdrawal. Copyright © 2018 Elsevier Inc. All rights reserved.
The calcium-frequency response in the rat ventricular myocyte: an experimental and modelling study.
Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E; Niederer, Steven A; Smith, Nicolas P
2016-08-01
In the majority of species, including humans, increased heart rate increases cardiac contractility. This change is known as the force-frequency response (FFR). The majority of mammals have a positive force-frequency relationship (FFR). In rat the FFR is controversial. We derive a species- and temperature-specific data-driven model of the rat ventricular myocyte. As a measure of the FFR, we test the effects of changes in frequency and extracellular calcium on the calcium-frequency response (CFR) in our model and three altered models. The results show a biphasic peak calcium-frequency response, due to biphasic behaviour of the ryanodine receptor and the combined effect of the rapid calmodulin buffer and the frequency-dependent increase in diastolic calcium. Alterations to the model reveal that inclusion of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated L-type channel and transient outward K(+) current activity enhances the positive magnitude calcium-frequency response, and the absence of CAMKII-mediated increase in activity of the sarco/endoplasmic reticulum Ca(2+) -ATPase induces a negative magnitude calcium-frequency response. An increase in heart rate affects the strength of cardiac contraction by altering the Ca(2+) transient as a response to physiological demands. This is described by the force-frequency response (FFR), a change in developed force with pacing frequency. The majority of mammals, including humans, have a positive FFR, and cardiac contraction strength increases with heart rate. However, the rat and mouse are exceptions, with the majority of studies reporting a negative FFR, while others report either a biphasic or a positive FFR. Understanding the differences in the FFR between humans and rats is fundamental to interpreting rat-based experimental findings in the context of human physiology. We have developed a novel model of rat ventricular electrophysiology and calcium dynamics, derived predominantly from experimental data recorded under physiological conditions. As a measure of FFR, we tested the effects of changes in stimulation frequency and extracellular calcium concentration on the simulated Ca(2+) transient characteristics and showed a biphasic peak calcium-frequency relationship, consistent with recent observations of a shift from negative to positive FFR when approaching the rat physiological frequency range. We tested the hypotheses that (1) inhibition of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated increase in sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) activity, (2) CAMKII modulation of SERCA, L-type channel and transient outward K(+) current activity and (3) Na(+) /K(+) pump dynamics play a significant role in the rat FFR. The results reveal a major role for CAMKII modulation of SERCA in the peak Ca(2+) -frequency response, driven most significantly by the cytosolic calcium buffering system and changes in diastolic Ca(2+) . © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Doane, Leah D; Franz, Carol E; Prom-Wormley, Elizabeth; Eaves, Lindon J; Mendoza, Sally P; Hellhammer, Dirk H; Lupien, Sonia; Xian, Hong; Lyons, Michael J; Kremen, William; Jacobson, Kristen C
2011-07-01
Prior research suggests that individuals with particular personality traits, like negative emotionality, are at greater risk for adverse health outcomes. Despite bivariate associations between negative emotionality, depressive symptoms and the hypothalamic pituitary adrenal axis (HPA axis), few studies have sought to understand the biological pathways through which negative emotionality, depressive symptomatology and cortisol-one of the primary hormonal products of the HPA axis--are associated. The present study explored whether negative emotionality influenced cortisol dysregulation through current depressive symptomatology and whether negative emotionality served as a moderator of the relationship between depressive symptoms and cortisol. In the community-based Vietnam Era Twin Study of Aging, 783 male twins completed two days of cortisol saliva sampling in their natural environments. Three measures of cortisol were analyzed: waking levels, the cortisol awakening response, and the peak to bed slope. Depressive symptoms significantly mediated the associations between negative emotionality and the peak to bed slope. A 2-way interaction between depressive symptoms and negative emotionality was significant for the peak to bed slope and for waking levels of cortisol. Exploration of the interactions illustrated that depressive symptoms only affected cortisol slopes at average or high levels of negative emotionality and only affected waking levels at low levels of negative emotionality. Negative emotionality and depressive symptoms were not related to the cortisol awakening response. This is the first study to find indirect associations between negative emotionality and peak to bed cortisol slopes through depressive symptoms. These findings illustrate the complex interplay between personality characteristics, depressive symptoms and different indices of the cortisol diurnal rhythm. Copyright © 2011 Elsevier Inc. All rights reserved.
Pulsed eddy current differential probe to detect the defects in a stainless steel pipe
NASA Astrophysics Data System (ADS)
Angani, C. S.; Park, D. G.; Kim, C. G.; Leela, P.; Kishore, M.; Cheong, Y. M.
2011-04-01
Pulsed eddy current (PEC) is an electromagnetic nondestructive technique widely used to detect and quantify the flaws in conducting materials. In the present study a differential Hall-sensor probe which is used in the PEC system has been fabricated for the detection of defects in stainless steel pipelines. The differential probe has an exciting coil with two Hall-sensors. A stainless steel test sample with electrical discharge machining (EDM) notches under different depths of 1-5 mm was made and the sample was laminated by plastic insulation having uniform thickness to simulate the pipelines in nuclear power plants (NPPs). The driving coil in the probe is excited by a rectangular current pulse and the resultant response, which is the difference of the two Hall-sensors, has been detected as the PEC probe signal. The discriminating time domain features of the detected pulse such as peak value and time to zero are used to interpret the experimental results with the defects in the test sample. A feature extraction technique such as spectral power density has been devised to infer the PEC response.
NASA Astrophysics Data System (ADS)
Smith, B. K.; Smith, J. A.; Baeck, M. L.; Miller, A. J.
2015-03-01
A physically based model of the 14 km2 Dead Run watershed in Baltimore County, MD was created to test the impacts of detention basin storage and soil storage on the hydrologic response of a small urban watershed during flood events. The Dead Run model was created using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) algorithms and validated using U.S. Geological Survey stream gaging observations for the Dead Run watershed and 5 subbasins over the largest 21 warm season flood events during 2008-2012. Removal of the model detention basins resulted in a median peak discharge increase of 11% and a detention efficiency of 0.5, which was defined as the percent decrease in peak discharge divided by percent detention controlled area. Detention efficiencies generally decreased with increasing basin size. We tested the efficiency of detention basin networks by focusing on the "drainage network order," akin to the stream order but including storm drains, streams, and culverts. The detention efficiency increased dramatically between first-order detention and second-order detention but was similar for second and third-order detention scenarios. Removal of the soil compacted layer, a common feature in urban soils, resulted in a 7% decrease in flood peak discharges. This decrease was statistically similar to the flood peak decrease caused by existing detention. Current soil storage within the Dead Run watershed decreased flood peak discharges by a median of 60%. Numerical experiment results suggested that detention basin storage and increased soil storage have the potential to substantially decrease flood peak discharges.
Tyszczuk, Katarzyna; Korolczuk, Mieczyslaw
2010-06-01
A highly sensitive and simple voltammetric method for the determination of sildenafil citrate (SC) was developed. The method is based on the accumulation by adsorption of SC on a lead film modified glassy carbon electrode (LF/GCE) and then the reduction of SC throughout the stripping step. During the determinations of SC at the lead film electrode three adsorptive stripping voltammetric peaks at -1.2, -1.33 and -1.45V were observed. The respective response selected for identification and quantification has been evaluated with respect to the composition and pH of the supporting electrolyte, the potential and the time of the lead film formation, the potential and the time of the SC accumulation and other variables. Experimental results indicate an excellent linear correlation between the peak current and concentration in the range of 2x10(-9)-1.5x10(-7)mol/L (for peaks 1 and 2) and 1x10(-8)-1.5x10(-7)mol/L (for the peak 3). The detection limits (LOD) for SC following 30s of accumulation time were equal to 9x10(-10)mol/L (for peaks 1 and 2) and 4.5x10(-9)mol/L (for the peak 3). The method was successfully applied to the determination of SC in the tablets (Viagra 25 and Viagra 50) and average the contents were in close agreement with those quoted by the manufacturer and with those obtained by the reported spectrophotometric method and voltammetric method using a hanging mercury drop electrode. Copyright 2009 Elsevier B.V. All rights reserved.
Measured close lightning leader-step electric-field-derivative waveforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Doug M.; Hill, Dustin; Biagi, Christopher J.
2010-12-01
We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak andmore » becomes dominant as range decreases. The initial peak is often preceded by a 'slow front,' similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 {micro}s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m{sup -1} {micro}s{sup -1} (standard deviation (S.D.), 3.7 V m{sup -1} {micro}s{sup -1}, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA {micro}s{sup -1}, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of {approx}3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10{sup 8} m s{sup -1}, with their amplitudes decaying exponentially with a decay height constant of 25 m.« less
Evaluation of Lightning Incidence to Elements of a Complex Structure: A Monte Carlo Approach
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, V. A.
2008-01-01
There are complex structures for which the installation and positioning of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some "unprotected" or "exposed" areas. In an effort to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate origins of downward propagating leaders and a lognormal distribution to generate returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for 10,000 years with an assumed ground flash density and peak current distributions, and the output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution.
Reflex effects on components of synchronized renal sympathetic nerve activity.
DiBona, G F; Jones, S Y
1998-09-01
The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.
Huang, Kuan-Chun; White, Ryan J
2013-08-28
We develop a random walk model to simulate the Brownian motion and the electrochemical response of a single molecule confined to an electrode surface via a flexible molecular tether. We use our simple model, which requires no prior knowledge of the physics of the molecular tether, to predict and better understand the voltammetric response of surface-confined redox molecules when motion of the redox molecule becomes important. The single molecule is confined to a hemispherical volume with a maximum radius determined by the flexible molecular tether (5-20 nm) and is allowed to undergo true three-dimensional diffusion. Distance- and potential-dependent electron transfer probabilities are evaluated throughout the simulations to generate cyclic voltammograms of the model system. We find that at sufficiently slow cyclic voltammetric scan rates the electrochemical reaction behaves like an adsorbed redox molecule with no mass transfer limitation; thus, the peak current is proportional to the scan rate. Conversely, at faster scan rates the diffusional motion of the molecule limits the simulated peak current, which exhibits a linear dependence on the square root of the scan rate. The switch between these two limiting regimes occurs when the diffusion layer thickness, (2Dt)(1/2), is ~10 times the tether length. Finally, we find that our model predicts the voltammetric behavior of a redox-active methylene blue tethered to an electrode surface via short flexible single-stranded, polythymine DNAs, allowing the estimation of diffusion coefficients for the end-tethered molecule.
Solar cycle in current reanalyses: (non)linear attribution study
NASA Astrophysics Data System (ADS)
Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.
2014-12-01
This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11 year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (Support Vector Regression, Neural Networks) besides the traditional linear approach. The analysis was applied to several current reanalysis datasets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how this type of data resolves especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the lower and upper stratosphere were found to be sufficiently robust and in qualitative agreement with previous observational studies. The analysis also pointed to the solar signal in the ozone datasets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. Consequently the results obtained by linear regression were confirmed by the nonlinear approach through all datasets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. Furthermore, the seasonal dependence of the solar response was also discussed, mainly as a source of dynamical causalities in the wave propagation characteristics in the zonal wind and the induced meridional circulation in the winter hemispheres. The hypothetical mechanism of a weaker Brewer Dobson circulation was reviewed together with discussion of polar vortex stability.
NASA Astrophysics Data System (ADS)
Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.
2015-06-01
This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.
Lafon, Belen; Henin, Simon; Huang, Yu; Friedman, Daniel; Melloni, Lucia; Thesen, Thomas; Doyle, Werner; Buzsáki, György; Devinsky, Orrin; Parra, Lucas C; Liu, Anli
2018-02-28
It has come to our attention that we did not specify whether the stimulation magnitudes we report in this Article are peak amplitudes or peak-to-peak. All references to intensity given in mA in the manuscript refer to peak-to-peak amplitudes, except in Fig. 2, where the model is calibrated to 1 mA peak amplitude, as stated. In the original version of the paper we incorrectly calibrated the computational models to 1 mA peak-to-peak, rather than 1 mA peak amplitude. This means that we divided by a value twice as large as we should have. The correct estimated fields are therefore twice as large as shown in the original Fig. 2 and Supplementary Figure 11. The corrected figures are now properly calibrated to 1 mA peak amplitude. Furthermore, the sentence in the first paragraph of the Results section 'Intensity ranged from 0.5 to 2.5 mA (current density 0.125-0.625 mA mA/cm 2 ), which is stronger than in previous reports', should have read 'Intensity ranged from 0.5 to 2.5 mA peak to peak (peak current density 0.0625-0.3125 mA/cm 2 ), which is stronger than in previous reports.' These errors do not affect any of the Article's conclusions.
Pressley, Joanna; Troyer, Todd W
2011-05-01
The leaky integrate-and-fire (LIF) is the simplest neuron model that captures the essential properties of neuronal signaling. Yet common intuitions are inadequate to explain basic properties of LIF responses to sinusoidal modulations of the input. Here we examine responses to low and moderate frequency modulations of both the mean and variance of the input current and quantify how these responses depend on baseline parameters. Across parameters, responses to modulations in the mean current are low pass, approaching zero in the limit of high frequencies. For very low baseline firing rates, the response cutoff frequency matches that expected from membrane integration. However, the cutoff shows a rapid, supralinear increase with firing rate, with a steeper increase in the case of lower noise. For modulations of the input variance, the gain at high frequency remains finite. Here, we show that the low-frequency responses depend strongly on baseline parameters and derive an analytic condition specifying the parameters at which responses switch from being dominated by low versus high frequencies. Additionally, we show that the resonant responses for variance modulations have properties not expected for common oscillatory resonances: they peak at frequencies higher than the baseline firing rate and persist when oscillatory spiking is disrupted by high noise. Finally, the responses to mean and variance modulations are shown to have a complementary dependence on baseline parameters at higher frequencies, resulting in responses to modulations of Poisson input rates that are independent of baseline input statistics.
Fadool, D. A.; Wachowiak, M.; Brann, J. H.
2011-01-01
Summary The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, −54.5±2.7 mV, N=11; input resistance, 6.7±1.4GΩ, N=25; capacitance, 4.2±0.3 pF, N=22; means ± S.E.M.). The voltage-gated K+ current inactivation rate was significantly slower in VN neurons from males than in those from females, and K+ currents in males were less sensitive (greater Ki) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of −60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2–3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine-or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals. PMID:11815645
Fadool, D A; Wachowiak, M; Brann, J H
2001-12-01
The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, -54.5 +/- 2.7 mV, N=11; input resistance, 6.7 +/- 1.4 G Omega, N=25; capacitance, 4.2 +/- 0.3 pF, N=22; means +/- S.E.M.). The voltage-gated K(+) current inactivation rate was significantly slower in VN neurons from males than in those from females, and K(+) currents in males were less sensitive (greater K(i)) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of -60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2-3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine- or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals.iol
Short-Term Adaptive Modification of Dynamic Ocular Accommodation
Bharadwaj, Shrikant R.; Vedamurthy, Indu; Schor, Clifton M.
2009-01-01
Purpose Indirect observations suggest that the neural control of accommodation may undergo adaptive recalibration in response to age-related biomechanical changes in the accommodative system. However, there has been no direct demonstration of such an adaptive capability. This investigation was conducted to demonstrate short-term adaptation of accommodative step response dynamics to optically induced changes in neuromuscular demands. Methods Repetitive changes in accommodative effort were induced in 15 subjects (18–34 years) with a double-step adaptation paradigm wherein an initial 2-D step change in blur was followed 350 ms later by either a 2-D step increase in blur (increasing-step paradigm) or a 1.75-D step decrease in blur (decreasing-step paradigm). Peak velocity, peak acceleration, and latency of 2-D single-step test responses were assessed before and after 1.5 hours of training with these paradigms. Results Peak velocity and peak acceleration of 2-D step responses increased after adaptation to the increasing-step paradigm (9/12 subjects), and they decreased after adaptation to the decreasing-step paradigm (4/9 subjects). Adaptive changes in peak velocity and peak acceleration generalized to responses that were smaller (1 D) and larger (3 D) than the 2-D adaptation stimulus. The magnitude of adaptation correlated poorly with the subject's age, but it was significantly negatively correlated with the preadaptation dynamics. Response latency decreased after adaptation, irrespective of the direction of adaptation. Conclusions Short-term adaptive changes in accommodative step response dynamics could be induced, at least in some of our subjects between 18 and 34 years, with a directional bias toward increasing rather than decreasing the dynamics. PMID:19255153
Kaneoke, Y; Urakawa, T; Kakigi, R
2009-05-19
We investigated whether direction information is represented in the population-level neural response evoked by the visual motion stimulus, as measured by magnetoencephalography. Coherent motions with varied speed, varied direction, and different coherence level were presented using random dot kinematography. Peak latency of responses to motion onset was inversely related to speed in all directions, as previously reported, but no significant effect of direction on latency changes was identified. Mutual information entropy (IE) calculated using four-direction response data increased significantly (>2.14) after motion onset in 41.3% of response data and maximum IE was distributed at approximately 20 ms after peak response latency. When response waveforms showing significant differences (by multivariate discriminant analysis) in distribution of the three waveform parameters (peak amplitude, peak latency, and 75% waveform width) with stimulus directions were analyzed, 87 waveform stimulus directions (80.6%) were correctly estimated using these parameters. Correct estimation rate was unaffected by stimulus speed, but was affected by coherence level, even though both speed and coherence affected response amplitude similarly. Our results indicate that speed and direction of stimulus motion are represented in the distinct properties of a response waveform, suggesting that the human brain processes speed and direction separately, at least in part.
Differentiating anticipatory from reactive cortisol responses to psychosocial stress.
Engert, Veronika; Efanov, Simona I; Duchesne, Annie; Vogel, Susanne; Corbo, Vincent; Pruessner, Jens C
2013-08-01
Most psychosocial stress studies assess the overall cortisol response without further identifying the temporal dynamics within hormone levels. It has been shown, however, that the amplitude of anticipatory cortisol stress levels has a unique predictive value for psychological health. So far, no "best practice" in how to investigate the anticipatory cortisol stress response has emerged. The goal of the current research was to develop a protocol that would allow for a sensitive and easy-to-implement laboratory-based investigation into anticipatory cortisol stress levels. We initially tested 26 healthy men in either an anticipation- or stress-only condition of the Trier Social Stress Test (TSST) to map the distinct timelines of anticipatory and reactive cortisol release profiles (study 1). Subsequently, we administered the TSST to 50 healthy men such that the cortisol responses to anticipatory and reactive stress components could be dissociated (study 2). In both studies we sampled saliva cortisol at high frequency (at baseline, during 10min of anticipation and during and after 10min of acute stress) and the current mood state pre- and post-stress. We found anticipatory responder rates of 20% and 40%, with peak anticipatory cortisol levels between 14 and 20min after onset of anticipation. Visible changes in reactive cortisol levels occurred only after the termination of the acute stressor. We conclude that the best practice to detect a maximum number of anticipatory responders in the TSST would be to extend the anticipation phase to 15min. In doing so, the anticipatory cortisol peak could be captured at a time-point of the actual stressor that is uninfluenced by reactive cortisol levels. Overall, we could reveal several features of anticipatory responders. Most importantly, there was a positive correlation between anticipatory and reactive stress responses. There was no association between anticipatory cortisol and alpha-amylase as well as subjective-psychological stress responses. Future studies will have to determine whether the anticipatory responders differ with respect to various stress-sensitive parameters like sex, personality, psychological wellbeing or chronic stress. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Direct Demonstration of Closed-State Inactivation of K+ Channels at Low pH
Claydon, Thomas W.; Vaid, Moni; Rezazadeh, Saman; Kwan, Daniel C.H.; Kehl, Steven J.; Fedida, David
2007-01-01
Lowering external pH reduces peak current and enhances current decay in Kv and Shaker-IR channels. Using voltage-clamp fluorimetry we directly determined the fate of Shaker-IR channels at low pH by measuring fluorescence emission from tetramethylrhodamine-5-maleimide attached to substituted cysteine residues in the voltage sensor domain (M356C to R362C) or S5-P linker (S424C). One aspect of the distal S3-S4 linker α-helix (A359C and R362C) reported a pH-induced acceleration of the slow phase of fluorescence quenching that represents P/C-type inactivation, but neither site reported a change in the total charge movement at low pH. Shaker S424C fluorescence demonstrated slow unquenching that also reflects channel inactivation and this too was accelerated at low pH. In addition, however, acidic pH caused a reversible loss of the fluorescence signal (pKa = 5.1) that paralleled the reduction of peak current amplitude (pKa = 5.2). Protons decreased single channel open probability, suggesting that the loss of fluorescence at low pH reflects a decreased channel availability that is responsible for the reduced macroscopic conductance. Inhibition of inactivation in Shaker S424C (by raising external K+ or the mutation T449V) prevented fluorescence loss at low pH, and the fluorescence report from closed Shaker ILT S424C channels implied that protons stabilized a W434F-like inactivated state. Furthermore, acidic pH changed the fluorescence amplitude (pKa = 5.9) in channels held continuously at −80 mV. This suggests that low pH stabilizes closed-inactivated states. Thus, fluorescence experiments suggest the major mechanism of pH-induced peak current reduction is inactivation of channels from closed states from which they can activate, but not open; this occurs in addition to acceleration of P/C-type inactivation from the open state. PMID:17470663
Response and representation of ductile damage under varying shock loading conditions in tantalum
Bronkhorst, C. A.; Gray, III, G. T.; Addessio, F. L.; ...
2016-02-25
The response of polycrystalline metals, which possess adequate mechanisms for plastic deformation under extreme loading conditions, is often accompanied by the formation of pores within the structure of the material. This large deformation process is broadly identified as progressive with nucleation, growth, coalescence, and failure the physical path taken over very short periods of time. These are well known to be complex processes strongly influenced by microstructure, loading path, and the loading profile, which remains a significant challenge to represent and predict numerically. In the current study, the influence of loading path on the damage evolution in high-purity tantalum ismore » presented. Tantalum samples were shock loaded to three different peak shock stresses using both symmetric impact, and two different composite flyer plate configurations such that upon unloading the three samples displayed nearly identical “pull-back” signals as measured via rear-surface velocimetry. While the “pull-back” signals observed were found to be similar in magnitude, the sample loaded to the highest peak stress nucleated a connected field of ductile fracture which resulted in complete separation, while the two lower peak stresses resulted in incipient damage. The damage evolution in the “soft” recovered tantalum samples was quantified using optical metallography, electron-back-scatter diffraction, and tomography. These experiments are examined numerically through the use of a model for shock-induced porosity evolution during damage. The model is shown to describe the response of the tantalum reasonably well under strongly loaded conditions but less well in the nucleation dominated regime. As a result, numerical results are also presented as a function of computational mesh density and discussed in the context of improved representation of the influence of material structure upon macro-scale models of ductile damage.« less
Freundl, Brigitta; Binder, Heinrich; Minassian, Karen
2018-01-01
Epidural electrical stimulation of the lumbar spinal cord is currently regaining momentum as a neuromodulation intervention in spinal cord injury (SCI) to modify dysregulated sensorimotor functions and augment residual motor capacity. There is ample evidence that it engages spinal circuits through the electrical stimulation of large-to-medium diameter afferent fibers within lumbar and upper sacral posterior roots. Recent pilot studies suggested that the surface electrode-based method of transcutaneous spinal cord stimulation (SCS) may produce similar neuromodulatory effects as caused by epidural SCS. Neurophysiological and computer modeling studies proposed that this noninvasive technique stimulates posterior-root fibers as well, likely activating similar input structures to the spinal cord as epidural stimulation. Here, we add a yet missing piece of evidence substantiating this assumption. We conducted in-depth analyses and direct comparisons of the electromyographic (EMG) characteristics of short-latency responses in multiple leg muscles to both stimulation techniques derived from ten individuals with SCI each. Post-activation depression of responses evoked by paired pulses applied either epidurally or transcutaneously confirmed the reflex nature of the responses. The muscle responses to both techniques had the same latencies, EMG peak-to-peak amplitudes, and waveforms, except for smaller responses with shorter onset latencies in the triceps surae muscle group and shorter offsets of the responses in the biceps femoris muscle during epidural stimulation. Responses obtained in three subjects tested with both methods at different time points had near-identical waveforms per muscle group as well as same onset latencies. The present results strongly corroborate the activation of common neural input structures to the lumbar spinal cord—predominantly primary afferent fibers within multiple posterior roots—by both techniques and add to unraveling the basic mechanisms underlying electrical SCS. PMID:29381748
Sydó, Nóra; Sydó, Tibor; Gonzalez Carta, Karina A; Hussain, Nasir; Merkely, Béla; Murphy, Joseph G; Squires, Ray W; Lopez-Jimenez, Francisco; Allison, Thomas G
2018-05-15
A decrease in diastolic blood pressure (DBP) with exercise is considered normal, but the significance of an increase in DBP has not been validated. Our aim was to determine the relationship of DBP increasing on a stress test regarding comorbidities and mortality. Our database was reviewed from 1993-2010 using the first stress test of a patient. Non-Minnesota residence, baseline CV disease, rest DBP <60 or >100 mmHg, and age <30 or ≥80 were exclusion criteria. DBP response was classified Normal if peak DBP-rest DBP <0, Borderline 0-9, Abnormal ≥10mmHg. Mortality was determined from Mayo Clinic records and Minnesota Death Index. Logistic regression was used to determine the relationship of DBP response to presence of comorbidities. Cox regression was used to determine total and CV mortality risk by DBP response. All analyses were adjusted for age, sex and resting DBP. 20760 patients were included (51±11 years, female n=7314). Rest/peak averaged DBP 82±8/69 ±15 mmHg in normal vs 79±9/82±9 mmHg in borderline vs 76±9/92±11 mmHg in abnormal DBP response. There were 1582 deaths (8%) with 557 (3%) CV deaths over 12±5 years of follow-up. In patients with borderline and abnormal DBP response, odds ratios for obesity, hypertension, diabetes and current smoking were significant, while hazard ratios for total and CV death were not significant compared to patients with normal DBP response. DBP response to exercise is significantly associated with important comorbidities at the time of the stress test but does not add to the prognostic yield of stress test.
NASA Astrophysics Data System (ADS)
Liu, Yang; Gao, Bo; Gong, Min; Shi, Ruiying
2017-06-01
The influence of a GaN layer as a sub-quantum well for an AlGaN/GaN/AlGaN double barrier resonant tunneling diode (RTD) on device performance has been investigated by means of numerical simulation. The introduction of the GaN layer as the sub-quantum well turns the dominant transport mechanism of RTD from the 3D-2D model to the 2D-2D model and increases the energy difference between tunneling energy levels. It can also lower the effective height of the emitter barrier. Consequently, the peak current and peak-to-valley current difference of RTD have been increased. The optimal GaN sub-quantum well parameters are found through analyzing the electrical performance, energy band, and transmission coefficient of RTD with different widths and depths of the GaN sub-quantum well. The most pronounced electrical parameters, a peak current density of 5800 KA/cm2, a peak-to-valley current difference of 1.466 A, and a peak-to-valley current ratio of 6.35, could be achieved by designing RTD with the active region structure of GaN/Al0.2Ga0.8 N/GaN/Al0.2Ga0.8 N (3 nm/1.5 nm/1.5 nm/1.5 nm).
Nikiforov, S V; Kortov, V S
2014-11-01
The main thermoluminescent (TL) and dosimetric properties of the detectors based on anion-defective crystalline and nanostructured aluminium oxide after exposure to a high-current pulse electron beam are studied. TL peaks associated with deep-trapping centres are registered. It is shown that the use of deep-trap TL at 200-600°С allows registering absorbed doses up to 750 kGy for single-crystalline detectors and those up to 6 kGy for nanostructured ones. A wide range of the doses registered, high reproducibility of the TL signal and low fading contribute to a possibility of using single-crystalline and nanostructured aluminium oxide for the dosimetry of high-current pulse electron beams. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Surface gas pollutants in Lhasa, a highland city of Tibet: current levels and pollution implications
NASA Astrophysics Data System (ADS)
Ran, L.; Lin, W. L.; Deji, Y. Z.; La, B.; Tsering, P. M.; Xu, X. B.; Wang, W.
2014-05-01
Through several years of development, the city of Lhasa has become one of the most populated and urbanized areas on the highest plateau in the world. In the process of urbanization, current and potential air quality issues have been gradually concerned. To investigate the current status of air pollution in Lhasa, various gas pollutants including NOx, CO, SO2 and O3 were continuously measured from June 2012 to May 2013 at an urban site (29.40° N, 91.08° E, 3650 m a.s.l.). The seasonal variations of primary gas pollutants exhibited a peak from November to January with a large variability. High concentrations of primary trace gases almost exclusively occurred under low wind speed and showed no distinct dependence on wind direction, implying local urban emissions to be predominant. A comparison of NO2, CO and SO2 concentrations in summer between 1998 and 2012 indicated a significant increase in emissions of these gas pollutants and a change in their intercorrelations, as a result of a substantial growth in the demand of energy consumption using fossil fuels instead of previously widely used biofuels. The pronounced diurnal double peaks of primary trace gases in all seasons suggested automobile exhaust to be a major emission source in Lhasa. The secondary gas pollutant O3 displayed an average diurnal cycle of a shallow flat peak for about 4-5 h in the afternoon and a minimum in the early morning. Nighttime O3 was sometimes completely consumed by the high level of NOx. Seasonally, the variations of O3 concentrations displayed a low valley in winter and a peak in spring. In autumn and winter, transport largely contributed to the observed O3 concentrations, given its dependence on wind speed and wind direction, while in spring and summer photochemistry played an important role. A more efficient buildup of O3 concentrations in the morning and a higher peak in the afternoon was found in summer 2012 than in 1998. An enhancement in O3 concentrations would be expected in the future and more attention should be given to O3 photochemistry in response to increasing precursor emissions in this area.
NASA Astrophysics Data System (ADS)
Ran, L.; Lin, W. L.; Deji, Y. Z.; La, B.; Tsering, P. M.; Xu, X. B.; Wang, W.
2014-10-01
Through several years of development, the city of Lhasa has become one of the most populated and urbanized areas on the highest plateau in the world. In the process of urbanization, current and potential air quality issues have been gradually concerned. To investigate the current status of air pollution in Lhasa, various gas pollutants including NOx, CO, SO2, and O3, were continuously measured from June 2012 to May 2013 at an urban site (29.40° N, 91.08° E, 3650 m a.s.l.). The seasonal variations of primary gas pollutants exhibited a peak from November to January with a large variability. High mixing ratios of primary trace gases almost exclusively occurred under low wind speed and showed no distinct dependence on wind direction, implying local urban emissions to be predominant. A comparison of NO2, CO, and SO2 mixing ratios in summer between 1998 and 2012 indicated a significant increase in emissions of these gas pollutants and a change in their intercorrelations, as a result of a substantial growth in the demand of energy consumption using fossil fuels instead of previously widely used biomass. The pronounced diurnal double peaks of primary trace gases in all seasons suggested automobile exhaust to be a major emission source in Lhasa. The secondary gas pollutant O3 displayed an average diurnal cycle of a shallow flat peak for about 4-5 h in the afternoon and a minimum in the early morning. Nighttime O3 was sometimes completely consumed by the high level of NOx. Seasonally, the variations of O3 mixing ratios displayed a low valley in winter and a peak in spring. In autumn and winter, transport largely contributed to the observed O3 mixing ratios, given its dependence on wind speed and wind direction, while in spring and summer photochemistry played an important role. A more efficient buildup of O3 mixing ratios in the morning and a higher peak in the afternoon was found in summer 2012 than in 1998. An enhancement in O3 mixing ratios would be expected in the future and more attention should be given to O3 photochemistry in response to increasing precursor emissions in this area.
