Cardiopulmonary Response to Exercise Testing in People with Chronic Stroke: A Retrospective Study
Billinger, Sandra A.; Taylor, Jordan M.; Quaney, Barbara M.
2012-01-01
Background and Purpose. This study investigated the cardiopulmonary response and safety of exercise testing at peak effort in people during the chronic stage of stroke recovery. Methods. This retrospective study examined data from 62 individuals with chronic stroke (males: 32; mean (SD); age: (12.0) yr) participating in an exercise test. Results. Both males and females had low cardiorespiratory fitness levels. No significant differences were found between gender for peak HR (P = 0.27), or VO2 peak (P = 0.29). Males demonstrated higher values for minute ventilation, tidal volume, and respiratory exchange ratio. No major adverse events were observed in the exercise tests conducted. Discussion and Conclusion. There are differences between gender that may play a role in exercise testing performance and should be considered when developing exercise programs. The low VO2 peak of this cohort of chronic stroke survivors suggests the need for participation in exercise interventions. PMID:21961083
Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis
2015-11-01
In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.
NASA Technical Reports Server (NTRS)
Downs, Meghan E.; Buxton, Roxanne; Moore, Alan; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori
2014-01-01
There is considerable variability among astronauts with respect to changes in maximal aerobic capacity (VO2peak) during International Space Station (ISS) missions, ranging from a 5% increase to 30% decline. Individual differences may be due to in-flight aerobic exercise time and intensity. PURPOSE: To evaluate the effects of in-flight aerobic exercise time and intensity on change in VO2peak during ISS missions. METHODS: Astronauts (N=11) performed peak cycle tests approx 60 days before flight (L-60), on flight day (FD) approx 14, and every approx 30 days thereafter. Metabolic gas analysis and heart rate (HR) were measured continuously during the test using the portable pulmonary function system. HR and duration of each in-flight cycle ergometer and treadmill (TM) session were recorded and averaged in time segments corresponding to each peak test. Mixed effects linear regression with exercise mode (TM or cycle) as a categorical variable was used to assess the contributions of exercise intensity (%time >70% peak HR or %time >90% peak HR) and time (min/wk), adjusted for body weight, on %change in VO2peak during the mission, and incorporating the repeated-measures experimental design. RESULTS: 110 observations were included in the model (4-6 peak cycle tests per astronaut, 2 exercise devices). VO2peak was reduced from preflight throughout the mission (FD14: 13+/-13% and FD 105: 8+/-10%). Exercise intensity (%peak HR: FD14=66+/-14; FD105=75+/-8) and time (min/wk: FD14=82+/-46; FD105=158+/-40) increased during flight. The models showed main effects for exercise time and intensity with no interactions between time, intensity, and device (70% peak HR: time [z-score=2.39; P=0.017], intensity [z-score=3.51; P=0.000]; 90% peak HR: time [zscore= 3.31; P=0.001], intensity [z-score=2.24; P=0.025]). CONCLUSION: Exercise time and intensity independently contribute to %change in VO2peak during ISS missions, indicating that there are minimal values for exercise time and intensity required to maintain VO2peak. As the FD105 average exercise intensity and time did not prevent a decline in VO2peak from preflight, astronauts' exercise prescriptions should target at least 160 min of weekly aerobic exercise at an average above 75% peak HR with increased time at intensities above 90% of peak HR starting early in the mission.
Samiei, Niloufar; Tajmirriahi, Marzieh; Rafati, Ali; Pasebani, Yeganeh; Rezaei, Yousef; Hosseini, Saeid
2018-02-01
The restrictive mitral valve annuloplasty (RMA) is the treatment of choice for degenerative mitral regurgitation (MR), but postoperative functional mitral stenosis remains a matter of debate. In this study, we sought to determine the impact of mitral stenosis on the functional capacity of patients. In a cross-sectional study, 32 patients with degenerative MR who underwent RMA using a complete ring were evaluated. All participants performed treadmill exercise test and underwent echocardiographic examinations before and after exercise. The patients' mean age was 50.1 ± 12.5 years. After a mean follow-up of 14.1 ± 5.9 months (6-32 months), the number of patients with a mitral valve peak gradient >7.5 mm Hg, a mitral valve mean gradient >3 mm Hg, and a pulmonary arterial pressure (PAP) ≥25 mm Hg at rest were 50%, 40.6%, and 62.5%, respectively. 13 patients (40.6%) had incomplete treadmill exercise test. All hemodynamic parameters were higher at peak exercise compared with at rest levels (all P < .05). The PAP at rest and at peak exercise as well as peak transmitral gradient at peak exercise were higher in patients with incomplete exercise compared with complete exercise test (all P < .05). The PAP at rest (a sensitivity and a specificity of 84.6% and 52.6%, respectively; area under the curve [AUC] = .755) and at peak exercise (a sensitivity and a specificity of 100% and 47.4%, respectively; AUC = .755) discriminated incomplete exercise test. The RMA for degenerative MR was associated with a functional stenosis and the PAP at rest and at peak exercise discriminated low exercise capacity. © 2017, Wiley Periodicals, Inc.
Alternatives to the Six-Minute Walk Test in Pulmonary Arterial Hypertension
Mainguy, Vincent; Malenfant, Simon; Neyron, Anne-Sophie; Saey, Didier; Maltais, François; Bonnet, Sébastien; Provencher, Steeve
2014-01-01
Introduction The physiological response during the endurance shuttle walk test (ESWT), the cycle endurance test (CET) and the incremental shuttle walk test (ISWT) remains unknown in PAH. We tested the hypothesis that endurance tests induce a near-maximal physiological demand comparable to incremental tests. We also hypothesized that differences in respiratory response during exercise would be related to the characteristics of the exercise tests. Methods Within two weeks, twenty-one PAH patients (mean age: 54(15) years; mean pulmonary arterial pressure: 42(12) mmHg) completed two cycling exercise tests (incremental cardiopulmonary cycling exercise test (CPET) and CET) and three field tests (ISWT, ESWT and six-minute walk test (6MWT)). Physiological parameters were continuously monitored using the same portable telemetric device. Results Peak oxygen consumption (VO2peak) was similar amongst the five exercise tests (p = 0.90 by ANOVA). Walking distance correlated markedly with the VO2peak reached during field tests, especially when weight was taken into account. At 100% exercise, most physiological parameters were similar between incremental and endurance tests. However, the trends overtime differed. In the incremental tests, slopes for these parameters rose steadily over the entire duration of the tests, whereas in the endurance tests, slopes rose sharply from baseline to 25% of maximum exercise at which point they appeared far less steep until test end. Moreover, cycling exercise tests induced higher respiratory exchange ratio, ventilatory demand and enhanced leg fatigue measured subjectively and objectively. Conclusion Endurance tests induce a maximal physiological demand in PAH. Differences in peak respiratory response during exercise are related to the modality (cycling vs. walking) rather than the progression (endurance vs. incremental) of the exercise tests. PMID:25111294
Alternatives to the six-minute walk test in pulmonary arterial hypertension.
Mainguy, Vincent; Malenfant, Simon; Neyron, Anne-Sophie; Saey, Didier; Maltais, François; Bonnet, Sébastien; Provencher, Steeve
2014-01-01
The physiological response during the endurance shuttle walk test (ESWT), the cycle endurance test (CET) and the incremental shuttle walk test (ISWT) remains unknown in PAH. We tested the hypothesis that endurance tests induce a near-maximal physiological demand comparable to incremental tests. We also hypothesized that differences in respiratory response during exercise would be related to the characteristics of the exercise tests. Within two weeks, twenty-one PAH patients (mean age: 54(15) years; mean pulmonary arterial pressure: 42(12) mmHg) completed two cycling exercise tests (incremental cardiopulmonary cycling exercise test (CPET) and CET) and three field tests (ISWT, ESWT and six-minute walk test (6MWT)). Physiological parameters were continuously monitored using the same portable telemetric device. Peak oxygen consumption (VO(2peak)) was similar amongst the five exercise tests (p = 0.90 by ANOVA). Walking distance correlated markedly with the VO(2peak) reached during field tests, especially when weight was taken into account. At 100% exercise, most physiological parameters were similar between incremental and endurance tests. However, the trends overtime differed. In the incremental tests, slopes for these parameters rose steadily over the entire duration of the tests, whereas in the endurance tests, slopes rose sharply from baseline to 25% of maximum exercise at which point they appeared far less steep until test end. Moreover, cycling exercise tests induced higher respiratory exchange ratio, ventilatory demand and enhanced leg fatigue measured subjectively and objectively. Endurance tests induce a maximal physiological demand in PAH. Differences in peak respiratory response during exercise are related to the modality (cycling vs. walking) rather than the progression (endurance vs. incremental) of the exercise tests.
Fragasso, G; Benti, R; Sciammarella, M; Rossetti, E; Savi, A; Gerundini, P; Chierchia, S L
1991-05-01
Exercise stress testing is routinely used for the noninvasive assessment of coronary artery disease and is considered a safe procedure. However, the provocation of severe ischemia might potentially cause delayed recovery of myocardial function. To investigate the possibility that maximal exercise testing could induce prolonged impairment of left ventricular function, 15 patients with angiographically proved coronary disease and 9 age-matched control subjects with atypical chest pain and normal coronary arteries were studied. Radionuclide ventriculography was performed at rest, at peak exercise, during recovery and 2 and 7 days after exercise. Ejection fraction, peak filling and peak emptying rates and left ventricular wall motion were analyzed. All control subjects had a normal exercise test at maximal work loads and improved left ventricular function on exercise. Patients developed 1 mm ST depression at 217 +/- 161 s at a work load of 70 +/- 30 W and a rate-pressure product of 18,530 +/- 4,465 mm Hg x beats/min. Although exercise was discontinued when angina or equivalent symptoms occurred, in all patients diagnostic ST depression (greater than or equal to 1 mm) developed much earlier than symptoms. Predictably, at peak exercise patients showed a decrease in ejection fraction and peak emptying and filling rates. Ejection fraction and peak emptying rate normalized within the recovery period, whereas peak filling rate remained depressed throughout recovery (p less than 0.002) and was still reduced 2 days after exercise (p less than 0.02). In conclusion, in patients with severe impairement of coronary flow reserve, maximal exercise may cause sustained impairement of diastolic function.(ABSTRACT TRUNCATED AT 250 WORDS)
The Relation of Arm Exercise Peak Heart Rate to Stress Test Results and Outcome.
Xian, Hong; Liu, Weijian; Marshall, Cynthia; Chandiramani, Pooja; Bainter, Emily; Martin, Wade H
2016-09-01
Arm exercise is an alternative to pharmacologic stress testing for >50% of patients unable to perform treadmill exercise, but no data exist regarding the effect of attained peak arm exercise heart rate on test sensitivity. Thus, the purpose of this investigation was to characterize the relationship of peak arm exercise heart rate responses to abnormal stress test findings, coronary revascularization, and mortality in patients unable to perform leg exercise. From 1997 until 2002, arm cycle ergometer stress tests were performed in 443 consecutive veterans age 64.1 yr (11.0 yr) (mean (SD)), of whom 253 also underwent myocardial perfusion imaging (MPI). Patients were categorized by frequency distributions of quartiles of percentage age-predicted peak heart rate (APPHR), heart rate reserve (HRR), and peak heart rate-systolic blood pressure product (PRPP). Exercise-induced ST-segment depression, abnormal MPI findings, coronary revascularization, and 12.0-yr (1.3 yr) Kaplan-Meier all-cause and cardiovascular mortality plots were then characterized by quartiles of APPHR, HRR, and PRPP. A reduced frequency of abnormal arm exercise ECG results was associated only with the lowest quartile of APPHR (≤69%) and HRR (≤43%), whereas higher frequency of abnormal MPI findings exhibited an inverse relationship trend with lower APPHR (P = 0.10) and HRR (P = 0.12). There was a strong inverse association of APPHR, HRR, and PRPP with all-cause (all P ≤ 0.01) and cardiovascular (P < 0.05) mortality. The frequency of coronary revascularization was unrelated to APPHR or HRR. Arm exercise ECG stress test sensitivity is only reduced at ≤69% APPHR or ≤43% HRR, whereas arm exercise MPI sensitivity and referral for coronary revascularization after arm exercise stress testing are not adversely affected by even a severely blunted peak heart rate. However, both all-cause mortality and cardiovascular mortality are strongly and inversely related to APPHR and HRR.
Mandic, Sandra; Walker, Robert; Stevens, Emily; Nye, Edwin R; Body, Dianne; Barclay, Leanne; Williams, Michael J A
2013-01-01
Compared with symptom-limited cardiopulmonary exercise test (CPET), timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in coronary artery disease (CAD) patients. We developed multivariate models for predicting peak oxygen consumption (VO2peak) from 6-minute walk test (6MWT) distance and peak shuttle walk speed for elderly stable CAD patients. Fifty-eight CAD patients (72 SD 6 years, 66% men) completed: (1) CPET with expired gas analysis on a cycle ergometer, (2) incremental 10-meter shuttle walk test, (3) two 6MWTs, (4) anthropometric assessment and (5) 30-second chair stands. Linear regression models were developed for estimating VO2peak from 6MWT distance and peak shuttle walk speed as well as demographic, anthropometric and functional variables. Measured VO2peak was significantly related to 6MWT distance (r = 0.719, p < 0.001) and peak shuttle walk speed (r = 0.717, p < 0.001). The addition of demographic (age, gender), anthropometric (height, weight, body mass index, body composition) and functional characteristics (30-second chair stands) increased the accuracy of predicting VO2peak from both 6MWT distance and peak shuttle walk speed (from 51% to 73% of VO2peak variance explained). Addition of demographic, anthropometric and functional characteristics improves the accuracy of VO2peak estimate based on walking tests in elderly individuals with stable CAD. Implications for Rehabilitation Timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in cardiac patients. Walking tests could be used to assess individual's functional capacity and response to therapeutic interventions when symptom-limited cardiopulmonary exercise testing is not practical or not necessary for clinical reasons. Addition of demographic, anthropometric and functional characteristics improves the accuracy of peak oxygen consumption estimate based on 6-minute walk test distance and peak shuttle walk speed in elderly patients with coronary artery disease.
Keyser, R E; Rodgers, M M; Gardner, E R; Russell, P J
1999-10-01
To determine if a single-stage, submaximal fatigue test on a wheelchair ergometer would result in higher than expected energy expenditure. An experimental survey design contrasting physiologic responses during peak graded exercise tests and fatigue tests. A rehabilitation science laboratory that included a prototypical wheelchair ergometer, open-circuit spirometry system, and heart rate monitor. Nine able-bodied non-wheelchair users (the NWC group: 6 men and 3 women, mean +/- SD age 30 +/- 7yrs) and 15 manual wheelchair users (the WC group: 12 men and 3 women, age 40 +/- 9yrs, time in wheelchair 16 +/- 9yrs). No subject had any disease, medication regimen, or upper body neurologic, orthopedic, or other condition that would limit wheelchair exercise. Peak oxygen uptake (VO2) for graded exercise testing and during fatigue testing, using a power output corresponding to 75% peak aerobic capacity on graded exercise test. In the WC group, VO2 at 6 minutes of fatigue testing was not significantly different from peak VO2. In the NWC group, VO2 was similar to the expected level throughout fatigue testing. Energy expenditure was higher than expected in the WC group but not in the NWC group. Fatigue testing may provide a useful evaluation of cardiorespiratory status in manual wheelchair users.
Beider, Shay; Boulanger, Karen T; Joshi, Milind; Pan, Yann Ping; Chang, Ruey-Kang R
2010-09-28
Congenital heart disease, a common and serious birth defect, affects 8 per 1000 live-born infants. Decreased exercise capacity and development of obesity is common in this population. These children may benefit from therapies, such as massage therapy, that could enhance cardiovascular and skeletal muscle function when they exercise. A pilot study conducted at the pediatric cardiology clinic of the Mattel Children's Hospital of the University of California-Los Angeles examined the safety and feasibility of measuring the effects of pre-exercise massage on exercise performance and cardiopulmonary response in children with and without heart disease. SIXTEEN CHILDREN (MEAN AGE: 9.2 ± 2.2 years) participated in the study. Ten participants had various forms of heart disease, and six children were healthy. A female certified massage therapist with specialized training in pediatric massage provided a 30-minute massage to the participants. Using a standard protocol, each participant underwent two exercise tests: one test with and one without pre-exercise massage. Heart rate, blood pressure, and oxygen uptake (VO(2)) were measured in the participants. All recruited participants completed the study. No adverse events occurred during any of the exercise tests or massage sessions. Measurements during exercise with or without a preceding massage were compared, and the pre-exercise massage condition yielded a significantly higher heart rate and higher minute ventilation. Measurements during exercise in children with heart disease and in healthy participants showed no significant differences in peak heart rate, blood pressure, peak VO(2), peak work rate, minute ventilation, or respiratory quotient. In this study, peak heart rate, peak VO(2), and peak minute ventilation were higher when children received a massage before exercise testing. Larger studies will be needed to investigate the strength of this finding. Future studies should include measurements of anxiety and psychological factors in addition to cardiopulmonary measures.
Han, Eun Young; Im, Sang Hee
2017-03-15
To assess the feasibility and safety of a 6-week course of water walking performed using a motorized aquatic treadmill in individuals with subacute stroke for cardiorespiratory fitness, walking endurance, and activities of daily living. Twenty subacute stroke patents were randomly assigned to aquatic treadmill exercise (ATE) or land-based exercise (LBE). The ATE group (n = 10) performed water-based aerobic exercise on a motorized aquatic treadmill, and the LBE group (n = 10) performed land-based aerobic exercise on a cycle ergometer. Both groups performed aerobic exercise for 30 minutes, 5 times per week for 6 weeks. Primary outcome measures were 6-minute walk test for walking endurance and cardiopulmonary fitness parameters of a symptom-limited exercise tolerance test, and secondary measures were Korean version of the Modified Barthel Index (K-MBI) for activities of daily living. All variables were assessed at baseline and at the end of the intervention. The ATE group showed significant improvements in 6-minute walk test (P = .005), peak oxygen uptake (V·o2peak; P = .005), peak heart rate (P = .007), exercise tolerance test duration (P = .005), and K-MBI (P = .008). The LBE group showed a significant improvement only in K-MBI (P = .012). In addition, improvement in V·o2peak was greater in the ATE than in the LBE group. This preliminary study showed that a 6-week ATE program improved peak aerobic capacity and walking endurance in patients with subacute stroke. The improvement in V·o2peak after an ATE exercise program was greater than that observed after an LBE program. Therefore, ATE effectively improves cardiopulmonary fitness in patients with subacute stroke.
Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young
2017-05-01
The aim of this work was to investigate the cardiorespiratory responses of patients with subacute stroke to exercise stress tests with aquatic and land treadmills. Twenty-one consecutive patients who presented with first-ever subacute stroke in 2013-2015. All subjects underwent symptom-limited incremental exercise testing with aquatic and land treadmills. Land treadmill speed started at 1.5 km/h and increased 0.5 km/h every 1 to 2 minutes until maximal tolerable speed was achieved. Thereafter, the grade was elevated by 2% every 2 minutes. In the aquatic treadmill test, subjects were submerged to the xiphoid in 28°C water. Treadmill speed started at 1.5 km/h and was increased 0.5 km/h every 2 minutes thereafter. Cardiorespiratory responses were recorded with aquatic and land treadmills. Compared to land treadmill exercise, aquatic treadmill exercise achieved significantly better peak VO2 (22.0 vs 20.0; P = 0.02), peak metabolic equivalents (6.3 vs 5.8; P = 0.02), and peak rating of perceived exertion (17.6 vs 18.4, P = 0.01). Heart rate and VO2 correlated significantly during both tests (land treadmill: r = 0.96, P < 0.001; aquatic treadmill: r = 0.99, P < 0.001). Aquatic treadmill exercise elicited significantly better peak cardiorespiratory responses than land treadmill exercise and may be as effective for early intensive aerobic training in subacute stroke patients.
Stoller, Oliver; de Bruin, Eling D; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A; Hunt, Kenneth J
2014-10-11
Exercise capacity is seriously reduced after stroke. While cardiopulmonary assessment and intervention strategies have been validated for the mildly and moderately impaired populations post-stroke, there is a lack of effective concepts for stroke survivors suffering from severe motor limitations. This study investigated the test-retest reliability and repeatability of cardiopulmonary exercise testing (CPET) using feedback-controlled robotics-assisted treadmill exercise (FC-RATE) in severely motor impaired individuals early after stroke. 20 subjects (age 44-84 years, <6 month post-stroke) with severe motor limitations (Functional Ambulatory Classification 0-2) were selected for consecutive constant load testing (CLT) and incremental exercise testing (IET) within a powered exoskeleton, synchronised with a treadmill and a body weight support system. A manual human-in-the-loop feedback system was used to guide individual work rate levels. Outcome variables focussed on standard cardiopulmonary performance parameters. Relative and absolute test-retest reliability were assessed by intraclass correlation coefficients (ICC), standard error of the measurement (SEM), and minimal detectable change (MDC). Mean difference, limits of agreement, and coefficient of variation (CoV) were estimated to assess repeatability. Peak performance parameters during IET yielded good to excellent relative reliability: absolute peak oxygen uptake (ICC =0.82), relative peak oxygen uptake (ICC =0.72), peak work rate (ICC =0.91), peak heart rate (ICC =0.80), absolute gas exchange threshold (ICC =0.91), relative gas exchange threshold (ICC =0.88), oxygen cost of work (ICC =0.87), oxygen pulse at peak oxygen uptake (ICC =0.92), ventilation rate versus carbon dioxide output slope (ICC =0.78). For these variables, SEM was 4-13%, MDC 12-36%, and CoV 0.10-0.36. CLT revealed high mean differences and insufficient test-retest reliability for all variables studied. This study presents first evidence on reliability and repeatability for CPET in severely motor impaired individuals early after stroke using a feedback-controlled robotics-assisted treadmill. The results demonstrate good to excellent test-retest reliability and appropriate repeatability for the most important peak cardiopulmonary performance parameters. These findings have important implications for the design and implementation of cardiovascular exercise interventions in severely impaired populations. Future research needs to develop advanced control strategies to enable the true limit of functional exercise capacity to be reached and to further assess test-retest reliability and repeatability in larger samples.
Keteyian, Steven J.; Patel, Mahesh; Kraus, William E.; Brawner, Clinton A.; McConnell, Timothy R.; Piña, Ileana L.; Leifer, Eric S.; Fleg, Jerome L.; Blackburn, Gordon; Fonarow, Gregg C.; Chase, Paul J.; Piner, Lucy; Vest, Marianne; O’Connor, Christopher M.; Ehrman, Jonathan K.; Walsh, Mary N.; Ewald, Gregory; Bensimhon, Dan; Russell, Stuart D.
2015-01-01
BACKGROUND Data from a cardiopulmonary exercise (CPX) test are used to determine prognosis in patients with chronic heart failure (HF). However, few published studies have simultaneously compared the relative prognostic strength of multiple CPX variables. OBJECTIVES We sought to describe the strength of the association among variables measured during a CPX test and all-cause mortality in patients with HF with reduced ejection fraction (HFrEF), including the influence of sex and patient effort, as measured by respiratory exchange ratio (RER). METHODS Among patients (n = 2,100, 29% women) enrolled in the HF-ACTION (HF-A Controlled Trial Investigating Outcomes of exercise traiNing) trial, 10 CPX test variables measured at baseline (e.g., peak oxygen uptake [VO2], exercise duration, percent predicted peak VO2 [%ppVO2], ventilatory efficiency) were examined. RESULTS Over a median follow-up of 32 months, there were 357 deaths. All CPX variables, except RER, were related to all-cause mortality (all p < 0.0001). Both %ppVO2 and exercise duration were equally able to predict (Wald χ2: ~141) and discriminate (c-index: 0.69) mortality. Peak VO2 (mL·kg−1·min−1) was the strongest predictor of mortality among men (Wald χ2: 129) and exercise duration among women (Wald χ2: 41). Multivariable analyses showed that %ppVO2, exercise duration, and peak VO2 (mL·kg−1·min−1) were similarly able to predict and discriminate mortality. In men, a 10% 1-year mortality rate corresponded to a peak VO2 of 10.9 mL·kg−1·min−1 versus 5.3 mlkg−1/min−1 in women. CONCLUSIONS Peak VO2, exercise duration, and % ppVO2 carried the strongest ability to predict and discriminate the likelihood of death in patients with HFrEF. The prognosis associated with a given peak V2 differed by sex. PMID:26892413
Scioli-Salter, Erica; Forman, Daniel E; Otis, John D; Tun, Carlos; Allsup, Kelly; Marx, Christine E; Hauger, Richard L; Shipherd, Jillian C; Higgins, Diana; Tyzik, Anna; Rasmusson, Ann M
2016-01-01
This pilot study assessed the effects of cardiopulmonary exercise testing and cardiorespiratory fitness on plasma neuropeptide Y (NPY), allopregnanolone and pregnanolone (ALLO), cortisol, and dehydroepiandrosterone (DHEA), and their association with pain sensitivity. Medication-free trauma-exposed participants were either healthy (n = 7) or experiencing comorbid chronic pain/posttraumatic stress disorder (PTSD) (n = 5). Peak oxygen consumption (VO2) during exercise testing was used to characterize cardiorespiratory fitness. Peak VO2 correlated with baseline and peak NPY levels (r = 0.66, p < 0.05 and r = 0.69, p < 0.05, respectively), as well as exercise-induced changes in ALLO (r = 0.89, p < 0.001) and peak ALLO levels (r = 0.71, p < 0.01). NPY levels at the peak of exercise correlated with pain threshold 30 min after exercise (r = 0.65, p < 0.05), while exercise-induced increases in ALLO correlated with pain tolerance 30 min after exercise (r = 0.64, p < 0.05). In contrast, exercise-induced changes in cortisol and DHEA levels were inversely correlated with pain tolerance after exercise (r = -0.69, p < 0.05 and r = -0.58, p < 0.05, respectively). These data suggest that cardiorespiratory fitness is associated with higher plasma NPY levels and increased ALLO responses to exercise, which in turn relate to pain sensitivity. Future work will examine whether progressive exercise training increases cardiorespiratory fitness in association with increases in NPY and ALLO and reductions in pain sensitivity in chronic pain patients with PTSD.
Stoller, O; de Bruin, E D; Schindelholz, M; Schuster, C; de Bie, R A; Hunt, K J
2013-01-01
Robotics-assisted treadmill exercise (RATE) with focus on motor recovery has become popular in early post-stroke rehabilitation but low endurance for exercise is highly prevalent in these individuals. This study aimed to develop an exercise testing method using robotics-assisted treadmill exercise to evaluate aerobic capacity after severe stroke. Constant load testing (CLT) based on body weight support (BWS) control, and incremental exercise testing (IET) based on guidance force (GF) control were implemented during RATE. Analyses focussed on step change, step response kinetics, and peak performance parameters of oxygen uptake. Three subjects with severe motor impairment 16-23 days post-stroke were included. CLT yielded reasonable step change values in oxygen uptake, whereas response kinetics of oxygen uptake showed low goodness of fit. Peak performance parameters were not obtained during IET. Exercise testing in post-stroke individuals with severe motor impairments using a BWS control strategy for CLT is deemed feasible and safe. Our approach yielded reasonable results regarding cardiovascular performance parameters. IET based on GF control does not provoke peak cardiovascular performance due to uncoordinated walking patterns. GF control needs further development to optimally demand active participation during RATE. The findings warrant further research regarding the evaluation of exercise capacity after severe stroke.
de Aguiar, Rafael Alves; Lisbôa, Felipe Domingos; Turnes, Tiago; Cruz, Rogério Santos de Oliveira; Caputo, Fabrizio
2015-01-01
To investigate the impact of different training backgrounds on pulmonary oxygen uptake (V̇O2) responses during all-out and supramaximal constant-velocity running exercises, nine sprinters (SPRs) and eight endurance runners (ENDs) performed an incremental test for maximal aerobic velocity (MAV) assessment and two supramaximal running exercises (1-min all-out test and constant-velocity exercise). The V̇O2 responses were continuously determined during the tests (K4b2, Cosmed, Italy). A mono-exponential function was used to describe the V̇O2 onset kinetics during constant-velocity test at 110%MAV, while during 1-min all-out test the peak of V̇O2 (V̇O2peak), the time to achieve the V̇O2peak (tV̇O2peak) and the V̇O2 decrease at last of the test was determined to characterize the V̇O2 response. During constant-velocity exercise, ENDs had a faster V̇O2 kinetics than SPRs (12.7 ± 3.0 vs. 19.3 ± 5.6 s; p < 0.001). During the 1-min all-out test, ENDs presented slower tV̇O2peak than SPRs (40.6 ± 6.8 and 28.8 ± 6.4 s, respectively; p = 0.002) and had a similar V̇O2peak relative to the V̇O2max (88 ± 8 and 83 ± 6%, respectively; p = 0.157). Finally, SPRs was the only group that presented a V̇O2 decrease in the last half of the test (-1.8 ± 2.3 and 3.5 ± 2.3 ml.kg-1.min-1, respectively; p < 0.001). In summary, SPRs have a faster V̇O2 response when maximum intensity is required and a high maximum intensity during all-out running exercise seems to lead to a higher decrease in V̇O2 in the last part of the exercise. PMID:26252001
Fabre, Claudine; Chehere, Baptiste; Bart, Frédéric; Mucci, Patrick; Wallaert, Benoit; Grosbois, Jean Marie
2017-01-01
It has been scientifically proven that pulmonary rehabilitation improves exercise tolerance and facilitates the carrying out of daily physical activities. To optimize the physical and physiological benefits, it is necessary to individualize the training intensity for each patient. The aim of this study is to compare the heart rate (HR) responses to three exercise modalities measuring aerobic fitness in chronic obstructive pulmonary disease patients, in order to easily prescribe individual target HRs for endurance training. Fifty COPD patients (mean age: 60.1±8.5 years) were included in the study. Each patient carried out a cardiopulmonary exercise test, a 6-minute walk test (6MWT) and a 6-minute stepper test (6MST). During these tests, HR was recorded continuously. After the cardiopulmonary exercise test, the HR was noted at the ventilatory threshold (VT) and at the end of the two exercise field tests (6MWT peak and 6MST peak ). The values of the HR during the last 3 minutes of both field tests were averaged (6MWT 456 and 6MST 456 ). Finally, the HR at 60% of the HR reserve was calculated with the values of the HR measured during 6MWT and 6MST (HRr 60%walk , HRr 60%step ). The HRs measured during the 6MST were significantly higher than those measured during the 6MWT. The HRr 60%step was not significantly different from 6MWT 456 and 6MWT peak HR ( P =0.51; P =0.48). A significant correlation was observed between 6MWT 456 and 6MWT peak ( r =0.58). The 6MWT 456 and 6MWT peak HR were correlated with HRr 60%step ( r =0.68 and r =0.62). The VT could be determined in 28 patients. The HR VT was not different from 6MWT 456 , 6MWT peak , and HRr 60%step ( P =0.57, P =0.41 and P =0.88) and was correlated to 6MWT 456 , 6MWT peak , and HRr 60%step ( r =0.45, r =0.40, r =0.48). An individualized target HR for endurance training can be prescribed from the HR measured during routine tests, such as 6MWT or 6MST.
Luitingh, Taryn L; Lee, Melissa G Y; Jones, Bryn; Kowalski, Remi; Weskamp Aguero, Sofia; Koleff, Jane; Zannino, Diana; Cheung, Michael M H; d'Udekem, Yves
2018-03-27
Exercise-testing may be a more tolerable method of detecting hypertension in children after coarctation repair compared to gold-standard 24-hour ambulatory blood pressure (BP) monitoring (ABPM). This study aims to determine the prevalence of exercise-induced hypertension and end-organ damage in children after coarctation repair, and the effectiveness of exercise-testing compared to 24-hour ABPM in this population. Exercise-testing (Bruce protocol), transthoracic echocardiogram, 24-hour ABPM, and pulse wave velocity were performed in 41 patients aged 8 to 18 years with previous coarctation repair. Median age at repair was 13 days. Exercise-testing data were compared to healthy paediatric controls. Hypertension was defined as BP >95th percentile on 24-hour ABPM compared to normalised data, and systolic BP (SBP) arbitrarily >200mmHg on exercise-testing. After 13±3years, 39% (14/36) were hypertensive on 24-hour ABPM and 12% (5/41) on exercise-testing. Coarctation patients had a higher peak exercise SBP and reduced endurance compared to controls (164±26mmHg vs. 148±19mmHg, p=0.003; and 13.0±1.7mins vs. 14.2±2.4mins, p=0.007; respectively). All patients with a peak exercise SBP >190mmHg were hypertensive on 24-hour ABPM. Pulse wave velocity was higher in hypertensive patients on exercise-testing and 24-hour ABPM compared to normotensive patients (p=0.004 and p=0.06; respectively). Exercise-testing may be a useful tool to detect hypertension in children and young adults after coarctation repair, particularly in those who do not tolerate 24-hour ABPM. Normative peak exercise BP data for age should be obtained to improve the accuracy of exercise-testing in detecting hypertension. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Zoli, A; Bosello, S; Comerci, G; Galiano, N; Forni, A; Loperfido, F; Ferraccioli, G F
2017-01-01
Rheumatoid arthritis (RA) is associated with an increased risk of myocardial infarction and congestive heart failure. In RA patients, elevated NT-proBNP levels have been reported to be a prognostic marker of left ventricular dysfunction. In this study, we evaluated cardiorespiratory functional capacity and NT-proBNP levels before and during cardiopulmonary exercise test in early RA (ERA) patients. Twenty ERA patients and 10 healthy controls were studied by color Doppler echocardiography to evaluate ventricular systolic and diastolic function. Arterial stiffness and wave reflections were quantified non-invasively using applanation tonometry of the radial artery. Cardiopulmonary treadmill test was performed to measure peak VO 2 and VE/VCO 2 parameters. NT-proBNP plasma levels were measured before and at the exercise peak during cardiopulmonary exercise. The peak oxygen uptake [VO 2 (ml/min/kg)], the ventilatory equivalents for carbon dioxide (EqCO 2 ), respiratory exchange ratio and arterial stiffness were similar between patients and controls during cardiopulmonary exercise test. Basal and peak cardiopulmonary exercise NT-proBNP plasma levels were comparable in ERA patients with respect to healthy controls. When we analyzed patients according to disease characteristics and cardiovascular risk factors, ERA patients with high disease activity, BMI > 25 kg/m 2 and ACPA positivity presented significantly higher baseline and exercise peak NT-proBNP levels. Cardiorespiratory function is preserved in patients with recent onset of rheumatoid arthritis. The increased basal and exercise peak NT-proBNP plasma levels in patients with negative disease prognostic factors represent a possible marker to stratify the cardiovascular risk in patients with early rheumatoid arthritis.
Potential benefits of maximal exercise just prior to return from weightlessness
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1987-01-01
The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.
Reis, Hugo V; Borghi-Silva, Audrey; Catai, Aparecida M; Reis, Michel S
2014-01-01
Chronic heart failure (CHF) leads to exercise intolerance. However, non-invasive ventilation is able to improve functional capacity of patients with CHF. The aim of this study was to evaluate the effectiveness of continuous positive airway pressure (CPAP) on physical exercise tolerance and heart rate variability (HRV) in patients with CHF. Method : Seven men with CHF (62 ± 8 years) and left ventricle ejection fraction of 41 ± 8% were submitted to an incremental symptom-limited exercise test (IT) on the cicloergometer. On separate days, patients were randomized to perform four constant work rate exercise tests to maximal tolerance with and without CPAP (5 cmH2O) in the following conditions: i) at 50% of peak work rate of IT; and ii) at 75% of peak work rate of IT. At rest and during these conditions, instantaneous heart rate (HR) was recorded using a cardiofrequencimeter and HRV was analyzed in time domain (SDNN and RMSSD indexes). For statistical procedures, Wilcoxon test or Kruskall-Wallis test with Dunn's post-hoc were used accordingly. In addition, categorical variables were analysed through Fischer's test (p<0.05). There were significant improvements in exercise tolerance at 75% of peak work rate of IT with CPAP (405 ± 52 vs. 438 ± 58 s). RMSSD indexes were lower during exercise tests compared to CPAP at rest and with 50% of peak work rate of IT. These data suggest that CPAP appears to be a useful strategy to improve functional capacity in patients with CHF. However, the positive impact of CPAP did not generate significant changes in the HRV during physical exercises.
Teren, Andrej; Zachariae, Silke; Beutner, Frank; Ubrich, Romy; Sandri, Marcus; Engel, Christoph; Löffler, Markus; Gielen, Stephan
2016-07-01
Cardiorespiratory fitness is a well-established independent predictor of cardiovascular health. However, the relevance of alternative exercise and non-exercise tests for cardiorespiratory fitness assessment in large cohorts has not been studied in detail. We aimed to evaluate the YMCA-step test and the Veterans Specific Activity Questionnaire (VSAQ) for the estimation of cardiorespiratory fitness in the general population. One hundred and five subjects answered the VSAQ, performed the YMCA-step test and a maximal cardiopulmonary exercise test (CPX) and gave BORG ratings for both exercise tests (BORGSTEP, BORGCPX). Correlations of peak oxygen uptake on a treadmill (VO2_PEAK) with VSAQ, BORGSTEP, one-minute, post-exercise heartbeat count, and peak oxygen uptake during the step test (VO2_STEP) were determined. Moreover, the incremental values of the questionnaire and the step test in addition to other fitness-related parameters were evaluated using block-wise hierarchical regression analysis. Eighty-six subjects completed the step test according to the protocol. For completers, correlations of VO2_PEAK with the age- and gender-adjusted VSAQ, heartbeat count and VO2_STEP were 0.67, 0.63 and 0.49, respectively. However, using hierarchical regression analysis, age, gender and body mass index already explained 68.8% of the variance of VO2_PEAK, while the additional benefit of VSAQ was rather low (3.4%). The inclusion of BORGSTEP, heartbeat count and VO2_STEP increased R(2) by a further 2.2%, 3.3% and 5.6%, respectively, yielding a total R(2) of 83.3%. Neither VSAQ nor the YMCA-step test contributes sufficiently to the assessment of cardiorespiratory fitness in population-based studies. © The European Society of Cardiology 2015.
Dual-cycle ergometry as an exercise modality during prebreathe with 100 percent oxygen
NASA Technical Reports Server (NTRS)
Heaps, Cristine L.; Fischer, Michele D.; Webb, James T.
1994-01-01
In an effort to reduce prebreathe time requirements prior to extravehicular activities and high-altitude flights, a combined arm and leg exercise task proposes to enhance denitrogenation by incorporation of both upper and lower body musculature at a moderately high work intensity during prebreathe with 100% oxygen. Preliminary findings indicated peak oxygen consumption (VO2peak) levels attained on the dual-cycle ergometer do not differ significantly from those levels attained on the treadmill. Eight male subjects were exercised to VO2peak using leg-only cycle ergometry and dual-cycle ergometry on separate days. Preliminary data during dual-cycle ergometry showed arm work equaling 30% of the leg workrate at each stage of the incremental test resulted in arm fatigue in several subjects and a reduced VO2peak compared to dual-cycle ergometry with arm work at 20%. Thus, the 20% workrate was used during the dual-cycle VO2peak trial. On a third experimental day, subjects performed a 10 minute exercise test at a workrate required to elicit 75% of VO2peak for each subject on the dual-cycle ergometer. Blood lactate response to the exercise was monitored as an objective measure of fatigue. Peak VO2 levels attained on the leg-only and the dual-cycle ergometry tasks were not significantly different. Blood lactate levels were significantly elevated following the dual-cycle ergometry at 75% VO2peak. However, lactate levels show the expected rate of decline during recovery and, as demonstrated in the literature, should return to baseline levels within 30 minutes following exercise cessation. Thus, dual-cycle ergometry at 75% VO2peak appears to be a valid exercise for use during prebreathe and should not contribute to fatigue during subsequent EVA's.
Vignati, Carlo; Apostolo, Anna; Cattadori, Gaia; Farina, Stefania; Del Torto, Alberico; Scuri, Silvia; Gerosa, Gino; Bottio, Tomaso; Tarzia, Vincenzo; Bejko, Jonida; Sisillo, Erminio; Nicoli, Flavia; Sciomer, Susanna; Alamanni, Francesco; Paolillo, Stefania; Agostoni, Piergiuseppe
2017-03-01
Peak exercise cardiac output (CO) increase is associated with an increase of peak oxygen uptake (VO 2 ), provided that arteriovenous O 2 difference [Δ(Ca-Cv)O 2 ] does not decrease. At anaerobic threshold, VO 2 , is related to CO. We tested the hypothesis that, in heart failure (HF) patients with left ventricular assistance device (LVAD), an acute increase of CO obtained through changes in LVAD pump speed is associated with peak exercise and anaerobic threshold VO 2 increase. Fifteen of 20 patients bearing LVAD (Jarvik 2000) enrolled in the study successfully performed peak exercise evaluation. All patients had severe HF as shown by clinical evaluation, laboratory tests, echocardiography, spirometry with alveolar-capillary diffusion, and maximal cardiopulmonary exercise testing (CPET). CPETs with non-invasive CO measurements at rest and peak exercise were done on 2days at LVAD pump speed set randomly at 2 and 4. Increasing LVAD pump speed from 2 to 4 increased CO from 3.4±0.9 to 3.8±1.0L/min (ΔCO 0.4±0.6L/min, p=0.04) and from 5.3±1.3 to 5.9±1.4L/min (ΔCO 0.6±0.7L/min, p<0.01) at rest and peak exercise, respectively. Similarly, VO 2 increased from 788±169 to 841±152mL/min (ΔVO 2 52±76mL/min, p=0.01) and from 568±116 to 619±124mL/min (ΔVO 2 69±96mL/min, p=0.02) at peak exercise and at anaerobic threshold, respectively. Δ(Ca-Cv)O 2 did not change significantly, while ventilatory efficiency improved (VE/VCO 2 slope from 39.9±5.4 to 34.9±8.3, ΔVE/VCO 2 -5.0±6.4, p<0.01). In HF, an increase in CO with a higher LVAD pump speed is associated with increased peak VO 2 , postponed anaerobic threshold, and improved ventilatory efficiency. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hawari, F I; Obeidat, N A; Ghonimat, I M; Ayub, H S; Dawahreh, S S
2017-01-01
Evidence regarding the health effects of habitual waterpipe smoking is limited, particularly in young smokers. Respiratory health and cardiopulmonary exercise tests were compared in young male habitual waterpipe smokers (WPS) versus non-smokers. 69 WPS (≥3 times/week for three years) and 69 non-smokers were studied. Respiratory health was assessed through the American Thoracic Society and the Division of Lung Diseases (ATS-DLD-78) adult questionnaire. Pulmonary function and cardiopulmonary exercise tests were performed. Self-reported respiratory symptoms, forced expiratory volume in first second (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC ratio, forced expiratory flow between 25 and 75% of FVC (FEF 25-75% ), peak expiratory flow (PEF), exercise time, peak end-tidal CO 2 tension (PetCO 2 ), subject-reported leg fatigue and dyspnea; peak O 2 uptake (VO 2 max), and end-expiratory lung volume (EELV) change from baseline (at peak exercise) were measured. WPS were more likely than non-smokers to report respiratory symptoms. WPS also demonstrated: shorter exercise time; lower peak VO 2 ; higher perceived dyspnea at mid-exercise; lower values of the following: FEV 1 , FVC, PEF, and EELV change. Habitual waterpipe tobacco smoking in young seemingly healthy individuals is associated with a greater burden of respiratory symptoms and impaired exercise capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Williams, Simon G; Jackson, Mark; Ng, Leong L; Barker, Diane; Patwala, Ashish; Tan, Lip-Bun
2005-01-01
It is a prevailing concept in chronic heart failure (CHF) that ventricular remodelling (evaluated via imaging) and neurohormonal activation (via biomarkers) exert major influences, such that the need to subject patients to haemodynamic evaluations and exercise testing has been questioned. We sought to investigate whether exercise and haemodynamic parameters lack independent prognostic value in a cohort of unselected ambulatory patients with mild-moderate CHF. Eighty-five consecutive patients with stable CHF in New York Heart Association functional classes I-IV, aged 55 +/- 12 years, 84% males, left ventricular ejection fraction (LVEF) 37 +/- 15%, participated in this study. Survivors were followed for a median of 5.08 years. All subjects underwent cardiopulmonary exercise testing to measure standard parameters including peak oxygen consumption, exercise duration and blood pressure. A sample of venous blood was taken to determine the N-terminal pro-brain natriuretic peptide (N-BNP) level. Echocardiography was performed at rest to measure LVEF. Predictors of mortality were sought using the Cox proportional hazards model. All-cause mortality was 19% (16 deaths, 95% CI 11-29%). Age and LVEF did not independently predict mortality. Although various parameters including New York Heart Association class, peak oxygen consumption and N-BNP level were all predictive of outcome on univariate analysis, multivariate analysis identified reduced exercise duration and peak systolic blood pressure (SBP) to be the only independent predictors of all-cause mortality. Hazard ratios of 0.78 (95% CI 0.65-0.93, p = 0.007) and 0.79 (95% CI 0.66-0.95, p = 0.01) were associated with an increase in exercise duration of 1 min and 10 mm Hg peak SBP, respectively. Two simple parameters (exercise duration and peak SBP) that are easily measured by standard exercise testing are the strongest independent predictors of mortality which outperform LVEF and N-BNP in ambulatory patients with mild-moderate CHF. Copyright (c) 2005 S. Karger AG, Basel.
Kirkham, Amy A; Pauhl, Katherine E; Elliott, Robyn M; Scott, Jen A; Doria, Silvana C; Davidson, Hanan K; Neil-Sztramko, Sarah E; Campbell, Kristin L; Camp, Pat G
2015-01-01
To determine the utility of equations that use the 6-minute walk test (6MWT) results to estimate peak oxygen uptake ((Equation is included in full-text article.)o2) and peak work rate with chronic obstructive pulmonary disease (COPD) patients in a clinical setting. This study included a systematic review to identify published equations estimating peak (Equation is included in full-text article.)o2 and peak work rate in watts in COPD patients and a retrospective chart review of data from a hospital-based pulmonary rehabilitation program. The following variables were abstracted from the records of 42 consecutively enrolled COPD patients: measured peak (Equation is included in full-text article.)o2 and peak work rate achieved during a cycle ergometer cardiopulmonary exercise test, 6MWT distance, age, sex, weight, height, forced expiratory volume in 1 second, forced vital capacity, and lung diffusion capacity. Estimated peak (Equation is included in full-text article.)o2 and peak work rate were estimated from 6MWT distance using published equations. The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work to prescribe aerobic exercise intensities of 60% and 80% was calculated. Eleven equations from 6 studies were identified. Agreement between estimated and measured values was poor to moderate (intraclass correlation coefficients = 0.11-0.63). The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work rate to prescribe exercise intensities of 60% and 80% of measured values ranged from mean differences of 12 to 35 and 16 to 47 percentage points, respectively. There is poor to moderate agreement between measured peak (Equation is included in full-text article.)o2 and peak work rate and estimations from equations that use 6MWT distance, and the use of the estimated values for prescription of aerobic exercise intensity would result in large error. Equations estimating peak (Equation is included in full-text article.)o2 and peak work rate are of low utility for prescribing exercise intensity in pulmonary rehabilitation programs.
Porszasz, Janos; Rambod, Mehdi; van der Vaart, Hester; Rossiter, Harry B; Ma, Shuyi; Kiledjian, Rafi; Casaburi, Richard
2013-06-01
During exercise at critical power (CP) in chronic obstructive pulmonary disease (COPD) patients, ventilation approaches its maximum. As a result of the slow ventilatory dynamics in COPD, ventilatory limitation during supramaximal exercise might be escaped using rapid sinusoidal forcing. Nine COPD patients [age, 60.2 ± 6.9 years; forced expiratory volume in the first second (FEV(1)), 42 ± 17% of predicted; and FEV(1)/FVC, 39 ± 12%] underwent an incremental cycle ergometer test and then four constant work rate cycle ergometer tests; tolerable duration (t(lim)) was recorded. Critical power was determined from constant work rate testing by linear regression of work rate versus 1/t(lim). Patients then completed fast (FS; 60 s period) and slow (SS; 360 s period) sinusoidally fluctuating exercise tests with mean work rate at CP and peak at 120% of peak incremental test work rate, and one additional test at CP; each for a 20 min target. The value of t(lim) did not differ between CP (19.8 ± 0.6 min) and FS (19.0 ± 2.5 min), but was shorter in SS (13.2 ± 4.2 min; P < 0.05). The sinusoidal ventilatory amplitude was minimal (37.4 ± 34.9 ml min(-1) W(-1)) during FS but much larger during SS (189.6 ± 120.4 ml min(-1) W(-1)). The total ventilatory response in SS reached 110 ± 8.0% of the incremental test peak, suggesting ventilatory limitation. Slow components in ventilation during constant work rate and FS exercises were detected in most subjects and contributed appreciably to the total response asymptote. The SS exercise was associated with higher mid-exercise lactate concentrations (5.2 ± 1.7, 7.6 ± 1.7 and 4.5 ± 1.3 mmol l(-1) in FS, SS and CP). Large-amplitude, rapid sinusoidal fluctuation in work rate yields little fluctuation in ventilation despite reaching 120% of the incremental test peak work rate. This high-intensity exercise strategy might be suitable for programmes of rehabilitative exercise training in COPD.
Crescimanno, G; Modica, R; Lo Mauro, R; Musumeci, O; Toscano, A; Marrone, O
2015-07-01
In patients with late-onset Pompe disease, we explored the role of the Cardiopulmonary Exercise Test (CPET) and the Six-Minute Walking Test (6MWT) in the assessment of exercise capacity and in the evaluation of the effects of enzyme replacement therapy (ERT). Eight patients affected by late-onset Pompe disease, followed up at the Centre for Neuromuscular Diseases and treated with ERT, underwent a baseline evaluation with a spirometry, a CPET and a 6MWT. Four of them were restudied after 36 months of treatment. Three patients showed a reduction in exercise capacity as evaluated by peak oxygen uptake (VO2) measured at the CPET and Distance Walked (DW) measured at the 6MWT (median % predicted: 67.1 [range 54.3-99.6] and 67.3 [56.6-82.6], respectively). Cardiac and respiratory limitations revealed by the CPET were correlated to peak VO2, but not to the DW. Nevertheless, percent of predicted values of peak VO2 and DW were strongly correlated (rho = 0.85, p = 0.006), and close to identity. In the longitudinal evaluation forced vital capacity decreased, while peak VO2 and DW showed a trend to a parallel improvement. We concluded that although only the CPET revealed causes of exercise limitation, which partially differed among patients, CPET and 6MWT showed a similar overall degree of exercise impairment. That held true in the longitudinal assessment during ERT, where both tests demonstrated similar small improvements, occurring despite deterioration in forced vital capacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Ye, Ping-xian; Ye, Ping-zhen; Zhu, Jian-hua; Chen, Wei; Gao, Dan-chen
2014-05-01
To investigate the effect of atorvastatin on exercise tolerance in patients with diastolic dysfunction and exercise-induced hypertension. A randomized, double-blind, placebo-controlled prospective study was performed. Sixty patients with diastolic dysfunction (mitral flow velocity E/A <1) and exercise-induced hypertension (SBP>200 mm Hg) treated with atorvastatin (20 mg q.d) or placebo for 1 year. Cardiopulmonary exercise test and exercise blood pressure measurement were performed. Plasma B-natriuretic peptide (BNP) concentration at rest and at peak exercise, plasma high sensitive-C reaction protein (hs-CRP) and endothelin (ET) concentration were determined at baseline and after treatment. After treatment by atorvastatin, the resting SBP, pulse pressure, the peak exercise SBP and BNP were significantly decreased; and the exercise time, metabolic equivalent, maximal oxygen uptake and anaerobic threshold were increased. All of these parameters had significant differences with baseline levels (P<0.05) and the rest pulse pressure, the peak exercise SBP and BNP, and the exercise time had significant differences compared with placebo treatment (P<0.05). Plasma concentrations of hs-CRP and ET were markedly reduced by atorvastatin treatment compared with baseline and placebo (P<0.05). No difference in above parameters was found before and after placebo treatment (P>0.05). In patients with diastolic dysfunction at rest and exercise-induced hypertension, atorvastatin can effectively reduce plasma hs-CRP and ET level, lower blood pressure and peak exercise SBP, decrease peak exercise plasma BNP concentration, and ultimately improve exercise tolerance.
Shan, Xizheng; Liu, Jinming; Luo, Yanrong; Xu, Xiaowen; Han, Zhiqing; Li, Hailing
2015-01-01
Objective The nutritional status of chronic obstructive pulmonary disease (COPD) patients is associated with their exercise capacity. In the present study, we have explored the relationship between nutritional risk and exercise capacity in severe male COPD patients. Methods A total of 58 severe COPD male patients were enrolled in this study. The patients were assigned to no nutritional risk group (n=33) and nutritional risk group (n=25) according to the Nutritional Risk Screening (NRS, 2002) criteria. Blood gas analysis, conventional pulmonary function testing, and cardiopulmonary exercise testing were performed on all the patients. Results Results showed that the weight and BMI of the patients in the nutritional risk group were significantly lower than in the no nutritional risk group (P<0.05). The pulmonary diffusing capacity for carbon monoxide of the no nutritional risk group was significantly higher than that of the nutritional risk group (P<0.05). Besides, the peak VO2 (peak oxygen uptake), peak O2 pulse (peak oxygen pulse), and peak load of the nutritional risk group were significantly lower than those of the no nutritional risk group (P<0.05) and there were significantly negative correlations between the NRS score and peak VO2, peak O2 pulse, or peak load (r<0, P<0.05). Conclusion The association between exercise capacity and nutritional risk based on NRS 2002 in severe COPD male patients is supported by these results of this study. PMID:26150712
Flück, Martin; Bosshard, Rebekka; Lungarella, Max
2017-01-01
Eccentric types of endurance exercise are an acknowledged alternative to conventional concentric types of exercise rehabilitation for the cardiac patient, because they reduce cardiorespiratory strain due to a lower metabolic cost of producing an equivalent mechanical output. The former contention has not been tested in a power- and work-matched situation of interval-type exercise under identical conditions because concentric and eccentric types of exercise pose specific demands on the exercise machinery, which are not fulfilled in current practice. Here we tested cardiovascular and muscular consequences of work-matched interval-type of leg exercise (target workload of 15 sets of 1-min bipedal cycles of knee extension and flexion at 30 rpm with 17% of maximal concentric power) on a soft robotic device in healthy subjects by concomitantly monitoring respiration, blood glucose and lactate, and power during exercise and recovery. We hypothesized that interval-type of eccentric exercise lowers strain on glucose-related aerobic metabolism compared to work-matched concentric exercise, and reduces cardiorespiratory strain to levels being acceptable for the cardiac patient. Eight physically active male subjects (24.0 years, 74.7 kg, 3.4 L O2 min -1 ), which power and endurance performance was extensively characterized, completed the study, finalizing 12 sets on average. Average performance was similar during concentric and eccentric exercise ( p = 0.75) but lower than during constant load endurance exercise on a cycle ergometer at 75% of peak aerobic power output (126 vs. 188 Watt) that is recommended for improving endurance capacity. Peak oxygen uptake (-17%), peak ventilation (-23%), peak cardiac output (-16%), and blood lactate (-37%) during soft robotic exercise were lower during eccentric than concentric exercise. Glucose was 8% increased after eccentric exercise when peak RER was 12% lower than during concentric exercise. Muscle power and RFD were similarly reduced after eccentric and concentric exercise. The results highlight that the deployed interval-type of eccentric leg exercise reduces metabolic strain of the cardiovasculature and muscle compared to concentric exercise, to recommended levels for cardio-rehabilitation (i.e., 50-70% of peak heart rate). Increases in blood glucose concentration indicate that resistance to contraction-induced glucose uptake after the deployed eccentric protocol is unrelated to muscle fatigue.
Flück, Martin; Bosshard, Rebekka; Lungarella, Max
2017-01-01
Eccentric types of endurance exercise are an acknowledged alternative to conventional concentric types of exercise rehabilitation for the cardiac patient, because they reduce cardiorespiratory strain due to a lower metabolic cost of producing an equivalent mechanical output. The former contention has not been tested in a power- and work-matched situation of interval-type exercise under identical conditions because concentric and eccentric types of exercise pose specific demands on the exercise machinery, which are not fulfilled in current practice. Here we tested cardiovascular and muscular consequences of work-matched interval-type of leg exercise (target workload of 15 sets of 1-min bipedal cycles of knee extension and flexion at 30 rpm with 17% of maximal concentric power) on a soft robotic device in healthy subjects by concomitantly monitoring respiration, blood glucose and lactate, and power during exercise and recovery. We hypothesized that interval-type of eccentric exercise lowers strain on glucose-related aerobic metabolism compared to work-matched concentric exercise, and reduces cardiorespiratory strain to levels being acceptable for the cardiac patient. Eight physically active male subjects (24.0 years, 74.7 kg, 3.4 L O2 min−1), which power and endurance performance was extensively characterized, completed the study, finalizing 12 sets on average. Average performance was similar during concentric and eccentric exercise (p = 0.75) but lower than during constant load endurance exercise on a cycle ergometer at 75% of peak aerobic power output (126 vs. 188 Watt) that is recommended for improving endurance capacity. Peak oxygen uptake (−17%), peak ventilation (−23%), peak cardiac output (−16%), and blood lactate (−37%) during soft robotic exercise were lower during eccentric than concentric exercise. Glucose was 8% increased after eccentric exercise when peak RER was 12% lower than during concentric exercise. Muscle power and RFD were similarly reduced after eccentric and concentric exercise. The results highlight that the deployed interval-type of eccentric leg exercise reduces metabolic strain of the cardiovasculature and muscle compared to concentric exercise, to recommended levels for cardio-rehabilitation (i.e., 50–70% of peak heart rate). Increases in blood glucose concentration indicate that resistance to contraction-induced glucose uptake after the deployed eccentric protocol is unrelated to muscle fatigue. PMID:28912726
Hirashiki, Akihiro; Adachi, Shiro; Nakano, Yoshihisa; Kono, Yuji; Shimazu, Shuzo; Shimizu, Shinya; Morimoto, Ryota; Okumura, Takahiro; Takeshita, Kyosuke; Yamada, Sumio; Murohara, Toyoaki; Kondo, Takahisa
2014-11-24
The 6-min walking distance is often used for assessing the exercise capacity under the treatment with an endothelin receptor antagonist (ERA) in patients with chronic thromboembolic pulmonary hypertension (CTEPH). The cardiopulmonary exercise testing (CPX) was reported to be more useful for the patients with pulmonary arterial hypertension (PAH), however, few reports exist in patients with inoperable CTEPH. The aim of this study was to investigate the effects of an oral dual ERA, bosentan, on exercise capacity using CPX in patients with PAH and inoperable CTEPH. This study included all patients diagnosed with 17 PAH and 12 CTEPH in the World Health Organization functional classes II-IV who started treatment with bosentan therapy. They underwent CPX, which was performed before bosentan therapy and at 3 to 6 months of the treatment. In PAH patients, peak VO2 significantly increased after the bosentan treatment (p=0.009). On the other hand, in CTEPH patients, there were no significant differences in the peak VO2. However, the peak PETCO2 was significantly increased from 23.9±5.2 mm Hg at baseline to 29.3±10.7 mm Hg after the bosentan treatment (p=0.040). In addition, peak heart rate during exercise tended to decrease after the bosentan therapy (p=0.089). Bosentan therapy improved peak PETCO2 but not peak VO2 in patients with inoperable CTEPH. These findings demonstrated that CPX is useful for assessing the exercise capacity of patients with PAH and inoperable CTEPH under the treatment with an ERA. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Choi, Jun Hwan; Kim, Bo Ryun; Joo, Seung Jae; Han, Eun Young; Kim, Song Yi; Kim, Sun Mi; Lee, So Young; Yoon, Ho Min
2015-01-01
To investigate cardiorespiratory responses during exercise stress tests using an aquatic treadmill and a land-based treadmill in patients with coronary artery disease (CAD). Twenty-one stable CAD patients were enrolled. All patients participated in 2 symptom-limited incremental exercise tests, using both an aquatic and a land treadmill. For the aquatic treadmill protocol, patients were submerged to the upper waist in 28°C water. The treadmill speed started at 2.0 km/h and increased 0.5 km/h every minute thereafter. For the land treadmill protocol, the speed and gradient were started at 2.4 km/h and 1.5%, respectively. The speed was increased by 0.3 km/h and grade by 1% every minute thereafter. Oxygen consumption ((Equation is included in full-text article.)O2), heart rate (HR), and respiratory exchange ratio were measured continuously and peak values recorded. Rating of perceived exertion, percentage of age-predicted maximal HR, and total exercise duration were also recorded. Peak cardiorespiratory responses during both protocols were compared. The peak (Equation is included in full-text article.)O2 and peak HR did not show any significant differences. The peak respiratory exchange ratio was significantly greater using the land treadmill than the aquatic treadmill protocol. Rating of perceived exertion, age-predicted maximal HR percentage, and total exercise duration were similar for both protocols. There was a significant linear relationship between HR and (Equation is included in full-text article.)O2 with both protocols. This study demonstrated that aquatic treadmill exercise elicits similar peak cardiorespiratory responses compared with land treadmill exercise, suggesting that aquatic treadmill exercise may be effective for CAD patients in cardiac rehabilitation.
Liu, Hai-Jian; Guo, Jian; Zhao, Qin-Hua; Wang, Lan; Yang, Wen-Lan; He, Jing; Gong, Su-Gang; Liu, Jin-Ming
2017-03-01
To study the relationship between chronotropic incompetence (CI) and disease severity and to assess the effect of CI on exercise capacity in patients with chronic obstructive pulmonary disease (COPD). Arterial blood gas analysis, pulmonary function test and cardiopulmonary exercise testing were conducted in 60 patients with stable COPD and 45 healthy volunteers. CI was defined using the chronotropic response index (CRI = (peak heart rate-resting heart rate) / (220-age-resting heart rate). Based on CRI, patients with COPD were divided into the normal chronotropic group (n = 23) and CI group (n = 37). CI was present in 61.7% of the patients with COPD. Exercise capacity (peak oxygen uptake as percentage of predicted value, peak VO 2 %pred), peak heart rate and CRI were significantly lower in patients with COPD than in controls. However, resting heart rate was significantly higher than in controls. FEV 1 %pred and exercise capacity were significantly decreased in the CI group when compared with those in the normotropic group. There was significant association between CRI with FEV 1 %pred and peak VO 2 %pred. Multivariate regression analysis showed that CRI and FEV 1 %pred were independent predictors of exercise capacity in patients with COPD. A cutoff of 0.74 for the CRI showed a specificity of 94.1% in predicting patients with a peak VO 2 %pred < 60%. CRI was associated with disease severity in patients with COPD. CI may be an important parameter to reflect exercise capacity in patients with COPD. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Thompson, Kevin G; Turner, Louise; Prichard, Jonathon; Dodd, Fiona; Kennedy, David O; Haskell, Crystal; Blackwell, James R; Jones, Andrew M
2014-03-01
Dietary inorganic nitrate supplementation causes physiological effects which may enhance exercise tolerance. However it is not known whether nitrate might alter cognitive function during exercise. In a double-blind, cross-over study, sixteen subjects ingested either nitrate-rich beetroot juice or a placebo and completed a continuous cycle exercise test involving 20min stages at 50% and 70% V˙O2peak and a final stage at 90% V˙O2peak until volitional exhaustion. Cognitive tasks were completed before, during and after exercise. In the dietary nitrate condition: plasma [nitrite] increased (p<0.01), systolic blood pressure decreased (p<0.05) and there was a trend for a reduced oxygen uptake at 50% V˙O2peak. Tissue oxygenation improved across exercise intensities and exercise tolerance was greater at 90% V˙O2peak (p<0.05). Rating of perceived exertion, energy levels and cognitive performance were similar between conditions with mental fatigue being evident from 70% V˙O2peak onwards (p<0.05). Dietary nitrate supplementation enhanced short-term endurance exercise performance with concomitant mental fatigue but did not improve cognitive performance post-fatigue. Copyright © 2014 Elsevier B.V. All rights reserved.
Chomsky, D B; Lang, C C; Rayos, G H; Shyr, Y; Yeoh, T K; Pierson, R N; Davis, S F; Wilson, J R
1996-12-15
Peak exercise oxygen consumption (Vo2), a noninvasive index of peak exercise cardiac output (CO), is widely used to select candidates for heart transplantation. However, peak exercise Vo2 can be influenced by noncardiac factors such as deconditioning, motivation, or body composition and may yield misleading prognostic information. Direct measurement of the CO response to exercise may avoid this problem and more accurately predict prognosis. Hemodynamic and ventilatory responses to maximal treadmill exercise were measured in 185 ambulatory patients with chronic heart failure who had been referred for cardiac transplantation (mean left ventricular ejection fraction, 22 +/- 7%; mean peak Vo2, 12.9 +/- 3.0 mL. min-1.kg-1). CO response to exercise was normal in 83 patients and reduced in 102. By univariate analysis, patients with normal CO responses had a better 1-year survival rate (95%) than did those with reduced CO responses (72%) (P < .0001). Survival in patients with peak Vo2 of > 14 mL.min-1.kg-1 (88%) was not different from that of patients with peak Vo2 of < or = 14 mL.min-1.kg-1 (79%) (P = NS). However, survival was worse in patients with peak Vo2 of < or = 10 mL.min-1.kg-1 (52%) versus those with peak Vo2 of > 10 mL.min-1.kg-1 (89%) (P < .0001). By Cox regression analysis, exercise CO response was the strongest independent predictor of survival (risk ratio, 4.3), with peak Vo2 dichotomized at 10 mL. min-1.kg-1 (risk ratio, 3.3) as the only other independent predictor. Patients with reduced CO responses and peak Vo2 of < or = 10 mL.min-1.kg-1 had an extremely poor 1-year survival rate (38%). Both CO response to exercise and peak exercise Vo2 provide valuable independent prognostic information in ambulatory patients with heart failure. These variables should be used in combination to select potential heart transplantation candidates.