Dissociation During Intense Military Stress is Related to Subsequent Somatic Symptoms in Women
Steffian, Lisa; Steffian, George; Doran, Anthony P.; Rasmusson, Ann M.; Morgan, CA
2007-01-01
Background: Research studies of the female response to intense stress are under-represented in the scientific literature; indeed, publications in female humans and animals number half those in male subjects. In addition, women have only recently entered more dangerous professions that were historically limited to men. The US Navy's survival course, therefore, offers a unique opportunity to examine, in a controlled manner, individual differences in the human female response to acute and realistic military stress. Method: The current study assessed the nature and prevalence of dissociative symptoms and other aspects of adaptive function in healthy female subjects experiencing acute, intense stress during US Navy survival training. Cognitive dissociation and previous exposure to traumatic events were assessed at baseline in 32 female service members prior to Navy survival training. At the conclusion of training, retrospectively rated levels of dissociation during peak training stress and current health symptoms were assessed. Results: Female subjects reported previous trauma (35%) and at least one symptom of dissociation at baseline prior to training (47%). Eighty-eight percent of subjects reported experiencing multiple symptoms of dissociation during peak training stress. Post-stress dissociation scores and stress-induced increases in dissociation, as well as prior cumulative exposure to potentially traumatic events, were significant predictors of post-stress health symptoms. Discussion: In this study, increases in dissociative symptoms during intense training stress, post-stress dissociation symptom levels, and prior cumulative exposure to stressful, potentially traumatic events predicted post-stress health symptoms in women. Prior studies in men have demonstrated correlations between neurobiological responses to stress and stress-associated levels of dissociation. Thus future studies in larger samples of women are needed to investigate the relationship between prior stress exposure, alterations in neurobiological responses to stress and potentially related alterations in neuropsychological and physical reactions to stress. PMID:20805901
Zhao, Guang-Ying; Ma, Chao; Li, Jian-Rong
2010-01-01
To improve the key technology of immunesensors in immobilizing bio-sensitive element and keeping its bioactivity, an enzyme immunosensor based on chitosan-SiO(2) (CS-Sio(2)) hybrid membrane was fabricated. To estimate the new immunosensor Vibrio parahaemolyticus which was the main pathogens of aquatic products. A CS-SiO(2) hybrid membrane was prepared using sol-gel method. The enzyme immunosensor was fabricated by coating the membrane and horseradish peroxidase labeled Vibrio parahaemolyticus antibody (HRP-anti-VP) on the surface of four-channel screen-printed carbon electrode. The immunosensor was characterized by cyclic voltammetry. Vibrio parahaemolyticus could be detected according to the decrease percentage (DP) of peak current before and after immune response, while cyclic voltammetry was used as an electrochemical mean to detect the products of the enzymatic reaction. Seven kinds of bacteria, like Vibrio alginolyticus, were selected for specific experiments. By studying the infrared spectrum of three kinds of films, the CS-SiO(2) hybrid membrane was prepared and HRP-anti-VP was fixed in the hybrid membrane. Under the optimum conditions of immunoreaction and electrochemical detection, the DP of peak current before and after immune response showed a linear relation with lgC in the range of 10(4) - 10(9) cfu/ml, while the linear regression equation was: DP = 6.5 lgC-3.319, the correlation coefficient was 0.9958 and the detection limit was 6.9 x 10(3) cfu/ml (S/N = 3). The immunosensor possessed acceptable specificity, reproducibility (RSD < 6%), stability (the amperometric response was 95% of the initial response after a week) and accuracy (96.7% of the results obtained by the immunosensor were in agreement with those obtained by GB/T 4789.7-2003). The enzyme immunosensor based on CS-SiO(2) hybrid membrane gave a good performance in rapid detection of Vibrio parahaemolyticus.
40 CFR 91.314 - Analyzer accuracy and specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (3) Zero drift. The analyzer zero-response drift during a one-hour period must be less than two percent of full-scale chart deflection on the lowest range used. The zero-response is defined as the mean... calibration or span gas. (2) Noise. The analyzer peak-to-peak response to zero and calibration or span gases...
How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?
NASA Technical Reports Server (NTRS)
Newby, Nate; Somers, Jeff; Caldewll, Erin; Gernhardt, Michael
2014-01-01
One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post--mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi--purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two--parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x--acceleration peak response correlated with the human response at 8 and 10--G 100 ms but not 10--G 70 ms. The phase lagged the human response. Head z--acceleration was not correlated. Chest x--acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x--displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x--displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x--acceleration was not well correlated. Head and chest z--acceleration was in phase but had a higher peak response. Chest z--acceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder z--displacement but the THOR was in phase and was comparable to the mean peak response. Head x-- and z--displacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NASA
Glutathionylation-Dependence of Na+-K+-Pump Currents Can Mimic Reduced Subsarcolemmal Na+ Diffusion
Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J.; Rasmussen, Helge H.
2016-01-01
The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na+. PMID:26958887
Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H
2016-03-08
The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+). Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The target material influence on the current pulse during high power pulsed magnetron sputtering
NASA Astrophysics Data System (ADS)
Moens, Filip; Konstantinidis, Stéphanos; Depla, Diederik
2017-10-01
The current-time characteristic during high power pulsed magnetron sputtering is measured under identical conditions for seventeen different target materials. Based on physical processes such as gas rarefaction, ion-induced electron emission, and electron impact ionization, two test parameters were derived that significantly correlate with specific features of the current-time characteristic: i) the peak current is correlated to the momentum transfer between the sputtered material and the argon gas, ii) while the observed current plateau after the peak is connected to the metal ionization rate.
Stimulus dependent properties of mammalian cochlear hair cell mechanoelectrical transduction
NASA Astrophysics Data System (ADS)
Scharr, A. L.; Ricci, Anthony
2018-05-01
Cochlear hair cell stereocilia move semi-independently, shaping the force transfer to mechanoelectrical transduction (MET) channels, as indicated by the MET current response. Semi-independent movement of stereocilia was evoked by stimulating inner hair cell (IHC) bundles from acutely dissected rat cochlea with stiff probes ranging in size from 1 to 10 µm. MET current responses were recorded using whole-cell patch-clamp electrophysiology. Small probes directly displaced stereocilia they contacted, and recruited adjacent stereocilia depending on stimulus magnitude. We inferred that the recruitment of stereocilia resulted in less uniform and less synchronous movement. Step displacements using smaller probes resulted in smaller current responses (from 1 nA for large probes to 0.3 nA for small, p <.0001), slower rate of current activation, as measured from the linear portion (from 4 nA/ms to 1 nA/ms, p <.0001), slower time constants of adaptation, as measured from double exponential fits from peak to steady state current (fast component: from 0.6 to 1.2 ms, p =.004; slow component: from 8 ms to 12 ms, p =.001) and less complete adaptation (from 95% to 30%, p <.0001). These results indicate that the mechanical properties of less coherent bundles greatly affect force transfer to MET channels as indicated by the electrical response of the cell. Thus, outer hair cells (OHCs), with their bundles embedded in the tectorial membrane, may exhibit synchronous MET activation and therefore time-dependent adaptation where fast adaptation provides a high pass filter. Hair cells with free standing bundles, like inner hair cells (IHC), may exhibit more asynchronous MET activation and adaptation, in which case adaptation would not provide this additional filter.
Ma, T; Patel, P K; Izumi, N; Springer, P T; Key, M H; Atherton, L J; Benedetti, L R; Bradley, D K; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D S; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Epstein, R; Glenn, S; Grim, G; Haan, S W; Hammel, B A; Hicks, D; Hsing, W W; Jones, O S; Khan, S F; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Le Pape, S; MacGowan, B J; Mackinnon, A J; MacPhee, A G; Meezan, N B; Moody, J D; Pak, A; Parham, T; Park, H-S; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Smalyuk, V; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Lindl, J D; Edwards, M J; Glenzer, S H; Moses, E I
2013-08-23
Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.
Determination of nitrobenzene in wastewater using a hanging mercury drop electrode.
Liang, Shu-Xuan; Zhang, Huan-Kun; Lu, Da
2007-06-01
The determination of trace amount nitrobenzene in wastewater on a hanging mercury drop electrode was studied. The determination conditions of pH, supporting electrolyte, accumulation potential, accumulation time, and voltammetric response were optimized. The sharp peak of the nitrobenzene was appeared at 0.05 V. The peak electric current was proportional to the concentration of nitrobenzene in the range of 1.47 x 10(-5) approximately 1.0 x 10(-3) mol/l with relative standard deviations of 3.99 approximately 8.94%. The detection limit of the nitrobenzene in water was 5 x 10(-6) mol/l. The proposed method offered low limit of determination, easy operation, the use of simple instrumentation, high sensitivity and good reproducibility. It was applied to the determination of nitrobenzene in wastewater with an average recovery of 94.0% approximately 105%. The proposed method provided fast, sensitive and sometimes real time detection of nitrobenzene.
Energy Storage Systems as a Compliment to Wind Power
NASA Astrophysics Data System (ADS)
Sieling, Jared D.; Niederriter, C. F.; Berg, D. A.
2006-12-01
As Gustavus Adolphus College prepares to install two wind turbines on campus, we are faced with the question of what to do with the excess electricity that is generated. Since the College pays a substantial demand charge, it would seem fiscally responsible to store the energy and use it for peak shaving, instead of selling it to the power company at their avoided cost. We analyzed six currently available systems: hydrogen energy storage, flywheels, pumped hydroelectric storage, battery storage, compressed air storage, and superconducting magnetic energy storage, for energy and financial suitability. Potential wind turbine production is compared to consumption to determine the energy deficit or excess, which is fed into a model for each of the storage systems. We will discuss the advantages and disadvantages of each of the storage systems and their suitability for energy storage and peak shaving in this situation.
Pre-flare association of magnetic fields and millimeter-wave radio emission
NASA Technical Reports Server (NTRS)
Mayfield, E. B.; White, K. P., III
1976-01-01
Observations of radio emission at 3.3 mm wavelength associated with magnetic fields in active regions are reported. Results of more than 200 regions during the years 1967-1968 show a strong correlation between peak enhanced millimeter emission, total flux of the longitudinal component of photospheric magnetic fields and the number of flares produced during transit of active regions. For magnetic flux greater than (10 to the 21st power) maxwells flares will occur and for flux of (10 to the 23rd power) maxwells the sum of the H-alpha flare importance numbers is about 40. The peak millimeter enhancement increases with magnetic flux for regions which subsequently flared. Estimates of the magnetic energy available and the correlation with flare production indicate that the photospheric fields and probably chromospheric currents are responsible for the observed pre-flare heating and provide the energy of flares.
Guo, Zhe; He, Wei; Hou, Jing; Li, Tong; Zhou, Hua; Xu, Yuan; Xi, Xiuming
2014-09-01
To approach the evaluative effect of respiratory variation of superior vena cava peak flow velocity measured using transthoracic echocardiography (TTE) on fluid responsiveness in patients with mechanical ventilation. A prospective cohort study was conducted. All mechanical ventilated critically ill patients whose fluid therapy was planned due to hypovolemia in Department of Critical Care Medicine of Beijing Tongren Hospital of Capital Medical University from April 2011 to April 2013 were enrolled. Volume expansion was performed with 500 mL Linger solution within 30 minutes. Patients were classified as responders if pulse pressure variation (PPV) increased ≥ 13% before volume expansion. The respiratory variation in superior vena cava peak velocity was calculated as the difference between maximum and minimum values of velocity in peak A, peak S and peak D over a single respiratory circle, and their variations (ΔA, ΔS, ΔD) were also calculated. The receiver operating characteristic curve (ROC curve) was plotted to assess the evaluative effect of respiratory variation of superior vena cava peak velocity on fluid responsiveness. Twenty-seven patients were enrolled in this study. Volume expansion increased PPV ≥ 13% happened in 14 patients (responders). The velocity of superior vena cava in peak A, peak S, peak D was significantly increased after volume expansion compared with that before volume expansion in responders [peak A (cm/s): 34.6 ± 2.2 vs. 31.3 ± 2.1, t=-2.493, P=0.027; peak S (cm/s): 39.1 ± 1.3 vs. 35.3 ± 2.1, t=-2.564, P=0.024; peak D (cm/s): 28.1 ± 1.2 vs. 23.3 ± 1.4, t=-4.995, P=0.000], but there was no significant difference in ΔA, ΔS and ΔD between before and after volume expansion. The ΔA, ΔS and ΔD were positively correlated with PPV (r=0.040, P=0.854; r=0.350, P=0.074; r=0.749, P=0.000). The area under ROC curve (AUC) of peak S was 0.36 [95% confidence interval (95%CI): 0.11-0.52], but the AUC of ΔS was 0.68 (95%CI 0.47-0.89), the AUC of peak D was 0.41 (95%CI 0.19-0.63), but the AUC of ΔD was 0.95 (95%CI 0.86-1.00), so the aberration rate of superior vena cava in respiration was better than the flow rate in superior vena cava. When the cut-off value of ΔS was 20.7% for predicting fluid responsiveness, the sensitivity was 78.6% and the specificity was 61.5%. When the cut-off value of ΔD was 12.7% for predicting fluid responsiveness, the sensitivity was 92.0% and the specificity was 92.3%. Respiratory variations in superior vena cava peak velocity measured by TTE could assess fluid responsiveness in patients with mechanical ventilation.
NASA Astrophysics Data System (ADS)
Barnes, P. R.; Vance, E. F.
A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.
NASA Astrophysics Data System (ADS)
Nawarathna, Dharmakirthi
The response of biological cells to an applied oscillating electric field contains both linear and nonlinear components (eg. induced harmonics). Such noninvasive measurements can be used to study active processes taking place inside the cells. The measurement of induced harmonics is the tool used for the study described here. A highly sensitive superconducting quantum interference device (SQUID) is used to detect the response at low frequencies, which greatly reduces electrode polarization effects. At high frequencies, a four- probe method is used. At low frequencies, harmonic generation by budding yeast cells in response to a sinusoidal electric field is reported, which is seen to be minimal when the field amplitude is less than a threshold value. Surprisingly, sodium metavanadate, an inhibitor of P-type ATPases and glucose, a substrate of P-type ATPase responsible for nonlinear response in yeast, reduces the threshold field amplitude, increasing harmonic generation at low amplitudes while reducing it at large amplitudes. We have thus proposed a model that explicitly introduces a threshold field, similar to those observed in density waves, where fields above threshold drive charge transport through an energy landscape with multiple wells, and in Coulomb blockade tunnel junctions, recently exploited to define the current standard. At high frequencies, the induced harmonics exhibit pronounced features that depend on the specific organism. Budding yeast (S. cerevisiae ) cells produce numerous harmonics. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by the respiratory inhibitor potassium cyanide. We then measured the response to oscillatory electric fields of intact bovine heart mitochondria, a reproducible second harmonic (at ˜3-4 kHz applied frequency) was detected. Further, with coupled mouse mitochondria, an ADP sensitive peak (˜ 12-15 kHz applied frequency) was observed, possibly due to the F0 domain of ATP synthase. Finally, harmonics generated by chloroplasts, the plant organelles responsible for photosynthesis, were measured, which are similar in structure and function to mitochondria, depend dramatically on incident light, and vanish in the absence of light. Using spinach chloroplasts, light sensitive peaks were detected in the range of 0--12 kHz, again suggesting that these harmonics are indicative of electron processes in the light harvesting complexes, reaction center, and/or photosynthetic electron transport chain.
Geum, Dae-Myeong; Kim, SangHyeon; Kang, SooSeok; Kim, Hosung; Park, Hwanyeol; Rho, Il Pyo; Ahn, Seung Yeop; Song, Jindong; Choi, Won Jun; Yoon, Euijoon
2018-03-05
In this paper, InAs 0.81 Sb 0.19 -based hetero-junction photovoltaic detector (HJPD) with an In 0.2 Al 0.8 Sb barrier layer was grown on GaAs substrates. By using technology computer aided design (TCAD), a design of a barrier layer that can achieve nearly zero valance band offsets was accomplished. A high quality InAs 0.81 Sb 0.19 epitaxial layer was obtained with relatively low threading dislocation density (TDD), calculated from a high-resolution X-ray diffraction (XRD) measurement. This layer showed a Hall mobility of 15,000 cm 2 /V⋅s, which is the highest mobility among InAsSb layers with an Sb composition of around 20% grown on GaAs substrates. Temperature dependence of dark current, photocurrent response and responsivity were measured and analyzed for fabricated HJPD. HJPD showed the clear photocurrent response having a long cutoff wavelength of 5.35 μm at room temperature. It was observed that the dark current of HJPDs is dominated by the diffusion limited current at temperatures ranging from 200K to room temperature from the dark current analysis. Peak responsivity of HJPDs exhibited the 1.18 A/W and 15 mA/W for 83K and a room temperature under zero bias condition even without anti-reflection coating (ARC). From these results, we believe that HJPDs could be an appropriate PD device for future compact and low power dissipation mid-infrared on-chip sensors and imaging devices.
Is vacuum ultraviolet detector a concentration or a mass dependent detector?
Liu, Huian; Raffin, Guy; Trutt, Guillaume; Randon, Jérôme
2017-12-29
The vacuum ultraviolet detector (VUV) is a very effective tool for chromatogram deconvolution and peak identification, and can also be used for quantification. To avoid quantitative issues in relation to time drift, such as variation of peak area or peak height, the detector response type has to be well defined. Due to the make-up flow and pressure regulation of make-up, the detector response (height of the peak) and peak area appeared to be dependent on experimental conditions such as inlet pressure and make-up pressure. Even if for some experimental conditions, VUV looks like mass-flow sensitive detector, it has been demonstrated that VUV is a concentration sensitive detector. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; La Haye, R. J.; Bañón Navarro, A.; McKee, G. R.
2017-06-01
Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to interaction with Edge Localized Modes (ELMs) is reported for the first time. This work shows that perturbations associated with ELMs result in peaking of the electron temperature (Te) in the O-point region of saturated core m/n = 2/1 islands (m/n being the poloidal/toroidal mode numbers). In synchronization with this Te peak, the island width shrinks by as much as 30% suggesting a key role of the Te peak in NTM stability due to modified pressure gradient (∇p) and perturbed bootstrap current (δjBS) at the O-point. Next, this Te peak relaxes via anomalous transport (i.e., the diffusivity is 2 orders of magnitude larger than the neoclassical value) and the island recovers. Long-wavelength turbulent density fluctuations ( n ˜ ) are reduced at the O-point of flat islands but these fluctuations are increased when Te is peaked which offers an explanation for the observed anomalous transport that is responsible for the relaxation of the Te peak. Linear gyrokinetic simulations indicate that n ˜ inside the peaked island is dominantly driven by the Ion Temperature Gradient instability. These measurements suggest that n ˜ accelerates NTM recovery after an ELM crash via accelerating the relaxation of ∇p at the O-point. These observations are qualitatively replicated by coupled predator-prey equations and modified Rutherford equation. In this simple model, turbulence accelerates NTM recovery via relaxing ∇p and therefore restoring δjBS at the O-point. The key physics of the relationship between the Te peak and NTM stability has potentially far-reaching consequences, such as NTM control via pellet injection in high-β tokamak plasmas.
van Riel, Annelieke C. M. J.; Systrom, David M.; Oliveira, Rudolf K. F.; Landzberg, Michael J.; Mulder, Barbara J. M.; Bouma, Berto J.; Maron, Bradley A.; Shah, Amil M.; Waxman, Aaron B.
2017-01-01
Background We recently reported a novel observation that many patients with equal resting supine right ventricular(RV) and pulmonary artery(PA) systolic pressures develop an RV outflow tract(RVOT) pressure gradient during upright exercise. The current work details the characteristics of patients who develop such an RVOT gradient. Methods We studied 294 patients (59.7±15.5 years-old, 49% male) referred for clinical invasive cardiopulmonary exercise testing, who did not have a resting RVOT pressure gradient defined by the simultaneously measured peak-to-peak difference between RV and PA systolic pressures. Results The magnitude of RVOT gradient did not correspond to clinical or hemodynamic findings suggestive of right heart failure; rather, higher gradients were associated with favorable exercise findings. The presence of a high peak RVOT gradient (90th percentile, ≥33mmHg) was associated with male sex (70 vs. 46%, p = 0.01), younger age (43.6±17.7 vs. 61.8±13.9 years, p<0.001), lower peak right atrial pressure (5 [3–7] vs. 8 [4–12]mmHg, p<0.001), higher peak heart rate (159±19 vs. 124±26 beats per minute, p<0.001), and higher peak cardiac index (8.3±2.3 vs. 5.7±1.9 L/min/m2, p<0.001). These associations persisted when treating peak RVOT as a continuous variable and after age and sex adjustment. At peak exercise, patients with a high exercise RVOT gradient had both higher RV systolic pressure (78±11 vs. 66±17 mmHg, p<0.001) and lower PA systolic pressure (34±8 vs. 50±19 mmHg, p<0.001). Conclusions Development of a systolic RV-PA pressure gradient during upright exercise is not associated with an adverse hemodynamic exercise response and may represent a normal physiologic finding in aerobically fit young people. PMID:28636647
Variation in light intensity with height and time from subsequent lightning return strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, D.M.; Uman, M.A.
1983-08-20
Relative light intensity has been measured photographically as a function of height and time for seven subsequent return strokes in two lightning flashes at ranges of 7.8 and 8.7 km. The film used was Kodak 5474 Shellburst, which has a roughly constant spectral response between 300 and 670 nm. The time resolution was about 1.0 ..mu..s, and the spatial resolution was about 4 m. The observed light signals consisted of a fast rise to peak, followed by a slower decrease to a relatively constant value. The amplitude of the initial light peak decreases exponentially with height with a decay constantmore » of about 0.6 to 0.8 km. The 20% to 80% rise time of the initial light signal is between 1 and 4 ..mu..s near ground and increases by an additional 1 to 2 ..mu..s by the time the return stroke reaches the cloud base, a height between 1 and 2 km. The light intensity 30 ..mu..s after the initial peak is relatively constant with height and has an amplitude that is 15% to 30% of the initial peak near the ground and 50% to 100% of the initial peak at cloud base. The logarithm of the peak light intensity near the ground is roughly proportional to the initial peak electric field intensity, and this in turn implies that the current decrease with height may be much slower than the light decrease. The absolute light intensity has been estimated by integrating the photographic signals from individual channel segments to simulate the calibrated all-sky photoelectric data of Guo and Krider (1982). Using this method, the authors find that the mean peak radiance near the ground is 8.3 x 10/sup 5/ W/m, with a total range from 1.4 x 10/sup 5/ to 3.8 x 10/sup 6/ W/m. 16 references, 11 figures.« less
NASA Astrophysics Data System (ADS)
Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Diehl, O.; Dorner, G.; Drüke, V.; Engelhardt, H. J.; Eisenhardt, S.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; v. Przewoski, B.; Radtke, M.; Rohdjess, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration
1993-10-01
For the EDDA experiment at COSY, the response of the small, linear focused photomultipliers Hamamatsu R 1450 and R 1355 has been studied with fast light pulses generating yields up to 2 × 10 3 photoelectrons/cm 2 or peak currents of 24 mA. Linearity was obtained with a tapered bleeder chain at a tolerable loss of gain. The serial test of altogether 140 photomultipliers revealed the close correlation between single electron and amplitude resolution. The influence of the photoelectron statistics on this correlation is discussed.
Diedrichs, Danilo R; Isihara, Paul A; Buursma, Doeke D
2014-02-01
Using a basic, two transmission level seasonal SIR model, we introduce mathematical evidence for the schedule effect which asserts that major recurring peak infections can be significantly reduced by modification of the traditional school calendar. The schedule effect is observed first in simulated time histories of the infectious population. Schedules with higher average transmission rate may exhibit reduced peak infections. Splitting vacations changes the period of the oscillating transmission function and can confine limit cycles in the proportion susceptible/proportion infected phase plane. Numerical analysis of the phase plane shows the relationship between the transmission period and the maximum recurring infection peaks and period of the response. For certain transmission periods, this response may exhibit period-doubling and chaos, leading to increased peaks. Non-monotonic infectious response is also observed in conjunction with changing birth rate. We discuss how to take these effects into consideration to design an optimum school schedule with particular reference to a hypothetical developing world context. Copyright © 2013 Elsevier Inc. All rights reserved.
Human phase response curve to a 1 h pulse of bright white light
St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W
2012-01-01
The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a <3 lux dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a <15 lux dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n= 18) or <3 lux dim background light (n= 18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (<3 lux) before and after the light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the <3 lux dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting. PMID:22547633
Human phase response curve to a 1 h pulse of bright white light.
St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W
2012-07-01
The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a <3 lux dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a <15 lux dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n=18) or <3 lux dim background light (n=18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (<3 lux) before and after the light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the <3 lux dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting.
Tiitinen, Hannu; Salminen, Nelli H; Palomäki, Kalle J; Mäkinen, Ville T; Alku, Paavo; May, Patrick J C
2006-03-20
In an attempt to delineate the assumed 'what' and 'where' processing streams, we studied the processing of spatial sound in the human cortex by using magnetoencephalography in the passive and active recording conditions and two kinds of spatial stimuli: individually constructed, highly realistic spatial (3D) stimuli and stimuli containing interaural time difference (ITD) cues only. The auditory P1m, N1m, and P2m responses of the event-related field were found to be sensitive to the direction of sound source in the azimuthal plane. In general, the right-hemispheric responses to spatial sounds were more prominent than the left-hemispheric ones. The right-hemispheric P1m and N1m responses peaked earlier for sound sources in the contralateral than for sources in the ipsilateral hemifield and the peak amplitudes of all responses reached their maxima for contralateral sound sources. The amplitude of the right-hemispheric P2m response reflected the degree of spatiality of sound, being twice as large for the 3D than ITD stimuli. The results indicate that the right hemisphere is specialized in the processing of spatial cues in the passive recording condition. Minimum current estimate (MCE) localization revealed that temporal areas were activated both in the active and passive condition. This initial activation, taking place at around 100 ms, was followed by parietal and frontal activity at 180 and 200 ms, respectively. The latter activations, however, were specific to attentional engagement and motor responding. This suggests that parietal activation reflects active responding to a spatial sound rather than auditory spatial processing as such.
Weissland, Thierry; Faupin, Arnaud; Borel, Benoit; Berthoin, Serge; Leprêtre, Pierre-Marie
2015-01-01
A bioenergetical analysis of manoeuvrability and agility performance for wheelchair players is inexistent. It was aimed at comparing the physiological responses and performance obtained from the octagon multistage field test (MFT) and the modified condition in “8 form” (MFT-8). Sixteen trained wheelchair basketball players performed both tests in randomized condition. The levels performed (end-test score), peak values of oxygen uptake (VO2peak), minute ventilation (VEpeak), heart rate (HRpeak), peak and relative blood lactate (Δ[Lact−] = peak – rest values), and the perceived rating exertion (RPE) were measured. MFT-8 induced higher VO2peak and VEpeak values compared to MFT (VO2peak: 2.5 ± 0.6 versus 2.3 ± 0.6 L·min−1 and VEpeak: 96.3 ± 29.1 versus 86.6 ± 23.4 L·min−1; P < 0.05) with no difference in other parameters. Significant relations between VEpeak and end-test score were correlated for both field tests (P < 0.05). At exhaustion, MFT attained incompletely VO2peak and VEpeak. Among experienced wheelchair players, MFT-8 had no effect on test performance but generates higher physiological responses than MFT. It could be explained by demands of wheelchair skills occurring in 8 form during the modified condition. PMID:25802841
Comparable Neutrophil Responses for Arm and Intensity-matched Leg Exercise.
Leicht, Christof A; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C
2017-08-01
Arm exercise is performed at lower absolute intensities than lower body exercise. This may impact on intensity-dependent neutrophil responses, and it is unknown whether individuals restricted to arm exercise experience the same changes in the neutrophil response as found for lower body exercise. Therefore, we aimed to investigate the importance of exercise modality and relative exercise intensity on the neutrophil response. Twelve moderately trained men performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak arms) and cycling (V˙O2peak legs): 1) arm cranking exercise at 60% V˙O2peak arms, 2) moderate cycling at 60% V˙O2peak legs, and 3) easy cycling at 60% V˙O2peak arms. Neutrophil numbers in the circulation increased for all exercise trials, but were significantly lower for easy cycling when compared with arm exercise (P = 0.009), mirroring the blunted increase in HR and epinephrine during easy cycling. For all trials, exercising HR explained some of the variation of the neutrophil number 2 h postexercise (R = 0.51-0.69), epinephrine explaining less of this variation (R = 0.21-0.34). The number of neutrophils expressing CXCR2 decreased in the recovery from exercise in all trials (P < 0.05). Arm and leg exercise elicits the same neutrophil response when performed at the same relative intensity, implying that populations restricted to arm exercise might achieve a similar exercise induced neutrophil response as those performing lower body exercise. A likely explanation for this is the higher sympathetic activation and cardiac output for arm and relative intensity-matched leg exercise when compared with easy cycling, which is partly reflected in HR. This study further shows that the downregulation of CXCR2 may be implicated in exercise-induced neutrophilia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltzfus-Dueck, T.; Scott, B.
An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less
Effect of Response Reduction Factor on Peak Floor Acceleration Demand in Mid-Rise RC Buildings
NASA Astrophysics Data System (ADS)
Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.
2017-06-01
Estimation of Peak Floor Acceleration (PFA) demand along the height of a building is crucial for the seismic safety of nonstructural components. The effect of the level of inelasticity, controlled by the response reduction factor (strength ratio), is studied using incremental dynamic analysis. A total of 1120 nonlinear dynamic analyses, using a suite of 30 recorded ground motion time histories, are performed on mid-rise reinforced-concrete (RC) moment-resisting frame buildings covering a wide range in terms of their periods of vibration. The obtained PFA demands are compared with some of the major national seismic design and retrofit codes (IS 1893 draft version, ASCE 41, EN 1998, and NZS 1170.4). It is observed that the PFA demand at the building's roof level decreases with increasing period of vibration as well as with strength ratio. However, current seismic building codes do not account for these effects thereby producing very conservative estimates of PFA demands. Based on the identified parameters affecting the PFA demand, a model to obtain the PFA distribution along the height of a building is proposed. The proposed model is validated with spectrum-compatible time history analyses of the considered buildings with different strength ratios.
Hearing conspecific vocal signals alters peripheral auditory sensitivity
Gall, Megan D.; Wilczynski, Walter
2015-01-01
We investigated whether hearing advertisement calls over several nights, as happens in natural frog choruses, modified the responses of the peripheral auditory system in the green treefrog, Hyla cinerea. Using auditory evoked potentials (AEP), we found that exposure to 10 nights of a simulated male chorus lowered auditory thresholds in males and females, while exposure to random tones had no effect in males, but did result in lower thresholds in females. The threshold change was larger at the lower frequencies stimulating the amphibian papilla than at higher frequencies stimulating the basilar papilla. Suprathreshold responses to tonal stimuli were assessed for two peaks in the AEP recordings. For the peak P1 (assessed for 0.8–1.25 kHz), peak amplitude increased following chorus exposure. For peak P2 (assessed for 2–4 kHz), peak amplitude decreased at frequencies between 2.5 and 4.0 kHz, but remained unaltered at 2.0 kHz. Our results show for the first time, to our knowledge, that hearing dynamic social stimuli, like frog choruses, can alter the responses of the auditory periphery in a way that could enhance the detection of and response to conspecific acoustic communication signals. PMID:25972471
Nonequilibrium simulations of model ionomers in an oscillating electric field
Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.; ...
2016-07-25
Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less
Nonequilibrium simulations of model ionomers in an oscillating electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.
Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less
Silent calcium channels in skeletal muscle fibers of the crustacean Atya lanipes.
Monterrubio, J; Lizardi, L; Zuazaga, C
2000-01-01
The superficial (tonic) abdominal flexor muscles of Atya lanipes do not generate Ca(2+) action potentials when depolarized and have no detectable inward Ca(2+) current. These fibers, however, are strictly dependent on Ca(2+) influx for contraction, suggesting that they depend on Ca(2+)-induced Ca(2+) release for contractile activation. The nature of the communication between Ca(2+) channels in the sarcolemmal/tubular membrane and Ca(2+) release channels in the sarcoplasmic reticulum in this crustacean muscle was investigated. The effects of dihydropyridines on tension generation and the passive electrical response were examined in current-clamped fibers: Bay K 8644 enhanced tension about 100% but did not alter the passive electrical response; nifedipine inhibited tension by about 70%. Sr(2+) and Ba(2+) action potentials could be elicited in Ca(2+)-free solutions. The spikes generated by these divalent cations were abolished by nifedipine. As the Sr(2+) or Ba(2+) concentrations were increased, the amplitudes of the action potentials and their maximum rate of rise, V(max), increased and tended towards saturation. Three-microelectrode voltage-clamp experiments showed that even at high (138 mm) extracellular Ca(2+) concentration the channels were silent, i.e., no inward Ca(2+) current was detected. In Ca(2+)-free solutions, inward currents carried by 138 mm Sr(2+) or Ba(2+) were observed. The currents activated at voltages above -40 mV and peaked at about 0 mV. This voltage-activation profile and the sensitivity of the channels to dihydropyridines indicate that they resemble L-type Ca(2+) channels. Peak inward current density values were low, ca. -33 microA/cm(2) for Sr(2+) and -14 microA/cm(2) for Ba(2+), suggesting that Ca(2+) channels are present at a very low density. It is concluded that Ca(2+)-induced Ca(2+) release in this crustacean muscle operates with an unusually high gain: Ca(2+) influx through the silent Ca(2+) channels is too low to generate a macroscopic inward current, but increases sufficiently the local concentration of Ca(2+) in the immediate vicinity of the sarcoplasmic reticulum Ca(2+) release channels to trigger the highly amplified release of Ca(2+) required for tension generation.