Ritti-Dias, Raphael Mendes; de Moraes Forjaz, Cláudia Lúcia; Cucato, Gabriel Grizzo; Costa, Luis Augusto Riani; Wolosker, Nelson; de Fátima Nunes Marucci, Maria
2009-01-01
Walking training is considered as the first treatment option for patients with peripheral arterial disease and intermittent claudication (IC). Walking exercise has been prescribed for these patients by relative intensity of peak oxygen uptake (VO2peak), ranging from 40% to 70% VO2peak, or pain threshold (PT). However, the relationship between these methods and anaerobic threshold (AT), which is considered one of the best metabolic markers for establishing training intensity, has not been analyzed. Thus, the aim of this study was to compare, in IC patients, the physiological responses at exercise intensities usually prescribed for training (% VO2peak or % PT) with the ones observed at AT. Thirty-three IC patients performed maximal graded cardiopulmonary treadmill test to assess exercise tolerance. During the test, heart rate (HR), VO2, and systolic blood pressure were measured and responses were analyzed at the following: 40% of VO2peak; 70% of VO2peak; AT; and PT. Heart rate and VO2 at 40% and 70% of VO2peak were lower than those at AT (HR: -13 +/- 9% and -3 +/- 8%, P < .01, respectively; VO2: -52 +/- 12% and -13 +/- 15%, P < .01, respectively). Conversely, HR and VO2 at PT were slightly higher than those at AT (HR: +3 +/- 8%, P < .01; VO2: +6 +/- 15%, P = .04). None of the patients achieved the respiratory compensation point. Prescribing exercise for IC patients between 40% and 70% of VO2peak will induce a lower stimulus than that at AT, whereas prescribing exercise at PT will result in a stimulus above AT. Thus, prescribing exercise training for IC patients on the basis of PT will probably produce a greater metabolic stimulus, promoting better cardiovascular benefits.
Deboeck, Gaël; Van Muylem, Alain; Vachiéry, Jean Luc; Naeije, Robert
2014-08-01
The distance walked in 6 minutes (6MWD) has been reported to be linearly related to peak oxygen uptake (VO2) in cardiac diseases and in lung diseases. In these patients, the VO2 during a 6-min walk test (walkVO2) has been found to be nearly equivalent to peakVO2, but with a lower respiratory exchange ratio (RER). Whether these observations translate to the less functionally impaired patients or healthy control subjects is not exactly known. Thirty-two healthy control subjects and 15 chronic heart failure (CHF) patients performed a 6-min walk test and a maximal cardiopulmonary exercise test (CPET) both with measurements of gas exchange. The 6MWD and peakVO2 were linearly correlated, but with an increased slope appearing above 532 m. In CHF patients, walkVO2 was similar to peakVO2, but with lower heart rate and ventilation than measured at peak exercise. In healthy control subjects, VO2, ventilation and heart rate were lower during the 6-min walk than at maximal exercise but higher than at the anaerobic threshold. The RER during the 6-min walk remained <1 in both groups. Above 500 m, 6MWD becomes less sensitive to any increase in peakVO2. Furthermore, CHF patients and healthy control subjects exercise respectively at maximal and high VO2, but below the anaerobic threshold (as assessed by a CPET) during the 6-min walk test. © The European Society of Cardiology 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Beckers, Paul J; Possemiers, Nadine M; Van Craenenbroeck, Emeline M; Van Berendoncks, An M; Wuyts, Kurt; Vrints, Christiaan J; Conraads, Viviane M
2012-02-01
Exercise training efficiently improves peak oxygen uptake (V˙O2peak) in patients with chronic heart failure. To optimize training-derived benefit, higher exercise intensities are being explored. The correct identification of anaerobic threshold is important to allow safe and effective exercise prescription. During 48 cardiopulmonary exercise tests obtained in patients with chronic heart failure (59.6 ± 11 yrs; left ventricular ejection fraction, 27.9% ± 9%), ventilatory gas analysis findings and lactate measurements were collected. Three technicians independently determined the respiratory compensation point (RCP), the heart rate turning point (HRTP) and the second lactate turning point (LTP2). Thereafter, exercise intensity (target heart rate and workload) was calculated and compared between the three methods applied. Patients had significantly reduced maximal exercise capacity (68% ± 21% of predicted V˙O2peak) and chronotropic incompetence (74% ± 7% of predicted peak heart rate). Heart rate, workload, and V˙O2 at HRTP and at RCP were not different, but at LTP2, these parameters were significantly (P < 0.0001) higher. Mean target heart rate and target workload calculated using the LTP2 were 5% and 12% higher compared with those calculated using HRTP and RCP, respectively. The calculation of target heart rate based on LTP2 was 5% and 10% higher in 12 of 48 (25%) and 6 of 48 (12.5%) patients, respectively, compared with the other two methods. In patients with chronic heart failure, RCP and HRTP, determined during cardiopulmonary exercise tests, precede the occurrence of LTP2. Target heart rates and workloads used to prescribe tailored exercise training in patients with chronic heart failure based on LTP2 are significantly higher than those derived from HRTP and RCP.
Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J.
2016-01-01
Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, V˙O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32–69% of V˙O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results. PMID:27100099
Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J
2016-01-01
Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, [Formula: see text]O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32-69% of [Formula: see text]O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results.
Jung, Mette Holme; Hansen, Peter Bo; Sander, Kaare; Olsen, Peter Skov; Rossing, Kasper; Boesgaard, Soeren; Russell, Stuart D; Gustafsson, Finn
2014-04-01
Continuous-flow left ventricular assist device (CF-LVAD) implantation is associated with improved quality of life, but the effect on exercise capacity is less well documented. It is uncertain whether a fixed CF-LVAD pump speed, which allows for sufficient circulatory support at rest, remains adequate during exercise. The aim of this study was to evaluate the effects of fixed versus incremental pump speed on peak oxygen uptake (peak VO2) during a maximal exercise test. In CF-LVAD (HeartMate II) patients exercise testing measuring peak oxygen uptake (VO2) was performed on an ergometer bike twice in one day: once with fixed pump speed (testfix) and once with incremental pump speed (testinc). The order of testfix and testinc in each patient was determined by randomization. During testinc pump speed was increased from the baseline value by 400 rpm/2 min. Fourteen patients (aged 23–69 years) were included with a mean support duration of 465±483 days. Baseline CF-LVAD speed was 9357±238 rpm and during testinc speed was increased by a mean of 1486±775 rpm. Mean peak VO2 was significantly higher in testinc compared with testfix (15.4±5.9 mL/kg/min vs. 14.1±6.3 mL/kg/min; P=0.012), corresponding to a 9.2% increase. All exercise tests (n=28) were adequately performed with RER>1. Increasing pump speed during exercise augments peak VO2 in patients supported with CF-LVADs. An automatic speed-change function in future generations of CF-LVADs might improve functional capacity. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
Legendre, Antoine; Bonnet, D; Bosquet, L
2018-01-01
Global ventricular response to exercise may be useful in follow-up of patients with residual right outflow tract lesions after congenital heart disease repair. In this context, impedance cardiography is considered accurate for stroke volume (SV) measurement during exercise testing, however, to date, only partial assessment of its reliability has been reported. We retrospectively evaluated relative and absolute reliability of peak SV by impedance cardiography during exercise using intraclass correlation (ICC) and standard error of measurement (SEM) in this population. Peak SV was measured in 30 young patients (mean age 14.4 years ± 2.1) with right ventricular outflow tract reconstruction who underwent two cardiopulmonary exercise tests at a mean one-year interval. SV was measured using a signal morphology impedance cardiography analysis device (PhysioFlow ® ) and was indexed to body surface area. ICC of peak indexed SV measurement was 0.80 and SEM was 10.5%. High heterogeneity was seen when comparing patients according to peak indexed SV; in patients with peak SV < 50 ml/m 2 (15 patients), ICC rose to 0.95 and SEM dropped to 2.7%, while in patients with a peak SV > 50 ml/m 2 relative and absolute reliability decreased (ICC = 0.45, SEM = 12.2%). Peak exercise SV assessment by a PhysioFlow ® device represents a highly reliable method in patients with residual right outflow tract lesions after congenital heart disease repair, especially in patients with peak SV < 50 ml/m 2 . In this latter group, a peak SV decrease > 7.3% (corresponding to the minimum "true" difference) should be considered a clinically-relevant decrease in global ventricular performance and taken into account when deciding whether to perform residual lesion removal.
Zhang, Jian-Guo; Ohta, Toshiki; Ishikawa-Takata, Kazuko; Tabata, Izumi; Miyashita, Mitsumasa
2003-09-01
The relationships among walk steps, exercise habits and peak oxygen consumption (VO2peak), ventilatory threshold (VT) and leg extension power (LEP) were examined in 709 apparently healthy Japanese subjects (male 372, female 337) aged 30-69 years. Walk steps were evaluated using a pedometer. VO2peak and VT were assessed by a cycle ergometer test, while LEP was measured with an isokinetic leg extension system (Combi, Anaero Press 3500, Japan). Subjects who participated in exercise three times or more a week demonstrated significantly greater VO2peak and VT when compared with subjects without exercise habits. When a separate analysis was conducted on subjects who exercised fewer than three times per week, we found that the subgroup with the highest number of walk steps showed significantly greater VT in all male subjects and female subjects aged 30-49 years, but a significantly greater VO2peak only in females aged 30-49 years, when compared to the subgroup with the fewest walk steps. These results suggest that although some people exercise less than three times a week, if they are quite active in daily life, such activities might also confer benefits upon their fitness.
Carvalho, Vitor Oliveira; Bocchi, Edimar Alcides; Guimarães, Guilherme Veiga
2009-10-01
The Borg Scale may be a useful tool for heart failure patients to self-monitor and self-regulate exercise on land or in water (hydrotherapy) by maintaining the heart rate (HR) between the anaerobic threshold and respiratory compensation point. Patients performed a cardiopulmonary exercise test to determine their anaerobic threshold/respiratory compensation points. The percentage of the mean HR during the exercise session in relation to the anaerobic threshold HR (%EHR-AT), in relation to the respiratory compensation point (%EHR-RCP), in relation to the peak HR by the exercise test (%EHR-Peak) and in relation to the maximum predicted HR (%EHR-Predicted) was calculated. Next, patients were randomized into the land or water exercise group. One blinded investigator instructed the patients in each group to exercise at a level between "relatively easy and slightly tiring". The mean HR throughout the 30-min exercise session was recorded. The %EHR-AT and %EHR-predicted did not differ between the land and water exercise groups, but they differed in the %EHR-RCP (95 +/-7 to 86 +/-7, P<0.001) and in the %EHR-Peak (85 +/-8 to 78 +/-9, P=0.007). Exercise guided by the Borg scale maintains the patient's HR between the anaerobic threshold and respiratory compensation point (ie, in the exercise training zone).
Cholinergic stimulation with pyridostigmine protects against exercise induced myocardial ischaemia
Castro, R R T; Porphirio, G; Serra, S M; Nóbrega, A C L
2004-01-01
Objective: To determine the acute effects of pyridostigmine bromide, a reversible cholinesterase inhibitor, during exercise in patients with coronary artery disease. Design: Double blind, randomised, placebo controlled, crossover study. Setting: Outpatients evaluated in an exercise test laboratory. Patients: 15 patients with exercise induced myocardial ischaemia. Interventions: Maximal cardiopulmonary exercise test on a treadmill according to an individualised ramp protocol on three days. The first day was used for adaptation to the equipment and to determine exercise tolerance and the presence of exercise induced ischaemia. On the other two days, the cardiopulmonary exercise test was performed two hours after oral administration of pyridostigmine (45 mg) or placebo. All patients were taking their usual medication during the experiments. Main outcome measures: Rate–pressure product and oxygen uptake during exercise. Results: Pyridostigmine inhibited the submaximum chronotropic response (p = 0.001), delaying the onset of myocardial ischaemia, which occurred at a similar rate–pressure product (mean (SE) placebo 20.55 (1.08) mm Hg × beats/min 103; pyridostigmine 19.75 (1.28) mm Hg × beats/min 103; p = 0.27) but at a higher exercise intensity (oxygen consumption: placebo 18.6 (1.7) ml/kg/min; pyridostigmine 19.6 (1.8) ml/kg/min; p = 0.03). Also, pyridostigmine increased peak oxygen consumption (placebo 23.6 (2) ml/kg/min; pyridostigmine 24.8 (2) ml/kg/min; p = 0.01) and peak oxygen pulse (placebo 12.9 (1) ml/beat; pyridostigmine 13.6 (1) ml/beat; p = 0.02). Conclusions: Pyridostigmine improved peak exercise tolerance and inhibited the chronotropic response to submaximum exercise, increasing the intensity at which myocardial ischaemia occurred. These results suggest that pyridostigmine can protect against exercise induced myocardial ischaemia. PMID:15367503
Höchsmann, Christoph; Rossmeissl, Anja; Baumann, Sandra; Infanger, Denis; Schmidt-Trucksäss, Arno
2018-03-15
To examine cardiorespiratory exertion during mini trampoline exercises of different intensities in both endurance-trained athletes and overweight-obese adults. Physically healthy participants (Group A: normal-weight, endurance-trained athletes; Group B: inactive, overweight-obese adults) participated in two measurement appointments and three training sessions in between appointments, in which participants familiarized themselves with the use of the mini trampoline and the execution of the exercises. The primary outcome was the ⩒O 2peak for each of the six mini trampoline exercises relative to the ⩒O 2peak as established during an all-out exercise test on a bike ergometer during the first measurement appointment. Secondary outcomes were average ⩒O 2 as well as maximum and average heart rate. The six mini trampoline exercises generated ⩒O 2peak values between 42% and 81% in the endurance-trained athletes and between 58% and 87% in the overweight-obese participants, both in relation to the bike ergometer ⩒O 2peak . Average ⩒O 2 values ranged from 35% to 69% (endurance-trained athletes) and from 48% to 71% (overweight-obese participants), depending on exercise. Average heart rate likewise lay in a range that can be categorized as moderate-to-vigorous aerobic exercise for both groups. A moderate-to-strong correlation (0.658 to 0.875, depending on exercise) between bike ergometer ⩒O 2peak and mini trampoline ⩒O 2peak was found for all six exercises. Mini trampoline exercise has the potential to produce training intensities that concur with established exercise guidelines. The exercise intensity is self-adjusting and allows for an effective and safe workout for different users with a wide range of fitness levels.
van Koppenhagen, Casper Floris; Post, Marcel; de Groot, Sonja; van Leeuwen, Christel; van Asbeck, Floris; Stolwijk-Swüste, Janneke; van der Woude, Lucas; Lindeman, Eline
2014-05-01
To examine the relationship between wheelchair exercise capacity and life satisfaction in persons with spinal cord injury from the start of active inpatient rehabilitation up to 5 years after discharge. Prospective cohort study. Persons with spinal cord injury, aged 18-65 years, and wheelchair dependent at least for long distances. Measurements at the start of active rehabilitation, after 3 months, at discharge from inpatient rehabilitation, and 1 and 5 years after discharge. A peak wheelchair exercise test was performed to record peak oxygen uptake (VO2peak) and peak power output (POpeak). Life satisfaction was measured as current life satisfaction and change of life satisfaction in comparison with life after spinal cord injury. Relationships between (changes in) exercise capacity and (changes in) life satisfaction were analyzed random coefficient analysis, corrected for possible confounders (age, gender, level of lesion, functional status, secondary impairments, pain, and sports activity) if necessary. Of 225 persons included, 130 attended two or more peak exercise tests, who were include in the analyses. Mean age at start was 39 years, 75% were male, 73% had paraplegia, and 76% had a traumatic lesion. Mean POpeak increased during the study from 32.9 to 55.9 Watts, mean VO2peak from 1.02 to 1.38 l/minute, and mean life satisfaction from 5.7 to 7.8. An increase of POpeak with 10 W was associated with a 0.3-point increase of life satisfaction (P = 0.01). An increase of VO2peak with 0.1 l/minute was associated with a 0.1-point increase of life satisfaction (P = 0.049). Conclusion High(er) wheelchair exercise capacity is related to high(er) life satisfaction in spinal cord injury patients.
Craig, Jesse C; Broxterman, Ryan M; Smith, Joshua R; Allen, Jason David; Barstow, Thomas J
2018-05-03
Dietary nitrate supplementation has positive effects on mitochondrial and muscle contractile efficiency during large muscle mass exercise in humans, and on skeletal muscle blood flow (Q̇) in rats. However, concurrent measurement of these effects has not been performed in humans. Therefore, we assessed the influence of nitrate supplementation on Q̇ and muscle oxygenation characteristics during moderate (40%peak) and severe (85%peak) intensity handgrip exercise in a randomized, double-blind, crossover-design. Nine healthy men (age: 25{plus minus}2 yrs) completed four constant-power exercise tests (two per intensity) randomly assigned to condition (nitrate-rich (Nitrate) or nitrate-poor (Placebo) beetroot supplementation) and intensity (40%peak or 85%peak). Resting mean arterial pressure was lower after Nitrate compared to Placebo (84{plus minus}4 vs 89{plus minus}4 mmHg; p<0.01). All subjects were able to sustain 10 min of exercise at 40%peak in both conditions. Nitrate had no effect on exercise tolerance during 85%peak (Nitrate: 358{plus minus}29, Placebo: 341{plus minus}34 s; p=0.3). Brachial artery Q̇ was not different after Nitrate at rest or any time during exercise. Deoxygenated-[hemoglobin+myoglobin] was not different for 40%peak (p>0.05), but was elevated throughout 85%peak (p<0.05) after Nitrate. The metabolic cost (V̇O2) was not different at end exercise, however, the V̇O 2 primary amplitude at the onset of exercise was elevated after Nitrate for the 85%peak work rate (96{plus minus}20 vs 72{plus minus}12 ml/min; p<0.05) and had a faster response. These findings suggest that an acute dose of Nitrate reduces resting blood pressure and speeds V̇O 2 kinetics in young adults, but does not augment Q̇ or reduce steady-state V̇O 2 during small muscle mass handgrip exercise.
Byrkjeland, Rune; Njerve, Ida U; Anderssen, Sigmund; Arnesen, Harald; Seljeflot, Ingebjørg; Solheim, Svein
2015-09-01
Few exercise trials have focused on patients with both type 2 diabetes and coronary artery disease. We investigated the effects of 1 year of exercise training on HbA1c and VO(2peak) in these patients. Patients with type 2 diabetes and coronary artery disease (n = 137) were randomised to combined exercise training or control group. HbA(1c) was measured at the beginning and end of the study. Changes in VO(2peak), and also ventilatory threshold and time to exhaustion, were assessed by cardiopulmonary exercise testing. No differences in changes between the randomised groups were observed in HbA1c and VO(2peak), whereas ventilatory threshold and time to exhaustion increased significantly in the exercise group compared with the controls (p = 0.046 and p = 0.034). In patients without previous acute myocardial infarction and diabetes microvascular complications (n = 46), the exercise group did improve HbA1c and VO(2peak) compared with the controls (p = 0.052 and p = 0.035). No significant effects of exercise training on HbA(1c) or VO(2peak) were observed in patients with type 2 diabetes and coronary artery disease, although improvements were seen in patients without vascular complications beyond coronary artery disease, implying that the degree of vascular disease may influence exercise responses. Ventilatory threshold and time to exhaustion did increase significantly, indicating improved exercise performance despite the minor change in VO(2peak). © The Author(s) 2015.
Acar, Serap; Savcı, Sema; Kardibak, Didem; Özcan Kahraman, Buse; Akdeniz, Bahri; Özpelit, Ebru; Sevinç, Can
2016-12-20
The aims of the present study were to assess the relationship between the distance walked during the 6-min walk test (6MWT) and exercise capacity as determined by cardiopulmonary exercise testing (CPET) in patients with pulmonary arterial hypertension (PAH) and to investigate the prognostic value of the 6MWT in comparison to clinical parameters of CPET and echocardiography findings. Thirty PAH patients participated in the study. Subject characteristics and New York Heart Association (NYHA) classifications were recorded. All subjects completed the 6MWT and CPET. Relationships among the variables were analyzed by the Pearson correlation test. Correlation coefficients between 6MWT distance and other variables were determined by linear regression analysis. Distance walked in the 6MWT was significantly correlated with the following exercise parameters: peak oxygen consumption, work load, and metabolic equivalents. Additionally, cardiac index was correlated with peak oxygen consumption and metabolic equivalents. We also showed that cardiac index and age were two significant determinants for exercise performance, accounting for 35.4% of the variance in the 6MWT. The 6MWT provides information that may be a better index for the patient's NYHA functional class determination than maximal exercise testing.
Katz, Ben Z.; Boas, Steven; Shiraishi, Yukiko; Mears, Cynthia J.; Taylor, Renee
2010-01-01
Objective Six months following acute infectious mononucleosis (IM), 13%, of adolescents meet criteria for chronic fatigue syndrome (CFS). We measured exercise tolerance in adolescents with CFS and controls 6 months following IM. Study design 21 adolescents with CFS 6 months following IM and 21 recovered controls performed a maximal incremental exercise tolerance test with breath-by-breath gas analysis. Values expressed are mean ± standard deviation. Results The adolescents diagnosed with CFS and controls did not differ in age, weight, body-mass index or peak work capacity. Lower VO2 (oxygen consumption) peak percent of predicted was seen in adolescents with CFS compared with controls (CFS 99.3 ± 16.6 vs control 110.7 ± 19.9, p = 0.05). Peak oxygen pulse also was lower in adolescents with CFS compared with recovered controls (CFS 12.4 ± 2.9 vs controls 14.9 ± 4.3, p = 0.03). Conclusions Adolescents with CFS 6 months following IM have a lower degree of fitness and efficiency of exercise than recovered adolescents. Whether these abnormal exercise findings are a cause or effect of CFS is unknown. IM can lead to both fatigue and measurable changes in exercise testing in a subset of adolescents. PMID:20447647
Effects of obstructive sleep apnea and obesity on exercise function in children.
Evans, Carla A; Selvadurai, Hiran; Baur, Louise A; Waters, Karen A
2014-06-01
Evaluate the relative contributions of weight status and obstructive sleep apnea (OSA) to cardiopulmonary exercise responses in children. Prospective, cross-sectional study. Participants underwent anthropometric measurements, overnight polysomnography, spirometry, cardiopulmonary exercise function testing on a cycle ergometer, and cardiac doppler imaging. OSA was defined as ≥ 1 obstructive apnea or hypopnea per hour of sleep (OAHI). The effect of OSA on exercise function was evaluated after the parameters were corrected for body mass index (BMI) z-scores. Similarly, the effect of obesity on exercise function was examined when the variables were adjusted for OAHI. Tertiary pediatric hospital. Healthy weight and obese children, aged 7-12 y. N/A. Seventy-one children were studied. In comparison with weight-matched children without OSA, children with OSA had a lower cardiac output, stroke volume index, heart rate, and oxygen consumption (VO2 peak) at peak exercise capacity. After adjusting for BMI z-score, children with OSA had 1.5 L/min (95% confidence interval -2.3 to -0.6 L/min; P = 0.001) lower cardiac output at peak exercise capacity, but minute ventilation and ventilatory responses to exercise were not affected. Obesity was only associated with physical deconditioning. Cardiac dysfunction was associated with the frequency of respiratory-related arousals, the severity of hypoxia, and heart rate during sleep. Children with OSA are exercise limited due to a reduced cardiac output and VO2 peak at peak exercise capacity, independent of their weight status. Comorbid OSA can further decrease exercise performance in obese children.
Motl, Robert W; Fernhall, Bo
2012-03-01
To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Paulucio, Dailson; da Costa, Bruno M; Santos, Caleb G; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Cagy, Mauricio; Alvarenga, Renato L; Pompeu, Fernando A M S
2017-09-14
Taurine and alcohol has been popularly ingested through energy drinks. Reports from both compounds shows they are active on nervous system but little is known about the acute effect of these substances on the frontal cortex in an exercise approach. The aim of this study was to determine the effects of 0,6mldL -1 of ethanol (ET), 6g of taurine (TA), and taurine with ethanol (TA+ET) intake on absolute alpha power (AAP) in the frontal region, before and after exercise. Nine participants were recruited, five women (22±3years) and four men (26±5years), for a counterbalanced experimental design. For each treatment, the tests were performed considering three moments: "baseline", "peak" and "post-exercise". In the placebo treatment (PL), the frontal areas showed AAP decrease at the post-exercise. However, in the TA, AAP decreased at peak and increased at post-exercise. In the ET treatment, AAP increased at the peak moment for the left frontal electrodes. In the TA+ET treatment, an AAP increase was observed at peak, and it continued after exercise ended. These substances were able to produce electrocortical activity changes in the frontal regions after a short duration and low intensity exercise. Left and right regions showed different AAP dynamics during peak and post-exercise moments when treatments were compared. Copyright © 2017 Elsevier B.V. All rights reserved.
Zugck, C; Krüger, C; Dürr, S; Gerber, S H; Haunstetter, A; Hornig, K; Kübler, W; Haass, M
2000-04-01
The 6-min walk test may serve as a more simple clinical tool to assess functional capacity in congestive heart failure than determination of peak oxygen uptake by cardiopulmonary exercise testing. The purpose of the study was to prospectively examine whether the distance ambulated during a 6-min walk test (i) correlates with peak oxygen uptake, (ii) allows peak oxygen uptake to be predicted, and (iii) provides prognostic information similar to peak oxygen uptake in patients with dilated cardiomyopathy and left ventricular ejection fraction < or = 35%. In 113 patients (age: 54+/-12 years, NYHA: 2.2+/-0.8) with dilated cardiomyopathy (left ventricular ejection fraction 19+/-7%) a 6-min walk test and cardiopulmonary exercise testing were performed. The 6-min walk test and peak oxygen uptake were closely correlated at the initial visit (r=0.68, n=113), as well as after 263+/-114 (r=0.71, n=28) and 381+/-170 days (r=0.74, n=14). During serial exercise testing the 6-min walk test allowed peak oxygen uptake to be reliably predicted (r=0.76 between calculated and real peak oxygen uptake). After 528+/-234 days, 42 patients were hospitalized due to worsening heart failure and/or died from cardiovascular causes. Compared to clinically stable patients, these 42 patients walked a shorter distance (423+/-104 vs 501+/-95 m, P<0.001) and had a lower peak oxygen uptake (12.7+/-4.0 vs 17.4 + 5.6 ml x min(-1) x kg(-1), P<0.001). By univariate analysis the 6-min walk test outperformed other prognostic parameters such as left ventricular ejection fraction, cardiac index and plasma norepinephrine concentration and conferred a prognostic power similar to peak oxygen uptake. This predictive value could be further improved in a multivariate model, by combining the 6-min walk test with independent variables, such as left ventricular ejection fraction or cardiac index. The 6-min walk test correlated with peak oxygen uptake when tested serially over the course of the disease. Although both tests define two distinct domains of functional capacity, the 6-min walk test provides prognostic information very similar to peak oxygen uptake in congestive heart failure patients with dilated cardiomyopathy.
Lanfranconi, F; Ferri, A; Corna, G; Bonazzi, R; Lunetta, C; Silani, V; Riva, N; Rigamonti, A; Maggiani, A; Ferrarese, C; Tremolizzo, L
2017-06-07
This study aimed to evaluate muscle oxidative function during exercise in amyotrophic lateral sclerosis patients (pALS) with non-invasive methods in order to assess if determinants of reduced exercise tolerance might match ALS clinical heterogeneity. 17 pALS, who were followed for 4 months, were compared with 13 healthy controls (CTRL). Exercise tolerance was assessed by an incremental exercise test on cycle ergometer measuring peak O 2 uptake ([Formula: see text]O 2peak ), vastus lateralis oxidative function by near infrared spectroscopy (NIRS) and breathing pattern ([Formula: see text]E peak ). pALS displayed: (1) 44% lower [Formula: see text]O 2peak vs. CTRL (p < 0.0001), paralleled by a 43% decreased peak skeletal muscle oxidative function (p < 0.01), with a linear regression between these two variables (r 2 = 0.64, p < 0.0001); (2) 46% reduced [Formula: see text]E peak vs. CTRL (p < 0.0001), achieved by using an inefficient breathing pattern (increasing respiratory frequency) from the onset until the end of exercise. Inefficient skeletal muscle O 2 function, when flanking the impaired motor units recruitment, is a major determinant of pALS clinical heterogeneity and working capacity exercise tolerance. CPET and NIRS are useful tools for detecting early stages of oxidative deficiency in skeletal muscles, disclosing individual impairments in the O 2 transport and utilization chain.
Segel, Michael J; Bobrovsky, Ben-Zion; Gabbay, Itay E; Ben-Dov, Issahar; Reuveny, Ronen; Gabbay, Uri
2017-05-01
The Cardio-vascular reserve index (CVRI) had been empirically validated in diverse morbidities as a quantitative estimate of the reserve assumed by the cardiovascular reserve hypothesis. This work evaluates whether CVRI during exercise complies with the cardiovascular reserve hypothesis. Retrospective study based on a database of patients who underwent cardio-pulmonary exercise testing (CPX) for diverse indications. Patient's physiological measurements were retrieved at four predefined CPX stages (rest, anaerobic threshold, peak exercise and after 2min of recovery). CVRI was individually calculated retrospectively at each stage. Mean CVRI at rest was 0.81, significantly higher (p<0.001) than at all other stages. CVRI decreased with exercise, reaching an average at peak exercise of 0.35, significant lower than at other stages (p<0.001) and very similar regardless of exercise capacity (mean CVRI 0.33-0.37 in 4 groups classified by exercise capacity, p>0.05). CVRI after 2min of recovery rose considerably, most in the group with the best exercise capacity and least in those with the lowest exercise capacity. CVRI during exercise fits the pattern predicted by the cardiovascular reserve hypothesis. CVRI decreased with exercise reaching a minimum at peak exercise and rising with recovery. The CVRI nadir at peak exercise, similar across groups classified by exercise capacity, complies with the assumed exhaustion threshold. The clinical utility of CVRI should be further evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Siconolfi, S. F.; Charles, J. B.; Moore, A. D. Jr; Barrows, L. H.
1994-01-01
The effects of regular aerobic exercise on orthostatic tolerance have been the subject of a long-standing controversy that will influence the use of exercise during space flight. To examine these effects, astronauts performed continuous (CE) aerobic exercise (n = 8), interval (IE) aerobic exercise (n = 4), or no (NE) exercise (n = 5) during flights of 7 to 11 days. Heart rate (HR) responses to an orthostatic challenge (stand test) were measured 10 days before flight and on landing day. VO(2peak) (graded treadmill exercise) was measured 7 to 21 days before and 2 days after flight. No significant differences across the groups were observed in standing HRs before or after flight. However, the within-group mean HRs significantly increased in the NE (71-89 beats/min) and CE (60-85 beats/min) groups after space flight. The HRs for the IE group did not significantly increase (75-86 beats/min) after space flight. VO(2peak) decreased (P < .05) in the NE (-9.5%) group, but did not change in the CE (-2.4%) and IE (1%) groups. The relationship (r = 0.237) between the delta HR and delta VO(2peak) was not significant. These preliminary results indicate that: (1) continuous exercise does not affect the orthostatic HR response after space flight; (2) interval exercise may minimize an increase in the postflight orthostatic HR; and (3) both exercise protocols can maintain VO(2peak).
Kilicaslan, Baris; Eren, Nihan Kahya; Nazlı, Cem
2015-01-01
We aimed to evaluate the aortic elastic properties in subjects with hypertensive response to exercise stress test (HRE). Sixty-six patients were divided into two groups (33 patients in HRE group and 33 patients in normotensive group). Baseline demographic characteristics were similar. The mean aortic stiffness index (ASI) was significantly higher (p=0.001) whereas aortic distensibility (AD) was significantly lower (p=0.029) in patients suggesting HRE. The C-reactive protein levels of patients with HRE was higher in the HRE group (p=0.03). AD was significantly correlated with age (r=-0.406, p<0.001), pre-test systolic blood presure (SBP) (r=-0.427, p<0.001), peak exercise SBP (r=-0.307, p=0.01), peak exercise diastolic blood presure (DBP) (r=-0.315, p=0.008), and recovery time (3 min) SBP (r=-0.497, p=0.004). Age (β=-0.506, p=0.003) and peak DBP (β=-0.322, p=0.049) were independent predictors of decreased AD. In conclusion, we found a deterioration in arterial elastic properties in patients with HRE.
Saengsuwan, Jittima; Huber, Celine; Schreiber, Jonathan; Schuster-Amft, Corina; Nef, Tobias; Hunt, Kenneth J
2015-09-26
We evaluated the feasibility of an augmented robotics-assisted tilt table (RATT) for incremental cardiopulmonary exercise testing (CPET) and exercise training in dependent-ambulatory stroke patients. Stroke patients (Functional Ambulation Category ≤ 3) underwent familiarization, an incremental exercise test (IET) and a constant load test (CLT) on separate days. A RATT equipped with force sensors in the thigh cuffs, a work rate estimation algorithm and real-time visual feedback to guide the exercise work rate was used. Feasibility assessment considered technical feasibility, patient tolerability, and cardiopulmonary responsiveness. Eight patients (4 female) aged 58.3 ± 9.2 years (mean ± SD) were recruited and all completed the study. For IETs, peak oxygen uptake (V'O2peak), peak heart rate (HRpeak) and peak work rate (WRpeak) were 11.9 ± 4.0 ml/kg/min (45 % of predicted V'O2max), 117 ± 32 beats/min (72 % of predicted HRmax) and 22.5 ± 13.0 W, respectively. Peak ratings of perceived exertion (RPE) were on the range "hard" to "very hard". All 8 patients reached their limit of functional capacity in terms of either their cardiopulmonary or neuromuscular performance. A ventilatory threshold (VT) was identified in 7 patients and a respiratory compensation point (RCP) in 6 patients: mean V'O2 at VT and RCP was 8.9 and 10.7 ml/kg/min, respectively, which represent 75 % (VT) and 85 % (RCP) of mean V'O2peak. Incremental CPET provided sufficient information to satisfy the responsiveness criteria and identification of key outcomes in all 8 patients. For CLTs, mean steady-state V'O2 was 6.9 ml/kg/min (49 % of V'O2 reserve), mean HR was 90 beats/min (56 % of HRmax), RPEs were > 2, and all patients maintained the active work rate for 10 min: these values meet recommended intensity levels for bouts of training. The augmented RATT is deemed feasible for incremental cardiopulmonary exercise testing and exercise training in dependent-ambulatory stroke patients: the approach was found to be technically implementable, acceptable to the patients, and it showed substantial cardiopulmonary responsiveness. This work has clinical implications for patients with severe disability who otherwise are not able to be tested.
Tsai, Yun-Jeng; Li, Min-Hui; Tsai, Wan-Jung; Tuan, Sheng-Hui; Liao, Tin-Yun; Lin, Ko-Long
2016-07-01
Oxygen uptake efficiency slope (OUES) and peak oxygen consumption (VO2peak) are exercise parameters that can predict cardiac morbidity in patients with numerous heart diseases. But the predictive value in patients with tetralogy of Fallot is still undetermined, especially in children. We evaluated the prognostic value of OUES and VO2peak in children with total repair of tetralogy of Fallot. Retrospective cohort study. Forty tetralogy of Fallot patients younger than 12 years old were recruited. They underwent a cardiopulmonary exercise test during the follow-up period after total repair surgery. The results of the cardiopulmonary exercise test were used to predict the cardiac related hospitalization in the following two years after the test. OUES normalized by body surface area (OUES/BSA) and the percentage of predicted VO2peak appeared to be predictive for two-year cardiac related hospitalization. Receiver operating characteristic curve analysis demonstrated that the best threshold value for OUES/BSA was 1.029 (area under the curve = 0.70, p = 0.03), and for VO2peak was 74% of age prediction (area under the curve = 0.72, p = 0.02). The aforementioned findings were confirmed by Kaplan-Meier plots and log-rank test. OUES/BSA and VO2peak are useful predictors of cardiac-related hospitalization in children with total repair of tetralogy of Fallot. © The European Society of Cardiology 2015.
NASA Technical Reports Server (NTRS)
Smorawinski, J.; Nazar, K.; Kaciuza-Uscilko; Kaminska, E.; Kodrzycka, A.; Bicz, B.; Greenleaf, J. E.
2001-01-01
To test the hypotheses that short-term bed rest (BR) deconditioning influences metabolic, cardiorespiratory and neurohormonal responses to exercise and that these effects depend on the subjects' training status, 12 sedentary men, and 10 endurance- and 10 strength-trained athletes were submitted to three-day BR. Before and after BR they performed incremental exercise tests until volitional exhaustion. Respiratory gas exchange and HR were recorded continuously and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate [LA], adrenaline [A], noradrenaline [NA], renin activity (PRA), growth hormone [hGH], testosterone and cortisol determination. Reduction of peak oxygen uptake (V02peak) after BR was greater in the endurance athletes than in the remaining groups (17 % vs. 10%). Decrements in VO2peak correlated positively with the initial values (r = 0.73, p is less than 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased the in endurance athletes from 71 to 60% V02 peak (p is less than0.001), they also had an earlier increase in [NA], an attenuated increase in [hGH], and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion: reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.
NASA Technical Reports Server (NTRS)
Smorawinski, J.; Nazar, K.; Kaciuza-Uscilko, H.; Kaminska, E.; Cybulski, G.; Kodrzycka, A.; Bice, B.; Greenleaf, J. E.; Sun, Sid (Technical Monitor)
2001-01-01
To test the hypotheses that short-term bed rest (BR) deconditioning influences metabolic, cardiorespiratory and neurohormonal responses to exercise and that these effects depend on the subjects' training status 12 sedentary men, and 10 endurance- and 10 strength-trained athletes were submitted to three-day BR. Before and after BR they performed incremental exercise test until volitional exhaustion. Respiratory gas exchange and HR were recorded continuously and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate [LA], adrenaline [A], noradrenaline, [NA], renting activity (PRA), growth hormone [hGH], testosterone and cortisol determination. Reduction of peak oxygen uptake (VO2peak) after BR was greater in the endurance athletes (than in the remaining groups (17 % vs. 100%). Decrements in VO2peak correlated positively with the initial values (r = 0.73, p less than 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased the in endurance athletes from 71 to 60 %VO2 peak (p less than 0.001); they also had an earlier increase in [NA], and an attenuated increase in [hGH), and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion: reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.
NASA Technical Reports Server (NTRS)
Smorawinski, J.; Nazar, K.; Kaciuba-Uscilko, H.; Kaminska, E.; Cybulski, G.; Kodrzycka, A.; Bicz, B.; Greenleaf, J. E.
2001-01-01
To test the hypotheses that short-term bed-rest (BR) deconditioning influences metabolic, cardiorespiratory, and neurohormonal responses to exercise and that these effects depend on the subjects' training status, 12 sedentary men and 10 endurance- and 10 strength-trained athletes were submitted to 3-day BR. Before and after BR they performed incremental exercise test until volitional exhaustion. Respiratory gas exchange and heart rate (HR) were recorded continuously, and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate concentration ([LA]), epinephrine concentration ([Epi]), norepinephrine concentration ([NE]), plasma renin activity (PRA), human growth hormone concentration ([hGH]), testosterone, and cortisol determination. Reduction of peak oxygen uptake (VO(2 peak)) after BR was greater in the endurance athletes than in the remaining groups (17 vs. 10%). Decrements in VO(2 peak) correlated positively with the initial values (r = 0.73, P < 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased in the endurance athletes from 71 to 60% VO(2 peak) (P < 0.001); they also had an earlier increase in [NE], an attenuated increase in [hGH], and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion, reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.
Smorawiński, J; Nazar, K; Kaciuba-Uscilko, H; Kamińska, E; Cybulski, G; Kodrzycka, A; Bicz, B; Greenleaf, J E
2001-07-01
To test the hypotheses that short-term bed-rest (BR) deconditioning influences metabolic, cardiorespiratory, and neurohormonal responses to exercise and that these effects depend on the subjects' training status, 12 sedentary men and 10 endurance- and 10 strength-trained athletes were submitted to 3-day BR. Before and after BR they performed incremental exercise test until volitional exhaustion. Respiratory gas exchange and heart rate (HR) were recorded continuously, and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate concentration ([LA]), epinephrine concentration ([Epi]), norepinephrine concentration ([NE]), plasma renin activity (PRA), human growth hormone concentration ([hGH]), testosterone, and cortisol determination. Reduction of peak oxygen uptake (VO(2 peak)) after BR was greater in the endurance athletes than in the remaining groups (17 vs. 10%). Decrements in VO(2 peak) correlated positively with the initial values (r = 0.73, P < 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased in the endurance athletes from 71 to 60% VO(2 peak) (P < 0.001); they also had an earlier increase in [NE], an attenuated increase in [hGH], and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion, reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.
Villelabeitia-Jaureguizar, Koldobika; Vicente-Campos, Davinia; Senen, Alejandro Berenguel; Jiménez, Verónica Hernández; Garrido-Lestache, María Elvira Barrios; Chicharro, Jose López
2017-10-01
Heart rate recovery (HRR) has been considered a prognostic and mortality indicator in both healthy and coronary patients. Physical exercise prescription has shown improvements in VO 2 peak and HRR, but most of the studies have been carried out applying continuous training at a moderate intensity, being very limited the use of protocols of high intensity interval training in coronary patients. We aimed to compare the effects of a moderate continuous training (MCT) versus a high intensity interval training (HIIT) programme on VO 2 peak and HRR. Seventy three coronary patients were assigned to either HIIT or MCT groups for 8weeks. Incremental exercise tests in a cycloergometer were performed to obtain VO 2 peak data and heart rate was monitored during and after the exercise test to obtain heart rate recovery data. Both exercise programmes significantly increase VO 2 peak with a higher increase in the HIIT group (HIIT: 4.5±4.46ml/kg/min vs MCT: 2.46±3.57ml/kg/min; p=0.039). High intensity interval training resulted in a significantly increase in HRR at the first and second minute of the recovery phase (15,44±7,04 vs 21,22±6,62, p<0,0001 and 23,73±9,64 vs 31,52±8,02, p<0,0001, respectively). The results of our research show that the application of HIIT to patients with chronic ischemic heart disease of low risk resulted in an improvement in VO 2 peak, and also improvements in post-exercise heart-rate recovery, compared with continuous training. Copyright © 2017 Elsevier B.V. All rights reserved.
Graded Exercise Testing in a Pediatric Weight Management Center: The DeVos Protocol.
Eisenmann, Joey C; Guseman, Emily Hill; Morrison, Kyle; Tucker, Jared; Smith, Lucie; Stratbucker, William
2015-12-01
In this article, we describe a protocol used to test the functional capacity of the obese pediatric patient and describe the peak oxygen consumption (VO2peak) of patients seeking treatment at a pediatric weight management center. One hundred eleven (mean age, 12.5 ± 3.0 years) patients performed a multistage exercise test on a treadmill, of which 90 (81%) met end-test criteria and provided valid VO2peak data. Peak VO2 was expressed: (1) in absolute terms (L·min(-1)); (2) as the ratio of the volume of oxygen consumed per minute relative to total body mass (mL·kg(-1)·min(-1)); and (3) as the ratio of the volume of oxygen consumed per minute relative to fat-free mass (mL·FFM·kg(-1)·min(-1)). Mean BMI z-score was 2.4 ± 0.3 and the mean percent body fat was 36.5 ± 9.7%. Absolute VO2peak (L·min(-1)) was significantly different between sexes; however, relative values were similar between sexes. Mean VO2peak was 25.7 ± 4.8 mL·kg(-1)·min(-1) with a range of 13.5-36.7 mL·kg(-1)·min(-1). Obese youth seeking treatment at a stage 3 pediatric weight management center exhibit low VO2peak. The protocol outlined here should serve as a model for similar programs interested in the submaximal and peak responses to exercise in obese pediatric patients.
Anekwe, David; de Marchie, Michel; Spahija, Jadranka
2017-06-01
Pressure support ventilation (PSV) may be used for exercise training in chronic obstructive pulmonary disease (COPD), but its acute effect on maximum exercise capacity is not fully known. The objective of this study was to evaluate the effect of 10 cm H 2 O PSV and a fixed PSV level titrated to patient comfort at rest on maximum exercise workload (WLmax), breathing pattern and metabolic parameters during a symptom-limited incremental bicycle test in individuals with COPD. Eleven individuals with COPD (forced expiratory volume in one second: 49 ± 16%; age: 64 ± 7 years) performed three exercise tests: without a ventilator, with 10 cm H 2 O of PSV and with a fixed level titrated to comfort at rest, using a SERVO-i ventilator. Tests were performed in randomized order and at least 48 hours apart. The WLmax, breathing pattern, metabolic parameters, and mouth pressure (Pmo) were compared using repeated measures analysis of variance. Mean PSV during titration was 8.2 ± 4.5 cm H 2 O. There was no difference in the WLmax achieved during the three tests. At rest, PSV increased the tidal volume, minute ventilation, and mean inspiratory flow with a lower end-tidal CO 2 ; this was not sustained at peak exercise. Pmo decreased progressively (decreased unloading) with PSV at workloads close to peak, suggesting the ventilator was unable to keep up with the increased ventilatory demand at high workloads. In conclusion, with a Servo-i ventilator, 10 cm H 2 O of PSV and a fixed level of PSV established by titration to comfort at rest, is ineffective for the purpose of achieving higher exercise workloads as the acute physiological effects may not be sustained at peak exercise.
Marinus, Nastasia; Bervoets, Liene; Massa, Guy; Verboven, Kenneth; Stevens, An; Takken, Tim; Hansen, Dominique
2017-12-01
Cardiopulmonary exercise testing is advised ahead of exercise intervention in obese adolescents to assess medical safety of exercise and physical fitness. Optimal validity and reliability of test results are required to identify maximal exercise effort. As fat oxidation during exercise is disturbed in obese individuals, it remains an unresolved methodological issue whether the respiratory gas exchange ratio (RER) is a valid marker for maximal effort during exercise testing in this population. RER during maximal exercise testing (RERpeak), and RER trajectories, was compared between obese and lean adolescents and relationships between RERpeak, RER slope and subject characteristics (age, gender, Body Mass Index [BMI], Tanner stage, physical activity level) were explored. Thirty-four obese (BMI: 35.1±5.1 kg/m²) and 18 lean (BMI: 18.8±1.9 kg/m²) adolescents (aged 12-18 years) performed a maximal cardiopulmonary exercise test on bike, with comparison of oxygen uptake (VO2), heart rate (HR), expiratory volume (VE), carbon dioxide output (VCO2), and cycling power output (W). RERpeak (1.09±0.06 vs. 1.14±0.06 in obese vs. lean adolescents, respectively) and RER slope (0.03±0.01 vs. 0.05±0.01 per 10% increase in VO2, in obese vs. lean adolescents, respectively) was significantly lower in obese adolescents, and independently related to BMI (P<0.05). Adjusted for HRpeak and VEpeak, RERpeak and RER slope remained significantly lower in obese adolescents (P<0.05). RER trajectories (in relation to %VO2peak and %Wpeak) were significantly different between groups (P<0.001). RERpeak is significantly lowered in obese adolescents. This may have important methodological implications for cardiopulmonary exercise testing in this population.
Zenith, Laura; Meena, Neha; Ramadi, Ailar; Yavari, Milad; Harvey, Andrea; Carbonneau, Michelle; Ma, Mang; Abraldes, Juan G; Paterson, Ian; Haykowsky, Mark J; Tandon, Puneeta
2014-11-01
Patients with cirrhosis have reduced exercise tolerance, measured objectively as decreased peak exercise oxygen uptake (peak VO2). Reduced peak VO2 is associated with decreased survival time. The effect of aerobic exercise training on peak VO2 has not been well studied in patients with cirrhosis. We evaluated the safety and efficacy of 8 weeks of supervised exercise on peak VO2, quadriceps muscle thickness, and quality of life. In a prospective pilot study, stable patients (79% male, 57.6 ± 6.7 years old) with Child-Pugh class A or B cirrhosis (mean Model for End-Stage Liver Disease score, 10 ± 2.2) were randomly assigned to groups that received exercise training (n = 9) or usual care (controls, n = 10) at the University of Alberta Hospital in Canada from February through June 2013. Supervised exercise was performed on a cycle ergometer 3 days/week for 8 weeks at 60%-80% of baseline peak VO2. Peak VO2, quadriceps muscle thickness (measured by ultrasound), thigh circumference, answers from Chronic Liver Disease Questionnaires, EQ-visual analogue scales, 6-minute walk distance, and Model for End-Stage Liver Disease scores were evaluated at baseline and at week 8. Analysis of covariance was used to compare variables. At week 8, peak VO2 was 5.3 mL/kg/min higher in the exercise group compared with controls (95% confidence interval, 2.9-7.8; P = .001). Thigh circumference (P = .001), thigh muscle thickness (P = .01), and EQ-visual analogue scale determined self-perceived health status (P = .01) was also significantly higher in the exercise group compared with controls at week 8; fatigue subscores of the Chronic Liver Disease Questionnaires were lower in the exercise group compared with controls (P = .01). No adverse events occurred during cardiopulmonary exercise testing or training. In a controlled prospective pilot trial, 8 weeks of supervised aerobic exercise training increased peak VO2 and muscle mass and reduced fatigue in patients with cirrhosis. No relevant adverse effects were observed. Larger trials are needed to evaluate the effects of exercise in patients with cirrhosis. ClinicalTrials.gov number: NCT01799785. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Exercise capacity in pediatric patients with inflammatory bowel disease.
Ploeger, Hilde E; Takken, Tim; Wilk, Boguslaw; Issenman, Robert M; Sears, Ryan; Suri, Soni; Timmons, Brian W
2011-05-01
To examine exercise capacity in youth with Crohn's disease (CD) and ulcerative colitis (UC). Eleven males and eight females with CD and six males and four females with UC participated. Patients performed standard exercise tests to assess peak power (PP) and mean power (MP) and peak aerobic mechanical power (W(peak)) and peak oxygen uptake (VO(2peak)). Fitness variables were compared with reference data and also correlated with relevant clinical outcomes. Pediatric patients with inflammatory bowel disease had lower PP (∼90% of predicted), MP (∼88% of predicted), W(peak) (∼91% of predicted), and VO(2peak) (∼75% of predicted) compared with reference values. When patients with CD or UC were compared separately to reference values, W(peak) was significantly lower only in the CD group. No statistically significant correlations were found between any exercise variables and disease duration (r = 0.01 to 0.14, P = .47 to .95) or disease activity (r = -0.19 to -0.31, P = .11 to .38), measured by pediatric CD activity index or pediatric ulcerative colitis activity index. After controlling for chronological age, recent hemoglobin levels were significantly correlated with PP (r = 0.45, P = .049), MP (r = 0.63, P = .003), VO(2peak) (r = 0.62, P = .004), and W(peak) (r = 0.70, P = .001). Pediatric patients with inflammatory bowel disease exhibit impaired aerobic and anaerobic exercise capacity compared with reference values. Copyright © 2011 Mosby, Inc. All rights reserved.
Sayegh, Ana Luiza C.; dos Santos, Marcelo R.; de Oliveira, Patricia; Fernandes, Fábio; Rondon, Eduardo; de Souza, Francis R.; Salemi, Vera M. C.; Alves, Maria Janieire de N. N.; Mady, Charles
2017-01-01
Background Endomyocardial fibrosis (EMF) is a rare disease, characterized by diastolic dysfunction which leads to reduced peak oxygen consumption (VO2). Cardiopulmonary exercise testing (CPET) has been proved to be a fundamental tool to identify central and peripheral alterations. However, most studies prioritize peak VO2 as the main variable, leaving aside other important CPET variables that can specify the severity of the disease and guide the clinical treatment. Objective The aim of this study was to evaluate central and peripheral limitations in symptomatic patients with EMF by different CPET variables. Methods Twenty-six EMF patients (functional class III, NYHA) were compared with 15 healthy subjects (HS). Functional capacity was evaluated using CPET and diastolic and systolic functions were evaluated by echocardiography. Results Age and gender were similar between EMF patients and HS. Left ventricular ejection fraction was normal in EMF patients, but decreased compared to HS. Peak heart rate, peak workload, peak VO2, peak oxygen (O2) pulse and peak pulmonary ventilation (VE) were decreased in EMF compared to HS. Also, EMF patients showed increased Δ heart rate /Δ oxygen uptake and Δ oxygen uptake /Δ work rate compared to HS. Conclusion Determination of the aerobic capacity by noninvasive respiratory gas exchange during incremental exercise provides additional information about the exercise tolerance in patients with EMF. The analysis of different CPET variables is necessary to help us understand more about the central and peripheral alterations cause by both diastolic dysfunction and restrictive pattern. PMID:29364349
Dynamic water exercise in individuals with late poliomyelitis.
Willén, C; Sunnerhagen, K S; Grimby, G
2001-01-01
To evaluate the specific effects of general dynamic water exercise in individuals with late effects of poliomyelitis. Before-after tests. A university hospital department. Twenty-eight individuals with late effects of polio, 15 assigned to the training group (TG) and 13 to the control group (CG). The TG completed a 40-minute general fitness training session in warm water twice weekly. Assessment instruments included the bicycle ergometer test, isokinetic muscle strength, a 30-meter walk indoors, Berg balance scale, a pain drawing, a visual analog scale, the Physical Activity Scale for the Elderly, and the Nottingham Health Profile (NHP). Peak load, peak work load, peak oxygen uptake, peak heart rate (HR), muscle function in knee extensors and flexors, and pain dimension of the NHP. The average training period was 5 months; compliance was 75% (range, 55-98). No negative effects were seen. The exercise did not influence the peak work load, peak oxygen uptake, or muscle function in knee extensors compared with the controls. However, a decreased HR at the same individual work load was seen, as well as a significantly lower distress in the dimension pain of the NHP. Qualitative aspects such as increased well-being, pain relief, and increased physical fitness were reported. A program of nonswimming dynamic exercises in heated water has a positive impact on individuals with late effects of polio, with a decreased HR at exercise, less pain, and a subjective positive experience. The program was well tolerated (no adverse effects were reported) and can be recommended for this group of individuals.
Preoperative gender differences in pulmonary gas exchange in morbidly obese subjects.
Zavorsky, Gerald S; Christou, Nicolas V; Kim, Do Jun; Carli, Franco; Mayo, Nancy E
2008-12-01
Morbidly obese men may have poorer pulmonary gas exchange compared to morbidly obese women (see Zavorsky et al., Chest 131:362-367, 2007). The purpose was to compare pulmonary gas exchange in morbidly obese men and women at rest and throughout exercise. Twenty-five women (age=38+/-10 years, 164+/-7 cm, body mass index or BMI = 51+/-7 kg/m(2), peak oxygen consumption or VO(2peak)=2.0+/-0.4 l/min) and 17 men (age=43+/-9 years, 178+/-7 cm, BMI=50+/-10 kg/m(2), VO(2peak)=2.6+/-0.8 l/min) were recruited to perform a graded exercise test on a cycle ergometer with temperature-corrected arterial blood-gas samples taken at rest and every minute of exercise, including peak exercise. At rest, women were 98% predicted for pulmonary diffusion compared to 88% predicted in men. At rest, women had better pulmonary gas exchange compared to the men which was related to women having a lower waist-to-hip ratio (WHR; p<0.01). Only 20% of the subjects had an excessive alveolar-to-arterial oxygen partial pressure difference (>or=25 mmHg) at peak exercise, but 75% of the subjects showed inadequate compensatory hyperventilation at peak exercise (arterial carbon dioxide pressure >35 mmHg), and both were not different between genders. At rest, morbidly obese men have poorer pulmonary gas exchange and pulmonary diffusion compared to morbidly obese women. The better gas exchange in women is related to the lower WHR in the women. During exercise, few subjects showed disturbances in pulmonary gas exchange despite demonstrating poor compensatory hyperventilation at peak exercise.
Nytrøen, K; Rustad, L A; Aukrust, P; Ueland, T; Hallén, J; Holm, I; Rolid, K; Lekva, T; Fiane, A E; Amlie, J P; Aakhus, S; Gullestad, L
2012-11-01
Heart transplant (HTx) recipients usually have reduced exercise capacity with reported VO(2peak) levels of 50-70% predicted value. Our hypothesis was that high-intensity interval training (HIIT) is an applicable and safe form of exercise in HTx recipients and that it would markedly improve VO(2peak.) Secondarily, we wanted to evaluate central and peripheral mechanisms behind a potential VO(2peak) increase. Forty-eight clinically stable HTx recipients >18 years old and 1-8 years after HTx underwent maximal exercise testing on a treadmill and were randomized to either exercise group (a 1-year HIIT-program) or control group (usual care). The mean ± SD age was 51 ± 16 years, 71% were male and time from HTx was 4.1 ± 2.2 years. The mean VO(2peak) difference between groups at follow-up was 3.6 [2.0, 5.2] mL/kg/min (p < 0.001). The exercise group had 89.0 ± 17.5% of predicted VO(2peak) versus 82.5 ± 20.0 in the control group (p < 0.001). There were no changes in cardiac function measured by echocardiography. We have demonstrated that a long-term, partly supervised and community-based HIIT-program is an applicable, effective and safe way to improve VO(2peak) , muscular exercise capacity and general health in HTx recipients. The results indicate that HIIT should be more frequently used among stable HTx recipients in the future. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Bond, Vernon; Millis, Richard M.; Adams, R. George; Oke, Luc M.; Enweze, Larry; Blakely, Raymond; Banks, Marshall; Thompson, Terry; Obisesan, Thomas; Sween, Jennifer C.
2011-01-01
Introduction A hyperreactive blood pressure response to exercise is a predictor of developing hypertension. The present study determined the influence of physical activity on an exaggerated exercise blood pressure response (EEBPR) in normotensive African-American women. Methods We screened 36 women 18–26 years of age for EEBPR defined as a ≥50 mm Hg difference in systolic blood pressure at rest and during exercise at 50% peak oxygen uptake (VO2peak). Seven subjects demonstrated an EEBPR and participated in the study. Study participants trained for eight weeks on a bicycle ergometer at a work intensity of 70% VO2peak. Blood pressure, heart rate, cardiac output (CO), stroke volume (SV), and total peripheral vascular resistance (TPR) were determined at baseline and during submaximal exercise at power outputs of 30 W and 50% VO2peak. Subjects served as their own controls, and data were evaluated by using a paired t test at P<.05. Results Effectiveness of the intervention was shown by a significantly greater VO2peak associated with significant decrements in systolic and mean arterial pressures at power outputs of 30 W and 50% VO2peak. A significant decrement in heart rate was observed during exercise at 30 W. Significant increments in CO and SV and decrement in TPR were found during exercise at 50% VO2peak. Conclusion The reduction in TPR associated with regular aerobic physical activity may attenuate the EEBPR and decrease the risk for hypertension in normotensive, young-adult, African-American women. PMID:16315376
Effects of Obstructive Sleep Apnea and Obesity on Exercise Function in Children
Evans, Carla A.; Selvadurai, Hiran; Baur, Louise A.; Waters, Karen A.
2014-01-01
Study Objectives: Evaluate the relative contributions of weight status and obstructive sleep apnea (OSA) to cardiopulmonary exercise responses in children. Design: Prospective, cross-sectional study. Participants underwent anthropometric measurements, overnight polysomnography, spirometry, cardiopulmonary exercise function testing on a cycle ergometer, and cardiac doppler imaging. OSA was defined as ≥ 1 obstructive apnea or hypopnea per hour of sleep (OAHI). The effect of OSA on exercise function was evaluated after the parameters were corrected for body mass index (BMI) z-scores. Similarly, the effect of obesity on exercise function was examined when the variables were adjusted for OAHI. Setting: Tertiary pediatric hospital. Participants: Healthy weight and obese children, aged 7–12 y. Interventions: N/A. Measurements and Results: Seventy-one children were studied. In comparison with weight-matched children without OSA, children with OSA had a lower cardiac output, stroke volume index, heart rate, and oxygen consumption (VO2 peak) at peak exercise capacity. After adjusting for BMI z-score, children with OSA had 1.5 L/min (95% confidence interval -2.3 to -0.6 L/min; P = 0.001) lower cardiac output at peak exercise capacity, but minute ventilation and ventilatory responses to exercise were not affected. Obesity was only associated with physical deconditioning. Cardiac dysfunction was associated with the frequency of respiratory-related arousals, the severity of hypoxia, and heart rate during sleep. Conclusions: Children with OSA are exercise limited due to a reduced cardiac output and VO2 peak at peak exercise capacity, independent of their weight status. Comorbid OSA can further decrease exercise performance in obese children. Citation: Evans CA, Selvadurai H, Baur LA, Waters KA. Effects of obstructive sleep apnea and obesity on exercise function in children. SLEEP 2014;37(6):1103-1110. PMID:24882905
Spee, Ruud F; Niemeijer, Victor M; Wijn, Pieter F; Doevendans, Pieter A; Kemps, Hareld M
2016-12-01
Background High-intensity interval training (HIT) improves exercise capacity in patients with chronic heart failure (CHF). Moreover, HIT was associated with improved resting cardiac function. However, the extent to which these improvements actually contribute to training-induced changes in exercise capacity remains to be elucidated. Therefore, we evaluated the effects of HIT on exercising central haemodynamics and skeletal muscle oxygenation. Methods Twenty-six CHF patients were randomised to a 12-week 4 × 4 minute HIT program at 85-95% of peak VO 2 or usual care. Patients performed maximal and submaximal cardiopulmonary exercise testing with simultaneous assessment of cardiac output and skeletal muscle oxygenation by near infrared spectroscopy, using the amplitude of the tissue saturation index (TSIamp). Results Peak workload increased by 11% after HIT ( p between group = 0.01) with a non-significant increase in peak VO 2 (+7%, p between group = 0.19). Cardiac reserve increased by 37% after HIT ( p within group = 0.03, p between group = 0.08); this increase was not related to improvements in peak workload. Oxygen uptake recovery kinetics after submaximal exercise were accelerated by 20% ( p between group = 0.02); this improvement was related to a decrease in TSIamp ( r = 0.71, p = 0.03), but not to changes in cardiac output kinetics. Conclusion HIT induced improvements in maximal exercise capacity and exercising haemodynamics at peak exercise. Improvements in recovery after submaximal exercise were associated with attenuated skeletal muscle deoxygenation during submaximal exercise, but not with changes in cardiac output kinetics, suggesting that the effect of HIT on submaximal exercise capacity is mediated by improved microvascular oxygen delivery-to-utilisation matching.
Within-session responses to high-intensity interval training in spinal cord injury.
Astorino, Todd Anthony; Thum, Jacob S
2018-02-01
Completion of high-intensity interval training (HIIT) increases maximal oxygen uptake and health status, yet its feasibility in persons with spinal cord injury is unknown. To compare changes in cardiorespiratory and metabolic variables between two interval training regimes and moderate intensity exercise. Nine adults with spinal cord injury (duration = 6.8 ± 6.2 year) initially underwent determination of peak oxygen uptake. During subsequent sessions, they completed moderate intensity exercise, HIIT, or sprint interval training. Oxygen uptake, heart rate, and blood lactate concentration were measured. Oxygen uptake and heart rate increased (p < 0.05) during both interval training sessions and were similar (p > 0.05) to moderate intensity exercise. Peak oxygen uptake and heart rate were higher (p < 0.05) with HIIT (90% peak oxygen uptake and 99% peak heart rate) and sprint interval training (80% peak oxygen uptake and 96% peak heart rate) versus moderate intensity exercise. Despite a higher intensity and peak cardiorespiratory strain, all participants preferred interval training versus moderate exercise. Examining long-term efficacy and feasibility of interval training in this population is merited, considering that exercise intensity is recognized as the most important variable factor of exercise programming to optimize maximal oxygen uptake. Implications for Rehabilitation Spinal cord injury (SCI) reduces locomotion which impairs voluntary physical activity, typically resulting in a reduction in peak oxygen uptake and enhanced chronic disease risk. In various able-bodied populations, completion of high-intensity interval training (HIIT) has been consistently reported to improve cardiorespiratory fitness and other health-related outcomes, although its efficacy in persons with SCI is poorly understood. Data from this study in 9 men and women with SCI show similar changes in oxygen uptake and heart in response to HIIT compared to a prolonged bout of aerobic exercise, although peak values were higher in response to HIIT. Due to the higher peak metabolic strain induced by HIIT as well as universal preference for this modality versus aerobic exercise as reported in this study, further work testing utility of HIIT in this population is merited.
Incremental exercise test for the evaluation of peak oxygen consumption in paralympic swimmers.
de Souza, Helton; DA Silva Alves, Eduardo; Ortega, Luciana; Silva, Andressa; Esteves, Andrea M; Schwingel, Paulo A; Vital, Roberto; DA Rocha, Edilson A; Rodrigues, Bruno; Lira, Fabio S; Tufik, Sergio; DE Mello, Marco T
2016-04-01
Peak oxygen consumption (VO2peak) is a fundamental parameter used to evaluate physical capacity. The objective of this study was to explore two types of incremental exercise tests used to determine VO2peak in four Paralympic swimmers: arm ergometer testing in the laboratory and testing in the swimming pool. On two different days, the VO2peak values of the four athletes were measured in a swimming pool and by a cycle ergometer. The protocols identified the VO2peak by progressive loading until the volitional exhaustion maximum was reached. The results were analyzed using the paired Student's t-test, Cohen's d effect sizes and a linear regression. The results showed that the VO2peak values obtained using the swimming pool protocol were higher (P=0.02) than those obtained by the arm ergometer (45.8±19.2 vs. 30.4±15.5; P=0.02), with a large effect size (d=3.20). When analyzing swimmers 1, 2, 3 and 4 individually, differences of 22.4%, 33.8%, 60.1% and 27.1% were observed, respectively. Field tests similar to the competitive setting are a more accurate way to determine the aerobic capacity of Paralympic swimmers. This approach provides more sensitive data that enable better direction of training, consequently facilitating improved performance.