Magnus, Maria C.; Stigum, Hein; Håberg, Siri E.; Nafstad, Per; London, Stephanie J.; Nystad, Wenche
2015-01-01
Background The immediate postnatal period is the period of the fastest growth in the entire life span and a critical period for lung development. Therefore, it is interesting to examine the association between growth during this period and childhood respiratory disorders. Methods We examined the association of peak weight and height velocity to age 36 months with maternal report of current asthma at 36 months (n = 50,311), recurrent lower respiratory tract infections (LRTIs) by 36 months (n = 47,905) and current asthma at 7 years (n = 24,827) in the Norwegian Mother and Child Cohort Study. Peak weight and height velocity was calculated using the Reed1 model through multilevel mixed-effects linear regression. Multivariable log-binomial regression was used to calculate adjusted relative risks (adj.RR) and 95% confidence intervals (CI). We also conducted a sibling pair analysis using conditional logistic regression. Results Peak weight velocity was positively associated with current asthma at 36 months [adj.RR 1.22 (95%CI: 1.18, 1.26) per standard deviation (SD) increase], recurrent LRTIs by 36 months [adj.RR 1.14 (1.10, 1.19) per SD increase] and current asthma at 7 years [adj.RR 1.13 (95%CI: 1.07, 1.19) per SD increase]. Peak height velocity was not associated with any of the respiratory disorders. The positive association of peak weight velocity and asthma at 36 months remained in the sibling pair analysis. Conclusions Higher peak weight velocity, achieved during the immediate postnatal period, increased the risk of respiratory disorders. This might be explained by an influence on neonatal lung development, shared genetic/epigenetic mechanisms and/or environmental factors. PMID:25635872
Design and fabrication of low power GaAs/AlAs resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Md Zawawi, Mohamad Adzhar; Missous, Mohamed
2017-12-01
A very low peak voltage GaAs/AlAs resonant tunneling diode (RTD) grown by molecular beam epitaxy (MBE) has been studied in detail. Excellent growth control with atomic-layer precision resulted in a peak voltage of merely 0.28 V (0.53 V) in forward (reverse) direction. The peak current density in forward bias is around 15.4 kA/cm2 with variation of within 7%. As for reverse bias, the peak current density is around 22.8 kA/cm2 with 4% variation which implies excellent scalability. In this work, we have successfully demonstrated the fabrication of a GaAs/AlAs RTD by using a conventional optical lithography and chemical wet-etching with very low peak voltage suitable for application in low dc input power RTD-based sub-millimetre wave oscillators.
Li, Jian-Bo; Xiao, Si; Liang, Shan; He, Meng-Dong; Luo, Jian-Hua; Kim, Nam-Chol; Chen, Li-Qun
2017-10-16
We perform a theoretical study of the bistable four-wave mixing (FWM) response in a coupled system comprised of a semiconductor quantum dot (SQD) and a photonic crystal (PC) nanocavity in which the SQD is embedded. It is shown that the shape of the FWM spectrum can switch among single-peaked, double-peaked, triple-peaked, and four-peaked arising from the vacuum Rabi splitting and the exciton-nanocavity coupling. Especially, we map out bistability phase diagrams within a parameter subspace of the system, and find that it is easy to turn on or off the bistable FWM response by only adjusting the excitation frequency or the pumping intensity. Our results offer a feasible means for measuring the SQD-PC nanocavity coupling strength and open a new avenue to design optical switches and memories.
Dynamic Response of an Optomechanical System to a Stationary Random Excitation in the Time Domain
Palmer, Jeremy A.; Paez, Thomas L.
2011-01-01
Modern electro-optical instruments are typically designed with assemblies of optomechanical members that support optics such that alignment is maintained in service environments that include random vibration loads. This paper presents a nonlinear numerical analysis that calculates statistics for the peak lateral response of optics in an optomechanical sub-assembly subject to random excitation of the housing. The work is unique in that the prior art does not address peak response probability distribution for stationary random vibration in the time domain for a common lens-retainer-housing system with Coulomb damping. Analytical results are validated by using displacement response data from random vibration testingmore » of representative prototype sub-assemblies. A comparison of predictions to experimental results yields reasonable agreement. The Type I Asymptotic form provides the cumulative distribution function for peak response probabilities. Probabilities are calculated for actual lens centration tolerances. The probability that peak response will not exceed the centration tolerance is greater than 80% for prototype configurations where the tolerance is high (on the order of 30 micrometers). Conversely, the probability is low for those where the tolerance is less than 20 micrometers. The analysis suggests a design paradigm based on the influence of lateral stiffness on the magnitude of the response.« less
NASA Astrophysics Data System (ADS)
Alila, Y.; Schnorbus, M.
2005-12-01
The debate regarding peak flow responses to forest clearcutting and road building in the maritime regions of the Pacific Northwest has attracted much attention over the past several decades and its outcome is an important scientific and operational concern. Although there appears to be general consensus that small peak discharge events are increased following forest management activities, little conclusive evidence exists regarding the impact of forest management activities on large events. Statistical tests in traditional paired watershed studies have been used to accept or reject hypotheses regarding peak flow responses to clearcutting and roads but provided no insight into watershed processes and other factors leading to their outcome. Furthermore, statistical analyses of peak flow responses to forestry activities in traditional paired watershed studies are confounded by the many factors that may contribute to management effects on watershed hydrology as well as by issues such as shortness of streamflow records and climate variability. To this end, a new perspective is offered in the debate regarding peak flow responses to clearcutting and road building in the maritime regions of the Pacific Northwest by combining numerical modeling with high-quality hydro-meteorological data collected at the 10-km2 Carnation Creek on the west coast of Vancouver Island, British Columbia (BC). In this approach we explicitly account for changes in evapotranspiration loss, forest road construction and, in particular, introduce the concept of the competing influences of matrix versus preferential hillslope runoff. For scenarios involving road construction, forest clearcutting (52% cut rate) and roads and clearcutting combined, peak discharge increases decrease with decreasing event frequency and statistically significant ( = 0.05) increases in peak flow are confined to events with a 1 year or lower return period. For a range of return periods from 0.17 to 20 years, the effect (i.e. increase in peak discharge) of clearcutting alone is more severe than roads alone whereas the combined effect of roads and clearcutting is equal to the addition of the isolated treatments effects. The lower efficiency of the forest canopy in intercepting rainfall for large storms compared to small storms and the increasing proportion of preferential flow in hillslope runoff as event size increases appears to be the main reason for the declining peak flow response to clearcutting. Changes in soil moisture conditions are thought to be relatively unimportant given the significance of preferential hillslope runoff. The weakening response of peak flows to roads with increasing event size is related to higher subsurface flow rates associated with preferential flow coupled with a general lowering of the water table below road cuts; this reduces direct channel interception of hillslope runoff and tends to offset gains in channel flow from direct culvert discharge from the road network.
Weiss, T; Erxleben, C; Rathmayer, W
2001-01-01
A single fibre preparation from the extensor muscle of a marine isopod crustacean is described which allows the analysis of membrane currents and simultaneously recorded contractions under two-electrode voltage-clamp conditions. We show that there are three main depolarisation-gated currents, two are outward and carried by K+, the third is an inward Ca2+ current, I(Ca). Normally, the K+ currents which can be isolated by using K+ channel blockers, mask I(Ca). I(Ca) activates at potentials more positive than -40 mV, is maximal around 0 mV, and shows strong inactivation at higher depolarisation. Inactivation depends on current rather than voltage. Ba2+, Sr2+ and Mg2+ can substitute for Ca2+. Ba2+ currents are about 80% larger than Ca2+ currents and inactivate little. The properties of I(Ca) characterise it as a high threshold L-type current. The outward current consists primarily of a fast, transient A current, I(K(A)) and a maintained, delayed rectifier current, I(K(V)). In some fibres, a small Ca2+-dependent K+ current is also present. I(K(A)) activates fast at depolarisation above -45 mV, shows pronounced inactivation and is almost completely inactivated at holding potentials more positive than -40 mV. I(K(A)) is half-maximally blocked by 70 microM 4-aminopyridine (4-AP), and 70 mM tetraethylammonium (TEA). I(K(V)) activates more slowly, at about -30 mV, and shows no inactivation. It is half-maximally blocked by 2 mM TEA but rather insensitive to 4-AP. Physiologically, the two K+ currents prevent all-or-nothing action potentials and determine the graded amplitude of active electrical responses and associated contractions. Tension development depends on and is correlated with depolarisation-induced Ca2+ influx mediated by I(Ca). The voltage dependence of peak tension corresponds directly to the voltage dependence of the integrated I(Ca). The threshold potential for contraction is at about -38 mV. Peak tension increases with increasing voltage steps, reaches maximum at around 0 mV, and declines with further depolarisation.
Han, X; Ferrier, G R
1992-01-01
1. Membrane currents were measured with a two-microelectrode technique in voltage clamped rabbit cardiac Purkinje fibres under conditions known to cause intracellular calcium overload and to eliminate or minimize Na(+)-Ca2+ exchange. 2. Increasing [Ca2+]o from 2.5 to 5 mM or above and substituting external sodium with either sucrose, choline or Li+ induced an oscillatory transient inward current (TI) which peaked 200-300 ms after repolarization from a previous depolarizing pulse. The TI quickly disappeared upon return to normal Tyrode solution. Both the rate and configuration of action potentials of Purkinje fibres also returned to control upon return to Tyrode solution after 30 min of high Ca2+ exposure, if the Ca2+ concentration was 30 mM or less. 3. The TI in Na(+)-free solution was Ca2+ dependent. Either zero or low (2.5 mM) [Ca2+]o, or replacement of [Ca2+]o by BaCl prevented induction of the TI current upon repolarization from a previous depolarizing pulse. 4. In the presence of 30 mM-CaCl2 and with choline chloride as the substitute for NaCl, TI had a distinct reversal potential (Erev) of -25 mV. The time-to-peak TI, either inward or outward, did not shift significantly with change in voltage. Both inward and outward TI were simultaneously abolished by exposure to 1 microM-ryanodine, suggesting they were both activated by transient release of Ca2+ from the sarcoplasmic reticulum. The occurrence of TI in the absence of [Na+]o is not compatible with an electrogenic Na(+)-Ca2+ exchange mechanism. The existence of a clear-cut reversal potential suggests that an ionic channel may be responsible for the TI under these conditions. 5. Both the magnitude of peak TI and the Erev were affected by changes of CaCl2 concentration. (i) Under steady-state conditions, peak inward TI was significantly increased when the [Ca2+]o was elevated from 5 to 15 mM. The peak TI in the outward direction was significantly increased when [Ca2+]o was elevated from 15 to 30 mM; however, the difference in peak inward TI at 15 and 30 mM [Ca2+]o was small. (ii) Clear-cut reversals of TI were found at Ca2+ concentrations of 10 mM (Erev = -19.5 mV) or greater, and elevation of [Ca2+]o to 20, 30, 50 and 105 mM shifted the Erev to more negative potentials. (iii) In the presence of 5 mM [Ca2+]o the inward TI declined to zero at about -30 mV, and test voltages between -55 and +5 mV failed to reveal a distinct outward TI.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1284077
Systematic comparison of the response properties of protein and RNA mediated gene regulatory motifs.
Iyengar, Bharat Ravi; Pillai, Beena; Venkatesh, K V; Gadgil, Chetan J
2017-05-30
We present a framework enabling the dissection of the effects of motif structure (feedback or feedforward), the nature of the controller (RNA or protein), and the regulation mode (transcriptional, post-transcriptional or translational) on the response to a step change in the input. We have used a common model framework for gene expression where both motif structures have an activating input and repressing regulator, with the same set of parameters, to enable a comparison of the responses. We studied the global sensitivity of the system properties, such as steady-state gain, overshoot, peak time, and peak duration, to parameters. We find that, in all motifs, overshoot correlated negatively whereas peak duration varied concavely with peak time. Differences in the other system properties were found to be mainly dependent on the nature of the controller rather than the motif structure. Protein mediated motifs showed a higher degree of adaptation i.e. a tendency to return to baseline levels; in particular, feedforward motifs exhibited perfect adaptation. RNA mediated motifs had a mild regulatory effect; they also exhibited a lower peaking tendency and mean overshoot. Protein mediated feedforward motifs showed higher overshoot and lower peak time compared to the corresponding feedback motifs.
Strege, Peter; Beyder, Arthur; Bernard, Cheryl; Crespo-Diaz, Ruben; Behfar, Atta; Terzic, Andre; Ackerman, Michael; Farrugia, Gianrico
2012-01-01
NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na+ current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na+ current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine. PMID:23018927
AC losses in (Bi,Pb) 2Sr 2Ca 2Cu 3O x tapes
NASA Astrophysics Data System (ADS)
D'Anna, G.; Indenbom, M. V.; André, M.-O.; Benoit, W.; Grivel, J.-C.; Hensel, B.; Flükiger, R.
1994-05-01
A double peak structure is observed in the AC losses of (Bi,Pb) 2Sr 2Ca 2Cu 3O x silver-sheathed tapes using a torsion-pendulum oscillator. The low-temperature peak is associated to the intragrain flux expulsion, while the high-temperature peak results from a macroscopic current path around the whole sample due to a well-coupled fraction of the grains. The flux pinning by the dislocations forming small-angle grain boundaries is suggested to control the transport current.
Seismic response of soft deposits due to landslide: The Mission Peak, California, landslide
Hartzell, Stephen; Leeds, Alena L.; Jibson, Randall W.
2017-01-01
The seismic response of active and intermittently active landslides is an important issue to resolve to determine if such landslides present an elevated hazard in future earthquakes. To study the response of landslide deposits, seismographs were placed on the Mission Peak landslide in the eastern San Francisco Bay region for a period of one year. Numerous local and near‐regional earthquakes were recorded that reveal a complexity of seismic response phenomena using the horizontal‐to‐vertical spectral ratio method. At lower frequencies, a clear spectral peak is observed at 0.5 Hz common to all four stations in the array and is attributed to a surface topographic effect. At higher frequencies, other spectral peaks occur that are interpreted in terms of local deposits and structures. Site amplification from the standard reference site method shows the minimum amplification with a factor of 2, comparing a site on and off the landslide. A site located on relatively homogeneous deposits of loose soils shows a clear spectral peak associated with the thickness of the deposit. Another site on a talus‐filled graben near the headscarp shows possible 2D or 3D effects from subsurface topography or scattering within and between buried sandstone blocks. A third site on a massive partially detached block below the crown of the headscarp shows indications of resonance caused by the reverberation of shear waves within the block. The varied seismic response of different parts of this complex landslide is consistent with other studies which found that, although landslide response is commonly enhanced in the downslope direction of landslide movement, such a response does not occur uniformly or consistently. When it does occur, enhanced site response parallel to the direction of landslide movement would contribute to landslide reactivation during significant earthquakes.
Neves, Camila D. C.; Lacerda, Ana Cristina Rodrigues; Lage, Vanessa K. S.; Lima, Liliana P.; Fonseca, Sueli F.; de Avelar, Núbia C. P.; Teixeira, Mauro M.; Mendonça, Vanessa A.
2015-01-01
Background The application of the Shuttle Walking Test (SWT) to assess cardiorespiratory fitness and the intensity of this test in healthy participants has rarely been studied. This study aimed to assess and correlate the cardiorespiratory responses of the SWT with the cardiopulmonary exercise testing (CEPT) and to develop a regression equation for the prediction of peak oxygen uptake (VO2 peak) in healthy sedentary adult men. Methods In the first stage of this study, 12 participants underwent the SWT and the CEPT on a treadmill. In the second stage, 53 participants underwent the SWT twice. In both phases, the VO2 peak, respiratory exchange ratio (R), and heart rate (HR) were evaluated. Results Similar results in VO2 peak (P>0.05), R peak (P>0.05) and predicted maximum HR (P>0.05) were obtained between the SWT and CEPT. Both tests showed strong and significant correlations of VO2 peak (r = 0.704, P = 0.01) and R peak (r = 0.737, P<0.01), as well as the agreement of these measurements by Bland-Altman analysis. Body mass index and gait speed were the variables that explained 40.6% (R2 = 0.406, P = 0.001) of the variance in VO2 peak. The results obtained by the equation were compared with the values obtained by the gas analyzer and no significant difference between them (P>0.05) was found. Conclusions The SWT produced maximal cardiorespiratory responses comparable to the CEPT, and the developed equation showed viability for the prediction of VO2 peak in healthy sedentary men. PMID:25659094
Digital processing with single electrons for arbitrary waveform generation of current
NASA Astrophysics Data System (ADS)
Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa
2018-03-01
We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, P.; Liu, G. Z.; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024
The emission threshold of explosive emission cathodes (EECs) is an important factor for beam quality. It can affect the explosive emission delay time, the plasma expansion process on the cathode surface, and even the current amplitude when the current is not fully space-charge-limited. This paper researches the influence of the emission threshold of an annular EEC on the current waveform in a foilless diode when the current is measured by a Rogowski coil. The particle-in-cell simulation which is performed under some tolerable and necessary simplifications shows that the long explosive emission delay time of high-threshold cathodes may leave an apparentmore » peak of displacement current on the rise edge of the current waveform, and this will occur only when the electron emission starts after this peak. The experimental researches, which are performed under a diode voltage of 1 MV and a repetitive frequency of 20 Hz, demonstrate that the graphite cathode has a lower emission threshold and a longer lifetime than the stainless steel cathode according to the variation of the peak of displacement current on the rise edge of the current waveform.« less
Farahi, Abdelfettah; Achak, Mounia; El Gaini, Laila; El Mhammedi, Moulay Abderrahim; Bakasse, Mina
2015-09-01
Carbon paste electrodes (CPEs) modified with silver particles present an interesting tool in the determination of paraquat (PQ) using square wave voltammetry. Metallic silver particle deposits have been obtained via electrochemical deposition in acidic media using cyclic voltammetry. Scanning electron microscopy and X-ray diffraction measurements show that the silver particles are deposited onto carbon surfaces in aggregate form. The response of PQ with modified electrode (Ag-CPE) related to Ag/CP loading, preconcentration time, and measuring solution pH was investigated. The result shows that the increase in the two cathodic peak currents (Peak 1 and Peak 2), under optimized conditions, was linear with the increase in PQ concentration in the range 1.0 × 10 -7 mol/L to 1.0 × 10 -3 mol/L. The detection limit and quantification limit were 2.01 × 10 -8 mol/L and 6.073 × 10 -8 mol/L, respectively for Peak 1. The precision expressed as relative standard deviation for the concentration level 1.0 × 10 -5 mol/L (n = 8) was found to be 1.45%. The methodology was satisfactorily applied for the determination of PQ in citric fruit cultures. Copyright © 2015. Published by Elsevier B.V.
Effect of dynamic exercise on human carotid-cardiac baroreflex latency
NASA Technical Reports Server (NTRS)
Potts, J. T.; Raven, P. B.
1995-01-01
We compared the beat-to-beat responses of heart rate (HR) after brief activation of carotid baroreceptors in resting humans with the responses obtained during mild-to-moderate levels of dynamic exercise [25 and 50% of peak O2 uptake (VO2peak)] to investigate the effect of exercise on baroreflex latency. Carotid baroreceptors were activated by a pressure pulse (5 s) of neck suction (NS, -80 Torr) and neck pressure (NP, +40 Torr) during held expiration. At rest the peak change in HR to NS/NP occurred during the first several heartbeats (1st-3rd beat), whereas during mild and moderate exercise peak HR responses occurred near the end of the NS/NP pulse (6th-8th beat). In contrast, time (s) to the peak change in HR was not different between rest and exercise (P > 0.05). Reflex tachycadia to NP progressively decreased during exercise (17 +/- 3, 10 +/- 1, and 4 +/- 1% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P < 0.05), and a strong positive correlation was found between the magnitude of the reflex tachycardia and a measure of HR variability (cardiac vagal tone index, r = 0.74, P < 0.0001). Reflex bradycardia to NS gradually increased during exercise (13 +/- 2, 17 +/- 2, and 18 +/- 2% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P = 0.10) and was negatively correlated with cardiac vagal tone (r = 0.42, P < 0.06).(ABSTRACT TRUNCATED AT 250 WORDS).
NASA Astrophysics Data System (ADS)
Battaglia, Gianna; Joos, Fortunat
2018-06-01
Ocean deoxygenation is recognized as key ecosystem stressor of the future ocean and associated climate-related ocean risks are relevant for current policy decisions. In particular, benefits of reaching the ambitious 1.5 °C warming target mentioned by the Paris Agreement compared to higher temperature targets are of high interest. Here, we model oceanic oxygen, warming and their compound hazard in terms of metabolic conditions on multi-millennial timescales for a range of equilibrium temperature targets. Scenarios where radiative forcing is stabilized by 2300 are used in ensemble simulations with the Bern3D Earth System Model of Intermediate Complexity. Transiently, the global mean ocean oxygen concentration decreases by a few percent under low forcing and by 40 % under high forcing. Deoxygenation peaks about a thousand years after stabilization of radiative forcing and new steady-state conditions are established after AD 8000 in our model. Hypoxic waters expand over the next millennium and recovery is slow and remains incomplete under high forcing. Largest transient decreases in oxygen are projected for the deep sea. Distinct and near-linear relationships between the equilibrium temperature response and marine O2 loss emerge. These point to the effectiveness of the Paris climate target in reducing marine hazards and risks. Mitigation measures are projected to reduce peak decreases in oceanic oxygen inventory by 4.4 % °C-1 of avoided equilibrium warming. In the upper ocean, the decline of a metabolic index, quantified by the ratio of O2 supply to an organism's O2 demand, is reduced by 6.2 % °C-1 of avoided equilibrium warming. Definitions of peak hypoxia demonstrate strong sensitivity to additional warming. Volumes of water with less than 50 mmol O2 m-3, for instance, increase between 36 % and 76 % °C-1 of equilibrium temperature response. Our results show that millennial-scale responses should be considered in assessments of ocean deoxygenation and associated climate-related ocean risks. Peak hazards occur long after stabilization of radiative forcing and new steady-state conditions establish after AD 8000.
Zhao, Danying; Shen, Lin; Fan, Bei; Yu, Mengmeng; Zheng, Yang; Lv, Shengnan; Sheng, Jiping
2009-10-20
C-repeat/dehydration-responsive element binding factor (CBF) is a transcription factor regulating cold response in plants, of which little is known in fruits. We showed a double-peak expression pattern of Lycopersicon esculentum putative transcriptional activator CBF1 (LeCBF1) in mature green fruit. The peaks appeared at 2 and 16 h after subjection to cold storage (2 degrees C). The second peak was coincident with, and thus caused by a peak in endogenous ethylene production. We showed that LeCBF1 expression was regulated by exogenous ethylene and 1-methylcyclopropene, and was not expressed without cold induction. LeCBF1 expression was different in the five maturation stages of fruits, but expression peaked at 2 h at all stages.
The new oxide paradigm for solid state ultraviolet photodetectors
NASA Astrophysics Data System (ADS)
Rogers, D. J.; Bove, P.; Arrateig, X.; Sandana, V. E.; Teherani, F. H.; Razeghi, M.; McClintock, R.; Frisch, E.; Harel, S.
2018-03-01
The bandgap of wurzite ZnO layers grown on 2 inch diameter c-Al2O3 substrates by pulsed laser deposition was engineered from 3.7 to 4.8 eV by alloying with Mg. Above this Mg content the layers transformed from single phase hcp to mixed hcp/fcc phase before becoming single phase fcc above a bandgap of about 5.5 eV. Metal-Semiconductor-Metal (MSM) photodetectors based on gold Inter-Digitated-Transducer structures were fabricated from the single phase hcp layers by single step negative photolithography and then packaged in TO5 cans. The devices gave over 6 orders of magnitude of separation between dark and light signal with solar rejection ratios (I270 : I350) of over 3 × 105 and dark signals of 300 pA (at a bias of -5V). Spectral responsivities were engineered to fit the "Deutscher Verein des Gas- und Wasserfaches" industry standard form and gave over two decade higher responsivities (14 A/W, peaked at 270 nm) than commercial SiC based devices. Homogeneous Ga2O3 layers were also grown on 2 inch diameter c-Al2O3 substrates by PLD. Optical transmission spectra were coherent with a bandgap that increased from 4.9 to 5.4 eV when film thickness was decreased from 825 to 145 nm. X-ray diffraction revealed that the films were of the β-Ga2O3 (monoclinic) polytype with strong (-201) orientation. β-Ga2O3 MSM photodetectors gave over 4 orders of magnitude of separation between dark and light signal (at -5V bias) with dark currents of 250 pA and spectral responsivities of up to 40 A/W (at -0.75V bias). It was found that the spectral responsivity peak position could be decreased from 250 to 230 nm by reducing film thickness from 825 to 145 nm. This shift in peak responsivity wavelength with film thickness (a) was coherent with the apparent bandgap shift that was observed in transmission spectroscopy for the same layers and (b) conveniently provides a coverage of the spectral region in which MgZnO layers show fcc/hcp phase mixing.
Instantaneous polarization analysis of ambient noise recordings in site response investigations
NASA Astrophysics Data System (ADS)
Del Gaudio, Vincenzo
2017-07-01
A new procedure is proposed for analyses of ambient noise aimed at investigating complex cases of site response to seismic shaking. Information on site response characterized by several resonance frequencies and by amplifications varying with direction can be obtained by analysing instantaneous polarization properties of ambient noise recordings. Through this kind of analysis, it is possible to identify Rayleigh wave packets emerging from incoherent background noise for very short intervals. Analysing noise recordings passed through narrow-band filters with different central frequencies, variations of Rayleigh wave properties depending on frequencies can be estimated. In particular, one can calculate: (i) the instantaneous ratios H/V between the amplitudes of horizontal and vertical components of the elliptical particle motion and (ii) the azimuthal direction of the vertical plane containing such a motion. These can be determined on a large number of recording samples, providing the basis for statistical estimates. A preferential concentration of H/V peak values at site-specific frequencies and directions can reveal directional resonance phenomena. Furthermore, peak amplitudes can be related to site amplification factors and provide constraints for subsurface velocity modelling. Some tests, carried out on data acquired at sites with known response properties, gave indications on how to select the parameters of the analysis that optimize its implementation. In particular, preliminary trials, conducted on a limited number of frequencies, allow the selection of the parameters that, while providing a large number of instantaneous H/V estimates for Rayleigh waves, minimize their scattering. The analysis can then be refined and an H/V curve as function of frequency can be obtained with a higher spectral resolution. First tests showed that cases of directional resonance can be more effectively recognized with this technique and more details can be revealed on its properties (e.g. secondary peaks) in comparison to the Nakamura's method currently employed for ordinary noise analysis. For sites characterized by isotropic response or by differently oriented directional maxima, however, the presence of noise sources with an anisotropic spatial distribution, which excite signals with inhomogeneous distribution of energy through the examined spectral band, can make the correct interpretation of data more difficult.
ERIC Educational Resources Information Center
Kehoe, E. James; Ludvig, Elliot A.; Sutton, Richard S.
2010-01-01
Using interstimulus intervals (ISIs) of 125, 250, and 500 msec in trace conditioning of the rabbit nictitating membrane response, the offset times and durations of conditioned responses (CRs) were collected along with onset and peak latencies. All measures were proportional to the ISI, but only onset and peak latencies conformed to the criterion…
On nonstationarity-related errors in modal combination rules of the response spectrum method
NASA Astrophysics Data System (ADS)
Pathak, Shashank; Gupta, Vinay K.
2017-10-01
Characterization of seismic hazard via (elastic) design spectra and the estimation of linear peak response of a given structure from this characterization continue to form the basis of earthquake-resistant design philosophy in various codes of practice all over the world. Since the direct use of design spectrum ordinates is a preferred option for the practicing engineers, modal combination rules play central role in the peak response estimation. Most of the available modal combination rules are however based on the assumption that nonstationarity affects the structural response alike at the modal and overall response levels. This study considers those situations where this assumption may cause significant errors in the peak response estimation, and preliminary models are proposed for the estimation of the extents to which nonstationarity affects the modal and total system responses, when the ground acceleration process is assumed to be a stationary process. It is shown through numerical examples in the context of complete-quadratic-combination (CQC) method that the nonstationarity-related errors in the estimation of peak base shear may be significant, when strong-motion duration of the excitation is too small compared to the period of the system and/or the response is distributed comparably in several modes. It is also shown that these errors are reduced marginally with the use of the proposed nonstationarity factor models.
The dichotomous response of flood and storm extremes to rising global temperatures
NASA Astrophysics Data System (ADS)
Sharma, A.; Wasko, C.
2017-12-01
Rising temperature have resulted in increases in short-duration rainfall extremes across the world. Additionally it has been shown (doi:10.1038/ngeo2456) that storms will intensify, causing derived flood peaks to rise even more. This leads us to speculate that flood peaks will increase as a result, complying with the storyline presented in past IPCC reports. This talk, however, shows that changes in flood extremes are much more complex. Using global data on extreme flow events, the study conclusively shows that while the very extreme floods may be rising as a result of storm intensification, the more frequent flood events are decreasing in magnitude. The study argues that changes in the magnitude of floods are a function of changes in storm patterns and as well as pre-storm or antecedent conditions. It goes on to show that while changes in storms dominate for the most extreme events and over smaller, more urbanised catchments, changes in pre-storm conditions are the driving factor in modulating flood peaks in large rural catchments. The study concludes by providing recommendations on how future flood design should proceed, arguing that current practices (or using a design storm to estimate floods) are flawed and need changing.
Lightweight acoustic treatments for aerospace applications
NASA Astrophysics Data System (ADS)
Naify, Christina Jeanne
2011-12-01
Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their acoustic response. Acoustic metamaterials with negative dynamic mass density have been shown to demonstrate a significant (5x) increase in TL over mass law predictions for a narrow band (100Hz) at low frequencies (100--1000Hz). The peak TL frequency can be tuned to specific values by varying the membrane and mass properties. TL magnitude as a function of frequency was measured for variations of the mass magnitude and membrane tension using an impedance tube setup. The dynamic properties of membranes constructed from different materials and thicknesses were measured and compared to the results of coupled field acoustic-structural finite element analysis (FEA) modeling to understand the role of tension and element quality factor. To better comprehend the mechanism(s) responsible for the TL peak, a laser vibrometer was used to map the out-of-plane dynamic response of the structure under acoustic loading at discrete frequencies. Negative dynamic mass was experimentally demonstrated at the peak TL frequency. The scale-up of the acoustic metamaterial structure was explored by examining the behavior of multiple elements arranged in arrays. Single membranes were stretched over rigid frame supports and masses were attached to the center of each divided cell. TL behavior was measured for multiple configurations with different magnitudes of mass distributed across each of the cell membranes in the array resulting in a multi-peak TL profile. To better understand scale-up issues, the effect of the frame structure compliance was evaluated, and more compliant frames resulted in a reduction in TL peak frequency bandwidth. In addition, displacement measurements of frames and membranes were performed using a laser vibrometer. The measured TL of the multi-celled structure was compared with TL behavior predicted by FEA to understand the role of non-uniform mass distribution and frame compliance. TL of membrane-type LRAM with added ring masses was analyzed using both finite element analysis and experimental techniques. The addition of a ring mass to the structure either increased the bandwidth of the TL peak, or introduced multiple peaks, depending on the number of rings, the distribution of mass between the center and ring masses, and radii of the rings. FEA was used to predict TL behavior of several ring configurations, and TL for these configurations was measured to validate the model predictions. Finally, FEA was used to predict the mode shapes of the structure under single-frequency excitation to understand the mechanisms responsible for the TL peaks.
Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre
2014-12-19
Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.
Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre
2014-01-01
Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295
ERIC Educational Resources Information Center
Laursen, Paul B.; Shing, Cecilia M.; Jenkins, David G.
2004-01-01
The power output achieved at peak oxygen consumption (V[O.sub.2]peak) and the time this power can be maintained (i.e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the V[O.sub.2] response to exercise at the cycling power that output well trained cyclists…
Temperature tuning from direct to inverted bistable electroluminescence in resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Hartmann, F.; Pfenning, A.; Rebello Sousa Dias, M.; Langer, F.; Höfling, S.; Kamp, M.; Worschech, L.; Castelano, L. K.; Marques, G. E.; Lopez-Richard, V.
2017-10-01
We study the electroluminescence (EL) emission of purely n-doped resonant tunneling diodes in a wide temperature range. The paper demonstrates that the EL originates from impact ionization and radiative recombination in the extended collector region of the tunneling device. Bistable current-voltage response and EL are detected and their respective high and low states are tuned under varying temperature. The bistability of the EL intensity can be switched from direct to inverted with respect to the tunneling current and the optical on/off ratio can be enhanced with increasing temperature. One order of magnitude amplification of the optical on/off ratio can be attained compared to the electrical one. Our observation can be explained by an interplay of moderate peak-to-valley current ratios, large resonance voltages, and electron energy loss mechanisms, and thus, could be applied as an alternative route towards optoelectronic applications of tunneling devices.
Control method for peak power delivery with limited DC-bus voltage
Edwards, John; Xu, Longya; Bhargava, Brij B.
2006-09-05
A method for driving a neutral point-clamped multi-level voltage source inverter supplying a synchronous motor is provided. A DC current is received at a neutral point-clamped multi-level voltage source inverter. The inverter has first, second, and third output nodes. The inverter also has a plurality of switches. A desired speed of a synchronous motor connected to the inverter by the first second and third nodes is received by the inverter. The synchronous motor has a rotor and the speed of the motor is defined by the rotational rate of the rotor. A position of the rotor is sensed, current flowing to the motor out of at least two of the first, second, and third output nodes is sensed, and predetermined switches are automatically activated by the inverter responsive to the sensed rotor position, the sensed current, and the desired speed.
NASA Astrophysics Data System (ADS)
Xie, L.; Pietrafesa, L. J.; Wu, K.
2003-02-01
A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.
Momentum flux parasitic to free-energy transfer
Stoltzfus-Dueck, T.; Scott, B.