Cade, W Todd; Fantry, Lori E; Nabar, Sharmila R; Keyser, Randall E
2003-11-01
To determine if arteriovenous oxygen difference was lower in asymptomatic individuals with human immunodeficiency virus (HIV) infection than in sedentary but otherwise healthy controls. Quasi-experimental cross-sectional. Clinical exercise laboratory. Fifteen subjects (10 men, 5 women) with HIV and 15 healthy gender- and activity level-matched controls (total N=30). Participants performed an incremental maximal exercise treadmill test to exhaustion. Electrocardiogram, metabolic, and noninvasive cardiac output measurements were evaluated at rest and throughout the tests. Data were analyzed by using analysis of covariance. Peak oxygen consumption (Vo(2)), cardiac output, stroke volume, and arteriovenous oxygen difference. The arteriovenous oxygen difference was determined indirectly using the Fick equation. Peak VO(2) was significantly lower (P<.0005) in participants with HIV (24.6+/-1.2mL.kg(-1).min(-1)) compared with controls (32.0+/-1.2mL.kg(-1).min(-1)). There were no significant intergroup differences in cardiac output or stroke volume at peak exercise. Peak arteriovenous oxygen difference was significantly lower (P<.04) in those infected with HIV (10.8+/-0.5 volume %) than in controls (12.4+/-0.5 volume %). The observed deficit in aerobic capacity in the participants with HIV appeared to be the result of a peripheral tissue oxygen extraction or utilization limitation. In addition to deconditioning, potential mechanisms for this significant attenuation may include HIV infection and inflammation, highly active antiretroviral therapy medication regimens, or a combination of these factors.
Attenuated Heart Rate Recovery After Exercise Testing and Risk of Incident Hypertension in Men.
Jae, Sae Young; Bunsawat, Kanokwan; Fadel, Paul J; Fernhall, Bo; Choi, Yoon-Ho; Park, Jeong Bae; Franklin, Barry A
2016-09-01
Although attenuated heart rate recovery (HRR) and reduced heart rate (HR) reserve to maximal exercise testing are associated with adverse cardiovascular outcomes, their relation to incident hypertension in healthy normotensive populations is unclear. We examined the hypothesis that both attenuated HRR and reduced HR reserve to exercise testing are associated with incident hypertension in men. A total of 1,855 participants were selected comprising of healthy, initially normotensive men who underwent peak or symptom-limited treadmill testing at baseline. HRR was calculated as the difference between peak HR during exercise testing and the HR at 2 minutes after exercise cessation. HR reserve was calculated as the percentage of HR reserve (peak HR - resting HR)/(220 - age - resting HR) × 100. During an average 4-year follow-up, 179 (9.6%) men developed hypertension. Incident hypertension was associated with HRR quartiles (Q1 (<42 (bpm)) 12.5%, Q2 (43-49 bpm) 8.5%, Q3 (50-56 bpm) 9.3%, and Q4 (>57 bpm) 8.3%; P = 0.05 for trend). The relative risk (RR) of the incident hypertension in the slowest HRR quartile vs. the fastest HRR quartile was 1.78 (95% confidence interval (CI): 1.14-2.78) after adjustment for confounders. Every 1 bpm increment in HRR was associated with a 2% (RR 0.98, 95% CI: 0.97-0.99) lower risk of incident hypertension after adjusting for potential confounders. In contrast, reduced HR reserve did not predict the risk of incident hypertension. Slow HRR after exercise testing is independently associated with the development of hypertension in healthy normotensive men. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
van Koppenhagen, Casper Floris; Post, Marcel; de Groot, Sonja; van Leeuwen, Christel; van Asbeck, Floris; Stolwijk-Swüste, Janneke; van der Woude, Lucas; Lindeman, Eline
2014-01-01
Objective To examine the relationship between wheelchair exercise capacity and life satisfaction in persons with spinal cord injury from the start of active inpatient rehabilitation up to 5 years after discharge. Design Prospective cohort study. Subjects Persons with spinal cord injury, aged 18–65 years, and wheelchair dependent at least for long distances. Method Measurements at the start of active rehabilitation, after 3 months, at discharge from inpatient rehabilitation, and 1 and 5 years after discharge. A peak wheelchair exercise test was performed to record peak oxygen uptake (VO2peak) and peak power output (POpeak). Life satisfaction was measured as current life satisfaction and change of life satisfaction in comparison with life after spinal cord injury. Relationships between (changes in) exercise capacity and (changes in) life satisfaction were analyzed random coefficient analysis, corrected for possible confounders (age, gender, level of lesion, functional status, secondary impairments, pain, and sports activity) if necessary. Results Of 225 persons included, 130 attended two or more peak exercise tests, who were include in the analyses. Mean age at start was 39 years, 75% were male, 73% had paraplegia, and 76% had a traumatic lesion. Mean POpeak increased during the study from 32.9 to 55.9 Watts, mean VO2peak from 1.02 to 1.38 l/minute, and mean life satisfaction from 5.7 to 7.8. An increase of POpeak with 10 W was associated with a 0.3-point increase of life satisfaction (P = 0.01). An increase of VO2peak with 0.1 l/minute was associated with a 0.1-point increase of life satisfaction (P = 0.049). Conclusion High(er) wheelchair exercise capacity is related to high(er) life satisfaction in spinal cord injury patients. PMID:24621019
Mandic, Sandra; Stevens, Emily; Hodge, Claire; Brown, Casey; Walker, Robert; Body, Dianne; Barclay, Leanne; Nye, Edwin R; Williams, Michael J A
2016-01-01
To compare exercise capacity and cardiovascular response to exercise in elderly individuals with coronary artery disease (CAD) who attend ongoing community-based maintenance cardiac rehabilitation (CR) versus age- and gender-matched healthy "very active" (HVA; ≥ 2000 kcal/week) and healthy "less active" (HLA; <2000 kcal/week) individuals. Sixty-three participants (age: 72.3 ± 5.1 years; 62% men; n = 21 per group) completed the following assessments: (1) symptom-limited graded exercise test with expired gas analysis and bioimpedance assessment of cardiovascular function during exercise; (2) walking tests; (3) physical function; (4) anthropometry and (5) 12-month physical activity recall. The CR group achieved 98% (range: 73-154%) of age- and gender-predicted peak oxygen consumption for healthy individuals. Peak oxygen consumption was lower in CR compared to HVA but not HLA group (VO2peak: CR: 19.0 ± 4.5, HVA: 23.7 ± 2.9, HLA: 20.7 ± 4.7 ml ·kg(-1)ċmin(-1), p = 0.001 versus HVA; p = 0.390 versus HLA). Peak heart rate was lower in CR compared to both HVA and HLA. Walking test results and cardiovascular and physical function were not different between the groups. Elderly individuals with CAD participating in maintenance CR have similar exercise capacity and cardiorespiratory response to exercise compared to their age- and gender-matched less active healthy peers. The findings support referral of elderly patients to community-based CR. Fitness benefits of long-term maintenance cardiac rehabilitation (CR) programs remain unknown. Elderly individuals with coronary artery disease participating in maintenance CR have exercise capacity and cardiorespiratory response to exercise similar to their less active healthy peers. Maintenance CR may play an important role prolonging independent living in elderly individuals.
Changes in stature following plyometric drop-jump and pendulum exercises.
Fowler, N E; Lees, A; Reilly, T
1997-12-01
The aim of this study was to compare the changes in stature following the performance of plyometric exercises using drop-jumps and a pendulum swing. Eight male participants aged 21.7 +/- 1.8 years with experience of plyometric training gave their informed consent to act as participants. Participants undertook two exercise regimens and a 15-min standing test in a random order. The exercises entailed the performance of 50 drop-jumps from a height of 0.28 m or 50 pendulum rebounds. Participants were instructed to perform maximal jumps or rebounds using a 'bounce' style. Measurements of stature were performed after a 20-min period of standing (pre-exercise), 2-min after exercise (post-exercise) and after a 20-min standing recovery (recovery). Back pain and muscle soreness were assessed using an analogue-visual scale, at each of the above times and also 24 and 36 h after the test. Peak torque during isokinetic knee extension at 1.04 rads-1 was measured immediately before and after the exercise bouts, to assess the degree of muscular fatigue. Ground/wall reaction force data were recorded using a Kistler force platform mounted in the floor for drop-jumps and vertically on the rebound wall for pendulum exercises. Drop-jumps resulted in the greatest (p < 0.05) change in stature (-2.71 +/- 0.8 mm), compared to pendulum exercises (-1.77 +/- 0.7 mm) and standing (-0.39 +/- 0.2 mm). Both exercise regimens resulted in a significant (p < 0.01) decrease in stature when compared to the standing condition. Drop-jumps resulted in significantly greater peak impact forces (p < 0.05) than pendulum exercises (drop-jumps = 3.2 +/- 0.5 x body weight, pendulum = 2.6 +/- 0.5 x body weight). The two exercise conditions both invoked a small degree of muscle soreness but there were no significant differences between conditions. Both exercise regimens resulted in a non-significant decrease in peak torque indicating a similar degree of muscular fatigue. Based on the lower shrinkage resulted and lower peak forces, it can be concluded that pendulum exercises pose a lower injury potential to the lower back than drop-jumps performed from a height of 28 cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucher, C.A.; Wilson, R.A.; Kanarek, D.J.
Exercise radionuclide angiography is being used to evaluate left ventricular function in patients with aortic regurgitation. Ejection fraction is the most common variable analyzed. To better understand the rest and exercise ejection fraction in this setting, 20 patients with asymptomatic or minimally symptomatic severe aortic regurgitation were studied. All underwent simultaneous supine exercise radionuclide angiography and pulmonary gas exchange measurement and underwent rest and exercise measurement of pulmonary artery wedge pressure (PAWP) during cardiac catheterization. Eight patients had a peak exercise PAWP less than 15 mm Hg (group 1) and 12 had a peak exercise PAWP greater than or equalmore » to 15 mm Hg (group 2). Group 1 patients were younger and more were in New York Heart Association class I. The two groups had similar cardiothoracic ratios, changes in ejection fractions with exercise, and rest and exercise regurgitant indexes. Using multiple regression analysis, the best correlate of the exercise PAWP was peak oxygen uptake (r . -0.78, p less than 0.01). No other measurement added significantly to the regression. When peak oxygen uptake was excluded, rest and exercise ejection fraction also correlated significantly (r . -0.62 and r . -0.60, respectively, p less than 0.01). Patients with asymptomatic or minimally symptomatic severe aortic regurgitation have a wide spectrum of cardiac performance in terms of the PAWP during exercise. The absolute rest and exercise ejection fraction and the level of exercise achieved are noninvasive variables that correlate with exercise PAWP in aortic regurgitation, but the change in ejection fraction with exercise by itself is not.« less
Nedeljkovic, Ivana; Banovic, Marko; Stepanovic, Jelena; Giga, Vojislav; Djordjevic-Dikic, Ana; Trifunovic, Danijela; Nedeljkovic, Milan; Petrovic, Milan; Dobric, Milan; Dikic, Nenad; Zlatar, Milan; Beleslin, Branko
2016-01-01
Heart failure with preserved ejection fraction (HFpEF) is commonly associated with hypertension (HTN). However, resting echocardiography (ECHO) can underestimate the severity of disease. Exercise stress echocardiography (ESE) and the cardiopulmonary exercise testing (CPX) appeared to be useful tests in dynamic assessment of HFpEF. The value of combined exercise stress echocardiography cardiopulmonary testing (ESE-CPX) in the identification of masked HFpEF is still undetermined. The purpose of this study was to analyse the value of the combined ESE-CPX in the identification of masked HFpEF in patients with HTN, dyspnoea and normal resting left ventricular (LV) systolic and diastolic function. We studied 87 patients with HTN, exertional dyspnoea and normal resting LV function. They all underwent ESE-CPX testing (supine bicycle, ramp protocol, 15 W/min). ECHO measurements were performed at rest, and at peak load. Achievement of peak E/e' ratio>15 was a marker for masked HFpEF. Increase of E/e'>15 occurred in 8/87 patients (9.2%) during ESE-CPX. Those patients had the lower peak VO2 (p = 0.012), the lower VO2 at anaerobic threshold (p = 0.025), the lower workload (p = 0.026), the lower peak partial pressure end tidal carbon dioxide (PetCO2) (p < 0.0001), and the higher VE/VCO2 slope (p < 0.0001) which was an independent multivariate predictor of HFpEF (p = 0.021), with the cut-off value of 32.95 according to the receiver-operator characteristic (ROC) curve (sensitivity (Sn) 100%, specificity (Sp) 90%). The combined ESE-CPX test is feasible and reliable test that can unmask HFpEF and may become an important aid in the early diagnosis of HFpEF, excluding the other causes of exertional dyspnoea. © The European Society of Cardiology 2015.
Jae, Sae Young; Franklin, Barry A; Choo, Jina; Choi, Yoon-Ho; Fernhall, Bo
2015-11-01
The purpose of this study was to evaluate receiver operating characteristic curves to identify optimal cutoff values of exercise systolic blood pressure (SBP) using both peak SBP and relative SBP (peak SBP minus resting SBP) as predictors of future hypertension (HTN). Participants were 3,742 healthy normotensive men who underwent symptom-limited treadmill testing at baseline. Incident HTN was defined as SBP/diastolic blood pressure greater than 140/90 mm Hg and/or diagnosed HTN by a physician. During an average 5-year follow-up, 364 (9.7%) new cases of HTN were observed. The most discriminatory cutoff values for peak SBP and relative SBP for predicting incident HTN were 181 mm Hg (areas under the curve (AUC) = 0.644, sensitivity = 54%, and specificity = 69%) and 52 mm Hg (AUC = 0.549, sensitivity = 64.3%, and specificity = 44.6%), respectively. Participants with peak SBP greater than 181 mm Hg and relative SBP greater than 52 mm Hg had 1.54-fold (95% CI: 1.23-1.93) and 1.44-fold (95% CI: 1.16-1.80) risks of developing HTN after adjusting for potential confounding variables. When these 2 variables were entered simultaneously into the Cox proportional hazards regression model with adjustment for potential confounding variables, only peak SBP (relative risk: 1.39, 95% CI: 1.02-1.89) was a predictor of the development of HTN. The most accurate discriminators for peak and relative SBP during treadmill exercise testing to predict incident HTN were greater than 181 and 52 mm Hg, respectively, in normotensive men. A peak SBP greater than 181 mm Hg during treadmill exercise testing may provide a useful predictor for the development of HTN in clinical practice. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stoller, Oliver; Schindelholz, Matthias; Bichsel, Lukas; Schuster, Corina; de Bie, Rob A; de Bruin, Eling D; Hunt, Kenneth J
2014-07-01
The majority of post-stroke individuals suffer from low exercise capacity as a secondary reaction to immobility. The aim of this study was to prove the concept of feedback-controlled robotics-assisted treadmill exercise (RATE) to assess aerobic capacity and guide cardiovascular exercise in severely impaired individuals early after stroke. Subjects underwent constant load and incremental exercise testing using a human-in-the-loop feedback system within a robotics-assisted exoskeleton (Lokomat, Hocoma AG, CH). Inclusion criteria were: stroke onset ≤8 weeks, stable medical condition, non-ambulatory status, moderate motor control of the lower limbs and appropriate cognitive function. Outcome measures included oxygen uptake kinetics, peak oxygen uptake (VO2peak), gas exchange threshold (GET), peak heart rate (HRpeak), peak work rate (Ppeak) and accuracy of reaching target work rate (P-RMSE). Three subjects (18-42 d post-stroke) were included. Oxygen uptake kinetics during constant load ranged from 42.0 to 60.2 s. Incremental exercise testing showed: VO2peak range 19.7-28.8 ml/min/kg, GET range 11.6-12.7 ml/min/kg, and HRpeak range 115-161 bpm. Ppeak range was 55.2-110.9 W and P-RMSE range was 3.8-7.5 W. The concept of feedback-controlled RATE for assessment of aerobic capacity and guidance of cardiovascular exercise is feasible. Further research is warranted to validate the method on a larger scale. Aerobic capacity is seriously reduced in post-stroke individuals as a secondary reaction to immobility. Robotics-assisted walking devices may have substantial clinical relevance regarding assessment and improvement of aerobic capacity early after stroke. Feedback-controlled robotics-assisted treadmill exercise represents a new concept for cardiovascular assessment and intervention protocols for severely impaired individuals.
Effects of low-dye taping on plantar pressure pre and post exercise: an exploratory study.
Nolan, Damien; Kennedy, Norelee
2009-04-21
Low-Dye taping is used for excessive pronation at the subtalar joint of the foot. Previous research has focused on the tape's immediate effect on plantar pressure. Its effectiveness following exercise has not been investigated. Peak plantar pressure distribution provides an indirect representation of subtalar joint kinematics. The objectives of the study were 1) To determine the effects of Low-Dye taping on peak plantar pressure immediately post-application. 2) To determine whether any initial effects are maintained following exercise. 12 asymptomatic subjects participated; each being screened for excessive pronation (navicular drop > 10 mm). Plantar pressure data was recorded, using the F-scan, at four intervals during the testing session: un-taped, baseline-taped, post-exercise session 1, and post-exercise session 2. Each exercise session consisted of a 10-minute walk at a normal pace. The foot was divided into 6 regions during data analysis. Repeated-measures analysis of variance (ANOVA) was used to assess regional pressure variations across the four testing conditions. Reduced lateral forefoot peak plantar pressure was the only significant difference immediately post tape application (p = 0.039). This effect was lost after 10 minutes of exercise (p = 0.036). Each exercise session resulted in significantly higher medial forefoot peak pressure compared to un-taped; (p = 0.015) and (p = 0.014) respectively, and baseline-taped; (p = 0.036) and (p = 0.015) respectively. Medial and lateral rearfoot values had also increased after the second session (p = 0.004), following their non-significant reduction at baseline-taped. A trend towards a medial-to-lateral shift in pressure present in the midfoot immediately following tape application was still present after 20 minutes of exercise. Low-Dye tape's initial effect of reduced lateral forefoot peak plantar pressure was lost after a 10-minute walk. However, the tape continued to have an effect on the medial forefoot after 20 minutes of exercise. Further studies with larger sample sizes are required to examine the important finding of the anti-pronatory trend present in the midfoot.
Interval training intensity affects energy intake compensation in obese men.
Alkahtani, Shaea A; Byrne, Nuala M; Hills, Andrew P; King, Neil A
2014-12-01
Compensatory responses may attenuate the effectiveness of exercise training in weight management. The aim of this study was to compare the effect of moderate- and high-intensity interval training on eating behavior compensation. Using a crossover design, 10 overweight and obese men participated in 4-week moderate (MIIT) and high (HIIT) intensity interval training. MIIT consisted of 5-min cycling stages at ± 20% of mechanical work at 45%VO(2)peak, and HIIT consisted of alternate 30-s work at 90%VO(2)peak and 30-s rests, for 30 to 45 min. Assessments included a constant-load exercise test at 45%VO(2)peak for 45 min followed by 60-min recovery. Appetite sensations were measured during the exercise test using a Visual Analog Scale. Food preferences (liking and wanting) were assessed using a computer-based paradigm, and this paradigm uses 20 photographic food stimuli varying along two dimensions, fat (high or low) and taste (sweet or nonsweet). An ad libitum test meal was provided after the constant-load exercise test. Exercise-induced hunger and desire to eat decreased after HIIT, and the difference between MIIT and HIIT in desire to eat approached significance (p = .07). Exercise-induced liking for high-fat nonsweet food tended to increase after MIIT and decreased after HIIT (p = .09). Fat intake decreased by 16% after HIIT, and increased by 38% after MIIT, with the difference between MIIT and HIIT approaching significance (p = .07). This study provides evidence that energy intake compensation differs between MIIT and HIIT.
van Riel, Annelieke C. M. J.; Systrom, David M.; Oliveira, Rudolf K. F.; Landzberg, Michael J.; Mulder, Barbara J. M.; Bouma, Berto J.; Maron, Bradley A.; Shah, Amil M.; Waxman, Aaron B.
2017-01-01
Background We recently reported a novel observation that many patients with equal resting supine right ventricular(RV) and pulmonary artery(PA) systolic pressures develop an RV outflow tract(RVOT) pressure gradient during upright exercise. The current work details the characteristics of patients who develop such an RVOT gradient. Methods We studied 294 patients (59.7±15.5 years-old, 49% male) referred for clinical invasive cardiopulmonary exercise testing, who did not have a resting RVOT pressure gradient defined by the simultaneously measured peak-to-peak difference between RV and PA systolic pressures. Results The magnitude of RVOT gradient did not correspond to clinical or hemodynamic findings suggestive of right heart failure; rather, higher gradients were associated with favorable exercise findings. The presence of a high peak RVOT gradient (90th percentile, ≥33mmHg) was associated with male sex (70 vs. 46%, p = 0.01), younger age (43.6±17.7 vs. 61.8±13.9 years, p<0.001), lower peak right atrial pressure (5 [3–7] vs. 8 [4–12]mmHg, p<0.001), higher peak heart rate (159±19 vs. 124±26 beats per minute, p<0.001), and higher peak cardiac index (8.3±2.3 vs. 5.7±1.9 L/min/m2, p<0.001). These associations persisted when treating peak RVOT as a continuous variable and after age and sex adjustment. At peak exercise, patients with a high exercise RVOT gradient had both higher RV systolic pressure (78±11 vs. 66±17 mmHg, p<0.001) and lower PA systolic pressure (34±8 vs. 50±19 mmHg, p<0.001). Conclusions Development of a systolic RV-PA pressure gradient during upright exercise is not associated with an adverse hemodynamic exercise response and may represent a normal physiologic finding in aerobically fit young people. PMID:28636647
Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che
2014-01-01
Objective. To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. Design. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. Results. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO2 peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Conclusions. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living. PMID:25197712
Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che
2014-01-01
To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO₂ peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living.
Spielmanns, Marc; Boeselt, Tobias; Gloeckl, Rainer; Klutsch, Anja; Fischer, Henrike; Polanski, Henryk; Nell, Christoph; Storre, Jan H; Windisch, Wolfram; Koczulla, Andreas R
2017-03-01
The objective of this study was to investigate the benefits of a low-volume out-patient whole-body vibration training (WBVT) program on exercise capacity in comparison with a calisthenics training program in subjects with COPD. In this single-center randomized controlled trial, 29 subjects with mild to severe COPD were randomized to WBVT or to calisthenics training, including relaxation and breathing retraining in combination with calisthenics exercises. Both groups equally exercised for a duration of 3 months with 2 sessions of 30 min/week. Outcome parameters were 6-min walk distance (6MWD, primary outcome), 5-repetition sit-to-stand test, leg press peak force, Berg balance scale, St George Respiratory Questionnaire, and COPD assessment test. Twenty-seven subjects completed the study (WBVT, n = 14; calisthenics training program, n = 13). Baseline characteristics between groups were comparable. Subjects in the WBVT group significantly improved median (interquartile range) 6MWD (+105 [45.5-133.5] m, P = .001), sit-to-stand test (-2.3 [-3.1 to -1.3] s, P = .001), peak force (28.7 [16.7-33.3] kg, P = .001), and Berg balance scale (1.5 [0.0-4.0] points, P = .055). Changes in 6MWD, sit-to-stand test, and leg press peak force were also found to be significantly different between groups in favor of the WBVT group. Only the between-group difference of the COPD assessment test score was in favor of the calisthenics training group ( P = .02). A low-volume WBVT program resulted in significantly and clinically relevant larger improvements in exercise capacity compared with calisthenics exercises in subjects with mild to severe COPD. (ClinicalTrials.gov registration DRKS9706.). Copyright © 2017 by Daedalus Enterprises.
Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Silva, P F; Furlan, V
2016-02-01
The oxygen uptake efficiency slope (OUES) is a submaximal index incorporating cardiovascular, peripheral, and pulmonary factors that determine the ventilatory response to exercise. The purpose of this study was to evaluate the effects of continuous exercise training and interval exercise training on the OUES in patients with coronary artery disease. Thirty-five patients (59.3±1.8 years old; 28 men, 7 women) with coronary artery disease were randomly divided into two groups: continuous exercise training (n=18) and interval exercise training (n=17). All patients performed graded exercise tests with respiratory gas analysis before and 3 months after the exercise-training program to determine ventilatory anaerobic threshold (VAT), respiratory compensation point, and peak oxygen consumption (peak VO2). The OUES was assessed based on data from the second minute of exercise until exhaustion by calculating the slope of the linear relation between oxygen uptake and the logarithm of total ventilation. After the interventions, both groups showed increased aerobic fitness (P<0.05). In addition, both the continuous exercise and interval exercise training groups demonstrated an increase in OUES (P<0.05). Significant associations were observed in both groups: 1) continuous exercise training (OUES and peak VO2 r=0.57; OUES and VO2 VAT r=0.57); 2) interval exercise training (OUES and peak VO2 r=0.80; OUES and VO2 VAT r=0.67). Continuous and interval exercise training resulted in a similar increase in OUES among patients with coronary artery disease. These findings suggest that improvements in OUES among CAD patients after aerobic exercise training may be dependent on peripheral and central mechanisms.
The First 10 Years of Aerobic Exercise Responses to Long-Duration ISS Flights.
Moore, Alan D; Lynn, Peggy A; Feiveson, Alan H
2015-12-01
Aerobic deconditioning may occur during International Space Station (ISS) flights. This paper documents findings from exercise testing conducted before, during, and after ISS expeditions. There were 30 male and 7 female astronauts on ISS missions (48 to 219 d, mean 163 d) who performed cycle exercise protocols consisting of 5-min stages eliciting 25%, 50%, and 75% peak oxygen uptake (Vo(2peak)). Tests were conducted 30 to 90 d before missions, on flight day 15 and every 30 flight days thereafter, and on recovery (R) days +5 and +30. During pre- and postflight tests, heart rate (HR) and metabolic gas exchange were measured. During flight, extrapolation of the HR and Vo2 relationship to preflight-measured peak HR provided an estimate of Vo(2peak), referred to as the aerobic capacity index (ACI). HR during each exercise stage was elevated (P < 0.05) and oxygen pulse was reduced (P < 0.05) on R+5 compared to preflight; however, no other metabolic gas analysis values significantly changed. Compared to preflight, the ACI declined (P < 0.001) on R+5, but recovered to levels greater than preflight by R+30 (P = 0.008). During flight, ACI decreased below preflight values, but increased with mission duration (P < 0.001). Aerobic deconditioning likely occurs initially during flight, but ACI recovers toward preflight levels as flight duration increases, presumably due to performance of exercise countermeasures. Elevated HR and lowered oxygen pulse on R+5 likely results from some combination of relative hypovolemia, lowered cardiac stroke volume, reduced cardiac distensibility, and anemia, but recovery occurs by R+30.
Tschakert, Gerhard; Kroepfl, Julia M.; Mueller, Alexander; Harpf, Hanns; Harpf, Leonhard; Traninger, Heimo; Wallner-Liebmann, Sandra; Stojakovic, Tatjana; Scharnagl, Hubert; Meinitzer, Andreas; Pichlhoefer, Patriz; Hofmann, Peter
2016-01-01
Despite described benefits of aerobic high-intensity interval exercise (HIIE), the acute responses during different HIIE modes and associated health risks have only been sparsely discovered in heart disease patients. Therefore, the aim of this study was to investigate the acute responses for physiological parameters, cardiovascular and inflammatory biomarkers, and catecholamines yielded by two different aerobic HIIE protocols compared to continuous exercise (CE) in phase III cardiac rehabilitation. Eight cardiac patients (7 with coronary heart disease, 1 with myocarditis; 7 males, 1 female; age: 63.0 ± 9.4 years; height: 1.74 ± 0.05 m; weight: 83.6 ± 8.7 kg), all but one treated with ß-blocking agents, performed a maximal symptom-limited incremental exercise test (IET) and three different exercise tests matched for mean load (Pmean) and total duration: 1) short HIIE with a peak workload duration (tpeak) of 20 s and a peak workload (Ppeak) equal to the maximum power output (Pmax) from IET; 2) long HIIE with a tpeak of 4 min, Ppeak was corresponding to the power output at 85 % of maximal heart rate (HRmax) from IET; 3) CE with a target workload equal to Pmean of both HIIE modes. Acute metabolic and peak cardiorespiratory responses were significantly higher during long HIIE compared to short HIIE and CE (p < 0.05) except HRpeak which tended to be higher in long HIIE than in short HIIE (p = 0.08). Between short HIIE and CE, no significant difference was found for any parameter. Acute responses of cardiovascular and inflammatory biomarkers and catecholamines didn’t show any significant difference between tests (p > 0.05). All health-related variables remained in a normal range in any test except NT-proBNP, which was already elevated at baseline. Despite a high Ppeak particularly in short HIIE, both HIIE modes were as safe and as well tolerated as moderate CE in cardiac patients by using our methodological approach. Key points High-intensity interval exercise (HIIE) with short peak workload durations (tpeak) induce a lower acute metabolic and peak cardiorespiratory response compared to intervals with long tpeak despite higher peak workload intensities and identical mean load. No significant difference for any physiological parameter was found between short HIIE and CE. Between short HIIE, long HIIE, and CE, no significant difference was found in the increase (or decrease, respectively,) of health related markers such as cardiovascular biomarkers, catecholamines, or inflammatory parameters during exercise. During all exercise modes, all risk markers remained in a normal range except for NT-proBNP which was, however, already elevated at baseline. Short HIIE, long HIIE, and CE were safely performed by patients with CHD or myocarditis in cardiac rehabilitation by using our methodological approach to exercise prescription. This approach included the prescription of exercise intensities with respect to LTP1, LTP2, and Pmax as well as a conscious setting of Pmean at a moderate level (80 % of PLTP2). Importantly, all exercise modes were matched for Pmean and exercise duration in order to enable a comparison of the three protocols. PMID:26957930
Crow, Justin F; Buttifant, David; Kearny, Simon G; Hrysomallis, Con
2012-02-01
The purpose of this study was to investigate the acute effect of 3 warm-up protocols on peak power production during countermovement jump (CMJ) testing. The intention was to devise and compare practical protocols that could be applied as a warm-up immediately before competition matches or weight training sessions. A group of 22 elite Australian Rules Football players performed 3 different warm-up protocols over 3 testing sessions in a randomized order. The protocols included a series of low load exercises targeting the gluteal muscle group (GM-P), a whole-body vibration (WBV) protocol (WBV-P) wherein the subjects stood on a platform vibrating at 30 Hz for 45 seconds, and a no-warm-up condition (CON). The CMJ testing was performed within 5 minutes of each warm-up protocol on an unloaded Smith machine using a linear encoder to measure peak power output. Peak power production was significantly greater after the GM-P than after both the CON (p < 0.05) and WBV-P (p < 0.01). No significant differences in peak power production were detected between the WBV-P and CON. These results have demonstrated that a low load exercise protocol targeting the gluteal muscle group is effective at acutely enhancing peak power output in elite athletes. The mechanisms for the observed improvements are unclear and warrant further investigation. Coaches may consider incorporating low load exercises targeting the gluteal muscle group into the warm-up of athletes competing in sports requiring explosive power output of the lower limbs.
Gottlieb-Vedi, M; Essén-Gustavsson, B; Lindholm, A
1996-12-01
Five Standardbred trotters performed treadmill exercise with incrementally increasing trotting velocities for 2 min intervals in three different tests until fatigue. Each test was performed with draught loads of either 10, 20 or 30 kilopond (kp). Each trotting interval was followed by 2 min periods at a walk without draught load. Recordings were made of heart rate (HR), respiratory rate (RR), plasma lactate (PLA) and stride frequency (SF) at the end of each trotting interval. The HR increased to average values of 191 +/- 10,203 +/- 10 and 214 +/- 7 bpm and PLA increased to 3.8 +/- 0.7, 7.3 +/- 3.8 and 10.8 +/- 6.4 mmol/l at 9 m/s in the three tests, respectively. The HR response to exercise was significantly higher with increasing draught loads, and PLA was significantly higher with 30 kp compared to 10 kp draught resistance. The lowest respiratory rate was seen in the test with 30 kp loading. Peak oxygen uptake (VO2peak) was measured in a separate test on a sloped treadmill with increasing velocities without draught load and averaged 70.4 +/- 9.11/min. Muscle biopsies were taken from the gluteus muscle. Individual variations were seen in VO2peak, muscle fibre composition and HR and PLA responses to exercise. In conclusion, at a certain velocity a small increase in draught resistance from 10 to 30 kp significantly increases both the HR and PLA responses. At comparable work intensities the horses differed in circulatory and metabolic responses to exercise.
Cardiorespiratory response to exercise testing in individuals with Alzheimer's disease.
Billinger, Sandra A; Vidoni, Eric D; Honea, Robyn A; Burns, Jeffrey M
2011-12-01
To examine exercise testing response in Alzheimer's disease (AD) and possible disease-related change over time. Retrospective assessment of a 2-year observational study. University medical center. Individuals without dementia (n=50) and with AD (n=31). Not applicable. Participants underwent a clinical dementia evaluation and performed an incremental exercise test using a treadmill and the modified Bruce protocol at baseline and at a 2-year follow-up. We examined oxygen consumption, minute ventilation, heart rate, and ventilatory equivalents for oxygen and carbon dioxide at submaximal and peak exercise intensities to determine whether the measures were different between groups or over time. Participants with AD and those without dementia performed similarly at submaximal effort, and both groups showed similar changes in exercise response over 2 years. However, nondemented individuals had consistently higher values of oxygen consumption (P≤.02) and minute ventilation at peak effort at baseline (P=.003). Individuals with AD demonstrate physiologic responses to submaximal exercise effort that are not significantly different than individuals without dementia. However, differences are apparent at the extreme of effort. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Coiro, Vittorio; Volpi, Riccardo; Casti, Amos; Maffei, Maria Ludovica; Stella, Adriano; Volta, Elio; Chiodera, Paolo
2011-01-01
AIMS To establish the possible involvement of alprazolam (ALP) and/or opiates in the mechanism underlying the ACTH/cortisol response to physical exercise. METHODS Tests were carried out under basal conditions (exercise control test), exercise plus ALP (50 µg at time −90 min), naloxone (10 mg at time 0) or ALP plus naloxone. Plasma ACTH and serum cortisol concentrations were evaluated in blood samples taken before, during and after the bicycle ergometer tests. RESULTS ACTH and cortisol concentrations rose significantly after physical exercise. Maximum peak at time 15 min (P≤ 0.01 vs. baseline) for ACTH and at time 30 min (P≤ 0.01 vs. baseline) for cortisol. In the presence of naloxone, the ACTH and cortisol responses were significantly increased (maximum peak at time 20 min, P≤ 0.02 vs. control test for ACTH, and at time 30 min (P≤ 0.01 vs. baseline) for cortisol) whereas they were abolished by ALP. When ALP and naloxone were given together, the inhibitory effect of ALP was partial. CONCLUSIONS These data demonstrate an inhibitory effect of ALP in the regulation of the ACTH/cortisol response to physical exercise in man and suggest that GABAergic receptor activating benzodiazepines and opioids interact in the neuroendocrine secretion of ACTH/cortisol. PMID:21564163
Blondheim, David S; Yosef, Avigail; Marmor, Alon T
2004-12-01
Patients with ischaemic heart disease have to perform exercise tests repeatedly. It is not clear if a small meal eaten before the test might influence it and if the meal's composition is important. We performed a double blind, randomised, crossover study on 20 volunteers with documented ischaemic heart disease known to have positive exercise tests. Each had three symptom limited exercise tests done one hour after a 200 ml meal, rich in either fat, carbohydrate or protein. Each postprandial test was compared to a fasting exercise test performed just before the meal. Postprandial blood pressure, time to angina and to peak exercise and double product at onset of ST-depression were not significantly altered by any of the meals. Heart rate was slightly increased only after the fat meal. The nutritional composition of a small meal eaten an hour before an exercise test has no clinically important impact on the results of the test in patients with stable angina pectoris.
Stray-Gundersen, James; Parsons, Dora Beth; Thompson, Jeffrey R.
2016-01-01
Patients treated with hemodialysis develop severely reduced functional capacity, which can be partially ameliorated by correcting anemia and through exercise training. In this study, we determined perturbations of an erythroid-stimulating agent and exercise training to examine if and where limitation to oxygen transport exists in patients on hemodialysis. Twenty-seven patients on hemodialysis completed a crossover study consisting of two exercise training phases at two hematocrit (Hct) values: 30% (anemic) and 42% (physiologic; normalized by treatment with erythroid-stimulating agent). To determine primary outcome measures of peak power and oxygen consumption (VO2) and secondary measures related to components of oxygen transport and utilization, all patients underwent numerous tests at five time points: baseline, untrained at Hct of 30%, after training at Hct of 30%, untrained at Hct of 42%, and after training at Hct of 42%. Hct normalization, exercise training, or the combination thereof significantly improved peak power and VO2 relative to values in the untrained anemic phase. Hct normalization increased peak arterial oxygen and arteriovenous oxygen difference, whereas exercise training improved cardiac output, citrate synthase activity, and peak tissue diffusing capacity. However, although the increase in arterial oxygen observed in the combination phase reached a value similar to that in healthy sedentary controls, the increase in peak arteriovenous oxygen difference did not. Muscle biopsy specimens showed markedly thickened endothelium and electron–dense interstitial deposits. In conclusion, exercise and Hct normalization had positive effects but failed to normalize exercise capacity in patients on hemodialysis. This effect may be caused by abnormalities identified within skeletal muscle. PMID:27153927
Ho, Chiung-Fang; Maa, Suh-Hwa
2016-08-01
Exercise training improves the management of stable chronic obstructive pulmonary disease (COPD). COPD patients benefit from exercise training programs in terms of improved VO2 peak values and decreased dyspnea, fatigue, hospital admissions, and rates of mortality, increasing exercise capacity and health-related quality of life (HRQOL). COPD is often associated with impairment in exercise tolerance. About 51% of patients have a limited capacity for normal activity, which often further degrades exercise capacity, creating a vicious circle. Exercise testing is highly recommended to assess a patient's individualized functions and limitations in order to determine the optimal level of training intensity prior to initiating an exercise-training regimen. The outcomes of exercise testing provide a powerful indicator of prognosis in COPD patients. The six-minute walking test (6MWT) and the incremental shuttle-walking test (ISWT) are widely used in exercise testing to measure a patient's exercise ability by walking distances. While nursing-related articles published in Taiwan frequently cite and use the 6MWT to assess exercise capacity in COPD patients, the ISWT is rarely used. This paper introduces the testing method, strengths and weaknesses, and application of the two tests in order to provide clinical guidelines for assessing the current exercise capacity of COPD patients.
Shafer, K M; Janssen, L; Carrick-Ranson, G; Rahmani, S; Palmer, D; Fujimoto, N; Livingston, S; Matulevicius, S A; Forbess, L W; Brickner, B; Levine, B D
2015-01-01
We aimed to assess the haemodynamic effects of exercise training in transposition of the great arteries (TGA) patients with systemic right ventricles (SRVs). TGA patients have limited exercise tolerance and early mortality due to systemic (right) ventricular failure. Whether exercise training enhances or injures the SRV is unclear. Fourteen asymptomatic patients (34 ± 10 years) with TGA and SRV were enrolled in a 12 week exercise training programme (moderate and high-intensity workouts). Controls were matched on age, gender, BMI and physical activity. Exercise testing pre- and post- training included: (a) submaximal and peak; (b) prolonged (60 min) submaximal endurance and (c) high-intensity intervals. Oxygen uptake (; Douglas bag technique), cardiac output (, foreign-gas rebreathing), ventricular function (echocardiography and cardiac MRI) and serum biomarkers were assessed. TGA patients had lower peak , , and stroke volume (SV), a blunted / slope, and diminished SV response to exercise (SV increase from rest: TGA = 15.2%, controls = 68.9%, P < 0.001) compared with controls. After training, TGA patients increased peak by 6 ± 8.5%, similar to controls (interaction P = 0.24). The magnitude of SV reserve on initial testing correlated with training response (r = 0.58, P = 0.047), though overall, no change in peak was observed. High-sensitivity troponin T (hs-TnT) and N-terminal prohormone of brain naturetic peptide (NT pro-BNP) were low and did not change with acute exercise or after training. Our data show that TGA patients with SRVs in this study safely participated in exercise training and improved peak . Neither prolonged submaximal exercise, nor high-intensity intervals, nor short-term exercise training seem to injure the systemic right ventricle. Key Points Patients with transposition of the great arteries (TGA) and systemic right ventricles have premature congestive heart failure; there is also a growing concern that athletes who perform extraordinary endurance exercise may injure the right ventricle. Therefore we felt it essential to determine whether exercise training might injure a systemic right ventricle which is loaded with every heartbeat. Previous studies have shown that short term exercise training is feasible in TGA patients, but its effect on ventricular function is unclear. We demonstrate that systemic right ventricular function is preserved (and may be improved) in TGA patients with exercise training programmes that are typical of recreational and sports participation, with no evidence of injury on biomarker assessment. Stroke volume reserve during exercise correlates with exercise training response in our TGA patients, identifying this as a marker of a systemic right ventricle (SRV) that may most tolerate (and possibly even be improved by) exercise training. PMID:25809342
Cardiorespiratory response to exercise testing in individuals with Alzheimer’s disease
Billinger, Sandra A.; Vidoni, Eric D.; Honea, Robyn A.; Burns, Jeffrey M.
2011-01-01
Objective To exercise testing in AD and possible disease-related change over time. Though physical activity and fitness are receiving increased attention as a possible adjunct treatment for Alzheimer’s disease (AD), relatively little work has been done characterizing their physiologic response to exercise Design Retrospective assessment of a 2-year, observational study Setting University medical center Participants 50 nondemented individuals and 31 with AD Interventions None Main Outcome Measures Participants underwent a clinical dementia evaluation and performed an incremental exercise test using a treadmill and the modified Bruce protocol at baseline and at a two year follow-up. We examined oxygen consumption, minute ventilation, heart rate and ventilatory equivalents for oxygen and carbon dioxide at submaximal and peak exercise intensities to determine if the measures were different between groups or over time. Results AD and nondemented participants performed similarly at submaximal effort and both groups showed similar change in exercise response over 2 years. However, nondemented individuals had consistently higher values of oxygen consumption (p≤0.02) and minute ventilation at peak effort at baseline (p=0.003). Conclusions Individuals with AD demonstrate physiologic responses to submaximal exercise effort that are not significantly different than individuals without dementia. However, differences are apparent at the extreme of effort. PMID:22133248
Franssen, Frits M E; Wouters, Emiel F M; Baarends, Erica M; Akkermans, Marco A; Schols, Annemie M W J
2002-10-01
Previous studies indicate that energy expenditure related to physical activity is enhanced and that mechanical efficiency of leg exercise is reduced in patients with chronic obstructive pulmonary disease (COPD). However, it is yet unclear whether an inefficient energy expenditure is also present during other activities in COPD. This study was carried out to examine arm efficiency and peak arm exercise performance relative to leg exercise in 33 (23 male) patients with COPD ((mean +/- SEM) age: 61 +/- 2 yr; FEV : 40 +/- 2% of predicted) and 20 sex- and age-matched healthy controls. Body composition, pulmonary function, resting energy expenditure (REE), and peak leg and arm exercise performance were determined. To calculate mechanical efficiency, subjects performed submaximal leg and arm ergometry at 50% of achieved peak loads. During exercise testing, metabolic and ventilatory parameters were measured. In contrast to a reduced leg mechanical efficiency in patients compared with controls (15.6 +/- 0.6% and 22.5 +/- 0.6%, respectively; < 0.001), arm mechanical efficiency was comparable in both groups (COPD: 18.3 +/- 0.9%, controls: 21.0 +/- 1.2%; NS). Arm efficiency was not related to leg efficiency, pulmonary function, work of breathing, or REE. Also, arm exercise capacity was relatively preserved in patients with COPD (ratio arm peak work rate/leg peak work rate in patients: 89% vs 53% in controls; < 0.001). Mechanical efficiency and exercise capacity of the upper and lower limbs are not homogeneously affected in COPD, with a relative preservation of the upper limbs. This may have implications for screening of exercise tolerance and prescription of training interventions in patients with COPD. Future studies need to elucidate the mechanism behind this observation.
Muscular Activation During Plyometric Exercises in 90° of Glenohumeral Joint Abduction
Ellenbecker, Todd S.; Sueyoshi, Tetsuro; Bailie, David S.
2015-01-01
Background: Plyometric exercises are frequently used to increase posterior rotator cuff and periscapular muscle strength and simulate demands and positional stresses in overhead athletes. The purpose of this study was to provide descriptive data on posterior rotator cuff and scapular muscle activation during upper extremity plyometric exercises in 90° of glenohumeral joint abduction. Hypothesis: Levels of muscular activity in the posterior rotator cuff and scapular stabilizers will be high during plyometric shoulder exercises similar to previously reported electromyographic (EMG) levels of shoulder rehabilitation exercises. Study Design: Descriptive laboratory study. Methods: Twenty healthy subjects were tested using surface EMG during the performance of 2 plyometric shoulder exercises: prone external rotation (PERP) and reverse catch external rotation (RCP) using a handheld medicine ball. Electrode application included the upper and lower trapezius (UT and LT, respectively), serratus anterior (SA), infraspinatus (IN), and the middle and posterior deltoid (MD and PD, respectively) muscles. A 10-second interval of repetitive plyometric exercise (PERP) and 3 repetitions of RCP were sampled. Peak and average normalized EMG data were generated. Results: Normalized peak and average IN activity ranged between 73% and 102% and between 28% and 52% during the plyometric exercises, respectively, with peak and average LT activity measured between 79% and 131% and between 31% and 61%. SA activity ranged between 76% and 86% for peak and between 35% and 37% for average activity. Muscular activity levels in the MD and PD ranged between 49% and 72% and between 12% and 33% for peak and average, respectively. Conclusion: Moderate to high levels of muscular activity were measured in the rotator cuff and scapular stabilizers during these plyometric exercises with the glenohumeral joint abducted 90°. PMID:25553216
Muscular activation during plyometric exercises in 90° of glenohumeral joint abduction.
Ellenbecker, Todd S; Sueyoshi, Tetsuro; Bailie, David S
2015-01-01
Plyometric exercises are frequently used to increase posterior rotator cuff and periscapular muscle strength and simulate demands and positional stresses in overhead athletes. The purpose of this study was to provide descriptive data on posterior rotator cuff and scapular muscle activation during upper extremity plyometric exercises in 90° of glenohumeral joint abduction. Levels of muscular activity in the posterior rotator cuff and scapular stabilizers will be high during plyometric shoulder exercises similar to previously reported electromyographic (EMG) levels of shoulder rehabilitation exercises. Descriptive laboratory study. Twenty healthy subjects were tested using surface EMG during the performance of 2 plyometric shoulder exercises: prone external rotation (PERP) and reverse catch external rotation (RCP) using a handheld medicine ball. Electrode application included the upper and lower trapezius (UT and LT, respectively), serratus anterior (SA), infraspinatus (IN), and the middle and posterior deltoid (MD and PD, respectively) muscles. A 10-second interval of repetitive plyometric exercise (PERP) and 3 repetitions of RCP were sampled. Peak and average normalized EMG data were generated. Normalized peak and average IN activity ranged between 73% and 102% and between 28% and 52% during the plyometric exercises, respectively, with peak and average LT activity measured between 79% and 131% and between 31% and 61%. SA activity ranged between 76% and 86% for peak and between 35% and 37% for average activity. Muscular activity levels in the MD and PD ranged between 49% and 72% and between 12% and 33% for peak and average, respectively. Moderate to high levels of muscular activity were measured in the rotator cuff and scapular stabilizers during these plyometric exercises with the glenohumeral joint abducted 90°.
Cerebral Hemodynamics During Exercise and Recovery in Heart Transplant Recipients.
Gayda, Mathieu; Desjardins, Audrey; Lapierre, Gabriel; Dupuy, Olivier; Fraser, Sarah; Bherer, Louis; Juneau, Martin; White, Michel; Gremeaux, Vincent; Labelle, Véronique; Nigam, Anil
2016-04-01
The aims of this work were (1) to compare cerebral oxygenation-perfusion (COP), central hemodynamics, and peak oxygen uptake (V˙o2peak) in heart transplant recipients (HTRs) vs age-matched healthy controls (AMHCs) during exercise and recovery and (2) to study the relationships between COP, central hemodynamics, and V˙o2peak in HTRs and AMHCs. Twenty-six HTRs (3 women) and 27 AMHCs (5 women) were recruited. Maximal cardiopulmonary function (gas exchange analysis), cardiac hemodynamics (impedance cardiography), and left frontal COP (near-infrared spectroscopy) were measured continuously during and after a maximal ergocycle (Ergoline 800S, Bitz, Germany) test. Compared with AMHCs, HTRs had lower V˙o2peak, maximal cardiac index (CImax), and maximal ventilatory variables (P < 0.05). COP was lower during exercise (oxyhemoglobin [ΔO2Hb], 50% and 75% of V˙O2peak, total hemoglobin [ΔtHb], 100% of V˙O2peak; P < 0.05), and recovery in HTRs (ΔO2Hb, minutes 2-5; ΔtHb, minutes 1-5; P < 0.05) compared with AMHCs. End-tidal pressure of CO2 was lower during exercise compared with that in AMHCs (P < 0.0001). In HTRs, CImax was positively correlated with exercise cerebral hemodynamics (R = 0.54-0.60; P < 0.01). In HTRs, COP was reduced during exercise and recovery compared with that in AMHCs, potentially because of a combination of blunted cerebral vasodilation by CO2, cerebrovascular dysfunction, reduced cardiac function, and medication. The impaired V˙O2peak observed in HTRs was mainly caused by reduced maximal ventilation and CI. In HTRs, COP is impaired and is correlated with cardiac function, potentially impacting cognitive function. Therefore, we need to study which interventions (eg, exercise training) are most effective for improving or normalizing (or both) COP during and after exercise in HTRs. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Impact of beta-blockers on cardiopulmonary exercise testing in patients with advanced liver disease.
Wallen, M P; Hall, A; Dias, K A; Ramos, J S; Keating, S E; Woodward, A J; Skinner, T L; Macdonald, G A; Arena, R; Coombes, J S
2017-10-01
Patients with advanced liver disease may develop portal hypertension that can result in variceal haemorrhage. Beta-blockers reduce portal pressure and minimise haemorrhage risk. These medications may attenuate measures of cardiopulmonary performance, such as the ventilatory threshold and peak oxygen uptake measured via cardiopulmonary exercise testing. To determine the effect of beta-blockers on cardiopulmonary exercise testing variables in patients with advanced liver disease. This was a cross-sectional analysis of 72 participants who completed a cardiopulmonary exercise test before liver transplantation. All participants remained on their usual beta-blocker dose and timing prior to the test. Variables measured during cardiopulmonary exercise testing included the ventilatory threshold, peak oxygen uptake, heart rate, oxygen pulse, the oxygen uptake efficiency slope and the ventilatory equivalents for carbon dioxide slope. Participants taking beta-blockers (n = 28) had a lower ventilatory threshold (P <.01) and peak oxygen uptake (P = .02), compared to participants not taking beta-blockers. After adjusting for age, the model of end-stage liver-disease score, liver-disease aetiology, presence of refractory ascites and ventilatory threshold remained significantly lower in the beta-blocker group (P = .04). The oxygen uptake efficiency slope was not impacted by beta-blocker use. Ventilatory threshold is reduced in patients with advanced liver disease taking beta-blockers compared to those not taking the medication. This may incorrectly risk stratify patients on beta-blockers and has implications for patient management before and after liver transplantation. The oxygen uptake efficiency slope was not influenced by beta-blockers and may therefore be a better measure of cardiopulmonary performance in this patient population. © 2017 John Wiley & Sons Ltd.
Andrianopoulos, Vasileios; Wagers, Scott S; Groenen, Miriam T J; Vanfleteren, Lowie E; Franssen, Frits M E; Smeenk, Frank W J M; Vogiatzis, Ioannis; Wouters, Emiel F M; Spruit, Martijn A
2014-05-31
Exercise tolerance can be assessed by the cycle endurance test (CET) and six-minute walk test (6MWT) in patients with Chronic Obstructive Pulmonary Disease (COPD). We sought to investigate the characteristics of functional exercise performance and determinants of the CET and 6MWT in a large clinical cohort of COPD patients. A dataset of 2053 COPD patients (43% female, age: 66.9 ± 9.5 years, FEV1% predicted: 48.2 ± 23.2) was analyzed retrospectively. Patients underwent, amongst others, respiratory function evaluation; medical tests and questionnaires, one maximal incremental cycle test where peak work rate was determined and two functional exercise tests: a CET at 75% of peak work rate and 6MWT. A stepwise multiple linear regression was used to assess determinants. On average, patients had impaired exercise tolerance (peak work rate: 56 ± 27% predicted, 6MWT: 69 ± 17% predicted). A total of 2002 patients had CET time of duration (CET-Tend) less than 20 min while only 51 (2.5%) of the patients achieved 20 min of CET-Tend . In former patients, the percent of predicted peak work rate achieved differed significantly between men (48 ± 21% predicted) and women (67 ± 31% predicted). In contrast, CET-Tend was longer in men (286 ± 174 s vs 250 ± 153 s, p < 0.001). Also, six minute walking distance (6MWD) was higher in men compared to women, both in absolute terms as in percent of predicted (443 m, 67%predicted vs 431 m, 72%predicted, p < 0.05). Gender was associated with the CET-Tend but BMI, FEV1 and FRC were related to the 6MWD highlighting the different determinants of exercise performance between CET and 6MWT. CET-Tend is a valuable outcome of CET as it is related to multiple clinical aspects of disease severity in COPD. Gender difference should temper the interpretation of CET.
Antunes, Amanda H; Alberton, Cristine L; Finatto, Paula; Pinto, Stephanie S; Cadore, Eduardo L; Zaffari, Paula; Kruel, Luiz F M
2015-01-01
Maximal tests conducted on land are not suitable for the prescription of aquatic exercises, which makes it difficult to optimize the intensity of water aerobics classes. The aim of the present study was to evaluate the maximal and anaerobic threshold cardiorespiratory responses to 6 water aerobics exercises. Volunteers performed 3 of the exercises in the sagittal plane and 3 in the frontal plane. Twelve active female volunteers (aged 24 ± 2 years) performed 6 maximal progressive test sessions. Throughout the exercise tests, we measured heart rate (HR) and oxygen consumption (VO2). We randomized all sessions with a minimum interval of 48 hr between each session. For statistical analysis, we used repeated-measures 1-way analysis of variance. Regarding the maximal responses, for the peak VO2, abductor hop and jumping jacks (JJ) showed significantly lower values than frontal kick and cross-country skiing (CCS; p < .001; partial η(2) = .509), while for the peak HR, JJ showed statistically significantly lower responses compared with stationary running and CCS (p < .001; partial η(2) = .401). At anaerobic threshold intensity expressed as the percentage of the maximum values, no statistically significant differences were found among exercises. Cardiorespiratory responses are directly associated with the muscle mass involved in the exercise. Thus, it is worth emphasizing the importance of performing a maximal test that is specific to the analyzed exercise so the prescription of the intensity can be safer and valid.
Commonly used reference values underestimate oxygen uptake in healthy, 50-year-old Swedish women.
Genberg, M; Andrén, B; Lind, L; Hedenström, H; Malinovschi, A
2018-01-01
Cardiopulmonary exercise testing (CPET) is the gold standard among clinical exercise tests. It combines a conventional stress test with measurement of oxygen uptake (V O 2 ) and CO 2 production. No validated Swedish reference values exist, and reference values in women are generally understudied. Moreover, the importance of achieved respiratory exchange ratio (RER) and the significance of breathing reserve (BR) at peak exercise in healthy individuals are poorly understood. We compared V O 2 at maximal load (peakV O 2 ) and anaerobic threshold (V O 2@ AT ) in healthy Swedish individuals with commonly used reference values, taking gender into account. Further, we analysed maximal workload and peakV O 2 with regard to peak RER and BR. In all, 181 healthy, 50-year-old individuals (91 women) performed CPET. PeakV O 2 was best predicted using Jones et al. (100·5%), while SHIP reference values underestimated peakV O 2 most: 112·5%. Furthermore, underestimation of peakV O 2 in women was found for all studied reference values (P<0·001) and was largest for SHIP: women had 128% of predicted peakV O 2 , while men had 104%. PeakV O 2 was similar in subjects with peak RER of 1-1·1 and RER > 1·1 (2 328·7 versus 2 176·7 ml min -1 , P = 0·11). Lower BR (≤30%) related to significantly higher peakV O 2 (P<0·001). In conclusion, peakV O 2 was best predicted by Jones. All studied reference values underestimated oxygen uptake in women. No evidence for demanding RER > 1·1 in healthy individuals was found. A lowered BR is probably a normal response to higher workloads in healthy individuals. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Effect of Pharmacologically-Induced Hypovolemia on Aerobic Capacity
NASA Technical Reports Server (NTRS)
Everett, Meghan E.; Lee, S. M. C.; Platts, S. H.
2009-01-01
Decreased peak oxygen consumption (VO2pk) and an elevated exercise heart rate (HR) response are associated with a reduction in plasma volume (PV) after space flight and bed rest, a space flight analog. Reduced VO2pk and submaximal exercise tolerance would negatively impact an astronaut s ability to perform near maximal work that would be required in the event of an emergency. We previously have administered IV furosemide followed by a low salt diet to model PV loss and orthostatic intolerance observed after spaceflight. Purpose: To determine whether a pharmacologically-induced reduction in PV results in decreased VO2pk and elevated exercise HR response. Methods: Six subjects (5M, 1F) performed two graded peak cycle tests (work rate increased by 35 or 50 W every 3 min), once while normovolemic and once while hypovolemic. HR and expired respiratory gases were continuously measured. To induce hypovolemia, subjects were administered a single dose of IV furosemide (0.5 mg.kg-1) 30 hr before exercise testing and then consumed a low-salt diet (10 mEq.d(sup -1)). PV was measured using carbon monoxide rebreathing. Exercise HR and VO2 responses were quantified as the area under the curve (AUC) calculated over each quartile of the peak test, based on test time in the hypovolemia condition. Paired t-tests were used to test for differences in PV, VO2pk, and peak HR between conditions. Repeated-measures ANOVAs were used to test for differences in AUC between conditions. Results: PV (3.32+/-0.12 vs. 2.77+/-0.16 L, p<0.05) and VO2pk (3.30+/-0.67 vs. 2.90+/-0.57 L.min(sup -1), p<0.05) were lower during hypovolemia than during normovolemia, but peak HR was not different (187+/-5 vs. 187+/-5 bpm). The AUC for VO2 and HR was different (p<0.05) between conditions only in the highest quartile: HR was 4% higher and VO2 was 5% lower during the hypovolemia condition. Conclusion: The mean difference in VO2pk (-12%) between normovolemia and hypovolemia was similar to the mean difference in PV (-17%). Similar decreases in PV and VO2pk have been observed following short duration space flight, suggesting that pharmacologically-induced PV loss can be used to model microgravity-induced reductions in VO2pk.
Kline, Christopher E; Crowley, E Patrick; Ewing, Gary B; Burch, James B; Blair, Steven N; Durstine, J Larry; Davis, J Mark; Youngstedt, Shawn D
2013-08-20
Obstructive sleep apnea (OSA) predisposes individuals to cardiovascular morbidity, and cardiopulmonary exercise test (CPET) markers prognostic for cardiovascular disease have been found to be abnormal in adults with OSA. Due to the persistence of OSA and its cardiovascular consequences, whether the cardiovascular adaptations normally conferred by exercise are blunted in adults not utilizing established OSA treatment is unknown. The aims of this study were to document whether OSA participants have abnormal CPET responses and determine whether exercise modifies these CPET markers in individuals with OSA. The CPET responses of 43 sedentary, overweight adults (body mass index [BMI]>25) with untreated OSA (apnea-hypopnea index [AHI]≥ 15) were compared against matched non-OSA controls (n=9). OSA participants were then randomized to a 12-week exercise training (n=27) or stretching control treatment (n=16), followed by a post-intervention CPET. Measures of resting, exercise, and post-exercise recovery heart rate (HRR), blood pressure, and ventilation, as well as peak oxygen consumption (VO(2peak)), were obtained. OSA participants had blunted HRR compared to non-OSA controls at 1 (P=.03), 3 (P=.02), and 5-min post-exercise (P=.03). For OSA participants, exercise training improved VO2 peak (P=.04) and HRR at 1 (P=.03), 3 (P<.01), and 5-min post-exercise (P<.001) compared to control. AHI change was associated with change in HRR at 5-min post-exercise (r=-.30, P<.05), but no other CPET markers. These results suggest that individuals with OSA have autonomic dysfunction, and that exercise training, by increasing HRR and VO2 peak, may attenuate autonomic imbalance and improve functional capacity independent of OSA severity reduction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Kline, Christopher E.; Crowley, E. Patrick; Ewing, Gary B.; Burch, James B.; Blair, Steven N.; Durstine, J. Larry; Davis, J. Mark; Youngstedt, Shawn D.
2012-01-01
Background Obstructive sleep apnea (OSA) predisposes individuals to cardiovascular morbidity, and cardiopulmonary exercise test (CPET) markers prognostic for cardiovascular disease have been found to be abnormal in adults with OSA. Due to the persistence of OSA and its cardiovascular consequences, whether the cardiovascular adaptations normally conferred by exercise are blunted in adults not utilizing established OSA treatment is unknown. The aims of this study were to document whether OSA participants have abnormal CPET responses and determine whether exercise modifies these CPET markers in individuals with OSA. Methods The CPET responses of 43 sedentary, overweight adults (body mass index [BMI]>25) with untreated OSA (apnea-hypopnea index [AHI]≥15) were compared against matched non-OSA controls (n=9). OSA participants were then randomized to a 12-week exercise training (n=27) or stretching control treatment (n=16), followed by a post-intervention CPET. Measures of resting, exercise, and post-exercise recovery heart rate (HRR), blood pressure, and ventilation, as well as peak oxygen consumption (VO2peak), were obtained. Results OSA participants had blunted HRR compared to non-OSA controls at 1 (P=.03), 3 (P=.02), and 5 min post-exercise (P=.03). For OSA participants, exercise training improved VO2peak (P=.04) and HRR at 1 (P=.03), 3 (P<.01), and 5 min post-exercise (P<.001) compared to control. AHI change was associated with change in HRR at 5-min post-exercise (r=−.30, P<.05), but no other CPET markers. Conclusions These results suggest that individuals with OSA have autonomic dysfunction, and that exercise training, by increasing HRR and VO2peak, may attenuate autonomic imbalance and improve functional capacity independent of OSA severity reduction. PMID:22572632
Leggio, Massimo; Mazza, Andrea; Cruciani, Giancarlo; Sgorbini, Luca; Pugliese, Marco; Bendini, Maria Grazia; Severi, Paolo; Jesi, Anna Patrizia
2014-07-01
There is a lack of detailed data regarding the effect of exercise training in pharmacologically treated hypertensive patients. Therefore, the aim of this study was to evaluate the effects of exercise training on left and right ventricular morphologic and functional parameters by means of conventional echocardiography and sensitive new echocardiographic techniques including tissue Doppler velocity and strain imaging, that were performed in pharmacologically treated hypertensive patients at baseline and at the end of a specific exercise training protocol for primary prevention of cardiovascular disease. We selected 116 pharmacologically treated hypertensive patients who completed the exercise training protocol. All patients underwent a clinical history and examination; transthoracic echocardiography and exercise testing were performed at baseline and at the end of the exercise training protocol. Conventional echocardiography revealed a mild degree of diastolic dysfunction without significant differences or variations from baseline to the end of the exercise training protocol. In contrast, tissue Doppler velocity and strain imaging measurements demonstrated and highlighted the positive influence of exercise training: for both left and right ventricle myocardial early peak diastolic velocities (Em), the ratio of myocardial early-late peak diastolic velocity (Em/Am), myocardial peak systolic velocities (Sm) and peak strain and strain rate values significantly increased at the end of the exercise training protocol, suggesting a relationship between exercise capacity and both left and right ventricular systo-diastolic function. Our study, by means of newer more sensitive echocardiographic techniques, clearly demonstrated the positive impact of exercise training on both left and right ventricular systo-diastolic function, in terms of adjunctive subclinical improvement, in pharmacologically treated hypertensive patients.
Matsumoto, M; Hanrath, P; Kremer, P; Tams, C; Langenstein, B A; Schlüter, M; Weiter, R; Bleifeld, W
1982-01-01
In order to evaluate left ventricular function during dynamic exercise transoesophageal M-mode recordings of the left ventricle were carried out with a newly developed transducer gastroscope system. Twelve healthy subjects performed a graded supine bicycle exercise test. Stable and good quality images of the left ventricle at rest and during exercise at different steps up to a maximum workload of 100 watts were obtained in all patients. Isotonic maximum exercise resulted in a significant increase in fractional shortening of the left ventricle, peak shortening rate, and peak lengthening rate of the left ventricular minor axis. Left ventricular end-diastolic dimension decreased significantly. With increasing workload the pressure rate product increased significantly. It is concluded that transoesophageal M-mode echocardiography is a useful method of evaluating left ventricular performance during dynamic exercise. Images PMID:7082515
Hettinga, Dries M; Andrews, Brian J
2008-01-01
A lesion in the spinal cord leads in most cases to a significant reduction in active muscle mass, whereby the paralysed muscles cannot contribute to oxygen consumption (VO2) during exercise. Consequently, persons with spinal cord injury (SCI) can only achieve high VO2 values by excessively stressing the upper body musculature, which might increase the risk of musculoskeletal overuse injury. Alternatively, the muscle mass involved may be increased by using functional electrical stimulation (FES). FES-assisted cycling, FES-cycling combined with arm cranking (FES-hybrid exercise) and FES-rowing have all been suggested as candidates for cardiovascular training in SCI. In this article, we review the levels of VO2 (peak [VO2peak] and sub-peak [VO2sub-peak]) that have been reported for SCI subjects using these FES exercise modalities. A systematic literature search in MEDLINE, EMBASE, AMED, CINAHL, SportDiscus and the authors' own files revealed 35 studies that reported on 499 observations of VO2 levels achieved during FES-exercise in SCI. The results show that VO2peak during FES-rowing (1.98 L/min, n = 17; 24.1 mL/kg/min, n = 11) and FES-hybrid exercise (1.78 L/min, n = 67; 26.5 mL/kg/min, n = 35) is considerably higher than during FES-cycling (1.05 L/min, n = 264; 14.3 mL/kg/min, n = 171). VO2sub-peak values during FES-hybrid exercise were higher than during FES-cycling. FES-exercise training can produce large increases in VO2peak; the included studies report average increases of +11% after FES-rowing training, +12% after FES-hybrid exercise training and +28% after FES-cycling training. This review shows that VO2 during FES-rowing or FES-hybrid exercise is considerably higher than during FES-cycling. These observations are confirmed by a limited number of direct comparisons; larger studies to test the differences in effectiveness of the various types of FES-exercise as cardiovascular exercise are needed. The results to date suggest that FES-rowing and FES-hybrid are more suited for high-intensity, high-volume exercise training than FES-cycling. In able-bodied people, such exercise programmes have shown to result in superior health and fitness benefits. Future research should examine whether similar high-intensity and high-volume exercise programmes also give persons with SCI superior fitness and health benefits. This kind of research is very timely given the high incidence of physical inactivity-related health conditions in the aging SCI population.