2017-05-11
An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less
Krishek, Belinda J; Smart, Trevor G
2001-01-01
The effect of GABAA receptor development in culture on the modulation of GABA-induced currents by external H+ was examined in cerebellar granule cells using whole-cell and single-channel recording. Equilibrium concentration-response curves revealed a lower potency for GABA between 11 and 12 days in vitro (DIV) resulting in a shift of the EC50 from 10.7 to 2.4 μM. For granule cells before 11 DIV, the peak GABA-activated current was inhibited at low external pH and enhanced at high pH with a pKa of 6.65. For the steady-state response, low pH was inhibitory with a pKa of 5.56. After 11 DIV, the peak GABA-activated current was largely pH insensitive; however, the steady-state current was potentiated at low pH with a pKa of 6.84. Single GABA-activated ion channels were recorded from outside-out patches of granule cell bodies. At pH 5.4-9.4, single GABA channels exhibited multiple conductance states occurring at 22-26, 16-17 and 12-14 pS. The conductance levels were not significantly altered over the time period of study, nor by changing the external H+ concentration. Two exponential functions were required to fit the open-time frequency histograms at both early (< 11 DIV) and late (> 11 DIV) development times at each H+ concentration. The short and long open time constants were unaffected either by the extracellular H+ concentration or by neuronal development. The distribution of all shut times was fitted by the sum of three exponentials designated as short, intermediate and long. At acidic pH, the long shut time constant decreased with development as did the relative contribution of these components to the overall distribution. This was concurrent with an increase in the mean probability of channel opening. In conclusion, this study demonstrates in cerebellar granule cells that external pH can either reduce, have no effect on, or enhance GABA-activated responses depending on the stage of development, possibly related to the subunit composition of the GABAA receptors. The mode of interaction of H+ at the single-channel level and implications of such interactions at cerebellar granule cell GABAA receptors are discussed. PMID:11208970
Phenytoin attenuates the hyper-exciting neurotransmission in cultured embryonic cortical neurons.
Chou, Ming-Yi; Lee, Chun-Yao; Liou, Horng-Huei; Pan, Chien-Yuan
2014-08-01
Phenytoin is an effective anti-epileptic drug that inhibits Na(+) channel activities; however, how phenytoin modulates synaptic transmission to soothe epileptic symptoms is not clear. To characterize the effects of phenytoin regulation on neurotransmission, we studied the electrophysical properties of cultured embryonic cortical neurons. Phenytoin inhibited the inward Na(+) current in a dose-dependent manner with an IC50 of 16.8 μM, and at 100 μM, the inhibitory effect of phenytoin on the Na(+) current was proportional to the frequency applied. In cultured neurons, phenytoin significantly decreased the action potential firing rate and the peak potential. To study the effect of phenytoin in neurotransmission, we measured the Ca(2+) responses from stimulated target neurons and their neighboring neurons. Phenytoin significantly suppressed the Ca(2+) responses evoked by strong stimulations in the target and neighboring neurons, and exerted a decreased inhibitory effect under moderate stimulation. Picrotoxin, a GABAA receptor antagonist, enhanced the recorded spontaneous excitatory postsynaptic current activities. After picrotoxin-induced enhancement, phenytoin had a more pronounced effect on the suppression of the spontaneous hyper-exciting excitatory postsynaptic current (>100 pA), but it only mildly inhibited the general excitatory postsynaptic current. Our results demonstrate that phenytoin suppresses the efficacy of neurotransmission especially for the high-frequency stimulation by reducing the Na(+) channel activity and can potentially alleviate epileptiform activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adamczyk, J.; Horny, N.; Tricoteaux, A.; Jouan, P.-Y.; Zadam, M.
2008-01-01
This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer ( θ-2 θ) with the CuKα radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments.
NASA Astrophysics Data System (ADS)
Shin, Sunhae; Rok Kim, Kyung
2016-04-01
We propose complement double-peak negative differential resistance (NDR) devices with ultrahigh peak-to-valley current ratio (PVCR) over 106 by combining tunnel diode with conventional CMOS and its compact five-state latch circuit by introducing standard ternary inverter (STI). At the “high”-state of STI, n-type NDR device (tunnel diode with nMOS) has 1st NDR characteristics with 1st peak and valley by band-to-band tunneling (BTBT) and trap-assisted tunneling (TAT), whereas p-type NDR device (tunnel diode with pMOS) has second NDR characteristics from the suppression of diode current by off-state MOSFET. The “intermediate”-state of STI permits double-peak NDR device to operate five-state latch with only four transistors, which has 33% area reduction compared with that of binary inverter and 57% bit-density reduction compared with binary latch.
Cuevas, Javier; Roth, Adelheid L; Berg, Darwin K
2000-01-01
Nicotinic acetylcholine receptors (nAChRs) that bind α-bungarotoxin (αBgt) were studied on isolated rat superior cervical ganglion (SCG) neurons using whole-cell patch clamp recording techniques.Rapid application of ACh onto the soma of voltage clamped neurons evoked a slowly desensitizing current that was reversibly blocked by αBgt (50 nm). The toxin-sensitive current constituted on average about half of the peak whole-cell response evoked by ACh.Nanomolar concentrations of methyllycaconitine blocked the αBgt-sensitive component of the ACh-evoked current as did intracellular dialysis with an anti-α7 monoclonal antibody. The results indicate that the slowly reversible toxin-sensitive response elicited by ACh arises from activation of an unusual class of α7-containing receptor (α7-nAChR) similar to that reported previously for rat intracardiac ganglion neurons.A second class of functional α7-nAChR was identified on some SCG neurons by using rapid application of choline to elicit responses. In these cases a biphasic response was obtained, which included a rapidly desensitizing component that was blocked by αBgt in a pseudo-irreversible manner. The pharmacology and kinetics of the responses resembled those previously attributed to α7-nAChRs in a number of other neuronal cell types.Experiments measuring the dissociation rate of 125I-labelled αBgt from SCG neurons revealed two classes of toxin-binding site. The times for toxin dissociation were consistent with those required to reverse blockade of the two kinds of αBgt-sensitive response.These results indicate that rat SCG neurons express two types of functional α7-nAChR, differing in pharmacology, desensitization and reversibility of αBgt blockade. PMID:10856125
Earthquake site response in Santa Cruz, California
Carver, D.; Hartzell, S.H.
1996-01-01
Aftershocks of the 1989 Loma Prieta, California, earthquake are used to estimate site response in a 12-km2 area centered on downtown Santa Cruz. A total of 258 S-wave records from 36 aftershocks recorded at 33 sites are used in a linear inversion for site-response spectra. The inversion scheme takes advantage of the redundancy of the large data set for which several aftershocks are recorded at each site. The scheme decomposes the observed spectra into source, path, and site terms. The path term is specified before the inversion. The undetermined degree of freedom in the decomposition into source and site spectra is removed by specifying the site-response factor to be approximately 1.0 at two sites on crystalline bedrock. The S-wave site responses correlate well with the surficial geology and observed damage pattern of the mainshock. The site-response spectra of the floodplain sites, which include the heavily damaged downtown area, exhibit significant peaks. The largest peaks are between 1 and 4 Hz. Five floodplain sites have amplification factors of 10 or greater. Most of the floodplain site-response spectra also have a smaller secondary peak between 6 and 8 Hz. Residential areas built on marine terraces above the flood-plain experienced much less severe damage. Site-response spectra for these areas also have their largest peaks between 1 and 4 Hz, but the amplification is generally below 6. Several of these sites also have a secondary peak between 6 and 8 Hz. The response peaks seen at nearly all sites between 1 and 4 Hz are probably caused by the natural resonance of the sedimentary rock column. The higher amplifications at floodplain sites may be caused by surface waves generated at the basin margins. The secondary peak between 6 and 8 Hz at many sites may be a harmonic of the 1- to 4-Hz peaks. We used waveforms from a seven-station approximately linear array located on the floodplain to calculate the apparent velocity and azimuth of propagation of coherent arrivals within moving windows of the S-wave codas. The initial windows give results that are consistent with direct S-wave arrivals. The apparent velocities are high (greater than 4.0 km/sec), and azimuths are from the source. Waves arriving later than 2 sec after the direct S waves have apparent velocities of less than 1 km/ sec, indicating that they are surface waves, and arrive from divergent azimuths. This analysis indicates that after the direct S-wave arrival, long-duration shaking comes from surface waves that are generated at the basin margin and reverberate in the floodplain sediments.
Particle in cell simulation of peaking switch for breakdown evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.
2014-07-01
Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (withoutmore » peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)« less
Effects of premature stimulation on HERG K+ channels
Lu, Yu; Mahaut-Smith, Martyn P; Varghese, Anthony; Huang, Christopher L-H; Kemp, Paul R; Vandenberg, Jamie I
2001-01-01
The unusual kinetics of human ether-à-go-go-related gene (HERG) K+ channels are consistent with a role in the suppression of arrhythmias initiated by premature beats. Action potential clamp protocols were used to investigate the effect of premature stimulation on HERG K+ channels, transfected in Chinese hamster ovary cells, at 37 °C. HERG K+ channel currents peaked during the terminal repolarization phase of normally paced action potential waveforms. However, the magnitude of the current and the time point at which conductance was maximal depended on the type of action potential waveform used (epicardial, endocardial, Purkinje fibre or atrial). HERG K+ channel currents recorded during premature action potentials consisted of an early transient outward current followed by a sustained outward current. The magnitude of the transient current component showed a biphasic dependence on the coupling interval between the normally paced and premature action potentials and was maximal at a coupling interval equivalent to 90% repolarization (APD90) for ventricular action potentials. The largest transient current response occurred at shorter coupling intervals for Purkinje fibre (APD90– 20 ms) and atrial (APD90– 30 ms) action potentials. The magnitude of the sustained current response following premature stimulation was similar to that recorded during the first action potential for ventricular action potential waveforms. However, for Purkinje and atrial action potentials the sustained current response was significantly larger during the premature action potential than during the normally paced action potential. A Markov model that included three closed states, one open and one inactivated state with transitions permitted between the pre-open closed state and the inactivated state, successfully reproduced our results for the effects of premature stimuli, both during square pulse and action potential clamp waveforms. These properties of HERG K+ channels may help to suppress arrhythmias initiated by early afterdepolarizations and premature beats in the ventricles, Purkinje fibres or atria. PMID:11744759
NASA Astrophysics Data System (ADS)
Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen
2015-06-01
Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murdock, Justin N.
Algal species vary in carbon (C) need and uptake rates. Understanding differences in C uptake and cellular allocation among species from natural communities will bring new insight into many ecosystem process questions including how species changes will alter energy availability and C sequestration in aquatic ecosystems. A major limitation of current methods that measure algal C incorporation is the inability to separate the response of individual species from mixed-species assemblages. I used Fourier-transform infrared microspectroscopy to qualitatively measure inorganic 13C isotope incorporation into individual algal cells in single species, two species, and natural phytoplankton assemblages. Lateral shifts in spectral peaksmore » from 13C treatments were observed in all species. Comparison of peaks associated with carbohydrates, proteins, and lipids allowed for the detection of which individuals took in C, and which macromolecules the C was used to make. For example, shifts in Spirogyra spectral peaks showed substantial C incorporation in carbohydrates. Further, shifts in peaks at 1160 cm -1, 1108 cm -1, 1080 cm -1, 1048 cm -1, and 1030 cm -1 suggested C was being allocated into cellulose. The natural phytoplankton assemblage demonstrated how C could be tracked into co-occurring species. A diatom had large shifts in protein and carbohydrate peaks, while a green alga and euglenoid had only a few shifts in protein related peaks. Fourier-transform infrared microspectroscopy is an established, label free method for measuring the chemical composition of algal cells. However, adding a label such as 13C isotope can greatly expand the technique's capabilities by qualitatively tracking C movement between inorganic and organic states within single cells.« less
Silicon nanowire Esaki diodes.
Schmid, Heinz; Bessire, Cedric; Björk, Mikael T; Schenk, Andreas; Riel, Heike
2012-02-08
We report on the fabrication and characterization of silicon nanowire tunnel diodes. The silicon nanowires were grown on p-type Si substrates using Au-catalyzed vapor-liquid-solid growth and in situ n-type doping. Electrical measurements reveal Esaki diode characteristics with peak current densities of 3.6 kA/cm(2), peak-to-valley current ratios of up to 4.3, and reverse current densities of up to 300 kA/cm(2) at 0.5 V reverse bias. Strain-dependent current-voltage (I-V) measurements exhibit a decrease of the peak tunnel current with uniaxial tensile stress and an increase of 48% for 1.3 GPa compressive stress along the <111> growth direction, revealing the strain dependence of the Si band structure and thus the tunnel barrier. The contributions of phonons to the indirect tunneling process were probed by conductance measurements at 4.2 K. These measurements show phonon peaks at energies corresponding to the transverse acoustical and transverse optical phonons. In addition, the low-temperature conductance measurements were extended to higher biases to identify potential impurity states in the band gap. The results demonstrate that the most likely impurity, namely, Au from the catalyst particle, is not detectable, a finding that is also supported by the excellent device properties of the Esaki diodes reported here. © 2012 American Chemical Society
New Side-Looking Rogowski Coil Sensor for Measuring Large-Magnitude Fast Impulse Currents
NASA Astrophysics Data System (ADS)
Metwally, I. A.
2015-12-01
This paper presents a new design of a side-looking "flat spiral" self-integrating Rogowski coil that is wound by twin coaxial cable with individual sheath. The coil is tested with different impulse current waveforms up to 7 kA peak value to improve its performance. The coil design is optimized to achieve bandwidth and sensitivity up to 7.854 MHz and 3.623 V/kA, respectively. The coil is calibrated versus two commercial impulse-current measurement devices at different coil-to-wire separations, coil inclination angles, and impulse current waveforms. Distortion of the coil output voltage waveform is examined by using the lumped-element model to optimize the connections of the four cable winding sheaths and the coil termination resistance. Finally, the coil frequency response is investigated to optimize the coil design parameters and achieve the desired bandwidth (large low-frequency time constant), high rate of rise, no overshoot, very small droop, high rate of fall, and no backswing.
Atomistic nature in band-to-band tunneling in two-dimensional silicon pn tunnel diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabe, Michiharu, E-mail: tabe.michiharu@shizuoka.ac.jp; Tan, Hoang Nhat; Mizuno, Takeshi
We study low-temperature transport properties of two-dimensional (2D) Si tunnel diodes, or Si Esaki diodes, with a lateral layout. In ordinary Si Esaki diodes, interband tunneling current is severely limited because of the law of momentum conservation, while nanoscale Esaki diodes may behave differently due to the dopants in the narrow depletion region, by atomistic effects which release such current limitation. In thin-Si lateral highly doped pn diodes, we find clear signatures of interband tunneling between 2D-subbands involving phonon assistance. More importantly, the tunneling current is sharply enhanced in a narrow voltage range by resonance via a pair of amore » donor- and an acceptor-atom in the pn junction region. Such atomistic behavior is recognized as a general feature showing up only in nanoscale tunnel diodes. In particular, a donor-acceptor pair with deeper ground-state energies is likely to be responsible for such a sharply enhanced current peak, tunable by external biases.« less
Kutluay, Aysegul; Aslanoglu, Mehmet
2014-08-11
Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2×10(-9)-4.5×10(-7) M (R(2)=0.9987) and 5.0×10(-8)-3.0×10(-6) M (R(2)=0.9999), respectively. The detection limits of 1.0×10(-9) M and 1.5×10(-8) M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1.3% for PAR; 100.8% with an RSD of 1.8% for DA). The proposed method was successfully applied to the determination of PAR and DA in pharmaceuticals. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Fan, Tingting; Yuan, Ping; Wang, Xuejuan; Cen, Jianyong; Chang, Xuan; Zhao, Yanyan
2017-09-01
The spectra of two negative cloud-to-ground lightning discharge processes with multi-return strokes are obtained by a slit-less high-speed spectrograph, which the temporal resolution is 110 μs. Combined with the synchronous electrical observation data and theoretical calculation, the physical characteristics during return strokes process are analysed. A positive correlation between discharge current and intensity of ionic lines in the spectra is verified, and based on this feature, the current evolution characteristics during four return strokes are investigated. The results show that the time from peak current to the half-peak value estimated by multi point-fitting is about 101 μs-139 μs. The Joule heat in per unit length of four return strokes channel is in the order of 105J/m-106 J/m. The radius of arc discharge channel is positively related to the discharge current, and the more intense the current is, the greater the radius of channel is. Furthermore, the evolution for radius of arc core channel in the process of return stroke is consistent with the change trend of discharge current after the peak value. Compared with the decay of the current, the temperature decreases more slowly.
NASA Astrophysics Data System (ADS)
Yim, S.-W.; Park, B.-C.; Jeong, Y.-T.; Kim, Y.-J.; Yang, S.-E.; Kim, W.-S.; Kim, H.-R.; Du, H.-I.
2013-01-01
A 22.9 kV class hybrid fault current limiter (FCL) developed by Korea Electric Power Corporation and LS Industrial Systems in 2006 operates using the line commutation mechanism and begins to limit the fault current after the first half-cycle. The first peak of the fault current is available for protective coordination in the power system. However, it also produces a large electromagnetic force and imposes a huge stress on power facilities such as the main transformer and gas-insulated switchgear. In this study, we improved the operational characteristics of the hybrid FCL in order to reduce the first peak of the fault current. While maintaining the structure of the hybrid FCL system, we developed a superconducting module that detects and limits the fault current during the first half-cycle. To maintain the protective coordination capacity, the hybrid FCL was designed to reduce the first peak value of the fault current by up to approximately 30%. The superconducting module was also designed to produce a minimum AC loss, generating a small, uniform magnetic field distribution during normal operation. Performance tests confirmed that when applied to the hybrid FCL, the superconducting module showed successful current limiting operation without any damage.
Maggi, C A; Patacchini, R; Santicioli, P; Giuliani, S
1991-06-01
1. The possible involvement of tachykinins (TKs) in the contraction produced by capsaicin in the rat isolated urinary bladder was addressed on the hypothesis that co-release of substance P (SP) and neurokinin A (NKA) occurs from sensory nerve terminals. 2. A low concentration of SP (30 nM) produced a rapid contraction which faded to baseline within 10 min. A low concentration of NKA (10 nM) produced a slowly developing contraction which was still evident at 10 min. Capsaicin (1 microM) produced a rapid phasic response and a tonic response (late response to capsaicin). Co-administration of SP and NKA mimicked the response to capsaicin more than each TK alone. 3. Fading of the response to SP was not caused by receptor desensitization and was partially prevented by peptidase inhibitors. 4. Spantide (3 microM) selectively antagonized the SP-induced contraction while L-659,877 (3-10 microM) or MEN 10,376 (10-30 microM) which are NK2 receptor selective antagonists selectively blocked the response to NKA. Co-administration of spantide and L-659,877 inhibited the response to both SP and NKA by an amount not greater than that produced by each antagonist alone. 5. Spantide selectively reduced the peak response to capsaicin, while leaving the late response unaffected. L-659,877 (3 microM) and MEN 10,376 (10 microM) selectively inhibited the late response to capsaicin while, at higher concentrations, also reduced the peak response to capsaicin. Co-administration of spantide and L-659,877 reduced the peak response to capsaicin more than that produced by each antagonist alone. 6. Bombesin (10 nM) produced a tonic contraction similar to that induced by NKA. The response to bombesin was not affected by spantide, L-659,877 or MEN 10,376. 7 P2. purinoceptor desensitization by repeated administration of alpha,betal-methylene ATP depressed the twitch response to electrical stimulation of postganglionic nerves but did not affect the peak or the late response to capsaicin. 8. We conclude that multiple TKs are coreleased by capsaicin in the rat bladder and mediate the capsaicin-induced contraction by activating both NKI and NK2 receptors. Endogenous TK with preferential affinity for the NK, receptor (putatively SP) are selectively involved in the peak response to capsaicin while endogenous TK with preferential affinity for the NK2 receptor (putatively NKA) are selectively involved in the late response to capsaicin and partly contribute to the peak response. These findings provide pharmacological evidence for tachykinin-mediated cotransmission in the rat urinary bladder. ATP is unlikely to be involved in the efferent function of capsaicin-sensitive sensory nerves in the rat bladder.
Goldflam, Michael D.; Kadlec, Emil Andrew; Olson, Ben V.; ...
2016-12-22
Here we examined the spectral responsivity of a 1.77μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber’s subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency.more » The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.« less
A New Laccase Based Biosensor for Tartrazine.
Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu
2017-12-09
Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM ( R ² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.
A New Laccase Based Biosensor for Tartrazine
Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu
2017-01-01
Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis. PMID:29232842
Clark, Deborah A
2004-03-29
How tropical rainforests are responding to the ongoing global changes in atmospheric composition and climate is little studied and poorly understood. Although rising atmospheric carbon dioxide (CO2) could enhance forest productivity, increased temperatures and drought are likely to diminish it. The limited field data have produced conflicting views of the net impacts of these changes so far. One set of studies has seemed to point to enhanced carbon uptake; however, questions have arisen about these findings, and recent experiments with tropical forest trees indicate carbon saturation of canopy leaves and no biomass increase under enhanced CO2. Other field observations indicate decreased forest productivity and increased tree mortality in recent years of peak temperatures and drought (strong El Niño episodes). To determine current climatic responses of forests around the world tropics will require careful annual monitoring of ecosystem performance in representative forests. To develop the necessary process-level understanding of these responses will require intensified experimentation at the whole-tree and stand levels. Finally, a more complete understanding of tropical rainforest carbon cycling is needed for determining whether these ecosystems are carbon sinks or sources now, and how this status might change during the next century.
431 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Growden, Tyler A.; Zhang, Weidong; Brown, Elliott R.; Storm, David F.; Hansen, Katurah; Fakhimi, Parastou; Meyer, David J.; Berger, Paul R.
2018-01-01
We report on the design and fabrication of high current density GaN/AlN double barrier resonant tunneling diodes grown via plasma assisted molecular-beam epitaxy on bulk GaN substrates. A quantum-transport solver was used to model and optimize designs with high levels of doping and ultra-thin AlN barriers. The devices displayed repeatable room temperature negative differential resistance with peak-to-valley current ratios ranging from 1.20 to 1.60. A maximum peak tunneling current density (Jp) of 431 kA/cm2 was observed. Cross-gap near-UV (370-385 nm) electroluminescence (EL) was observed above +6 V when holes, generated from a polarization induced Zener tunneling effect, recombine with electrons in the emitter region. Analysis of temperature dependent measurements, thermal resistance, and the measured EL spectra revealed the presence of severe self-heating effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, E., E-mail: eeslami@iust.ac.ir; Barjasteh, A.; Morshedian, N.
2015-06-15
In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown thatmore » applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.« less
NASA Astrophysics Data System (ADS)
Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.
2018-01-01
Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.
Zugaro, Michaël B; Berthoz, Alain; Wiener, Sidney I
2002-01-01
Head direction cells discharge selectively when the head of the animal is oriented in a specific direction. The goal of this study was to determine how sensory signals arising from passive rotations (e.g., triggered by vestibular stimulation and dynamic visual inputs) influence the responses of anterodorsal thalamic head direction cells in the absence of voluntary movement cues (e.g., motor command, efference copy, and associated kinesthetic signals). Three unrestrained rats consumed water from a reservoir at the center of a circular platform while passively subjected to sinusoidal rotatory oscillations at fast (153 +/- 27 degrees/s, sd) and slow (38 +/- 15 degrees/s) peak velocities. In 14 anterodorsal thalamic head direction cells, the preferred directions, angular response ranges and baseline firing rates remained stable, but the peak firing rates were, on average, 36% higher during the fast rotations (Wilcoxon matched-pairs test, p < 0.001; variation range: +11% to approximately +100%). No cell changed its peak firing rate by less than 10%, while three cells (21%) increased their peak firing rates by more than 50%. The velocity-dependent increase in peak firing rates was similar for left and right rotations, and the skewness of the directional response curves were not significantly different between left and right turns (Wilcoxon matched-pairs tests, n = 14, ns). These results show that sensory signals concerning self-movements modulate the responses of the head direction cells in the absence of active locomotion.
Moore, Wayne V; Dana, Ken; Frane, James; Lippe, Barbara
2008-09-01
In children with idiopathic short stature (ISS), growth hormone (GH) response to a provocative test will be inversely related to the first year response to hGH and be a variable accounting for a degree of responsiveness. Because high levels of GH are a characteristic of GH insensitivity, such as in Laron syndrome, it is possible that a high stimulated GH is associated with a lower first year height velocity among children diagnosed as having ISS. We examined the relationship between the peak stimulated GH levels in 3 ISS groups; GH >10 -<25, 25-40, and >40 ng/mL and the first year growth response to rhGH therapy. We also looked at 8 other predictor variables (age, sex, height SDS, height age, body mass index (BMI), bone age, dose, and SDS deficit from target parental height. Multiple regression analysis with the first year height as the dependent variable and peak stimulated GH was the primary endpoint. The predictive value of adding each of the other variables was then assessed. Mean change in height velocity was similar among the three groups, with a maximum difference among the groups of 0.6 cm/yr. There was a small but statistically significant correlation (r=-0.12) between the stimulated GH and first year height velocity. The small correlation between first year growth response and peak GH is not clinically relevant in defining GH resistance. No cut off level by peak GH could be determined to enhance the usefulness of this measure to predict response. Baseline age was the only clinically significant predictor, R-squared, 6.4%. All other variables contributed less than an additional 2% to the R-squared.
NASA Astrophysics Data System (ADS)
Admire, A. R.; Dengler, L.; Crawford, G. B.; uslu, B. U.; Montoya, J.
2012-12-01
A pilot project was initiated in 2009 in Humboldt Bay, about 370 kilometers (km) north of San Francisco, California, to measure the currents produced by tsunamis. Northern California is susceptible to both near- and far-field tsunamis and has a historic record of damaging events. Crescent City Harbor, located approximately 100 km north of Humboldt Bay, suffered US 20 million in damages from strong currents produced by the 2006 Kuril Islands tsunami and an additional US 20 million from the 2011 Japan tsunami. In order to better evaluate these currents in northern California, we deployed a Nortek Aquadopp 600kHz 2D Acoustic Doppler Current Profiler (ADCP) with a one-minute sampling interval in Humboldt Bay, near the existing National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) tide gauge station. The instrument recorded the tsunamis produced by the Mw 8.8 Chile earthquake on February 27, 2010 and the Mw 9.0 Japan earthquake on March 11, 2011. Currents from the 2010 tsunami persisted in Humboldt Bay for at least 30 hours with peak amplitudes of about 0.3 meters per second (m/s). The 2011 tsunami signal lasted for over 86 hours with peak amplitude of 0.95 m/s. Strongest currents corresponded to the maximum change in water level as recorded on the NOAA NOS tide gauge, and occurred 90 minutes after the initial wave arrival. No damage was observed in Humboldt Bay for either event. In Crescent City, currents for the first three and a half hours of the 2011 Japan tsunami were estimated using security camera video footage from the Harbor Master building across from the entrance to the small boat basin, approximately 70 meters away from the NOAA NOS tide gauge station. The largest amplitude tide gauge water-level oscillations and most of the damage occurred within this time window. The currents reached a velocity of approximately 4.5 m/s and six cycles exceeded 3 m/s during this period. Measured current velocities both in Humboldt Bay and in Crescent City were compared to calculated velocities from the Method of Splitting Tsunamis (MOST) numerical model. For Humboldt Bay, the 2010 model tsunami frequencies matched the actual values for the first two hours after the initial arrival however the amplitudes were underestimated by approximately 65%. MOST replicated the first four hours of the 2011 tsunami signal in Humboldt Bay quite well although the peak flood currents were underestimated by about 50%. MOST predicted attenuation of the signal after four hours but the actual signal persisted at a nearly constant level for more than 48 hours. In Crescent City, the model prediction of the 2011 frequency agreed quite well with the observed signal for the first two and a half hours after the initial arrival with a 50% underestimation of the peak amplitude. The results from this project demonstrate that ADCPs can effectively record tsunami currents for small to moderate events and can be used to calibrate and validate models (i.e. MOST) in order to better predict hazardous tsunami conditions and improve planned responses to protect lives and property, especially within harbors. An ADCP will be installed in Crescent City Harbor and four additional ADCPs are being deployed in Humboldt Bay during the fall of 2012.
Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons
NASA Astrophysics Data System (ADS)
Have, Jonas; Pedersen, Thomas G.
2018-03-01
The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.
Tidal stretches do not modulate responsiveness of intact airways in vitro
Szabo, Thomas L.; Suki, Béla; Lutchen, Kenneth R.
2010-01-01
Studies on isolated tracheal airway smooth muscle (ASM) strips have shown that length/force fluctuations, similar to those likely occurring during breathing, will mitigate ASM contractility. These studies conjecture that, solely by reducing length oscillations on a healthy, intact airway, one can create airway hyperresponsiveness, but this has never been explicitly tested. The intact airway has additional complexities of geometry and structure that may impact its relevance to isolated ASM strips. We examined the role of transmural pressure (Ptm) fluctuations of physiological amplitudes on the responsiveness of an intact airway. We developed an integrated system utilizing ultrasound imaging to provide real-time measurements of luminal radius and wall thickness over the full length of an intact airway (generation 10 and below) during Ptm oscillations. First, airway constriction dynamics to cumulative acetylcholine (ACh) doses (10−7 to 10−3 M) were measured during static and dynamic Ptm protocols. Regardless of the breathing pattern, the Ptm oscillation protocols were ineffective in reducing the net level of constriction for any ACh dose, compared with the static control (P = 0.225–0.793). Next, Ptm oscillations of increasing peak-to-peak amplitude were applied subsequent to constricting intact airways under static conditions (5.0-cmH2O Ptm) with a moderate ACh dose (10−5 M). Peak-to-peak Ptm oscillations ≤5.0 cmH2O resulted in no statistically significant bronchodilatory response (P = 0.429 and 0.490). Larger oscillations (10 cmH2O, peak to peak) produced modest dilation of 4.3% (P = 0.009). The lack of modulation of airway responsiveness by Ptm oscillations in intact, healthy airways suggests that ASM level mechanisms alone may not be the sole determinant of airway responsiveness. PMID:20431023
Gap prepulse inhibition of the auditory late response in healthy subjects.
Ku, Yunseo; Ahn, Joong Woo; Kwon, Chiheon; Suh, Myung-Whan; Lee, Jun Ho; Oh, Seung Ha; Kim, Hee Chan
2015-11-01
The gap-startle paradigm has been used as a behavioral method for tinnitus screening in animal studies. This study aimed to investigate gap prepulse inhibition (GPI) of the auditory late response (ALR) as the objective response of the gap-intense sound paradigm in humans. ALRs were recorded in response to gap-intense and no-gap-intense sound stimuli in 27 healthy subjects. The amplitudes of the baseline-to-peak (N1, P2, and N2) and the peak-to-peak (N1P2 and P2N2) were compared between two averaged ALRs. The variations in the inhibition ratios of N1P2 and P2N2 during the experiment were analyzed by increasing stimuli repetitions. The effect of stimulus parameter adjustments on GPI ratios was evaluated. No-gap-intense sound stimuli elicited greater peak amplitudes than gap-intense sound stimuli, and significant differences were found across all peaks. The overall mean inhibition ratios were significantly lower than 1.0, where the value 1.0 indicates that there were no differences between gap-intense and no-gap-intense sound responses. The initial decline in GPI ratios was shown in N1P2 and P2N2 complexes, and this reduction was nearly complete after 100 stimulus repetitions. Significant effects of gap length and interstimulus interval on GPI ratios were observed. We found significant inhibition of ALR peak amplitudes in performing the gap-intense sound paradigm in healthy subjects. The N1P2 complex represented GPI well in terms of suppression degree and test-retest reliability. Our findings offer practical information for the comparative study of healthy subjects and tinnitus patients using the gap-intense sound paradigm with the ALR. © 2015 Society for Psychophysiological Research.
Scribbans, Trisha D.; Edgett, Brittany A.; Vorobej, Kira; Mitchell, Andrew S.; Joanisse, Sophie D.; Matusiak, Jennifer B. L.; Parise, Gianni; Quadrilatero, Joe; Gurd, Brendon J.
2014-01-01
The current study involved the completion of two distinct experiments. Experiment 1 compared fibre specific and whole muscle responses to acute bouts of either low-volume high-intensity interval training (LV-HIT) or moderate-intensity continuous endurance exercise (END) in a randomized crossover design. Experiment 2 examined the impact of a six-week training intervention (END or LV-HIT; 4 days/week), on whole body and skeletal muscle fibre specific markers of aerobic and anaerobic capacity. Six recreationally active men (Age: 20.7±3.8 yrs; VO2peak: 51.9±5.1 mL/kg/min) reported to the lab on two separate occasions for experiment 1. Following a muscle biopsy taken in a fasted state, participants completed an acute bout of each exercise protocol (LV-HIT: 8, 20-second intervals at ∼170% of VO2peak separated by 10 seconds of rest; END: 30 minutes at ∼65% of VO2peak), immediately followed by a muscle biopsy. Glycogen content of type I and IIA fibres was significantly (p<0.05) reduced, while p-ACC was significantly increased (p<0.05) following both protocols. Nineteen recreationally active males (n = 16) and females (n = 3) were VO2peak-matched and assigned to either the LV-HIT (n = 10; 21±2 yrs) or END (n = 9; 20.7±3.8 yrs) group for experiment 2. After 6 weeks, both training protocols induced comparable increases in aerobic capacity (END: Pre: 48.3±6.0, Mid: 51.8±6.0, Post: 55.0±6.3 mL/kg/min LV-HIT: Pre: 47.9±8.1, Mid: 50.4±7.4, Post: 54.7±7.6 mL/kg/min), fibre-type specific oxidative and glycolytic capacity, glycogen and IMTG stores, and whole-muscle capillary density. Interestingly, only LV-HIT induced greater improvements in anaerobic performance and estimated whole-muscle glycolytic capacity. These results suggest that 30 minutes of END exercise at ∼65% VO2peak or 4 minutes of LV-HIT at ∼170% VO2peak induce comparable changes in the intra-myocellular environment (glycogen content and signaling activation); correspondingly, training-induced adaptations resulting for these protocols, and other HIT and END protocols are strikingly similar. PMID:24901767
NASA Astrophysics Data System (ADS)
Robinet, J.; Minella, J. P. G.; Schlesner, A.; Lücke, A.; Ameijeiras-Marino, Y.; Opfergelt, S.; Vanderborght, J.; Gerard, G.
2017-12-01
Changes in runoff pathways affect many environmental processes. Land use change (LUC), and more specifically forest conversion to arable land, is one of the controls of water fluxes at the hillslope or catchment scale. Still, the long term effects of forest conversion and agricultural activities in (sub-) tropical environments have been relatively understudied. Our objective was therefore to study the impact of deforestation and land degradation through agriculture on runoff pathways. We selected two small catchments with contrasting land use (agriculture vs. natural forest) in a subtropical region in the south of Brazil. Stream-, pore-, subsurface- and rainwater were monitored, sampled and analyzed for Dissolve Silicon concentration (DSi) and δ18O isotopic signature. Both forested and agricultural catchments were highly responsive to rainfall event and only 2 runoff components contributed to the stream discharge were identified: baseflow and peak flow components. The δ18O peak flow signal in the agricultural catchment was closely related to the δ18O rainfall signal. In the forested catchment, the δ18O peak flow signal was similar to a seasonally averaged signal. This suggested that most peak flow was derived from current rainfall events in the agricultural catchment, while being derived from a mixed reservoir in the forested one. The DSi of the peak flow was low in both catchments. Hence, the mixing in the forested catchment cannot have taken place in the soil matrix as the soil pore water contained high DSi concentrations. Instead, the mixing must have taken place in a reservoir with a relatively short residence time and isolated, to some extent, from the soil matrix. The dense channel network left by decayed roots in the forest soil above a clay-rich water-impeding B horizon is the most likely candidate and this was confirmed by visual observations. Contributions of other, deeper reservoirs are unlikely given the quick response time of the catchment. Dissolved fluxes at the catchment scale are therefore less likely to be strongly affected by the change in water pathways as, in both catchments, the peak flow component had low solute concentrations. Land use change effects on dissolved loads are likely to be more impacted by the change in water balance caused by forest removal, which leads to a higher water surplus.
Repeated low-dose exposures to sarin, soman, or VX affect acoustic startle in guinea pigs.
Smith, C D; Lee, R B; Moran, A V; Sipos, M L
2016-01-01
Chemical warfare nerve agents (CWNAs) are known to cause behavioral abnormalities in cases of human exposures and in animal models. The behavioral consequences of single exposures to CWNAs that cause observable toxic signs are particularly well characterized in animals; however, less is known regarding repeated smaller exposures that may or may not cause observable toxic signs. In the current study, guinea pigs were exposed to fractions (0.1, 0.2, or 0.4) of a medial lethal dose (LD50) of sarin, soman, or VX for two weeks. On each exposure day, and for a post-exposure period, acoustic startle response (ASR) was measured in each animal. Although relatively few studies use guinea pigs to measure behavior, this species is ideal for CWNA-related experiments because their levels of carboxylesterases closely mimic those of humans, unlike rats or mice. Results showed that the 0.4 LD50 doses of soman and VX transiently increased peak startle amplitude by the second week of injections, with amplitude returning to baseline by the second week post-exposure. Sarin also increased peak startle amplitude independent of week. Latencies to peak startle and PPI were affected by agent exposure but not consistently among the three agents. Most of the changes in startle responses returned to baseline following the cessation of exposures. These data suggest that doses of CWNAs not known to produce observable toxic signs in guinea pigs can affect behavior in the ASR paradigm. Further, these deficits are transient and usually return to baseline shortly after the end of a two-week exposure period. Published by Elsevier Inc.
Gerhardt, S P; Fredrickson, E; Guttadora, L; Kaita, R; Kugel, H; Menard, J; Takahashi, H
2011-10-01
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.
Calibration tests on magnetic tape lightning current detectors
NASA Technical Reports Server (NTRS)
Crouch, K. E.
1980-01-01
The low cost, passive, peak lightning current detector (LCD) invented at the NASA/Kennedy Space Center, uses magnetic audio recording tape to sense the magnitude of the peak magnetic field around a conductor carrying lightning currents. Test results show that the length of audio tape erased was linearly related to the peak simulated lightning currents in a round conductor. Accuracies of + or - 10% were shown for measurements made using a stopwatch readout technique to determine the amount of tape erased by the lightning current. The stopwatch technique is a simple, low cost means of obtaining LCD readouts and can be used in the field to obtain immediate results. Where more accurate data are desired, the tape is played and the output recorded on a strip chart, oscilloscope, or some other means so that measurements can be made on that recording. Conductor dimensions, tape holder dimensions, and tape formulation must also be considered to obtain a more accurate result. If the shape of the conductor is other than circular (i.e., angle, channel, H-beam), an analysis of the magnetic field is required to use an LCD, especially at low current levels.
Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.
Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A
2017-10-25
Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.
1991-01-01
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time- dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes. PMID:1865177
Rampton, Melanie; Walton, Shelley F; Holt, Deborah C; Pasay, Cielo; Kelly, Andrew; Currie, Bart J; McCarthy, James S; Mounsey, Kate E
2013-01-01
No commercial immunodiagnostic tests for human scabies are currently available, and existing animal tests are not sufficiently sensitive. The recombinant Sarcoptes scabiei apolipoprotein antigen Sar s 14.3 is a promising immunodiagnostic, eliciting high levels of IgE and IgG in infected people. Limited data are available regarding the temporal development of antibodies to Sar s 14.3, an issue of relevance in terms of immunodiagnosis. We utilised a porcine model to prospectively compare specific antibody responses to a primary infestation by ELISA, to Sar s 14.3 and to S. scabiei whole mite antigen extract (WMA). Differences in the antibody profile between antigens were apparent, with Sar s 14.3 responses detected earlier, and declining significantly after peak infestation compared to WMA. Both antigens resulted in >90% diagnostic sensitivity from weeks 8-16 post infestation. These data provide important information on the temporal development of humoral immune responses in scabies and further supports the development of recombinant antigen based immunodiagnostic tests for recent scabies infestations.
NASA Astrophysics Data System (ADS)
Wang, Hongxia; Zhang, Xiaohan; Wang, Hailong; Lv, Zesheng; Li, Yongxian; Li, Bin; Yan, Huan; Qiu, Xinjia; Jiang, Hao
2018-05-01
InGaN visible-light metal-semiconductor-metal photodetectors with GaN interlayers deposited by pulsed NH3 were fabricated and characterized. By periodically inserting the GaN thin interlayers, the surface morphology of InGaN active layer is improved and the phase separation is suppressed. At 5 V bias, the dark current reduced from 7.0 × 10-11 A to 7.0 × 10-13 A by inserting the interlayers. A peak responsivity of 85.0 mA/W was measured at 420 nm and 5 V bias, corresponding to an external quantum efficiency of 25.1%. The insertion of GaN interlayers also lead to a sharper spectral response cutoff.
Resto, Pedro J; Bhat, Abhishek; Stava, Eric; Lor, Chong; Merriam, Elliot; Diaz-Rivera, Ruben E; Pearce, Robert; Blick, Robert; Williams, Justin C
2017-11-01
Surface tension passive pumping is a way to actuate flow without the need for pumps, tubing or valves by using the pressure inside small drop to move liquid via a microfluidic channel. These types of tubeless devices have typically been used in cell biology. Herein we present the use of tubeless devices as a fluid exchange platform for patch clamp electrophysiology. Inertia from high-speed droplets and jets is used to create flow and perform on-the-fly mixing of solutions. These are then flowed over GABA transfected HEK cells under patch in order to perform a dose response analysis. TIRF imaging and electrical recordings are used to study the fluid exchange properties of the microfluidic device, resulting in 0-90% fluid exchange times of hundreds of milliseconds. COMSOL is used to model flow and fluid exchange within the device. Patch-clamping experiments show the ability to use high-speed passive pumping and its derivatives for studying peak dose responses, but not for studying ion channel kinetics. Our system results in fluid exchange times slower than when using a standard 12-barrel application system and is not as stable as traditional methods, but it offers a new platform with added functionality. Surface tension passive pumping and tubeless devices can be used in a limited fashion for electrophysiology. Users may obtain peak dose responses but the system, in its current form, is not capable of fluid exchange fast enough to study the kinetics of most ion channels. Copyright © 2017 Elsevier B.V. All rights reserved.
Footwear affects the behavior of low back muscles when jogging.
Ogon, M; Aleksiev, A R; Spratt, K F; Pope, M H; Saltzman, C L
2001-08-01
Use of modified shoes and insole materials has been widely advocated to treat low back symptoms from running impacts, although considerable uncertainty remains regarding the effects of these devices on the rate of shock transmission to the spine. This study investigated the effects of shoes and insole materials on a) the rate of shock transmission to the spine, b) the temporal response of spinal musculature to impact loading, and c) the time interval between peak lumbar acceleration and peak lumbar muscle response. It was hypothesised that shoes and inserts a) decrease the rate of shock transmission, b) decrease the low back muscle response time, and c) shorten the time interval between peak lumbar acceleration and peak lumbar muscle response. Twelve healthy subjects were tested while jogging barefoot (unshod) or wearing identical athletic shoes (shod). Either no material, semi-rigid (34 Shore A), or soft (9.5 Shore A) insole material covered the force plate in the barefoot conditions and was placed as insole when running shod. Ground reaction forces, acceleration at the third lumbar level, and erector spinae myoelectric activity were recorded simultaneously. The rate of shock transmission to the spine was greater (p < 0.0003) unshod (acceleration rate: Means +/- SD 127.35 +/- 87.23 g/s) than shod (49.84 +/- 33.98 g/s). The temporal response of spinal musculature following heel strike was significantly shorter (p < 0.023) unshod (0.038 +/- 0.021 s) than shod (0.047 +/- 0.036 s). The latency between acceleration peak (maximal external force) and muscle response peak (maximal internal force) was significantly (p < 0.021) longer unshod (0.0137 +/- 0.022s) than shod (0.004 +/- 0.040 s). These results suggest that one of the benefits of running shoes and insoles is improved temporal synchronization between potentially destabilizing external forces and stabilizing internal forces around the lumbar spine.
NASA Astrophysics Data System (ADS)
Wu, D. H.; Zhang, Y. Y.; Razeghi, M.
2018-03-01
We demonstrate room temperature operation of In0.5Ga0.5Sb/InAs type-II quantum well photodetectors on an InAs substrate grown by metal-organic chemical vapor deposition. At 300 K, the detector exhibits a dark current density of 0.12 A/cm2 and a peak responsivity of 0.72 A/W corresponding to a quantum efficiency of 23.3%, with the calculated specific detectivity of 2.4 × 109 cm Hz1/2/W at 3.81 μm.
High-accuracy peak picking of proteomics data using wavelet techniques.
Lange, Eva; Gröpl, Clemens; Reinert, Knut; Kohlbacher, Oliver; Hildebrandt, Andreas
2006-01-01
A new peak picking algorithm for the analysis of mass spectrometric (MS) data is presented. It is independent of the underlying machine or ionization method, and is able to resolve highly convoluted and asymmetric signals. The method uses the multiscale nature of spectrometric data by first detecting the mass peaks in the wavelet-transformed signal before a given asymmetric peak function is fitted to the raw data. In an optional third stage, the resulting fit can be further improved using techniques from nonlinear optimization. In contrast to currently established techniques (e.g. SNAP, Apex) our algorithm is able to separate overlapping peaks of multiply charged peptides in ESI-MS data of low resolution. Its improved accuracy with respect to peak positions makes it a valuable preprocessing method for MS-based identification and quantification experiments. The method has been validated on a number of different annotated test cases, where it compares favorably in both runtime and accuracy with currently established techniques. An implementation of the algorithm is freely available in our open source framework OpenMS.
Sediment Dynamics in Shallow Tidal Landscapes: The Role of Wind Waves and Tidal Currents
NASA Astrophysics Data System (ADS)
Carniello, L.; D'Alpaos, A.
2014-12-01
A precise description of sediment dynamics (resuspension and re-distribution of sediments) is crucial when investigating the long term evolution of the different morphological entities characterizing tidal landscapes. It has been demonstrated that wind waves are the main responsible for sediment resuspension in shallow micro-tidal lagoons where tidal currents, which produce shear stresses large enough to carry sediments into suspension only within the main channels, are mainly responsible for sediment redistribution. A mathematical model has been developed to describe sediment entrainment, transport and deposition due to the combined effect of tidal currents and wind waves in shallow lagoons considering both cohesive and non-cohesive sediments. The model was calibrated and tested using both in situ point observations and turbidity maps obtained analyzing satellite images. Once calibrated the model can integrate the high temporal resolution of point observations with the high spatial resolution of remote sensing, overcoming the intrinsic limitation of these two types of observations. The model was applied to the specific test case of the Venice lagoon simulating an entire year (2005) which was shown to be a "representative" year for wind and tide characteristics. The time evolution of the computed total bottom shear stresses (BSS) and suspended sediment concentration (SSC) was analyzed on the basis of a "Peaks Over Threshold" method once a critical value for shear stress and turbidity were chosen. The analyses of the numerical results enabled us to demonstrate that resuspension events can be modeled as marked Poisson processes: interarrival time, intensity of peak excesses and duration being exponentially distributed random variable. The probability distributions of the interarrival time of overthreshold exceedances in both BSS and SSC as well as their intensity and duration can be used in long-term morphodynamic studies to generate synthetic series statistically equivalent to real sequences through which MonteCarlo realizations of relevant morphological evolutions can be computed.
Hu, Liu-Dan; Yu, Bao-Ping; Yang, Bin
2012-10-01
The aim of this study was to investigate the effects of deoxycholic acid (DCA) on the contractions of rat proximal colonic smooth muscle (PCSM) in vitro. The contractile response of rat PCSM strips was tested using a polyphysio-graph. The whole cell patch-clamp technique was also used in rat colonic smooth muscle cells (SMCs) isolated by an enzymatic procedure to record the L-type calcium current (I(Ca-L)) prior to and following the application of various concentrations of DCA. The application of DCA (10(-6)-10(-4) M) decreased the amplitude of spontaneous contractions of the PCSM strips in a dose-dependent manner. The administration of DCA (10(-5) M) caused the relaxation of isolated smooth muscle strips pre-contracted by acetylcholine (Ach) or KCl (by 12.2±1.5 and 16.3±6.9%, respectively). The concentration-response curve of CaCl2 was shifted to the right. Pre-treatment of the strips with the protein kinase C (PKC) inhibitor chelerythrine (1 µM) significantly attenuated the effects of DCA on the strips pre-contracted by Ach. DCA reduced the peak I(Ca-L) by 6.02±0.87% at 10(-6) M, 15.02±1.73% at 10(-5) M and 47.14±3.79% at 10(-4) M. DCA shifted the current-voltage (I-V) curve of ICa-L upward, but the contour of the I-V curve was unchanged, and the peak current-induced voltage remained at 0 mV. Pre-treatment with chelerythrine (1 µM) blocked the actions of DCA on the I(Ca-L). Taken together, the actions of DCA on I(Ca-L) in rat colonic SMCs contributed to a negative inotropic effect. These actions appear to be mediated through protein kinase C. Furthermore, this study suggests another possible mechanism for the DCA-related modulation of gastrointestinal motility.
Three years of lightning impulse charge moment change measurements in the United States
NASA Astrophysics Data System (ADS)
Cummer, Steven A.; Lyons, Walter A.; Stanley, Mark A.
2013-06-01
We report and analyze 3 years of lightning impulse charge moment change (iCMC) measurements obtained from an automated, real time lightning charge moment change network (CMCN). The CMCN combines U.S. National Lightning Detection Network (NLDN) lightning event geolocations with extremely low frequency (≲1 kHz) data from two stations to provide iCMC measurements across the entire United States. Almost 14 million lightning events were measured in the 3 year period. We present the statistical distributions of iCMC versus polarity and NLDN-measured peak current, including corrections for the detection efficiency of the CMCN versus peak current. We find a broad distribution of iCMC for a given peak current, implying that these parameters are at best only weakly correlated. Curiously, the mean iCMC does not monotonically increase with peak current, and in fact, drops for positive CG strokes above +150 kA. For all positive strokes, there is a boundary near 20 C km that separates seemingly distinct populations of high and low iCMC strokes. We also explore the geographic distribution of high iCMC lightning strokes. High iCMC positive strokes occur predominantly in the northern midwest portion of the U.S., with a secondary peak over the gulf stream region just off the U.S. east coast. High iCMC negative strokes are also clustered in the midwest, although somewhat south of most of the high iCMC positive strokes. This is a region far from the locations of maximum occurrence of high peak current negative strokes. Based on assumed iCMC thresholds for sprite production, we estimate that approximately 35,000 positive polarity and 350 negative polarity sprites occur per year over the U.S. land and near-coastal areas. Among other applications, this network is useful for the nowcasting of sprite-producing storms and storm regions.
Somatosensory responses in normal aging, mild cognitive impairment, and Alzheimer's disease.
Stephen, Julia M; Montaño, Rebecca; Donahue, Christopher H; Adair, John C; Knoefel, Janice; Qualls, Clifford; Hart, Blaine; Ranken, Doug; Aine, Cheryl J
2010-02-01
As a part of a larger study of normal aging and Alzheimer's disease (AD), which included patients with mild cognitive impairment (MCI), we investigated the response to median nerve stimulation in primary and secondary somatosensory areas. We hypothesized that the somatosensory response would be relatively spared given the reported late involvement of sensory areas in the progression of AD. We applied brief pulses of electric current to left and right median nerves to test the somatosensory response in normal elderly (NE), MCI, and AD. MEG responses were measured and were analyzed with a semi-automated source localization algorithm to characterize source locations and timecourses. We found an overall difference in the amplitude of the response of the primary somatosensory source (SI) based on diagnosis. Across the first three peaks of the SI response, the MCI patients exhibited a larger amplitude response than the NE and AD groups (P < 0.03). Additional relationships between neuropsychological measures and SI amplitude were also determined. There was no significant difference in amplitude for the contralateral secondary somatosensory source across diagnostic category. These results suggest that somatosensory cortex is affected early in the progression of AD and may have some consequence on behavioral and functional measures.
Response analysis of TLD-300 dosimeters in heavy-particle beams.
Loncol, T; Hamal, M; Denis, J M; Vynckier, S; Wambersie, A; Scalliet, P
1996-09-01
In vivo dosimetry is recommended as part of the quality control procedure for treatment verification in radiation therapy. Using thermoluminescence, such controls are planned in the p(65) + Be neutron and 85 MeV proton beams produced at the cyclotron at Louvain-La-Neuve and dedicated to therapy applications. A preliminary study of the peak 3 (150 degrees C) and peak 5 (250 degrees C) response of CaF2:Tm (TLD-300) to neutron and proton beams aimed to analyse the effect of different radiation qualities on the dosimetric behaviour of the detector irradiated in phantom. To broaden the range of investigation, the study was extended to an experimental 12C heavy ion beam (95 MeV/nucleon). The peak 3 and 5 sensitivities in the neutron beam, compared to 60Co, varied little with depth. A major change of peak 5 sensitivity was observed for samples positioned under five leaves of the multi-leaf collimator. While peak 3 sensitivity was constant with depth in the unmodulated proton beam, peak 5 sensitivity increased by 15%. Near the Bragg peak, peak 3 showed the highest decrease of sensitivity. In the modulated proton beam, the sensitivity values were not significantly smaller than those measured in the unmodulated beam far from the Bragg peak region. The ratio of the heights of peak 3 and peak 5 decreased by 70% from the 60Co reference radiation to the 12C heavy-ion beam. This parameter was strongly correlated with the change of radiation quality.
NASA Astrophysics Data System (ADS)
Jánský, Jaroslav; Lucas, Greg M.; Kalb, Christina; Bayona, Victor; Peterson, Michael J.; Deierling, Wiebke; Flyer, Natasha; Pasko, Victor P.
2017-12-01
This work analyzes different current source and conductivity parameterizations and their influence on the diurnal variation of the global electric circuit (GEC). The diurnal variations of the current source parameterizations obtained using electric field and conductivity measurements from plane overflights combined with global Tropical Rainfall Measuring Mission satellite data give generally good agreement with measured diurnal variation of the electric field at Vostok, Antarctica, where reference experimental measurements are performed. An approach employing 85 GHz passive microwave observations to infer currents within the GEC is compared and shows the best agreement in amplitude and phase with experimental measurements. To study the conductivity influence, GEC models solving the continuity equation in 3-D are used to calculate atmospheric resistance using yearly averaged conductivity obtained from the global circulation model Community Earth System Model (CESM). Then, using current source parameterization combining mean currents and global counts of electrified clouds, if the exponential conductivity is substituted by the conductivity from CESM, the peak to peak diurnal variation of the ionospheric potential of the GEC decreases from 24% to 20%. The main reason for the change is the presence of clouds while effects of 222Rn ionization, aerosols, and topography are less pronounced. The simulated peak to peak diurnal variation of the electric field at Vostok is increased from 15% to 18% from the diurnal variation of the global current in the GEC if conductivity from CESM is used.
Demand Side Management: An approach to peak load smoothing
NASA Astrophysics Data System (ADS)
Gupta, Prachi
A preliminary national-level analysis was conducted to determine whether Demand Side Management (DSM) programs introduced by electric utilities since 1992 have made any progress towards their stated goal of reducing peak load demand. Estimates implied that DSM has a very small effect on peak load reduction and there is substantial regional and end-user variability. A limited scholarly literature on DSM also provides evidence in support of a positive effect of demand response programs. Yet, none of these studies examine the question of how DSM affects peak load at the micro-level by influencing end-users' response to prices. After nearly three decades of experience with DSM, controversy remains over how effective these programs have been. This dissertation considers regional analyses that explore both demand-side solutions and supply-side interventions. On the demand side, models are estimated to provide in-depth evidence of end-user consumption patterns for each North American Electric Reliability Corporation (NERC) region, helping to identify sectors in regions that have made a substantial contribution to peak load reduction. The empirical evidence supports the initial hypothesis that there is substantial regional and end-user variability of reductions in peak demand. These results are quite robust in rapidly-urbanizing regions, where air conditioning and lighting load is substantially higher, and regions where the summer peak is more pronounced than the winter peak. It is also evident from the regional experiences that active government involvement, as shaped by state regulations in the last few years, has been successful in promoting DSM programs, and perhaps for the same reason we witness an uptick in peak load reductions in the years 2008 and 2009. On the supply side, we estimate the effectiveness of DSM programs by analyzing the growth of capacity margin with the introduction of DSM programs. The results indicate that DSM has been successful in offsetting the need for additional production capacity by the means of demand response measures, but the success is limited to only a few regions. The rate of progress in the future will depend on a wide range of improved technologies and a continuous government monitoring for successful adoption of demand response programs to manage growing energy demand.
Laurent, C Matthew; Vervaecke, Lauren S; Kutz, Matthew R; Green, J Matthew
2014-04-01
This study examined sex-specific responses during self-paced, high-intensity interval training (HIIT). Sixteen (8 men and 8 women) individuals completed a peak oxygen uptake test and 3 treadmill HIIT sessions on separate days. The HIIT sessions consisted of six 4-minute intervals performed at the highest self-selected intensity individuals felt they could maintain. Recovery between intervals was counterbalanced and consisted of 1-, 2-, or 4-minute recovery during each trial. Relative measures of intensity, including percentage of velocity at VO2peak (vVO2peak), %VO2peak, %HRmax, and blood lactate concentration ([La]), were observed during the trials. Perceived readiness was recorded immediately before and ratings of perceived exertion (RPE) were recorded at the end of each interval with session RPE recorded after each trial. Results revealed a significant effect of sex on %vVO2peak (p < 0.01) and %HRmax (p < 0.01). Data show that across trials, men self-select higher %vVO2peak (84.5 vs. 80.7%), whereas women produce higher %HRmax (96.9 vs. 92.1%) and %VO2peak (89.6 vs. 86.1%) with no difference in [La] or perceptual responses. These findings support the notion that women may demonstrate improved recovery during high-intensity exercise, as they will self-select intensities resulting in greater cardiovascular strain. Moreover, results confirm previous findings suggesting that a 2:1 work-to-rest ratio is optimal during HIIT for both men and women.
Timing in a Variable Interval Procedure: Evidence for a Memory Singularity
Matell, Matthew S.; Kim, Jung S.; Hartshorne, Loryn
2013-01-01
Rats were trained in either a 30s peak-interval procedure, or a 15–45s variable interval peak procedure with a uniform distribution (Exp 1) or a ramping probability distribution (Exp 2). Rats in all groups showed peak shaped response functions centered around 30s, with the uniform group having an earlier and broader peak response function and rats in the ramping group having a later peak function as compared to the single duration group. The changes in these mean functions, as well as the statistics from single trial analyses, can be better captured by a model of timing in which memory is represented by a single, average, delay to reinforcement compared to one in which all durations are stored as a distribution, such as the complete memory model of Scalar Expectancy Theory or a simple associative model. PMID:24012783
Acetylcholine-activated ionic currents in parasympathetic neurons of bullfrog heart.
Tateishi, N; Kim, D K; Akaike, N
1990-05-01
1. The electrical and pharmacologic properties of acetylcholine (ACh)-induced current (IACh) were studied in the parasympathetic neurons isolated from bullfrog heart with the use of the concentration-clamp technique, which allows intracellular perfusion and rapid change of external solution within 2 ms under the single-electrode voltage-clamp condition. 2. The IACh consisted of an initial transient peak component and a successive steady-state plateau component. Both currents increased in a sigmoidal fashion with increasing ACh concentration. The dissociation constant (Kd value) and the Hill coefficient for each component were 2.2 X 10(-5) M and 1.6, respectively. 3. In the K(+)-free solution, the reversal potential (EACh) of IACh was close to the Na+ equilibrium potential (ENa). The current-voltage (I-V) relation showed inward rectification at positive potentials. 4. Nicotine mimicked only the peak component of IACh. However both peak and steady-state components were blocked nonselectively by the nicotinic blockers d-tubocurarine and hexamethonium. 5. Carbamylcholine (CCh) mimicked the steady-state component of IACh. The steady-state component was selectively inhibited by atropine at concentrations 1,000 times lower than that required for inhibition of the peak component. The steady state was blocked equally by either pirenzepine (M1 blocker) or AF-DX-116 (M2 blocker). 6. It was concluded that the IACh consisted of a peak component having double exponential activation and inactivation, mediated through the nicotinic actions, and a steady-state component having no inactivation, mediated through the muscarinic action.
Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes.
Bessire, Cedric D; Björk, Mikael T; Schmid, Heinz; Schenk, Andreas; Reuter, Kathleen B; Riel, Heike
2011-10-12
We report on the electrical characterization of one-sided p(+)-si/n-InAs nanowire heterojunction tunnel diodes to provide insight into the tunnel process occurring in this highly lattice mismatched material system. The lattice mismatch gives rise to dislocations at the interface as confirmed by electron microscopy. Despite this, a negative differential resistance with peak-to-valley current ratios of up to 2.4 at room temperature and with large current densities is observed, attesting to the very abrupt and high-quality interface. The presence of dislocations and other defects that increase the excess current is evident in the first and second derivative of the I-V characteristics as distinct peaks arising from trap-and phonon-assisted tunneling via the corresponding defect levels. We observe this assisted tunneling mainly in the forward direction and at low reverse bias but not at higher reverse biases because the band-to-band generation rates are peaked in the InAs, which is also confirmed by modeling. This indicates that most of the peaks are due to dislocations and defects in the immediate vicinity of the interface. Finally, we also demonstrate that these devices are very sensitive to electrical stress, in particular at room temperature, because of the extremely high electrical fields obtained at the abrupt junction even at low bias. The electrical stress induces additional defect levels in the band gap, which reduce the peak-to-valley current ratios.
NASA Astrophysics Data System (ADS)
Liu, Mingyue; Xiao, Longfei; Yang, Jianmin; Tian, Xinliang
2017-05-01
The vortex-induced motions (VIMs) of semi-submersibles have emerged as an important issue in offshore engineering, as they pose a threat to safe and reliable operations and severely affect the fatigue lives of risers and mooring systems. The VIM response depends on the shape of the submerged structure and thus is significantly influenced by the design parameters related to the columns and pontoons. Numerical simulations by the detached Eddy simulation method are validated by experimental data and then used for parametric analysis of the VIM performance of various semi-submersibles with different column rounded ratios (Rc/L ) and pontoon rounded ratios (Rp/Lp ). The results show that the transverse amplitudes of a semi-submersible with circular columns at a 0° current heading are twice as large as those at a 45° current heading. However, the semi-submersible with rounded square columns shows more significant transverse motions at a 45° current heading than at a 0° current heading. Furthermore, at the 45° current heading, the transverse amplitudes of the semi-submersibles show a rapid increase as the column radius increases in the range of Rc/L <0.1 . The peak values remain roughly the same for 0.1 ≤Rc/L ≤0.2 and then decrease as the column radius increases (Rc/L ≥0.3 ). In addition, the effect of the pontoon shape on the transverse response is negligible for semi-submersibles with sharp square columns, while for semi-submersibles with rounded square columns or circular columns, the sharp rectangular pontoons greatly mitigate the VIM response.
Effects of chemo-mechanical polishing on CdZnTe X-ray and gamma-ray detectors
Egarievwe, Stephen E.; Hossain, Anwar; Okwechime, Ifechukwude O.; ...
2015-06-23
Here, mechanically polishing cadmium zinc telluride (CdZnTe) wafers for x-ray and gamma-ray detectors often is inadequate in removing surface defects caused by cutting them from the ingots. Fabrication-induced defects, such as surface roughness, dangling bonds, and nonstoichiometric surfaces, often are reduced through polishing and etching the surface. In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with bromine–methanol–ethylene glycol solution, we found that the chemomechanical polishing process produced the least surface leakage current. In this research, we focused on using two chemicals to chemomechanically polish CdZnTe wafers aftermore » mechanical polishing, viz. bromine–methanol–ethylene glycol (BME) solution, and hydrogen bromide (HBr) in a hydrogen peroxide and ethylene–glycol solution. We used x-ray photoelectron spectroscopy (XPS), current–voltage (I–V) measurements, and Am-241 spectral response measurements to characterize and compare the effects of each solution. The results show that the HBr-based solution produced lower leakage current than the BME solution. Results from using the same chemomechanical polishing solution on two samples confirmed that the surface treatment affects the measured bulk current (a combination of bulk and surface currents). XPS results indicate that the tellurium oxide to tellurium peak ratios for the mechanical polishing process were reduced significantly by chemomechanical polishing using the BME solution (78.9% for Te 3d 5/2O 2 and 76.7% for Te 3d 3/2O 2) compared with the HBr-based solution (27.6% for Te 3d 5/2O 2 and 35.8% for Te 3d 3/2O 2). Spectral response measurements showed that the 59.5-keV peak of Am-241 remained under the same channel number for all three CdZnTe samples. While the BME-based solution gave a better performance of 7.15% full-width at half-maximum (FWHM) compared with 7.59% FWHM for the HBr-based solution, the latter showed a smaller variation in performance of 0.39% FWHM over 7 days compared with 0.69% for the BME-based solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piette, Mary Ann
California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the usemore » of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.« less
Sundström, Karin B.; Nguyen Hoang, Anh Thu; Gupta, Shawon; Ahlm, Clas; Svensson, Mattias; Klingström, Jonas
2016-01-01
Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), a severe acute disease with a 40% case fatality rate. Humans are infected via inhalation, and the lungs are severely affected during HPS, but little is known regarding the effects of ANDV-infection of the lung. Using a 3-dimensional air-exposed organotypic human lung tissue model, we analyzed progeny virus production and cytokine-responses after ANDV-infection. After a 7–10 day period of low progeny virus production, a sudden peak in progeny virus levels was observed during approximately one week. This peak in ANDV-production coincided in time with activation of innate immune responses, as shown by induction of type I and III interferons and ISG56. After the peak in ANDV production a low, but stable, level of ANDV progeny was observed until 39 days after infection. Compared to uninfected models, ANDV caused long-term elevated levels of eotaxin-1, IL-6, IL-8, IP-10, and VEGF-A that peaked 20–25 days after infection, i.e., after the observed peak in progeny virus production. Notably, eotaxin-1 was only detected in supernatants from infected models. In conclusion, these findings suggest that ANDV replication in lung tissue elicits a late proinflammatory immune response with possible long-term effects on the local lung cytokine milieu. The change from an innate to a proinflammatory response might be important for the transition from initial asymptomatic infection to severe clinical disease, HPS. PMID:26907493
Sundström, Karin B; Nguyen Hoang, Anh Thu; Gupta, Shawon; Ahlm, Clas; Svensson, Mattias; Klingström, Jonas
2016-01-01
Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), a severe acute disease with a 40% case fatality rate. Humans are infected via inhalation, and the lungs are severely affected during HPS, but little is known regarding the effects of ANDV-infection of the lung. Using a 3-dimensional air-exposed organotypic human lung tissue model, we analyzed progeny virus production and cytokine-responses after ANDV-infection. After a 7-10 day period of low progeny virus production, a sudden peak in progeny virus levels was observed during approximately one week. This peak in ANDV-production coincided in time with activation of innate immune responses, as shown by induction of type I and III interferons and ISG56. After the peak in ANDV production a low, but stable, level of ANDV progeny was observed until 39 days after infection. Compared to uninfected models, ANDV caused long-term elevated levels of eotaxin-1, IL-6, IL-8, IP-10, and VEGF-A that peaked 20-25 days after infection, i.e., after the observed peak in progeny virus production. Notably, eotaxin-1 was only detected in supernatants from infected models. In conclusion, these findings suggest that ANDV replication in lung tissue elicits a late proinflammatory immune response with possible long-term effects on the local lung cytokine milieu. The change from an innate to a proinflammatory response might be important for the transition from initial asymptomatic infection to severe clinical disease, HPS.