Jung, Mary E; Bourne, Jessica E; Little, Jonathan P
2014-01-01
Affect experienced during an exercise session is purported to predict future exercise behaviour. Compared to continuous moderate-intensity exercise (CMI), the affective response to continuous vigorous-intensity exercise (CVI) has consistently been shown to be more aversive. The affective response, and overall tolerability to high-intensity interval training (HIT), is less studied. To date, there has yet to be a comparison between HIT, CVI, and CMI. The purpose of this study was to compare the tolerability and affective responses during HIT to CVI and CMI. This study utilized a repeated measures, randomized, counter-balanced design. Forty-four participants visited the laboratory on four occasions. Baseline fitness testing was conducted to establish peak power output in Watts (W peak). Three subsequent visits involved a single bout of a) HIT, corresponding to 1-minute at ∼ 100% W peak and 1-minute at ∼ 20% W peak for 20 minutes, b) CMI, corresponding to ∼ 40% W peak for 40 minutes, and c) CVI, corresponding to ∼ 80% W peak for 20 minutes. The order of the sessions was randomized. Affective responses were measured before, during and after each session. Task self-efficacy, intentions, enjoyment and preference were measured after sessions. Participants reported greater enjoyment of HIT as compared to CMI and CVI, with over 50% of participants reporting a preference to engage in HIT as opposed to either CMI or CVI. HIT was considered more pleasurable than CVI after exercise, but less pleasurable than CMI at these times. Despite this participants reported being just as confident to engage in HIT as they were CMI, but less confident to engage in CVI. This study highlights the utility of HIT in inactive individuals, and suggests that it may be a viable alternative to traditionally prescribed continuous modalities of exercise for promoting self-efficacy and enjoyment of exercise.
Quist, Morten; Adamsen, Lis; Rørth, Mikael; Laursen, Jørgen H; Christensen, Karl B; Langer, Seppo W
2015-07-01
Patients with advanced-stage lung cancer face poor survival and experience co-occurring chronic physical and psychosocial symptoms. Despite several years of research in exercise oncology, few exercise studies have targeted advanced lung cancer patients undergoing chemotherapy. The aim of the present study was to investigate the benefits of a 6-week supervised group exercise intervention and to outline the effect on aerobic capacity, strength, health-related quality of life (HRQoL), anxiety, and depression. VO2peak was assessed using an incremental exercise test. Muscle strength was measured with one repetition maximum test (1RM). HRQoL, anxiety, and depression were assessed using Functional Assessment of Cancer Therapy-Lung (FACT-L) scale and the Hospital Anxiety and Depression Scale (HADS). One hundred and forthteen patients with advanced stage lung cancer were recruited. Forty-three patients dropped out. No serious adverse events were reported. Exercise adherence in the group training was 68%. Improvements in VO2peak (P < .001) and 6-minute walk distance (P < .001) and muscle strength measurements (P < .05) were seen. There was a reduction in anxiety level (P = .0007) and improvement in the emotional well-being parameter (FACT-L) but no statistically significant changes in HRQoL were observed. The results of the present study show that during a 6-week hospital-based supervised, structured, and group-based exercise program, patients with advanced-stage lung cancer (NSCLC IIIb-IV, ED-SCLC) improve their physical capacity (VO2peak, 1RM), functional capacity, anxiety level, and emotional well-being, but not their overall HRQoL. A randomized controlled trial testing the intervention including 216 patients is currently being carried out. © The Author(s) 2015.
Story, Christina; Bryant, Ashley Leak; Phillips, Brett; Bailey, Charlotte; Shields, Edgar W.; Battaglini, Claudio
2018-01-01
Introduction Cardiopulmonary exercise testing (CPET), the gold standard of cardiopulmonary evaluation, is used to determine VO2 levels at different aerobic exercise training intensities; however, it may not be feasible to conduct CPET in all clinical settings. Aims To compare the heart rate reserve (HRR) and percent of 220-age methods for prescribing cycle ergometry exercise intensity using heart rate (HR) against the HRs obtained during a CPET in adults undergoing treatment for acute leukemia (AL). Methods In this exploratory study, part of a larger randomized controlled trial, 14 adults with AL completed CPET on a cycle ergometer with indirect calorimetry within 96 hr of admission to a cancer hospital to determine VO2peak and HR corresponding to low (40% VO2peak), moderate (60% VO2peak), and high (75% VO2peak) exercise intensities. Analyses of variance were used to compare estimated HR for each intensity level using the HRR and percent of 220-age methods with HR determined via VO2peak. Results HR corresponding to low-intensity exercise differed significantly across all three methods (p ≤ .05). No significant differences were observed between HR estimated via the percent of 220-age method and determined via VO2peak at moderate (100 ± 8 and 113 ± 24 bpm, p = .122) or high intensities (125 ± 10 and 123 ± 25 bpm, p = .994). Conclusion In adults with AL, HR-based methods for defining aerobic exercise intensities should be used with caution. At low intensity, neither should be used, while at moderate and high intensities, the percent of 220-age equation might serve as an adequate substitute for CPET. PMID:26933148
NIRS-Derived Tissue Oxygen Saturation and Hydrogen Ion Concentration Following Bed Rest
NASA Technical Reports Server (NTRS)
Lee, S. M. C.; Everett, M. E.; Crowell, J. B.; Westby, C. M.; Soller, B. R.
2010-01-01
Long-term bed rest (BR), a model of spaceflight, results in a decrease in aerobic capacity and altered submaximal exercise responses. The strongest BR-induced effects on exercise appear to be centrally-mediated, but longer BR durations may result in peripheral adaptations (e.g., decreased mitochondrial and capillary density) which are likely to influence exercise responses. PURPOSE: To measure tissue oxygen saturation (SO2) and hydrogen ion concentration ([H+]) in the vastus lateralis (VL) using near infrared spectroscopy (NIRS) during cycle ergometry before and after . 30 d of BR. METHODS: Eight subjects performed a graded exercise test on a cycle ergometer to volitional fatigue 7 d before (pre-BR) and at the end or 1 day after BR (post-BR). NIRS spectra were collected from a sensor adhered to the skin overlying the VL. Oxygen consumption (VO2) was measured by open circuit spirometry. Blood volume (BV) was measured before and after BR using the carbon monoxide rebreathing technique. Changes in pre- and post-BR SO2 and [H+] data were compared using mixed model analyses. BV and peak exercise data were compared using paired t-tests. RESULTS: BV (pre-BR: 4.3+/-0.3, post-BR: 3.7+/-0.2 L, mean+/-SE, p=.01) and peak VO2 (pre-BR: 1.98+/-0.24, post-BR: 1.48 +/-0.21 L/min, p<.01) were reduced after BR. As expected, SO2 decreased with exercise before and after BR. However, SO2 was lower post compared with pre-BR throughout exercise, including at peak exercise (pre-BR: 50+/-3, post-BR: 43+/-4%, p=.01). After BR, [H+] was higher at the start of exercise and did not increase at the same rate as pre-BR. Peak [H+] was not different from pre to post-BR (pre-BR: 36+/-2; post-BR: 38+/-2 nmol/L). CONCLUSIONS: Lower SO2 during exercise suggests that oxygen extraction in the VL is higher after BR, perhaps due to lower circulating blood volume. The higher [H+] after BR suggests a greater reliance upon glycolysis during submaximal exercise, although [H+] at peak exercise was unchanged. Taken together, these data suggest that longer duration BR induces a number of changes that result in peripheral adaptations which contribute to cardiovascular and muscular deconditioning as measured by NIRS-derived SO2 and [H+] in the VL and may contribute to lower post-BR exercise tolerance. Supported by the National Space Biomedical Research Institute through NASA NCC 9-58
Oscillation of tissue oxygen index in non-exercising muscle during exercise.
Yano, T; Afroundeh, R; Shirakawa, K; Lian, C-S; Shibata, K; Xiao, Z; Yunoki, T
2015-09-01
The purpose of the present study was to examine how oscillation of tissue oxygen index (TOI) in non-exercising exercise is affected during high-intensity and low-intensity exercises. Three exercises were performed with exercise intensities of 30% and 70% peak oxygen uptake (Vo(2)peak) for 12 min and with exercise intensity of 70% Vo(2)peak for 30 s. TOI in non-exercising muscle (biceps brachii) during the exercises for 12 min was determined by nearinfrared spectroscopy. TOI in the non-exercising muscle during the exercises was analyzed by fast Fourier transform (FFT) to obtain power spectra density (PSD). The frequency at which maximal PSD appeared (Fmax) during the exercise with 70% Vo(2)peak for 12 min (0.00477 ± 0.00172 Hz) was significantly lower than that during the exercise with 30% Vo2peak for 12 min (0.00781 ± 0.00338 Hz). There were significant differences in blood pH and blood lactate between the exercise with 70% Vo(2)peak and the exercise with 30% Vo(2)peak. It is concluded that TOI in nonexercising muscle oscillates during low-intensity exercise as well as during high-intensity exercise and that the difference in Fmax between the two exercises is associated with the difference in increase in blood lactate derived from the exercise.
Guo, Jian; Zheng, Cong; Xiao, Qiang; Gong, Sugang; Zhao, Qinhua; Wang, Lan; He, Jing; Yang, Wenlan; Shi, Xue; Sun, Xingguo; Liu, Jinming
2015-10-08
This study intended to search for potential correlations between anaemia in patients with severe chronic obstructive pulmonary disease (COPD; GOLD stage III) and pulmonary function at rest, exercise capacity as well as ventilatory efficiency, using pulmonary function test (PFT) and cardiopulmonary exercise testing (CPET). The study was undertaken at Shanghai Pulmonary Hospital, a tertiary-level centre affiliated to Tongji University. It caters to a large population base within Shanghai and referrals from centres in other cities as well. 157 Chinese patients with stable severe COPD were divided into 2 groups: the anaemia group (haemoglobin (Hb) <12.0 g/dL for males, and <11 g/dL for females (n=48)) and the non-anaemia group (n=109). Arterial blood gas, PFT and CPET were tested in all patients. (1) Diffusing capacity for carbon monoxide (DLCO) corrected by Hb was significantly lower in the anaemia group ((15.3±1.9) mL/min/mm Hg) than in the non-anaemia group ((17.1±2.1) mL/min/mm Hg) (p<0.05). A significant difference did not exist in the level of forced expiratory volume in 1 s (FEV1), FEV1%pred, FEV1/forced vital capacity (FVC), inspiratory capacity (IC), residual volume (RV), total lung capacity (TLC) and RV/TLC (p>0.05). (2) Peak Load, Peak oxygen uptake (VO2), Peak VO2%pred, Peak VO2/kg, Peak O2 pulse and the ratio of VO2 increase to WR increase (ΔVO2/ΔWR) were significantly lower in the anaemia group (p<0.05); however, Peak minute ventilation (VE), Lowest VE/carbon dioxide output (VCO2) and Peak dead space/tidal volume ratio (VD/VT) were similar between the 2 groups (p>0.05). (3) A strong positive correlation was found between Hb concentration and Peak VO2 in patients with anaemia (r=0.702, p<0.01). Anaemia has a negative impact on gas exchange and exercise tolerance during exercise in patients with severe COPD. The decrease in amplitude of Hb levels is related to the quantity of oxygen uptake. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Determinants of Time to Fatigue during Non-Motorized Treadmill Exercise
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Lee, M. C.; Wilson, Cassie A.; Hagan, R. Donald
2007-01-01
Treadmill exercise is commonly used for aerobic and anaerobic conditioning. During non-motorized treadmill exercise, the subject must provide the power necessary to drive the treadmill belt. The purpose of this study was to determine what factors affected the time to fatigue on a pair of non-motorized treadmills. Twenty subjects (10 males/10 females) attempted to complete five minutes of locomotion during separate trials at 3.22, 4.83, 6.44, 8.05, 9.66, and 11.27 km (raised dot) h(sup -1). Total exercise time (less than or equal to 5 min) was recorded. Exercise time was converted to the amount of 15 second intervals completed. Peak oxygen uptake (VO2) was measured using a graded exercise test on a standard treadmill, and anthropometric measures were collected from each subject before entering into the study. A Cox proportional hazards regression model was used to determine significant predictive factors in a multivariate analysis. Non-motorized treadmill speed and absolute peak VO2 were found to be significant predictors of exercise time, but there was no effect of anthropometric characteristics. Gender was found to be a predictor of treadmill time, but this was likely due to a higher peak VO2 in males than in females. These results were not affected by the type of treadmill tested in this study. Coaches and therapists should consider the cardiovascular fitness of an athlete or client when prescribing target speed since these factors are related to the total exercise time than can be achieved on a non-motorized treadmill.
Interactive effect of body posture on exercise-induced atrial natriuretic peptide release.
Ray, C A; Delp, M D; Hartle, D K
1990-05-01
The purpose of this investigation was to test the hypothesis that supine exercise elicits a greater atrial natriuretic peptide (ANP) response than upright exercise because of higher atrial filling pressure attained in the supine posture. Plasma ANP concentration ([ANP]) was measured during continuous graded supine and upright exercise in eight healthy men at rest after 4 min of cycling exercise at 31, 51, and 79% of posture-specific peak oxygen uptake (VO2 peak), after 2 min of cycling at posture-specific VO2 peak, and 5 and 15 min postexercise. [ANP] was significantly increased (P less than 0.05) above rest by 64, 140, and 228% during supine cycling at 51 and 79% and VO2 peak, respectively. During upright cycling, [ANP] was significantly increased (P less than 0.05) at 79% (60%) and VO2 peak (125%). After 15 min of postexercise rest, [ANP] remained elevated (P less than 0.05) only in the supine subjects. [ANP] was 63, 79, and 75% higher (P less than 0.05) in the supine than in the upright position during cycling at 51 and 79% and VO2 peak. Systolic, diastolic, and mean blood pressures were not significantly (P greater than 0.05) different between positions in all measurement periods. Heart rates were lower (P less than 0.05) in the supine position compared with the upright position. In conclusion, these results suggest that supine exercise elicits greater ANP release independent of blood pressure and heart rate but presumably caused by greater venous return, central blood volume, and concomitant atrial filling pressure and stretch.
EFFECTS OF DIFFERENT DURATION EXERCISE PROGRAMS IN CHILDREN WITH SEVERE BURNS
Clayton, Robert P.; Wurzer, Paul; Andersen, Clark R.; Mlcak, Ronald P.; Herndon, David N.; Suman, Oscar E.
2016-01-01
Introduction Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. Methods We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6- or 12-weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n = 42) and post exercise. After 6 weeks (n = 18) or 12 weeks (n = 24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex Isokinetic Dynamometer. Oxygen consumption capacity, measured as peak VO2, was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Results Significant improvements in muscle strength, peak VO2, and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO2 being seen after 6 weeks more of training. Conclusion These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. PMID:27908464
ERIC Educational Resources Information Center
Bonafiglia, Jacob T.; Sawula, Laura J.; Gurd, Brendon J.
2018-01-01
The purpose of this study was to determine if the counting talk test can be used to discern whether an individual is exercising above or at/below maximal lactate steady state. Twenty-two participants completed VO[subscript 2]peak and counting talk test incremental step tests followed by an endurance test at 65% of work rate at VO[subscript 2]peak…
Zhang, Xingguang; Zhang, Yanqi; Gao, Xiaoxiao; Wu, Jinxiao; Jiao, Xiumin; Zhao, Jing; Lv, Xiaofeng
2014-05-01
To investigate the effect of combination therapy of backward walking training and alpha-lipoic acid (ALA) treatment on the distribution of plantar pressure in patients with diabetic peripheral neuropathy (DPN). This study is a double-blinded, randomized controlled trial. The test group was treated with combination therapy of backward walking exercise and ALA (ALA for 2wk, backward walking exercise for 12wk), and the control group only received ALA treatment. Clinical and laboratory setting. Patients with DPN (N=60) were divided into the test group (n=30) or control group (n=30). Backward walking exercise with ALA treatment for the test group; lipoic acid treatment for the control group. Plantar pressure before and after treatment was tested and analyzed with the flatbed plantar pressure measurement system. After treatment, peak plantar pressure in the forefoot dropped for both the test and control groups; peak plantar pressure for the test group dropped significantly. Peak plantar pressure in the medial foot slightly increased for the test group, suggesting a more even distribution of plantar pressure in the test group after treatment. The combination therapy of ALA and backward walking proved to be more effective than ALA monotherapy. Backward walking also proved to have an ameliorating effect on balance ability and muscle strength of patients with DPN. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Liu, S X; Chen, Y Y; Xie, K L; Zhang, W L
2017-12-24
Objective: To observe the effects of aerobic exercise combined with resistance training on the cardiorespiratory fitness and exercise capacity of patients with stable coronary artery disease (CAD) . Methods: From June 2014 to December 2015, 73 patients with stable CAD in our department were recruited and randomly assigned to two groups: the control group ( n= 38) and the exercise group ( n= 35) . Patients in both groups received conventional medical treatment for CAD and related cardiac health education. While for patients in exercise group, a twelve-week aerobic exercise combined with resistance training program were applied on top of conventional treatment and health education. Cardiorespiratory fitness and exercise capacity were evaluated by cardiopulmonary exercise testing. Results: (1) The exercise capacity was significantly increased in the exercise group after 12 weeks training as compared to baseline level: peak oxygen uptake per kilogram ( (26.25±5.14) ml·kg(-1)·min(-1) vs. (20.88±4.59) ml·kg(-1)·min(-1)) , anaerobic threshold ( (15.24±2.75) ml·kg(-1)·min(-1) vs. (13.52±2.92) ml·kg(-1)·min(-1)], peak oxygen pulse ( (11.91±2.89) ml/beat vs. (9.77±2.49) ml/beat) , peak Watts ( (113.2±34.0) W vs. (103.7±27.9) W) , peak metabolic equivalent ( (7.57±1.46) METs vs. (6.00±1.32) METs) (all P< 0.05 vs. baseline) . (2) The degree of improvement of peak oxygen uptake per kilogram ( (26.25±5.14) ml·kg(-1)·min(-1) vs. (22.32±4.00) ml·kg(-1)·min(-1)) , anaerobic threshold ( (15.24±2.75) ml·kg(-1)·min(-1) vs. (13.76±2.51) ml·kg(-1)·min(-1)) , peak oxygen pulse ( (11.91±2.89) ml/beat vs. (9.99±2.15) ml/beat) and peak metabolic equivalent ( (7.57±1.46) METs vs. (6.47±1.17) METs) were significantly higher in exercise group than in control group (all P< 0.05) . Conclusion: Aerobic training at an aerobic threshold level combined with Thera-band resistance training is safe for patients with stable coronary artery disease. This combined exercise program can significantly improve the cardiorespiratory fitness and exercise capacity of patients with stable coronary artery disease.
Marcella, J J; Nichols, A B; Johnson, L L; Owen, J; Reison, D S; Kaplan, K L; Cannon, P J
1983-05-01
The hypothesis that exercise-induced myocardial ischemia is associated with abnormal platelet activation and fibrin formation or dissolution was tested in patients with coronary artery disease undergoing upright bicycle stress testing. In vivo platelet activation was assessed by radioimmunoassay of platelet factor 4, beta-thrombo-globulin and thromboxane B2. In vivo fibrin formation was assessed by radioimmunoassay of fibrinopeptide A, and fibrinolysis was assessed by radioimmunoassay of thrombin-increasable fibrinopeptide B which reflects plasmin cleavage of fibrin I. Peripheral venous concentrations of these substances were measured in 10 normal subjects and 13 patients with coronary artery disease at rest and during symptom-limited peak exercise. Platelet factor 4, beta-thromboglobulin and thromboxane B2 concentrations were correlated with rest and exercise catecholamine concentrations to determine if exercise-induced elevation of norepinephrine and epinephrine enhances platelet activation. Left ventricular end-diastolic and end-systolic volumes, ejection fraction and segmental wall motion were measured at rest and during peak exercise by first pass radionuclide angiography. All patients with coronary artery disease had documented exercise-induced myocardial ischemia manifested by angina pectoris, ischemic electrocardiographic changes, left ventricular segmental dyssynergy and a reduction in ejection fraction. Rest and peak exercise plasma concentrations were not significantly different for platelet factor 4, beta-thromboglobulin, thromboxane B2, fibrinopeptide A and thrombin-increasable fibrinopeptide B. Peripheral venous concentrations of norepinephrine and epinephrine increased significantly (p less than 0.001) in both groups of patients. The elevated catecholamine levels did not lead to detectable platelet activation. This study demonstrates that enhanced platelet activation, thromboxane release and fibrin formation or dissolution are not detectable in peripheral venous blood of patients with coronary disease during exercise-induced myocardial ischemia.
Houtman, S; Thielen, J J; Binkhorst, R A; Hopman, M T
1999-01-01
The aim of this study was to examine effects of a pulsating pressure anti-gravity suit on the peak values of oxygen uptake (VO2) and power during maximal arm exercise in spinal-cord-injured (SCI) individuals. Five well-trained SCI men (with lesions at levels between T6 and L1) and seven well-trained able-bodied men (ABC) performed two incremental (10 W x min(-1)) arm-cranking tests. During one test the pressure in the anti-G suit pulsated between 4.7 kPa (35 mmHg) and 9.3 kPa (70 mmHg) every 2 s (PPG+), during the other test (PPG-) all the subjects wore the anti-G suit in a deflated state. Tests were performed in a counter-balanced order. Peak VO2 in SCI was 1 ml x kg(-1) x min(-1) lower during PPG+ compared to PPG- (P = 0.05). Peak power and peak heart rate were not significantly different during PPG+ compared to PPG-. These results would suggest that no increase in work capacity can be obtained with a pulsating pressure anti-gravity suit in either SCI or ABC.
Statins are related to impaired exercise capacity in males but not females.
Bahls, Martin; Groß, Stefan; Ittermann, Till; Busch, Raila; Gläser, Sven; Ewert, Ralf; Völzke, Henry; Felix, Stephan B; Dörr, Marcus
2017-01-01
Exercise and statins reduce cardiovascular disease (CVD). Exercise capacity may be assessed using cardiopulmonary exercise testing (CPET). Whether statin medication is associated with CPET parameters is unclear. We investigated if statins are related with exercise capacity during CPET in the general population. Cross-sectional data of two independent cohorts of the Study of Health in Pomerania (SHIP) were merged (n = 3,500; 50% males). Oxygen consumption (VO2) at peak exercise (VO2peak) and anaerobic threshold (VO2@AT) was assessed during symptom-limited CPET. Two linear regression models related VO2peak with statin usage were calculated. Model 1 adjusted for age, sex, previous myocardial infarction, and physical inactivity and model 2 additionally for body mass index, smoking, hypertension, diabetes and estimated glomerular filtration rate. Propensity score matching was used for validation. Statin usage was associated with lower VO2peak (no statin: 2336; 95%-confidence interval [CI]: 2287-2,385 vs. statin 2090; 95%-CI: 2,031-2149 ml/min; P < .0001) and VO2@AT (no statin: 1,172; 95%-CI: 1,142-1,202 vs. statin: 1,111; 95%-CI: 1,075-1,147 ml/min; P = .0061) in males but not females (VO2peak: no statin: 1,467; 95%-CI: 1,417-1,517 vs. statin: 1,503; 95%-CI: 1,426-1,579 ml/min; P = 1.00 and VO2@AT: no statin: 854; 95%-CI: 824-885 vs. statin 864; 95%-CI: 817-911 ml/min; P = 1.00). Model 2 revealed similar results. Propensity scores analysis confirmed the results. In the general population present statin medication was related with impaired exercise capacity in males but not females. Sex specific effects of statins on cardiopulmonary exercise capacity deserve further research.
Guazzi, Marco; De Vita, Stefano; Cardano, Paola; Barlera, Simona; Guazzi, Maurizio D
2003-09-01
Peak exercise oxygen uptake (peak VO2) and ventilation to CO2 production (VE/VCO2) slope are established prognostic indicators in patients with chronic heart failure (CHF). A high VE/VCO2 slope, however, does not take into account the level of physical performance as expressed by peak VO2. We hypothesized that the prognostic value of a high VE/VCO2 slope may be improved by normalization for peak VO2 (VE/VCO2/VO2). One hundred patients with CHF underwent pulmonary function tests at rest (spirometry and lung diffusion capacity) and maximal cardiopulmonary exercise testing. The prognostic value of VE/VCO2 slope, peak VO2 and VE/VCO2/VO2 was probed prospectively. Twenty-one patients died from cardiac reasons during a mean follow-up of 26 +/- 19 months. Nonsurvivors, compared to survivors, showed a lower peak VO2 (13.6 +/- 4.0 vs 17.5 +/- 4.1 mL x min(-1) x kg(-1), P <.01) and a steeper VE/VCO2 slope (43 +/- 11 vs 31.6 +/- 5.0, P <.01). Nonetheless, in patients whose VE/VCO2 slope exceeded 34 (upper normal limit), there was no correlation with peak VO2 (r = -35, P = not significant). Interestingly 35% of them showed a normal exercise performance (peak VO2 > or =18 mL x min(-1) x kg(-1)). At multivariate analysis, the VE/VCO2 slope showed a prognostic power stronger than that of peak VO2; however, the VE/VCO2/VO2 index retained a prognostic power greater than that of both VE/VCO2 slope and peak VO2. A VE/VCO2/VO2 > or =2.4 signaled cases at higher risk. Discrepancies between VE/VCO2 slope and peak VO2 may generate uncertainty. Normalization of the former by the latter improves outcome prediction and may be considered a simple and effective way for maximizing the clinical applicability of these 2 indicators.
Westover, Arthur N; Nakonezny, Paul A; Adinoff, Bryon; Brown, Edson Sherwood; Halm, Ethan A
2016-12-01
Inappropriately decreased heart rate (HR) during peak exercise and delayed heart rate recovery (HRR) has been observed in adult users of stimulant medications who underwent exercise testing, suggesting autonomic adaptation to chronic stimulant exposure. In the general population, this pattern of hemodynamic changes is associated with increased mortality risk. Whether the same pattern of hemodynamic changes might be observed in adolescent stimulant medication users undergoing exercise testing is unknown. Among adolescents (aged 12 to 20 years) that underwent submaximal exercise treadmill testing from 1999 to 2004 in the National Health and Nutrition Examination Survey, propensity score matching of stimulant medication users (n = 89) to matched nonusers (n = 267) was conducted. Testing consisted of a 3-minute warm-up period, two 3-minute exercise stages, and three 1-minute recovery periods, with the goal of reaching 75% of the predicted HR maximum. A linear mixed model analysis was used to evaluate the effect of stimulant exposure on each of the exercise outcomes. Stimulant medication users compared to matched nonusers had a lower peak HR in Stage 2 (154.9 vs. 158.3 beats/minute [bpm], p = 0.055) and lower HR at 1-minute recovery (142.2 vs. 146.4 bpm, p = 0.030). However, submaximal HRR at 1 minute did not differ between stimulant users and matched nonusers (13.0 vs. 12.1 bpm, p = 0.38). Duration of stimulant use was not related to these outcomes. Adolescent stimulant medication users compared to matched nonusers demonstrated a trend toward decreased HR during submaximal exercise, which is potential evidence of chronic adaptation with stimulant exposure. There was no evidence for delayed HRR in this study, and thus, no evidence for decreased parasympathetic activity during initial exercise recovery. Exercise testing outcomes may have utility in future research as a method to assess stimulant-associated autonomic nervous system adaptations.
Acute physiological responses to recreational in-line skating in young adults.
Orepic, Paula; Mikulic, Pavle; Soric, Maroje; Ruzic, Lana; Markovic, Goran
2014-01-01
We examined the physiological responses to in-line skating exercise at self-selected paces in recreationally trained adults. Seven men and 10 women performed in-line skating exercise during which oxygen uptake (VO2) and heart rate (HR) were recorded continuously. Ratings of perceived exertion (RPE) and blood lactate concentration were also obtained at the end of exercise. Furthermore, subjects' peak VO2, peak HR, RPE and gas-exchange thresholds were determined in laboratory settings. The average exercise intensity during in-line skating was 90% of peak HR, 67% of peak VO2, 84% of HR reserve and 64% of VO2 reserve. When expressed as RPE and as metabolic equivalents (METs), the average exercise intensity was 13.1 RPE and 9.4 METs. Overall, these indicators of exercise intensity categorise in-line skating at self-selected paces as a vigorous physical activity. Notably, at similar VO2 values, significantly higher HR (174 ± 16 vs. 156 ± 6 bpm; p<0.001) and RPE (13.1 ± 1.4 vs. 11.7 ± 1.4; p=0.019) were observed for in-line skating compared with treadmill running. We conclude that 1. recreational in-line skating induces physiological responses that are sufficient for improving and maintaining cardiovascular fitness in healthy adults, 2. HR- and RPE-based methods for quantifying the exercise intensity during in-line skating may overestimate the actual metabolic load and 3. the derivation of exercise prescriptions for in-line skating should be preferably based on specific (i.e. in-line skating) graded exhaustive exercise test.
Rolland-Debord, Camille; Morelot-Panzini, Capucine; Similowski, Thomas; Duranti, Roberto; Laveneziana, Pierantonio
2017-12-01
Exercise induces release of cytokines and increase of circulating natural killers (NK) lymphocyte during strong activation of respiratory muscles. We hypothesised that non-fatiguing respiratory muscle loading during exercise causes an increase in NK cells and in metabolic stress indices. Heart rate (HR), ventilation (VE), oesophageal pressure (Pes), oxygen consumption (VO 2 ), dyspnoea and leg effort were measured in eight healthy humans (five men and three women, average age of 31 ± 4 years and body weight of 68 ± 10 kg), performing an incremental exercise testing on a cycle ergometer under control condition and expiratory flow limitation (FL) achieved by putting a Starling resistor. Blood samples were obtained at baseline, at peak of exercise and at iso-workload corresponding to that reached at the peak of FL exercise during control exercise. Diaphragmatic fatigue was evaluated by measuring the tension time index of the diaphragm. Respiratory muscle overloading caused an earlier interruption of exercise. Diaphragmatic fatigue did not occur in the two conditions. At peak of flow-limited exercise compared to iso-workload, HR, peak inspiratory and expiratory Pes, NK cells and norepinephrine were significantly higher. The number of NK cells was significantly related to ΔPes (i.e. difference between the most and the less negative Pes) and plasmatic catecholamines. Loading of respiratory muscles is able to cause an increase of NK cells provided that activation of respiratory muscles is intense enough to induce a significant metabolic stress.
González-Saiz, Laura; Fiuza-Luces, Carmen; Sanchis-Gomar, Fabian; Santos-Lozano, Alejandro; Quezada-Loaiza, Carlos A; Flox-Camacho, Angela; Munguía-Izquierdo, Diego; Ara, Ignacio; Santalla, Alfredo; Morán, María; Sanz-Ayan, Paz; Escribano-Subías, Pilar; Lucia, Alejandro
2017-03-15
Pulmonary arterial hypertension is often associated with skeletal-muscle weakness. The purpose of this randomized controlled trial was to determine the effects of an 8-week intervention combining muscle resistance, aerobic and inspiratory pressure-load exercises on upper/lower-body muscle power and other functional variables in patients with this disease. Participants were allocated to a control (standard care) or intervention (exercise) group (n=20 each, 45±12 and 46±11years, 60% women and 10% patients with chronic thromboembolic pulmonary hypertension per group). The intervention included five, three and six supervised (inhospital) sessions/week of aerobic, resistance and inspiratory muscle training, respectively. The primary endpoint was peak muscle power during bench/leg press; secondary outcomes included N-terminal pro-brain natriuretic peptide levels, 6-min walking distance, five-repetition sit-to-stand test, maximal inspiratory pressure, cardiopulmonary exercise testing variables (e.g., peak oxygen uptake), health-related quality of life, physical activity levels, and safety. Adherence to training sessions averaged 94±0.5% (aerobic), 98±0.3% (resistance) and 91±1% (inspiratory training). Analysis of variance showed a significant interaction (group×time) effect for leg/bench press (P<0.001/P=0.002), with both tests showing an improvement in the exercise group (P<0.001) but not in controls (P>0.1). We found a significant interaction effect (P<0.001) for five-repetition sit-to-stand test, maximal inspiratory pressure and peak oxygen uptake (P<0.001), indicating a training-induced improvement. No major adverse event was noted due to exercise. An 8-week exercise intervention including aerobic, resistance and specific inspiratory muscle training is safe for patients with pulmonary arterial hypertension and yields significant improvements in muscle power and other functional variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Heart Rate and VO[subscript 2] Responses to Cycle Ergometry in White and African American Men
ERIC Educational Resources Information Center
Vehrs, Pat R.; Fellingham, Gilbert W.
2006-01-01
The validity of estimates of peak oxygen consumption (VO[subscript 2]peak) using submaximal exercise tests may be compromised when the participants being tested are not similar to the participants used to develop the test. This study compared ethnic differences in the heart rate (HR) and oxygen consumption (VO[subscript 2]) responses to submaximal…
Métrich, Mélanie; Mehmeti, Fortesa; Feliciano, Helene; Martin, David; Regamey, Julien; Tozzi, Piergiorgio; Meyer, Philippe; Hullin, Roger
Maximal exercise capacity after heart transplantion (HTx) is reduced to the 50-70% level of healthy controls when assessed by cardiopulmonary exercise testing (CPET) despite of normal left ventricular function of the donor heart. This study investigates the role of donor heart β1 and β2- adrenergic receptor (AR) polymorphisms for maximal exercise capacity after orthotopic HTx. CPET measured peak VO2 as outcome parameter for maximal exercise in HTx recipients ≥9 months and ≤4 years post-transplant (n = 41; mean peak VO2: 57±15% of predicted value). Donor hearts were genotyped for polymorphisms of the β1-AR (Ser49Gly, Arg389Gly) and the β2-AR (Arg16Gly, Gln27Glu). Circumferential shortening of the left ventricle was measured using magnetic resonance based CSPAMM tagging. Peak VO2 was higher in donor hearts expressing the β1-Ser49Ser alleles when compared with β1-Gly49 carriers (60±15% vs. 47±10% of the predicted value; p = 0.015), and by trend in cardiac allografts with the β1-AR Gly389Gly vs. β1-Arg389 (61±15% vs. 54±14%, p = 0.093). Peak VO2 was highest for the haplotype Ser49Ser-Gly389, and decreased progressively for Ser49Ser-Arg389Arg > 49Gly-389Gly > 49Gly-Arg389Arg (adjusted R2 = 0.56, p = 0.003). Peak VO2 was not different for the tested β2-AR polymorphisms. Independent predictors of peak VO2 (adjusted R2 = 0.55) were β1-AR Ser49Gly SNP (p = 0.005), heart rate increase (p = 0.016), and peak systolic blood pressure (p = 0.031). Left ventricular (LV) motion kinetics as measured by cardiac MRI CSPAMM tagging at rest was not different between carriers and non-carriers of the β1-AR Gly49allele. Similar LV cardiac motion kinetics at rest in donor hearts carrying either β1-AR Gly49 or β1-Ser49Ser variant suggests exercise-induced desensitization and down-regulation of the β1-AR Gly49 variant as relevant pathomechanism for reduced peak VO2 in β1-AR Gly49 carriers.
Kehmeier, Eva S; Sommer, Margot H; Galonska, Anika; Zeus, Tobias; Verde, Pablo; Kelm, Malte
2016-01-15
Exercise testing for the assessment of functional capacity plays an important role in long-term follow-up of GUCH patients. CPX is the favored modality for decision-making recommended in the current guidelines. In contrast to this complex method, the 6 MWT is a simple, easy-to-perform, safe, and commonly available exercise test. Although well-established in various cardiopulmonary diseases, the diagnostic impact of the 6 MWT in GUCH patients is not known so far. 102 GUCH patients were evaluated by 6 MWT and CPX simultaneously. Clinical symptoms were assessed, according to the NYHA classification. Additionally, an echocardiography study, and selected cardiac blood tests (N-terminal pro-brain natriuretic peptide (NT-proBNP), high-sensitive Troponin T) were performed. Ranges of six-minute walk distance (6 MWD) and peak oxygen consumption (peakVO2) were 116-765 m and 6.4-36.2 ml/kg/min, respectively. 6 MWD and peakVO2 showed a close correlation (r=0.72, 95% CI, 0.63 to 0.79). Patients with a peakVO2 of ≤ 15.5 ml/kg/min were excellently identified by 6 MWT (c-value=0.82). A cut-off value of 482 m was optimal to predict reduced peakVO2. In multivariate regression analysis, 6 MWD and NYHA class were identified as relevant predictors of peakVO2. In subgroup analysis, Eisenmenger patients achieved the shortest 6 MWD (280, SD 178 m). In our study population of GUCH patients, the 6 MWD shows a close correlation to peakVO2, and an excellent prediction of reduced peakVO2. Thus, it seems to be an easy-to-perform and reliable screening parameter to evaluate functional capacity of these patients (Controlled Clinical Trials number, NCT02193243). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The Long Exercise Test in Periodic Paralysis: A Bayesian Analysis.
Simmons, Daniel B; Lanning, Julie; Cleland, James C; Puwanant, Araya; Twydell, Paul T; Griggs, Robert C; Tawil, Rabi; Logigian, Eric L
2018-05-12
The long exercise test (LET) is used to assess the diagnosis of periodic paralysis (PP), but LET methodology and normal "cut-off" values vary. To determine optimal LET methodology and cut-offs, we reviewed LET data (abductor digiti minimi (ADM) motor response amplitude, area) from 55 PP patients (32 genetically definite) and 125 controls. Receiver operating characteristic (ROC) curves were constructed and area-under-the-curve (AUC) calculated to compare 1) peak-to-nadir versus baseline-to-nadir methodologies, and 2) amplitude versus area decrements. Using Bayesian principles, optimal "cut-off" decrements that achieved 95% post-test probability of PP were calculated for various pre-test probabilities (PreTPs). AUC was highest for peak-to-nadir methodology and equal for amplitude and area decrements. For PreTP ≤50%, optimal decrement cut-offs (peak-to-nadir) were >40% (amplitude) or >50% (area). For confirmation of PP, our data endorse the diagnostic utility of peak-to-nadir LET methodology using 40% amplitude or 50% area decrement cut-offs for PreTPs ≤50%. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Palmieri, Vittorio; Pezzullo, Salvatore; Arezzi, Emma; Russo, Cesare; Martino, Stefania; D'Andrea, Claudia; Cassese, Salvatore; Celentano, Aldo
2008-09-01
Diagnostic reliability of indexations of peak exercise ST-segment depression (deltaST) for heart rate reserve (HRi) or chronotropic reserve (CR) to identify significant coronary artery disease (CAD) by bicycle exercise testing has not been evaluated previously. Upright bicycle exercise testing (25 W increment every 3 min) was performed in consecutive patients in primary prevention with at least one of the following criteria: history of exercise-induced chest discomfort and cardiovascular risk factors; overt peripheral arterial disease; type 2 diabetes associated with two or more additional cardiovascular risk factors. Coronary angiography was performed to define significant CAD (stenosis > or = 70% of the main coronary arteries or of their major branches, or isolated left main stenosis > or = 50%, or two or more stenoses 50-69%). Duke angina index was used to grade exercise-induced chest pain; deltaST, ST/HRi and ST/CR were calculated at peak exercise; three different criteria for the definition of inducible myocardial ischemia were tested versus significant CAD: peak deltaST > or =100 microV, ST/HRi > 1.69 microV/b/min or ST/CR > 1.76 microV/%. Of the study sample (n = 46), 40% had typical angina; during stress test 80% showed deltaST > or = 100 microV; 76% had ST/HRi > 1.69 microV/b/min; 62% had ST/CR >1.76 microV/%. Diagnostic accuracy of deltaST > or = 100 microV, of ST/HRi > 1.69 micro5V/b/min, and of ST/CR > 1.76 microV/% were 78%, 72%, and 89% respectively (p < 0.001 for the difference in diagnostic performance). ST/CR > 1.76 microV/% showed the highest diagnostic accuracy both in patients with submaximal exercise (96%) and in women (92%). Similarly, ST/CR >1.76 microV/% was associated with the highest diagnostic accuracy both in patients with maximal exercise (78%) and in men (88%). Analyses of the ROC curve revealed that ST/CR was associated with the greatest area under the curve, and a population-specific cut-off of 1.77 microV/% was associated with a sensitivity of 88% and a specificity of 90%. Our pilot study suggests that in patients undergoing bicycle stress testing for differential diagnosis or screening of significant CAD, and with moderate-to-high pre-test probability, the use of ST/CR > 1.76 microV/% may provide elevated sensitivity and specificity, and the best diagnostic accuracy, which was consistent in patients with submaximal exercise test and in women.
Konecny, Tomas; Geske, Jeffrey B; Ludka, Ondrej; Orban, Marek; Brady, Peter A; Abudiab, Muaz M; Albuquerque, Felipe N; Placek, Alexander; Kara, Tomas; Sahakyan, Karine R; Gersh, Bernard J; Tajik, A Jamil; Allison, Thomas G; Ommen, Steve R; Somers, Virend K
2015-06-01
Mechanisms of decreased exercise capacity in patients with hypertrophic cardiomyopathy (HCM) are not well understood. Sleep-disordered breathing (SDB) is a highly prevalent but treatable disorder in patients with HCM. The role of comorbid SDB in the attenuated exercise capacity in HCM has not been studied previously. Overnight oximetry, cardiopulmonary exercise testing, and echocardiographic studies were performed in consecutive patients with HCM seen at the Mayo Clinic. SDB was considered present if the oxygen desaturation index (number of ≥ 4% desaturations/h) was ≥ 10. Peak oxygen consumption (VO2 peak) (the most reproducible and prognostic measure of cardiovascular fitness) was then correlated with the presence and severity of SDB. A total of 198 patients with HCM were studied (age, 53 ± 16 years; 122 men), of whom 32% met the criteria for the SDB diagnosis. Patients with SDB had decreased VO2 peak compared with those without SDB (16 mL O2/kg/min vs 21 mL O2/kg/min, P < .001). SDB remained significantly associated with VO2 peak after accounting for confounding clinical variables (P < .001) including age, sex, BMI, atrial fibrillation, and coronary artery disease. In patients with HCM, the presence of SDB is associated with decreased VO2 peak. SDB may represent an important and potentially modifiable contributor to impaired exercise tolerance in this unique population.
Konecny, Tomas; Geske, Jeffrey B.; Ludka, Ondrej; Orban, Marek; Brady, Peter A.; Abudiab, Muaz M.; Albuquerque, Felipe N.; Placek, Alexander; Kara, Tomas; Sahakyan, Karine R.; Gersh, Bernard J.; Tajik, A. Jamil; Allison, Thomas G.; Ommen, Steve R.
2015-01-01
BACKGROUND: Mechanisms of decreased exercise capacity in patients with hypertrophic cardiomyopathy (HCM) are not well understood. Sleep-disordered breathing (SDB) is a highly prevalent but treatable disorder in patients with HCM. The role of comorbid SDB in the attenuated exercise capacity in HCM has not been studied previously. METHODS: Overnight oximetry, cardiopulmonary exercise testing, and echocardiographic studies were performed in consecutive patients with HCM seen at the Mayo Clinic. SDB was considered present if the oxygen desaturation index (number of ≥ 4% desaturations/h) was ≥ 10. Peak oxygen consumption (V.o2peak) (the most reproducible and prognostic measure of cardiovascular fitness) was then correlated with the presence and severity of SDB. RESULTS: A total of 198 patients with HCM were studied (age, 53 ± 16 years; 122 men), of whom 32% met the criteria for the SDB diagnosis. Patients with SDB had decreased V.o2peak compared with those without SDB (16 mL O2/kg/min vs 21 mL O2/kg/min, P < .001). SDB remained significantly associated with V.o2peak after accounting for confounding clinical variables (P < .001) including age, sex, BMI, atrial fibrillation, and coronary artery disease. CONCLUSIONS: In patients with HCM, the presence of SDB is associated with decreased V.o2peak. SDB may represent an important and potentially modifiable contributor to impaired exercise tolerance in this unique population. PMID:25633371
Jenkins, Nathaniel D M; Buckner, Samuel L; Cochrane, Kristen C; Bergstrom, Haley C; Goldsmith, Jacob A; Weir, Joseph P; Housh, Terry J; Cramer, Joel T
2014-09-01
This study examined the effects of 6 weeks of conjugated linoleic acid (CLA) supplementation and moderate aerobic exercise on peak oxygen uptake (VO2 peak), the gas exchange threshold (GET), the respiratory compensation point (RCP), and serum concentrations of cholesterol, triacylglycerol, and glucose in humans. Thirty-four untrained to moderately trained men (mean ± SD; age = 21.5 ± 2.8 years; mass = 77.2 ± 9.5 kg) completed this double-blind, placebo controlled study and were randomly assigned to either a CLA (Clarinol A-80; n = 18) or placebo (PLA; sunflower oil; n = 16) group. Prior to and following 6 weeks of aerobic training (50% VO2 peak for 30 min, twice per week) and supplementation (5.63 g of total CLA isomers [of which 2.67 g was c9, t11 and 2.67 g was t10, c12] or 7.35 g high oleic sunflower oil per day), each participant completed an incremental cycle ergometer test to exhaustion to determine their [Formula: see text] peak, GET, and RCP and fasted blood draws were performed to measure serum concentrations of cholesterol, triacylglycerol, and glucose. Serum triacylglycerol concentrations were lower (p < 0.05) in the CLA than the PLA group. For VO2 peak and glucose, there were group × time interactions (p < 0.05), however, post hoc statistical tests did not reveal any differences (p > 0.05) between the CLA and PLA groups. GET and RCP increased (p < 0.05) from pre- to post-training for both the CLA and PLA groups. Overall, these data suggested that CLA and aerobic exercise may have synergistic, blood triacylglycerol lowering effects, although CLA may be ineffective for enhancing aerobic exercise performance in conjunction with a 6-week aerobic exercise training program in college-age men.
CFTR Genotype and Maximal Exercise Capacity in Cystic Fibrosis: A Cross-sectional Study.
Radtke, Thomas; Hebestreit, Helge; Gallati, Sabina; Schneiderman, Jane E; Braun, Julia; Stevens, Daniel; Hulzebos, Erik Hj; Takken, Tim; Boas, Steven R; Urquhart, Don S; Lands, Larry C; Tejero, Sergio; Sovtic, Aleksandar; Dwyer, Tiffany; Petrovic, Milos; Harris, Ryan A; Karila, Chantal; Savi, Daniela; Usemann, Jakob; Mei-Zahav, Meir; Hatziagorou, Elpis; Ratjen, Felix; Kriemler, Susi
2018-02-01
Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human skeletal muscle cells. Variations of CFTR dysfunction among patients with cystic fibrosis may be an important determinant of maximal exercise capacity in cystic fibrosis. Previous studies on the relationship between CFTR genotype and maximal exercise capacity are scarce and contradictory. This study was designed to explore factors influencing maximal exercise capacity, expressed as peak oxygen uptake (V.O2peak), with a specific focus on CFTR genotype in children and adults with cystic fibrosis. In an international, multicenter, cross-sectional study, we collected data on CFTR genotype and cardiopulmonary exercise tests in patients with cystic fibrosis who were ages 8 years and older. CFTR mutations were classified into functional classes I–V. The final analysis included 726 patients (45% females; age range, 8–61 yr; forced expiratory volume in 1 s, 16 to 123% predicted) from 17 cystic fibrosis centers in North America, Europe, Australia, and Asia, all of whom had both valid maximal cardiopulmonary exercise tests and complete CFTR genotype data. Overall, patients exhibited exercise intolerance (V.O2peak, 77.3 ± 19.1% predicted), but values were comparable among different CFTR classes. We did not detect an association between CFTR genotype functional classes I–III and either V.O2peak (percent predicted) (adjusted β = −0.95; 95% CI, −4.18 to 2.29; P = 0.57) or maximum work rate (Wattmax) (adjusted β = −1.38; 95% CI, −5.04 to 2.27; P = 0.46) compared with classes IV–V. Those with at least one copy of a F508del-CFTR mutation and one copy of a class V mutation had a significantly lower V.O2peak (β = −8.24%; 95% CI, −14.53 to −2.99; P = 0.003) and lower Wattmax (adjusted β = −7.59%; 95% CI, −14.21 to −0.95; P = 0.025) than those with two copies of a class II mutation. On the basis of linear regression analysis adjusted for relevant confounders, lung function and body mass index were associated with V.O2peak. CFTR functional genotype class was not associated with maximal exercise capacity in patients with cystic fibrosis overall, but those with at least one copy of a F508del-CFTR mutation and a single class V mutation had lower maximal exercise capacity.
Lee, Jae Eun; Kim, Bum Soo; Park, Wan; Huh, Jung Kwon; Kim, Byung Jin; Sung, Ki Chul; Kang, Jin Ho; Lee, Man Ho; Park, Jung Ro
2010-04-01
The correlation between brain natruretic peptide (BNP) level and cardiac autonomic function has been studied in type 2 diabetic patients. However, there is limited data from patients with normal systolic function. We evaluated the association between heart rate recovery (HRR) representing autonomic dysfunction and three plasma BNP levels: pre-exercise, post-exercise, and change during exercise in patients with normal systolic function. Subjects included 105 patients with chest pain and normal systolic function. HRR was defined as the difference between the peak heart rate and the rate measured two minutes after completion of a treadmill exercise test. We measured plasma BNP levels before exercise, 5 minutes after completion of exercise, and during exercise (absolute value of difference between pre- and post-exercise BNP levels). Patients with abnormal HRR values (=24 beats for the first 2 minutes of HRR) had lower high-density lipoprotein, lower peak heart rates, and higher pre- and post-exercise BNP levels than patients with normal HRR values. The patients with coronary artery disease (CAD) had abnormal HRR. However, no significant differences were found between the two groups in terms of history of hypertension (HTN), diabetes, and peak systolic blood pressure (SBP) and diastolic blood pressure (DBP). HRR was significantly associated with pre-exercise BNP (r=-0.36, p=0.004) and post-exercise BNP (r=-0.27, p=0.006), but not BNP changes. Further, pre-exercise BNP levels showed a greater association with HRR than post-exercise BNP levels. HRR is independently associated with pre-exercise and post-exercise BNP levels, even in patients with normal systolic function.
Effects of dynamic hyperinflation on exercise capacity and quality of life in stable COPD patients.
Zhao, Li; Peng, Liyue; Wu, Baomei; Bu, Xiaoning; Wang, Chen
2016-09-01
Dynamic hyperinflation (DH) is an important pathophysiological characteristic of chronic obstructive pulmonary disease (COPD). There is increasing evidence that DH has negative effects on exercise performance and quality of life. The objective of this study was to explore effects of DH on exercise capacity and quality of life in stable COPD patients. Fifty-eight COPD patients and 20 matched healthy individuals underwent pulmonary function test, 6-min walk test and symptom-limited cardiopulmonary exercise test (CPET). End-expiratory lung volume/total lung capacity ratio (EELVmax/TLC) at peak exercise of CPET was evaluated, and EELVmax/TLC ≥ 75% was defined as 'severe dynamic hyperinflation (SDH)'. Of the 58 patients studied, 29 (50.0%) presented with SDH (SDH+ group, EELVmax/TLC 79.60 ± 3.60%), having worse maximal exercise capacity reflected by lower peakload, maximal oxygen uptake (VO2 max), maximal carbon dioxide output (VCO2 max) and maximal minute ventilation (VEmax) than did those without SDH (SDH- group, EELVmax/TLC 67.44 ± 6.53%). The EELVmax/TLC ratio at peak exercise had no association with variables of pulmonary function and 6-min walk distance (6MWD), but correlated inversely with peakload, VO2 max, VCO2 max and VEmax (r = -0.300~-0.351, P < 0.05). Although no significant differences were observed, patients with EELVmax/TLC ≥ 75% tended to have higher COPD assessment test score (15.07 ± 6.55 vs 13.28 ± 6.59, P = 0.303). DH develops variably during exercise and has a greater impact on maximal exercise capacity than 6MWD, even in those with the same extent of pulmonary function impairment at rest. © 2015 John Wiley & Sons Ltd.
Hastings, Mary K.; Mueller, Michael J.
2012-01-01
Background and Purpose The exercise guidelines for people with diabetes mellitus and peripheral neuropathy (DM+PN) have recently changed to allow moderate-intensity weight-bearing exercise, but there are few reports in the literature describing appropriate weight-bearing exercise for those with DM+PN. This case report describes a successful and safe progressive exercise program for an individual with DM+PN. Case Description The patient was a 76-year-old man with a 30-year history of DM+PN. He participated in a 12-week, moderate-intensity, progressive exercise program (heart rate approximately 75% of maximum heart rate; rate of perceived exertion=11–13; 3 times per week) involving walking on a treadmill, balance exercises, and strengthening exercises for the lower extremities using body weight resistance. Outcomes Measurements were taken before and after the 12 weeks of exercise. The patient's Six-Minute Walk Test distance increased from 1,200 to 1,470 ft. His Physical Performance Test score did not change. His Foot and Ankle Ability Measure questionnaire score improved from 89 to 98. Dorsiflexor and plantar-flexor peak torque increased (dorsiflexor peak torque: right side=4.5–4.6 N·m, left side=2.8–3.8 N·m; plantar-flexor peak torque: right side=44.7–62.4 N·m, left side=40.8–56.0 N·m), as did his average daily step count (6,176–8,273 steps/day). Close monitoring of the plantar surface of the feet indicated that the exercise program was well tolerated and there were no adverse events. Discussion and Conclusions This case report describes a moderate-intensity exercise program that was successful in increasing some measures of muscle strength, physical function, and activity without causing injury in an individual with DM+PN. PMID:21921252
NASA Technical Reports Server (NTRS)
Hackney, Kyle J.; Scott, Jessica M.; Buxton, Roxanne; Redd-Goetchius, Elizabeth; Crowell, J. Brent; Everett, Meghan E.; Wickwire, Jason; Ryder, Jeffrey W.; Bloomberg, Jacob J.; Ploutz-Snyder, Lori L.
2011-01-01
Unloading of the musculoskeletal system during space flight results in deconditioning that may impair mission-related task performance in astronauts. Exercise countermeasures have been frequently tested during bed rest (BR) and limb suspension; however, high-intensity, short-duration exercise prescriptions have not been fully explored. PURPOSE: To determine if a high intensity resistance, interval, and aerobic exercise program could protect against muscle atrophy and dysfunction when performed during short duration BR. METHODS: Nine subjects (1 female, 8 male) performed a combination of supine exercises during 2 weeks of horizontal BR. Resistance exercise (3 d / wk) consisted of squat, leg press, hamstring curl, and heel raise exercises (3 sets, 12 repetitions). Aerobic (6 d / wk) sessions alternated continuous (75% VO2 peak) and interval exercise (30 s, 2 min, and 4 min) and were completed on a supine cycle ergometer and vertical treadmill, respectively. Muscle volumes of the upper leg were calculated pre, mid, and post-BR using magnetic resonance imaging. Maximal isometric force (MIF), rate of force development (RFD), and peak power of the lower body extensors were measured twice before BR (averaged to represent pre) and once post BR. ANOVA with repeated measures and a priori planned contrasts were used to test for differences. RESULTS: There were no changes to quadriceps, hamstring, and adductor muscle volumes at mid and post BR time points compared to pre BR (Table 1). Peak power increased significantly from 1614 +/- 372 W to 1739 +/- 359 W post BR (+7.7%, p = 0.035). Neither MIF (pre: 1676 +/- 320 N vs. post: 1711 +/- 250 N, +2.1%, p = 0.333) nor RFD (pre: 7534 +/- 1265 N/ms vs. post: 6951 +/- 1241 N/ms, -7.7%, p = 0.136) were significantly impaired post BR.
Machado, Alessandro da Costa; Barbosa, Thales Coelho; Kluser Sales, Allan Robson; de Souza, Marcio Nogueira; da Nóbrega, Antonio Claudio Lucas; Silva, Bruno Moreira
2017-02-01
Reduced aerobic power is independently associated with metabolic syndrome (MetS) incidence and prevalence in adults. This study investigated whether muscle deoxygenation (proxy of microvascular O 2 extraction) during incremental exercise is altered in MetS and associated with reduced oxygen consumption ( V˙O 2peak ). Twelve men with initial MetS (no overt diseases and medication-naive; mean ± SD, age 38 ± 7 years) and 12 healthy controls (HCs) (34 ± 7 years) completed an incremental cycling test to exhaustion, in which pulmonary ventilation and gas exchange (metabolic analyzer), as well as vastus lateralis deoxygenation (near infrared spectroscopy), were measured. Subjects with MetS, in contrast to HCs, showed lower V˙O 2peak normalized to total lean mass, similar V˙O 2 response to exercise, and earlier break point (BP) in muscle deoxygenation. Consequently, deoxygenation slope from BP to peak exercise was greater. Furthermore, absolute V˙O 2peak was positively associated with BP in correlations adjusted for total lean mass. MetS, without overt diseases, altered kinetics of muscle deoxygenation during incremental exercise, particularly at high-intensity exercise. Therefore, the balance between utilization and delivery of O 2 within skeletal muscle is impaired early in MetS natural history, which may contribute to the reduction in aerobic power. © 2017 The Obesity Society.
Zueger, Thomas; Loher, Hannah; Egger, Andrea; Boesch, Chris; Christ, Emanuel
2016-08-01
Growth hormone (GH) has a strong lipolytic action and its secretion is increased during exercise. Data on fuel metabolism and its hormonal regulation during prolonged exercise in patients with growth hormone deficiency (GHD) is scarce. This study aimed at evaluating the hormonal and metabolic response during aerobic exercise in GHD patients. Ten patients with confirmed GHD and 10 healthy control individuals (CI) matched for age, sex, BMI, and waist performed a spiroergometric test to determine exercise capacity (VO2max). Throughout a subsequent 120-minute exercise on an ergometer at 50% of individual VO2max free fatty acids (FFA), glucose, GH, cortisol, catecholamines and insulin were measured. Additionally substrate oxidation assessed by indirect calorimetry was determined at begin and end of exercise. Exercise capacity was lower in GHD compared to CI (VO2max 35.5±7.4 vs 41.5±5.5ml/min∗kg, p=0.05). GH area under the curve (AUC-GH), peak-GH and peak-FFA were lower in GHD patients during exercise compared to CI (AUC-GH 100±93.2 vs 908.6±623.7ng∗min/ml, p<0.001; peak-GH 1.5±1.53 vs 12.57±9.36ng/ml, p<0.001, peak-FFA 1.01±0.43 vs 1.51±0.56mmol/l, p=0.036, respectively). There were no significant differences for insulin, cortisol, catecholamines and glucose. Fat oxidation at the end of exercise was higher in CI compared to GHD patients (295.7±73.9 vs 187.82±103.8kcal/h, p=0.025). A reduced availability of FFA during a 2-hour aerobic exercise and a reduced fat oxidation at the end of exercise may contribute to the decreased exercise capacity in GHD patients. Catecholamines and cortisol do not compensate for the lack of the lipolytic action of GH in patients with GHD. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Heaman, Doris J.; Estes, Jenny
1997-01-01
This study documented the prevalence of exercise-induced asthma (EIA) in rural elementary schools, examining the use of a free-running asthma screening test and peak expiratory flow-rate measurement for school screening. Results indicated that 5.7% of the students had EIA. Absenteeism and poverty were related to EIA. (SM)
Daily Supine LBNP Treadmill Exercise Maintains Upright Exercise Capacity During 14 Days of Bed Rest
NASA Technical Reports Server (NTRS)
Ertl, Andy C.; Watenpaugh, D. E.; Hargens, Alan R.; Fortney, S. M.; Lee, S. M. C.; Ballard, R. E.; William, J. M.
1996-01-01
Exposure to microgravity or bed rest reduces upright exercise capacity. Exercise modes, durations, and intensities which will effectively and efficiently counteract such deconditioning are presently unresolved. We that daily supine treadmill interval training with lower body negative pressure (LBNP) would prevent reduction in upright exercise capacity during 14 days of 6 deg. head-down bed rest (BR). Eight healthy male subjects underwent two 14 day BR protocols separated by 3 months. In a crossover design, subjects either remained at strict BR or performed 40 min of daily exercise consisting of supine walking and running at intensities varying from 40-80% of pre-BR upright peak oxygen uptake (VO2). LBNP during supine exercise was used to provide 1.0 to 1.2 times body weight of footward force. An incremental upright treadmill test to measure submaximal and peak exercise responses was given pre- and post-BR. In the non-exercise condition, peak VO2 and time to exhaustion were reduced 16 +/- 4% and 10 +/- 1% (p less than 0.05), respectively, from pre-BR. With LBNP exercise these variables were not significantly different (NS) from pre-BR. During submaximal treadmill speeds after BR, heart rate was higher (11 +/- 11 bpm, p less than 0.05) and respiratory exchange ratio was elevated (p less than 0.05) in the no exercise condition. Both were maintained at pre-BR levels in the LBNP exercise condition (NS from pre-BR). Since this supine treadmill interval training with addition of LBNP maintained upright exercise responses and capacity during BR, this countermeasure may also be effective during space flight.
Effects of different duration exercise programs in children with severe burns.
Clayton, Robert P; Wurzer, Paul; Andersen, Clark R; Mlcak, Ronald P; Herndon, David N; Suman, Oscar E
2017-06-01
Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6 or 12 weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n=42) and after exercise. After 6 weeks (n=18) or 12 weeks (n=24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex isokinetic dynamometer. Oxygen consumption capacity, measured as peak VO 2 , was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Significant improvements in muscle strength, peak VO 2 , and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO 2 being seen after 6 weeks more of training. These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Four hundred meters walking test in the evaluation of heart failure patients.
Zdrenghea, D; Beudean, Maria; Pop, Dana; Zdrenghea, V
2010-01-01
The best evaluation of the severity and prognosis of heart failure patients is obtained by the maximal exercise stress testing, but for the very large number of HF patients and for evaluation of their daily effort capacity submaximal stress testing, mainly 6 minutes walking test are used. The limit of 6mWT is that during it the patients are not motivated to walk and also, the periphery, so important for heart failure patients, is not equally involved. To compare a new fixed walking test-400m walking test with 6MWT and maximal exercise testing. There were investigated 20 patients with dilated cardiomyopathy (DCM). The patients were included in the study after the relief of the congestive syndrome. Each patient was submitted in three consecutive days to a maximal symptom-limited exercise stress test on cycloergometer, a six minutes walking test, a 400 meters walking test. The last one consisted of walking on a corridor 40 meters long, at a speed chosen by the patient himself. The results were expressed in seconds representing the necessary time to cover the established 400 meters of distance. During cycloergometer exercise stress test the calculated mean peak VO2 was 15.2 +/- 1.4 mlO2/kg/min (4.32 METs). The mean distance walked during 6MWT was 350 +/- 34m and the mean time needed to walk 400m (400mWT) was 300 +/- 27 seconds. The correlation between peak VO2 and distance walked during 6MWT was -0.40, a similar but negative value (r = -0.42) being registered between peak VO2 and time registered during 400mWT. Only weak correlation was registered between LVEF and all the three tests. In turn the correlation between distance registered during 6MWT and time registered during 400mWT was excellent: r = -0.60. 400mWT is a useful tool for the evaluation of submaximal effort capacity of CHF patients. Its value to evaluate exercise capacity is similar with that of the 6 MWT, but 400mWT can assure a better evaluation of peripheral involvement.
Comparison of two progressive treadmill tests in patients with peripheral arterial disease.
Riebe, D; Patterson, R B; Braun, C M
2001-11-01
In a vascular rehabilitation program, 28% of our frail elderly patients are unable to be tested with traditional progressive exercise protocols at program entry due to the high (2.0 miles/h or 3.2 km/h) initial treadmill speeds. The purpose of this investigation was to compare a new progressive treadmill protocol which has a reduced initial speed (1.0 mile/h or 1.6 km/h) to an established protocol performed at 2.0 miles/h (3.2 km/h) to determine the comparability and reproducibility of the new protocol. Eleven patients with arterial claudication performed three symptom-limited exercise tests in random order. Two tests used the new protocol while the remaining trial used the established protocol. Claudication pain was measured using a 5-point scale. Oxygen consumption, heart rate, minute ventilation, respiratory exchange ratio and blood pressure at peak exercise were similar among the three trials. There were strong intraclass correlations for peak oxygen consumption (r = 0.97), onset of claudication (r = 0.96) and maximum walking time (r = 0.98) between the two trials using the new protocol. There was also a significant correlation between the new protocol and the established protocol for peak oxygen consumption (r = 0.90) and maximum walking time (r = 0.89). The new progressive treadmill protocol represents a valid, reliable protocol for patients with arterial claudication. This protocol may be useful for testing patients with a low functional capacity so that clinically appropriate exercise prescriptions can be established and the efficacy of treatments can be determined.