Durand, Adélaïde; Tauber, Maithé; Patel, Bharat; Dutailly, Pascale
2017-01-01
A meta-analysis was undertaken to assess the effect of triptorelin 11.25 mg 3-month prolonged-release formulation in central precocious puberty (CPP). All available clinical studies with triptorelin 11.25 mg were included. The primary outcome was the proportion of children with suppressed luteinising hormone (LH) response (peak LH ≤3 IU/L) to the gonadotrophin-releasing hormone (GnRH) test 3 months after triptorelin 11.25 mg injection. Secondary outcomes included: the proportion with suppressed peak LH response at 6 months and the proportion with suppressed peak follicle-stimulating hormone (FSH) response (≤3 IU/L), suppressed oestradiol (≤20 pmol/L) in girls or suppressed testosterone (≤30 ng/dL) in boys at 3 months. 153 children (13 boys, 140 girls) were included. The proportion with a suppressed peak LH response to the GnRH test was 87.6% (95% CI: 81.3-92.4, p < 0.0001, for a proportion >70%) and 92.8% (95% CI: 87.5-96.4, p < 0.0001, for a proportion >70%) at 3 and 6 months, respectively. FSH peak, oestradiol, and testosterone were suppressed in 86.7% (95% CI: 79.1-92.4), 97.1% (95% CI: 91.6-99.4), and 72.7% (95% CI: 39.0-94.0) of children at 3 months, respectively. Triptorelin 11.25 mg 3-month formulation is efficacious in suppressing LH peak and other gonadal hormones and in slowing the progression of CPP in children. . © 2017 S. Karger AG, Basel.
Horowitz, Y S; Oster, L; Satinger, D; Biderman, S; Einav, Y
2002-01-01
The hypothesis that glow peak 5a arises from localised e-h capture is confirmed by the following experimental observations: (i) The high conversion efficiency (CE) (CE5a-->4 = 3 +/- 0.5) of peak 5a to peak 4 (a hole-only trap) deduced from detailed Im-Tstop optical bleaching studies at 310 nm compared to the much lower CE of peak 5 (an electron-only trap) (CE5-->4 = 0.0026+/-0.012). (ii) The lack of an increase in the sensitivity of glow peak 5a following 2.6 MeV and 6.8 MeV He ion irradiation in 'sensitised' material compared to the factor two increase in the sensitivity of peak 5; (S/S0)5a = 0.86+/-0.12, compared to (S/S0)5 = 2.0+/-0.2. (iii) The late entry into saturation of the 2.6 MeV and 6.8 MeV He ion TL-fluence response curves for peak 5a compared to peak 5 in sensitised and normal material resulting in the following values for the track radial saturation parameter: (r50)5a = 100+/-20) Angstroms compared to (r50)5 = 380+/-30 Angstroms. (iv) The low value of 0.1 for the 'track-escape' parameter of peak 5a deduced from the Extended Track Interaction Model analysis of He ion TL fluence response compared to order of magnitude greater values for peaks 5 and 5b.
Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.
Salt, Alec N; Lichtenhan, Jeffery T; Gill, Ruth M; Hartsock, Jared J
2013-03-01
Responses of the ear to low-frequency and infrasonic sounds have not been extensively studied. Understanding how the ear responds to low frequencies is increasingly important as environmental infrasounds are becoming more pervasive from sources such as wind turbines. This study shows endolymphatic potentials in the third cochlear turn from acoustic infrasound (5 Hz) are larger than from tones in the audible range (e.g., 50 and 500 Hz), in some cases with peak-to-peak amplitude greater than 20 mV. These large potentials were suppressed by higher-frequency tones and were rapidly abolished by perilymphatic injection of KCl at the cochlear apex, demonstrating their third-turn origins. Endolymphatic iso-potentials from 5 to 500 Hz were enhanced relative to perilymphatic potentials as frequency was lowered. Probe and infrasonic bias tones were used to study the origin of the enhanced potentials. Potentials were best explained as a saturating response summed with a sinusoidal voltage (Vo), that was phase delayed by an average of 60° relative to the biasing effects of the infrasound. Vo is thought to arise indirectly from hair cell activity, such as from strial potential changes caused by sustained current changes through the hair cells in each half cycle of the infrasound.
Jiang, Jingjing; Du, Xuezhong
2014-10-07
Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing.
How glitter relates to gold: similarity-dependent reward prediction errors in the human striatum.
Kahnt, Thorsten; Park, Soyoung Q; Burke, Christopher J; Tobler, Philippe N
2012-11-14
Optimal choices benefit from previous learning. However, it is not clear how previously learned stimuli influence behavior to novel but similar stimuli. One possibility is to generalize based on the similarity between learned and current stimuli. Here, we use neuroscientific methods and a novel computational model to inform the question of how stimulus generalization is implemented in the human brain. Behavioral responses during an intradimensional discrimination task showed similarity-dependent generalization. Moreover, a peak shift occurred, i.e., the peak of the behavioral generalization gradient was displaced from the rewarded conditioned stimulus in the direction away from the unrewarded conditioned stimulus. To account for the behavioral responses, we designed a similarity-based reinforcement learning model wherein prediction errors generalize across similar stimuli and update their value. We show that this model predicts a similarity-dependent neural generalization gradient in the striatum as well as changes in responding during extinction. Moreover, across subjects, the width of generalization was negatively correlated with functional connectivity between the striatum and the hippocampus. This result suggests that hippocampus-striatal connections contribute to stimulus-specific value updating by controlling the width of generalization. In summary, our results shed light onto the neurobiology of a fundamental, similarity-dependent learning principle that allows learning the value of stimuli that have never been encountered.
Enhancement in c-Si solar cells using 16 nm InN nanoparticles
NASA Astrophysics Data System (ADS)
Imtiaz Chowdhury, Farsad; Alnuaimi, Aaesha; Alkis, Sabri; Ortaç, Bülend; Aktürk, Selçuk; Alevli, Mustafa; Dietz, Nikolaus; Kemal Okyay, Ali; Nayfeh, Ammar
2016-05-01
In this work, 16 nm indium nitride (InN) nanoparticles (NPs) are used to increase the performance of thin-film c-Si HIT solar cells. InN NPs were spin-coated on top of an ITO layer of c-Si HIT solar cells. The c-Si HIT cell is a stack of 2 μm p type c-Si, 4-5 nm n type a-Si, 15 nm n+ type a-Si and 80 nm ITO grown on a p+ type Si substrate. On average, short circuit current density (Jsc) increases from 19.64 mA cm-2 to 21.54 mA cm-2 with a relative improvement of 9.67% and efficiency increases from 6.09% to 7.09% with a relative improvement of 16.42% due to the presence of InN NPs. Reflectance and internal/external quantum efficiency (IQE/EQE) of the devices were also measured. Peak EQE was found to increase from 74.1% to 81.3% and peak IQE increased from 93% to 98.6% for InN NPs coated c-Si HIT cells. Lower reflection of light due to light scattering is responsible for performance enhancement between 400-620 nm while downshifted photons are responsible for performance enhancement from 620 nm onwards.
NASA Astrophysics Data System (ADS)
Gnann, Till; Klingler, Anna-Lena; Kühnbach, Matthias
2018-06-01
Plug-in electric vehicles are the currently favoured option to decarbonize the passenger car sector. However, a decarbonisation is only possible with electricity from renewable energies and plug-in electric vehicles might cause peak loads if they started to charge at the same time. Both these issues could be solved with coordinated load shifting (demand response). Previous studies analyzed this research question by focusing on private vehicles with domestic and work charging infrastructure. This study additionally includes the important early adopter group of commercial fleet vehicles and reflects the impact of domestic, commercial, work and public charging. For this purpose, two models are combined. In a comparison of three scenarios, we find that charging of commercial vehicles does not inflict evening load peaks in the same magnitude as purely domestic charging of private cars does. Also for private cars, charging at work occurs during the day and may reduce the necessity of load shifting while public charging plays a less important role in total charging demand as well as load shifting potential. Nonetheless, demand response reduces the system load by about 2.2 GW or 2.8% when domestic and work charging are considered compared to a scenario with only domestic charging.
Bolander, Richard; Mathie, Blake; Bir, Cynthia; Ritzel, David; VandeVord, Pamela
2011-10-01
The manner in which energy from an explosion is transmitted into the brain is currently a highly debated topic within the blast injury community. This study was conducted to investigate the injury biomechanics causing blast-related neurotrauma in the rat. Biomechanical responses of the rat head under shock wave loading were measured using strain gauges on the skull surface and a fiber optic pressure sensor placed within the cortex. MicroCT imaging techniques were applied to quantify skull bone thickness. The strain gauge results indicated that the response of the rat skull is dependent on the intensity of the incident shock wave; greater intensity shock waves cause greater deflections of the skull. The intracranial pressure (ICP) sensors indicated that the peak pressure developed within the brain was greater than the peak side-on external pressure and correlated with surface strain. The bone plates between the lambda, bregma, and midline sutures are probable regions for the greatest flexure to occur. The data provides evidence that skull flexure is a likely candidate for the development of ICP gradients within the rat brain. This dependency of transmitted stress on particular skull dynamics for a given species should be considered by those investigating blast-related neurotrauma using animal models.
Physical and structural properties of polyaniline/microcrystalline cellulose nanocomposite
NASA Astrophysics Data System (ADS)
Abdi, Mahnaz M.; Liyana, Rawaida; Tahir, Paridah Md; Heng, Lee Yook; Sulaiman, Yusran; Waheeda, Nur Farhana; Hassan, Nabihah Abu
2017-12-01
A composite of Polyaniline/Microcrystalline Cellulose (PAni/MCC) was prepared via a chemical polymerization method in the presence of ammonium persulfate (NH4)2S2O8 as oxidant and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. The results of FESEM showed that the morphology of nanocomposite depends on the monomer concentration. Wire-like and porous nanostructure was observed for PAni/MCC/CTAB composite that could be suitable for enzyme immobilization and sensor applications. The electrochemical properties of the composites were studied using Cyclic Voltammetry (CV) and it was shown that PAni/MCC/CTAB composite generated a higher current response compared to the pure PAni. The synergy effect of MCC and CTAB on the physical and electrochemical properties of composite resulted in higher electron transferring in PAni/MCC/CTAB. The presence of significant peaks of PAni and MCC in FT-IR spectrum of nanocomposite indicating polymerization of aniline on the surface of MCC. Characteristic peaks of crystalline cellulose were observed at 22.8 and 14.7 2theta in XRD pattern.
Simultaneous voltammetric determination of prednisone and prednisolone in human body fluids.
Goyal, Rajendra N; Bishnoi, Sunita
2009-08-15
A sensitive, rapid and reliable electrochemical method based on voltammetry at single wall carbon nanotube (SWNT) modified edge plane pyrolytic graphite electrode (EPPGE) is proposed for the simultaneous determination of prednisolone and prednisone in human body fluids and pharmaceutical preparations. The electrochemical response of both the drugs was evaluated by osteryoung square wave voltammetry (OSWV) in phosphate buffer medium of pH 7.2. The modified electrode exhibited good electrocatalytic properties towards prednisone and prednisolone reduction with a peak potential of approximately -1230 and approximately -1332 mV respectively. The concentration versus peak current plots were linear for both the analytes in the range 0.01-100 microM and the detection limit (3 sigma/slope) observed for prednisone and prednisolone were 0.45 x 10(-8), 0.90 x 10(-8)M, respectively. The results of the quantitative estimation of prednisone and prednisolone in biological fluids were also compared with HPLC and the results were in good agreement.
NASA Technical Reports Server (NTRS)
Milder, G.
1975-01-01
The current work presents an overview of the Viking 1975 environmental testing from an engineering standpoint. An extremely large vibration test fixture had to be designed, analyzed, and integrated into a test setup that employed hydrostatic bearings in a new fashion. A vibration control system was also required that would allow for thirty-six channels of sine-wave peak select control from acceleration, force-of-strain transducers. In addition, some 68 channels of peak limiting shutdown capability were needed for backup and monitoring of other data during the forced vibration test. Pretesting included analyses of the fixture design, overturning moment, control system capabilities, and response of the entire spacecraft/fixture/exciter system to the test environment. Closed-loop control for acoustic testing was a necessity due to the fact that the Viking spacecraft took up a major portion of the volume of the 10,000 cu ft chamber. The spacecraft emerged from testing undamaged.
Baig, Hassam A; Dorman, Daniel B; Bulka, Ben A; Shivers, Bethany L; Chancey, Valeta C; Winkelstein, Beth A
2014-10-01
Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such frequencies may induce greater muscle activity, leading to muscle fatigue, which could be a contributing mechanism of back pain.
Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young
2017-05-01
The aim of this work was to investigate the cardiorespiratory responses of patients with subacute stroke to exercise stress tests with aquatic and land treadmills. Twenty-one consecutive patients who presented with first-ever subacute stroke in 2013-2015. All subjects underwent symptom-limited incremental exercise testing with aquatic and land treadmills. Land treadmill speed started at 1.5 km/h and increased 0.5 km/h every 1 to 2 minutes until maximal tolerable speed was achieved. Thereafter, the grade was elevated by 2% every 2 minutes. In the aquatic treadmill test, subjects were submerged to the xiphoid in 28°C water. Treadmill speed started at 1.5 km/h and was increased 0.5 km/h every 2 minutes thereafter. Cardiorespiratory responses were recorded with aquatic and land treadmills. Compared to land treadmill exercise, aquatic treadmill exercise achieved significantly better peak VO2 (22.0 vs 20.0; P = 0.02), peak metabolic equivalents (6.3 vs 5.8; P = 0.02), and peak rating of perceived exertion (17.6 vs 18.4, P = 0.01). Heart rate and VO2 correlated significantly during both tests (land treadmill: r = 0.96, P < 0.001; aquatic treadmill: r = 0.99, P < 0.001). Aquatic treadmill exercise elicited significantly better peak cardiorespiratory responses than land treadmill exercise and may be as effective for early intensive aerobic training in subacute stroke patients.
Relationship between dyspnea, peak expiratory flow rate and wheeze in obstructive lung disease.
Srisawai, P
1997-05-01
The relationship between dyspnea and airway obstruction is complex, and it is unclear to what extent measures of each correlate in patients with obstructive lung disease (OLD). Thus, the correlation between subjective assessment of dyspnea (dyspnea score using modified Borg scale) and objective assessment of dyspnea (peak expiratory flow rate using Mini Wright Peak Flow Meter and wheeze score using stethoscope) before and after bronchodilator (1 mg of turbutaline sulphate) were studied in 115 patients (62 males, 53 females) with OLD attending the chest clinic of Royal Irrigation Hospital, Nonthaburi, Thailand. The mean age of these patients was 47.4 +/- 16.4 years. Good correlations were found (r = 0.37 to 0.52; p < 0.001) but dyspnea scores were better correlated with wheeze scores than peak expiratory flow rates. The change in dyspnea scores after bronchodilator also correlated with the change in peak expiratory flow rates and the change in wheeze scores (r = 0.22; p < 0.02 and r = 0.28; p < 0.005 respectively). Analyzing a subgroup of 48 dyspneic patients (prebronchodilator dyspnea score of 2 or more) revealed the following response groups: those with either a bronchodilator or dyspnea response alone, both together, or neither. Twenty-three patients (47.92 per cent) responded both subjectively and objectively. One (2.08 per cent) had a bronchodilator response only. Twenty (41.66 per cent) had a dyspnea response only, while four (8.33 per cent) had neither measurable response. The present study suggests that the assessment of dyspnea by using dyspnea score is vital and may be specially helpful in a situation where the objective assessment cannot be performed. In some individuals the subjective assessment of response to bronchodilator may be at least as valuable as objective data.
Antenatal smoking and substance-misuse, infant and newborn response to hypoxia.
Ali, Kamal; Rosser, Thomas; Bhat, Ravindra; Wolff, Kim; Hannam, Simon; Rafferty, Gerrard F; Greenough, Anne
2017-05-01
To determine at the peak age for sudden infant death syndrome (SIDS) the ventilatory response to hypoxia of infants whose mothers substance misused in pregnancy (SM infants), or smoked during pregnancy (S mothers) and controls whose mothers neither substance misused or smoked. In addition, we compared the ventilatory response to hypoxia during the neonatal period and peak age of SIDS. Infants of S or SM mothers compared to control infants would have a poorer ventilatory response to hypoxia at the peak age of SIDS. Prospective, observational study. Twelve S; 12 SM and 11 control infants were assessed at 6-12 weeks of age and in the neonatal period. Changes in minute volume, oxygen saturation, heart rate, and end tidal carbon dioxide levels on switching from breathing room air to 15% oxygen were assessed. Maternal and infant urine samples were tested for cotinine, cannabinoids, opiates, amphetamines, methadone, cocaine, and benzodiazepines. The S and SM infants had a greater decline in minute volume (P = 0.037, P = 0.016, respectively) and oxygen saturation (P = 0.031) compared to controls. In all groups, the magnitude of decline in minute volume in response to hypoxia was higher in the neonatal period compared to at 6-12 weeks (P < 0.001). Both maternal substance misuse and smoking were associated with an impaired response to a hypoxic challenge at the peak age for SIDS. The hypoxic ventilatory decline was more marked in the neonatal period compared to the peak age for SIDS indicating a maturational effect. Pediatr Pulmonol. 2017;52:650-655. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
WE-E-17A-01: Characterization of An Imaging-Based Model of Tumor Angiogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikarla, V; Jeraj, R
2014-06-15
Purpose: Understanding the transient dynamics of tumor oxygenation is important when evaluating tumor-vasculature response to anti-angiogenic therapies. An imaging-based tumor-vasculature model was used to elucidate factors that affect these dynamics. Methods: Tumor growth depends on its doubling time (Td). Hypoxia increases pro-angiogenic factor (VEGF) concentration which is modeled to reduce vessel perfusion, attributing to its effect of increasing vascular permeability. Perfused vessel recruitment depends on the existing perfused vasculature, VEGF concentration and maximum VEGF concentration (VEGFmax) for vessel dysfunction. A convolution-based algorithm couples the tumor to the normal tissue vessel density (VD-nt). The parameters are benchmarked to published pre-clinical datamore » and a sensitivity study evaluating the changes in the peak and time to peak tumor oxygenation characterizes them. The model is used to simulate changes in hypoxia and proliferation PET imaging data obtained using [Cu- 61]Cu-ATSM and [F-18]FLT respectively. Results: Td and VD-nt were found to be the most influential on peak tumor pO2 while VEGFmax was marginally influential. A +20 % change in Td, VD-nt and VEGFmax resulted in +50%, +25% and +5% increase in peak pO2. In contrast, Td was the most influential on the time to peak oxygenation with VD-nt and VEGFmax playing marginal roles. A +20% change in Td, VD-nt and VEGFmax increased the time to peak pO2 by +50%, +5% and +0%. A −20% change in the above parameters resulted in comparable decreases in the peak and time to peak pO2. Model application to the PET data was able to demonstrate the voxel-specific changes in hypoxia of the imaged tumor. Conclusion: Tumor-specific doubling time and vessel density are important parameters to be considered when evaluating hypoxia transients. While the current model simulates the oxygen dynamics of an untreated tumor, incorporation of therapeutic effects can make the model a potent tool for analyzing anti-angiogenic therapies.« less
Evidence of prompt penetration electric fields during HILDCAA events
NASA Astrophysics Data System (ADS)
Pereira Silva, Regia; Sobral, Jose Humberto Andrade; Koga, Daiki; Rodrigues Souza, Jonas
2017-10-01
High-intensity, long-duration continuous auroral electrojet (AE) activity (HILDCAA) events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23) using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S). Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE) peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.
NASA Astrophysics Data System (ADS)
Sato, Kenji; Achiba, Yohji; Kimura, Katsumi
1984-07-01
Using a 5% mixture of NO in Ar in a supersonic free jet, in the present work we have carried out measurements of the total ion current in the 380-385 nm laser wavelength region. We have also measured photoelectron kinetic energy spectra at individual ion current peaks. In the ion-current spectrum we have observed a new vibrational progression which consists of four peaks in the wavelength region longer than the peak of the two-photon transition of the free NO molecule NO(X, v″=0) →2hν NO(C,v'=0). It has been concluded that the new ion-current peaks are attributed to bound-to-bound transitions of the Ar-NO van der Waals complex from its ground state to the two-photon resonant state expressed by Ar-NO*(C 2Π, v'=0), in which the NO component is in the 3p Rydberg state. The whole resonant ionization process studied may be expressed by Ar-NO(X, v″=0) →2hνAr-NO*(C, v'=0) →hν Ar-NO+(X, v+=0). Each ion-current peak separation is about 50 cm-1, which may correspond to the frequency of the Ar-NO intermolecular stretching vibration, showing a strong anharmonicity. The dissociation energy (D0) of the Ar-NO*(C 2Π) state has been found to be 0.055±0.001 eV. From the photoelectron spectra, we also conclude that the adiabatic ionization energy of Ar-NO is Ia =9.148±0.005 eV and the dissociation energy of the Ar-NO+(X 1Σ) ion is D0=0.129±0.005 eV.
Dose response effect of cement dust on respiratory muscles competence in cement mill workers.
Meo, Sultan A; Azeem, Muhammad A; Qureshi, Aijaz A; Ghori, G Moinudin; Al-Drees, Abdul Majeed; Feisal Subhan, Mirza Muhammad
2006-12-01
Electromyography (EMG) of respiratory muscles is a reliable method of assessing the ventilatory muscle function, but still its use has not been fully utilized to determine the occupational and environmental hazards on respiratory muscles. Therefore, EMG of intercostal muscles was performed to determine the dose response effect of cement dust on respiratory muscles competence. Matched cross-sectional study of EMG in 50 non-smoking cement mill workers with an age range of 20 - 60 years, who worked without the benefit of cement dust control ventilation or respiratory protective devices. EMG was performed by using surface electrodes and chart recorder. Significant reduction was observed in number of peaks (p < 0.0005), maximum peak amplitude (p < 0.0005), peak-to-peak amplitude (p < 0.0005) and duration of response (p < 0.0005) in cement mill workers compared to their matched control. Cement dust impairs the intercostal muscle competence and stratification of results shows a dose-effect of years of exposure in cement mill.
Allan, Richard; Woodburn, James; Telfer, Scott; Abbott, Mandy; Steultjens, Martijn Pm
2017-06-01
The knee adduction moment is consistently used as a surrogate measure of medial compartment loading. Foot orthoses are designed to reduce knee adduction moment via lateral wedging. The 'dose' of wedging required to optimally unload the affected compartment is unknown and variable between individuals. This study explores a personalised approach via three-dimensional printed foot orthotics to assess the biomechanical response when two design variables are altered: orthotic length and lateral wedging. Foot orthoses were created for 10 individuals with symptomatic medial knee osteoarthritis and 10 controls. Computer-aided design software was used to design four full and four three-quarter-length foot orthoses per participant each with lateral posting of 0° 'neutral', 5° rearfoot, 10° rearfoot and 5° forefoot/10° rearfoot. Three-dimensional printers were used to manufacture all foot orthoses. Three-dimensional gait analyses were performed and selected knee kinetics were analysed: first peak knee adduction moment, second peak knee adduction moment, first knee flexion moment and knee adduction moment impulse. Full-length foot orthoses provided greater reductions in first peak knee adduction moment (p = 0.038), second peak knee adduction moment (p = 0.018) and knee adduction moment impulse (p = 0.022) compared to three-quarter-length foot orthoses. Dose effect of lateral wedging was found for first peak knee adduction moment (p < 0.001), second peak knee adduction moment (p < 0.001) and knee adduction moment impulse (p < 0.001) indicating greater unloading for higher wedging angles. Significant interaction effects were found for foot orthosis length and participant group in second peak knee adduction moment (p = 0.028) and knee adduction moment impulse (p = 0.036). Significant interaction effects were found between orthotic length and wedging condition for second peak knee adduction moment (p = 0.002). No significant changes in first knee flexion moment were found. Individual heterogeneous responses to foot orthosis conditions were observed for first peak knee adduction moment, second peak knee adduction moment and knee adduction moment impulse. Biomechanical response is highly variable with personalised foot orthoses. Findings indicate that the tailoring of a personalised intervention could provide an additional benefit over standard interventions and that a three-dimensional printing approach to foot orthosis manufacturing is a viable alternative to the standard methods.
ABH secretor status and pulmonary function.
Haines, A P; Imeson, J D; Meade, T W
1982-03-01
Among current cigarette smokers in the Northwick Park Heart Study in N.W. London, England, secretors of ABH antigen had a higher mean peak expiratory flow rate than did nonsecretors. The relationship was independent of other factors known to affect peak expiratory flow rate. No significant differences in peak expiratory flow rate by secretor status were detected in nonsmokers or in pipe and cigar smokers, although a smaller difference was seen among secretors and nonsecretors who were ex-cigarette smokers than among those who were current cigarette smokers. It is concluded that secretion of ABH antigen into the respiratory tract may have a protective effect against pulmonary damage by noxious agents.
Brock, Jon; Bzishvili, Samantha; Reid, Melanie; Hautus, Michael; Johnson, Blake W
2013-11-01
Atypical auditory perception is a widely recognised but poorly understood feature of autism. In the current study, we used magnetoencephalography to measure the brain responses of 10 autistic children as they listened passively to dichotic pitch stimuli, in which an illusory tone is generated by sub-millisecond inter-aural timing differences in white noise. Relative to control stimuli that contain no inter-aural timing differences, dichotic pitch stimuli typically elicit an object related negativity (ORN) response, associated with the perceptual segregation of the tone and the carrier noise into distinct auditory objects. Autistic children failed to demonstrate an ORN, suggesting a failure of segregation; however, comparison with the ORNs of age-matched typically developing controls narrowly failed to attain significance. More striking, the autistic children demonstrated a significant differential response to the pitch stimulus, peaking at around 50 ms. This was not present in the control group, nor has it been found in other groups tested using similar stimuli. This response may be a neural signature of atypical processing of pitch in at least some autistic individuals.
A new three-tier architecture design for multi-sphere neutron spectrometer with the FLUKA code
NASA Astrophysics Data System (ADS)
Huang, Hong; Yang, Jian-Bo; Tuo, Xian-Guo; Liu, Zhi; Wang, Qi-Biao; Wang, Xu
2016-07-01
The current commercially, available Bonner sphere neutron spectrometer (BSS) has high sensitivity to neutrons below 20 MeV, which causes it to be poorly placed to measure neutrons ranging from a few MeV to 100 MeV. The paper added moderator layers and the auxiliary material layer upon 3He proportional counters with FLUKA code, with a view to improve. The results showed that the responsive peaks to neutrons below 20 MeV gradually shift to higher energy region and decrease slightly with the increasing moderator thickness. On the contrary, the response for neutrons above 20 MeV was always very low until we embed auxiliary materials such as copper (Cu), lead (Pb), tungsten (W) into moderator layers. This paper chose the most suitable auxiliary material Pb to design a three-tier architecture multi-sphere neutron spectrometer (NBSS). Through calculating and comparing, the NBSS was advantageous in terms of response for 5-100 MeV and the highest response was 35.2 times the response of polyethylene (PE) ball with the same PE thickness.
Combined KHFAC+DC nerve block without onset or reduced nerve conductivity after block
Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin
2017-01-01
Background Kilohertz Frequency Alternating Current waveforms (KHFAC) have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Methods A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC+CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC+CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 seconds (range: 318 to 1563s) of cumulative DC to investigate the impact of combined KHFAC+CBDC on nerve viability. Results The peak onset force was reduced significantly from 20.73 N (range: 18.6–26.5 N) with KHFAC alone to 0.45 N (range: 0.2–0.7 N) with the combined CBDC and KHFAC block waveform (p<0.001). The area under the force curve was reduced from 6.8 Ns (range: 3.5–21.9 Ns) to 0.54 Ns (range: 0.18–0.86Ns) (p<0.01). No change in nerve conductivity was observed after application of the combined KHFAC+CBDC block relative to KHFAC waveforms. Conclusion The distal application of CBDC can significantly reduce or even completely prevent the KHFAC onset response without a change in nerve conductivity. PMID:25115572
Combined KHFAC + DC nerve block without onset or reduced nerve conductivity after block
NASA Astrophysics Data System (ADS)
Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin
2014-10-01
Objective. Kilohertz frequency alternating current (KHFAC) waveforms have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Approach. A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC + CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC + CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 s (range: 318-1563 s) of cumulative dc to investigate the impact of combined KHFAC + CBDC on nerve viability. Main results. The peak onset force was reduced significantly from 20.73 N (range: 18.6-26.5 N) with KHFAC alone to 0.45 N (range: 0.2-0.7 N) with the combined CBDC and KHFAC block waveform (p < 0.001). The area under the force curve was reduced from 6.8 Ns (range: 3.5-21.9 Ns) to 0.54 Ns (range: 0.18-0.86 Ns) (p < 0.01). No change in nerve conductivity was observed after application of the combined KHFAC + CBDC block relative to KHFAC waveforms. Significance. The distal application of CBDC can significantly reduce or even completely prevent the KHFAC onset response without a change in nerve conductivity.
Song, Yang; Swain, Greg M
2007-06-12
An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na2SO3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2+/-2.9 ppb for UV plant influent water and 16.4+/-0.9 ppb for Well 119 water (n=4). These values differed from the specified concentrations by less than 4%.
Evaluation of passive and active vibration control mechanisms in a microgravity environment
NASA Technical Reports Server (NTRS)
Ellison, J.; Ahmadi, G.; Grodsinsky, C.
1993-01-01
The behavior of equipment and their light secondary attachments in large space structures under orbital excitation is studied. The equipment is modeled as a shear beam and its secondary attachment is treated as a single-degree-of-freedom lumped mass system. Peak responses of the equipment and its secondary system for a variety of vibration control mechanisms are evaluated. A novel active friction control mechanism, by varying the normal force, is suggested. The device uses a magnetic field control to minimize the stick condition, thereby reducing the overall structural response. The results show that the use of the passive vibration control devices could reduce the peak equipment responses to a certain extent. However, major reduction of vibration levels could be achieved only by the use of active devices. Using active control of the interface normal force, the peak responses of the equipment and its attachment are reduced by a factor of 10 over the fixed-base equipment response.
Laurent, Heidemarie; Vergara-Lopez, Chrystal; Stroud, Laura R
2016-09-01
Efforts to define hypothalamic-pituitary-adrenal (HPA) axis profiles conferring risk for psychopathology have yielded inconclusive results, perhaps in part due to limited assessment of the stress response. In particular, research has typically focused on HPA responses to performance tasks, while neglecting the interpersonal stressors that become salient during adolescence. In this study we investigated links between psychosocial adjustment - youth internalizing and externalizing problems, as well as competence - and HPA responses to both performance and interpersonal stressors in a normative sample of children and adolescents. Participants (n = 59) completed a set of performance (public speaking, mental arithmetic, mirror tracing) and/or interpersonal (peer rejection) tasks and gave nine saliva samples, which were assayed for cortisol. Hierarchical linear models of cortisol response trajectories in relation to child behavior checklist (CBCL) scores revealed stressor- and sex-specific associations. Whereas internalizing problems related to earlier peaking, less dynamic cortisol responses to interpersonal stress (across males and females), externalizing problems related to lower, earlier peaking and less dynamic cortisol responses to performance stress for males only, and competence-related to later peaking cortisol responses to interpersonal stress for females only. Implications for understanding contextual stress profiles underlying different forms of psychopathology are discussed.
Laurent, Heidemarie; Vergara-Lopez, Chrystal; Stroud, Laura R.