Kampshoff, Caroline S; Chinapaw, Mai J M; Brug, Johannes; Twisk, Jos W R; Schep, Goof; Nijziel, Marten R; van Mechelen, Willem; Buffart, Laurien M
2015-10-29
International evidence-based guidelines recommend physical exercise to form part of standard care for all cancer survivors. However, at present, the optimum exercise intensity is unclear. Therefore, we aimed to evaluate the effectiveness of a high intensity (HI) and low-to-moderate intensity (LMI) resistance and endurance exercise program compared with a wait list control (WLC) group on physical fitness and fatigue in a mixed group of cancer survivors who completed primary cancer treatment, including chemotherapy. Overall, 277 cancer survivors were randomized to 12 weeks of HI exercise (n = 91), LMI exercise (n = 95), or WLC (n = 91). Both interventions were identical with respect to exercise type, duration and frequency, and only differed in intensity. Measurements were performed at baseline (4-6 weeks after primary treatment) and post-intervention. The primary outcomes were cardiorespiratory fitness (peakVO2), muscle strength (grip strength and 30-second chair-stand test), and self-reported fatigue (Multidimensional Fatigue Inventory; MFI). Secondary outcomes included health-related quality of life, physical activity, daily functioning, body composition, mood, and sleep disturbances. Multilevel linear regression analyses were performed to estimate intervention effects using an intention-to-treat principle. In the HI and LMI groups, 74 % and 70 % of the participants attended more than 80 % of the prescribed exercise sessions, respectively (P = 0.53). HI (β = 2.2; 95 % CI, 1.2-3.1) and LMI (β = 1.3; 95 % CI, 0.3-2.3) exercise showed significantly larger improvements in peakVO2 compared to WLC. Improvements in peakVO2 were larger for HI than LMI exercise (β = 0.9; 95 % CI, -0.1 to 1.9), but the difference was not statistically significant (P = 0.08). No intervention effects were found for grip strength and the 30-second chair-stand test. HI and LMI exercise significantly reduced general and physical fatigue and reduced activity (MFI subscales) compared to WLC, with no significant differences between both interventions. Finally, compared to WLC, we found benefits in global quality of life and anxiety after HI exercise, improved physical functioning after HI and LMI exercise, and less problems at work after LMI exercise. Shortly after completion of cancer treatment, both HI and LMI exercise were safe and effective. There may be a dose-response relationship between exercise intensity and peakVO2, favoring HI exercise. HI and LMI exercise were equally effective in reducing general and physical fatigue. This study was registered at the Netherlands Trial Register [ NTR2153 ] on the 5th of January 2010.
Bailey, Tom G; Perissiou, Maria; Windsor, Mark; Russell, Fraser; Golledge, Jonathan; Green, Daniel J; Askew, Christopher D
2017-05-01
Impaired endothelial function is observed with aging and in those with low cardiorespiratory fitness (V̇o 2peak ). Improvements in endothelial function with exercise training are somewhat dependent on the intensity of exercise. While the acute stimulus for this improvement is not completely understood, it may, in part, be due to the flow-mediated dilation (FMD) response to acute exercise. We examined the hypothesis that exercise intensity alters the brachial (systemic) FMD response in elderly men and is modulated by V̇o 2peak Forty-seven elderly men were stratified into lower (V̇o 2peak = 24.3 ± 2.9 ml·kg -1 ·min -1 ; n = 27) and higher fit groups (V̇o 2peak = 35.4 ± 5.5 ml·kg -1 ·min -1 ; n = 20) after a test of cycling peak power output (PPO). In randomized order, participants undertook moderate-intensity continuous exercise (MICE; 40% PPO) or high-intensity interval cycling exercise (HIIE; 70% PPO) or no-exercise control. Brachial FMD was assessed at rest and 10 and 60 min after exercise. FMD increased after MICE in both groups {increase of 0.86% [95% confidence interval (CI), 0.17-1.56], P = 0.01} and normalized after 60 min. In the lower fit group, FMD was reduced after HIIE [reduction of 0.85% (95% CI, 0.12-1.58), P = 0.02] and remained decreased at 60 min. In the higher fit group, FMD was unchanged immediately after HIIE and increased after 60 min [increase of 1.52% (95% CI, 0.41-2.62), P < 0.01, which was correlated with V̇o 2peak , r = 0.41; P < 0.01]. In the no-exercise control, FMD was reduced in both groups after 60 min ( P = 0.05). Exercise intensity alters the acute FMD response in elderly men and V̇o 2peak modulates the FMD response following HIIE but not MICE. The sustained decrease in FMD in the lower fit group following HIIE may represent a signal for vascular adaptation or endothelial fatigue. NEW & NOTEWORTHY This study is the first to show that moderate-intensity continuous cycling exercise increased flow-mediated dilation (FMD) transiently before normalization of FMD after 1 h, irrespective of cardiorespiratory fitness level in elderly men. Interestingly, we show increased FMD after high-intensity cycling exercise in higher fit men, with a sustained reduction in FMD in lower fit men. The prolonged reduction in FMD after high-intensity cycling exercise may be associated with future vascular adaptation but may also reflect a period of increased cardiovascular risk in lower fit elderly men. Copyright © 2017 the American Physiological Society.
PREDICTION OF VO2PEAK USING OMNI RATINGS OF PERCEIVED EXERTION FROM A SUBMAXIMAL CYCLE EXERCISE TEST
Mays, Ryan J.; Goss, Fredric L.; Nagle-Stilley, Elizabeth F.; Gallagher, Michael; Schafer, Mark A.; Kim, Kevin H.; Robertson, Robert J.
2015-01-01
Summary The primary aim of this study was to develop statistical models to predict peak oxygen consumption (VO2peak) using OMNI Ratings of Perceived Exertion measured during submaximal cycle ergometry. Men (mean ± standard error: 20.90 ± 0.42 yrs) and women (21.59 ± 0.49 yrs) participants (n = 81) completed a load-incremented maximal cycle ergometer exercise test. Simultaneous multiple linear regression was used to develop separate VO2peak statistical models using submaximal ratings of perceived exertion for the overall body, legs, and chest/breathing as predictor variables. VO2peak (L·min−1) predicted for men and women from ratings of perceived exertion for the overall body (3.02 ± 0.06; 2.03 ± 0.04), legs (3.02 ± 0.06; 2.04 ± 0.04) and chest/breathing (3.02 ± 0.05; 2.03 ± 0.03) were similar with measured VO2peak (3.02 ± 0.10; 2.03 ± 0.06, ps > .05). Statistical models based on submaximal OMNI Ratings of Perceived Exertion provide an easily administered and accurate method to predict VO2peak. PMID:25068750
de Moura, Bruno Pereira; Marins, João Carlos Bouzas; Franceschini, Sylvia Do Carmo Castro; Reis, Janice Sepúlveda; Amorim, Paulo Roberto Dos Santos
2015-01-01
Although exercise promotes beneficial effects in diabetic patients, some studies have questioned the degree of their importance in terms of the increase in total energy expenditure. In these studies, the decrease of physical activity levels (PAL) was referred as "compensatory effect of exercise". However, our aim was to investigate whether aerobic exercise has compensatory effects on PAL in type 2 diabetes patients. Eight volunteers (51.1 ± 8.2 years) were enrolled in a supervised exercise programme for 8 weeks (3 d · wk(-1), 50-60% of VO2 peak for 30-60 min). PAL was measured using tri-axial accelerometers in the 1st, 8th and 12th weeks. Biochemical tests, cardiorespiratory fitness, anthropometric assessment and body composition were measured in the 2nd and 11th weeks. Statistical analysis was performed using non-parametric tests (Friedman and Wilcoxon, P < 0.05). We found no significant differences in PAL between intervention periods, and participants spent the majority of their awake time in sedentary activities. However, the exercise programme generated a significant 14.8% increase in VO2 peak and a 15% reduction in fructosamine. The exercise programme had no compensatory effects on PAL in type 2 diabetes patients, but improved their cardiorespiratory fitness and glycaemic control.
Coiro, Vittorio; Volpi, Riccardo; Casti, Amos; Maffei, Maria Ludovica; Stella, Adriano; Volta, Elio; Chiodera, Paolo
2011-06-01
• Alprazolam (ALP), a benzodiazepine activating GABAergic receptors, is involved in ACTH secretion. • This study demonstrates a partial opioid influence in the inhibitory effect of ALP on the release of ACTH/cortisol during physical exercise. To establish the possible involvement of alprazolam (ALP) and/or opiates in the mechanism underlying the ACTH/cortisol response to physical exercise. Tests were carried out under basal conditions (exercise control test), exercise plus ALP (50 µg at time -90 min), naloxone (10 mg at time 0) or ALP plus naloxone. Plasma ACTH and serum cortisol concentrations were evaluated in blood samples taken before, during and after the bicycle ergometer tests. ACTH and cortisol concentrations rose significantly after physical exercise. Maximum peak at time 15 min (P ≤ 0.01 vs. baseline) for ACTH and at time 30 min (P ≤ 0.01 vs. baseline) for cortisol. In the presence of naloxone, the ACTH and cortisol responses were significantly increased (maximum peak at time 20 min, P ≤ 0.02 vs. control test for ACTH, and at time 30 min (P ≤ 0.01 vs. baseline) for cortisol) whereas they were abolished by ALP. When ALP and naloxone were given together, the inhibitory effect of ALP was partial. These data demonstrate an inhibitory effect of ALP in the regulation of the ACTH/cortisol response to physical exercise in man and suggest that GABAergic receptor activating benzodiazepines and opioids interact in the neuroendocrine secretion of ACTH/cortisol. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.
van Le, Douet; Jensen, Gunnar Vagn Hagemann; Carstensen, Steen; Kjøller-Hansen, Lars
2016-01-01
The aim of this study was to determine the feasibility, reproducibility, safety and information obtained on exercise physiology from cardiopulmonary exercise testing (CPX) in patients with aortic stenosis. Patients with an aortic valve area (AVA) <1.3 cm2 who were judged asymptomatic or equivocal symptomatic underwent CPX and an inert gas rebreathing test. Only those where comprehensive evaluation of CPX results indicated haemodynamic compromise from aortic stenosis were referred for valve replacement. The mean patient age was 72 (±9) years; an AVA index <0.6 cm2/m2 and equivocal symptomatic status were found in 90 and 70%, respectively. CPX was feasible in 130 of the 131 patients. The coefficients of repeatability by test-retest were 5.4% (pVO2) and 4.6% (peak O2 pulse). A pVO2 <83% of the expected was predicted by a lower stroke volume at exercise, lower peak heart rate and FEV1, and higher VE/VCO2, but not by AVA index. Equivocal symptomatic status and a low gradient but high valvulo-arterial impedance were associated with a lower pVO2, but not with an inability to increase stroke volume. In total, 18 patients were referred for valve replacement. At 1 year, no cardiovascular deaths had occurred. CPX was feasible and reproducible and provided comprehensive data on exercise physiology. A CPX-guided treatment strategy was safe up to 1 year. © 2015 S. Karger AG, Basel.
Effects of the forearm support band on wrist extensor muscle fatigue.
Knebel, P T; Avery, D W; Gebhardt, T L; Koppenhaver, S L; Allison, S C; Bryan, J M; Kelly, A
1999-11-01
A crossover experimental design with repeated measures. To determine whether the forearm support band alters wrist extensor muscle fatigue. Fatigue of the wrist extensor muscles is thought to be a contributing factor in the development of lateral epicondylitis. The forearm support band is purported to reduce or prevent symptoms of lateral epicondylitis but the mechanism of action is unknown. Fifty unimpaired subjects (36 men, 14 women; mean age = 29 +/- 6 years) were tested with and without a forearm support band before and after a fatiguing bout of exercise. Peak wrist extension isometric force, peak isometric grip force, and median power spectral frequency for wrist extensor electromyographic activity were measured before and after exercise and with and without the forearm support band. A 2 x 2 repeated measures multivariate analysis of variance was used to analyze the data, followed by univariate analysis of variance and Tukey's multiple comparison tests. Peak wrist extension isometric force, peak grip isometric force, and median power spectral frequency were all reduced after exercise. However, there was a significant reduction in peak grip isometric force and peak wrist extension isometric force values for the with-forearm support band condition (grip force 28%, wrist extension force 26%) compared to the without-forearm support band condition (grip force 18%, wrist extension force 15%). Wearing the forearm support band increased the rate of fatigue in unimpaired individuals. Our findings do not support the premise that wearing the forearm support band reduces muscle fatigue in the wrist extensors.
Physical inactivity, neurological disability, and cardiorespiratory fitness in multiple sclerosis.
Motl, R W; Goldman, M
2011-02-01
We examined the associations among physical activity, neurological disability, and cardiorespiratory fitness in two studies of individuals with multiple sclerosis (MS). Study 1 included 25 women with relapsing-remitting MS (RRMS) who undertook an incremental exercise test for measuring peak oxygen (VO₂(peak) ) consumption, wore an accelerometer during a 7-day period, and completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ). Study 2 was a follow-up of Study 1 and included 24 women with RRMS who completed the self-reported Expanded Disability Status Scale (EDSS), undertook an incremental exercise test, wore an accelerometer during a 7-day period, and completed the GLTEQ. Study 1 indicated that VO₂(peak) was significantly correlated with accelerometer counts (pr = 0.69) and GLTEQ scores (pr = 0.63) even after controlling for age and MS duration. Study 2 indicated that VO₂(peak) was significantly correlated with accelerometer counts (pr = 0.50), GLTEQ scores (pr = 0.59), and EDSS scores (pr = -0.43) even after controlling for age and MS duration; there was a moderate partial correlation between accelerometer counts and EDSS scores (pr = -0.43). Multiple linear regression analysis indicated that both accelerometer counts (β = 0.32) and EDSS scores (β = -0.40) had statistically significant associations with VO₂(peak). The findings indicate that physical inactivity and neurological disability might represent independent risk factors for reduced levels of cardiorespiratory fitness in this population. © 2010 John Wiley & Sons A/S.
Xu, Q F; Yuan, W; Zhao, X J; Li, B; Wang, H Y
2016-02-01
To investigate the exercise-related risk at anaerobic threshold(AT) in patients with chronic obstructive pulmonary disease(COPD). Sixty two patients [men 56, women 6, aged (66±8) yr] with stable COPD in Beijing Friendship Hospital during 2013-2014, participated in this study. Incremental symptom-limited cardiopulmonary exercise test was performed on cycle ergometer. The AT was determined using the V-Slope technique and ventilatory equivalents for carbon dioxide and oxygen. Symptoms, 10-lead electrocardiogram, oxygen saturation by pulse oximetry(SpO(2)) were monitored during exercise. The AT, detectable in 53 patients, occurred at (68±10)% of peak oxygen uptake(peak VO(2)). The SpO(2) was in the safe range (94±2) % and the respiratory reserve was relatively high at AT (i.e. 48%). High-intensity exercise training can be performed in patients with moderate-to- severe COPD without resting oxygen desaturation.
A new standardized treadmill walking test requiring low motor skills in children aged 4-10 years.
Wäffler-Kammermann, Nathalie; Lacorcia, Ruth Stauffer; Wettstein, Markus; Radlinger, Lorenz; Frey, Urs
2008-02-01
Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies. Copyright 2007 Wiley-Liss, Inc.
Exercise capacity, muscle strength and fatigue in sarcoidosis.
Marcellis, R G J; Lenssen, A F; Elfferich, M D P; De Vries, J; Kassim, S; Foerster, K; Drent, M
2011-09-01
The aim of this case-control study was to investigate the prevalence of exercise intolerance, muscle weakness and fatigue in sarcoidosis patients. Additionally, we evaluated whether fatigue can be explained by exercise capacity, muscle strength or other clinical characteristics (lung function tests, radiographic stages, prednisone usage and inflammatory markers). 124 sarcoidosis patients (80 males) referred to the Maastricht University Medical Centre (Maastricht, the Netherlands) were included (mean age 46.6±10.2 yrs). Patients performed a 6-min walk test (6MWT) and handgrip force (HGF), elbow flexor muscle strength (EFMS), quadriceps peak torque (QPT) and hamstring peak torque (HPT) tests. Maximal inspiratory pressure (P(I,max)) was recorded. All patients completed the Fatigue Assessment Scale (FAS) questionnaire. The 6MWT was reduced in 45% of the population, while HGF, EFMS, QPT and HPT muscle strength were reduced in 15, 12, 27 and 18%, respectively. P(I,max) was reduced in 43% of the population. The majority of the patients (81%) reported fatigue (FAS ≥22). Patients with reduced peripheral muscle strength of the upper and/or lower extremities were more fatigued and demonstrated impaired lung functions, fat-free mass, P(I,max), 6MWT and quality of life. Fatigue was neither predicted by exercise capacity, nor by muscle strength. Besides fatigue, exercise intolerance and muscle weakness are frequent problems in sarcoidosis. We therefore recommend physical tests in the multidisciplinary management of sarcoidosis patients, even in nonfatigued patients.
Cade, W Todd; Nabar, Sharmila R; Keyser, Randall E
2004-05-01
The purpose of this study was to determine the reproducibility of the indirect Fick method for the measurement of mixed venous carbon dioxide partial pressure (P(v)CO(2)) and venous carbon dioxide content (C(v)CO(2)) for estimation of cardiac output (Q(c)), using the exponential rise method of carbon dioxide rebreathing, during non-steady-state treadmill exercise. Ten healthy participants (eight female and two male) performed three incremental, maximal exercise treadmill tests to exhaustion within 1 week. Non-invasive Q(c) measurements were evaluated at rest, during each 3-min stage, and at peak exercise, across three identical treadmill tests, using the exponential rise technique for measuring mixed venous PCO(2) and CCO(2) and estimating venous-arterio carbon dioxide content difference (C(v-a)CO(2)). Measurements were divided into measured or estimated variables [heart rate (HR), oxygen consumption (VO(2)), volume of expired carbon dioxide (VCO(2)), end-tidal carbon dioxide (P(ET)CO(2)), arterial carbon dioxide partial pressure (P(a)CO(2)), venous carbon dioxide partial pressure ( P(v)CO(2)), and C(v-a)CO(2)] and cardiorespiratory variables derived from the measured variables [Q(c), stroke volume (V(s)), and arteriovenous oxygen difference ( C(a-v)O(2))]. In general, the derived cardiorespiratory variables demonstrated acceptable (R=0.61) to high (R>0.80) reproducibility, especially at higher intensities and peak exercise. Measured variables, excluding P(a)CO(2) and C(v-a)CO(2), also demonstrated acceptable (R=0.6 to 0.79) to high reliability. The current study demonstrated acceptable to high reproducibility of the exponential rise indirect Fick method in measurement of mixed venous PCO(2) and CCO(2) for estimation of Q(c) during incremental treadmill exercise testing, especially at high-intensity and peak exercise.
Validity of an Exercise Test Based on Habitual Gait Speed in Mobility-Limited Older Adults
Li, Xin; Forman, Daniel E.; Kiely, Dan K.; LaRose, Sharon; Hirschberg, Ronald; Frontera, Walter R.; Bean, Jonathan F.
2013-01-01
Objective To evaluate whether a customized exercise tolerance testing (ETT) protocol based on an individual’s habitual gait speed (HGS) on level ground would be a valid mode of exercise testing older adults. Although ETT provides a useful means to risk-stratify adults, age-related declines in gait speed paradoxically limit the utility of standard ETT protocols for evaluating older adults. A customized ETT protocol may be a useful alternative to these standard methods, and this study hypothesized that this alternative approach would be valid. Design We performed a cross-sectional analysis of baseline data from a randomized controlled trial of older adults with observed mobility problems. Screening was performed using a treadmill-based ETT protocol customized for each individual’s HGS. We determined the content validity by assessing the results of the ETTs, and we evaluated the construct validity of treadmill time in relation to the Physical Activity Scale for the Elderly (PASE) and the Late Life Function and Disability Instrument (LLFDI). Setting Outpatient rehabilitation center. Participants Community-dwelling, mobility-limited older adults (N = 141). Interventions Not applicable. Main Outcome Measures Cardiac instability, ETT duration, peak heart rate, peak systolic blood pressure, PASE, and LLFDI. Results Acute cardiac instability was identified in 4 of the participants who underwent ETT. The remaining participants (n = 137, 68% female; mean age, 75.3y) were included in the subsequent analyses. Mean exercise duration was 9.39 minutes, with no significant differences in durations being observed after evaluating among tertiles by HGS status. Mean peak heart rate and mean peak systolic blood pressure were 126.6 beats/ min and 175.0mmHg, respectively. Within separate multivariate models, ETT duration in each of the 3 gait speed groups was significantly associated (P<.05) with PASE and LLFDI. Conclusions Mobility-limited older adults can complete this customized ETT protocol, allowing for the identification of acute cardiac instability and the achievement of optimal exercise parameters. PMID:22289248
Leiba, Adi; Baur, Dorothee M; Kales, Stefanos N
2013-01-01
Different studies have yielded conflicting results regarding the association of hypertensive response to exercise and cardiovascular morbidity. We compared two different definitions of exaggerated hypertensive response to exercise and their association with cardio-respiratory fitness in a population of healthy firefighters. We examined blood pressure response to exercise in 720 normotensive male career firefighters. Fitness was measured as peak metabolic equivalent tasks (METs) achieved during maximal exercise treadmill tests. Abnormal hypertensive response was defined either as systolic blood pressure ≥ 200 mm Hg; or alternatively, as responses falling in the upper tertile of blood pressure change from rest to exertion, divided by the maximal workload achieved. Using the simple definition of a 200 mm Hg cutoff at peak exercise less fit individuals (METs ≤ 12) were protected from an exaggerated hypertensive response (OR 0.45, 95%CI 0.30-0.67). However, using the definition of exercise-induced hypertension that corrects for maximal workload, less fit firefighters had almost twice the risk (OR 1.8, 95%CI 1.3-2.47). Blood pressure change corrected for maximal workload is better correlated with cardiorespiratory fitness. Systolic blood pressure elevation during peak exercise likely represents an adaptive response, whereas elevation out of proportion to the maximal workload may indicate insufficient vasodilation and a maladaptive response. Prospective studies are needed to best define exaggerated blood pressure response to exercise. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Cardiopulmonary Responses to Supine Cycling during Short-Arm Centrifugation
NASA Technical Reports Server (NTRS)
Vener, J. M.; Simonson, S. R.; Stocks, J.; Evettes, S.; Bailey, K.; Biagini, H.; Jackson, C. G. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
The purpose of this study was to investigate cardiopulmonary responses to supine cycling with concomitant +G(sub z) acceleration using the NASA/Ames Human Powered Short-Arm Centrifuge (HPC). Subjects were eight consenting males (32+/-5 yrs, 178+/-5 cm, 86.1+/- 6.2 kg). All subjects completed two maximal exercise tests on the HPC (with and without acceleration) within a three-day period. A two tailed t-test with statistical significance set at p less than or equal to 0.05 was used to compare treatments. Peak acceleration was 3.4+/-0.1 G(sub z), (head to foot acceleration). Peak oxygen uptake (VO2(sub peak) was not different between treatment groups (3.1+/-0.1 Lmin(exp -1) vs. 3.2+/-0.1 Lmin(exp -1) for stationary and acceleration trials, respectively). Peak HR and pulmonary minute ventilation (V(sub E(sub BTPS))) were significantly elevated (p less than or equal to 0.05) for the acceleration trial (182+/-3 BPM (Beats per Minute); 132.0+/-9.0 Lmin(exp -1)) when compared to the stationary trial (175+/-3 BPM; 115.5+/-8.5 Lmin(exp -1)). Ventilatory threshold expressed as a percent of VO2(sub peak) was not different for acceleration and stationary trials (72+/-2% vs. 68+/-2% respectively). Results suggest that 3.4 G(sub z) acceleration does not alter VO2(sub peak) response to supine cycling. However, peak HR and V(sub E(sub BTPS)) response may be increased while ventilatory threshold response expressed as a function of percent VO2(sub peak) is relatively unaffected. Thus, traditional exercise prescription based on VO2 response would be appropriate for this mode of exercise. Prescriptions based on HR response may require modification.
Rogerson, Mike; Barton, Jo
2015-01-01
Green exercise research often reports psychological health outcomes without rigorously controlling exercise. This study examines effects of visual exercise environments on directed attention, perceived exertion and time to exhaustion, whilst measuring and controlling the exercise component. Participants completed three experimental conditions in a randomized counterbalanced order. Conditions varied by video content viewed (nature; built; control) during two consistently-ordered exercise bouts (Exercise 1: 60% VO2peakInt for 15-mins; Exercise 2: 85% VO2peakInt to voluntary exhaustion). In each condition, participants completed modified Backwards Digit Span tests (a measure of directed attention) pre- and post-Exercise 1. Energy expenditure, respiratory exchange ratio and perceived exertion were measured during both exercise bouts. Time to exhaustion in Exercise 2 was also recorded. There was a significant time by condition interaction for Backwards Digit Span scores (F2,22 = 6.267, p = 0.007). Scores significantly improved in the nature condition (p < 0.001) but did not in the built or control conditions. There were no significant differences between conditions for either perceived exertion or physiological measures during either Exercise 1 or Exercise 2, or for time to exhaustion in Exercise 2. This was the first study to demonstrate effects of controlled exercise conducted in different visual environments on post-exercise directed attention. Via psychological mechanisms alone, visual nature facilitates attention restoration during moderate-intensity exercise. PMID:26133125
Rogerson, Mike; Barton, Jo
2015-06-30
Green exercise research often reports psychological health outcomes without rigorously controlling exercise. This study examines effects of visual exercise environments on directed attention, perceived exertion and time to exhaustion, whilst measuring and controlling the exercise component. Participants completed three experimental conditions in a randomized counterbalanced order. Conditions varied by video content viewed (nature; built; control) during two consistently-ordered exercise bouts (Exercise 1: 60% VO2peakInt for 15-mins; Exercise 2: 85% VO2peakInt to voluntary exhaustion). In each condition, participants completed modified Backwards Digit Span tests (a measure of directed attention) pre- and post-Exercise 1. Energy expenditure, respiratory exchange ratio and perceived exertion were measured during both exercise bouts. Time to exhaustion in Exercise 2 was also recorded. There was a significant time by condition interaction for Backwards Digit Span scores (F2,22 = 6.267, p = 0.007). Scores significantly improved in the nature condition (p < 0.001) but did not in the built or control conditions. There were no significant differences between conditions for either perceived exertion or physiological measures during either Exercise 1 or Exercise 2, or for time to exhaustion in Exercise 2. This was the first study to demonstrate effects of controlled exercise conducted in different visual environments on post-exercise directed attention. Via psychological mechanisms alone, visual nature facilitates attention restoration during moderate-intensity exercise.
Transthoracic Coronary Flow Data at Rest Predict High-Risk Stress Tests.
Zagatina, Angela; Zhuravskaya, Nadezhda; Vareldzhyan, Yuliya; Kamenskikh, Maxim; Shmatov, Dmitry; Benacka, Jozef; Kucera, Martin; Kruzliak, Peter
2018-06-01
Background Several recent studies have reported the opportunity to diagnose significant narrowing of the coronary arteries without stress testing using local flow acceleration. Purpose To define how often patients with increased coronary flow velocities at rest (≥ 0.70 m/s) have a positive exercise echocardiography test. Material and Methods A total of 150 patients scheduled for exercise echocardiography were studied using transthoracic Doppler echocardiography in order to assess coronary artery flow velocity before exercise. Pulsed wave Doppler registered blood flow velocity placed on the color signal. The maximal diastolic velocity of coronary flow was measured. Results Of participants, 16% had a velocity of more than 0.70 m/s in the left main/proximal left anterior/proximal left circumflex arteries (LM/pLAD). A significant correlation was observed between the value of the maximal velocity in LM/pLAD and the ejection fraction at the peak of exercise ( r ≈ -0.39, P < 0.0001); between the value of the maximal velocity in LM/pLAD and index of wall motion abnormalities (IWMA) at the peak of exercise ( r ≈ 0.44, P < 0.0001); and between the value of the maximal velocity in LM/pLAD and dIWMA ( r ≈ 0.41, P < 0.0001). Afterwards, severe ischemia in stress echocardiography tests was observed in this group. The average IWMA of these tests was found to be 2.3. Sixty-two angiograms were available for comparison with Doppler data. Conclusion There is a significant correlation between the value of the maximal velocity in LM/pLAD/pLCx at rest and the severity of wall motion abnormalities during exercise tests.
Wittlieb-Weber, Carol A; Cohen, Meryl S; McBride, Michael G; Paridon, Stephen M; Morrow, Robert; Wasserman, Melissa; Wang, Yan; Stephens, Paul
2013-12-01
Children with heart disease are at risk for sudden death during exercise, yet decisions regarding sports participation are often based on resting data. Acceleration across the left ventricular outflow tract (LVOT) assessed on stress echocardiography may suggest a diagnosis of hypertrophic cardiomyopathy in patients in whom it is not otherwise obvious. However, the range of peak velocities across the LVOT in healthy youth is unknown. The aim of this study was to describe LVOT velocities with maximal exercise in this age group. Subjects up to 18 years old were prospectively enrolled if they had normal results on resting echocardiography and were undergoing exercise testing for other reasons. Subjects with significant comorbidities, suspected cardiomyopathy, or family histories of cardiomyopathy were excluded. Peak LVOT velocities were measured in the upright position using continuous-wave Doppler immediately after maximal exercise. Fifty subjects (mean age, 13.8 ± 2.8 years) were included. Twenty-eight (56%) were male, and 40 (80%) were Caucasian. The median peak LVOT velocity measured immediately after exercise was 2.5 m/sec (range, 1.3-5.9 m/sec). Sixteen subjects (32%) developed peak LVOT velocities of ≥3 m/sec. Twelve of the 16 (75%) with elevated velocities had a dynamic outflow tract Doppler pattern, of whom eight had evidence of intracavitary narrowing on two-dimensional echocardiography. The development of significant exercise-induced LVOT velocities may be a normal physiologic finding in healthy youth. The measurement of LVOT velocities alone with maximal exercise may not help distinguish patients with hypertrophic cardiomyopathy from healthy children. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Peteiro, Jesús; Bouzas-Mosquera, Alberto; Estevez, Rodrigo; Pazos, Pablo; Piñeiro, Miriam; Castro-Beiras, Alfonso
2012-03-01
Supine bicycle exercise (SBE) echocardiography and treadmill exercise (TME) echocardiography have been used for evaluation of coronary artery disease (CAD). Although peak imaging acquisition has been considered unfeasible with TME, higher sensitivity for the detection of CAD has been recently found with this method compared with post-TME echocardiography. However, peak TME echocardiography has not been previously compared with the more standardized peak SBE echocardiography. The aim of this study was to compare peak TME echocardiography, peak SBE echocardiography, and post-TME echocardiography for the detection of CAD. A series of 116 patients (mean age, 61 ± 10 years) referred for evaluation of CAD underwent SBE (starting at 25 W, with 25-W increments every 2-3 min) and TME with peak and postexercise imaging acquisition, in a random sequence. Digitized images at baseline, at peak TME, after TME, and at peak SBE were interpreted in a random and blinded fashion. All patients underwent coronary angiography. Maximal heart rate was higher during TME, whereas systolic blood pressure was higher during SBE, resulting in similar rate-pressure products. On quantitative angiography, 75 patients had coronary stenosis (≥50%). In these patients, wall motion score indexes at maximal exercise were higher at peak TME (median, 1.45; interquartile range [IQR], 1.13-1.75) than at peak SBE (median, 1.25; IQR, 1.0-1.56) or after TME (median, 1.13; IQR, 1.0-1.38) (P = .002 between peak TME and peak SBE imaging, P < .001 between post-TME imaging and the other modalities). The extent of myocardial ischemia (number of ischemic segments) was also higher during peak TME (median, 5; IQR, 2-12) compared with peak SBE (median, 3; IQR, 0-8) or after TME (median, 2; IQR, 0-4) (P < .001 between peak TME and peak SBE imaging, P < .001 between post-TME imaging and the other modalities). ST-segment changes in patients with CAD and normal baseline ST segments were higher during TME (median, 1 mm [IQR, 0-1.9 mm] vs 0 mm [IQR, 0-1.5 mm]; P = .006). The sensitivity of peak TME, peak SBE, and post-TME echocardiography for CAD was 84%, 75%, and 60% (P = .001 between post-TME and peak TME echocardiography, P = .055 between post-TME and peak SBE echocardiography), with specificity of 63%, 80%, and 78%, respectively (P = NS) and accuracy of 77%, 77%, and 66%, respectively (P = NS). Peak TME echocardiography diagnosed multivessel disease in 27 of the 40 patients with stenoses in more than one coronary artery, in contrast to 17 patients with peak SBE imaging and 12 with post-TME imaging (P < .05 between peak TME imaging and the other modalities). Image quality was similar with the three techniques. The duration of the test was longer with SBE echocardiography (9.5 ± 3.8 vs 7.6 ± 2.5 min, P < .001). During TME and SBE, patients achieve similar double products. Ischemia is more extensive and frequent with peak TME, which makes peak TME a more valuable exercise echocardiographic modality to increase sensitivity. However, peak SBE should be preferred to TME if the latter is performed with postexercise imaging acquisition. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
van Schaardenburgh, Michel; Wohlwend, Martin; Rognmo, Øivind; Mattsson, Erney J R
2017-06-07
Exercise of patients with intermittent claudication improves walking performance. Exercise does not usually increase blood flow, but seems to increase muscle mitochondrial enzyme activities. Although exercise is beneficial in most patients, it might be harmful in some. The mitochondrial response to exercise might therefore differ between patients. Our hypothesis was that changes in walking performance relate to changes in mitochondrial function after 8 weeks of exercise. At a subgroup level, negative responders decrease and positive responders increase mitochondrial capacity. Two types of exercise were studied, calf raising and walking (n = 28). We wanted to see whether there were negative and positive responders, independent of type of exercise. Measurements of walking performance, peripheral hemodynamics, mitochondrial respiration and content (citrate synthase activity) were obtained on each patient before and after the intervention period. Multiple linear regression was used to test whether changes in peak walking time relate to mitochondrial function. Subgroups of negative (n = 8) and positive responders (n = 8) were defined as those that either decreased or increased peak walking time following exercise. Paired t test and analysis of covariance was used to test changes within and between subgroups. Changes in peak walking time were related to changes in mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI) P (p = 0.004), complex I (CI + ETF) P (p = 0.003), complex I + complex II (CI + CII + ETF) P (p = 0.037) and OXPHOS coupling efficiency (p = 0.046) in the whole group. Negative responders had more advanced peripheral arterial disease. Mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI) P (p = 0.0013), complex I (CI + ETF) P (p = 0.0005), complex I + complex II (CI + CII + ETF) P (p = 0.011) and electron transfer system capacity (CI + CII + ETF) E (p = 0.021) and OXPHOS coupling efficiency decreased in negative responders (p = 0.0007) after exercise. Positive responders increased citrate synthase activity (p = 0.010). Changes in walking performance seem to relate to changes in mitochondrial function after exercise. Negative responders have more advanced peripheral arterial disease and decrease, while positive responders increase mitochondrial capacity. Trial registration ClinicalTrials.gov ID: NCT023110256.
Spielmanns, Marc; Fuchs-Bergsma, Chantal; Winkler, Aurelia; Fox, Gabriele; Krüger, Stefan; Baum, Klaus
2015-04-01
It is well established that physical training enhances functionality and quality of life in patients with COPD. However, little data exist concerning the effects of the usefulness of oxygen supply during exercise training for > 3 months in patients with COPD who are normoxemic at rest and during exercise. We hypothesized that oxygen supply during training sessions enables higher training intensity and thus optimizes training results in patients with COPD. In this blinded randomized controlled study, we carried out a 24-week training program with progressively increasing loads involving large muscle groups. In addition, we compared the influences of oxygen supplementation. Thirty-six subjects with moderate-to-severe COPD who were not dependent on long-term oxygen therapy trained under supervision for 24 weeks (3 times/week at 30 min/session). Subjects were randomized into 2 groups: oxygen supply via nasal cannula at a flow of 4 L/min and compressed air at the same flow throughout the training program. Lung function tests at rest (inspiratory vital capacity, FEV1, Tiffeneau index), cycle spiroergometry (peak ventilation, peak oxygen uptake, peak respiratory exchange rate, submaximal and peak lactic acid concentrations), 6-min walk tests, and quality-of-life assessments (Medical Outcomes Study 36-Item Short Form questionnaire) were conducted before and after 12 and 24 weeks. Independent of oxygen supplementation, statistically significant improvements occurred in quality of life, maximal tolerated load during cycling, peak oxygen uptake, and 6-min walk test after 12 weeks of training. Notably, there were no further improvements from 12 to 24 weeks despite progressively increased training loads. Endurance training 3 times/week resulted in significant improvements in quality of life and exercise capacity in subjects with moderate-to-severe COPD within the initial 12 weeks, followed by a stable period over the following 12 weeks with no further benefits of supplemental oxygen. Copyright © 2015 by Daedalus Enterprises.
Speckle Tracking Imaging in Normal Stress Echocardiography.
Leitman, Marina; Tyomkin, Vladimir; Peleg, Eli; Zyssman, Izhak; Rosenblatt, Simcha; Sucher, Edgar; Gercenshtein, Vered; Vered, Zvi
2017-04-01
Exercise stress echocardiography is a widely used modality for the diagnosis and follow-up of patients with coronary artery disease. During the last decade, speckle tracking imaging has been used increasingly for accurate evaluation of cardiac function. This work aimed to assess speckle-tracking imaging parameters during nonischemic exercise stress echocardiography. During 2011 to 2014 we studied 46 patients without history of coronary artery disease, who completed exercise stress echocardiography protocol, had normal left ventricular function, a nonischemic response, and satisfactory image quality. These exams were analyzed with speckle-tracking imaging software at rest and at peak exercise. Peak strain and time-to-peak strain were measured at rest and after exercise. Clinical follow-up included a telephone contact 1 to 3 years after stress echo exam, confirming freedom from coronary events during this time. Global and regional peak strain increased following exercise. Time-to-peak global and regional strain and time-to-peak strain adjusted to the heart rate were significantly shorter in all segments after exercise. Rest-to-stress ratio of time-to-peak strain adjusted to the heart rate was 2.0 to 2.8. Global and regional peak strain rise during normal exercise echocardiography. Peak global and regional strain occur before or shortly after aortic valve closure at rest and after exercise, and the delay is more apparent at the basal segments. Time-to-peak strain normally shortens significantly during exercise; after adjustment to heart rate it shortens by a ratio of 2.0 to 2.8. These data may be useful for interpretation of future exercise stress speckle-tracking echocardiography studies. © 2016 by the American Institute of Ultrasound in Medicine.
Blood pressure response is impaired in patients with exercise-induced ventricular ectopy.
Turan, Oguzhan Ekrem; Ozturk, Mustafa; Kocaoglu, Ibrahim; Turan, Selen Gursoy
2016-05-01
Exercise-induced ventricular ectopy (EIVE) has clinical and prognostic significance. But the mechanism underlying EIVE-related mortality still remains unclear. This study aims to assess blood pressure alteration in patients with EIVE and to identify the potential causes of increased mortality in this patient group. A total number of 3611 patients were screened within a 1-year period, and patients with a structural heart disease, coronary artery disease, hypertension, diabetes mellitus, thyroid dysfunction, and chronic renal disease were excluded from the study. A total number of 98 patients with no chronic disease, who were retrospectively diagnosed with EIVE, were included in the study as patient group and 116 patients without EIVE were included as control group. The median age, gender distribution, laboratory test results, and echocardiographic findings were similar between the two groups. Systolic blood pressure (SBP) alterations during exercise stress testing were found to be significantly different (P < .001). Moreover, EIVE group had significantly higher peak SBP (P < .001). A significant positive relation was found between peak SBP level and ventricular ectopy count (r:0.27, P = .006). Our study showed that EIVE patients without a structural heart disease or a chronic disease had higher peak SBP levels. Higher SBP alteration can be related to ventricular ectopy occurrence during exercise stress testing, which can be a possible reason underlying the increased rate of mortality among EIVE patients. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Keteyian, Steven J; Hibner, Brooks A; Bronsteen, Kyle; Kerrigan, Dennis; Aldred, Heather A; Reasons, Lisa M; Saval, Mathew A; Brawner, Clinton A; Schairer, John R; Thompson, Tracey M S; Hill, Jason; McCulloch, Derek; Ehrman, Jonathon K
2014-01-01
We tested the hypothesis that higher-intensity interval training (HIIT) could be deployed into a standard cardiac rehabilitation (CR) setting and would result in a greater increase in cardiorespiratory fitness (ie, peak oxygen uptake, (·)VO₂) versus moderate-intensity continuous training (MCT). Thirty-nine patients participating in a standard phase 2 CR program were randomized to HIIT or MCT; 15 patients and 13 patients in the HIIT and MCT groups, respectively, completed CR and baseline and followup cardiopulmonary exercise testing. No patients in either study group experienced an event that required hospitalization during or within 3 hours after exercise. The changes in resting heart rate and blood pressure at followup testing were similar for both HIIT and MCT. (·)VO₂ at ventilatory-derived anaerobic threshold increased more (P < .05) with HIIT (3.0 ± 2.8 mL·kg⁻¹·min⁻¹) versus MCT (0.7 ± 2.2 mL·kg⁻¹·min⁻¹). During followup testing, submaximal heart rate at the end of stage 2 of the exercise test was significantly lower within both the HIIT and MCT groups, with no difference noted between groups. Peak (·)VO₂ improved more after CR in patients in HIIT versus MCT (3.6 ± 3.1 mL·kg⁻¹·min⁻¹ vs 1.7 ± 1.7 mL·kg⁻¹·min⁻¹; P < .05). Among patients with stable coronary heart disease on evidence-based therapy, HIIT was successfully integrated into a standard CR setting and, when compared to MCT, resulted in greater improvement in peak exercise capacity and submaximal endurance.
van Dyk, N; Witvrouw, E; Bahr, R
2018-04-25
In elite sport, the use of strength testing to establish muscle function and performance is common. Traditionally, isokinetic strength tests have been used, measuring torque during concentric and eccentric muscle action. A device that measures eccentric hamstring muscle strength while performing the Nordic hamstring exercise is now also frequently used. The study aimed to investigate the variability of isokinetic muscle strength over time, for example, between seasons, and the relationship between isokinetic testing and the new Nordic hamstring exercise device. All teams (n = 18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Qatar. Isokinetic strength was investigated for measurement error, and correlated to Nordic hamstring exercise strength. Of the 529 players included, 288 players had repeated tests with 1/2 seasons between test occasions. Variability (measurement error) between test occasions was substantial, as demonstrated by the measurement error (approximately 25 Nm, 15%), whether separated by 1 or 2 seasons. Considering hamstring injuries, the same pattern was observed among injured (n = 60) and uninjured (n = 228) players. A poor correlation (r = .35) was observed between peak isokinetic hamstring eccentric torque and Nordic hamstring exercise peak force. The strength imbalance between limbs calculated for both test modes was not correlated (r = .037). There is substantial intraindividual variability in all isokinetic test measures, whether separated by 1 or 2 seasons, irrespective of injury. Also, eccentric hamstring strength and limb-to-limb imbalance were poorly correlated between the isokinetic and Nordic hamstring exercise tests. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Van Iterson, Erik H; Olson, Thomas P
2018-01-01
Arterial CO 2 tension (PaCO 2 ) and physiological dead space (V D ) are not routinely measured during clinical cardiopulmonary exercise testing (CPET). Abnormal changes in PaCO 2 accompanied by increased V D directly contribute to impaired exercise ventilatory function in heart failure (HF). Because arterial catheterization is not standard practice during CPET, this study tested the construct validity of PaCO 2 and V D prediction models using 'ideal' alveolar air equations and basic ventilation and gas-exchangegas exchange measurements during CPET in HF. Forty-seven NYHA class II/III HF (LVEF=21±7%; age=55±9years; male=89%; BMI=28±5kg/m 2 ) performed step-wise cycle ergometry CPET to volitional fatigue. Breath-by-breath ventilation and gas exchange were measured continuously. Steady-state PaCO 2 was measured at rest and peak exercise via radial arterial catheterization. Criterion V D was calculated via 'ideal' alveolar equations, whereas PaCO 2 or V D models were based on end-tidal CO 2 tension (P ET CO 2 ), tidal volume (V T ), and/or weight. Criterion measurements of PaCO 2 (38±5 vs. 33±5mmHg, P<0.01) and V D (0.26±0.07 vs. 0.41±0.15L, P<0.01) differed at rest vs. peak exercise, respectively. The equation, 5.5+0.90×P ET CO 2 -0.0021×V T , was the strongest predictor of PaCO 2 at rest and peak exercise (bias±95%LOA=-3.24±6.63 and -0.98±5.76mmHg; R 2 =0.57 and 0.75, P<0.001, respectively). This equation closely predicted V D at rest and peak exercise (bias±95%LOA=-0.03±0.06 and -0.02±0.13L; R 2 =0.86 and 0.83, P<0.001, respectively). These data suggest predicted PaCO 2 and V D based on breath-by-breath gas exchange and ventilatory responses demonstrate acceptable agreement with criterion measurements at peak exercise in HF patients. Routine assessment of PaCO 2 and V D can be used to improve interpretability of exercise ventilatory responses in HF. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Del Torto, Alberico; Corrieri, Nicoletta; Vignati, Carlo; Gentile, Piero; Cattadori, Gaia; Paolillo, Stefania; Agostoni, Piergiuseppe
2017-12-01
A reduced cardiac output (CO) response during exercise is a major limiting factor in heart failure (HF). Oxygen consumption (VO 2 ) is directly proportional to CO. Peripheral mechanisms via arteriovenous oxygen difference (Δ(a-v)O 2 ) play a pivotal role in chronic HF. We hypothesized a weak correlation between peak VO 2 and peak CO with a greater Δ(a-v)O 2 variability in most severe HF. We analyzed 278 HF patients (NYHA II-III) who performed maximal cardiopulmonary exercise test with non-invasive CO measurement by inert gas rebreathing. Median peakVO 2 , CO and Δ(a-v)O 2 were 0.96 (0.78-1.28) L/min, 6.3 (5.1-8.0) L/min and 16.0 (14.2-18.0) mL/100mL respectively, with a linear relationship between VO 2 and CO: CO=5.3×VO 2 +1.13 (r 2 =0.705, p<0.001). Patients were grouped according to exercise limitation. Group 1 (101 patients) peakVO 2 <50% pred: peakVO 2 0.80 (0.67-0.94) L/min, peakCO 5.6 (4.7-6.5) L/min, peakΔ(a-v)O 2 14.8 (12.9-17.1) mL/100mL. Group 2 (89 patients) peakVO 2 ≥50-<65% pred: peakVO 2 1.02 (0.84-1.29) L/min, peakCO 6.4 (5.1-8.0) L/min, peakΔ(a-v)O 2 16.7 (15.0-18.5) mL/100mL. Group 3 (88 patients) peakVO 2 ≥65% pred: peakVO 2 1.28 (0.93-1.66) L/min, peakCO 8.0 (6.2-9.7) L/min, peakΔ(a-v)O 2 16.8 (14.6-18.3) mL/100mL. A peakVO 2 and peakCO linear relationship was observed in Group 1 (r 2 =0.381, p<0.001), Group 2 (r 2 =0.756, p<0.001) and Group 3 (r 2 =0.744, p<0.001). With worsening HF we observed a progressive reduction of peak CO and peak VO 2 . However in most compromised patients also peripheral mechanisms play a role as indicated by reduced Δ(a-v)O 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
Obesity-associated metabolic changes influence resting and peak heart rate in women and men.
Strandheim, Astrid; Halland, Hilde; Saeed, Sahrai; Cramariuc, Dana; Hetland, Trude; Lønnebakken, Mai Tone; Gerdts, Eva
2015-01-01
To study the relationship between obesity and heart rate (HR) in women and men. We studied 241 overweight and obese subjects without known heart disease. All subjects underwent ergospirometry during maximal exercise testing on treadmill and recording of body composition, electrocardiogram and clinic and ambulatory blood pressure. Women (n = 132) were slightly older and had higher fat mass, but lower weight, blood pressure and prevalence of metabolic syndrome (MetS) than men (n = 109) (all p < 0.05), while prevalences of obesity and hypertension did not differ. A significant interaction between sex and HR was demonstrated (p < 0.05). In multivariate analysis, female sex (β = 0.99, p < 0.01) predicted higher resting HR independent of confounders. Higher resting HR was particularly associated with presence of MetS, hypertension, higher insulin resistance and lower relative muscle mass in men (all p < 0.05). Female sex also predicted higher peak exercise HR (β = 0.48, p < 0.01) independent of confounders. Higher peak exercise HR was particularly associated with higher exercise capacity and lower age and self-reported physical activity in men, while lower HbA1c and absence of obesity were the main covariates in women in multivariate analyses (all p < 0.05). In our study population, obesity and obesity-associated metabolic changes influenced both resting and peak exercise HR.
Bandera, Francesco; Generati, Greta; Pellegrino, Marta; Donghi, Valeria; Alfonzetti, Eleonora; Gaeta, Maddalena; Villani, Simona; Guazzi, Marco
2014-09-01
Several cardiovascular diseases are characterized by an impaired O2 kinetic during exercise. The lack of a linear increase of Δoxygen consumption (VO2)/ΔWork Rate (WR) relationship, as assessed by expired gas analysis, is considered an indicator of abnormal cardiovascular efficiency. We aimed at describing the frequency of ΔVO2/ΔWR flattening in a symptomatic population of cardiac patients, characterizing its functional profile, and testing the hypothesis that dynamic pulmonary hypertension and right ventricular contractile reserve play a major role as cardiac determinants. We studied 136 patients, with different cardiovascular diseases, referred for exertional dyspnoea. Cardiopulmonary exercise test combined with simultaneous exercise echocardiography was performed using a symptom-limited protocol. ΔVO2/ΔWR flattening was observed in 36 patients (group A, 26.5% of population) and was associated with a globally worse functional profile (reduced peak VO2, anaerobic threshold, O2 pulse, impaired VE/VCO2). At univariate analysis, exercise ejection fraction, exercise mitral regurgitation, rest and exercise tricuspid annular plane systolic excursion, exercise systolic pulmonary artery pressure, and exercise cardiac output were all significantly (P<0.05) impaired in group A. The multivariate analysis identified exercise systolic pulmonary artery pressure (odds ratio, 1.06; confidence interval, 1.01-1.11; P=0.01) and exercise tricuspid annular plane systolic excursion (odds ratio, 0.88; confidence interval, 0.80-0.97; P=0.01) as main cardiac determinants of ΔVO2/ΔWR flattening; female sex was strongly associated (odds ratio, 6.10; confidence interval, 2.11-17.7; P<0.01). In patients symptomatic for dyspnea, the occurrence of ΔVO2/ΔWR flattening reflects a significantly impaired functional phenotype whose main cardiac determinants are the excessive systolic pulmonary artery pressure increase and the reduced peak right ventricular longitudinal systolic function. © 2014 American Heart Association, Inc.
Villelabeitia-Jaureguizar, Koldobika; Vicente-Campos, Davinia; Berenguel Senen, Alejandro; Verónica Hernández Jiménez, Verónica; Lorena Ruiz Bautista, Lorena; Barrios Garrido-Lestache, María Elvira; López Chicharro, Jose
2018-05-10
Mechanical efficiency (ME) refers to the ability of an individual to transfer energy consumed by external work. A decreased ME, could represent an increased energy cost during exercise and may, therefore, be limited in terms of physical activity. This study aimed to compare the influence of two different exercise protocols: moderate continuous training (MCT) versus high intensity interval training (HIIT), as part of a cardiac rehabilitation program on ME values among coronary patients. 110 coronary patients were assigned to either HIIT or MCT groups for 8 weeks. Incremental exercise tests in a cycle ergometer were performed to obtain VO₂peak. Net energy expenditure (EE) and ME were obtained at intensities corresponding to the first (VT₁) and second (VT₂) ventilatory thresholds, and at VO₂peak. Both exercise programs significantly increase VO₂peak with a higher increase in the HIIT group (2.96 ± 2.33 mL/kg/min vs. 3.88 ± 2.40 mL/kg/min, for patients of the MCT and HIIT groups respectively, p < 0.001). The ME at VO₂peak and VT₂ only significantly increased in the HIIT group. At VT₁, ME significantly increased in both groups, with a greater increase in the HIIT group (2.20 ± 6.25% vs. 5.52 ± 5.53%, for patients of the MCT and HIIT groups respectively, p < 0.001). The application of HIIT to patients with chronic ischemic heart disease of low risk resulted in a greater improvement in VO₂peak and in ME at VT₁, than when MCT was applied. Moreover, only the application of HIIT brought about a significant increase in ME at VT₂ and at VO₂peak.
Cardiorespiratory Fitness Attenuates the Influence of Amyloid on Cognition.
Schultz, Stephanie A; Boots, Elizabeth A; Almeida, Rodrigo P; Oh, Jennifer M; Einerson, Jean; Korcarz, Claudia E; Edwards, Dorothy F; Koscik, Rebecca L; Dowling, Maritza N; Gallagher, Catherine L; Bendlin, Barbara B; Christian, Bradley T; Zetterberg, Henrik; Blennow, Kaj; Carlsson, Cynthia M; Asthana, Sanjay; Hermann, Bruce P; Sager, Mark A; Johnson, Sterling C; Stein, James H; Okonkwo, Ozioma C
2015-11-01
The aim of this study was to examine cross-sectionally whether higher cardiorespiratory fitness (CRF) might favorably modify amyloid-β (Aβ)-related decrements in cognition in a cohort of late-middle-aged adults at risk for Alzheimer's disease (AD). Sixty-nine enrollees in the Wisconsin Registry for Alzheimer's Prevention participated in this study. They completed a comprehensive neuropsychological exam, underwent 11C Pittsburgh Compound B (PiB)-PET imaging, and performed a graded treadmill exercise test to volitional exhaustion. Peak oxygen consumption (VO2peak) during the exercise test was used as the index of CRF. Forty-five participants also underwent lumbar puncture for collection of cerebrospinal fluid (CSF) samples, from which Aβ42 was immunoassayed. Covariate-adjusted regression analyses were used to test whether the association between Aβ and cognition was modified by CRF. There were significant VO2peak*PiB-PET interactions for Immediate Memory (p=.041) and Verbal Learning & Memory (p=.025). There were also significant VO2peak*CSF Aβ42 interactions for Immediate Memory (p<.001) and Verbal Learning & Memory (p<.001). Specifically, in the context of high Aβ burden, that is, increased PiB-PET binding or reduced CSF Aβ42, individuals with higher CRF exhibited significantly better cognition compared with individuals with lower CRF. In a late-middle-aged, at-risk cohort, higher CRF is associated with a diminution of Aβ-related effects on cognition. These findings suggest that exercise might play an important role in the prevention of AD.
Cardiorespiratory fitness attenuates the influence of amyloid on cognition
Schultz, Stephanie A.; Boots, Elizabeth A.; Almeida, Rodrigo P.; Oh, Jennifer M.; Einerson, Jean; Korcarz, Claudia E.; Edwards, Dorothy F.; Koscik, Rebecca L.; Dowling, Maritza N.; Gallagher, Catherine L.; Bendlin, Barbara B.; Christian, Bradley T.; Zetterberg, Henrik; Blennow, Kaj; Carlsson, Cynthia M.; Asthana, Sanjay; Hermann, Bruce P.; Sager, Mark A.; Johnson, Sterling C.; Stein, James H.; Okonkwo, Ozioma C.
2015-01-01
Objective To examine cross-sectionally whether higher cardiorespiratory fitness (CRF) might favorably modify amyloid-β (Aβ)-related decrements in cognition in a cohort of late-middle-aged adults at risk for Alzheimer's disease (AD). Methods Sixty-nine enrollees in the Wisconsin Registry for Alzheimer's Prevention participated in this study. They completed a comprehensive neuropsychological exam, underwent 11C Pittsburgh Compound B (PiB)-PET imaging, and performed a graded treadmill exercise test to volitional exhaustion. Peak oxygen consumption (VO2peak) during the exercise test was used as the index of CRF. Forty-five participants also underwent lumbar puncture for collection of cerebrospinal fluid (CSF) samples, from which Aβ42 was immunoassayed. Covariate-adjusted regression analyses were used to test whether the association between Aβ and cognition was modified by CRF. Results There were significant VO2peak*PiB-PET interactions for Immediate Memory (p= .041) and Verbal Learning & Memory (p= .025). There were also significant VO2peak*CSF Aβ42 interactions for Immediate Memory (p<.001) and Verbal Learning & Memory (p <.001). Specifically, in the context of high Aβ burden—i.e., increased PiB-PET binding or reduced CSF Aβ42—individuals with higher CRF exhibited significantly better cognition compared with individuals with lower CRF. Conclusion In a late-middle-aged, at-risk cohort, higher CRF is associated with a diminution of Aβ-related effects on cognition. These findings suggest that exercise might play an important role in the prevention of AD. PMID:26581795
Keller, Karsten; Stelzer, Kathrin; Munzel, Thomas; Ostad, Mir Abolfazl
2016-12-01
Exercise echocardiography is a reliable routine test in patients with known or suspected coronary artery disease. However, in ∼15% of all patients, stress echocardiography leads to false-positive stress echocardiography results. We aimed to investigate the impact of hypertension on stress echocardiographic results. We performed a retrospective study of patients with suspected or known stable coronary artery disease who underwent a bicycle exercise stress echocardiography. Patients with false-positive stress results were compared with those with appropriate results. 126 patients with suspected or known coronary artery disease were included in this retrospective study. 23 patients showed false-positive stress echocardiography results. Beside comparable age, gender distribution and coronary artery status, hypertension was more prevalent in patients with false-positive stress results (95.7% vs. 67.0%, p = 0.0410). Exercise peak load revealed a borderline-significance with lower loads in patients with false-positive results (100.0 (IQR 75.0/137.5) vs. 125.0 (100.0/150.0) W, p = 0.0601). Patients with false-positive stress results showed higher systolic (2.05 ± 0.69 vs. 1.67 ± 0.39 mmHg/W, p = 0.0193) and diastolic (1.03 ± 0.38 vs. 0.80 ± 0.28 mmHg/W, p = 0.0165) peak blood pressure (BP) per wattage. In a multivariate logistic regression test, hypertension (OR 17.6 [CI 95% 1.9-162.2], p = 0.0115), and systolic (OR 4.12 [1.56-10.89], p = 0.00430) and diastolic (OR 13.74 [2.46-76.83], p = 0.00285) peak BP per wattage, were associated with false-positive exercise results. ROC analysis for systolic and diastolic peak BP levels per wattage showed optimal cut-off values of 1.935mmHg/W and 0.823mmHg/W, indicating false-positive exercise echocardiographic results with AUCs of 0.660 and 0.664, respectively. Hypertension is a risk factor for false-positive stress exercise echocardiographic results in patients with known or suspected coronary artery disease. Presence of hypertension was associated with 17.6-fold elevated risk of false-positive results.
Kaafarani, Mirna; Schroer, Christian; Takken, Tim
2017-12-01
Hemodynamic responses to exercise are used as markers of diagnosis for cardiac diseases, systolic blood pressure (SBP) especially. However, the reference values for SBP in children at peak exertion level are outdated. This study aimed to establish current reference values for SBP, rate pressure product (RPP), and circulatory power (CircP). Data from children who previously underwent cardiopulmonary exercise testing were categorized as healthy (N = 184; age 12.6 ± 2.9 years), and CoA patients (N = 25; age 13.0 ± 3.2 years). With the Lambda-Mu-Sigma (LMS) method, percentile curves were made for SBP, CircP, and RPP in function of peak work rate (Wpeak). Data of CoA patients were used to validate the reference values. Wpeak was the best predictor of peak SBP during exercise. The prediction equations for SBP, CircP and RPP were: (0.2853 x Wpeak) + 111.46; (10.56 x Wpeak) + 2550.2 and (61.879 x Wpeak) + 19.887, respectively. CoA patients showed significantly increased values for peak SBP (Z-score 1.063 ± 1.347). This study provides reference values for SBP, RPP, and CircP at peak exercise. These values can be used for objective evaluation of participants 6-18 years of age in a Dutch population.
Verlengia, Rozangela; Rebelo, Ana C; Crisp, Alex H; Kunz, Vandeni C; Dos Santos Carneiro Cordeiro, Marco A; Hirata, Mario H; Crespo Hirata, Rosario D; Silva, Ester
2014-09-01
Polymorphisms at the angiotensin-converting enzyme gene (ACE), such as the indel [rs1799752] variant in intron 16, have been shown to be associated with aerobic performance of athletes and non-athletes. However, the relationship between ACE indel polymorphism and cardiorespiratory fitness has not been always demonstrated. The relationship between ACE indel polymorphism and cardiorespiratory fitness was investigated in a sample of young Caucasian Brazilian women. This study investigated 117 healthy women (aged 18 to 30 years) who were grouped as physically active (n = 59) or sedentary (n = 58). All subjects performed an incremental exercise test (ramp protocol) on a cycle-ergometer with 20-25 W/min increments. Blood samples were obtained for DNA extraction and to analyze metabolic and hormonal profiles. ACE indel polymorphism was determined by polymerase chain reaction (PCR) and fragment size analysis. The physically active group had higher values of peak oxygen uptake (VO2 peak), carbon dioxide output (VCO2), ventilation (VE) and power output than the sedentary group (P < 0.05) at the peak of the exercise test. However, heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP) did not differ between groups. There was no relationship between ACE indel polymorphism and cardiorespiratory variables during the test in both the physically active and sedentary groups, even when the dominant (DD vs. D1 + 2) and recessive (2 vs. DI + DD) models of inheritance were tested. These results do not support the concept that the genetic variation at the ACE locus contributes to the cardiorespiratory responses at the peak of exercise test in physically active or sedentary healthy women. This indicates that other factors might mediate these responses, including the physical training level of the women.
Verlengia, Rozangela; Rebelo, Ana C.; Crisp, Alex H.; Kunz, Vandeni C.; dos Santos Carneiro Cordeiro, Marco A.; Hirata, Mario H.; Crespo Hirata, Rosario D.; Silva, Ester
2014-01-01
Background: Polymorphisms at the angiotensin-converting enzyme gene (ACE), such as the indel [rs1799752] variant in intron 16, have been shown to be associated with aerobic performance of athletes and non-athletes. However, the relationship between ACE indel polymorphism and cardiorespiratory fitness has not been always demonstrated. Objectives: The relationship between ACE indel polymorphism and cardiorespiratory fitness was investigated in a sample of young Caucasian Brazilian women. Patients and Methods: This study investigated 117 healthy women (aged 18 to 30 years) who were grouped as physically active (n = 59) or sedentary (n = 58). All subjects performed an incremental exercise test (ramp protocol) on a cycle-ergometer with 20-25 W/min increments. Blood samples were obtained for DNA extraction and to analyze metabolic and hormonal profiles. ACE indel polymorphism was determined by polymerase chain reaction (PCR) and fragment size analysis. Results: The physically active group had higher values of peak oxygen uptake (VO2 peak), carbon dioxide output (VCO2), ventilation (VE) and power output than the sedentary group (P < 0.05) at the peak of the exercise test. However, heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP) did not differ between groups. There was no relationship between ACE indel polymorphism and cardiorespiratory variables during the test in both the physically active and sedentary groups, even when the dominant (DD vs. D1 + 2) and recessive (2 vs. DI + DD) models of inheritance were tested. Conclusions: These results do not support the concept that the genetic variation at the ACE locus contributes to the cardiorespiratory responses at the peak of exercise test in physically active or sedentary healthy women. This indicates that other factors might mediate these responses, including the physical training level of the women. PMID:25520764
Comparable Neutrophil Responses for Arm and Intensity-matched Leg Exercise.
Leicht, Christof A; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C
2017-08-01
Arm exercise is performed at lower absolute intensities than lower body exercise. This may impact on intensity-dependent neutrophil responses, and it is unknown whether individuals restricted to arm exercise experience the same changes in the neutrophil response as found for lower body exercise. Therefore, we aimed to investigate the importance of exercise modality and relative exercise intensity on the neutrophil response. Twelve moderately trained men performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak arms) and cycling (V˙O2peak legs): 1) arm cranking exercise at 60% V˙O2peak arms, 2) moderate cycling at 60% V˙O2peak legs, and 3) easy cycling at 60% V˙O2peak arms. Neutrophil numbers in the circulation increased for all exercise trials, but were significantly lower for easy cycling when compared with arm exercise (P = 0.009), mirroring the blunted increase in HR and epinephrine during easy cycling. For all trials, exercising HR explained some of the variation of the neutrophil number 2 h postexercise (R = 0.51-0.69), epinephrine explaining less of this variation (R = 0.21-0.34). The number of neutrophils expressing CXCR2 decreased in the recovery from exercise in all trials (P < 0.05). Arm and leg exercise elicits the same neutrophil response when performed at the same relative intensity, implying that populations restricted to arm exercise might achieve a similar exercise induced neutrophil response as those performing lower body exercise. A likely explanation for this is the higher sympathetic activation and cardiac output for arm and relative intensity-matched leg exercise when compared with easy cycling, which is partly reflected in HR. This study further shows that the downregulation of CXCR2 may be implicated in exercise-induced neutrophilia.
Peak Oxygen Uptake during and after Long-duration Space Flight
NASA Technical Reports Server (NTRS)
Moore, Alan D., Jr.; Downs, Meghan E.; Lee, Stuart M. C.; Feiveson, Alan H.; Knudsen, Poul; Evetts, Simon N.; Ploutz-Snyder, Lori
2014-01-01
Aerobic capacity (VO2peak) previously has not been measured during or after long-duration spaceflight. PURPOSE: To measure VO2peak and submaximal exercise responses during and after International Space Station (ISS) missions. METHODS: Astronauts (9 M, 5 F: 49 +/- 5 yr, 175 +/- 7 cm, 77.2 +/- 15.1 kg, 40.6 +/- 6.4 mL/kg/min [mean +/-SD]) performed graded peak cycle tests 90 days before spaceflight, 15 d (FD15) after launch and every 30 d thereafter during flight, and 1 (R+1), 10 (R+10), and 30 d (R+30) after landing. Oxygen consumption (VO2) and heart rate (HR) were measured from rest to peak exercise, while cardiac output (Q), stroke volume (SV), and arterial-venous oxygen difference (a-vO2diff) were measured only during rest and submaximal exercise. Data were analyzed using mixed-model linear regression. Body mass contributed significantly to statistical models, and thus results are reported as modeled estimates for an average subject. RESULTS: Early inflight (FD15) VO2peak was 17% lower (95% CI = - 22%, -13%) than preflight. VO2peak increased during spaceflight (0.001 L/min/d, P = 0.02) but did not return to preflight levels. On R+1 VO2peak was 15% (95% CI = -19%, -10%) lower than preflight but recovered to within 2% of preflight by R+30 (95% CI = -6%, +3%). Peak HR was not significantly different from preflight at any time. Inflight submaximal VO2 and a-vO2diff were generally lower than preflight, but the Q vs. VO2 slope was unchanged. In contrast, the SV vs. VO2 slope was lower (P < 0.001), primarily due to elevated SV at rest, and the HR vs. VO2 slope was greater (P < 0.001), largely due to elevated HR during more intense exercise. On R+1 although the relationships between VO2 and Q, SV, and HR were not statistically different than preflight, resting and submaximal exercise SV was lower (P < 0.001), resting and submaximal exercise HR was higher (P < 0.002), and a-vO2diff was unchanged. HR and SV returned to preflight levels by R+30. CONCLUSION: In the average astronaut VO2peak was reduced during spaceflight and immediately after landing but factors contributing to lower VO2peak may be different during spaceflight and recovery. Maintaining Q while VO2 is reduced inflight may be suggestive of an elevated blood flow to vascular beds other than exercising muscles, but decreased SV after flight likely reduces Q at peak exertion.
Bresnahan, James J; Farkas, Gary J; Clasey, Jody L; Yates, James W; Gater, David R
2018-01-15
Evaluate the effect of aerobic exercise using arm crank ergometry (ACE) in high motor complete (ISNCSCI A/B) spinal cord injury (SCI) as primarily related to cardiovascular disease (CVD) risk factors and functional mobility and secondarily to body composition and metabolic profiles. Longitudinal interventional study at an academic medical center. Ten previously untrained participants (M8/F2, Age 36.7 y ± 10.1, BMI 24.5 ± 6.0) with high motor complete SCI (C7-T5) underwent ACE exercise training 30 minutes/day × 3 days/week for 10 weeks at 70% VO 2Peak . Primary outcome measures were pre- and post-intervention changes in markers of cardiovascular fitness (graded exercise testing (GXT): VO 2 , VO 2Peak , respiratory quotient [RQ], GXT time, peak power, and energy expenditure [EE]) and community mobility (time to traverse a 100ft-5° ramp, and 12-minute WC propulsion test). Secondary outcome measures were changes in body composition and metabolic profiles (fasting and area under the curve for glucose and insulin, homeostasis model assessment [HOMA] for %β-cell activity [%β], %insulin sensitivity [%S], and insulin resistance [IR], and Matsuda Index [ISI Matsuda ]). Resting VO 2 , relative VO 2Peak , absolute VO 2Peak , peak power, RQ, 12-minute WC propulsion, fasting insulin, fasting G:I ratio, HOMA-%S, and HOMA-IR all significantly improved following intervention (P < 0.05). There were no changes in body composition (P>0.05). Ten weeks of ACE at 70% VO 2Peak in high motor complete SCI improves aerobic capacity, community mobility, and metabolic profiles independent of changes in body composition.
Six-minute walking test in children with ESRD: discrimination validity and construct validity.
Takken, Tim; Engelbert, Raoul; van Bergen, Monique; Groothoff, Jaap; Nauta, Jeroen; van Hoeck, Koen; Lilien, Marc; Helders, Paul
2009-11-01
The six-minute walking test (6MWT) may be a practical test for the evaluation functional exercise capacity in children with end-stage renal disease (ESRD). The aim of this study was to investigate the 6MWT performance in children with ESRD compared to reference values obtained in healthy children and, secondly, to study the relationship between 6MWT performance with anthropometric variables, clinical parameters, aerobic capacity and muscle strength. Twenty patients (13 boys and seven girls; mean age 14.1 +/- 3.4 years) on dialysis participated in this study. Anthropometrics were taken in a standardized manner. The 6MWT was performed in a 20-m-long track in a straight hallway. Aerobic fitness was measured using a cycle ergometer test to determine peak oxygen uptake (V O(2peak)), peak rate (W(peak)) and ventilatory threshold (VT). Muscle strength was measured using hand-held myometry. Children with ESRD showed a reduced 6MWT performance (83% of predicted, p < 0.0001), irrespective of the reference values used. The strongest predictors of 6MWT performance were haematocrit and height. Regression models explained 59% (haematocrit and height) to 60% (haematocrit) of the variance in 6MWT performance. 6MWT performance was not associated with V O(2peak), strength, or other anthropometric variables, but it was significantly associated with haematocrit and height. Children with ESRD scored lower on the 6MWT than healthy children. Based on these results, the 6MWT may be a useful instrument for monitoring clinical status in children with ESRD, however it cannot substitute for other fitness tests, such as a progressive exercise test to measure V O(2peak) or muscle strength tests.
Ichinose, Takashi; Arai, Natsuko; Nagasaka, Tomoaki; Asano, Masaya; Hashimoto, Kenji
2012-01-01
Not only increasing body carbohydrate (CHO) stores before exercise but also suppressing CHO oxidation during exercise is important for improving endurance performance. We tested the hypothesis that intensive high-fat ingestion in the early stage of recovery from exercise training (ET) for 2 d would suppress CHO oxidation during exercise by increasing whole body lipolysis and/or fat oxidation. In a randomized crossover design, on days 1 and 2, six male subjects performed cycle ET at 50% peak oxygen consumption (VO(2 peak)) for 60-90 min, and consumed a control diet (CON: 1,224 kcal, 55% carbohydrate, 30% fat) or the same diet supplemented with high fat (HF: 1,974 kcal, 34% carbohydrate, 56% fat) 1 h after ET, with the diet other than post-ET similar in both trials. On day 3, subjects performed cycle exercise at 65% VO(2 peak) until exhaustion. Exercise time to exhaustion was longer in the HF trial than in the CON trial (CON: 48.9 ± 6.7 vs. HF: 55.8 ± 7.7 min, p<0.05). In the HF trial, total fat oxidation until exhaustion was higher, accompanied by higher post-exercise plasma glycerol concentration, than in the CON trial (CON: 213 ± 54 vs. HF: 286 ± 63 kcal, p<0.05), whereas total carbohydrate oxidation until exhaustion was not different between trials. These results suggest that intensive high-fat ingestion in the early stage of recovery from ET for a few days until the day before exercise was an effective means of eliciting a CHO-sparing effect during exercise by enhancing fat metabolism.
Development of Mitral Stenosis After Mitral Valve Repair: Importance of Mitral Valve Area.
Chan, Kwan Leung; Chen, Shin-Yee; Mesana, Thierry; Lam, Buu Khanh
2017-12-01
The development of mitral stenosis (MS) is not uncommon after mitral valve (MV) repair for degenerative mitral regurgitation (MR), but the significance of MS in this setting has not been defined. We prospectively studied 110 such patients who underwent supine bicycle exercise testing to assess intracardiac hemodynamics at rest and at peak exercise. B-type natriuretic peptide (BNP) levels were measured at rest and after the exercise test. The patients also performed the 6-minute walk test and completed the 36-Item Short Form Survey (SF-36). Follow-up was performed by a review of the medical record and telephone interview. Of 110 patients, 22 had MS defined by a mitral valve area (MVA) ≤ 1.5 cm 2 . The resting and peak exercise mitral gradients and pulmonary artery systolic pressure were significantly higher in patients with MS compared with patients with an MVA > 1.5 cm 2 . BNP levels at rest and after exercise were also higher in the patients with MS, who also had lower exercise capacity and worse perception of well-being in 3 domains (physical function, vitality, and social function) on the SF-36. MVA had higher specificity and positive predictive value in predicting outcome events compared with a mean gradient of 3 or 5 mm Hg. In patients who had MV repair for degenerative MR, an MVA ≤ 1.5 cm 2 occurs in about one-fifth of patients and is associated with adverse intracardiac hemodynamics, lower exercise capacity, and adverse outcomes. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Cardiopulmonary Exercise Testing in Patients Following Massive and Submassive Pulmonary Embolism.
Albaghdadi, Mazen S; Dudzinski, David M; Giordano, Nicholas; Kabrhel, Christopher; Ghoshhajra, Brian; Jaff, Michael R; Weinberg, Ido; Baggish, Aaron
2018-03-03
Little data exist regarding the functional capacity of patients following acute pulmonary embolism. We sought to characterize the natural history of symptom burden, right ventricular (RV) structure and function, and exercise capacity among survivors of massive and submassive pulmonary embolism. Survivors of submassive or massive pulmonary embolism (n=20, age 57±13.3 years, 8/20 female) underwent clinical evaluation, transthoracic echocardiography, and cardiopulmonary exercise testing at 1 and 6 months following hospital discharge. At 1 month, 9/20 (45%) patients had New York Heart Association II or greater symptoms, 13/20 (65%) demonstrated either persistent RV dilation or systolic dysfunction, and 14/20 (70%) had objective exercise impairment as defined by a peak oxygen consumption (V˙O 2 ) of <80% of age-sex predicted maximal values (16.25 [13.4-20.98] mL/kg per minute). At 6 months, no appreciable improvements in symptom severity, RV structure or function, and peak V˙O 2 (17.45 [14.08-22.48] mL/kg per minute, P =NS) were observed. No patients demonstrated an exercise limitation attributable to either RV/pulmonary vascular coupling, as defined by a VE/VCO 2 slope >33, or a pulmonary mechanical limit to exercise at either time point. Similarly, persistent RV dilation or dysfunction was not significantly related to symptom burden or peak V˙O 2 at either time point. Persistent symptoms, abnormalities of RV structure and function, and objective exercise limitation are common among survivors of massive and submassive pulmonary embolism. Functional impairment appears to be attributable to general deconditioning rather than intrinsic cardiopulmonary limitation, suggesting an important role for prescribed exercise rehabilitation as a means toward improved patient outcomes and quality of life. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Strength, power, and muscular endurance exercise and elite rowing ergometer performance.
Lawton, Trent W; Cronin, John B; McGuigan, Michael R
2013-07-01
Knowledge of the relationship between weight room exercises and various rowing performance measures is limited; this information would prove useful for sport-specific assessment of individual needs and exercise prescription. The purpose of this study was to establish strength, power, and muscular endurance exercises for weight room training, which are strong determinants of success in specific performance measures used to assess elite rowers. Nineteen heavyweight elite males determined their repetition maximum (RM) loads for exercises using a Concept 2 DYNO [5, 30, 60 and 120RM leg pressing and seated arm pulling (in Joules)] and free weights [1RM power clean (in kilograms) and 6RM bench pull (in kilograms and watts)]. Rowing performance measures included a 7-stage blood lactate response ergometer test (aerobic condition), time trials (500, 2000, and 5000 m), a peak stroke power test, and a 60-minute distance trial. Pearson correlation moments (r ≥ 0.7) and stepwise multiple linear regression calculations (R ≥ 50%) were used to establish strong common variances between weight room exercises and rowing ergometer performance (p ≤ 0.05). Weight room exercises were strong predictors of 2000-m, 500-m time (in seconds), and peak stroke power performance measures only. Bench pull power (in watts) and 1RM power clean (in kilograms) were the best 2-factor predictors of peak stroke power (R = 73%; standard error of the estimates [SEE] = 59.6 W) and 500 m (R = 70%; SEE = 1.75 seconds); while 5RM leg pressing (in Joules) and either 6RM bench pull (kg) or 60RM seated arm pulling (in Joules) the best predictors of 2000 m (R = 59%; SEE = 6.3 seconds and R = 57%; SEE = 6.4 seconds, respectively). Recommended exercises for weight room training include a 1RM power clean, 6RM bench pull, 5RM leg press, and 60RM seated arm pulling.
Kaya, F.; Bicer, B.; Erzeybek, M.S.; Cotuk, H.B.
2012-01-01
In this study we assessed the influence of the three different recovery interventions massage (MSG), electrical muscle stimulation (EMS), and passive rest (PR) on lactate disappearance and muscle recovery after exhausting exercise bouts. Twelve healthy male sport students participated in the study. They attended the laboratory on five test days. After measurement of V.O2max and a baseline Wingate test (WGb), the three recovery interventions were tested in random counterbalanced order. High intensity exercise, which consisted of six exhausting exercise bouts (interspersed with active recovery), was followed by MSG, EMS or PR application (24 minutes); then the final Wingate test (WGf) was performed. Lactate, heart rate, peak and mean power, rating of perceived exertion (RPE), and total quality of recovery (TQR) were recorded. In WGf mean power was significantly higher than in WGb for all three recovery modalities (MSG 6.29%, EMS 5.33%, PR 4.84% increase, p < 0.05), but no significant differences in mean and peak power were observed between the three recovery modes (p > 0.05). The heart rate response and the changes in blood lactate concentration were identical in all three interventions during the entire protocol (p = 0.817, p = 0.493, respectively). RPE and TQR scores were also not different among the three interventions (p > 0.05). These results provide further evidence that MSG and EMS are not more effective than PR in the process of recovery from high intensity exercise. PMID:24868117
Estimation of the Blood Pressure Response With Exercise Stress Testing.
Fitzgerald, Benjamin T; Ballard, Emma L; Scalia, Gregory M
2018-04-20
The blood pressure response to exercise has been described as a significant increase in systolic BP (sBP) with a smaller change in diastolic BP (dBP). This has been documented in small numbers, in healthy young men or in ethnic populations. This study examines these changes in low to intermediate risk of myocardial ischaemia in men and women over a wide age range. Consecutive patients having stress echocardiography were analysed. Ischaemic tests were excluded. Manual BP was estimated before and during standard Bruce protocol treadmill testing. Patient age, sex, body mass index (BMI), and resting and peak exercise BP were recorded. 3200 patients (mean age 58±12years) were included with 1123 (35%) females, and 2077 males, age range 18 to 93 years. Systolic BP increased from 125±17mmHg to 176±23mmHg. The change in sBP (ΔsBP) was 51mmHg (95% CI 51,52). The ΔdBP was 1mmHg (95% CI 1, 1), from 77 to 78mmHg, p<0.001). The upper limit of normal peak exercise sBP (determined by the 90th percentile) was 210mmHg in males and 200mmHg in females. The upper limit of normal ΔsBP was 80mmHg in males and 70mmHg in females. The lower limit of normal ΔsBP was 30mmHg in males and 20mmHg in females. In this large cohort, sBP increased significantly with exercise. Males had on average higher values than females. Similar changes were seen with the ΔsBP. The upper limit of normal for peak exercise sBP and ΔsBP are reported by age and gender. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). All rights reserved.
Impaired post exercise heart rate recovery in anabolic steroid users.
dos Santos, M R; Dias, R G; Laterza, M C; Rondon, M U P B; Braga, A M F W; de Moraes Moreau, R L; Negrão, C E; Alves, M-J N N
2013-10-01
Previous study showed that muscle sympathetic nerve activity (MSNA) was augmented in anabolic steroids users (AASU). In the present study, we tested the hypothesis that the heart rate (HR) responses after maximal exercise testing would be reduced in AASU. 10 male AASU and 10 AAS nonusers (AASNU) were studied. Cardiopulmonary exercise was performed to assess the functional capacity and heart rate recovery. MSNA was recorded directly from the peroneal nerve by microneurography technique. Peak oxygen consumption (VO₂) was lower in AASU compared to AASNU (43.66±2.24 vs. 52.70±1.68 ml/kg/min, P=0.005). HR recovery (HRR) at first and second minute was lower in AASU than AASNU (21±2 vs. 27±2 bpm, P=0.02 and 37±4 vs. 45±2 bpm, P=0.05, respectively). MSNA was higher in AASU than AASNU (29±3 vs. 20±1 bursts/min, P=0.01). Further analysis showed a correlation between HRR and MSNA (r=- 0.64, P=0.02), HRR at first minute and peak VO₂ (r=0.70, P=0.01) and HRR at second minute and peak VO₂ (r=0.62, P=0.02). The exacerbated sympathetic outflow associated with a lower parasympathetic activation after maximal exercise, which impairs heart rate recovery, strengthens the idea of autonomic imbalance in AASU. © Georg Thieme Verlag KG Stuttgart · New York.
Alway, Stephen E; McCrory, Jean L; Kearcher, Kalen; Vickers, Austen; Frear, Benjamin; Gilleland, Diana L; Bonner, Daniel E; Thomas, James M; Donley, David A; Lively, Mathew W; Mohamed, Junaith S
2017-11-09
Older men (n = 12) and women (n = 18) 65-80 years of age completed 12 weeks of exercise and took either a placebo or resveratrol (RSV) (500 mg/d) to test the hypothesis that RSV treatment combined with exercise would increase mitochondrial density, muscle fatigue resistance, and cardiovascular function more than exercise alone. Contrary to our hypothesis, aerobic and resistance exercise coupled with RSV treatment did not reduce cardiovascular risk further than exercise alone. However, exercise added to RSV treatment improved the indices of mitochondrial density, and muscle fatigue resistance more than placebo and exercise treatments. In addition, subjects that were treated with RSV had an increase in knee extensor muscle peak torque (8%), average peak torque (14%), and power (14%) after training, whereas exercise did not increase these parameters in the placebo-treated older subjects. Furthermore, exercise combined with RSV significantly improved mean fiber area and total myonuclei by 45.3% and 20%, respectively, in muscle fibers from the vastus lateralis of older subjects. Together, these data indicate a novel anabolic role of RSV in exercise-induced adaptations of older persons and this suggests that RSV combined with exercise might provide a better approach for reversing sarcopenia than exercise alone. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Borji, Rihab; Sahli, Sonia; Zarrouk, Nidhal; Zghal, Firas; Rebai, Haithem
2013-12-01
This study examined neuromuscular fatigue after high-intensity intermittent exercise in 10 men with mild intellectual disability (ID) in comparison with 10 controls. Both groups performed three maximal voluntary contractions (MVC) of knee extension with 5 min in-between. The highest level achieved was selected as reference MVC. The fatiguing exercise consists of five sets with a maximal number of flexion-extension cycles at 80% of the one maximal repetition (1RM) for the right leg at 90° with 90 s rest interval between sets. The MVC was tested again after the last set. Peak force and electromyography (EMG) signals were measured during the MVC tests. Root Mean Square (RMS) and Median Frequency (MF) were calculated. Neuromuscular efficiency (NME) was calculated as the ratio of peak force to the RMS. Before exercise, individuals with ID had a lower MVC (p<0.05) and a lower RMS (p<0.05). No significant difference between groups in MF and NME. After exercise, MVC decreases significantly in both groups (p<0.001). Individuals with ID have greater force decline (p<0.001 vs. p<0.01). RMS decreased significantly (p<0.001) whereas the NME increased significantly (p<0.05) in individuals with ID, but both remained unchanged in controls. The MF decreased significantly in both groups (p<0.001). In conclusion, individuals with ID presented a lower peak force than individuals without ID. After a high-intensity intermittent exercise, individuals with ID demonstrated a greater force decline caused by neural activation failure. When rehabilitation and sport train ID individuals, they should consider this nervous system weakness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Saengsuwan, Jittima; Berger, Lucia; Schuster-Amft, Corina; Nef, Tobias; Hunt, Kenneth J
2016-09-06
Exercise testing devices for evaluating cardiopulmonary fitness in patients with severe disability after stroke are lacking, but we have adapted a robotics-assisted tilt table (RATT) for cardiopulmonary exercise testing (CPET). Using the RATT in a sample of patients after stroke, this study aimed to investigate test-retest reliability and repeatability of CPET and to prospectively investigate changes in cardiopulmonary outcomes over a period of four weeks. Stroke patients with all degrees of disability underwent 3 separate CPET sessions: 2 tests at baseline (TB1 and TB2) and 1 test at follow up (TF). TB1 and TB2 were at least 24 h apart. TB2 and TF were 4 weeks apart. A RATT equipped with force sensors in the thigh cuffs, a work rate estimation algorithm and a real-time visual feedback system was used to guide the patients' exercise work rate during CPET. Test-retest reliability and repeatability of CPET variables were analysed using paired t-tests, the intraclass correlation coefficient (ICC), the coefficient of variation (CoV), and Bland and Altman limits of agreement. Changes in cardiopulmonary fitness during four weeks were analysed using paired t-tests. Seventeen sub-acute and chronic stroke patients (age 62.7 ± 10.4 years [mean ± SD]; 8 females) completed the test sessions. The median time post stroke was 350 days. There were 4 severely disabled, 1 moderately disabled and 12 mildly disabled patients. For test-retest, there were no statistically significant differences between TB1 and TB2 for most CPET variables. Peak oxygen uptake, peak heart rate, peak work rate and oxygen uptake at the ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) showed good to excellent test-retest reliability (ICC 0.65-0.94). For all CPET variables, CoV was 4.1-14.5 %. The mean difference was close to zero in most of the CPET variables. There were no significant changes in most cardiopulmonary performance parameters during the 4-week period (TB2 vs TF). These findings provide the first evidence of test-retest reliability and repeatability of the principal CPET variables using the novel RATT system and testing methodology, and high success rates in identification of VAT and RCP: good to excellent test-retest reliability and repeatability were found for all submaximal and maximal CPET variables. Reliability and repeatability of the main CPET parameters in stroke patients on the RATT were comparable to previous findings in stroke patients using standard exercise testing devices. The RATT has potential to be used as an alternative exercise testing device in patients who have limitations for use of standard exercise testing devices.
Chen, Chia-Hsin; Chen, Yi-Jen; Tu, Hung-Pin; Huang, Mao-Hsiung; Jhong, Jing-Hui; Lin, Ko-Long
2014-10-01
Cardiopulmonary exercise training is beneficial to people with coronary artery disease (CAD). Nevertheless, the correlation between aerobic capacity, and functional mobility and quality of life in elderly CAD patients is less addressed. The purpose of the current study is to investigate the beneficial effects of exercise training in elderly people with CAD, integrating exercise stress testing, functional mobility, handgrip strength, and health-related quality of life. Elderly people with CAD were enrolled from the outpatient clinic of a cardiac rehabilitation unit in a medical center. Participants were assigned to the exercise training group (N = 21) or the usual care group (N = 15). A total of 36 sessions of exercise training, completed in 12 weeks, was prescribed. Echocardiography, exercise stress testing, the 6-minute walking test, Timed Up and Go test, and handgrip strength testing were performed, and the Short-Form 36 questionnaire (SF-36) was administered at baseline and at 12-week follow-up. Peak oxygen consumption improved significantly after training. The heart rate recovery improved from 13.90/minute to 16.62/minute after exercise training. Functional mobility and handgrip strength also improved after training. Significant improvements were found in SF-36 physical function, social function, role limitation due to emotional problems, and mental health domains. A significant correlation between dynamic cardiopulmonary exercise testing parameters, the 6-minute walking test, Timed Up and Go test, handgrip strength, and SF-36 physical function and general health domains was also detected. Twelve-week, 36-session exercise training, including moderate-intensity cardiopulmonary exercise training, strengthening exercise, and balance training, is beneficial to elderly patients with CAD, and cardiopulmonary exercise testing parameters correlate well with balance and quality of life. Copyright © 2014. Published by Elsevier Taiwan.
Rustad, Lene A; Nytrøen, Kari; Amundsen, Brage H; Gullestad, Lars; Aakhus, Svend
2014-02-01
Heart transplant recipients have lower exercise capacity and impaired cardiac function compared with the normal population. High-intensity interval training (HIIT) improves exercise capacity and cardiac function in patients with heart failure and hypertension, but the effect on cardiac function in stable heart transplant recipients is not known. Thus, we investigated whether HIIT improved cardiac function and exercise capacity in stable heart transplant recipients by use of comprehensive rest- and exercise-echocardiography and cardiopulmonary exercise testing. Fifty-two clinically stable heart transplant recipients were randomised either to HIIT (4 × 4 minutes at 85-95% of peak heart rate three times per week for eight weeks) or to control. Three such eight-week periods were distributed throughout one year. Echocardiography (rest and submaximal exercise) and cardiopulmonary exercise testing were performed at baseline and follow-up. One year of HIIT increased VO 2peak from 27.7 ± 5.5 at baseline to 30.9 ± 5.0 ml/kg/min at follow-up, while the control group remained unchanged (28.5 ± 7.0 vs. 28.0 ± 6.7 ml/kg per min, p < 0.001 for difference between the groups). Systolic and diastolic left ventricular functions at rest and during exercise were generally unchanged by HIIT. Whereas HIIT is feasible in heart transplant recipients and effectively improves exercise capacity, it does not alter cardiac systolic and diastolic function significantly. Thus, the observed augmentation in exercise capacity is best explained by extra-cardiac adaptive mechanisms.
Metabolic responses associated with deer hunting.
Peterson, A T; Steffen, J; Terry, L; Davis, J; Porcari, J P; Foster, C
1999-12-01
Deer hunting is a popular recreational activity with a high rate of cardiovascular events. Previous studies have demonstrated large HR responses during deer hunting. This study compared the HR and metabolic costs of maximal treadmill (TM) exercise with those of hiking while deer hunting and while dragging a deer. Healthy male volunteers (N = 16) performed a maximal TM exercise test, a 0.8-km hiking test, and a 0.4-km dragging test over lightly rolling terrain. VO2 was measured by portable spirometry and HR by radiotelemetry. HR averaged 74.0 +/- 7.0% and 89.1 +/- 4.5% of peak TM HR during the hike and drag, respectively. The peak HR observed during hiking and dragging was 83.2 +/- 6.0% and 94.9 +/- 4.2% of peak TM HR, respectively. VO2 averaged 62.2 +/- 15.8% and achieved a peak of 77.2 +/- 19.0% of TM VO2 while hiking. This corresponded to 86.8 +/- 17.3% and 108.1 +/- 22.3% of ventilatory threshold (VT), respectively. VO2 averaged 72.3 +/- 21.0% and achieved a peak of 91.2 +/- 21.4% of peak TM VO2 while dragging the deer. This corresponded to 101.5 +/- 27.7% and 128.5 +/- 26.8% of VT, respectively. The VO2/HR relationship showed significant (P < 0.05) difference between the dragging test and the TM test with a disproportionately high HR. The VO2/HR relationship between the hiking and TM tests was comparable. In part, the previously described large HR responses and high rate of cardiovascular complications associated with deer hunting may attributable to the elevated metabolic costs of associated activities.
Gowing, Lucy; Forsey, Jonathan; Ramanujam, Paramanantham; Miller, Felicity; Stuart, A Graham; Williams, Craig A.
2015-01-01
Background left ventricular (LV) and right ventricular (RV) myocardial reserve during exercise in adolescents has not been directly characterized. The aim of this study was to quantify myocardial performance response to exercise by using two-dimensional (2-D) speckle tracking echocardiography and describe the relationship between myocardial reserve, respiratory, and metabolic exercise parameters. A total of 23 healthy boys and girls (mean age 13.2 ± 2.7 yr; stature 159.1 ± 16.4 cm; body mass 49.5 ± 16.6 kg; BSA 1.47 ± 0.33 m2) completed an incremental cardiopulmonary exercise test (25 W·3 min increments) with simultaneous acquisition of 2-D transthoracic echocardiography at rest, each exercise stage up to 100 W, and in recovery at 2 min and 10 min. Two-dimensional LV (LV Sl) and RV (RV Sl) longitudinal strain and LV circumferential strain (LV Sc) were analyzed to define the relationship between myocardial performance reserve and metabolic exercise parameters. Participants achieved a peak oxygen uptake (V̇o2peak) of 40.6 ± 8.9 ml·kg−1·min−1 and a work rate of 154 ± 42 W. LV Sl and LV Sc and RV Sl increased significantly across work rates (P < 0.05). LV Sl during exercise was significantly correlated to resting strain, V̇o2peak, oxygen pulse, and work rate (0.530 ≤ r ≤ 0.784, P < 0.05). This study identifies a positive and moderate relationship between LV and RV myocardial performance and metabolic parameters during exercise by using a novel methodology. Relationships detected present novel data directly describing myocardial adaptation at different stages of exercise and recovery that in the future can help directly assess cardiac reserve in patients with cardiac pathology. PMID:26475589
Murata, Makoto; Adachi, Hitoshi; Oshima, Shigeru; Kurabayashi, Masahiko
2017-01-01
In a given individual, a consistent relationship exists between oxygen uptake (V˙O 2 ) and heart rate (HR) during exercise. The quotient of V˙O 2 and HR (V˙O 2 /HR) is called the oxygen pulse (O 2 pulse), and its value is dependent on stroke volume (SV). However, it is difficult to believe that the O 2 pulse would indicate the SV when HR has been modified as with the use of beta-adrenergic receptor blockers (BB). Until now, the effect of BB on peak O 2 pulse has not been precisely studied. We tried to clarify the effect of BB on the relationship between O 2 pulse and SV. Of 699 consecutive heart disease subjects who performed cardiopulmonary exercise tests (CPX) from 2012 to 2014, we enrolled 430 subjects who had sinus rhythm and could perform CPX until exhaustion. One hundred and fifty-seven subjects were taking BB. SV was evaluated during CPX using impedance cardiography, and we compared the peak O 2 pulse with peak SV between patients without BB (Group A) and with BB (Group B). The HRs at rest and peak exercise in Group A were greater than those in Group B (74.4±13.0/min vs. 71.8±11.3/min, p<0.01, 134.9±21.7/min vs. 124.9±23.6/min, p<0.01, respectively). The regression line of the peak O 2 pulse against the peak SV was steeper in Group B than in Group A. When we divided the patients into two groups according to the average values of the peak SV and peak V˙O 2 , O 2 pulse/SV ratio in Group B above the average was greater than that in Group A, whereas it was similar in the two groups that were below average. We found that the increase in the O 2 pulse was disproportionately greater than the SV that was measured by impedance cardiography when a BB was used in patients with preserved SV and exercise tolerance. Copyright © 2016. Published by Elsevier Ltd.
The effects of light emitting diode therapy following high intensity exercise.
Denis, Romain; O'Brien, Christopher; Delahunt, Eamonn
2013-05-01
To determine the effects of light emitting diode therapy (LEDT) irradiation on blood lactate concentration ([La]) clearance, peak power output and fatigue index (FI) following high intensity fatiguing exercise. Single-blinded randomised cross-over placebo controlled trial. University College Dublin, Institute for Sport and Health, Human performance laboratory. Eighteen healthy male athletes were recruited from field-based sports (including soccer, hockey and rugby union) and participated in the present study. Dependent variables were the peak power output elicited during the Wingate Anaerobic Test (WAnT), FI and [La] before and after each exercise. WAnT performance was measured prior to high intensity fatiguing exercise (Yo-Yo IR2), prior to LEDT or placebo, and following LEDT or placebo. [La] was measured at baseline, immediately after the Yo-Yo IR2, and in the 3rd, 9th, and 15th min following LEDT or placebo condition. No significant group by treatment interactions were observed for any outcome measures (P > 0.05). We conclude that LEDT irradiation applied following high intensity exercise was not effective and has no immediate effect on [La] clearance, peak power and FI, and thus has no significant effect on muscle recovery in athletes at the intensity and irradiation parameters used in the present study. Further research using different parameters is required to determine how LEDT may contribute to post-exercise recovery. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cardiorespiratory functional assessment after pediatric heart transplantation.
Pastore, E; Turchetta, A; Attias, L; Calzolari, A; Giordano, U; Squitieri, C; Parisi, F
2001-12-01
Limited data are available on the exercise capacity of young heart transplant recipients. The aim of this study was therefore to assess cardiorespiratory responses to exercise in this group of patients. Fourteen consecutive heart transplant recipients (six girls and eight boys, age-range 5-15 yr) and 14 healthy matched controls underwent a Bruce treadmill test to determine: duration of test; resting and maximum heart rates; maximum systolic blood pressure; peak oxygen consumption (VO2 peak); and cardiac output. Duration of test and heart rate increase were then compared with: time since transplantation, rejections per year, and immunosuppressive drugs received. The recipients also underwent the following lung function tests: forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). When compared with healthy controls, transplant recipients had tachycardia at rest (126 +/- 3.7 beats/min; p < 0.001); significantly reduced tolerance (9.3 +/- 0.4 min; p < 0.001), a maximum heart rate of 169 +/- 5.4 beats/min (p < 0.05); a cardiac output of 5.65 +/- 0.6 L/min (p < 0.05); and a lower heart-rate increase from rest to peak exercise (p < 0.001) but a similar VO2 peak. The heart-rate increase correlated significantly with time post-transplant (r = 0.55; p < 0.05), number of rejection episodes per year (r = - 0.63; p < 0.05), and number of immunosuppressive drugs (r = - 0.60; p < 0.05). The recipients had normal FVC and FEV1 values. After surgery, few heart transplant recipients undertake physical activity, possibly owing to over-protective parents and teachers and to a lack of suitable supervised facilities. The authors stress the importance of a cardiorespiratory functional evaluation for assessment of health status and to encourage recipients, if possible, to undertake regular physical activity.
van der Net, J; Vos, R C; Engelbert, R H H; van den Berg, M H; Helders, P J M; Takken, T
2006-09-01
In the Netherlands comparable levels of sports-participation between persons with haemophilia and healthy controls have been reported. This raises the question if children with haemophilia under the currently available prophylaxis do reach comparable levels of physical fitness and health-related quality of life (HRQoL) as their healthy peers. The aim of this study was to investigate the level of physical fitness, functional ability and quality of life and to determine the feasibility to safely test the exercise capacity of boys with severe haemophilia A. Thirteen subjects participated in this study. Physical fitness was determined using the measurement of maximal oxygen uptake (VO2peak) attained during a graded maximal exercise test to volitional exhaustion. Joint health, physical activity levels and health-related quality of life (Haemo-Qol) were also measured. Mean VO2peak was 1.86+/-0.77 L min-1 (Z-score: -0.39+/-1.61) which was not significantly different from reference values. Relative VO2peak was 47.42+/-8.29 mL min-1 kg-1 (Z-score: -0.52+/-1.43), which did not differ significantly from reference values either. One boy suffered a joint bleeding one day after the test. Haemo-Qol scores in parents and children ranged from 3.2% to 36.7% (100% reflects poor outcome). Relationship between the child or parent reports of Haemo-QoL and both absolute and relative VO2peak ranged from R=0.00 and R=0.4. Exercise testing in children with severe haemophilia A was a safe procedure. Patients with severe haemophilia A with good joint health and no limitations of activities have comparable physical fitness and physical active lifestyle with healthy peers and good HRQoL.
Stöcker, F; Von Oldershausen, C; Paternoster, F K; Schulz, T; Oberhoffer, R
2017-07-01
Increased local blood supply is thought to be one of the mechanisms underlying oxidative adaptations to interval training regimes. The relationship of exercise intensity with local blood supply and oxygen availability has not been sufficiently evaluated yet. The aim of this study was to examine the effect of six different intensities (40-90% peak oxygen uptake, VO 2peak ) on relative changes in oxygenated, deoxygenated and total haemoglobin (ΔO 2 Hb, ΔHHb, ΔTHb) concentration after exercise as well as end-exercise ΔHHb/ΔVO 2 as a marker for microvascular O 2 distribution. Seventeen male subjects performed an experimental protocol consisting of 3 min cycling bouts at each exercise intensity in randomized order, separated by 5 min rests. ΔO 2 Hb and ΔHHb were monitored with near-infrared spectroscopy of the vastus lateralis muscle, and VO 2 was assessed. ΔHHb/ΔVO 2 increased significantly from 40% to 60% VO 2 peak and decreased from 60% to 90% VO 2 peak. Post-exercise ΔTHb and ΔO 2 Hb showed an overshoot in relation to pre-exercise values, which was equal after 40-60% VO 2peak and rose significantly thereafter. A plateau was reached following exercise at ≥80% VO 2peak . The results suggest that there is an increasing mismatch of local O 2 delivery and utilization during exercise up to 60% VO 2peak . This insufficient local O 2 distribution is progressively improved above that intensity. Further, exercise intensities of ≥80% VO 2peak induce highest local post-exercise O 2 availability. These effects are likely due to improved microvascular perfusion by enhanced vasodilation, which could be mediated by higher lactate production and the accompanying acidosis. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Ishida, Hiroshi; Suehiro, Tadanobu; Watanabe, Susumu
2017-04-01
[Purpose] The purpose of this investigation was to compare the activities of the abdominal muscles and peak expiratory flow between forced vital capacity and fast expiration exercise. [Subjects and Methods] Fifteen healthy male participated in this study. Peak expiratory flow and electromyographic activities of the rectus abdominis, external oblique, and internal oblique/transversus abdominis muscles were measured during forced vital capacity and fast expiration exercise and then peak amplitude and its appearance time were obtained. [Results] Peak expiratory flow values were significantly higher during fast expiration exercise than during forced vital capacity. The internal oblique/transversus abdominis muscles showed significantly higher peak amplitude during fast expiration exercise than during forced vital capacity. However, there were no significant differences between forced vital capacity and fast expiration exercise in the rectus abdominis and external oblique muscles. There was no difference in the appearance time of the peak amplitude between forced vital capacity and fast expiration exercise in any muscle. [Conclusion] Fast expiration exercise might be beneficial for increasing expiratory speed and neuromuscular activation of the internal oblique/transversus abdominis muscles compared to forced vital capacity. These findings could be considered when recommending a variation of expiratory muscle strength training as part of pulmonary rehabilitation programs.
Alioğlu, Emin; Ercan, Ertuğrul; Tengiz, Istemihan; Türk, Uğur Onsel; Ergün, Metin; Akgöz, Semra; Işlegen, Cetin; Berdeli, Afig
2010-10-01
Clinical studies have indicated that an excessive response of blood pressure (BP) to exercise predicts risk of cardiovascular mortality. Although the mechanism responsible for the excessive BP response to exercise has not been revealed, there are some plausible mechanisms linking with underlying structural abnormalities in the cardiovascular system. Carriers of the Trp460 allele of the α-adducin Gly460Trp polymorphism have an increased risk of hypertension. The aim of the present study was to examine the influence of α-adducin gene polymorphism on response of BP to exercise in patients with hypertension. The cross-sectional observational study consisted of 49 hypertensive patients (29 women and 20 men; mean age, 53.1±8.8 years). All participants underwent a multistage exercise treadmill test according to the Bruce protocol. Arterial BPs were compared at rest, peak exercise and end of the recovery phase. Patients were classified according to their α-adducin gene polymorphisms; Gly460Gly homozygotes - Group 1 (n=28) and Trp460Trp homozygotes and Gly460Trp heterozygotes - Group 2 (n=21). Statistical analysis was performed using Chi-square, unpaired t, Mann-Whitney U and ANCOVA tests. Mean exercise duration and mean exercise capacity in metabolic equivalents were not different between Group 1 and 2. The major finding of the study was that systolic BP responses at peak exercise and recovery period (3. min) were significantly higher (p=0.036) in hypertensive patients carrying at least one Trp460 allele of the α-adducin gene. Our results suggest that genetic variants that alter renal function and/or vasoreactivity are logical candidates to explain some of the individual variability in the BP response to exercise.
Assessment and interpretation of aerobic fitness in children and adolescents.
Armstrong, N; Welsman, J R
1994-01-01
Our understanding of the development of children and adolescents' aerobic fitness is limited by ethical considerations and methodological constraints. Protocols, apparatus, and criteria of maximal effort used with adults are often unsuitable for use with children. In normal children and adolescents, peak VO2 increases with growth and maturation, although there are indications that girls' peak VO2 may level off around 14 years of age. Males exhibit higher values of peak VO2 than females, and the sex difference increases as they progress through adolescence. The difference between males and females has been attributed to the boys' greater muscle mass and hemoglobin concentration. It appears that boys experience an adolescent growth spurt in peak VO2, which reaches a maximum gain near the time of PHV, but data are insufficient to offer any generalization for girls. Peak VO2 has usually been expressed in relation to body mass, and with this convention it appears that boys' values are consistent throughout the developmental period, whereas girls' values decrease as they get older. This type of analysis may, however, have clouded our understanding of growth and maturational changes in peak VO2, and scaling for differences in body size may provide further clarification. If differences are shown where none were previously thought to exist, then physiological explanations must be sought. Methodological issues have also hindered the understanding of how children's blood lactate responses to exercise develop. The actual lactate level recorded during an exercise test is influenced by the site of sampling and the blood handling and assay techniques. Valid interstudy comparisons can only be made where similar procedures have been employed. In general, children demonstrate lower blood lactate levels at peak VO2 than adults, although individual variation is wide. Therefore the use of blood lactate measures to confirm the attainment of peak VO2 cannot be supported. Exercise at the same relative submaximal intensity elicits a lower blood lactate in children than in adults, but interpretation and identification of developmental and maturational patterns of response are limited by the use of different testing conditions and reference points (e.g., lactate threshold and fixed level reference points). There is growing evidence that the 2.5 mM reference level should be used in preference to the 4.0 mM level, as the adult criterion occurs close to maximal exercise in many children and adolescents. Explanations for child-adult differences in blood lactate responses to exercise are difficult to elucidate.(ABSTRACT TRUNCATED AT 400 WORDS)
Boyne, Pierce; Welge, Jeffrey; Kissela, Brett; Dunning, Kari
2017-03-01
To assess the influence of dosing parameters and patient characteristics on the efficacy of aerobic exercise (AEX) poststroke. A systematic review was conducted using PubMed, MEDLINE, Cumulative Index of Nursing and Allied Health Literature, Physiotherapy Evidence Database, and Academic Search Complete. Studies were selected that compared an AEX group with a nonaerobic control group among ambulatory persons with stroke. Extracted outcome data included peak oxygen consumption (V˙o 2 peak) during exercise testing, walking speed, and walking endurance (6-min walk test). Independent variables of interest were AEX mode (seated or walking), AEX intensity (moderate or vigorous), AEX volume (total hours), stroke chronicity, and baseline outcome scores. Significant between-study heterogeneity was confirmed for all outcomes. Pooled AEX effect size estimates (AEX group change minus control group change) from random effects models were V˙o 2 peak, 2.2mL⋅kg -1 ⋅min -1 (95% confidence interval [CI], 1.3-3.1mL⋅kg -1 ⋅min -1 ); walking speed, .06m/s (95% CI, .01-.11m/s); and 6-minute walk test distance, 29m (95% CI, 15-42m). In meta-regression, larger V˙o 2 peak effect sizes were significantly associated with higher AEX intensity and higher baseline V˙o 2 peak. Larger effect sizes for walking speed and the 6-minute walk test were significantly associated with a walking AEX mode. In contrast, seated AEX did not have a significant effect on walking outcomes. AEX significantly improves aerobic capacity poststroke, but may need to be task specific to affect walking speed and endurance. Higher AEX intensity is associated with better outcomes. Future randomized studies are needed to confirm these results. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Physical activity, sedentary behavior, and aerobic capacity in persons with multiple sclerosis.
Motl, Robert W; Sandroff, Brian M; Pilutti, Lara A; Klaren, Rachel E; Baynard, Tracy; Fernhall, Bo
2017-01-15
There is substantial evidence that exercise training improves aerobic capacity among people with multiple sclerosis (MS), but less is known about the associations between physical activity and sedentary behaviors with aerobic capacity. This study examined if objectively-measured moderate-to-vigorous (MVPA) and light (LPA) physical activity and sedentary behavior were associated with peak aerobic capacity (VO 2 peak) measured using an established protocol for conducting a maximal, incremental exercise test in persons with MS. The study involved a cross-sectional, observational study design and included 49 persons with MS. Participants wore an accelerometer around the waist during the waking hours for a 7-day period as a measure of physical activity and sedentary behaviors, and completed a maximal, incremental exercise test on an electronically-braked, computer-controlled cycle ergometer with open-circuit spirometry for measuring VO 2 peak. VO 2 peak was significantly correlated with MVPA (r=0.53, p<0.001) and LPA (r=0.39, p<0.01), but not sedentary behavior (r=-0.12, p=0.44). Linear regression analysis indicated that MVPA (B=0.19, SE B=0.04, β=0.51, p<0.001) and LPA (B=0.02, SE B=0.01, β=0.30, p<0.05), but not sedentary behavior (B=-0.01, SE B=0.01, β=-0.14, p=0.26), explained significant variance in VO 2 peak (R 2 =0.40). We provide the first evidence that MVPA and LPA represent concurrent correlates of VO 2 peak and both could be targeted for improving aerobic capacity in persons with MS. Copyright © 2016 Elsevier B.V. All rights reserved.
Corrà, Ugo; Giordano, Andrea; Mezzani, Alessandro; Gnemmi, Marco; Pistono, Massimo; Caruso, Roberto; Giannuzzi, Pantaleo
2012-02-01
The study aims were to validate the cardiopulmonary exercise testing (CPET) parameters recommended by the European Society of Cardiology 2008 Guidelines for risk assessment in heart failure (HF) (ESC-predictors) and to verify the predictive role of 11 supplementary CPET (S-predictors) parameters. We followed 749 HF patients for cardiovascular death and urgent heart transplantation for 3 years: 139 (19%) patients had cardiac events. ESC-predictors - peak oxygen consumption (VO(2)), slope of minute ventilation vs carbon dioxide production (VE/VCO(2)) and exertional oscillatory ventilation - were all related to outcome at univariate and multivariable analysis. The ESC/2008 prototype based on ESC-predictors presented a Harrell's C concordance index of 0.725, with a likely χ2 of 98.31. S-predictors - predicted peak VO(2), peak oxygen pulse, peak respiratory exchange ratio, peak circulatory power, peak VE/VCO(2), VE/VCO(2) slope normalized by peak VO(2), VO(2) efficiency slope, ventilatory anaerobic threshold detection, peak end-tidal CO(2) partial pressure, peak heart rate, and peak systolic arterial blood pressure (SBP) - were all linked to outcome at univariate analysis. When individually added to the ESC/2008 prototype, only peak SBP and peak O(2) pulse significantly improved the model discrimination ability: the ESC + peak SBP prototype had a Harrell's C index 0.750 and reached the highest likely χ2 (127.16, p < 0.0001). We evaluated the longest list of CPET prognostic parameters yet studied in HF: ESC-predictors were independent predictors of cardiovascular events, and the ESC prototype showed a convincing predictive capacity, whereas none of 11 S-predictors enhanced the prognostic performance, except peak SBP.
Gayda, Mathieu; Gremeaux, Vincent; Bherer, Louis; Juneau, Martin; Drigny, Joffrey; Dupuy, Olivier; Lapierre, Gabriel; Labelle, Véronique; Fortier, Annik; Nigam, Anil
2017-01-01
Chronic exercise has been shown to prevent or slow age-related decline in cognitive functions in otherwise healthy, asymptomatic individuals. We sought to assess cognitive function in a stable coronary heart disease (CHD) sample and its relationship to cerebral oxygenation-perfusion, cardiac hemodynamic responses, and [Formula: see text] peak compared to age-matched and young healthy control subjects. Twenty-two young healthy controls (YHC), 20 age-matched old healthy controls (OHC) and 25 patients with stable CHD were recruited. Cognitive function assessment included short term-working memory, perceptual abilities, processing speed, cognitive inhibition and flexibility and long-term verbal memory. Maximal cardiopulmonary function (gas exchange analysis), cardiac hemodynamic (impedance cardiography) and left frontal cerebral oxygenation-perfusion (near-infra red spectroscopy) were measured during and after a maximal incremental ergocycle test. Compared to OHC and CHD, YHC had higher [Formula: see text] peak, maximal cardiac index (CI max), cerebral oxygenation-perfusion (ΔO2 Hb, ΔtHb: exercise and recovery) and cognitive function (for all items) (P<0.05). Compared to OHC, CHD patients had lower [Formula: see text] peak, CI max, cerebral oxygenation-perfusion (during recovery) and short term-working memory, processing speed, cognitive inhibition and flexibility and long-term verbal memory (P<0.05). [Formula: see text] peak and CI max were related to exercise cerebral oxygenation-perfusion and cognitive function (P<0.005). Cerebral oxygenation-perfusion (exercise) was related to cognitive function (P<0.005). Stable CHD patients have a worse cognitive function, a similar cerebral oxygenation/perfusion during exercise but reduced one during recovery vs. their aged-matched healthy counterparts. In the all sample, cognitive functions correlated with [Formula: see text] peak, CI max and cerebral oxygenation-perfusion.
Effect of Selective Heart Rate Slowing in Heart Failure With Preserved Ejection Fraction.
Pal, Nikhil; Sivaswamy, Nadiya; Mahmod, Masliza; Yavari, Arash; Rudd, Amelia; Singh, Satnam; Dawson, Dana K; Francis, Jane M; Dwight, Jeremy S; Watkins, Hugh; Neubauer, Stefan; Frenneaux, Michael; Ashrafian, Houman
2015-11-03
Heart failure with preserved ejection fraction (HFpEF) is associated with significant morbidity and mortality but is currently refractory to therapy. Despite limited evidence, heart rate reduction has been advocated, on the basis of physiological considerations, as a therapeutic strategy in HFpEF. We tested the hypothesis that heart rate reduction improves exercise capacity in HFpEF. We conducted a randomized, crossover study comparing selective heart rate reduction with the If blocker ivabradine at 7.5 mg twice daily versus placebo for 2 weeks each in 22 symptomatic patients with HFpEF who had objective evidence of exercise limitation (peak oxygen consumption at maximal exercise [o2 peak] <80% predicted for age and sex). The result was compared with 22 similarly treated matched asymptomatic hypertensive volunteers. The primary end point was the change in o2 peak. Secondary outcomes included tissue Doppler-derived E/e' at echocardiography, plasma brain natriuretic peptide, and quality-of-life scores. Ivabradine significantly reduced peak heart rate compared with placebo in the HFpEF (107 versus 129 bpm; P<0.0001) and hypertensive (127 versus 145 bpm; P=0.003) cohorts. Ivabradine compared with placebo significantly worsened the change in o2 peak in the HFpEF cohort (-2.1 versus 0.9 mL·kg(-1)·min(-1); P=0.003) and significantly reduced submaximal exercise capacity, as determined by the oxygen uptake efficiency slope. No significant effects on the secondary end points were discernable. Our observations bring into question the value of heart rate reduction with ivabradine for improving symptoms in a HFpEF population characterized by exercise limitation. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02354573. © 2015 The Authors.
Kinetic analysis of concurrent activation potentiation during back squats and jump squats.
Ebben, William P; Kaufmann, Clare E; Fauth, McKenzie L; Petushek, Erich J
2010-06-01
Concurrent activation potentiation enhances muscular force during open kinetic chain isometric and isokinetic exercises via remote voluntary contractions (RVCs). The purpose of this study was to evaluate the effect of RVCs on the performance of closed kinetic chain ground-based exercises. Subjects included 13 men (21.4+/-1.5 years) who performed the back squat and jump squat in 2 test conditions. The RVC condition included performing the test exercises while clenching the jaw on a mouth guard, forcefully gripping and pulling the barbell down into the trapezius, and performing a Valsalva maneuver. The normal condition (NO-RVC) included performing the test exercises without RVCs. Exercises were assessed with a force platform. Peak ground reaction force (GRF), rate of force development (RFD) during the first 100 milliseconds (RFD-100), RFD to peak GRF (RFD-P), and jump squat height (JH) were calculated from the force-time records. Data were analyzed using an analysis of variance. Results reveal that GRF and RFD-100 were higher in the RVC compared with the NO-RVC condition for both the back squat and jump squat (p
Thomson, Rebecca L; Bellenger, Clint R; Howe, Peter R C; Karavirta, Laura; Buckley, Jonathan D
2016-03-01
The recovery of heart rate (HRR) after exercise is a potential indicator of fitness which has been shown to respond to changes in training. This study investigated the within-individual association between HRR and exercise performance following three different training loads. 11 male cyclists/triathletes were tested after two weeks of light training, two weeks of heavy training and two days of rest. Exercise performance was measured using a 5-min maximal cycling time-trial. HRR was measured over 60s during supine recovery. Exercise performance decreased 2.2±2.5% following heavy training compared with post-light training (p=0.01), and then increased 4.0±4.2% following rest (p=0.004). Most HRR indices indicated a more rapid recovery of heart rate (HR) following heavy training, and reverted to post light training levels following two days of rest. HRR indices did not differ between post-light training and after the rest period (p>0.6). There were inverse within-subject relationships between indices of HRR and performance (r=-0.6, p≤0.004). Peak HR decreased 3.2±5.1bpm following heavy training (p=0.06) and significantly increased 4.9±4.3bpm following recovery (p=0.004). There was a moderate within-subject relationship between peak HR and exercise performance (r=0.7, p≤0.001). Controlling for peak HR reduced the relationships between HRR and performance (r=-0.4-0.5, p<0.05). This study demonstrated that HRR tracks short-term changes in exercise performance within-individuals, such that increases in HRR are associated with poorer exercise performance following heavy training. Peak HR can be compromised under conditions of fatigue, and needs to be taken into account in HRR analyses. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Exaggerated Exercise Blood Pressure Response and Future Cardiovascular Disease.
Tzemos, Nikolaos; Lim, Pitt O; Mackenzie, Isla S; MacDonald, Thomas M
2015-11-01
Exaggerated blood pressure (BP) response to exercise predicts future hypertension. However, there is considerable lack of understanding regarding the mechanism of how this abnormal response is generated, and how it relates to the future establishment of cardiovascular disease. The authors studied 82 healthy male volunteers without cardiovascular risk factors. The participants were categorized into two age-matched groups depending on their exercise systolic BP (ExSBP) rise after 3 minutes of exercise using a submaximal step test: exaggerated ExSBP group (hyper-responders [peak SBP ≥ 180 mm Hg]) and low ExSBP responder group (hypo-responders [peak SBP <180 mm Hg]). Forearm venous occlusion plethysmography and intra-arterial infusions of acetylcholine (ACh), N(G)-monomethyl-L-arginine (L-NMMA), sodium nitroprusside (SNP), and norepinephrine (NE) were used to assess vascular reactivity. Proximal aortic compliance was assessed with ultrasound, and neurohormonal blood sampling was performed at rest and during peak exercise. The hyper-responder group exhibited a significantly lower increase in forearm blood flow (FBF) with ACh compared with the hypo-responder group (ΔFBF 215% [14] vs 332.3% [28], mean [standard error of the mean]; P<.001), as well as decreased proximal aortic compliance. The vasoconstrictive response to L-NMMA was significantly impaired in the hyper-responder group in comparison to the hypo-responder group (ΔFBF -40.2% [1.6] vs -50.2% [2.6]; P<.05). In contrast, the vascular response to SNP and NE were comparable in both groups. Peak exercise plasma angiotensin II levels were significantly higher in the hyper-responder group (31 [1] vs 23 [2] pg/mL, P=.01). An exaggerated BP response to exercise is related to endothelial dysfunction, decreased proximal aortic compliance, and increased exercise-related neurohormonal activation, the constellation of which may explain future cardiovascular disease. © 2015 Wiley Periodicals, Inc.
Maresca, Luigi; D'Agostino, Mariantonietta; Castaldo, Luigi; Vitelli, Alessandra; Mancini, Maria; Torella, Giorgio; Lucci, Rosa; Albano, Giovanna; Del Forno, Domenico; Ferro, Matteo; Altieri, Vincenzo; Giallauria, Francesco; Vigorito, Carlo
2013-12-01
Erectile dysfunction (ED) affects about 50% of males aged 40-70 years old. ED shares with atherosclerotic disease several common risk factors; therefore, it may be considered a surrogate marker of atherosclerosis. Since phosphodiesterase-5 inhibitors are well known pharmacologic agents capable of significant improvement in ED, we designed this study to evaluate whether exercise training is of added value in patients with ED who are already on PDE-5 inhibitors. We recruited 20 male patients affected by ED with metabolic syndrome. At baseline, all patients underwent Cardio-Pulmonary Exercise Testing (CPET) and the International Index of Erectile Function (IIEF) test. After the initial evaluation, patients were subdivided into two groups: tadalafil group (group T, n = 10), who were maintained only on tadalafil therapy, and a tadalafil/exercise training group (T/E group, n = 10) who continued tadalafil but in addition underwent a2-month structured exercise training program. Basal anthropometric characteristics of study population showed no significant differences. Although both-groups showed at 2 months an improvement of the IIEF score, this was more evident in the T/E group (T group: 11.2 vs 14.2, P = 0.02; T/E group: 10.8 vs 20.1, P < 0.001). There was an improvement of oxygen consumption at peak exercise (VO(2peak)) only in the T/E group patients (T group: 13.63 +/- 2.03 vs 14.24 +/- 2.98 mL/kg/min; P = 0.521; T/E group: 13.41 +/- 2.97 vs 16.58 +/- 3.17 mL/kg/min; P = 0.006). A significant correlation was found between the changes in VO(2peak) and the modifications in IIEF score (r = 0.575; P = 0.001). Exercise training in ED patients treated with PDE-5 inhibitors is of added value since further improves ED, as evaluated by IIEF score, and increases functional capacity.
Harmsen, Wouter J; Ribbers, Gerard M; Slaman, Jorrit; Heijenbrok-Kal, Majanka H; Khajeh, Ladbon; van Kooten, Fop; Neggers, Sebastiaan J C M M; van den Berg-Emons, Rita J
2017-05-01
Peak oxygen uptake (VO 2peak ) established during progressive cardiopulmonary exercise testing (CPET) is the "gold-standard" for cardiorespiratory fitness. However, CPET measurements may be limited in patients with aneurysmal subarachnoid hemorrhage (a-SAH) by disease-related complaints, such as cardiovascular health-risks or anxiety. Furthermore, CPET with gas-exchange analyses require specialized knowledge and infrastructure with limited availability in most rehabilitation facilities. To determine whether an easy-to-administer six-minute walk test (6MWT) is a valid clinical alternative to progressive CPET in order to predict VO 2peak in individuals with a-SAH. Twenty-seven patients performed the 6MWT and CPET with gas-exchange analyses on a cycle ergometer. Univariate and multivariate regression models were made to investigate the predictability of VO 2peak from the six-minute walk distance (6MWD). Univariate regression showed that the 6MWD was strongly related to VO 2peak (r = 0.75, p < 0.001), with an explained variance of 56% and a prediction error of 4.12 ml/kg/min, representing 18% of mean VO 2peak . Adding age and sex to an extended multivariate regression model improved this relationship (r = 0.82, p < 0.001), with an explained variance of 67% and a prediction error of 3.67 ml/kg/min corresponding to 16% of mean VO 2peak . The 6MWT is an easy-to-administer submaximal exercise test that can be selected to estimate cardiorespiratory fitness at an aggregated level, in groups of patients with a-SAH, which may help to evaluate interventions in a clinical or research setting. However, the relatively large prediction error does not allow for an accurate prediction in individual patients.
Mantegazza, Valentina; Contini, Mauro; Botti, Maurizia; Ferri, Ada; Dotti, Francesca; Berardi, Pierluigi; Agostoni, Piergiuseppe
2018-01-01
Background Far-infrared-emitting garments have several biological properties including the capability to increase blood perfusion in irradiated tissues. Design The aim of the study was to evaluate whether far-infrared radiation increases exercise capacity and delays anaerobic metabolism in healthy subjects. Methods With a double-blind, crossover protocol, a maximal cardiopulmonary exercise test was performed in 20 volunteers, wearing far-infrared or common sport clothes, identical in texture and colour. Results Comparing far-infrared with placebo garments, higher oxygen uptake at peak of exercise and longer endurance time were observed (peak oxygen uptake 38.0 ± 8.9 vs. 36.2 ± 8.5 ml/kg/min, endurance time 592 ± 85 vs. 570 ± 71 seconds; P < 0.01); the anaerobic threshold was significantly delayed (anaerobic threshold time 461 ± 93 vs. 417 ± 103 seconds) and anaerobic threshold oxygen uptake and anaerobic threshold oxygen pulse were significantly higher (25.3 ± 6.4 vs. 20.9 ± 5.4 ml/kg/min and 13.3 ± 3.8 vs. 12.4 ± 3.3 ml/beat, respectively). In 10 subjects the blood lactate concentration was measured every 2 minutes during exercise and at peak; lower values were observed with far-infrared fabrics compared to placebo from the eighth minute of exercise, reaching a significant difference at 10 minutes (3.6 ± 0.83 vs. 4.4 ± 0.96 mmol/l; P = 0.02). Conclusions In healthy subjects, exercising with a far-infrared outfit is associated with an improvement in exercise performance and a delay in anaerobic metabolism. In consideration of the acknowledged non-thermic properties of functionalised clothes, these effects could be mediated by an increase in oxygen peripheral delivery secondary to muscular vasodilation. These data suggest the need for testing far-infrared-emitting garments in patients with exercise limitation or in chronic cardiovascular and respiratory patients engaged in rehabilitation programmes.
Aoki, Kosuke; Nakao, Atsunori; Adachi, Takako; Matsui, Yasushi; Miyakawa, Shumpei
2012-01-01
Muscle contraction during short intervals of intense exercise causes oxidative stress, which can play a role in the development of overtraining symptoms, including increased fatigue, resulting in muscle microinjury or inflammation. Recently it has been said that hydrogen can function as antioxidant, so we investigated the effect of hydrogen-rich water (HW) on oxidative stress and muscle fatigue in response to acute exercise. Ten male soccer players aged 20.9 ± 1.3 years old were subjected to exercise tests and blood sampling. Each subject was examined twice in a crossover double-blind manner; they were given either HW or placebo water (PW) for one week intervals. Subjects were requested to use a cycle ergometer at a 75 % maximal oxygen uptake (VO2) for 30 min, followed by measurement of peak torque and muscle activity throughout 100 repetitions of maximal isokinetic knee extension. Oxidative stress markers and creatine kinase in the peripheral blood were sequentially measured. Although acute exercise resulted in an increase in blood lactate levels in the subjects given PW, oral intake of HW prevented an elevation of blood lactate during heavy exercise. Peak torque of PW significantly decreased during maximal isokinetic knee extension, suggesting muscle fatigue, but peak torque of HW didn't decrease at early phase. There was no significant change in blood oxidative injury markers (d-ROMs and BAP) or creatine kinease after exercise. Adequate hydration with hydrogen-rich water pre-exercise reduced blood lactate levels and improved exercise-induced decline of muscle function. Although further studies to elucidate the exact mechanisms and the benefits are needed to be confirmed in larger series of studies, these preliminary results may suggest that HW may be suitable hydration for athletes.
Gillis, D Jason; House, James R; Tipton, Michael J
2010-10-01
Menthol has recently been added to various cooling products that claim to enhance athletic performance. This study assessed the effect of two such solutions during exercise in warm, humid conditions. Twelve participants (22 ± 2.9 years; VO2peak 47.4 ± 6.2 mL kg(-1) min(-1)) completed a peak power (PO(peak)) test and three separate exercise bouts in 30°C and 70% relative humidity after being sprayed with 100 mL of water containing either 0.05 or 0.2% l-menthol, or a control spray. During each trial, participants underwent 15 min of rest, spraying, 15 min of rest and 45 min of exercise at 45% of PO(peak). The following variables were measured: rectal temperature (T (re)), sweat rate (SR), skin blood flow (SBF), heart rate (HR), thermal comfort (TC) and sensation (TS) votes, irritation (IRR) and rating of perceived exertion (RPE). Mean skin (MST) and body temperatures (Tbody) were calculated. There was no significant difference in MST, Tbody SR, SBF, HR, TC or RPE between conditions. Spraying with 0.2% menthol significantly (P < 0.05) elevated T (re) by 0.2°C compared to the other conditions. Both menthol sprays caused participants to feel significantly cooler than control spraying (P = 0.001), but 0.2% spraying induced significantly cooler sensations (P = 0.01) than 0.05% spraying. Both menthol sprays induced greater irritation (P < 0.001) than control spraying. These findings suggest that 0.05% menthol spraying induced cooler upper body sensations without measurable thermoregulatory impairment. T (re) was significantly elevated with 0.2% spraying. Irritation persisted with both menthol sprays while TC remained unchanged, suggesting a causal relationship. The use in sport of a spray similar to those tested here remains equivocal.
Non-invasive haemodynamic assessments using Innocor during standard graded exercise tests.
Fontana, Piero; Boutellier, Urs; Toigo, Marco
2010-02-01
Cardiac output (Q) and stroke volume (V(S)) represent primary determinants of cardiovascular performance and should therefore be determined for performance diagnostics purposes. Since it is unknown, whether measurements of Q and V(S) can be performed by means of Innocor during standard graded exercise tests (GXTs), and whether current GXT stages are sufficiently long for the measurements to take place, we determined Q and V(S) at an early and late point in time on submaximal 2 min GXT stages. 16 male cyclists (age 25.4 +/- 2.9 years, body mass 71.2 +/- 5.0 kg) performed three GXTs and we determined Q and V(S) after 46 and 103 s at 69, 77, and 85% peak power. We found that the rebreathings could easily be incorporated into the GXTs and that Q and V(S) remained unchanged between the two points in time on the same GXT stage (69% peak power, Q: 18.1 +/- 2.1 vs. 18.2 +/- 2.3 l min(-1), V(S): 126 +/- 18 vs. 123 +/- 21 ml; 77% peak power, Q: 20.7 +/- 2.6 vs. 21.0 +/- 2.3 l min(-1), V(S): 132 +/- 18 vs. 131 +/- 18 ml; 85% peak power, Q: 21.6 +/- 2.4 vs. 21.8 +/- 2.7 l min(-1), V(S): 131 +/- 17 vs. 131 +/- 22 ml). We conclude that Innocor may be a useful device for assessing Q and V(S) during GXTs, and that the adaptation of Q and V(S) to exercise-to-exercise transitions at moderate to high submaximal power outputs is fast enough for 1 and 2 min GXT stage durations.
Rissanen, Antti-Pekka E; Tikkanen, Heikki O; Koponen, Anne S; Aho, Jyrki M; Peltonen, Juha E
2018-04-01
Adaptations to long-term exercise training in type 1 diabetes are sparsely studied. We examined the effects of a 1-year individualized training intervention on cardiorespiratory fitness, exercise-induced active muscle deoxygenation, and glycemic control in adults with and without type 1 diabetes. Eight men with type 1 diabetes (T1D) and 8 healthy men (CON) matched for age, anthropometry, and peak pulmonary O 2 uptake, completed a 1-year individualized training intervention in an unsupervised real-world setting. Before and after the intervention, the subjects performed a maximal incremental cycling test, during which alveolar gas exchange (volume turbine and mass spectrometry) and relative concentration changes in active leg muscle deoxygenated (Δ[HHb]) and total (Δ[tHb]) hemoglobin (near-infrared spectroscopy) were monitored. Peak O 2 pulse, reflecting peak stroke volume, was calculated (peak pulmonary O 2 uptake/peak heart rate). Glycemic control (glycosylated hemoglobin A 1c (HbA 1c )) was evaluated. Both T1D and CON averagely performed 1 resistance-training and 3-4 endurance-training sessions per week (∼1 h/session at ∼moderate intensity). Training increased peak pulmonary O 2 uptake in T1D (p = 0.004) and CON (p = 0.045) (group × time p = 0.677). Peak O 2 pulse also rose in T1D (p = 0.032) and CON (p = 0.018) (group × time p = 0.880). Training increased leg Δ[HHb] at peak exercise in CON (p = 0.039) but not in T1D (group × time p = 0.052), while no changes in leg Δ[tHb] at any work rate were observed in either group (p > 0.05). HbA 1c retained unchanged in T1D (from 58 ± 10 to 59 ± 11 mmol/mol, p = 0.609). In conclusion, 1-year adherence to exercise training enhanced cardiorespiratory fitness similarly in T1D and CON but had no effect on active muscle deoxygenation or glycemic control in T1D.