2016-01-01
Efforts to define hypothalamic-pituitary-adrenal (HPA) axis profiles conferring risk for psychopathology have yielded inconclusive results, perhaps in part due to limited assessment of the stress response. In particular, research has typically focused on HPA responses to performance tasks, while neglecting the interpersonal stressors that become salient during adolescence. In this study we investigated links between psychosocial adjustment—youth internalizing and externalizing problems, as well as competence—and HPA responses to both performance and interpersonal stressors in a normative sample of children and adolescents. Participants (n = 59) completed a set of performance (public speaking, mental arithmetic, mirror tracing) and/or interpersonal (peer rejection) tasks and gave 9 saliva samples, which were assayed for cortisol. Hierarchical linear models of cortisol response trajectories in relation to CBCL scores revealed stressor- and sex-specific associations. Whereas internalizing problems related to earlier peaking, less dynamic cortisol responses to interpersonal stress (across males and females), externalizing problems related to lower, earlier peaking, and less dynamic cortisol responses to performance stress for males only, and competence related to later peaking cortisol responses to interpersonal stress for females only. Implications for understanding contextual stress profiles underlying different forms of psychopathology are discussed. PMID:27470923
NASA Astrophysics Data System (ADS)
Encomendero, Jimy; Yan, Rusen; Verma, Amit; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace
2018-03-01
We report the generation of room temperature microwave oscillations from GaN/AlN resonant tunneling diodes, which exhibit record-high peak current densities. The tunneling heterostructure grown by molecular beam epitaxy on freestanding GaN substrates comprises a thin GaN quantum well embedded between two AlN tunneling barriers. The room temperature current-voltage characteristics exhibit a record-high maximum peak current density of ˜220 kA/cm2. When biased within the negative differential conductance region, microwave oscillations are measured with a fundamental frequency of ˜0.94 GHz, generating an output power of ˜3.0 μW. Both the fundamental frequency and the output power of the oscillator are limited by the external biasing circuit. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is predicted to be ˜200 GHz. This work represents a significant step towards microwave power generation enabled by resonant tunneling transport, an ultra-fast process that goes beyond the limitations of current III-Nitride high electron mobility transistors.
Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Ding, Liang
2015-01-01
This study investigates the radiation safety of a newly designed magnetic induction sensor. This novel magnetic induction sensor uses a two-arm Archimedean spiral coil (TAASC) as the exciter. A human head model with a real anatomical structure was used to calculate the specific absorption rate (SAR) and temperature change. Computer Simulation Technology (CST) was used to determine the values of the peak 10-g SAR under different operating parameters (current, frequency, horizontal distance between the excitation coil and the receiver coil, vertical distance between the top of the head model and the XOY plane, position of excitation coil, and volume of hemorrhage). Then, the highest response for the SAR and temperature rise was determined. The results showed that this new magnetic induction sensor is safe in the initial state; for safety reasons, the TAASC current should not exceed 4 A. The scalp tissue absorbed most of the electromagnetic energy. The TAASC's SAR/thermal performance was close to that of the circular coil.
Modeling Electrically Evoked Otoacoustic Emissions
NASA Astrophysics Data System (ADS)
Grosh, K.; Deo, N.; Parthasarathi, A. A.; Nuttall, A. L.; Zheng, J. F.; Ren, T. Y.
2003-02-01
Electrical evoked otoacoustic emissions (EEOAE) are used to investigate in vivo cochlear electromechanical function. Round window electrical stimulation gives rise to a broad frequency EEOAE response, from 100 Hz or below to 40 kHz in guinea pigs. Placing bipolar electrodes very close to the basilar membrane (in the scala vestibuli and scala tympani) gives rise to a much narrower frequency range of EEOAE, limited to around 20 kHz when the electrodes are placed near the 18 kHz best frequency place. Model predictions using a three dimensional fluid model in conjunction with a simple model for outer hair cell (OHC) activity are used to interpret the experimental results. The model is solved using a 2.5D finite-element formulation. Predictions show that the high-frequency limit of the excitation is determined by the spatial extent of the current stimulus (also called the current spread). The global peaks in the EEOAE spectra are interpreted as constructive interference between electrically evoked backward traveling waves and forward traveling waves reflected from the stapes. Steady-state response predictions of the model are presented.
Superconducting nanowires as nonlinear inductive elements for qubits
NASA Astrophysics Data System (ADS)
Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey
2010-10-01
We report microwave transmission measurements of superconducting Fabry-Perot resonators, having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship of the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The low-quality factor sample exhibits a “crater” at the resonance peak at higher driving power, which is due to dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. We also propose a concept of a nanowire-based qubit that relies on the current dependence of the kinetic inductance of a superconducting nanowire.
Parasitic momentum flux in the tokamak core
Stoltzfus-Dueck, T.
2017-03-06
A geometrical correction to the E × B drift causes an outward flux of co-current momentum whenever electrostatic potential energy is transferred to ion parallel flows. The robust, fully nonlinear symmetry breaking follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The resulting rotation peaking is counter-current and scales as temperature over plasma current. Lastly, this peaking mechanism can only act when fluctuations are low-frequency enough to excite ion parallel flows, which may explain some recent experimental observations related to rotation reversals.
Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels
Ihara, Makoto; Ling, Yun; Yang, Xinling; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko
2015-01-01
Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs. PMID:25902139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, George T
2010-12-14
Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less
Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis
2015-11-01
In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.
Lopez-Duran, Nestor L; Mayer, Stefanie E; Abelson, James L
2014-07-01
In this report, we present growth curve modeling (GCM) with landmark registration as an alternative statistical approach for the analysis of time series cortisol data. This approach addresses an often-ignored but critical source of variability in salivary cortisol analyses: individual and group differences in the time latency of post-stress peak concentrations. It allows for the simultaneous examination of cortisol changes before and after the peak while controlling for timing differences, and thus provides additional information that can help elucidate group differences in the underlying biological processes (e.g., intensity of response, regulatory capacity). We tested whether GCM with landmark registration is more sensitive than traditional statistical approaches (e.g., repeated measures ANOVA--rANOVA) in identifying sex differences in salivary cortisol responses to a psychosocial stressor (Trier Social Stress Test--TSST) in healthy adults (mean age 23). We used plasma ACTH measures as our "standard" and show that the new approach confirms in salivary cortisol the ACTH finding that males had longer peak latencies, higher post-stress peaks but a more intense post-peak decline. This finding would have been missed if only saliva cortisol was available and only more traditional analytic methods were used. This new approach may provide neuroendocrine researchers with a highly sensitive complementary tool to examine the dynamics of the cortisol response in a way that reduces risk of false negative findings when blood samples are not feasible.
Effects of Trait Self-Control on Response Conflict About Healthy and Unhealthy Food.
Gillebaart, Marleen; Schneider, Iris K; De Ridder, Denise T D
2016-12-01
Self-control leads to positive life outcomes, but it is poorly understood. While previous research has focused on self-control failure, self-control success remains unexplored. The current studies aim to shed more light on the mechanisms of self-control by focusing on the resolution of response conflict as a key component in self-control success. Trait self-control was measured, and participants reported on the magnitude of response conflict they experienced about healthy and unhealthy foods in Study 1 (N = 146; M age = 33.03; 59 females, 83 males, 4 unknown). The response conflict process was assessed in Study 2 (N = 118; M age = 21.45; 68 females, 41 males, 9 unknown). Outcomes showed that self-reported evaluative response conflict about food items was smaller for people high in trait self-control. Study 2 revealed that higher trait self-control predicted faster resolution of self-control conflict, and an earlier peak of the response conflict. Taken together, these results provide insight into what makes people with high trait self-control successful, namely, how they handle response conflict. Implications for self-control theories and future directions are discussed. © 2015 Wiley Periodicals, Inc.
Yao, Huiqin; Gan, Qianqian; Peng, Juan; Huang, Shan; Zhu, Meilin; Shi, Keren
2016-04-20
The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A) and glycoenzyme glucose oxidase (GOD) were assembled into {Con A/GOD}n layer-by-layer (LbL) films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH)₂) by modulating the surrounding pH. The CV peak currents of Fc(COOH)₂ were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH)₂ in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.
Yao, Huiqin; Gan, Qianqian; Peng, Juan; Huang, Shan; Zhu, Meilin; Shi, Keren
2016-01-01
The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A) and glycoenzyme glucose oxidase (GOD) were assembled into {Con A/GOD}n layer-by-layer (LbL) films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH)2) by modulating the surrounding pH. The CV peak currents of Fc(COOH)2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH)2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes. PMID:27104542
Predicting Late Effects of Pelvic Radiotherapy: Is There a Better Approach?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedlake, Linda J.; Thomas, Karen B.Sc.; Lalji, Amyn
2010-11-15
Purpose: Significant chronic symptoms following pelvic radiotherapy occur more frequently than commonly realized. Predictive factors for the development of late symptoms are poorly defined. Moderate sustained acute (cumulative) toxicity might predict severe late effects better than peak reaction. Methods and Materials: To determine prospectively whether peak or cumulative gastrointestinal (GI) acute symptoms better predict late symptoms in patients receiving pelvic radiotherapy. Symptom scores were measured weekly from the start of radiotherapy, and at 1 year using the Modified Inflammatory Bowel Disease Questionnaire-Bowel subset. The possible prognostic impact of patient-related factors was explored. Results: Three hundred and eight patients were recruited.more » 100 were excluded due to lack of follow-up data at one year resulting from death, too ill, stoma, relapsed, non-response or withdrawal. A further 15 were excluded for incomplete data, leaving 193 patients with evaluable data. Of these, 28 had GI, 101 urological, and 64 gynecological cancers. Patients' median age was 65 years (range, 23-82), and they were treated with median 60 Gy dose for a median of 6 weeks. Univariate analysis revealed a significant association between cumulative acute symptom scores and scores at 1 year (p < 0.001), which was dose-independent (p < 0.001). Acute peak and 1-year scores were not associated (p = 0.431). The correlation coefficient between cumulative acute symptoms and symptoms at 1 year was 0.367 and for peak acute symptoms was weaker at 0.057. Patients with an abnormal body mass index and current smokers were more likely to experience worse symptoms at 1 year. Conclusion: Cumulative acute symptoms are more predictive of late symptoms than peak acute changes in score. This association is independent of the radiotherapy dose delivered and is suggestive of a consequential late effect.« less
Aerobic fitness in women and responses to lower body negative pressure.
Frey, M A; Mathes, K L; Hoffler, G W
1987-12-01
High aerobic fitness may be associated with impaired responsiveness to orthostatic challenge. This could be detrimental to astronauts returning from spaceflight. Thus, we examined the cardiovascular responses of a group of 45 healthy women to graded lower body negative pressure (LBNP) through 5 min at -50 mm Hg or until they become presyncopal. The ages (range = 23-43 years, mean = 30.4) and peak aerobic capacities (range = 23.0-55.3 ml.kg-1.min-1, mean = 37.8) of these subjects paralleled those of the women astronauts. We monitored heart rate, stroke volume, cardiac output, Heather index of contractility, arterial pressure, peripheral resistance, change in calf circumference, and thoracic impedance (ZO)--a measure of fluid in the chest. The women in this study exhibited the same response pattern to LBNP as previously reported for male subjects. VO2peak of the six subjects who became presyncopal was not different from VO2peak of the tolerant subjects. At rest, only systolic and mean arterial pressures were significantly correlated with VO2peak. Percent changes in calf circumference (i.e. fluid accumulation in the legs) at -30 and -40 mm Hg were the only responses to LBNP significantly related to VO2peak. The greater pooling of blood in the legs during LBNP by women with higher aerobic fitness, and lower percent body fat may be related to more muscle tissue and vasculature in the legs of the more fit subjects. These data indicated that orthostatic tolerance is not related to aerobic capacity in women, and orthostatic tolerance need not be a concern to aerobically fit women astronauts.
Tenenbaum, Ariel; Phillip, Moshe; de Vries, Liat
2014-01-01
Few studies have addressed the role of the glucagon stimulation test (GST) in evaluating the hypothalamic-pituitary-adrenal axis in children. We investigated the diagnostic value of the GST in evaluating the adrenocortical response in short healthy children. The GST was performed in 190 children investigated for short stature. A peak cortisol >500 nmol/l was considered a normal response. In the 45 (23.7%) with subnormal response, a 250-μg ACTH test was done. The rate of subnormal adrenal response to GST was higher among boys (33.9 vs. 8.9%, p < 0.001) and among children ≥6 years than among younger children (32.7 vs. 18.4%, p < 0.02). Both mean basal and peak cortisol levels were higher in girls than in boys: 381 ± 165 vs. 319 ± 151 nmol/l (p = 0.003) and 741 ± 102 vs. 595 ± 208 nmol/l (p < 0.001), respectively. Peak cortisol on GST was associated with basal cortisol (r = 0.45, p < 0.001) but not with glucose nadir (r = -0.31, p = 0.67), peak GH (r = 0.069, p = 0.33) or BMI-SDS (r = -0.08, p = 0.28). Peak cortisol was >500 nmol/l in all the patients undergoing an ACTH stimulation test. Since adrenal response to GST is age- and gender-related and the false-positive rate is high, its routine performance in healthy children warrants reconsideration. © 2014 S. Karger AG, Basel.
Dasgupta, Purnendu K
2008-12-05
Resolution of overlapped chromatographic peaks is generally accomplished by modeling the peaks as Gaussian or modified Gaussian functions. It is possible, even preferable, to use actual single analyte input responses for this purpose and a nonlinear least squares minimization routine such as that provided by Microsoft Excel Solver can then provide the resolution. In practice, the quality of the results obtained varies greatly due to small shifts in retention time. I show here that such deconvolution can be considerably improved if one or more of the response arrays are iteratively shifted in time.
Li, Ying; Korgaonkar, Akshata A; Swietek, Bogumila; Wang, Jianfeng; Elgammal, Fatima S; Elkabes, Stella; Santhakumar, Vijayalakshmi
2015-02-01
Concussive brain injury results in neuronal degeneration, microglial activation and enhanced excitability in the hippocampal dentate gyrus, increasing the risk for epilepsy and memory dysfunction. Endogenous molecules released during injury can activate innate immune responses including toll-like receptor 4 (TLR4). Recent studies indicate that immune mediators can modulate neuronal excitability. Since non-specific agents that reduce TLR4 signaling can limit post-traumatic neuropathology, we examined whether TLR4 signaling contributes to early changes in dentate excitability after brain injury. Concussive brain injury caused a transient increase in hippocampal TLR4 expression within 4h, which peaked at 24h. Post-injury increase in TLR4 expression in the dentate gyrus was primarily neuronal and persisted for one week. Acute, in vitro treatment with TLR4 ligands caused bidirectional modulation of dentate excitability in control and brain-injured rats, with a reversal in the direction of modulation after brain injury. TLR4 antagonists decreased, and agonist increased, afferent-evoked dentate excitability one week after brain injury. NMDA receptor antagonist did not occlude the ability of LPS-RS, a TLR4 antagonist, to decrease post-traumatic dentate excitability. LPS-RS failed to modulate granule cell NMDA EPSCs but decreased perforant path-evoked non-NMDA EPSC peak amplitude and charge transfer in both granule cells and mossy cells. Our findings indicate an active role for TLR4 signaling in early post-traumatic dentate hyperexcitability. The novel TLR4 modulation of non-NMDA glutamatergic currents, identified herein, could represent a general mechanism by which immune activation influences neuronal excitability in neurological disorders that recruit sterile inflammatory responses. Copyright © 2014 Elsevier Inc. All rights reserved.
Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet
2016-10-01
An accurate and precise determination of terbutaline has been carried out using a glassy carbon electrode (GCE) modified with a composite of multi-walled carbon nanotubes (MWCNTs) and nanoparticles of zirconium oxide (ZrO2NPs). Energy dispersive X-ray and scanning electron microscopic techniques were utilized for the characterization of the composite layer. Terbutaline exhibited a broad oxidation peak at 770mV on a GCE. However, MWCNTs/GCE presented an electrocatalytic effect toward the oxidation of terbutaline with a better anodic peak at 660mV. Furthermore, the electrochemical behavior of terbutaline has greatly been improved at a GCE modified with a composite of MWCNTs and nanoparticles of ZrO2. The ZrO2NPs/MWCNTs/GCE exhibited a sharp anodic wave at 645mV with a large enhancement of the current response for terbutaline. Square wave voltammetry (SWV) was performed for the determination of terbutaline at ZrO2NPs/MWCNTs/GCE. A linear plot was obtained for the current responses of terbutaline against concentrations in the range of 10-160nM yielding a detection limit of 2.25nM (based on 3Sb/m). Improved voltammetric behavior, long-time stability and good reproducibility were obtained for terbutaline at the proposed electrode. A mean recovery of 101.2% with an RSD% of 1.9 was obtained for the analysis of the drug formulation. The accurate and precise quantification of terbutaline makes the ZrO2NPs/MWCNTs/GCE system of great interest for monitoring its therapeutic use. Copyright © 2016 Elsevier B.V. All rights reserved.
Fischer, Harald; Harper, Alexander A; Anderson, Colin R; Adams, David J
2005-01-01
The effects of γ-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at −60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABAA receptor agonists muscimol and taurine, and inhibited by the GABAA receptor antagonists, bicuculline and picrotoxin. The GABAA0 antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABAA receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at −100 mV was ∼ 20 times higher for intracardiac neurones obtained from neonatal rats (P2–5) compared with adult rats (P45–49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system. PMID:15731187
Demanuele, Charmaine; James, Christopher J; Sonuga-Barke, Edmund Js
2007-12-10
It has been acknowledged that the frequency spectrum of measured electromagnetic (EM) brain signals shows a decrease in power with increasing frequency. This spectral behaviour may lead to difficulty in distinguishing event-related peaks from ongoing brain activity in the electro- and magnetoencephalographic (EEG and MEG) signal spectra. This can become an issue especially in the analysis of low frequency oscillations (LFOs) - below 0.5 Hz - which are currently being observed in signal recordings linked with specific pathologies such as epileptic seizures or attention deficit hyperactivity disorder (ADHD), in sleep studies, etc. In this work we propose a simple method that can be used to compensate for this 1/f trend hence achieving spectral normalisation. This method involves filtering the raw measured EM signal through a differentiator prior to further data analysis. Applying the proposed method to various exemplary datasets including very low frequency EEG recordings, epileptic seizure recordings, MEG data and Evoked Response data showed that this compensating procedure provides a flat spectral base onto which event related peaks can be clearly observed. Findings suggest that the proposed filter is a useful tool for the analysis of physiological data especially in revealing very low frequency peaks which may otherwise be obscured by the 1/f spectral activity inherent in EEG/MEG recordings.
Effect of system compliance on crack nucleation in soft materials
NASA Astrophysics Data System (ADS)
Rattan, Shruti; Crosby, Alfred
Puncture mechanics in soft materials is critical for the development of new surgical instruments, robot assisted-surgery as well as new materials used in personal protective equipment. However, analytical techniques to study this important deformation process are limited. We have previously described a simple experimental method to study the resistive forces and failure of a soft gel being indented with a small tip needle. We showed that puncture stresses can reach two orders of magnitude greater than the material modulus and that the force response is insensitive to the geometry of the indenter at large indentation depths. Currently, we are examining the influence of system compliance on crack nucleation (e.g. puncture) in soft gels. It is well known that system compliance influences the peak force in adhesion and traditional fracture experiments; however, its influence on crack nucleation is unresolved. We find that as the system becomes more compliant, lower peak forces required to puncture a gel of certain stiffness with the same indenter were measured. We are developing scaling relationships to relate the peak puncture force and system compliance. Our findings introduce new questions with regard to the possibility of intrinsic materials properties related to the critical stress and energy for crack nucleation in soft materials.
Reilly, Heather; Lane, Louise M; Egaña, Mikel
2018-05-01
Age-related exercising leg blood flow (LBF) responses during dynamic knee-extension exercise and forearm blood flow responses during handgrip exercise are preserved in normally active men but attenuated in activity-matched women. We explored whether these age- and sex-specific effects are also apparent during isometric calf plantar-flexion incremental exercise. Normally active young men (YM, n = 15, 24 ± 2 years), young women (YW, n = 8, 22 ± 1 years), older men (OM, n = 13, 70 ± 7 years) and older women (OW, n = 10, 64 ± 7 years) were tested. LBF was measured between contractions using venous occlusion plethysmography. Peak force obtained was higher (P < 0.05) in men compared with women and in young compared with older individuals. However, peak LBF (YM; 971 ± 328 ml min -1 , OM; 985 ± 504 ml min -1 , YW; 844 ± 366 ml min -1 , OW; 960 ± 244 ml min -1 ) and peak leg vascular conductance [LVC = LBF/(MAP + hydrostatic pressure)] responses (YM; 6.0 ± 1.8 ml min -1 mmHg -1 , OM; 5.5 ± 2.8 ml min -1 mmHg -1 , YW; 5.3 ± 2.1 ml min -1 mmHg -1 , OW; 5.5 ± 1.6 ml min -1 mmHg -1 ) were similar among the four groups. Furthermore, the hyperaemic (YM; 8.8 ± 3.7 ml min -1 %F peak -1 OM; 8.3 ± 5.4 ml min -1 %F peak -1 , YW; 8.2 ± 3.5 ml min -1 %F peak -1 , OW; 9.6 ± 2.2 ml min -1 %F peak -1 ) and vasodilatory responses (YM; 0.053 ± 0.020 ml min -1 mmHg -1 %F peak -1 , OM; 0.048 ± 0.028 ml min -1 mmHg -1 %F peak -1 , YW; 0.051 ± 0.019 ml min -1 mmHg -1 %F peak -1 , OW; 0.055 ± 0.014 ml min -1 mmHg -1 %F peak -1 ) were not different among the four groups. These results were accompanied by similar resting LBF responses among groups and were not affected when data were normalised to estimated leg muscle mass. Our results demonstrate that exercising LBF responses during isometric incremental calf muscle exercise are preserved in older men and women, suggesting that the previously observed age-related attenuations in leg and forearm hyperaemia among women may be muscle-group specific.
Heart Rate and VO[subscript 2] Responses to Cycle Ergometry in White and African American Men
ERIC Educational Resources Information Center
Vehrs, Pat R.; Fellingham, Gilbert W.
2006-01-01
The validity of estimates of peak oxygen consumption (VO[subscript 2]peak) using submaximal exercise tests may be compromised when the participants being tested are not similar to the participants used to develop the test. This study compared ethnic differences in the heart rate (HR) and oxygen consumption (VO[subscript 2]) responses to submaximal…
Acquisition of peak responding: what is learned?
Balci, Fuat; Gallistel, Charles R; Allen, Brian D; Frank, Krystal M; Gibson, Jacqueline M; Brunner, Daniela
2009-01-01
We investigated how the common measures of timing performance behaved in the course of training on the peak procedure in C3H mice. Following fixed interval (FI) pre-training, mice received 16 days of training in the peak procedure. The peak time and spread were derived from the average response rates while the start and stop times and their relative variability were derived from a single-trial analysis. Temporal precision (response spread) appeared to improve in the course of training. This apparent improvement in precision was, however, an averaging artifact; it was mediated by the staggered appearance of timed stops, rather than by the delayed occurrence of start times. Trial-by-trial analysis of the stop times for individual subjects revealed that stops appeared abruptly after three to five sessions and their timing did not change as training was prolonged. Start times and the precision of start and stop times were generally stable throughout training. Our results show that subjects do not gradually learn to time their start or stop of responding. Instead, they learn the duration of the FI, with robust temporal control over the start of the response; the control over the stop of response appears abruptly later.
Acquisition of peak responding: What is learned?
Balci, Fuat; Gallistel, Charles R.; Allen, Brian D.; Frank, Krystal M.; Gibson, Jacqueline M.; Brunner, Daniela
2009-01-01
We investigated how the common measures of timing performance behaved in the course of training on the peak procedure in C3H mice. Following fixed interval (FI) pre-training, mice received 16 days of training in the peak procedure. The peak time and spread were derived from the average response rates while the start and stop times and their relative variability were derived from a single-trial analysis. Temporal precision (response spread) appeared to improve in the course of training. This apparent improvement in precision was, however, an averaging artifact; it was mediated by the staggered appearance of timed stops, rather than by the delayed occurrence of start times. Trial-by-trial analysis of the stop times for individual subjects revealed that stops appeared abruptly after three to five sessions and their timing did not change as training was prolonged. Start times and the precision of start and stop times were generally stable throughout training. Our results show that subjects do not gradually learn to time their start or stop of responding. Instead, they learn the duration of the FI, with robust temporal control over the start of the response; the control over the stop of response appears abruptly later. PMID:18950695
Domínguez, Eloy; Palau, Patricia; Núñez, Eduardo; Ramón, José María; López, Laura; Melero, Joana; Bellver, Alejandro; Santas, Enrique; Chorro, Francisco J; Núñez, Julio
2018-03-24
The mechanisms of exercise intolerance in heart failure with preserved ejection fraction (HFpEF) are not yet elucidated. Chronotropic incompetence has emerged as a potential mechanism. We aimed to evaluate whether heart rate (HR) response to exercise is associated to functional capacity in patients with symptomatic HFpEF. We prospectively studied 74 HFpEF patients [35.1% New York Heart Association Class III, 53% female, age (mean ± standard deviation) 72.5 ± 9.1 years, and 59.5% atrial fibrillation]. Functional performance was assessed by peak oxygen consumption (peak VO 2 ). The mean (standard deviation) peak VO 2 was 10 ± 2.8 mL/min/kg. The following chronotropic parameters were calculated: Delta-HR (HR at peak exercise - HR at rest), chronotropic index (CI) = (HR at peak exercise - resting HR)/[(220 - age) - resting HR], and CI according to the equation developed by Keteyian et al. (CIK) (HR at peak exercise - HR at rest)/[119 + (HR at rest/2) - (age/2) - 5 - HR at rest]. In a bivariate setting, peak VO 2 was positively and significantly correlated with Delta-HR (r = 0.35, P = 0.003), CI (r = 0.27, P = 0.022), CIK (r = 0.28, P = 0.018), and borderline with HR at peak exercise (r = 0.22, P = 0.055). In a multivariable linear regression analysis that included clinical, analytical, echocardiographic, and functional capacity covariates, the chronotropic parameters were positively associated with peak VO 2 . We found a linear relationship between Delta-HR and peak VO 2 (β coefficient of 0.03; 95% confidence interval: 0.004-0.05; P = 0.030); conversely, the association among CIs and peak VO 2 was exponentially shaped. In patients with chronic HFpEF, the HR response to exercise was positively associated to patient's functional capacity. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Repeatability of a running heat tolerance test.
Mee, Jessica A; Doust, Jo; Maxwell, Neil S
2015-01-01
At present there is no standardised heat tolerance test (HTT) procedure adopting a running mode of exercise. Current HTTs may misdiagnose a runner's susceptibility to a hyperthermic state due to differences in exercise intensity. The current study aimed to establish the repeatability of a practical running test to evaluate individual's ability to tolerate exercise heat stress. Sixteen (8M, 8F) participants performed the running HTT (RHTT) (30 min, 9 km h(-1), 2% elevation) on two separate occasions in a hot environment (40 °C and 40% relative humidity). There were no differences in peak rectal temperature (RHTT1: 38.82 ± 0.47 °C, RHTT2: 38.86 ± 0.49 °C, Intra-class correlation coefficient (ICC)=0.93, typical error of measure (TEM) = 0.13 °C), peak skin temperature (RHTT1: 38.12 ± 0.45, RHTT2: 38.11 ± 0.45 °C, ICC = 0.79, TEM = 0.30 °C), peak heart rate (RHTT1: 182 ± 15 beats min(-1), RHTT2: 183 ± 15 beats min(-1), ICC = 0.99, TEM = 2 beats min(-1)), nor sweat rate (1721 ± 675 g h(-1), 1716 ± 745 g h(-1), ICC = 0.95, TEM = 162 g h(-1)) between RHTT1 and RHTT2 (p>0.05). Results demonstrate good agreement, strong correlations and small differences between repeated trials, and the TEM values suggest low within-participant variability. The RHTT was effective in differentiating between individuals physiological responses; supporting a heat tolerance continuum. The findings suggest the RHTT is a repeatable measure of physiological strain in the heat and may be used to assess the effectiveness of acute and chronic heat alleviating procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.
New types of high field pinning centers and pinning centers for the peak effect
NASA Astrophysics Data System (ADS)
Gajda, Daniel; Zaleski, Andrzej; Morawski, Andrzej; Hossain, Md Shahriar A.
2017-08-01
In this article, we report the results of a study that shows the existence of pinning centers inside grains and between grains in NbTi wires. We accurately show the ranges of magnetic fields in which the individual pinning centers operate. The pinning centers inside grains are activated in high magnetic fields above 6 T. We show the range of magnetic fields in which individual defects, dislocations, precipitates inside grains and substitutions in the crystal lattice can operate. We show the existence of a new kind of high field pinning center, which operates in high magnetic fields from 8 to ˜9.5 T. We indicate that dislocations create pinning centers in the range of magnetic fields from 6 to 8 T. In addition, our measurements suggest that the peak effect (increased critical current density (J c) near the upper critical field (B c2)) could be attributed to martensitic (needle-shaped) α‧-Ti inclusions inside grains. These centers are very important because they work very effectively in magnetic fields above 9.5-10 T. We also show that the α-Ti precipitates (between grains) with a thickness similar to the coherence length create pinning centers which work very effectively in magnetic fields from 3 to 6 T. In magnetic fields below 3 T, they act very efficiently in grain boundaries. The measurements indicate that the pinning centers created by dislocations only can be tested by transport measurements. This indicates that dislocations do not increase the magnetic critical current density (J cm). Cold drawing improves pinning centers at grain boundaries and increases the dislocation density, and cold-drawing pinning centers are responsible for the peak effect.
A potentially novel nicotinic receptor in Aplysia neuroendocrine cells.
White, Sean H; Carter, Christopher J; Magoski, Neil S
2014-07-15
Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 μM, readily recovered from desensitization, showed Ca(2+) permeability, and was blocked by mecamylamine, dihydro-β-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction. Copyright © 2014 the American Physiological Society.
Popoca, R; Ureña-Núñez, F
2009-06-01
This work reports the possibility of using lithium carbonate as a dosimetric material for gamma-radiation measurements. Carboxi-radical ions, CO(2)(-) and CO(3)(-), arise from the gamma irradiation of Li(2)CO(3), and these radical ions can be quantified by electron paramagnetic resonance (EPR) spectrometry. The EPR-signal response of gamma-irradiated lithium carbonate has been investigated to determine some dosimetric characteristics such as: peak-to-peak signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, dose rate effect and stability at different environmental conditions. Using the conventional peak-to-peak method of stable ion radicals, it is concluded that lithium carbonate could be used as a gamma dosemeter in the range of 3-100 Gy.
Narrowband ultraviolet photodetector based on MgZnO and NPB heterojunction.
Hu, Zuofu; Li, Zhenjun; Zhu, Lu; Liu, Fengjuan; Lv, Yanwu; Zhang, Xiqing; Wang, Yongsheng
2012-08-01
An ultraviolet photodetector was fabricated based on Mg0.07Zn0.93O heterojunction. N, N'-bis (naphthalen-1-y1)-N, N'-bis(pheny) benzidine was selected as the hole transporting layer. I-V characteristic curves of the device were measured in the dark and under the illumination of 340 nm UV light with density of 1.33 mW/cm2. The device showed a low dark current of about 3×10(-10) A and a high photo-dark current ratio of 1×10(5) at -2 V bias. A narrowband photoresponse was observed from 300 to 400 nm and centered at 340 nm with a full width at half-maximum of only 30 nm. The maximum peak response is at 340 nm, which is 0.192 A/W at the bias of -1 V.
NASA Astrophysics Data System (ADS)
Zhang, Lichun; Zhao, Fengzhou; Wang, Caifeng; Wang, Feifei; Huang, Ruizhi; Li, Qingshan
2015-07-01
We demonstrate an efficient ultraviolet (UV) photodetector operating at room temperature based on n-ZnO nanorods/ i-ZnO/ p-GaN heterojunctions. We employ x-ray diffraction and field-emission scanning electron microscopy to confirm the high quality of the ZnO nanorods using an undoped ZnO film as the interlayer. Then, we investigate the photoelectric properties of the fabricated photodetector with UV light illumination under a different reverse bias. Based on the current-voltage curve, the photocurrent to dark current ratio is approximately 73.3 at -4 V. At zerobias voltage, the peak responsivity was 138.9 mA/W at 362 nm under front-illumination conditions. Time-varying measurements indicate the reproducibility and stability of the heterojunction photodetector. [Figure not available: see fulltext.
Cantrell, A R; Scheuer, T; Catterall, W A
1999-07-01
Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.
Remote Sensing Characterization of Two-dimensional Wave Forcing in the Surf Zone
NASA Astrophysics Data System (ADS)
Carini, R. J.; Chickadel, C. C.; Jessup, A. T.