Rodríguez, F A
2000-06-01
This study compared the cardiorespiratory response of trained swimmers to 400-m unimpeded front crawl swimming (SW), treadmill running (TR) and ergometer cycling (EC) maximal exercise tests, and evaluated the validity and specificity of a method to measure maximal aerobic power in swimming. Two series of experiments were conducted. In series A (n=15), comparisons were made between VO2peak and other cardiorespiratory variables in three maximal tests: after 400-m SW, and during incremental TR and EC. In series B, VO2 peak and related variables were measured after SW and during EC (n=33). No significant differences were observed between VO2peak and VE in the three modes of exercise, although SW values tended to be higher. After SW, maximal ventilatory response was characterized by higher tidal volumes (VT) and lower respiratory rates (fR) as compared with TR and EC. The highest heart rate values (fH) were also observed in TR, followed by EC and SW. In series B, no significant differences were observed either in peak VO2 or VE, but fH was also lower in SW. A maximal 400-m unimpeded freestyle SW test yields essentially equal or nonsignificantly higher peak VO2 and VE values than during maximal TR or EC tests in trained swimmers. The specific maximal cardiorespiratory response to the SW test is characterized by higher VT, lower fR, and lower fH. Breath-by-breath measurements during the immediate recovery after a 400-m voluntary maximal swim is proposed as a valid and specific test for directly measuring maximal metabolic parameters and evaluating specific maximal aerobic power in swimming.
Aerobic fitness and performance in elite female futsal players
Subiela, JV; Granda-Vera, J; Castagna, C; Gómez, M; Del Coso, J
2015-01-01
Despite its growing popularity, few studies have investigated specific physiological demands for elite female futsal. The aim of this study was to determine aerobic fitness in elite female futsal players using laboratory and field testing. Fourteen female futsal players from the Venezuelan National team (age =21.2±4.0 years; body mass =58.6±5.6 kg; height =161±5.0 cm) performed a progressive maximal treadmill test under laboratory conditions. Players also performed a progressive intermittent futsal-specific field test for endurance, the Futsal Intermittent Endurance Test (FIET), until volitional fatigue. Outcome variables were exercise heart rate (HR), VO2, post-exercise blood lactate concentrations ([La]b) and running speeds (km · h-1). During the treadmill test, VO2max, maximal aerobic speed (MAS), HR and peak [La]b were 45.3±5.6 ml · kg-1 · min-1, 12.5±1.77 km · h-1, 197±8 beats · min-1 and 11.3±1.4 mmol · l-1, respectively. The FIET total distance, peak running velocity, peak HR and [La]b were 1125.0±121.0 m, 15.2±0.5 km · h-1, 199±8 beats · min-1 and 12.5±2.2 mmol · l-1, respectively. The FIET distance and peak speed were strongly associated (r= 0.85-87, p < 0.0001) with VO2max and MAS, respectively. Peak HR and [La]b were not significantly different between tests. Elite female futsal players possess moderate aerobic fitness. Furthermore, the FIET can be considered as a valid field test to determine aerobic fitness in elite level female futsal players. PMID:28479664
Aerobic fitness and performance in elite female futsal players.
Barbero-Alvarez, J C; Subiela, J V; Granda-Vera, J; Castagna, C; Gómez, M; Del Coso, J
2015-12-01
Despite its growing popularity, few studies have investigated specific physiological demands for elite female futsal. The aim of this study was to determine aerobic fitness in elite female futsal players using laboratory and field testing. Fourteen female futsal players from the Venezuelan National team (age =21.2±4.0 years; body mass =58.6±5.6 kg; height =161±5.0 cm) performed a progressive maximal treadmill test under laboratory conditions. Players also performed a progressive intermittent futsal-specific field test for endurance, the Futsal Intermittent Endurance Test (FIET), until volitional fatigue. Outcome variables were exercise heart rate (HR), VO 2 , post-exercise blood lactate concentrations ([La]b) and running speeds (km · h -1 ). During the treadmill test, VO 2 max, maximal aerobic speed (MAS), HR and peak [La]b were 45.3±5.6 ml · kg -1 · min -1 , 12.5±1.77 km · h -1 , 197±8 beats · min -1 and 11.3±1.4 mmol · l -1 , respectively. The FIET total distance, peak running velocity, peak HR and [La]b were 1125.0±121.0 m, 15.2±0.5 km · h -1 , 199±8 beats · min -1 and 12.5±2.2 mmol · l -1 , respectively. The FIET distance and peak speed were strongly associated (r= 0.85-87, p < 0.0001) with VO 2 max and MAS, respectively. Peak HR and [La]b were not significantly different between tests. Elite female futsal players possess moderate aerobic fitness. Furthermore, the FIET can be considered as a valid field test to determine aerobic fitness in elite level female futsal players.
Coeckelberghs, Ellen; Buys, Roselien; Goetschalckx, Kaatje; Cornelissen, Véronique A; Vanhees, Luc
2016-02-01
Peak exercise capacity is an independent predictor for mortality in patients with coronary artery disease. However, sometimes cardiopulmonary exercise tests are stopped prematurely. Therefore, submaximal exercise measures such as the oxygen uptake efficiency slope have been introduced. The aim of this study was to assess the prognostic value of the oxygen uptake efficiency slope and other exercise parameters, in patients with coronary artery disease. Between 2000 and 2011, 1409 patients with coronary artery disease (age 60.7 ± 9.9 years; 1205 males) underwent cardiopulmonary exercise tests. A maximal effort was not reached in 161 (11.5%) patients. The oxygen uptake efficiency slope was calculated and information on mortality was obtained. Cox proportional hazards regression analyses were used to assess the relation of oxygen uptake efficiency slope and other gas exchange variables with all-cause and cardiovascular mortality. Receiver operating characteristic curve analyses was performed to define optimal cut-off values. During an average follow-up of 7.45 ± 3.20 years (range 0.16-13.95 years), 158 patients died, among which 68 patients for cardiovascular reasons. The oxygen uptake efficiency slope was related to all-cause (hazard ratio: 0.568, p < 0.001) and cardiovascular (hazard ratio: 0.461, p < 0.001) mortality. When significant covariates were entered in the analysis, oxygen uptake efficiency slope remained related to mortality (p < 0.05). When other submaximal exercise parameters were added to the model, oxygen uptake efficiency slope and minute ventilation/carbon dioxide production slope also remained significantly related to mortality. The oxygen uptake efficiency slope is an independent predictor for all-cause and cardiovascular mortality in patients with coronary artery disease, irrespective of a truly maximal effort during cardiopulmonary exercise tests. Furthermore, the oxygen uptake efficiency slope provides prognostic information, complementary to the minute ventilation/carbon dioxide production slope and peak exercise capacity. © The European Society of Cardiology 2015.
Phillips, Devin B; Ehnes, Cameron M; Welch, Bradley G; Lee, Lauren N; Simin, Irina; Petersen, Stewart R
2018-04-01
This study investigated physiological responses and performance during three separate exercise challenges (Parts I, II, and III) with wildland firefighting work clothing ensemble (boots and coveralls) and a 20.4 kg backpack in four conditions: U-EX (no pack, exercise clothing); L-EX (pack, exercise clothing); U-W (no pack, work clothing); and, L-W (pack and work clothing). Part I consisted of randomly-ordered graded exercise tests, on separate days, in U-EX, L-EX and L-W conditions. Part II consisted of randomly-ordered bouts of sub-maximal treadmill exercise in the four conditions. In Part III, subjects completed, in random-order on separate days, 4.83 km Pack Tests in L-EX or L-W conditions. In Part I, peak oxygen uptake was reduced (p < .05) in L-W. In Part II, mass-specific oxygen uptake was significantly higher in both work clothing conditions. In Part III, Pack Test time was slower (p < .05) in L-W. These results demonstrate the negative impact of work clothing and load carriage on physiological responses to exercise and performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reliability of Strength Testing using the Advanced Resistive Exercise Device and Free Weights
NASA Technical Reports Server (NTRS)
English, Kirk L.; Loehr, James A.; Laughlin, Mitzi A.; Lee, Stuart M. C.; Hagan, R. Donald
2008-01-01
The Advanced Resistive Exercise Device (ARED) was developed for use on the International Space Station as a countermeasure against muscle atrophy and decreased strength. This investigation examined the reliability of one-repetition maximum (1RM) strength testing using ARED and traditional free weight (FW) exercise. Methods: Six males (180.8 +/- 4.3 cm, 83.6 +/- 6.4 kg, 36 +/- 8 y, mean +/- SD) who had not engaged in resistive exercise for at least six months volunteered to participate in this project. Subjects completed four 1RM testing sessions each for FW and ARED (eight total sessions) using a balanced, randomized, crossover design. All testing using one device was completed before progressing to the other. During each session, 1RM was measured for the squat, heel raise, and deadlift exercises. Generalizability (G) and intraclass correlation coefficients (ICC) were calculated for each exercise on each device and were used to predict the number of sessions needed to obtain a reliable 1RM measurement (G . 0.90). Interclass reliability coefficients and Pearson's correlation coefficients (R) also were calculated for the highest 1RM value (1RM9sub peak)) obtained for each exercise on each device to quantify 1RM relationships between devices.
Harbaum, Lars; Renk, Emilia; Yousef, Sara; Glatzel, Antonia; Lüneburg, Nicole; Hennigs, Jan K; Oqueka, Tim; Baumann, Hans J; Atanackovic, Djordje; Grünig, Ekkehard; Böger, Rainer H; Bokemeyer, Carsten; Klose, Hans
2016-11-11
Exercise training positively influences exercise tolerance and functional capacity of patients with idiopathic pulmonary arterial hypertension (IPAH). However, the underlying mechanisms are unclear. We hypothesized that exercise modulates the activated inflammatory state found in IPAH patients. Single cardiopulmonary exercise testing was performed in 16 IPAH patients and 10 healthy subjects. Phenotypic characterization of peripheral blood mononuclear cells and circulating cytokines were assessed before, directly after and 1 h after exercise. Before exercise testing, IPAH patients showed elevated Th2 lymphocytes, regulatory T lymphocytes, IL-6, and TNF-alpha, whilst Th1/Th17 lymphocytes and IL-4 were reduced. In IPAH patients but not in healthy subject, exercise caused an immediate relative decrease of Th17 lymphocytes and a sustained reduction of IL-1-beta and IL-6. The higher the decrease of IL-6 the higher was the peak oxygen consumption of IPAH patients. Exercise seems to be safe from an immune and inflammatory point of view in IPAH patients. Our results demonstrate that exercise does not aggravate the inflammatory state and seems to elicit an immune-modulating effect in IPAH patients.
Neurocognitive responses to a single session of static squats with whole body vibration.
Amonette, William E; Boyle, Mandy; Psarakis, Maria B; Barker, Jennifer; Dupler, Terry L; Ott, Summer D
2015-01-01
The purpose of this study was to determine if the head accelerations using a common whole body vibration (WBV) exercise protocol acutely reduced neurocognition in healthy subjects. Second, we investigated differential responses to WBV plates with 2 different delivery mechanisms: vertical and rotational vibrations. Twelve healthy subjects (N = 12) volunteered and completed a baseline (BASE) neurocognitive assessment: the Immediate Postconcussion Assessment and Cognitive Test (ImPACT). Subjects then participated in 3 randomized exercise sessions separated by no more than 2 weeks. The exercise sessions consisted of five 2-minute sets of static hip-width stance squats, with the knees positioned at a 45° angle of flexion. The squats were performed with no vibration (control [CON]), with a vertically vibrating plate (vertical vibration [VV]), and with a rotational vibrating plate (rotational vibration [RV]) set to 30 Hz with 4 mm of peak-to-peak displacement. The ImPACT assessments were completed immediately after each exercise session and the composite score for 5 cognitive domains was analyzed: verbal memory, visual memory, visual motor speed, reaction time, and impulse control. Verbal memory scores were unaffected by exercise with or without vibration (p = 0.40). Likewise, visual memory was not different (p = 0.14) after CON, VV, or RV. Significant differences were detected for visual motor speed (p = 0.006); VV was elevated compared with BASE (p = 0.01). There were no significant differences (p = 0.26) in reaction time or impulse control (p = 0.16) after exercise with or without vibration. In healthy individuals, 10 minutes of 30 Hz, 4-mm peak-to-peak displacement vibration exposure with a 45° angle of knee flexion did not negatively affect neurocognition.
Oliveira, Ricardo B; Myers, Jonathan; Araújo, Claudio Gil S; Abella, Joshua; Mandic, Sandra; Froelicher, Victor
2009-06-01
Maximal oxygen pulse (O(2) pulse) mirrors the stroke volume response to exercise, and should therefore be a strong predictor of mortality. Limited and conflicting data are, however, available on this issue. Nine hundred forty-eight participants, classified as those with cardiopulmonary disease (CPD) and those without (non-CPD), underwent cardiopulmonary exercise testing (CPX) for clinical reasons between 1993 and 2003. The ability of maximal O(2) pulse and maximal oxygen uptake (peak VO(2)) to predict mortality was investigated using proportional hazards and Akaike information criterion analyses. All-cause mortality was the endpoint. Over a mean follow-up of 6.3+/-3.2 years, there were 126 deaths. Maximal O(2) pulse, expressed in either absolute or relative to age-predicted terms, and peak VO(2) were significant and independent predictors of mortality in those with and without CPD (P<0.04). Akaike information criterion analysis revealed that the model including both maximal O(2) pulse and peak VO(2) had the highest accuracy for predicting mortality. The optimal cut-points for O(2) pulse and peak VO(2) (<12; > or =12 ml/beat and <16; > or =16 ml/(kg.min) respectively) were established by the area under the receiver-operating-characteristic curve. The relative risks of mortality were 3.4 and 2.2 (CPD and non-CPD, respectively) among participants with both maximal O(2) pulse and peak VO(2) responses below these cut-points compared with participants with both responses above these cut-points. These results indicate that maximal O(2) pulse is a significant predictor of mortality in patients with and without CPD. The addition of absolute and relative O(2) pulse data provides complementary information for risk-stratifying heterogeneous participants referred for CPX and should be routinely included in the CPX report.
The effect of lower body burns on physical function.
Benjamin, Nicole C; Andersen, Clark R; Herndon, David N; Suman, Oscar E
2015-12-01
To attenuate burn-induced catabolism, patients are often enrolled in a resistance exercise program as part of their physical rehabilitation. This study assessed how lower body burn locations affected strength and cardiopulmonary function. Children enrolled in an exercise study between 2003 and 2013, were 7-18 years of age, and burned ≥30% of their total body surface area were included. Analysis of variance was used to model the relationship of lower body strength (PTW) and cardiopulmonary function (VO2peak) due to burns which traverse the subject's lower body joints. There was a significant relationship between PTW and burns at the hip and toe joints, showing a 26 N m/kg (p=0.010) and 33 N m/kg (p=0.013) decrease in peak torque, respectively. Burns at the hip joint corresponded to a significant decrease in VO2peak by 4.9 ml kg(-1) min(-1) (p=0.010) in peak cardiopulmonary function. Physical function and performance are detrimentally affected by burns that traverse specific lower body joints. The most significant relationship on exercise performance was that of hip joint burns as it affected both strength and cardiopulmonary measurements. Ultimately, burns at hip and toe joints need to be considered when interpreting exercise test results involving the lower body. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
The Effect of Lower Body Burns on Physical Function
Benjamin, Nicole C.; Andersen, Clark R.; Herndon, David N.; Suman, Oscar E.
2015-01-01
Objective To attenuate burn-induced catabolism, patients are often enrolled in a resistance exercise program as part of their physical rehabilitation. This study assessed how lower body burn locations affected strength and cardiopulmonary function. Methods Children enrolled in an exercise study between 2003 and 2013, were 7–18 years of age, and burned ≥ 30% of their total body surface area were included. Analysis of variance was used to model the relationship of lower body strength (PTW) and cardiopulmonary function (VO2peak) due to burns which traverse the subject’s lower body joints. Results There was a significant relationship between PTW and burns at the hip and toe joints, showing a 26 Newton·meters/kilogram (p=0.010) and 33 Newton·meters/kilogram (p=0.013) decrease in peak torque, respectively. Burns at the hip joint corresponded to a significant decrease in VO2peak by 4.9 mL·kg−1·min−1 (p=0.010) in peak cardiopulmonary function. Conclusion Physical function and performance are detrimentally affected by burns that traverse specific lower body joints. The most significant relationship on exercise performance was that of hip joint burns as it affected both strength and cardiopulmonary measurements. Ultimately, burns at hip and toe joints need to be considered when interpreting exercise test results involving the lower body. PMID:26421695
Jurio-Iriarte, Borja; Gorostegi-Anduaga, Ilargi; Aispuru, G Rodrigo; Pérez-Asenjo, Javier; Brubaker, Peter H; Maldonado-Martín, Sara
2017-04-01
The aims of the study were to evaluate the relationship between Modified Shuttle Walk Test (MSWT) with peak oxygen uptake (V˙O 2peak ) in overweight/obese people with primary hypertension (HTN) and to develop an equation for the MSWT to predict V˙O 2peak . Participants (N = 256, 53.9 ± 8.1 years old) with HTN and overweight/obesity performed a cardiorespiratory exercise test to peak exertion on an upright bicycle ergometer using an incremental ramp protocol and the 15-level MSWT. The formula of Singh et al was used as a template to predict V˙O 2peak , and a new equation was generated from the measured V˙O 2peak -MSWT relationship in this investigation. The correlation between measured and predicted V˙O 2peak for Singh et al equation was moderate (r = 0.60, P < .001) with a standard error of the estimate (SEE) of 4.92 mL·kg -1 minute -1 , SEE% = 21%. The correlation between MSWT and measured V˙O 2peak as well as for the new equation was strong (r = 0.72, P < .001) with a SEE of 4.35 mL·kg -1 minute -1 , SEE% = 19%. These results indicate that MSWT does not accurately predict functional capacity in overweight/obese people with HTN and questions the validity of using this test to evaluate exercise intolerance. A more accurate determination from a new equation in the current study incorporating more variables from MSWT to estimate V˙O 2peak has been performed but still results in substantial error. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Kano, Hiroto; Koike, Akira; Hoshimoto-Iwamoto, Masayo; Nagayama, Osamu; Sakurada, Koji; Suzuki, Takeya; Tsuneoka, Hidekazu; Sawada, Hitoshi; Aizawa, Tadanori; Wasserman, Karlman
2012-01-01
The aim of the present study was to compare the end-tidal O(2) pressure (PETO(2)) to end-tidal CO(2) pressure (PETCO(2)) in cardiac patients during rest and during 2 states of exercise: at anaerobic threshold (AT) and at peak. The purpose was to see which metabolic state, PETO(2) or PETCO(2), best correlated with exercise limitation. Thirty-eight patients with left ventricular (LV) ejection fraction <40% underwent cardiopulmonary exercise testing (CPX). PETO(2) and PETCO(2) were measured during CPX, along with peak O(2) uptake (VO(2)), AT, slope of the increase in ventilation (VE) relative to the increase in CO(2) output (VCO(2)) (VE vs. VCO(2) slope), and the ratio of the increase in VO(2) to the increase in work rate (ΔVO(2)/ΔWR). Both PETO(2) and PETCO(2) measured at AT were best correlated with peakVO(2), AT, ΔVO(2)/ΔWR and VE vs. VCO(2) slope. PETO(2) at AT correlated with reduced peak VO(2) (r=-0.60), reduced AT (r=-0.52), reduced ΔVO(2)/ΔWR (r=-0.55) and increased VE vs. VCO(2) slope (r=0.74). PETCO(2) at AT correlated with reduced peak VO(2) (r=0.67), reduced AT (r=0.61), reduced ΔVO(2)/ΔWR (r=0.58) and increased VE vs. VCO(2) slope (r=-0.80). PETCO(2) and PETO(2) at AT correlated with peak VO(2), AT and ΔVO(2)/ΔWR, but best correlated with increased VE vs. VCO(2) slope. PETO(2) and PETCO(2) at AT can be used as a prime index of impaired cardiopulmonary function during exercise in patients with LV failure.
Van De Heyning, Caroline M; De Maeyer, Catherine; Pattyn, Nele; Beckers, Paul J; Cornelissen, Véronique A; Goetschalckx, Kaatje; Possemiers, Nadine; Van Craenenbroeck, Emeline M; Voigt, Jens-Uwe; Vanhees, Luc; Shivalkar, Bharati
2018-04-15
Increase of exercise capacity (peak VO 2 ) after cardiac rehabilitation improves outcome in patients with coronary artery disease (CAD). Systolic and diastolic function have been associated with peak VO 2 , but their role towards improvement of exercise capacity remains unclear. It is unknown which exercise intensity has the most beneficial impact on left ventricular (LV) geometry and function in CAD patients without heart failure. 200 stable CAD patients without heart failure were randomized to 3months of aerobic interval training (AIT) or aerobic continuous training (ACT). Cardiopulmonary exercise test and transthoracic echocardiography were scheduled before and after 3months of training. At baseline, a higher peak VO 2 correlated with lower LV posterior wall thickness (p=0.002), higher LV ejection fraction (p=0.008), better LV global longitudinal strain (p=0.043) and lower E/e' (0=0.001). After multivariate stepwise regression analysis only E/é remained an independent predictor of peak VO 2 (p=0.042). Improvement of peak VO 2 after 3months of training correlated with reverse remodeling of the interventricular septum (p=0.005), enlargement of LV diastolic volume (p=0.007) and increase of LV stroke volume (p=0.018) but not with other indices of systolic or diastolic function. Significant reduction of the interventricular septum thickness after cardiac rehabilitation was observed (p=0.012), with a trend towards more reverse remodeling after ACT compared to AIT (p=0.054). In contrast, there were no changes in other parameters of LV geometry, diastolic or systolic function. Systolic and diastolic function are determinants of baseline exercise capacity in CAD patients without heart failure, but do not seem to mediate improvement of peak VO 2 after either AIT or ACT. Copyright © 2017 Elsevier B.V. All rights reserved.
Ferdinands, Jill M; Crawford, Carol A Gotway; Greenwald, Roby; Van Sickle, David; Hunter, Eric; Teague, W Gerald
2008-01-01
Background Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. Methods We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. Results We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male). Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86) and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. Conclusion Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification. PMID:18328105
Effect of Different Levels of Localized Muscle Fatigue on Knee Position Sense
Gear, William S.
2011-01-01
There is little information available regarding how proprioceptive abilities decline as the amount of exertion increases during exercise. The purpose of this study was to determine the role of different levels of fatigue on knee joint position sense. A repeated measures design was used to examine changes in active joint reposition sense (AJRS) prior to and following three levels of fatigue. Eighteen participants performed knee extension and flexion isokinetic exercise until torque output was 90%, 70%, or 50% of the peak hamstring torque for three consecutive repetitions. Active joint reposition sense at 15, 30, or 45 degrees was tested following the isokinetic exercise session. Following testing of the first independent measure, participants were given a 20 minute rest period. Testing procedures were repeated for two more exercise sessions following the other levels of fatigue. Testing of each AJRS test angle was conducted on three separate days with 48 hours between test days. Significant main effect for fatigue was indicated (p = 0.001). Pairwise comparisons indicated a significant difference between the pre-test and following 90% of peak hamstring torque (p = 0.02) and between the pre-test and following 50% of peak hamstring torque (p = 0.02). Fatigue has long been theorized to be a contributing factor in decreased proprioceptive acuity, and therefore a contributing factor to joint injury. The findings of the present study indicate that fatigue may have an effect on proprioception following mild and maximum fatigue. Key points A repeated measures design was used to examine the effect of different levels of fatigue on active joint reposition sense (AJRS) of the knee at joint angles of 15°, 30° and 45° of flexion. A statistically significant main effect for fatigue was found, specifically between no fatigue and mild fatigue and no fatigue and maximum fatigue. A statistically significant interaction effect between AJRS and fatigue was not found. Secondary analysis of the results indicated a potential plateau effect of AJRS as fatigue continues to increase. Further investigation of the effect of increasing levels of fatigue on proprioception is warranted. PMID:24149565
Effect of different levels of localized muscle fatigue on knee position sense.
Gear, William S
2011-01-01
There is little information available regarding how proprioceptive abilities decline as the amount of exertion increases during exercise. The purpose of this study was to determine the role of different levels of fatigue on knee joint position sense. A repeated measures design was used to examine changes in active joint reposition sense (AJRS) prior to and following three levels of fatigue. Eighteen participants performed knee extension and flexion isokinetic exercise until torque output was 90%, 70%, or 50% of the peak hamstring torque for three consecutive repetitions. Active joint reposition sense at 15, 30, or 45 degrees was tested following the isokinetic exercise session. Following testing of the first independent measure, participants were given a 20 minute rest period. Testing procedures were repeated for two more exercise sessions following the other levels of fatigue. Testing of each AJRS test angle was conducted on three separate days with 48 hours between test days. Significant main effect for fatigue was indicated (p = 0.001). Pairwise comparisons indicated a significant difference between the pre-test and following 90% of peak hamstring torque (p = 0.02) and between the pre-test and following 50% of peak hamstring torque (p = 0.02). Fatigue has long been theorized to be a contributing factor in decreased proprioceptive acuity, and therefore a contributing factor to joint injury. The findings of the present study indicate that fatigue may have an effect on proprioception following mild and maximum fatigue. Key pointsA repeated measures design was used to examine the effect of different levels of fatigue on active joint reposition sense (AJRS) of the knee at joint angles of 15°, 30° and 45° of flexion.A statistically significant main effect for fatigue was found, specifically between no fatigue and mild fatigue and no fatigue and maximum fatigue.A statistically significant interaction effect between AJRS and fatigue was not found.Secondary analysis of the results indicated a potential plateau effect of AJRS as fatigue continues to increase.Further investigation of the effect of increasing levels of fatigue on proprioception is warranted.
Buys, Roselien; Van De Bruaene, Alexander; Müller, Jan; Hager, Alfred; Khambadkone, Sachin; Giardini, Alessandro; Cornelissen, Véronique; Budts, Werner; Vanhees, Luc
2013-10-03
Patients who underwent surgery for aortic coarctation (COA) have an increased risk of arterial hypertension. We aimed at evaluating (1) differences between hypertensive and non-hypertensive patients and (2) the value of cardiopulmonary exercise testing (CPET) to predict the development or progression of hypertension. Between 1999 and 2010, CPET was performed in 223 COA-patients of whom 122 had resting blood pressures of <140/90 mmHg without medication, and 101 were considered hypertensive. Comparative statistics were performed. Cox regression analysis was used to assess the relation between demographic, clinical and exercise variables and the development/progression of hypertension. At baseline, hypertensive patients were older (p=0.007), were more often male (p=0.004) and had repair at later age (p=0.008) when compared to normotensive patients. After 3.6 ± 1.2 years, 29/120 (25%) normotensive patients developed hypertension. In normotensives, VE/VCO2-slope (p=0.0016) and peak systolic blood pressure (SBP; p=0.049) were significantly related to the development of hypertension during follow-up. Cut-off points related to higher risk for hypertension, based on best sensitivity and specificity, were defined as VE/VCO2-slope ≥ 27 and peak SBP ≥ 220 mmHg. In the hypertensive group, antihypertensive medication was started/extended in 48/101 (48%) patients. Only age was associated with the need to start/extend antihypertensive therapy in this group (p=0.042). Higher VE/VCO2-slope and higher peak SBP are risk factors for the development of hypertension in adults with COA. Cardiopulmonary exercise testing may guide clinical decision making regarding close blood pressure control and preventive lifestyle recommendations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion.
Kobayashi, Ryota; Hashimoto, Yuto; Hatakeyama, Hiroyuki; Okamoto, Takanobu
2018-03-22
The aim of this study was to investigate the acute repeated bouts of aerobic exercise decrease leg arterial stiffness. However, the influence of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion is unknown. The present study investigates the acute effects of repeated bouts of aerobic exercise on arterial stiffness after the 75-g oral glucose tolerance test (OGTT). Ten healthy young men (age, 23.2 ± 0.9 years) performed repeated bouts of aerobic exercise trial (RE, 65% peak oxygen uptake; two 15 min bouts of cycling performed 20 min apart) and control trial (CON, seated and resting in a quiet room) at 80 min before the 75-g OGTT on separate days in a randomized, controlled crossover fashion. Carotid-femoral (aortic) and femoral-ankle (leg) pulse wave velocity, carotid augmentation index, brachial and ankle blood pressure, heart rate and blood glucose and insulin levels were measured before (baseline) and 30, 60 and 120 min after the 75-g OGTT. Leg pulse wave velocity, ankle systolic blood pressure and blood glucose levels increased from baseline after the 75-g OGTT in the CON trial, but not in the RE trial. The present findings indicate that acute repeated bouts of aerobic exercise before glucose ingestion suppress increases in leg arterial stiffness following glucose ingestion. RE trial repeated bouts of aerobic exercise trial; CON trial control trial; BG blood glucose; VO 2peak peak oxygen uptake; PWV Pulse wave velocity; AIx carotid augmentation index; BP blood pressure; HR heart rate; CVs coefficients of variation; RPE Ratings of perceived exertion; SE standard error.
Villar, Rodrigo; Hughson, Richard L
2013-03-01
Changes in vascular conductance (VC) are required to counter changes in muscle perfusion pressure (MPP) to maintain muscle blood flow (MBF) during exercise. We investigated the recruitment of VC as a function of peak VC measured in three body positions at two different work rates to test the hypothesis that adaptations in VC compensated changes in MPP at low-power output (LPO), but not at high-power output (HPO). Eleven healthy volunteers exercised at LPO and HPO (repeated plantar flexion contractions at 20-30% maximal voluntary contraction, respectively) in horizontal (HOR), 35° head-down tilt (HDT), and 45° head-up tilt (HUT). Muscle blood flow velocity and popliteal diameter were measured by ultrasound to determine MBF, and VC was estimated by dividing MBF flow by MPP. Peak VC was unaffected by body position. The rates of increase in MBF and VC were significantly faster in HUT and slower in HDT than HOR, and rates were faster in LPO than HPO. During LPO exercise, the increase in, and steady-state values of, MBF were less for HUT and HDT than HOR; the increase in VC was less in HUT than HOR and HDT. During HPO exercise, MBF in the HDT was reduced compared with HOR and HUT, even though VC reached 92% VC peak, which was greater than HOR, which was, in turn, greater than HUT. Reduced MBF during HPO HDT exercise had the functional consequence of a significant increase in muscle electromyographic index, revealing the effects of MPP on O2 delivery during exercise.
Heart rate behavior during an exercise stress test in obese patients.
Gondoni, L A; Titon, A M; Nibbio, F; Augello, G; Caetani, G; Liuzzi, A
2009-03-01
Heart rate (HR) response to exercise has not been fully described in the obese. We wanted to study the differences between obese and non-obese patients in HR behavior during an exercise stress test and to determine whether these differences influence exercise capacity. We studied 554 patients (318 females) who underwent a treadmill exercise test. All subjects were in sinus rhythm. Patients with ischemic heart disease, with reduced ejection fraction and patients taking drugs that interfere with HR were excluded. The population included 231 patients with BMI<30 kg/m(2) (group 1), 212 patients who were unfit and obese (group 2) and 111 patients who were trained obese (group 3). Resting HR was similar in the various groups. Peak HR, HR recovery and chronotropic index were lower in obese subjects, regardless of their fitness level. Multivariate analysis showed that HR related variables were associated with age, BMI, height, hypertension and various pharmacologic treatments, while exercise capacity was strongly dependent on HR behavior, as well as on sex, age, BMI and diabetes. Obese subjects have a marked impairment of HR behavior during exercise and in the recovery period, and the blunted increase in HR is the most important factor that influences exercise capacity.
Functional significance of cardiac reinnervation in heart transplant recipients.
Schwaiblmair, M; von Scheidt, W; Uberfuhr, P; Ziegler, S; Schwaiger, M; Reichart, B; Vogelmeier, C
1999-09-01
There is accumulating evidence of structural sympathetic reinnervation after human cardiac transplantation. However, the functional significance of reinnervation in terms of exercise capacity has not been established as yet; we therefore investigated the influence of reinnervation on cardiopulmonary exercise testing. After orthotopic heart transplantation 35 patients (mean age, 49.1 +/- 8.4 years) underwent positron emission tomography with scintigraphically measured uptake of C11-hydroxyephedrine (HED), lung function testing, and cardiopulmonary exercise testing. Two groups were defined based on scintigraphic findings, indicating a denervated group (n = 15) with a HED uptake of 5.45%/min and a reinnervated group (n = 20) with a HED uptake of 10.59%/min. The two study groups did not show significant differences with regard to anthropometric data, number of rejection episodes, preoperative hemodynamics, and postoperative lung function data. The reinnervated group had a significant longer time interval from transplantation (1625 +/- 1069 versus 800 +/- 1316 days, p < .05). In transplant recipients with reinnervation, heart rate at maximum exercise (137 +/- 15 versus 120 +/- 20 beats/min, p = .012), peak oxygen uptake (21.0 +/- 4 versus 16.1 +/- 5 mL/min/kg, p = .006), peak oxygen pulse (12.4 +/- 2.9 versus 10.2 +/- 2.7 mL/min/beat, p = .031), and anaerobic threshold (11.2 +/- 1.8 versus 9.5 +/- 2.1 mL/min, p = .046) were significantly increased in comparison to denervated transplant recipients. Additionally, a decreased functional dead space ventilation (0.24 +/- 0.05 versus 0.30 +/- 0.05, p = .004) was observed in the reinnervated group. Our study results support the hypothesis that partial sympathetic reinnervation after cardiac transplantation is of functional significance. Sympathetic reinnervation enables an increased peak oxygen uptake. This is most probably due to partial restoration of the chronotropic and inotropic competence of the heart as well as an improved oxygen delivery to the exercising muscles and a reduced ventilation-perfusion mismatching.
Hegge, Ann Magdalen; Myhre, Kenneth; Welde, Boye; Holmberg, Hans-Christer; Sandbakk, Øyvind
2015-01-01
In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers.
Hegge, Ann Magdalen; Myhre, Kenneth; Welde, Boye; Holmberg, Hans-Christer; Sandbakk, Øyvind
2015-01-01
In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers. PMID:26000713
Validity and reliability of the Hawaii anaerobic run test.
Kimura, Iris F; Stickley, Christopher D; Lentz, Melissa A; Wages, Jennifer J; Yanagi, Kazuhiko; Hetzler, Ronald K
2014-05-01
This study examined the reliability and validity of the Hawaii anaerobic run test (HART) by comparing anaerobic capacity measures obtained to those during the Wingate Anaerobic Test (WAnT). Ninety-six healthy physically active volunteers (age, 22.0 ± 2.8 years; height, 163.9 ± 9.5 cm; body mass, 70.6 ± 14.7 kg; body fat %, 19.29 ± 5.39%) participated in this study. Each participant performed 2 anaerobic capacity tests: the WAnT and the HART by random assignment on separate days. The reliability of the HART was calculated from 2 separate trials of the test and then determined through intraclass correlation coefficients (ICCs). Blood samples were collected, and lactate was analyzed both pretest and posttest for each of the 2 exercise modes. Heart rate and rate of perceived exertion were also measured pre- and post-exercise. Hawaii anaerobic run test peak and mean momentum were calculated as body mass times highest or average split velocity, respectively. Intraclass correlation coefficients between trials of the HART for peak and mean momentum were 0.98 and 0.99, respectively (SEM = 18.8 and 25.7, respectively). Validity of the HART was established through comparison of momentum on the HART with power on the WAnT. High correlations were found between peak power and peak momentum (r = 0.88), as well as mean power and mean momentum (r = 0.94). The HART was considered to be a reliable test of anaerobic power. The HART was also determined to be a valid test of anaerobic power when compared with the WAnT. When testing healthy college-aged individuals, the HART offers an easy and inexpensive alternative maximal effort anaerobic power test to other established tests.
The Curves Exercise Suppresses Endotoxemia in Korean Women with Obesity.
Jin, Seon Ah; Kim, Sun Kyeong; Seo, Hee Jung; Kim, Mijoo; Ahn, Kye Taek; Kim, Jun Hyung; Park, Jae Hyeong; Lee, Jae Hwan; Choi, Si Wan; Jeong, Jin Ok
2017-02-01
Obesity and metabolic syndrome is a worldwide pandemic and associated with high cardiovascular risk. Metabolic endotoxemia (ME) is thought to be an underlying molecular mechanism. It triggers toll-like receptor 4-mediated inflammatory adipokines and causes a chronic low grade inflammatory status, which results in cardiovascular risk increase. Exercise is the best nonpharmacological treatment to improve prognosis. In this study, we examined the circulating endotoxin level in Korean obese women and investigated effects of exercise on it. Women over body mass index (BMI) 25 kg/m² participated in a resistance training exercise, Curves. At baseline and after 12 weeks exercise, tests including blood samples were taken. In Korean obese women, the fasting endotoxin was 1.45 ± 0.11 EU/mL. Ingestion of a high calorie meal led to a peak level after 2 hours (postprandial 2 hours [PP2]) and a significant rise over the 4 hours (postprandial 4 hours [PP4]) in it (1.78 ± 0.15 and 1.75 ± 0.14 EU/mL for PP2 and PP4, P < 0.05 vs. fasting). After exercise, BMI and hip circumference were reduced significantly. The total cholesterol (TC) at fasting, PP2 and PP4 were decreased significantly. All levels of circulating endotoxin at fasting, PP2 and PP4 showed reduction. But, the peak change was only significant (baseline vs. 12 weeks for PP2; 1.78 ± 0.15 vs. 1.48 ± 0.06 EU/mL, P < 0.05). We report the circulating endotoxin level in Korean obese women for the first time. Also, we establish that energy intake leads to endotoxemia and exercise suppresses the peak endotoxemia after meal. It suggests an impact for a better prognosis in obese women who follow regular exercise.
Mazzoni, Gianni; Chiaranda, Giorgio; Myers, Jonathan; Sassone, Biagio; Pasanisi, Giovanni; Mandini, Simona; Volpato, Stefano; Conconi, Francesco; Grazzi, Giovanni
2017-09-29
The walking speed maintained during a moderate 1-km treadmill walk (1k-TWT) has been demonstrated to be a valid tool for estimating peak oxygen uptake (VO2peak), and to be inversely related to long-term survival and hospitalization in outpatients with cardiovascular disease (CVD). We aimed to examine whether 500-m and 1-k moderate treadmill-walking tests equally estimate VO2peak in male outpatients with CVD. 142 clinically stable male outpatients with CVD, aged 34-92 years, referred to an exercise-based secondary prevention program, performed a moderate and perceptually-regulated (11-13/20 on the Borg scale) 1k- TWT. Age, height, weight, time to walk 500-m and the entire 1000-m, and the corresponding heart rates were entered into validated equations to estimate VO2peak. VO2peak estimated from the 500-m test was not different from that estimated from the 1k test (25.2±5.1 vs 25.1±5.2 mL/kg/min). The correlation coefficient between the two was 0.98. The slope and the intercept of the relationship between the 500-m and 1k tests were not different from the line of identity. Bland-Altman analysis demonstrated that 96% of the data points were within two standard deviations (from -1.9 to 1.7 mL/kg/min). The 500-m treadmill-walking test is a reliable method for estimating VO2peak in stable male outpatients with CVD. A shorter version of the test, 500-m, provides similar information as that from the original 1k test, but is more time efficient. These findings have practical implications in the context of transitioning patients from clinically based and supervised programs to fitness facilities or self-guided exercise programs.
García-Ramos, Amador; Haff, G Gregory; Padial, Paulino; Feriche, Belén
2018-03-01
This study aimed to examine the reliability of different power and velocity variables during the Smith machine bench press (BP) and bench press throw (BPT) exercises. Twenty-two healthy men conducted four testing sessions after a preliminary BP one-repetition maximum (1RM) test. In a counterbalanced order, participants performed two sessions of BP in one week and two sessions of BPT in another week. Mean propulsive power, peak power, mean propulsive velocity, and peak velocity at each tenth percentile (20-70% of 1RM) were recorded by a linear transducer. The within-participants coefficient of variation (CV) was higher for the load-power relationship compared to the load-velocity relationship in both the BP (5.3% vs. 4.1%; CV ratio = 1.29) and BPT (4.7% vs. 3.4%; CV ratio = 1.38). Mean propulsive variables showed lower reliability than peak variables in both the BP (5.4% vs. 4.0%, CV ratio = 1.35) and BPT (4.8% vs. 3.3%, CV ratio = 1.45). All variables were deemed reliable, with the peak velocity demonstrating the lowest within-participants CV. Based upon these findings, the peak velocity should be chosen for the accurate assessment of BP and BPT performance.
Tai chi exercise in patients with chronic heart failure: a randomized clinical trial.
Yeh, Gloria Y; McCarthy, Ellen P; Wayne, Peter M; Stevenson, Lynne W; Wood, Malissa J; Forman, Daniel; Davis, Roger B; Phillips, Russell S
2011-04-25
Preliminary evidence suggests that meditative exercise may have benefits for patients with chronic systolic heart failure (HF); this has not been rigorously tested in a large clinical sample. We sought to investigate whether tai chi, as an adjunct to standard care, improves functional capacity and quality of life in patients with HF. A single-blind, multisite, parallel-group, randomized controlled trial evaluated 100 outpatients with systolic HF (New York Heart Association class I-III, left ventricular ejection fraction ≤40%) who were recruited between May 1, 2005, and September 30, 2008. A group-based 12-week tai chi exercise program (n = 50) or time-matched education (n = 50, control group) was conducted. Outcome measures included exercise capacity (6- minute walk test and peak oxygen uptake) and disease-specific quality of life (Minnesota Living With Heart Failure Questionnaire). Mean (SD) age of patients was 67 (11) years; baseline values were left ventricular ejection fraction, 29% (8%) and peak oxygen uptake, 13.5 mL/kg/min; the median New York Heart Association class of HF was class II. At completion of the study, there were no significant differences in change in 6-minute walk distance and peak oxygen uptake (median change [first quartile, third quartile], 35 [-2, 51] vs 2 [-7, 54] meters, P = .95; and 1.1 [-1.1, 1.5] vs -0.5 [-1.2, 1.8] mL/kg/min, P = .81) when comparing tai chi and control groups; however, patients in the tai chi group had greater improvements in quality of life (Minnesota Living With Heart Failure Questionnaire, -19 [-23, -3] vs 1 [-16, 3], P = .02). Improvements with tai chi were also seen in exercise self-efficacy (Cardiac Exercise Self-efficacy Instrument, 0.1 [0.1, 0.6] vs -0.3 [-0.5, 0.2], P < .001) and mood (Profile of Mood States total mood disturbance, -6 [-17, 1] vs -1 [-13, 10], P = .01). Tai chi exercise may improve quality of life, mood, and exercise self-efficacy in patients with HF. Trial Registration clinicaltrials.gov Identifier: NCT00110227.
Pelletier, Chelsea A; Jones, Graham; Latimer-Cheung, Amy E; Warburton, Darren E; Hicks, Audrey L
2013-10-01
To describe physical capacity, autonomic function, and perceptions of exercise among adults with subacute spinal cord injury (SCI). Cross-sectional. Two inpatient SCI rehabilitation programs in Canada. Participants (N=41; mean age ± SD, 38.9 ± 13.7y) with tetraplegia (TP; n=19), high paraplegia (HP; n=8), or low paraplegia (LP; n=14) completing inpatient SCI rehabilitation (mean ± SD, 112.9 ± 52.5d postinjury). Not applicable. Peak exercise capacity was determined by an arm ergometry test. As a measure of autonomic function, orthostatic tolerance was assessed by a passive sit-up test. Self-efficacy for exercise postdischarge was evaluated by a questionnaire. There was a significant difference in peak oxygen consumption and heart rate between participants with TP (11.2 ± 3.4;mL·kg(-1)·min(-1) 113.9 ± 19.7 beats/min) and LP (17.1 ± 7.5 mL·kg(-1)·min(-1); 142.8 ± 22.7 beats/min). Peak power output was also significantly lower in the TP group (30.0 ± 6.9W) compared with the HP (55.5 ± 7.56W) and LP groups (62.5 ± 12.2W). Systolic blood pressure responses to the postural challenge varied significantly between groups (-3.0 ± 33.5 mmHg in TP, 17.8 ± 14.7 mmHg in HP, 21.6 ± 18.7 mmHg in LP). Orthostatic hypotension was most prevalent among participants with motor complete TP (73%). Results from the questionnaire revealed that although participants value exercise and see benefits to regular participation, they have low confidence in their abilities to perform the task of either aerobic or strengthening exercise. Exercise is well tolerated in adults with subacute SCI. Exercise interventions at this stage should focus on improving task-specific self-efficacy, and attention should be made to blood pressure regulation, particularly in individuals with motor complete TP. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Morosin, Marco; Farina, Stefania; Vignati, Carlo; Spadafora, Emanuele; Sciomer, Susanna; Salvioni, Elisabetta; Sinagra, Gianfranco; Agostoni, Piergiuseppe
2018-02-01
The two main symptoms referred by chronic heart failure (HF) patients as the causes of exercise termination during maximal cardiopulmonary exercise testing (CPET) are muscular fatigue and dyspnoea. So far, a physiological explanation why some HF patients end exercise because of dyspnoea and others because of fatigue is not available. We assessed whether patients referring dyspnoea or muscular fatigue may be distinguished by different ventilator or haemodynamic behaviours during exercise. We analysed exercise data of 170 consecutive HF patients with reduced left ventricular ejection fraction in stable clinical condition. All patients underwent maximal CPET and a second maximal CPET with measurement of cardiac output by inert gas rebreathing at peak exercise. Thirty-eight (age 65.0 ± 11.1 years) and 132 (65.1 ± 11.4 years) patients terminated CPET because of dyspnoea and fatigue, respectively. Haemodynamic and cardiorespiratory parameters were the same in fatigue and dyspnoea patients. VO 2 was 10.4 ± 3.2 and 10.5 ± 3.3 mL/min/kg at the anaerobic threshold and 15.5 ± 4.8 and 15.4 ± 4.3 at peak, in fatigue and dyspnoea patients, respectively. In fatigue and dyspnoea patients, peak heart rate was 110 ± 22 and 114 ± 22 beats/min, and VE/VCO 2 and VO 2 /work relationship slopes were 31.2 ± 6.8 and 30.6 ± 8.2 and 10.6 ± 4.2 and 11.4 ± 5.5 L/min/W, respectively. Peak cardiac output was 6.68 ± 2.51 and 6.21 ± 2.55 L/min (P = NS for all). In chronic HF patients in stable clinical condition, fatigue and dyspnoea as reasons of exercise termination do not highlight different ventilatory or haemodynamic patterns during effort. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Christensen, Peter M.; Bangsbo, Jens
2016-01-01
Athletes in intense endurance sports (e.g., 4000-m track cycling) often perform maximally (~4 min) twice a day due to qualifying and finals being placed on the same day. The purpose of the present study was to evaluate repeated performance on the same day in a competitive setting (part A) and the influence from prior intense exercise on subsequent performance and physiological response to moderate and maximal exercise with and without the use of cold water immersion (CWI) in recovery (part B). In part A, performance times during eight World championships for male track cyclists were extracted from the qualifying and final races in 4000-m individual pursuit. In part B, twelve trained cyclists with an average (±SD) ⩒O2-peak of 67 ± 5 mL/min/kg performed a protocol mimicking a qualifying race (QUAL) followed 3 h later by a performance test (PT) with each exercise period encompassing intense exercise for ~4 min preceded by an identical warm-up period in both a control setting (CON) and using cold water immersion in recovery (CWI; 15 min at 15°C). Performance was lowered (P < 0.001) from qualification to finals (259 ± 3 vs. 261 ± 3 s) for the track cyclists during World championships in part A. In part B, mean power in PT was not different in CWI relative to CON (406 ± 43 vs. 405 ± 38 W). Peak ⩒O2 (5.04 ± 0.50 vs. 5.00 ± 0.49 L/min) and blood lactate (13 ± 3 vs. 14 ± 3 mmol/L) did not differ between QUAL and PT and cycling economy and potassium handling was not impaired by prior intense exercise. In conclusion, performance is reduced with repeated maximal exercise in world-class track cyclists during 4000-m individual pursuit lasting ~4 min, however prior intense exercise do not appear to impair peak ⩒O2, peak lactate, cycling economy, or potassium handling in trained cyclists and CWI in recovery does not improve subsequent performance. PMID:27445857
Characteristics of patients with severe heart failure exhibiting exercise oscillatory ventilation.
Matsuki, Ryosuke; Kisaka, Tomohiko; Ozono, Ryoji; Kinoshita, Hiroki; Sada, Yoshiharu; Oda, Noboru; Hidaka, Takayuki; Tashiro, Naonori; Takahashi, Makoto; Sekikawa, Kiyokazu; Ito, Yoshihiro; Kimura, Hiroaki; Hamada, Hironobu; Kihara, Yasuki
2013-01-01
This study aims to elucidate the characteristics of patients with severe nonischemic heart failure exhibiting exercise oscillatory ventilation (EOV) and the association of these characteristics with the subjective dyspnea. Forty-six patients with nonischemic heart failure who were classified into the New York Heart Association (NYHA) functional class III underwent cardiopulmonary exercise testing (CPX) and were divided into two groups according to the presence or absence of EOV. We evaluated the patients by using the Specific Activity Scale (SAS), biochemical examination, echocardiographic evaluation, results of CPX and symptoms during CPX (Borg scale), and reasons for exercise termination. EOV was observed in 20 of 46 patients. The following characteristics were observed in patients with EOV as compared with those without EOV with statistically significant differences: more patients complaining dyspnea as the reason for exercise termination, lower SAS score, higher N-terminal pro-brain natriuretic peptide level, larger left atrial dimension and volume, left ventricular end-diastolic volume, higher Borg scale score at rest and at the anerobic threshold, higher respiratory rate at rest and at peak exercise, and higher slope of the minute ventilation-to-CO₂ output ratio, and lower end-tidal CO₂ pressure at peak exercise. Among the subjects with NYHA III nonischemic heart failure, more patients with EOV had a stronger feeling of dyspnea during exercise as compared with those without EOV, and the subjective dyspnea was an exercise-limiting factor in many cases.
Tompuri, Tuomo; Lintu, Niina; Laitinen, Tomi; Lakka, Timo A
2017-08-09
Exercise testing by cycle ergometer allows to observe the interaction between oxygen uptake (VO 2 ) and workload (W), and VO 2 /W-slope can be used as a diagnostic tool. Respectively, peak oxygen uptake (VO 2 PEAK ) can be estimated by maximal workload. We aim to determine reference for VO 2 /W-slope among prepubertal children and define agreement between estimated and measured VO 2 PEAK . A total of 38 prepubertal children (20 girls) performed a maximal cycle ergometer test with respiratory gas analysis. VO 2 /W-slopes were computed using linear regression. Agreement analysis by Bland and Altman for estimated and measured VO 2 PEAK was carried out including limits of agreement (LA). Determinants for VO 2 /W-slopes and estimation bias were defined. VO2/W-slope was in both girls and boys ≥9·4 and did not change with exercise level, but the oxygen cost of exercise was higher among physically more active children. Estimated VO 2 PEAK had 6·4% coefficient of variation, and LA varied from 13% underestimation to 13% overestimation. Bias had a trend towards underestimation along lean mass proportional VO 2 PEAK . The primary determinant for estimation bias was VO2/W-slope (β = -0·65; P<0·001). The reference values for VO 2 /W-slope among healthy prepubertal children were similar to those published for adults and among adolescents. Estimated and measured VO 2 PEAK should not be considered to be interchangeable because of the variation in the relationship between VO 2 and W. On other hand, variation in the relationship between VO 2 and W enables that VO 2 /W-slope can be used as a diagnostic tool. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Fuchs, A R C N; Meneghelo, R S; Stefanini, E; De Paola, A V; Smanio, P E P; Mastrocolla, L E; Ferraz, A S; Buglia, S; Piegas, L S; Carvalho, A A C
2009-03-01
Myocardial ischemia may occur during an exercise session in cardiac rehabilitation programs. However, it has not been established whether it is elicited when exercise prescription is based on heart rate corresponding to the anaerobic threshold as measured by cardiopulmonary exercise testing. Our objective was to determine the incidence of myocardial ischemia in cardiac rehabilitation programs according to myocardial perfusion SPECT in exercise programs based on the anaerobic threshold. Thirty-nine patients (35 men and 4 women) diagnosed with coronary artery disease by coronary angiography and stress technetium-99m-sestamibi gated SPECT associated with a baseline cardiopulmonary exercise test were assessed. Ages ranged from 45 to 75 years. A second cardiopulmonary exercise test determined training intensity at the anaerobic threshold. Repeat gated-SPECT was obtained after a third cardiopulmonary exercise test at the prescribed workload and heart rate. Myocardial perfusion images were analyzed using a score system of 6.4 at rest, 13.9 at peak stress, and 10.7 during the prescribed exercise (P < 0.05). The presence of myocardial ischemia during exercise was defined as a difference > or = 2 between the summed stress score and summed rest score. Accordingly, 25 (64%) patients were classified as ischemic and 14 (36%) as nonischemic. MIBI-SPECT showed myocardial ischemia during exercise within the anaerobic threshold. The 64% prevalence of ischemia observed in the study should not be looked on as representative of the whole population of patients undergoing exercise programs. Changes in patient care and exercise programs were implemented as a result of our finding of ischemia during the prescribed exercise.
Effects of Various Warm Up Protocol on Special Judo Fitness Test Performance.
Lum, Danny
2017-02-13
The purposed of this study was to compare the effects of postactivation potentiation (PAP) on Special Judo Fitness Test (SJFT) performance using explosive exercises that activates upper and lower limbs muscles. Eleven male judo athletes (mean ± SD, age, 16 - 29 years; height, 170 ± 7 cm; body mass, 73 ± 16 kg) attended four separate sessions. The first session was used to familiarise the subjects to the experimental procedure, the SJFT, the high pull test (HPT) and the two explosive exercises including resistance band pull and standing broad jump. Subsequently, subjects were randomly assigned in a counterbalanced manner to either perform the upper and lower body PAP (ULB), lower body PAP (LB) or usual competition (CON) warm up routine prior to performing the HPT and SJFT. The following variables were quantified: throws performed during series A, B, and C; total number of throws; heart rate immediately and 1 minute after the test; test index; peak power; and RPE after warm up. During series 1, number of throws performed in LB and ULB were significantly greater than CON (p < 0.05). Only ULB resulted in significantly greater number of total throws (p < 0.01) and higher peak power (p < 0.01) than CON. The RPE for both LB and ULB were significantly lower than CON (p < 0.01). Peak power was moderately correlated to total number of throws performed (r=0.4, p < 0.05). This study suggest that performing ULB before SJFT can result in improved performance and peak power.
Brown, Gregory A; Cook, Chad M; Krueger, Ryan D; Heelan, Kate A
2010-06-01
Treadmills (TM) and elliptical devices (EL) are popular forms of exercise equipment. The differences in the training stimulus presented by TM or EL are unknown. The purpose of this investigation was to evaluate oxygen consumption, energy expenditure, and heart rate on a TM or EL when persons exercise at the same perceived level of exertion. After measuring peak oxygen uptake (VO2peak) in 9 male and 9 female untrained college-aged participants, the subjects performed 2 separate 15-minute submaximal exercise tests on the TM and EL at a rating of perceived exertion (RPE) of 12-13. VO2peak was higher (p<0.05) in the males (48.6+/-1.5 vs. 45.2+/-1.6 ml/kg/min) than the females (41.7+/-1.8 vs. 38.8+/-2.2 ml/kg/min) for both TM and EL (means+/-standard error of the mean; for TM vs. EL respectively), but there were no differences in the measured VO2peak between TM or EL. During submaximal exercise there were no differences in RPE between TM and EL. Total oxygen consumption was higher (p<0.05) in males (30.8+/-2.2 vs. 34.9+/-2.2 L) than females (24.1+/-1.8 vs. 26.9+/-1.7 L) but did not differ between TM and EL. Energy expenditure was not different between TM (569+/-110 J) or EL (636+/-120 kJ). Heart rate was higher (p<0.05) on the EL (164+/-16 beats/min) compared to the TM (145+/-15 beats/min). When subjects exercise at the same RPE on TM or EL, oxygen consumption and energy expenditure are similar in spite of a higher heart rate on the EL. These data indicate that during cross training or noncompetition-specific exercise, an elliptical device is an acceptable alternative to a treadmill.
Reduced exercise capacity in persons with Down syndrome: cause, effect, and management
Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo
2010-01-01
Persons with Down syndrome (DS) have reduced peak and submaximal exercise capacity. Because ambulation is one predictor of survival among adults with DS, a review of the current knowledge of the causes, effects, and management of reduced exercise capacity in these individuals would be important. Available data suggest that reduced exercise capacity in persons with DS results from an interaction between low peak oxygen uptake (VO2peak) and poor exercise economy. Of several possible explanations, chronotropic incompetence has been shown to be the primary cause of low VO2peak in DS. In contrast, poor exercise economy is apparently dependent on disturbed gait kinetics and kinematics resulting from joint laxity and muscle hypotonia. Importantly, there is enough evidence to suggest that such low levels of physical fitness (reduced exercise capacity and muscle strength) limit the ability of adults with DS to perform functional tasks of daily living. Consequently, clinical management of reduced exercise capacity in DS seems important to ensure that these individuals remain productive and healthy throughout their lives. However, few prospective studies have examined the effects of structured exercise training in this population. Existent data suggest that exercise training is beneficial for improving exercise capacity and physiological function in persons with DS. This article reviews the current knowledge of the causes, effects, and management of reduced exercise capacity in DS. This review is limited to the acute and chronic responses to submaximal and peak exercise intensities because data on supramaximal exercise capacity of persons with DS have been shown to be unreliable. PMID:21206759
Hebisz, Rafał; Hebisz, Paulina; Zatoń, Marek; Michalik, Kamil
2017-04-01
In the literature, the exercise capacity of cyclists is typically assessed using incremental and endurance exercise tests. The aim of the present study was to confirm whether peak oxygen uptake (V̇O 2peak ) attained in a sprint interval testing protocol correlates with cycling performance, and whether it corresponds to maximal oxygen uptake (V̇O 2max ) determined by an incremental testing protocol. A sample of 28 trained mountain bike cyclists executed 3 performance tests: (i) incremental testing protocol (ITP) in which the participant cycled to volitional exhaustion, (ii) sprint interval testing protocol (SITP) composed of four 30 s maximal intensity cycling bouts interspersed with 90 s recovery periods, (iii) competition in a simulated mountain biking race. Oxygen uptake, pulmonary ventilation, work, and power output were measured during the ITP and SITP with postexercise blood lactate and hydrogen ion concentrations collected. Race times were recorded. No significant inter-individual differences were observed in regards to any of the ITP-associated variables. However, 9 individuals presented significantly increased oxygen uptake, pulmonary ventilation, and work output in the SITP compared with the remaining cyclists. In addition, in this group of 9 cyclists, oxygen uptake in SITP was significantly higher than in ITP. After the simulated race, this group of 9 cyclists achieved significantly better competition times (99.5 ± 5.2 min) than the other cyclists (110.5 ± 6.7 min). We conclude that mountain bike cyclists who demonstrate higher peak oxygen uptake in a sprint interval testing protocol than maximal oxygen uptake attained in an incremental testing protocol demonstrate superior competitive performance.
NASA Technical Reports Server (NTRS)
Pollock, N. W.; Natoli, M. J.; Vann, R. D.; Gernhardt, M. L.; Conkin, Johnny
2007-01-01
The Prebreathe Reduction Program (PRP) used exercise during oxygen prebreathe to reduce necessary prebreathe time prior to depressurizing to work in a 4.3 psi suit during extravehicular activity (EVA). Initial testing produced a two-hour protocol incorporating ergometry exercise and a 30 min cycle of depress/repress to 10.2 psi where subjects breathed 26.5% oxygen/balance nitrogen (Phase II - 10 min at 75% peak oxygen consumption [VO2 peak] followed by 40 min intermittent light exercise [ILE] [approx. 5.8 mL-per kilogram- per minute], then 50 min of rest). The Phase II protocol (0/45 DCS) was approved for operations and has been used on 40 EVAs, providing significant time savings compared to the standard 4 h resting oxygen prebreathe. The Phase V effort focused on performing all light in-suit exercise. Two oxygen prebreathe protocols were tested sequentially: V-4) 160 min prebreathe with 150 min of continuous ILE. The entire protocol was completed at 14.7 psi. All exercise involved upper body effort. Exercise continued until decompression. V-5) 160 min prebreathe with 140 min of ILE - first 40 min at 14.7 psi, then 30 min at 10.2 psi (breathing 26.5% oxygen) after a 20 min depress, simulating a suit donning period. Subjects were then repressed to 14.7 psi and performed another 50 min of lower body ILE, followed by 50 min rest before decompression. The V-4 protocol was rejected with 3 DCS/6 person-exposures. Initial V-5 testing has produced 0 DCS/11 person-exposures (ongoing trials). The difference in DCS rate was significant (Fisher Exact p=0.029). The observations of DCS were significantly lower in early V-5 trials than in V-4 trials. Additional studies are required to evaluate the relative contribution of the variables in exercise distribution, the 10.2 psi depress/repress component, pre-decompression rest, or possible variation in total oxygen consumption.
Muscle contractile characteristics: relationship to high-intensity exercise.
Morris, Martyn G; Dawes, Helen; Howells, Ken; Scott, Oona M; Cramp, Mary; Izadi, Hooshang
2010-09-01
We investigated the relationship between muscle contractile characteristics, collected using percutaneous electrical stimulation, and high-intensity exercise performance. Seventeen participants performed a muscle performance test for the calculation of rate of torque development (RTD), rate of relaxation (RR(1/2)), rate of fatigue and fatigue resistance. On a second visit the participants completed a Wingate cycle ergometer test with peak power, mean power, fatigue index and fatigue rate calculated. The muscle fatigue index related significantly to the WAnT fatigue index and fatigue rate (p < 0.01). The change in rate of torque development (%DeltaRTD) was also related significantly to the fatigue rate (W/s) during the WAnT. Subjects displaying the greatest reduction in RTD had the greatest fatigue rate during the WAnT and greater fatigue during the electrical stimulation protocol. There were no significant relationships between peak (r 0.36; p > 0.01) or mean power (r -0.11, p > 0.01) with any of the muscle performance measures. These findings demonstrate that muscle contractile characteristics, elicited during standardised in vivo electrical stimulation, relate to performance during a Wingate anaerobic test. They suggest that muscle contraction characteristics play an important role in high-intensity exercise performance and indicate that electrical stimulation protocols can be a useful additional tool to explore muscle contraction characteristics in relation to exercise performance and trainability.
Effect of exercise timing on elevated postprandial glucose levels.
Hatamoto, Yoichi; Goya, Ryoma; Yamada, Yosuke; Yoshimura, Eichi; Nishimura, Sena; Higaki, Yasuki; Tanaka, Hiroaki
2017-08-01
There is no consensus regarding optimal exercise timing for reducing postprandial glucose (PPG). The purpose of the present study was to determine the most effective exercise timing. Eleven participants completed four different exercise patterns 1 ) no exercise; 2 ) preprandial exercise (jogging); 3 ) postprandial exercise; and 4 ) brief periodic exercise intervention (three sets of 1-min jogging + 30 s of rest, every 30 min, 20 times total) in a random order separated by a minimum of 5 days. Preprandial and postprandial exercise consisted of 20 sets of intermittent exercise (1 min of jogging + 30 s rest per set) repeated 3 times per day. Total daily exercise volume was identical for all three exercise patterns. Exercise intensities were 62.4 ± 12.9% V̇o 2peak Blood glucose concentrations were measured continuously throughout each trial for 24 h. After breakfast, peak blood glucose concentrations were lower with brief periodic exercise (99 ± 6 mg/dl) than those with preprandial and postprandial exercise (109 ± 10 and 115 ± 14 mg/dl, respectively, P < 0.05, effect size = 0.517). After lunch, peak glucose concentrations were lower with brief periodic exercise than those with postprandial exercise (97 ± 5 and 108 ± 8 mg/dl, P < 0.05, effect size = 0.484). After dinner, peak glucose concentrations did not significantly differ among exercise patterns. Areas under the curve over 24 h and 2 h postprandially did not differ among exercise patterns. These findings suggest that brief periodic exercise may be more effective than preprandial and postprandial exercise at attenuating PPG in young active individuals. NEW & NOTEWORTHY This was the first study to investigate the effect of different exercise timing (brief periodic vs. preprandial vs. postprandial exercise) on postprandial glucose (PPG) attenuation in active healthy men. We demonstrated that brief periodic exercise attenuated peak PPG levels more than preprandial and postprandial exercise, particularly in the morning. Additionally, PPG rebounded soon after discontinuing postprandial exercise. Thus, brief periodic exercise may be better than preprandial and postprandial exercise at attenuating PPG levels. Copyright © 2017 the American Physiological Society.
Effect of dynamic exercise on human carotid-cardiac baroreflex latency
NASA Technical Reports Server (NTRS)
Potts, J. T.; Raven, P. B.