2016-02-01
In the surf zone, breaking waves drive longshore currents, transport sediment, shape bathymetry, and enhance air-sea gas and particle exchange. Furthermore, wave group forcing influences the generation and duration of rip currents. Wave breaking exhibits large gradients in space and time, making it challenging to measure in situ. Remote sensing technologies, specifically thermal infrared (IR) imagery, can provide detailed spatial and temporal measurements of wave breaking at the water surface. We construct two-dimensional maps of active wave breaking from IR imagery collected during the Surf Zone Optics Experiment in September 2010 at the US Army Corps of Engineers' Field Research Facility in Duck, NC. For each breaker identified in the camera's field of view, the crest-perpendicular length of the aerated breaking region (roller length) and wave direction are estimated and used to compute the wave energy dissipation rate. The resultant dissipation rate maps are analyzed over different time scales: peak wave period, infragravity wave period, and tidal wave period. For each time scale, spatial maps of wave breaking are used to characterize wave forcing in the surf zone for a variety of wave conditions. The following phenomena are examined: (1) wave dissipation rates over the bar (location of most intense breaking) have increased variance in infragravity wave frequencies, which are different from the peak frequency of the incoming wave field and different from the wave forcing variability at the shoreline, and (2) wave forcing has a wider spatial distribution during low tide than during high tide due to depth-limited breaking over the barred bathymetry. Future work will investigate the response of the variability in wave setup, longshore currents and rip currents, to the variability in wave forcing in the surf zone.
Fourier functional analysis for unsteady aerodynamic modeling
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Chin, Suei
1991-01-01
A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.
Locomotor activity in males of Aedes aegypti can shift in response to females' presence.
Araripe, Luciana Ordunha; Bezerra, Jéssica Rodrigues Assunção; Rivas, Gustavo Bueno da Silva; Bruno, Rafaela Vieira
2018-04-18
The study of physiological and behavioral traits of mosquito vectors has been of growing relevance for the proposition of alternative methods for controlling vector-borne diseases. Despite this, most studies focus on the female's traits, including the behavior of host seeking, the physiology of disease transmission and the site-choice for oviposition. However, understanding the factors that lead to males' reproductive success is of utmost importance, since it can help building new strategies for constraining population growth. Male behavior towards mating varies widely among species and the communication between males and females is the first aspect securing a successful encounter. Here we used an automated monitoring system to study the profile of locomotor activity of Aedes aegypti males in response to female's presence in an adapted confinement tube. We propose a new method to quantify male response to the presence of females, which can be potentially tested as an indicator of the success of one male in recognizing a female for mating. Locomotor activity varies in daily cycles regulated by an endogenous clock and synchronized by external factors, such as light and temperature. Our results show the previously described startle response to light, which is displayed as a steep morning activity peak immediately when lights are on. Activity drops during the day and begins to rise again right before evening, happening about 1.5 h earlier in males than in females. Most interestingly, males' activity shows a double peak, and the second peak is very subtle when males are alone and relatively more pronounced when females are present in the confinement tubes. The switch in the peak of activity, measured by the herein suggested Peak Matching Index (PMI), was significantly different between males with and without females. The adapted monitoring system used here allowed us to quantify the response of individual males to nearby females in terms of the extent of the activity peak displacement. In this direction, we created the peak matching index (PMI), a new parameter that we anticipate could be interpreted as the inclination of males to respond to females' presence, and further tested as an indicator of the potential for finding females for mating.
Intravenous lipid emulsion alters the hemodynamic response to epinephrine in a rat model.
Carreiro, Stephanie; Blum, Jared; Jay, Gregory; Hack, Jason B
2013-09-01
Intravenous lipid emulsion (ILE) is an adjunctive antidote used in selected critically ill poisoned patients. These patients may also require administration of advanced cardiac life support (ACLS) drugs. Limited data is available to describe interactions of ILE with standard ACLS drugs, specifically epinephrine. Twenty rats with intra-arterial and intravenous access were sedated with isoflurane and split into ILE or normal saline (NS) pretreatment groups. All received epinephrine 15 μm/kg intravenously (IV). Continuous mean arterial pressure (MAP) and heart rate (HR) were monitored until both indices returned to baseline. Standardized t tests were used to compare peak MAP, time to peak MAP, maximum change in HR, time to maximum change in HR, and time to return to baseline MAP/HR. There was a significant difference (p = 0.023) in time to peak MAP in the ILE group (54 s, 95 % CI 44-64) versus the NS group (40 s, 95 % CI 32-48) and a significant difference (p = 0.004) in time to return to baseline MAP in ILE group (171 s, 95 % CI 148-194) versus NS group (130 s, 95 % CI 113-147). There were no significant differences in the peak change in MAP, peak change in HR, time to minimum HR, or time to return to baseline HR between groups. ILE-pretreated rats had a significant difference in MAP response to epinephrine; ILE delayed the peak effect and prolonged the duration of effect of epinephrine on MAP, but did not alter the peak increase in MAP or the HR response.
Bond, Vernon; Millis, Richard M.; Adams, R. George; Oke, Luc M.; Enweze, Larry; Blakely, Raymond; Banks, Marshall; Thompson, Terry; Obisesan, Thomas; Sween, Jennifer C.
2011-01-01
Introduction A hyperreactive blood pressure response to exercise is a predictor of developing hypertension. The present study determined the influence of physical activity on an exaggerated exercise blood pressure response (EEBPR) in normotensive African-American women. Methods We screened 36 women 18–26 years of age for EEBPR defined as a ≥50 mm Hg difference in systolic blood pressure at rest and during exercise at 50% peak oxygen uptake (VO2peak). Seven subjects demonstrated an EEBPR and participated in the study. Study participants trained for eight weeks on a bicycle ergometer at a work intensity of 70% VO2peak. Blood pressure, heart rate, cardiac output (CO), stroke volume (SV), and total peripheral vascular resistance (TPR) were determined at baseline and during submaximal exercise at power outputs of 30 W and 50% VO2peak. Subjects served as their own controls, and data were evaluated by using a paired t test at P<.05. Results Effectiveness of the intervention was shown by a significantly greater VO2peak associated with significant decrements in systolic and mean arterial pressures at power outputs of 30 W and 50% VO2peak. A significant decrement in heart rate was observed during exercise at 30 W. Significant increments in CO and SV and decrement in TPR were found during exercise at 50% VO2peak. Conclusion The reduction in TPR associated with regular aerobic physical activity may attenuate the EEBPR and decrease the risk for hypertension in normotensive, young-adult, African-American women. PMID:16315376
Effects of acute brainstem compression on auditory brainstem response in the guinea pig.
Tu, T Y; Yu, L H; Chiu, J H; Shu, C H; Shiao, A S; Lien, C F
1998-11-01
The purpose of this study was to establish the norm for parameters of auditory brainstem response (ABR) in the guinea pig and to investigate if acute brainstem compression results in significant changes to these parameters. Thirty-six guinea pigs with positive Preyer's reflex were anesthetized. A craniectomy was performed to remove the right occipital bone and the dura mater was opened to expose the brain, cerebellum and cerebellopontine angle (CPA). A small inflatable balloon was placed into the CPA precisely and slowly. ABR was recorded before incision of the skin as a baseline value, after placement and after inflation of the balloon with water at 0.1-ml intervals. Five stable peaks were recorded in 27 experimental animals. When the balloon was inflated with 0.1 ml water, the absolute latency (AL) of peaks IV and V and the interpeak latency (IPL) of peaks III and IV, and IV and V were prolonged. The amplitude ratios (AR) of peaks II, III, IV and V to peak I decreased. Inflation of the balloon with 0.2 ml of water caused further elongation of ALs of peaks IV and V and decreases in each AR. When the balloon volume increased to 0.3 ml, peak V became unrecognizable and peaks III and IV showed significant elongation of AL; peaks I and II did not show significant change in ALs. Further increase of the balloon volume to 0.4 ml resulted in disappearance of peaks III, IV and V; AL of peak II was also elongated. However, the amplitude and AL of peak I remained unchanged. Similar changes were observed in IPLs. This study establishes the norm of parameters of ABR in guinea pigs and demonstrates that acute brainstem compression causes elongation of ALs and IPLs of peaks II, III, IV and V. This suggests that peaks II, III, IV and V come from the brainstem and that peak I is not generated from the brainstem in the guinea pig.
Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.
Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung
2017-03-01
The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K + and Ca 2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K + currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K + currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs + (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca 2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.
NASA Astrophysics Data System (ADS)
Pillai, Rajesh S.; Brakenhoff, G. J.; Müller, M.
2006-09-01
The third harmonic generation (THG) axial response in the vicinity of an interface formed by two isotropic materials of normal dispersion is typically single peaked, with the maximum intensity at the interface position. Here it is shown experimentally that this THG z response may show anomalous behavior—being double peaked with a dip coinciding with the interface position—when the THG contributions from both materials are of similar magnitude. The observed anomalous behavior is explained, using paraxial Gaussian theory, by considering dispersion induced shape changes in the THG z response.
ESR study of free radicals in mango
NASA Astrophysics Data System (ADS)
Kikuchi, Masahiro; Hussain, Mohammad S.; Morishita, Norio; Ukai, Mitsuko; Kobayashi, Yasuhiko; Shimoyama, Yuhei
2010-01-01
An electron spin resonance (ESR) spectroscopic study of radicals induced in irradiated fresh mangoes was performed. Mangoes in the fresh state were irradiated with γ-rays, lyophilized and then crushed into a powder. The ESR spectrum of the powder showed a strong main peak at g = 2.004 and a pair of peaks centered at the main peak. The main peak was detected from both flesh and skin specimens. This peak height gradually decreased during storage following irradiation. On the other hand, the side peaks showed a well-defined dose-response relationship even at 9 days post-irradiation. The side peaks therefore provide a useful means to define the irradiation of fresh mangoes.
Tolerance of centrifuge-simulated suborbital spaceflight by medical condition.
Blue, Rebecca S; Pattarini, James M; Reyes, David P; Mulcahy, Robert A; Garbino, Alejandro; Mathers, Charles H; Vardiman, Johnené L; Castleberry, Tarah L; Vanderploeg, James M
2014-07-01
We examined responses of volunteers with known medical disease to G forces in a centrifuge to evaluate how potential commercial spaceflight participants (SFPs) might tolerate the forces of spaceflight despite significant medical history. Volunteers were recruited based upon suitability for each of five disease categories (hypertension, cardiovascular disease, diabetes, lung disease, back or neck problems) or a control group. Subjects underwent seven centrifuge runs over 2 d. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z), Run 2) and two +G(x), runs (peak = +6.0 G(x), Run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z), peak = +6.0 G(x)/+4.0 G(z)). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular exams, and post-run questionnaires regarding motion sickness, disorientation, grayout, and other symptoms. A total of 335 subjects registered for participation, of which 86 (63 men, 23 women, age 20-78 yr) participated in centrifuge trials. The most common causes for disqualification were weight and severe and uncontrolled medical or psychiatric disease. Five subjects voluntarily withdrew from the second day of testing: three for anxiety reasons, one for back strain, and one for time constraints. Maximum hemodynamic values recorded included HR of 192 bpm, systolic BP of 217 mmHg, and diastolic BP of 144 mmHg. Common subjective complaints included grayout (69%), nausea (20%), and chest discomfort (6%). Despite their medical history, no subject experienced significant adverse physiological responses to centrifuge profiles. These results suggest that most individuals with well-controlled medical conditions can withstand acceleration forces of launch and re-entry profiles of current commercial spaceflight vehicles.
Seasonal cycles of pelagic production and consumption
NASA Astrophysics Data System (ADS)
Longhurst, Alan
Comprehensive seasonal cycles of production and consumption in the pelagial require the ocean to be partitioned. This can be done rationally at two levels: into four primary ecological domains (three oceanic and one coastal), or about fifty biogeochemical provinces. The domains differ in their characteristic seasonal cycles of stability, nutrient supply and illumination, while provinces are defined by ocean currents, fronts, topography and recurrent features in the sea surface chlorophyll field. For each of these compartments, seasonal cycles of photic depth, primary production and accumulation (or loss) of algal biomass were obtained from the climatological CZCS chlorophyll field and other data and these, together with mixed layer depths, rendered characteristic seasonal cycles of production and consumption, which can be grouped into eight models: i - polar irradiance-mediated production peak; ii - nutrient-limited spring production peak; iii - winter-spring production with nutrient limitation; iv - small amplitude response to trade wind seasonality; v - large amplitude response to monsoon reversal; vi - canonical spring-fall blooms of mid-latitude continental shelves; vii - topography-forced summer production; viii - intermittent production at coastal divergences. For higher latitudes, these models suggest that the observed late-summer ‘blooms’ result not from a renewal of primary production rate, but from a relaxation of grazing pressure; in mid-latitudes, the observed ‘winter’ bloom represents chlorophyll accumulation at a season when loss terms are apparently smaller than during the period of peak primary production rate which occurs later, in spring. Where an episodic seasonal increase in rate of primary production occurs, as in the Arabian Sea, algal biomass accumulation may brief, lasting only until consumption is fully re-established. Only in the low latitude oligotrophic ocean are production and consumption perennially and closely coupled.
Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity
ERIC Educational Resources Information Center
Loria, Tristan; de Grosbois, John; Tremblay, Luc
2016-01-01
Purpose: At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study…
de Aguiar, Rafael Alves; Lisbôa, Felipe Domingos; Turnes, Tiago; Cruz, Rogério Santos de Oliveira; Caputo, Fabrizio
2015-01-01
To investigate the impact of different training backgrounds on pulmonary oxygen uptake (V̇O2) responses during all-out and supramaximal constant-velocity running exercises, nine sprinters (SPRs) and eight endurance runners (ENDs) performed an incremental test for maximal aerobic velocity (MAV) assessment and two supramaximal running exercises (1-min all-out test and constant-velocity exercise). The V̇O2 responses were continuously determined during the tests (K4b2, Cosmed, Italy). A mono-exponential function was used to describe the V̇O2 onset kinetics during constant-velocity test at 110%MAV, while during 1-min all-out test the peak of V̇O2 (V̇O2peak), the time to achieve the V̇O2peak (tV̇O2peak) and the V̇O2 decrease at last of the test was determined to characterize the V̇O2 response. During constant-velocity exercise, ENDs had a faster V̇O2 kinetics than SPRs (12.7 ± 3.0 vs. 19.3 ± 5.6 s; p < 0.001). During the 1-min all-out test, ENDs presented slower tV̇O2peak than SPRs (40.6 ± 6.8 and 28.8 ± 6.4 s, respectively; p = 0.002) and had a similar V̇O2peak relative to the V̇O2max (88 ± 8 and 83 ± 6%, respectively; p = 0.157). Finally, SPRs was the only group that presented a V̇O2 decrease in the last half of the test (-1.8 ± 2.3 and 3.5 ± 2.3 ml.kg-1.min-1, respectively; p < 0.001). In summary, SPRs have a faster V̇O2 response when maximum intensity is required and a high maximum intensity during all-out running exercise seems to lead to a higher decrease in V̇O2 in the last part of the exercise. PMID:26252001
Jung, Mary E; Bourne, Jessica E; Little, Jonathan P
2014-01-01
Affect experienced during an exercise session is purported to predict future exercise behaviour. Compared to continuous moderate-intensity exercise (CMI), the affective response to continuous vigorous-intensity exercise (CVI) has consistently been shown to be more aversive. The affective response, and overall tolerability to high-intensity interval training (HIT), is less studied. To date, there has yet to be a comparison between HIT, CVI, and CMI. The purpose of this study was to compare the tolerability and affective responses during HIT to CVI and CMI. This study utilized a repeated measures, randomized, counter-balanced design. Forty-four participants visited the laboratory on four occasions. Baseline fitness testing was conducted to establish peak power output in Watts (W peak). Three subsequent visits involved a single bout of a) HIT, corresponding to 1-minute at ∼ 100% W peak and 1-minute at ∼ 20% W peak for 20 minutes, b) CMI, corresponding to ∼ 40% W peak for 40 minutes, and c) CVI, corresponding to ∼ 80% W peak for 20 minutes. The order of the sessions was randomized. Affective responses were measured before, during and after each session. Task self-efficacy, intentions, enjoyment and preference were measured after sessions. Participants reported greater enjoyment of HIT as compared to CMI and CVI, with over 50% of participants reporting a preference to engage in HIT as opposed to either CMI or CVI. HIT was considered more pleasurable than CVI after exercise, but less pleasurable than CMI at these times. Despite this participants reported being just as confident to engage in HIT as they were CMI, but less confident to engage in CVI. This study highlights the utility of HIT in inactive individuals, and suggests that it may be a viable alternative to traditionally prescribed continuous modalities of exercise for promoting self-efficacy and enjoyment of exercise.
Choi, Jun Hwan; Kim, Bo Ryun; Joo, Seung Jae; Han, Eun Young; Kim, Song Yi; Kim, Sun Mi; Lee, So Young; Yoon, Ho Min
2015-01-01
To investigate cardiorespiratory responses during exercise stress tests using an aquatic treadmill and a land-based treadmill in patients with coronary artery disease (CAD). Twenty-one stable CAD patients were enrolled. All patients participated in 2 symptom-limited incremental exercise tests, using both an aquatic and a land treadmill. For the aquatic treadmill protocol, patients were submerged to the upper waist in 28°C water. The treadmill speed started at 2.0 km/h and increased 0.5 km/h every minute thereafter. For the land treadmill protocol, the speed and gradient were started at 2.4 km/h and 1.5%, respectively. The speed was increased by 0.3 km/h and grade by 1% every minute thereafter. Oxygen consumption ((Equation is included in full-text article.)O2), heart rate (HR), and respiratory exchange ratio were measured continuously and peak values recorded. Rating of perceived exertion, percentage of age-predicted maximal HR, and total exercise duration were also recorded. Peak cardiorespiratory responses during both protocols were compared. The peak (Equation is included in full-text article.)O2 and peak HR did not show any significant differences. The peak respiratory exchange ratio was significantly greater using the land treadmill than the aquatic treadmill protocol. Rating of perceived exertion, age-predicted maximal HR percentage, and total exercise duration were similar for both protocols. There was a significant linear relationship between HR and (Equation is included in full-text article.)O2 with both protocols. This study demonstrated that aquatic treadmill exercise elicits similar peak cardiorespiratory responses compared with land treadmill exercise, suggesting that aquatic treadmill exercise may be effective for CAD patients in cardiac rehabilitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, A. M.; Chen, G.; Chevallier, R.
2014-06-23
Very long wavelength infrared photodetectors based on InAs/InAsSb type-II superlattices are demonstrated on GaSb substrate. A heterostructure photodiode was grown with 50% cut-off wavelength of 14.6 μm. At 77 K, the photodiode exhibited a peak responsivity of 4.8 A/W, corresponding to a quantum efficiency of 46% at −300 mV bias voltage from front side illumination without antireflective coating. With the dark current density of 0.7 A/cm{sup 2}, it provided a specific detectivity of 1.4 × 10{sup 10} Jones. The device performance was investigated as a function of operating temperature, revealing a very stable optical response and a background limited performance below 50 K.
Characteristics of arc currents on a negatively biased solar cell array in a plasma
NASA Technical Reports Server (NTRS)
Snyder, D. B.
1984-01-01
The time dependence of the emitted currents during arcing on solar cell arrays is being studied. The arcs are characterized using three parameters: the voltage change of the array during the arc (i.e., the charge lost), the peak current during the arc, and the time constant describing the arc current. This paper reports the dependence of these characteristics on two array parameters, the interconnect bias voltage and the array capacitance to ground. It was found that the voltage change of the array during an arc is nearly equal to the bias voltage. The array capacitance, on the other hand, influences both the peak current and the decay time constant of the arc. Both of these characteristics increase with increasing capacitance.
Vandekerckhove, Kristof; Coomans, Ilse; Moerman, Annelies; De Wolf, Daniel; Boone, Jan
2016-12-01
To characterize the oxygenation responses at cerebral and locomotor muscle level to incremental exercise in children and to assess the interrelationship with the pulmonary gas exchange responses. Eighteen children (9 boys, 9 girls) (mean age 10.9 ± 1.0 years) performed incremental cycle ramp exercise to exhaustion. The concentration of cerebral and muscle oxygenated (O 2 Hb) and deoxygenated (HHb) hemoglobin (by means of near-infrared spectroscopy) and pulmonary gas exchange was recorded. Cerebral and muscle O 2 Hb and HHb values were expressed as functions of oxygen uptake (VO 2 ) and breakpoints were detected by means of double linear model analysis. The respiratory compensation point (RCP) was determined. The breakpoints in cerebral and muscle O 2 Hb and HHb were compared and correlated to RCP. The subjects reached peak power output of 105 ± 18 W and VO 2peak of 43.5 ± 7.0 ml min -1 kg -1 . Cerebral O 2 Hb increased to an intensity of 89.4 ± 5.5 %VO 2peak , where a breakpoint occurred at which cerebral O 2 Hb started to decrease. Cerebral HHb increased slightly to 88.1 ± 4.8 %VO 2peak , at which the increase was accelerated. Muscle HHb increased to 90.5 ± 4.8 %VO 2peak where a leveling-off occurred. RCP occurred at 89.3 ± 4.3 %VO 2peak . The breakpoints and RCP did not differ significantly (P = 0.13) and were strongly correlated (r > 0.70, P < 0.05). There were no differences between boys and girls (P = 0.43) and there was no significant correlation with VO 2peak (P > 0.05). It was shown that cerebral and muscle oxygenation responses undergo significant changes as work rate increases and show breakpoints in the ongoing response at high intensity (85-95 %VO 2peak ). These breakpoints are strongly interrelated and associated with changes in pulmonary gas exchange.
Isaacson, J S; Nicoll, R A
1991-01-01
Aniracetam is a nootropic drug that has been shown to selectively enhance quisqualate receptor-mediated responses in Xenopus oocytes injected with brain mRNA and in hippocampal pyramidal cells [Ito, I., Tanabe, S., Kohda, A. & Sugiyama, H. (1990) J. Physiol. (London) 424, 533-544]. We have used patch clamp recording techniques in hippocampal slices to elucidate the mechanism for this selective action. We find that aniracetam enhances glutamate-evoked currents in whole-cell recordings and, in outside-out patches, strongly reduces glutamate receptor desensitization. In addition, aniracetam selectively prolongs the time course and increases the peak amplitude of fast synaptic currents. These findings indicate that aniracetam slows the kinetics of fast synaptic transmission and are consistent with the proposal [Trussell, L. O. & Fischbach, G. D. (1989) Neuron 3, 209-218; Tang, C.-M., Dichter, M. & Morad, M. (1989) Science 243, 1474-1477] that receptor desensitization governs the strength of fast excitatory synaptic transmission in the brain. PMID:1660156
Isaacson, J S; Nicoll, R A
1991-12-01
Aniracetam is a nootropic drug that has been shown to selectively enhance quisqualate receptor-mediated responses in Xenopus oocytes injected with brain mRNA and in hippocampal pyramidal cells [Ito, I., Tanabe, S., Kohda, A. & Sugiyama, H. (1990) J. Physiol. (London) 424, 533-544]. We have used patch clamp recording techniques in hippocampal slices to elucidate the mechanism for this selective action. We find that aniracetam enhances glutamate-evoked currents in whole-cell recordings and, in outside-out patches, strongly reduces glutamate receptor desensitization. In addition, aniracetam selectively prolongs the time course and increases the peak amplitude of fast synaptic currents. These findings indicate that aniracetam slows the kinetics of fast synaptic transmission and are consistent with the proposal [Trussell, L. O. & Fischbach, G. D. (1989) Neuron 3, 209-218; Tang, C.-M., Dichter, M. & Morad, M. (1989) Science 243, 1474-1477] that receptor desensitization governs the strength of fast excitatory synaptic transmission in the brain.
Low dark current photovoltaic multiquantum well long wavelength infrared detectors
NASA Technical Reports Server (NTRS)
Wu, C. S.; Wen, Cheng P.; Sato, R. N.; Hu, M.
1990-01-01
The authors have, for the first time, demonstrated photovoltaic detection for an multiple quantum well (MQW) detector. With a blocking layer, the MQW detector exhibits Schottky I-V characteristics with extremely low dark current and excellent ideality factor. The dark current is 5 times 10(exp -14) A for an 100x100 square micron 10 micron detector at 40 K, 8 to 9 orders of magnitude lower than that of a similar 10 micron MQW detector without blocking layer. The ideality factor is about 1.01 to 1.05 at T = 40 to 80 K. The measured barrier height is consistent with the energy difference between first excited states and ground states, or the peak of spectral response. The authors also, for the first time, report the measured effective Richardson constant (A asterisk asterisk) for the GaAs/AlGaAs heterojunction using this blocking layer structure. The A asterisk asterisk is low approx. 2.3 A/sq cm/K(exp 2).
Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor.
Rauf, Sakandar; Nawaz, Haq; Akhtar, Kalsoom; Ghauri, Muhammad A; Khalid, Ahmad M
2007-05-15
The interaction of sildenafil citrate (Viagra) with DNA was studied by using an electrochemical DNA biosensor. The binding mechanism of sildenafil citrate was elucidated by using constant current potentiometry and differential pulse voltammetry at DNA-modified glassy carbon electrode. The decrease in the guanine oxidation peak area or peak current was used as an indicator for the interaction in 0.2M acetate buffer (pH 5). The binding constant (K) values obtained were 2.01+/-0.05 x 10(5) and 1.97+/-0.01 x 10(5)M(-1) with constant current potentiometry and differential pulse voltammetry, respectively. A linear dependence of the guanine peak area or peak current was observed within the range of 1-40 microM sildenafil citrate with slope=-2.74 x 10(-4)s/microM, r=0.989 and slope=-2.78 x 10(-3)microA/microM, r=0.995 by using constant current potentiometry and differential pulse voltammetry, respectively. Additionally, binding constant values for sildenafil citrate-DNA interaction were determined for the pH range of 4-8 and in biological fluids (serum and urine) at pH 5. The influence of sodium and calcium ions was also studied to elucidate the mechanism of sildenafil citrate-DNA interaction under different solution conditions. The present study may prove to be helpful in extending our understanding of the anticancer activity of sildenafil citrate from cellular to DNA level.
High-performance single nanowire tunnel diodes.
Wallentin, Jesper; Persson, Johan M; Wagner, Jakob B; Samuelson, Lars; Deppert, Knut; Borgström, Magnus T
2010-03-10
We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27.6 at liquid helium temperature. These sub-100-nm-diameter structures are promising components for solar cells as well as electronic applications.
Stormflow response to roadbuilding and partial cutting in small streams of northern California
Robert R. Ziemer
1981-01-01
To assess the influence of road building and logging on storm flow response, a pair of watersheds were studied at Caspar Creek near Fort Bragg in northern California from 1963 to 1975. Selection cutting and tractor yarding of 85-year-old second-growth redwood and Douglas-fir forest did not significantly affect large peak streamflows. The first streamflow peaks in the...
Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo
2011-01-01
Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.
Arm and Intensity-Matched Leg Exercise Induce Similar Inflammatory Responses.
Leicht, Christof A; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C
2016-06-01
The amount of active muscle mass can influence the acute inflammatory response to exercise, associated with reduced risk for chronic disease. This may affect those restricted to upper body exercise, for example, due to injury or disability. The purpose of this study was to compare the inflammatory responses for arm exercise and intensity-matched leg exercise. Twelve male individuals performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak A) and cycling (V˙O2peak C): 1) arm cranking exercise at 60% V˙O2peak A, 2) moderate cycling at 60% V˙O2peak C, and 3) easy cycling at 60% V˙O2peak A. Cytokine, adrenaline, and flow cytometric analysis of monocyte subsets were performed before and up to 4 h postexercise. Plasma IL-6 increased from resting concentrations in all trials; however, postexercise concentrations were higher for arm exercise (1.73 ± 1.04 pg·mL) and moderate cycling (1.73 ± 0.95 pg·mL) compared with easy cycling (0.87 ± 0.41 pg·mL; P < 0.04). Similarly, the plasma IL-1ra concentration in the recovery period was higher for arm exercise (325 ± 139 pg·mL) and moderate cycling (316 ± 128 pg·mL) when compared with easy cycling (245 ± 77 pg·mL, P < 0.04). Arm exercise and moderate cycling induced larger increases in monocyte numbers and larger increases of the classical monocyte subset in the recovery period than easy cycling (P < 0.05). The postexercise adrenaline concentration was lowest for easy cycling (P = 0.04). Arm exercise and cycling at the same relative exercise intensity induces a comparable acute inflammatory response; however, cycling at the same absolute oxygen uptake as arm exercise results in a blunted cytokine, monocyte, and adrenaline response. Relative exercise intensity appears to be more important to the acute inflammatory response than modality, which is of major relevance for populations restricted to upper body exercise.
NASA Astrophysics Data System (ADS)
Corwin, K.; Brand, B. D.
2015-12-01
As the number of people living at risk from volcanic hazards in the U.S. Pacific Northwest continues to rise, so does the need for improved hazard science, mitigation, and response planning. The effectiveness of these efforts relies not only on scientists and policymakers, but on individuals and their risk perception and preparedness levels. This study examines the individual knowledge, perception, and preparedness of over 500 survey respondents living or working within the lahar zones of Mount Baker and Glacier Peak volcanoes. We (1) explore the common disconnect between accurate risk perception and adequate preparedness; (2) determine how participation in hazard response planning influences knowledge, risk perception, and preparedness; and (3) assess the effectiveness of current lahar hazard maps for public risk communication. Results indicate that a disconnect exists between perception and preparedness for the majority of respondents. While 82% of respondents accurately anticipate that future volcanic hazards will impact the Skagit Valley, this knowledge fails to motivate increased preparedness. A majority of respondents also feel "very responsible" for their own protection and provision of resources during a hazardous event (83%) and believe they have the knowledge and skills necessary to respond effectively to such an event (56%); however, many of these individuals still do not adequately prepare. When asked what barriers prevent them from preparing, respondents primarily cite a lack of knowledge about relevant local hazards. Results show that participation in response-related activities—a commonly recommended solution to this disconnect—minimally influences preparedness. Additionally, although local hazard maps successfully communicate the primary hazard—97% of respondents recognize the lahar hazard—many individuals incorrectly interpret other important facets of the maps. Those who participate in response-related activities fail to understand these maps better than the general public. This study's findings will be provided to emergency managers to assist in the development of educational programs and response plans.
Preparation for and physiological responses to competing in the Marathon des Sables: a case report.
Williams, N; Wickes, S J; Gilmour, K; Barker, N; Scott, J P R
2014-02-01
A case study into the preparation and physiological responses of competing in the Marathon des Sables (MDS) was conducted by preparing a male competitor for, and monitoring him during, his first attempt at the race. The aims of this case report were to (a) prepare and monitor an ex-Olympic, male rower (S1) during the 2010 race and; (b) compare his physiological responses and race performance to that of the current MDS record holder (S2). S1 (age 37 y; body mass 94.0 kg; height 1.92 m; VO(2peak) 66.0 ml·kg⁻¹·min⁻¹) and S2 (age 37 y; body mass 60.8 kg; height 1.68 m; VO(2peak) 65.9 ml·kg⁻¹·min⁻¹) completed a heat test and S1 subsequently underwent 7 d of heat acclimation prior to the MDS. Gastro-intestinal temperature (Tgi) and heart rate (HR) were measured for S1 during Stages 2, 4, and 5 of the MDS and pre- and post-stage body mass, and urine specific gravity were measured for all stages. Race time and average speeds were collected for S1 and S2. Total race times for S1 and S2 were 25:29:35 and 19:45:08 h:min:s. S1's mean (± 1 SD) percentage HR range (%HRR=[HR-HRmin]/[HRmax-HRmin]x100) was 66.1 ± 13.4% and Tgi ranged between 36.63-39.65°C. The results provide a case report on the physiological responses of a highly aerobically-trained, but novice ultra-endurance runner competing in the MDS, and allow for a comparison with an elite performer.
Characterization and Analysis of InGaAsSb Detectors
NASA Technical Reports Server (NTRS)
Abedin, M. Nurul; Refaat, Tamer F.; Joshi, Ravindra P.; Sulima, Oleg V.; Mauk, Michael; Singh, Upendra N.
2003-01-01
Profiling of atmospheric CO2 at 2 micron wavelength using the LIDAR technique, has recently gained interest. Although several detectors might be suitable for this application, an ideal device would have high gain, low noise and narrow spectral response peaking around the wavelength of interest. This increases the detector signal-to-noise ratio and minimizes the background signal, thereby increasing the device sensitivity and dynamic range. Detectors meeting the above idealized criteria are commercially unavailable for this particular wavelength. In this paper, the characterization and analysis of Sb-based detectors for 2 micron lidar applications are presented. The detectors were manufactured by AstroPower, Inc., with an InGaAsSb absorbing layer and AlGaAsSb passivating layer. The characterization experiments included spectral response, current versus voltage and noise measurements. The effect of the detectors bias voltage and temperature on its performance, have been investigated as well. The detectors peak responsivity is located at the 2 micron wavelength. Comparing three detector samples, an optimization of the spectral response around the 2 micron wavelength, through a narrower spectral period was observed. Increasing the detector bias voltage enhances the device gain at the narrow spectral range, while cooling the device reduces the cut-off wavelength and lowers its noise. Noise-equivalent-power analysis results in a value as low as 4 x 10(exp -12) W/Hz(exp 1/2) corresponding to D* of 1 x 10(exp 10) cmHz(exp 1/2)/W, at -1 V and 20 C. Discussions also include device operational physics and optimization guidelines, taking into account peculiarity of the Type II heterointerface and transport mechanisms under these conditions.