1995-01-01
We compared the beat-to-beat responses of heart rate (HR) after brief activation of carotid baroreceptors in resting humans with the responses obtained during mild-to-moderate levels of dynamic exercise [25 and 50% of peak O2 uptake (VO2peak)] to investigate the effect of exercise on baroreflex latency. Carotid baroreceptors were activated by a pressure pulse (5 s) of neck suction (NS, -80 Torr) and neck pressure (NP, +40 Torr) during held expiration. At rest the peak change in HR to NS/NP occurred during the first several heartbeats (1st-3rd beat), whereas during mild and moderate exercise peak HR responses occurred near the end of the NS/NP pulse (6th-8th beat). In contrast, time (s) to the peak change in HR was not different between rest and exercise (P > 0.05). Reflex tachycadia to NP progressively decreased during exercise (17 +/- 3, 10 +/- 1, and 4 +/- 1% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P < 0.05), and a strong positive correlation was found between the magnitude of the reflex tachycardia and a measure of HR variability (cardiac vagal tone index, r = 0.74, P < 0.0001). Reflex bradycardia to NS gradually increased during exercise (13 +/- 2, 17 +/- 2, and 18 +/- 2% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P = 0.10) and was negatively correlated with cardiac vagal tone (r = 0.42, P < 0.06).(ABSTRACT TRUNCATED AT 250 WORDS).
Watt, Matthew J; Heigenhauser, George J F; Spriet, Lawrence L
2003-01-01
It has been proposed that hormone-sensitive lipase (HSL) regulates intramuscular triacylglycerol hydrolysis in skeletal muscle. The primary purpose of this study was to examine the early activation of HSL and the changes in the putative intramuscular and hormonal regulators of HSL activity at various aerobic exercise intensities. Eight male subjects cycled for 10 min at power outputs corresponding to 30, 60 and 90 % peak oxygen uptake (V̇O2,peak). Muscle samples were obtained at rest and following 1 and 10 min of exercise. Intramuscular triacylglycerol (mean ±s.e.m.: 24.3 ± 2.3 mmol (kg dry mass (DM))-1), long-chain fatty acyl CoA (13.9 ± 1.4 µmol (kg DM)-1) and HSL activity (1.87 ± 0.07 mmol min-1 (kg DM)-1)) were not different between trials at rest. HSL activity increased at 1 min of exercise at 30 and 60 % V̇O2,peak, and to a greater extent at 90 % V̇O2,peak. HSL activity remained elevated after 10 min of exercise at 30 and 60 % V̇O2,peak, and decreased at 90 % V̇O2,peak from the rates observed at 1 min (1 min: 3.41 ± 0.3 mmol min-1 (kg DM)-1; 10 min: 2.92 ± 0.26 mmol min-1 (kg DM)-1), P < 0.05). There were no effects of exercise power output or time on long-chain fatty acyl CoA content. At 90 % V̇O2,peak, skeletal muscle contents of ATP and phosphocreatine were decreased (P < 0.05), and free ADP and free AMP were increased (P < 0.05) during exercise. No changes in these metabolites occurred at 30 % V̇O2,peak and only modest changes were observed at 60 % V̇O2,peak. Plasma adrenaline increased (P < 0.05) during exercise at 90 % V̇O2,peak only. These data suggest that a factor related to the onset of exercise (e.g. Ca2+) activates HSL early in exercise. Given the activation of HSL early in exercise, at a time when intramuscular triacylglycerol hydrolysis and fat oxidation are considered to be negligible, we propose that the control of intramuscular triacylglycerol hydrolysis is not solely related to the level of HSL activation, but must also be regulated by postactivational factors. PMID:12562895
De Sousa, Justin; Cheatham, Christopher; Wittbrodt, Matthew
2014-11-01
This study investigated the effects that a form fitted, moisture-wicking fabric shirt, promoted to have improved evaporative and ventilation properties, has on the physiological and perceptual responses during exercise in the heat. Ten healthy male participants completed two heat stress tests consisting of 45 min of exercise (50% VO2peak) in a hot environment (33 °C, 60% RH). One heat stress test was conducted with the participant wearing a 100% cotton short sleeved t-shirt and the other heat stress test was conducted with the participant wearing a short sleeved synthetic shirt (81% polyester and 19% elastane). Rectal temperature was significantly lower (P < 0.05) in the synthetic condition during the last 15 min of exercise. Furthermore, the synthetic polyester shirt retained less sweat (P < 0.05). As exercise duration increases, the ventilation and evaporation properties of the synthetic garment may prove beneficial in the preservation of body temperature during exercise in the heat. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Bernauer, E. M.; Erti, A. C.
1995-01-01
Submaximal exercise (61+3% peak VO2) metabolism was measured before (AC day-2) and on bed rest day 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N=5) control, and isotonic exercise (ITE, N=7)and isokinetic exercise (IKE, N=7) training groups. Training was conducting supine for two 30-min periods/d for 6 d/wk: ITE was 60-90% peak VO2: IKE was peak knee flexion-extension at 100 deg/s. Supine submaximal exercise 102 decreased significantly (*p<0.05) by 10.3%, with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output (Q) change of -14.5%* (ITE) and -203%* (IKE), but different from change in peak VO2 (+1.4% with ITE and - 10.2%, with IKE) and plasma volume of -3.7% (ITE) and - 18.0% * (IKE). Thus, reduction of submaximal V02 during prolonged bed rest appears to respond to submaximal Q but is not related to change in peak VO2 or plasma volume.
Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure.
Jakovljevic, Djordje G; Yacoub, Magdi H; Schueler, Stephan; MacGowan, Guy A; Velicki, Lazar; Seferovic, Petar M; Hothi, Sandeep; Tzeng, Bing-Hsiean; Brodie, David A; Birks, Emma; Tan, Lip-Bun
2017-04-18
Left ventricular assist devices (LVADs) have been used as an effective therapeutic option in patients with advanced heart failure, either as a bridge to transplantation, as destination therapy, or in some patients, as a bridge to recovery. This study evaluated whether patients undergoing an LVAD bridge-to-recovery protocol can achieve cardiac and physical functional capacities equivalent to those of healthy controls. Fifty-eight male patients-18 implanted with a continuous-flow LVAD, 16 patients with LVAD explanted (recovered patients), and 24 heart transplant candidates (HTx)-and 97 healthy controls performed a maximal graded cardiopulmonary exercise test with continuous measurements of respiratory gas exchange and noninvasive (rebreathing) hemodynamic data. Cardiac function was represented by peak exercise cardiac power output (mean arterial blood pressure × cardiac output) and functional capacity by peak exercise O 2 consumption. All patients demonstrated a significant exertional effort as demonstrated with the mean peak exercise respiratory exchange ratio >1.10. Peak exercise cardiac power output was significantly higher in healthy controls and explanted LVAD patients compared with other patients (healthy 5.35 ± 0.95 W; explanted 3.45 ± 0.72 W; LVAD implanted 2.37 ± 0.68 W; and HTx 1.31 ± 0.31 W; p < 0.05), as was peak O 2 consumption (healthy 36.4 ± 10.3 ml/kg/min; explanted 29.8 ± 5.9 ml/kg/min; implanted 20.5 ± 4.3 ml/kg/min; and HTx 12.0 ± 2.2 ml/kg/min; p < 0.05). In the LVAD explanted group, 38% of the patients achieved peak cardiac power output and 69% achieved peak O 2 consumption within the ranges of healthy controls. The authors have shown that a substantial number of patients who recovered sufficiently to allow explantation of their LVAD can even achieve cardiac and physical functional capacities nearly equivalent to those of healthy controls. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Physiological Stress Elicits Impaired Left Ventricular Function in Preterm-Born Adults.
Huckstep, Odaro J; Williamson, Wilby; Telles, Fernando; Burchert, Holger; Bertagnolli, Mariane; Herdman, Charlotte; Arnold, Linda; Smillie, Robert; Mohamed, Afifah; Boardman, Henry; McCormick, Kenny; Neubauer, Stefan; Leeson, Paul; Lewandowski, Adam J
2018-03-27
Experimental and clinical studies show that prematurity leads to altered left ventricular (LV) structure and function with preserved resting LV ejection fraction (EF). Large-scale epidemiological data now links prematurity to increased early heart failure risk. The authors performed echocardiographic imaging at prescribed exercise intensities to determine whether preterm-born adults have impaired LV functional response to physical exercise. We recruited 101 normotensive young adults born preterm (n = 47; mean gestational age 32.8 ± 3.2 weeks) and term (n = 54) for detailed cardiovascular phenotyping. Full clinical resting and exercise stress echocardiograms were performed, with apical 4-chamber views collected while exercising at 40%, 60%, and 80% of peak exercise capacity, determined by maximal cardiopulmonary exercise testing. Preterm-born individuals had greater LV mass (p = 0.015) with lower peak systolic longitudinal strain (p = 0.038) and similar EF to term-born control subjects at rest (p = 0.62). However, by 60% exercise intensity, EF was 6.7% lower in preterm subjects (71.9 ± 8.7% vs 78.6 ± 5.4%; p = 0.004) and further declined to 7.3% below the term-born group at 80% exercise intensity (69.8 ± 6.4% vs 77.1 ± 6.3%; p = 0.004). Submaximal cardiac output reserve was 56% lower in preterm-born subjects versus term-born control subjects at 40% of peak exercise capacity (729 ± 1,162 ml/min/m 2 vs. 1,669 ± 937 ml/min/m 2 ; p = 0.021). LV length and resting peak systolic longitudinal strain predicted EF increase from rest to 60% exercise intensity in the preterm group (r = 0.68, p = 0.009 and r = 0.56, p = 0.031, respectively). Preterm-born young adults had impaired LV response to physiological stress when subjected to physical exercise, which suggested a reduced myocardial functional reserve that might help explain their increased risk of early heart failure. (Young Adult Cardiovascular Health sTudy [YACHT]; NCT02103231). Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Guo, Jian; Shi, Xue; Yang, Wenlan; Gong, Sugang; Zhao, Qinhua; Wang, Lan; He, Jing; Shi, Xiaofang; Sun, Xingguo; Liu, Jinming
2014-01-01
To identify the pulmonary hypertension (PH) patients who develop an exercise induced venous-to-systemic shunt (EIS) by performing the cardiopulmonary exercise test (CPET), analyse the changes of CPET measurements during exercise and compare the exercise physiology and resting pulmonary hemodynamics between shunt-PH and no-shunt-PH patients. Retrospectively, resting pulmonary function test (PFT), right heart catheterization (RHC), and CPET for clinical evaluation of 104 PH patients were studied. Considering all 104 PH patients by three investigators, 37 were early EIS+, 61 were EIS-, 3 were late EIS+, and 3 others were placed in the discordant group. PeakVO2, AT and OUES were all reduced in the shunt-PH patients compared with the no-shunt-PH subjects, whereas VE/VCO2 slope and the lowest VE/VCO2 increased. Besides, the changes and the response characteristics of the key CPET parameters at the beginning of exercise in the shunt group were notably different from those of the no shunt one. At cardiac catheterization, the shunt patients had significantly increased mean pulmonary artery pressure (mPAP), mean right atrial pressure (mRAP) and pulmonary vascular resistance (PVR), reduced cardiac output (CO) and cardiac index (CI) compared with the no shunt ones (P<0.05). Resting CO was significantly correlated with exercise parameters of AT (r = 0.527, P<0.001), OUES (r = 0.410, P<0.001) and Peak VO2 (r = 0.405, P<0.001). PVR was significantly, but weakly, correlated with the above mentioned CPET parameters. CPET may allow a non-invasive method for detecting an EIS and assessing the severity of the disease in PH patients.
Aquatic exercise training and stable heart failure: A systematic review and meta-analysis.
Adsett, Julie A; Mudge, Alison M; Morris, Norman; Kuys, Suzanne; Paratz, Jennifer D
2015-01-01
A meta-analysis and review of the evidence was conducted to determine the efficacy of aquatic exercise training for individuals with heart failure compared to traditional land-based programmes. A systematic search was conducted for studies published prior to March 2014, using MEDLINE, PUBMED, Cochrane Library, CINAHL and PEDro databases. Key words and synonyms relating to aquatic exercise and heart failure comprised the search strategy. Interventions included aquatic exercise or a combination of aquatic plus land-based training, whilst comparator protocols included usual care, no exercise or land-based training alone. The primary outcome of interest was exercise performance. Studies reporting on muscle strength, quality of life and a range of haemodynamic and physiological parameters were also reviewed. Eight studies met criteria, accounting for 156 participants. Meta-analysis identified studies including aquatic exercise to be superior to comparator protocols for 6 minute walk test (p < 0.004) and peak power (p < 0.044). Compared to land-based training programmes, aquatic exercise training provided similar benefits for VO(2peak), muscle strength and quality of life, though was not superior. Cardiac dimensions, left ventricular ejection fraction, cardiac output and BNP were not influenced by aquatic exercise training. For those with stable heart failure, aquatic exercise training can improve exercise capacity, muscle strength and quality of life similar to land-based training programmes. This form of exercise may provide a safe and effective alternative for those unable to participate in traditional exercise programmes. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Rehman, Michaela B; Garcia, Rodrigue; Christiaens, Luc; Larrieu-Ardilouze, Elisa; Howard, Luke S; Nihoyannopoulos, Petros
2018-04-15
Right ventricular function is the major determinant of morbidity and mortality in pulmonary arterial hypertension (PAH). The ESC risk assessment strategy for PAH is based on clinical status, exercise testing, NTproBNP, imaging and haemodynamics but does not include right ventricular function. Our aims were to test the power of resting echocardiographic measurements to classify PAH patients according to ESC exercise testing risk stratification cut-offs and to determine if the classification power of echocardiographic parameters varied in chronic thrombo-embolic pulmonary hypertension (CTEPH). We prospectively and consecutively recruited 46 PAH patients and 42 CTEPH patients referred for cardio-pulmonary exercise testing and comprehensive transthoracic echocardiography. Exercise testing parameters analyzed were peak oxygen consumption, percentage of predicted maximal oxygen consumption and the slope of ventilation against carbon dioxide production. Receiver operator characteristic curves were used to determine the optimal diagnostic cut-off values of echocardiographic parameters for classifying the patients in intermediate or high risk category according to exercise testing. Measurements of right ventricular systolic function were the best for classifying in PAH (area under the curve 0.815 to 0.935). Measurements of right ventricular pressure overload (0.810 to 0.909) were optimal for classifying according to exercise testing in CTEPH. Measurements of left ventricular function were of no use in either group. Measurements of right ventricular systolic function can classify according to exercise testing risk stratification cut-offs in PAH. However, this is not the case in CTEPH where pressure overload, rather than right ventricular function seems to be linked to exercise performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Stepanovic, Jelena; Ostojic, Miodrag; Beleslin, Branko; Vukovic, Olivera; Djordjevic-Dikic, Ana; Dikic, Ana Djordjevic; Giga, Vojislav; Nedeljkovic, Ivana; Nedeljkovic, Milan; Stojkovic, Sinisa; Vukcevic, Vladan; Dobric, Milan; Petrasinovic, Zorica; Marinkovic, Jelena; Lecic-Tosevski, Dusica
2012-09-01
The aims of this study were to investigate the incidence and parameters associated with myocardial ischemia during mental stress (MS) as measured by echocardiography and to evaluate the relation between MS-induced and exercise-induced myocardial ischemia. Study participants were 79 patients (63 men; mean [M] [standard deviation {SD}] age = 52 [8] years) with angiographically confirmed coronary artery disease and previous positive exercise test result. The MS protocol consisted of mental arithmetic and anger recall task. The patients performed a treadmill exercise test 15 to 20 minutes after the MS task. Data of post-MS exercise were compared with previous exercise stress test results. The frequency of echocardiographic abnormalities was 35% in response to the mental arithmetic task, compared with 61% with anger recall and 96% with exercise (p < .001, exercise versus MS). Electrocardiogram abnormalities and chest pain were substantially less common during MS than were echocardiographic abnormalities. Independent predictors of MS-induced myocardial ischemia were: wall motion score index at rest (p = .02), peak systolic blood pressure (p = .005), and increase in rate-pressure product (p = .004) during MS. The duration of exercise stress test was significantly shorter (p < .001) when MS preceded the exercise and in the case of earlier exercise (M [SD] = 4.4 [1.9] versus 6.7 [2.2] minutes for patients positive on MS and 5.7 [1.9] versus 8.0 [2.3] minutes for patients negative on MS). Echocardiography can be successfully used to document myocardial ischemia induced by MS. MS-induced ischemia was associated with an increase in hemodynamic parameters during MS and worse function of the left ventricle. MS may shorten the duration of subsequent exercise stress testing and can potentiate exercise-induced ischemia in susceptible patients with coronary artery disease.
Athanasopoulos, Dimitris; Louvaris, Zafeiris; Cherouveim, Evgenia; Andrianopoulos, Vasilis; Roussos, Charis; Zakynthinos, Spyros
2010-01-01
We investigated whether expiratory muscle loading induced by the application of expiratory flow limitation (EFL) during exercise in healthy subjects causes a reduction in quadriceps muscle blood flow in favor of the blood flow to the intercostal muscles. We hypothesized that, during exercise with EFL quadriceps muscle blood flow would be reduced, whereas intercostal muscle blood flow would be increased compared with exercise without EFL. We initially performed an incremental exercise test on eight healthy male subjects with a Starling resistor in the expiratory line limiting expiratory flow to ∼ 1 l/s to determine peak EFL exercise workload. On a different day, two constant-load exercise trials were performed in a balanced ordering sequence, during which subjects exercised with or without EFL at peak EFL exercise workload for 6 min. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle blood flow index (BFI) was calculated by near-infrared spectroscopy using indocyanine green, whereas cardiac output (CO) was measured by an impedance cardiography technique. At exercise termination, CO and stroke volume were not significantly different during exercise, with or without EFL (CO: 16.5 vs. 15.2 l/min, stroke volume: 104 vs. 107 ml/beat). Quadriceps muscle BFI during exercise with EFL (5.4 nM/s) was significantly (P = 0.043) lower compared with exercise without EFL (7.6 nM/s), whereas intercostal muscle BFI during exercise with EFL (3.5 nM/s) was significantly (P = 0.021) greater compared with that recorded during control exercise (0.4 nM/s). In conclusion, increased respiratory muscle loading during exercise in healthy humans causes an increase in blood flow to the intercostal muscles and a concomitant decrease in quadriceps muscle blood flow. PMID:20507965
Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.
2013-01-01
Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313
Winn, Nathan C; Liu, Ying; Rector, R Scott; Parks, Elizabeth J; Ibdah, Jamal A; Kanaley, Jill A
2018-01-01
Exercise training is commonly prescribed for individuals diagnosed with nonalcoholic fatty liver disease (NAFLD); however, consensus regarding the volume and intensity of exercise for optimal benefits is lacking. Thus, we determined whether high intensity interval exercise training (HIIT) produced greater reductions in intrahepatic lipid (IHL) content and NAFLD risk factors compared with energy-matched moderate intensity continuous exercise training (MICT) in obese adults with liver steatosis. Eighteen obese adults were randomized to either 4weeks of HIIT (4min 80% VO 2 peak/3min, 50% VO 2 peak) or MICT (55% VO 2 peak, ~60min), matched for energy expenditure (~400kcal/session) and compared to five non-exercising age-matched control subjects. IHL was measured by 1 H-MRS and frequent blood samples were analyzed for glucose, insulin, c-peptide, and NEFA levels during a liquid meal test (180min) to characterize metabolic phenotype. Baseline body weight, visceral abdominal adiposity, and fasting insulin concentrations were greater in the MICT vs HIIT group (P<0.05), while IHL was tightly matched between MICT and HIIT subjects (P>0.05), albeit higher than control subjects (P<0.01). Visceral abdominal adiposity, body mass, liver aminotransferases (ALT, AST), and hepatic apoptotic/inflammatory markers (cytokeratin 18 and fetuin a) were not reduced with either exercise training intervention (P>0.05). Both HIIT and MICT lowered IHL (HIIT, -37.0±12.4%; MICT, -20.1±6.6%, P<0.05); however, the reduction in IHL was not statistically different between exercise intensities (P=0.25). Furthermore, exercise training decreased postprandial insulin, c-peptide, and lipid peroxidation levels (iAUC, P<0.05). Collectively, these findings indicate that energy-matched high intensity and moderate intensity exercise are effective at decreasing IHL and NAFLD risk that is not contingent upon reductions in abdominal adiposity or body mass. Copyright © 2017 Elsevier Inc. All rights reserved.
Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I
2013-01-15
Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.
Stoller, Oliver; Schindelholz, Matthias; Hunt, Kenneth J
2016-01-01
Neurological impairments can limit the implementation of conventional cardiopulmonary exercise testing (CPET) and cardiovascular training strategies. A promising approach to provoke cardiovascular stress while facilitating task-specific exercise in people with disabilities is feedback-controlled robot-assisted end-effector-based stair climbing (RASC). The aim of this study was to evaluate the feasibility, reliability, and repeatability of augmented RASC-based CPET in able-bodied subjects, with a view towards future research and applications in neurologically impaired populations. Twenty able-bodied subjects performed a familiarisation session and 2 consecutive incremental CPETs using augmented RASC. Outcome measures focussed on standard cardiopulmonary performance parameters and on accuracy of work rate tracking (RMSEP-root mean square error). Criteria for feasibility were cardiopulmonary responsiveness and technical implementation. Relative and absolute test-retest reliability were assessed by intraclass correlation coefficients (ICC), standard error of the measurement (SEM), and minimal detectable change (MDC). Mean differences, limits of agreement, and coefficients of variation (CoV) were estimated to assess repeatability. All criteria for feasibility were achieved. Mean V'O2peak was 106±9% of predicted V'O2max and mean HRpeak was 99±3% of predicted HRmax. 95% of the subjects achieved at least 1 criterion for V'O2max, and the detection of the sub-maximal ventilatory thresholds was successful (ventilatory anaerobic threshold 100%, respiratory compensation point 90% of the subjects). Excellent reliability was found for peak cardiopulmonary outcome measures (ICC ≥ 0.890, SEM ≤ 0.60%, MDC ≤ 1.67%). Repeatability for the primary outcomes was good (CoV ≤ 0.12). RASC-based CPET with feedback-guided exercise intensity demonstrated comparable or higher peak cardiopulmonary performance variables relative to predicted values, achieved the criteria for V'O2max, and allowed determination of sub-maximal ventilatory thresholds. The reliability and repeatability were found to be high. There is potential for augmented RASC to be used for exercise testing and prescription in populations with neurological impairments who would benefit from repetitive task-specific training.
Stoller, Oliver; Schindelholz, Matthias; Hunt, Kenneth J.
2016-01-01
Background Neurological impairments can limit the implementation of conventional cardiopulmonary exercise testing (CPET) and cardiovascular training strategies. A promising approach to provoke cardiovascular stress while facilitating task-specific exercise in people with disabilities is feedback-controlled robot-assisted end-effector-based stair climbing (RASC). The aim of this study was to evaluate the feasibility, reliability, and repeatability of augmented RASC-based CPET in able-bodied subjects, with a view towards future research and applications in neurologically impaired populations. Methods Twenty able-bodied subjects performed a familiarisation session and 2 consecutive incremental CPETs using augmented RASC. Outcome measures focussed on standard cardiopulmonary performance parameters and on accuracy of work rate tracking (RMSEP−root mean square error). Criteria for feasibility were cardiopulmonary responsiveness and technical implementation. Relative and absolute test-retest reliability were assessed by intraclass correlation coefficients (ICC), standard error of the measurement (SEM), and minimal detectable change (MDC). Mean differences, limits of agreement, and coefficients of variation (CoV) were estimated to assess repeatability. Results All criteria for feasibility were achieved. Mean V′O2peak was 106±9% of predicted V′O2max and mean HRpeak was 99±3% of predicted HRmax. 95% of the subjects achieved at least 1 criterion for V′O2max, and the detection of the sub-maximal ventilatory thresholds was successful (ventilatory anaerobic threshold 100%, respiratory compensation point 90% of the subjects). Excellent reliability was found for peak cardiopulmonary outcome measures (ICC ≥ 0.890, SEM ≤ 0.60%, MDC ≤ 1.67%). Repeatability for the primary outcomes was good (CoV ≤ 0.12). Conclusions RASC-based CPET with feedback-guided exercise intensity demonstrated comparable or higher peak cardiopulmonary performance variables relative to predicted values, achieved the criteria for V′O2max, and allowed determination of sub-maximal ventilatory thresholds. The reliability and repeatability were found to be high. There is potential for augmented RASC to be used for exercise testing and prescription in populations with neurological impairments who would benefit from repetitive task-specific training. PMID:26849137
Green, D J; Watts, K; Rankin, S; Wong, P; O'Driscoll, J G
2001-09-01
This study investigated the use of an incremental, externally-paced 10 m shuttle walk test (SWT) as an objective, reliable and predictive test of functional capacity in patients with heart failure (CHF). The SWT was compared to a 6 minute walk test (6WT) and a maximal symptom-limited treadmill peak oxygen consumption (VO2peak) test. Experiment 1 examined the reproducibility of the SWT. Two SWF trials were performed and distance ambulated (DA), heart rate (HR) and rate of perceived exertion (RPE) results compared. In experiment 2, SWT, 6WT, and VO2 peak tests were performed and HR. RPE and ambulatory VO2 compared. The SWT demonstrated strong test/retest reliability for DA (r = 0.98). HR (r = 0.96) and RPE (r = 0.89). Treadmill VO2 peak was significantly correlated with DA during the SWT (r = 0.83, P < 0.05), but not the 6WT. SWT peak VO2 (18.5 +/- 1.8 ml.kg(-1) x min(-1)) and treadmill VO2 peak (18.3 +/-2.0 ml.kg(-1) x min(-1)) were also highly correlated (r = 0.78, P < 0.05). Conversely, 6WT peak VO2 and treadmill VO2 peak were not significantly correlated. This study suggests the SWT is a reliable, objective test, highly predictive of VO2 peak which may be a more optimal field exercise test than the self paced 6WT.
Souza, Gérson F; Moreira, Graciane L; Tufanin, Andréa; Gazzotti, Mariana R; Castro, Antonio A; Jardim, José R; Nascimento, Oliver A
2017-08-01
The Glittre activities of daily living (ADL) test is supposed to evaluate the functional capacity of COPD patients. The physiological requirements of the test and the time taken to perform it by COPD patients in different disease stages are not well known. The objective of this work was to compare the metabolic, ventilatory, and cardiac requirements and the time taken to carry out the Glittre ADL test by COPD subjects with mild, moderate, and severe disease. Spirometry, Medical Research Council questionnaire, cardiopulmonary exercise test, and 2 Glittre ADL tests were evaluated in 62 COPD subjects. Oxygen uptake (V̇ O 2 ), carbon dioxide production, pulmonary ventilation, breathing frequency, heart rate, S pO 2 , and dyspnea were analyzed before and at the end of the tests. Maximum voluntary ventilation, Glittre peak V̇ O 2 /cardiopulmonary exercise test (CPET) peak V̇ O 2 , Glittre V̇ E /maximum voluntary ventilation, and Glittre peak heart rate/CPET peak heart rate ratios were calculated to analyze their reserves. Subjects carried out the Glittre ADL test with similar absolute metabolic, ventilatory, and cardiac requirements. Ventilatory reserve decreased progressively from mild to severe COPD subjects ( P < .001 for Global Initiative for Chronic Obstructive Lung Disease [GOLD] 1 vs GOLD 2, P < .001 for GOLD 1 vs GOLD 3, and P < .001 for GOLD 2 vs GOLD 3). Severe subjects with COPD presented a significantly lower metabolic reserve than the mild and moderate subjects ( P = .006 and P = .043, respectively) and significantly lower Glittre peak heart rate/CPET peak heart rate than mild subjects ( P = .01). Time taken to carry out the Glittre ADL test was similar among the groups ( P = .82 for GOLD 1 vs GOLD 2, P = .19 for GOLD 1 vs GOLD 3, and P = .45 for GOLD 2 vs GOLD 3). As the degree of air-flow obstruction progresses, the COPD subjects present significant lower ventilatory reserve to perform the Glittre ADL test. In addition, metabolic and cardiac reserves may differentiate the severe subjects. These variables may be better measures to differentiate functional performance than Glittre ADL time. Copyright © 2017 by Daedalus Enterprises.
Vozoris, N T; O'donnell, D E
2015-01-01
Whether reduced activity level and exercise intolerance precede the clinical diagnosis of cardiopulmonary disorders in smokers is not known. We examined activity level and exercise test outcomes in a young population-based sample without overt cardiopulmonary disease, differentiating by smoking history. This was a multiyear cross-sectional study using United States National Health and Nutrition Examination Survey data from 1999-2004. Self-reported activity level and incremental exercise treadmill testing were obtained on survey participants ages 20-49 years, excluding individuals with cardio-pulmonary disease. Three thousand seven hundred and one individuals completed exercise testing. Compared to never smokers, current smokers with >10 pack years reported significantly higher odds of little or no recreation, sport, or physical activity (adjusted OR 1.62; 95% CI 1.12-2.35). Mean perceived exertion ratings (Borg 6-20) at an estimated standardized workload were significantly greater among current smokers (18.3-18.6) compared to never (17.3) and former smokers (17.9) (p<0.05). There were no significant differences in the proportions of individuals across estimated peak oxygen uptake categories among the groups after adjusting for age and sex. Among former smokers, increasing duration of smoking abstinence was associated with significantly lower likelihood of low estimated peak oxygen uptake categorization (p<0.05). Among young individuals without overt cardiopulmonary disease, current smokers had reduced daily activity and higher perceived exertion ratings. Besides supporting early smoking cessation, these results set the stage for future studies that examine mechanisms of activity restriction in young smokers and the utility of measures of activity restriction in the earlier diagnosis of smoking-related diseases.
Díaz, Orlando; Morales, Arturo; Osses, Rodrigo; Klaassen, Julieta; Lisboa, Carmen; Saldías, Fernando
2010-06-01
The physiological load imposed by the six minute walk test (SMWT) in chronic obstructive pulmonary disease (COPD) patients come from small studies where the influence of disease severity has not been assessed. The aim of the present study was to compare the SMWT with an incremental cardiopulmonary exercise test (CPET) in patients classified by disease severity according to FEV(1) (cutoff 50% predicted). Eighty-one COPD patients (53 with FEV(1) > or =50%) performed both tests on two consecutive days. Oxygen consumption (VO(2)), carbon dioxide production (VCO(2)), minute ventilation (V(E)), heart rate (HR) and pulse oximetry (SpO(2)) were measured during SMWT and CPET using portable equipment. Dyspnea and leg fatigue were measured with the Borg scale. In both groups, walking speed was constant during the SMWT and VO(2) showed a plateau after the 3rd minute. When comparing SMWT (6th min) and peak CPET, patients with FEV(1) > or =50% showed a greater VO(2), but lower values of VCO(2),V(E), HR, dyspnea, leg fatigue, and SpO(2) during walking. In contrast, in those with FEV(1) <50% predicted values were similar. Distance walked during the SMWT strongly correlated with VO(2) at peak CPET (r=0.78; P=0.0001). The SMWT is a constant load exercise in COPD patients, regardless of disease severity. It imposes high metabolic, ventilatory and cardiovascular requirements, which were closer to those of CPET in severe COPD. These findings may explain the close correlation between distance walked and peak CPET VO(2). 2009 SEPAR. Published by Elsevier Espana. All rights reserved.
Zeng, Ling-Qing; Zhang, Yao-Guang; Cao, Zhen-Dong; Fu, Shi-Jian
2010-12-01
The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40±0.30 g, n=40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak - MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h(-1) kg(-1) (25°C) (P<0.05) and reached a plateau between 25 and 30°C. The post-exercise MO2 in all temperature groups increased immediately to the peak values and then decreased slowly to a steady state that was higher than the pre-exercise MO2. The MO2peak did not significantly differ among the 20, 25 and 30°C groups, though these values were much higher than those of the lower temperature groups (10 and 15°C) (P<0.05). The duration of EPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (P<0.05). The magnitude of EPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg(-1)). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.
Jensen, Dennis; Alsuhail, Abdullah; Viola, Raymond; Dudgeon, Deborah J; Webb, Katherine A; O'Donnell, Denis E
2012-04-01
Activity limitation and dyspnea are the dominant symptoms of chronic obstructive pulmonary disease (COPD). Traditionally, efforts to alleviate these symptoms have focused on improving ventilatory mechanics, reducing ventilatory demand, or both of these in combination. Nevertheless, many patients with COPD remain incapacitated by dyspnea and exercise intolerance despite optimal therapy. To determine the effect of single-dose inhalation of nebulized fentanyl citrate (a μ-opioid agonist drug) on exercise tolerance and dyspnea in COPD. In a randomized, double-blind, placebo-controlled, crossover study, 12 stable patients with COPD (mean ± standard error of the mean post-β(2)-agonist forced expiratory volume in one second [FEV(1)] and FEV(1) to forced vital capacity ratio of 69% ± 4% predicted and 49% ± 3%, respectively) received either nebulized fentanyl citrate (50 mcg) or placebo on two separate days. After each treatment, patients performed pulmonary function tests and a symptom-limited constant work rate cycle exercise test at 75% of their maximum incremental work rate. There were no significant postdose differences in spirometric parameters or plethysmographic lung volumes. Neither the intensity nor the unpleasantness of perceived dyspnea was, on average, significantly different at isotime (5.0 ± 0.6 minutes) or at peak exercise after treatment with fentanyl citrate vs. placebo. Compared with placebo, fentanyl citrate was associated with 1) increased exercise endurance time by 1.30 ± 0.43 minutes or 25% ± 8% (P=0.01); 2) small but consistent increases in dynamic inspiratory capacity by ∼0.10 L at isotime and at peak exercise (both P≤0.03); and 3) no concomitant change in ventilatory demand, breathing pattern, pulmonary gas exchange, and/or cardiometabolic function during exercise. The mean rate of increase in dyspnea intensity (1.2 ± 0.3 vs. 2.9 ± 0.8 Borg units/minute, P=0.03) and unpleasantness ratings (0.5 ± 0.2 vs. 2.9 ± 1.3 Borg units/minute, P=0.06) between isotime and peak exercise was less after treatment with fentanyl citrate vs. placebo. Single-dose inhalation of fentanyl citrate was associated with significant and potentially clinically important improvements in exercise tolerance in COPD. These improvements were accompanied by a delay in the onset of intolerable dyspnea during exercise near the limits of tolerance. Copyright © 2012 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.
Shafiq, Ali; Brawner, Clinton A; Aldred, Heather A; Lewis, Barry; Williams, Celeste T; Tita, Christina; Schairer, John R; Ehrman, Jonathan K; Velez, Mauricio; Selektor, Yelena; Lanfear, David E; Keteyian, Steven J
2016-04-01
Although cardiopulmonary exercise (CPX) testing in patients with heart failure and reduced ejection fraction is well established, there are limited data on the value of CPX variables in patients with HF and preserved ejection fraction (HFpEF). We sought to determine the prognostic value of select CPX measures in patients with HFpEF. This was a retrospective analysis of patients with HFpEF (ejection fraction ≥ 50%) who performed a CPX test between 1997 and 2010. Selected CPX variables included peak oxygen uptake (VO2), percent predicted maximum oxygen uptake (ppMVO2), minute ventilation to carbon dioxide production slope (VE/VCO2 slope) and exercise oscillatory ventilation (EOV). Separate Cox regression analyses were performed to assess the relationship between each CPX variable and a composite outcome of all-cause mortality or cardiac transplant. We identified 173 HFpEF patients (45% women, 58% non-white, age 54 ± 14 years) with complete CPX data. During a median follow-up of 5.2 years, there were 42 deaths and 5 cardiac transplants. The 1-, 3-, and 5-year cumulative event-free survival was 96%, 90%, and 82%, respectively. Based on the Wald statistic from the Cox regression analyses adjusted for age, sex, and β-blockade therapy, ppMVO2 was the strongest predictor of the end point (Wald χ(2) = 15.0, hazard ratio per 10%, P < .001), followed by peak VO2 (Wald χ(2) = 11.8, P = .001). VE/VCO2 slope (Wald χ(2)= 0.4, P = .54) and EOV (Wald χ(2) = 0.15, P = .70) had no significant association to the composite outcome. These data support the prognostic utility of peak VO2 and ppMVO2 in patients with HFpEF. Additional studies are needed to define optimal cut points to identify low- and high-risk patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Sandberg, Klas; Kleist, Marie; Falk, Lars; Enthoven, Paul
2016-08-01
To examine the effects of 12 weeks of twice-weekly intensive aerobic exercise on physical function and quality of life after subacute stroke. Randomized controlled trial. Ambulatory care. Patients (N=56; 28 women) aged ≥50 years who had a mild stroke (98% ischemic) and were discharged to independent living and enrolled 20 days (median) after stroke onset. Sixty minutes of group aerobic exercise, including 2 sets of 8 minutes of exercise with intensity up to exertion level 14 or 15 of 20 on the Borg rating of perceived exertion scale, twice weekly for 12 weeks (n=29). The nonintervention group (n=27) received no organized rehabilitation or scheduled physical exercise. Primary outcome measures included aerobic capacity on the standard ergometer exercise stress test (peak work rate) and walking distance on the 6-minute walk test (6MWT). Secondary outcome measures included maximum walking speed for 10m, balance on the timed Up and Go (TUG) test and single leg stance (SLS), health-related quality of life on the European Quality of Life Scale (EQ-5D), and participation and recovery after stroke on the Stroke Impact Scale (SIS) version 2.0 domains 8 and 9. Participants were evaluated pre- and postintervention. Patient-reported measures were also evaluated at 6-month follow-up. The following improved significantly more in the intervention group (pre- to postintervention): peak work rate (group × time interaction, P=.006), 6MWT (P=.011), maximum walking speed for 10m (P<.001), TUG test (P<.001), SLS right and left (eyes open) (P<.001 and P=.022, respectively), and SLS right (eyes closed) (P=.019). Aerobic exercise was associated with improved EQ-5D scores (visual analog scale, P=.008) and perceived recovery (SIS domain 9, P=.002). These patient-reported improvements persisted at 6-month follow-up. Intensive aerobic exercise twice weekly early in subacute mild stroke improved aerobic capacity, walking, balance, health-related quality of life, and patient-reported recovery. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu
2016-01-01
Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could result in a decreased sensation of dyspnea. In addition, subjects with respiratory muscle weakness that performed inspiratory muscle training had higher gains in inspiratory muscle strength and endurance but not of dyspnea and submaximal exercise capacity. (ClinicalTrials.gov registration NCT01510041.). Copyright © 2016 by Daedalus Enterprises.
Variable prognostic value of blood pressure response to exercise.
Kato, Yuko; Suzuki, Shinya; Uejima, Tokuhisa; Semba, Hiroaki; Yamashita, Takeshi
2018-01-01
The aim of this study was to evaluate the impact of patient background including exercise capacity on the relationship between the blood pressure (BP) response to exercise and prognosis in patients visiting a cardiovascular hospital. A total of 2134 patients who were referred to our hospital underwent symptom-limited maximal cardiopulmonary exercise testing, and were followed through medical records and mail. The BP response to exercise was defined as the difference between peak and rest systolic BP. The end point was set as cardiovascular events including cardiovascular death, acute coronary syndrome, hospitalization for heart failure, and cerebral infarction. During a median follow-up period of 3 years, 179 (8%) patients reached the end point (2.5%/year). Multivariate analysis showed that BP response was independently and negatively associated with the occurrence of the end point. This prognostic significance of BP response was consistent regardless of left ventricular ejection fraction, renal function, presence of heart failure symptoms, the presence of organic heart disease, and hypertension. However, peak VO 2 showed a significant interaction with the effects of BP response on the end point, suggesting that the prognostic value of BP response was limited in patients with preserved exercise capacity. The role of BP response to exercise as the predictor depends on exercise capacity of each patient. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction.
Obokata, Masaru; Olson, Thomas P; Reddy, Yogesh N V; Melenovsky, Vojtech; Kane, Garvan C; Borlaug, Barry A
2018-05-19
Increases in left ventricular filling pressure are a fundamental haemodynamic abnormality in heart failure with preserved ejection fraction (HFpEF). However, very little is known regarding how elevated filling pressures cause pulmonary abnormalities or symptoms of dyspnoea. We sought to determine the relationships between simultaneously measured central haemodynamics, symptoms, and lung ventilatory and gas exchange abnormalities during exercise in HFpEF. Subjects with invasively-proven HFpEF (n = 50) and non-cardiac causes of dyspnoea (controls, n = 24) underwent cardiac catheterization at rest and during exercise with simultaneous expired gas analysis. During submaximal (20 W) exercise, subjects with HFpEF displayed higher pulmonary capillary wedge pressures (PCWP) and pulmonary artery pressures, higher Borg perceived dyspnoea scores, and increased ventilatory drive and respiratory rate. At peak exercise, ventilation reserve was reduced in HFpEF compared with controls, with greater dead space ventilation (higher VD/VT). Increasing exercise PCWP was directly correlated with higher perceived dyspnoea scores, lower peak exercise capacity, greater ventilatory drive, worse New York Heart Association (NYHA) functional class, and impaired pulmonary ventilation reserve. This study provides the first evidence linking altered exercise haemodynamics to pulmonary abnormalities and symptoms of dyspnoea in patients with HFpEF. Further study is required to identify the mechanisms by which haemodynamic derangements affect lung function and symptoms and to test novel therapies targeting exercise haemodynamics in HFpEF.
Impact kinetics associated with four common bilateral plyometric exercises.
Stewart, Ethan; Kernozek, Thomas; Peng, Hsien-Te; Wallace, Brian
2018-04-20
This study quantified the peak vertical ground reaction force (VGRF), impulse, and average and instantaneous loading rates developed during bilateral plyometric exercises. Fourteen collegiate male athletes performed four different bilateral plyometric exercises within a single testing session. Depth jumps from thirty, sixty and ninety centimeter heights (DJ30, DJ60, and DJ90, respectively), and a two consecutive jump exercise (2CJ), were randomly performed. The subjects landed on and propelled themselves off two force platforms embedded into the floor. The stance phase of each plyometric movement was analyzed for vertical force characteristics. The dependent variables were normalized to body weight. One-way repeated-measures ANOVA revealed significant differences between exercises (p ≤ 0.05). For VGRF, only the DJ60 and 2CJ exercises were not different from each other. The impulses between DJ60 and DJ90, and DJ30 and 2CJ, were not different. All exercises were different from each other in regards to average and instantaneous loading rate except for DJ30 vs. DJ60, and DJ90 vs. 2CJ. The DJ90 condition reported the highest peak VGRF by approaching five times body weight. The 2CJ condition had similar impulse and loading rates as the DJ90 condition. A proper progression and detailed program planning should be utilized when implementing plyometric exercises due to their different impact kinetics and how they might influence the body upon ground contact.
De Meester, Pieter; Van De Bruaene, Alexander; Herijgers, Paul; Voigt, Jens-Uwe; Vanhees, Luc; Budts, Werner
2013-08-01
Although closure of an atrial septal defect type secundum often normalizes right heart dimensions and pressures, mild tricuspid insufficiency might persist. This study aimed at (1) identification of determinants explaining the persistence of tricuspid insufficiency after atrial septal defect closure, and (2) evaluation of functional capacity of patients with persistent mild tricuspid insufficiency. Twenty-five consecutive patients (age 42+17 y) were included from the outpatient clinic of congenital heart disease at the University Hospitals of Leuven. All underwent transthoracic echocardiography, semi-supine bicycle stress echocardiography and cardio-pulmonary exercise testing. Six patients (24%) had mild tricuspid insufficiency (2/4) compared to 19 patients (76%) with no or minimal tricuspid insufficiency ( 1/4) as assessed by semi-quantitative colour Doppler echocardiography. Mann-Whitney U and Fisher's exact tests were performed where applicable. Patients with persistent mild tricuspid insufficiency were significantly older than those with no or minimal tricuspid insufficiency (P = 0.042). At rest, no differences in right heart configuration, mean pulmonary artery pressure or right ventricular function were found. At peak exercise, mean pulmonary artery pressure was significantly higher in patients with mild persistent tricuspid insufficiency (P = 0.026). Peak oxygen uptake was significantly lower in patients with mild persistent tricuspid insufficiency (P = 0.019). Mild tricuspid insufficiency after atrial septal defect repair occurs more frequently in older patients and in patients with higher mean pulmonary artery pressure at peak exercise. In patients with mild tricuspid insufficiency, functional capacity was more reduced. Mild tricuspid insufficiency could be a marker of subclinical persistent pressure load on the right ventricle.
Arm and Intensity-Matched Leg Exercise Induce Similar Inflammatory Responses.
Leicht, Christof A; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C
2016-06-01
The amount of active muscle mass can influence the acute inflammatory response to exercise, associated with reduced risk for chronic disease. This may affect those restricted to upper body exercise, for example, due to injury or disability. The purpose of this study was to compare the inflammatory responses for arm exercise and intensity-matched leg exercise. Twelve male individuals performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak A) and cycling (V˙O2peak C): 1) arm cranking exercise at 60% V˙O2peak A, 2) moderate cycling at 60% V˙O2peak C, and 3) easy cycling at 60% V˙O2peak A. Cytokine, adrenaline, and flow cytometric analysis of monocyte subsets were performed before and up to 4 h postexercise. Plasma IL-6 increased from resting concentrations in all trials; however, postexercise concentrations were higher for arm exercise (1.73 ± 1.04 pg·mL) and moderate cycling (1.73 ± 0.95 pg·mL) compared with easy cycling (0.87 ± 0.41 pg·mL; P < 0.04). Similarly, the plasma IL-1ra concentration in the recovery period was higher for arm exercise (325 ± 139 pg·mL) and moderate cycling (316 ± 128 pg·mL) when compared with easy cycling (245 ± 77 pg·mL, P < 0.04). Arm exercise and moderate cycling induced larger increases in monocyte numbers and larger increases of the classical monocyte subset in the recovery period than easy cycling (P < 0.05). The postexercise adrenaline concentration was lowest for easy cycling (P = 0.04). Arm exercise and cycling at the same relative exercise intensity induces a comparable acute inflammatory response; however, cycling at the same absolute oxygen uptake as arm exercise results in a blunted cytokine, monocyte, and adrenaline response. Relative exercise intensity appears to be more important to the acute inflammatory response than modality, which is of major relevance for populations restricted to upper body exercise.
Electrophysiological predictors of sudden cardiac death on physical exercise test in young athletes
NASA Astrophysics Data System (ADS)
Balykova, L. A.; Kotlyarov, A. A.; Ivyanskiy, S. A.; Shirokova, A. A.; Miheeva, K. A.; Makarov, L. M.
2017-01-01
The problem of sudden death of young athletes continues to be actual. Among its reasons, primary electric myocardium diseases along with organic heart troubles (cardiomyopathies, cordites, anomalies of coronary arteries) take an important place. The most frequent variant of channelopathesis long QT syndrome (LQTS). Both inherited and acquired LQTS may be the reason of sudden cardiac death during physical activity and have to be revealed prior to sports admission. LQTS diagnostics in young athletes become problematic due to secondary exercise-related QT prolongation. Physical load test may reveal myocardium electric instability and enhance LQTS diagnostics accuracy without genetic testing. The aim was to study electrophysiological parameters of myocardium repolarization and reveal the signs of electrical instability as predictors of the life-threatening arrhythmias in young athletes during physical exercise test. In conclusion, electrophysiological myocardium parameters during physical exercise test noted to be markers of electrical myocardial instability and in combination with the other Schwartz criteria, was evidenced the inherited or acquired LQTS. QTc prolongation in athletes at the peak of exercise as well as in early recovery period were noted to be additional predictor life-threatening arrhythmias and sudden cardiac death in young athletes
Music enhances performance and perceived enjoyment of sprint interval exercise.
Stork, Matthew J; Kwan, Matthew Y W; Gibala, Martin J; Martin Ginis, Kathleen A
2015-05-01
Interval exercise training can elicit physiological adaptations similar to those of traditional endurance training, but with reduced time. However, the intense nature of specific protocols, particularly the "all-out" efforts characteristic of sprint interval training (SIT), may be perceived as being aversive. The purpose of this study was to determine whether listening to self-selected music can reduce the potential aversiveness of an acute session of SIT by improving affect, motivation, and enjoyment, and to examine the effects of music on performance. Twenty moderately active adults (22 ± 4 yr) unfamiliar with interval exercise completed an acute session of SIT under two different conditions: music and no music. The exercise consisted of four 30-s "all-out" Wingate Anaerobic Test bouts on a cycle ergometer, separated by 4 min of rest. Peak and mean power output, RPE, affect, task motivation, and perceived enjoyment of the exercise were measured. Mixed-effects models were used to evaluate changes in dependent measures over time and between the two conditions. Peak and mean power over the course of the exercise session were higher in the music condition (coefficient = 49.72 [SE = 13.55] and coefficient = 23.65 [SE = 11.30]; P < 0.05). A significant time by condition effect emerged for peak power (coefficient = -12.31 [SE = 4.95]; P < 0.05). There were no between-condition differences in RPE, affect, or task motivation. Perceived enjoyment increased over time and was consistently higher in the music condition (coefficient = 7.00 [SE = 3.05]; P < 0.05). Music enhances in-task performance and enjoyment of an acute bout of SIT. Listening to music during intense interval exercise may be an effective strategy for facilitating participation in, and adherence to, this form of training.
Lee, Sung-soon; Kim, Changhwan; Jin, Young-Soo; Oh, Yeon-Mok; Lee, Sang-Do; Yang, Yun Jun; Park, Yong Bum
2013-05-01
Despite documented efficacy and recommendations, pulmonary rehabilitation (PR) in chronic obstructive pulmonary disease (COPD) has been underutilized. Home-based PR was proposed as an alternative, but there were limited data. The adequate exercise intensity was also a crucial issue. The aim of this study was to investigate the effects of home-based PR with a metronome-guided walking pace on functional exercise capacity and health-related quality of life (HRQOL) in COPD. The subjects participated in a 12-week home-based PR program. Exercise intensity was initially determined by cardiopulmonary exercise test, and was readjusted (the interval of metronome beeps was reset) according to submaximal endurance test. Six-minute walk test, pulmonary function test, cardiopulmonary exercise test, and St. George's Respiratory Questionnaire (SGRQ) were done before and after the 12-week program, and at 6 months after completion of rehabilitation. Thirty-three patients participated in the program. Six-minute walking distance was significantly increased (48.8 m; P = 0.017) and the SGRQ score was also improved (-15; P < 0.001) over the six-month follow-up period after rehabilitation. There were no significant differences in pulmonary function and peak exercise parameters. We developed an effective home-based PR program with a metronome-guided walking pace for COPD patients. This rehabilitation program may improve functional exercise capacity and HRQOL.
Smart, Neil A
2013-01-01
BACKGROUND: Peak oxygen consumption (VO2) is the gold standard measure of cardiorespiratory fitness and a reliable predictor of survival in chronic heart failure patients. Furthermore, any form of physical training usually improves cardiorespiratory fitness, although the magnitude of improvement in peak VO2 may vary across different training prescriptions. OBJECTIVE: To quantify, and subsequently rank, the magnitude of improvement in peak VO2 for different physical training prescriptions using data from published meta-analyses and randomized controlled trials. METHODS: Prospective randomized controlled parallel trials and meta-analyses of exercise training in chronic heart failure patients that provided data on change in peak VO2 for nine a priori comparative analyses were examined. RESULTS: All forms of physical training were beneficial, although the improvement in peak VO2 varied with modality. High-intensity interval exercise yielded the largest increase in peak VO2, followed in descending order by moderate-intensity aerobic exercise, functional electrical stimulation, inspiratory muscle training, combined aerobic and resistance training, and isolated resistance training. With regard to setting, the present study was unable to determine whether outpatient or unsupervised home exercise provided greater benefits in terms of peak VO2 improvment. CONCLUSIONS: Interval exercise is not suitable for all patients, especially the high-intensity variety; however, when indicated, this form of exercise should be adopted to optimize peak VO2 adaptations. Other forms of activity, such as functional electrical stimulation, may be more appropriate for patients who are not capable of high-intensity interval training, especially for severely deconditioned patients who are initially unable to exercise. PMID:24294043
Reilly, Heather; Lane, Louise M; Egaña, Mikel
2018-05-01
Age-related exercising leg blood flow (LBF) responses during dynamic knee-extension exercise and forearm blood flow responses during handgrip exercise are preserved in normally active men but attenuated in activity-matched women. We explored whether these age- and sex-specific effects are also apparent during isometric calf plantar-flexion incremental exercise. Normally active young men (YM, n = 15, 24 ± 2 years), young women (YW, n = 8, 22 ± 1 years), older men (OM, n = 13, 70 ± 7 years) and older women (OW, n = 10, 64 ± 7 years) were tested. LBF was measured between contractions using venous occlusion plethysmography. Peak force obtained was higher (P < 0.05) in men compared with women and in young compared with older individuals. However, peak LBF (YM; 971 ± 328 ml min -1 , OM; 985 ± 504 ml min -1 , YW; 844 ± 366 ml min -1 , OW; 960 ± 244 ml min -1 ) and peak leg vascular conductance [LVC = LBF/(MAP + hydrostatic pressure)] responses (YM; 6.0 ± 1.8 ml min -1 mmHg -1 , OM; 5.5 ± 2.8 ml min -1 mmHg -1 , YW; 5.3 ± 2.1 ml min -1 mmHg -1 , OW; 5.5 ± 1.6 ml min -1 mmHg -1 ) were similar among the four groups. Furthermore, the hyperaemic (YM; 8.8 ± 3.7 ml min -1 %F peak -1 OM; 8.3 ± 5.4 ml min -1 %F peak -1 , YW; 8.2 ± 3.5 ml min -1 %F peak -1 , OW; 9.6 ± 2.2 ml min -1 %F peak -1 ) and vasodilatory responses (YM; 0.053 ± 0.020 ml min -1 mmHg -1 %F peak -1 , OM; 0.048 ± 0.028 ml min -1 mmHg -1 %F peak -1 , YW; 0.051 ± 0.019 ml min -1 mmHg -1 %F peak -1 , OW; 0.055 ± 0.014 ml min -1 mmHg -1 %F peak -1 ) were not different among the four groups. These results were accompanied by similar resting LBF responses among groups and were not affected when data were normalised to estimated leg muscle mass. Our results demonstrate that exercising LBF responses during isometric incremental calf muscle exercise are preserved in older men and women, suggesting that the previously observed age-related attenuations in leg and forearm hyperaemia among women may be muscle-group specific.
Vilozni, Daphna; Alcaneses-Ofek, Maria Rosario; Reuveny, Ronen; Rosenblum, Omer; Inbar, Omri; Katz, Uriel; Ziv-Baran, Tomer; Dubnov-Raz, Gal
2016-12-01
Pulmonary mechanics may play a role in exercise intolerance in patients with congenital heart disease (CHD). A reduced FVC volume could increase the ratio between mid-flow (FEF 25-75% ) and FVC, which is termed high dysanapsis. The relationship between high dysanapsis and the response to maximum-intensity exercise in children with CHD had not yet been studied. The aim of this work was to examine whether high dysanapsis is related to the cardiopulmonary response to maximum-intensity exercise in pediatric subjects with CHD. We retrospectively collected data from 42 children and adolescents with CHD who had either high dysanapsis (ratio >1.2; n = 21) or normal dysanapsis (control) (n = 21) as measured by spirometry. Data extracted from cardiopulmonary exercise test reports included peak values of heart rate, work load, V̇ O 2 , V̇ CO 2 , and ventilation parameters and submaximum values, including ventilatory threshold and ventilatory equivalents. There were no significant differences in demographic and clinical parameters between the groups. Participants with high dysanapsis differed from controls in lower median peak oxygen consumption (65.8% vs 83.0% of predicted, P = .02), peak oxygen pulse (78.6% vs 87.8% of predicted, P = .02), ventilatory threshold (73.8% vs 85.3% of predicted, P = .03), and maximum breathing frequency (106% vs 121% of predicted, P = .035). In the high dysanapsis group only, median peak ventilation and tidal volume were significantly lower than 80% of predicted values. In children and adolescents with corrected CHD, high dysanapsis was associated with a lower ventilatory capacity and reduced aerobic fitness, which may indicate respiratory muscle impairments. Copyright © 2016 by Daedalus Enterprises.
Jabbour, Georges; Iancu, Horia-Daniel; Paulin, Anne
Studying relative anaerobic and aerobic metabolism contributions to total energy release during exercise may be valuable in understanding exercise energetic demands and the energetic adaptations that occur in response to acute or chronic exercise in obese adults. The aim of the present study is to evaluate the effects of 6 weeks of high-intensity training (HIT) on relative anaerobic and aerobic contributions to total energy release and on peak power output during repeated supramaximal cycling exercises (SCE) in obese adults. Twenty-four obese adults (body mass index = ± 33 kg.m -2 ) were randomized into a control group ( n = 12) and an HIT group ( n = 12). Accumulated oxygen deficits (ml.min -1 ) and anaerobic and aerobic contributions (%) were measured in all groups before and after training via repeated SCE. In addition, the peak power output performed during SCE was determined using the force-velocity test. Before HIT, anaerobic contributions to repeated SCE did not differ between the groups and decreased significantly during the third and fourth repetitions. After HIT, anaerobic contributions increased significantly in the HIT group (+11 %, p < 0.01) and were significantly higher than those of the control group ( p < 0.01). Moreover, the peak power obtained during SCE increased significantly in the HIT group (+110 W.kg -1 , p < 0.01) and correlated positively with increases in anaerobic contributions ( r = 0.9, p < 0.01). In obese adults, HIT increased anaerobic contributions to energy release which were associated with peak power enhancement in response to repeated SCE. Consequently, HIT may be an appropriate approach for improving energy contributions and muscle power among obese adults.
Cunha, Felipe A; Midgley, Adrian W; McNaughton, Lars R; Farinatti, Paulo T V
2016-02-01
The purpose of this study was to investigate excess postexercise oxygen consumption (EPOC) induced by isocaloric bouts of continuous and intermittent running and cycling exercise. This was a counterbalanced randomized cross-over study. Ten healthy men, aged 23-34yr, performed six bouts of exercise: (a) two maximal cardiopulmonary exercise tests for running and cycling to determine exercise modality-specific peak oxygen uptake (VO2peak); and (b) four isocaloric exercise bouts (two continuous bouts expending 400kcal and two intermittent bouts split into 2×200kcal) performed at 75% of the running and cycling oxygen uptake reserve. Exercise bouts were separated by 72h and performed in a randomized, counter-balanced order. The VO2 was monitored for 60-min postexercise and for 60-min during a control non-exercise day. The VO2 was significantly greater in all exercise conditions compared to the control session (P<0.001). The combined magnitude of the EPOC from the two intermittent bouts was significantly greater than that of the continuous cycling (mean difference=3.5L, P=0.001) and running (mean difference=6.4L, P<0.001). The exercise modality had a significant effect on net EPOC, where running elicited a higher net EPOC than cycling (mean difference=2.2L, P<0.001). Intermittent exercise increased the EPOC compared to a continuous exercise bout of equivalent energy expenditure. Furthermore, the magnitude of EPOC was influenced by exercise modality, with the greatest EPOC occurring with isocaloric exercise involving larger muscle mass (i.e., treadmill running vs. cycling). Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Guo, Yuan; Peng, Ran; Liu, Qiong; Xu, Danyan
2016-10-15
Neovascularization in response to ischemia after myocardial infarction (MI) has been widely considered as being initiated by endothelial progenitor cells (EPCs). Well-documented evidences in recent years have proved exercise training (ET) improving EPC function. However, whether ET-induced improvement of EPC function under or without ischemic state is different has not been reported. Mice performed ET following an exercise prescription 1week after MI or non-MI surgery respectively. Bone marrow-derived EPCs were isolated at 0day, 3days, 1week, 2weeks, 4weeks, and 8weeks of ET. After 7days cultivation, EPC functions including proliferation, adhesion, migration, and in vitro angiogenesis were measured. AKT/glycogen synthase kinase 3β (GSK3β) signaling pathway was tested by western blotting. EPC function in mice underwent non-MI surgery was attenuated overtime, while ET ameliorated this tendency. EPC function was peaked at 4weeks ET in non-MI surgery mice and maintained with an extended exercise time. Besides, simple ischemia was sufficient to enhanced EPC function, with a maximum at 2weeks of MI surgery. In MI mice, ET further improved EPC function and achieved peak at 2weeks exercise. Furthermore, AKT/GSK3β signaling pathway activation was consistent with EPC function change after ischemia, which was further promoted by 4weeks exercise. ET significantly increased EPC function in mice both with and without MI, but the time points of peak function were different. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ventilatory Responses at Peak Exercise in Endurance-Trained Obese Adults
Lorenzo, Santiago
2013-01-01
Background: Alterations in respiratory mechanics predispose healthy obese individuals to low lung volume breathing, which places them at risk of developing expiratory flow limitation (EFL). The high ventilatory demand in endurance-trained obese adults further increases their risk of developing EFL and increases their work of breathing. The objective of this study was to investigate the prevalence and magnitude of EFL in fit obese (FO) adults via measurements of breathing mechanics and ventilatory dynamics during exercise. Methods: Ten (seven women and three men) FO (mean ± SD, 38 ± 5 years, 38% ± 5% body fat) and 10 (seven women and three men) control obese (CO) (38 ± 5 years, 39% ± 5% body fat) subjects underwent hydrostatic weighing, pulmonary function testing, cycle exercise testing, and the determination of the oxygen cost of breathing during eucapnic voluntary hyperpnea. Results: There were no differences in functional residual capacity (43% ± 6% vs 40% ± 9% total lung capacity [TLC]), residual volume (21% ± 4% vs 21% ± 4% TLC), or FVC (111% ± 13% vs 104% ± 15% predicted) between FO and CO subjects, respectively. FO subjects had higher FEV1 (111% ± 13% vs 99% ± 11% predicted), TLC (106% ± 14% vs 94% ± 7% predicted), peak expiratory flow (123% ± 14% vs 106% ± 13% predicted), and maximal voluntary ventilation (128% ± 15% vs 106% ± 13% predicted) than did CO subjects. Peak oxygen uptake (129% ± 16% vs 86% ± 15% predicted), minute ventilation (128 ± 35 L/min vs 92 ± 25 L/min), and work rate (229 ± 54 W vs 166 ± 55 W) were higher in FO subjects. Mean inspiratory (4.65 ± 1.09 L/s vs 3.06 ± 1.21 L/s) and expiratory (4.15 ± 0.95 L/s vs 2.98 ± 0.76L/s) flows were greater in FO subjects, which yielded a greater breathing frequency (51 ± 8 breaths/min vs 41 ± 10 breaths/min) at peak exercise in FO subjects. Mechanical ventilatory constraints in FO subjects were similar to those in CO subjects despite the greater ventilatory demand in FO subjects. Conclusion: FO individuals achieve high ventilations by increasing breathing frequency, matching the elevated metabolic demand associated with high fitness. They do this without developing meaningful ventilatory constraints. Therefore, endurance-trained obese individuals with higher lung function are not limited by breathing mechanics during peak exercise, which may allow healthy obese adults to participate in vigorous exercise training. PMID:23722607
Ventilatory responses at peak exercise in endurance-trained obese adults.
Lorenzo, Santiago; Babb, Tony G
2013-10-01
Alterations in respiratory mechanics predispose healthy obese individuals to low lung volume breathing, which places them at risk of developing expiratory flow limitation (EFL). The high ventilatory demand in endurance-trained obese adults further increases their risk of developing EFL and increases their work of breathing. The objective of this study was to investigate the prevalence and magnitude of EFL in fit obese (FO) adults via measurements of breathing mechanics and ventilatory dynamics during exercise. Ten (seven women and three men) FO (mean ± SD, 38 ± 5 years, 38% ± 5% body fat) and 10 (seven women and three men) control obese (CO) (38 ± 5 years, 39% ± 5% body fat) subjects underwent hydrostatic weighing, pulmonary function testing, cycle exercise testing, and the determination of the oxygen cost of breathing during eucapnic voluntary hyperpnea. There were no differences in functional residual capacity (43% ± 6% vs 40% ± 9% total lung capacity [TLC]), residual volume (21% ± 4% vs 21% ± 4% TLC), or FVC (111% ± 13% vs 104% ± 15% predicted) between FO and CO subjects, respectively. FO subjects had higher FEV1 (111% ± 13% vs 99% ± 11% predicted), TLC (106% ± 14% vs 94% ± 7% predicted), peak expiratory flow (123% ± 14% vs 106% ± 13% predicted), and maximal voluntary ventilation (128% ± 15% vs 106% ± 13% predicted) than did CO subjects. Peak oxygen uptake (129% ± 16% vs 86% ± 15% predicted), minute ventilation (128 ± 35 L/min vs 92 ± 25 L/min), and work rate (229 ± 54 W vs 166 ± 55 W) were higher in FO subjects. Mean inspiratory (4.65 ± 1.09 L/s vs 3.06 ± 1.21 L/s) and expiratory (4.15 ± 0.95 L/s vs 2.98 ± 0.76 L/s) flows were greater in FO subjects, which yielded a greater breathing frequency (51 ± 8 breaths/min vs 41 ± 10 breaths/min) at peak exercise in FO subjects. Mechanical ventilatory constraints in FO subjects were similar to those in CO subjects despite the greater ventilatory demand in FO subjects. FO individuals achieve high ventilations by increasing breathing frequency, matching the elevated metabolic demand associated with high fitness. They do this without developing meaningful ventilatory constraints. Therefore, endurance-trained obese individuals with higher lung function are not limited by breathing mechanics during peak exercise, which may allow healthy obese adults to participate in vigorous exercise training.
Effects of hand grip exercise on shoulder joint internal rotation and external rotation peak torque.
Lee, Dong-Rour; Jong-Soon Kim, Laurentius
2016-08-10
The goal of this study is to analyze the effects of hand grip training on shoulder joint internal rotation (IR)/external rotation (ER) peak torque for healthy people. The research was conducted on 23 healthy adults in their 20 s-30 s who volunteered to participate in the experiment. Hand grip power test was performed on both hands of the research subjects before/after the test to study changes in hand grip power. Isokinetic machine was used to measure the concentric IRPT (internal rotation peak torque) and concentric ERPT (external rotation peak torque) at the velocity of 60°/sec, 90°/sec, and 180°/sec before/after the test. Hand grip training was performed daily on the subject's right hand only for four weeks according to exercise program. Finally, hand grip power of both hands and the maximum torque values of shoulder joint IR/ER were measured before/after the test and analyzed. There was a statistically significant difference in the hand grip power of the right hand, which was subject to hand grip training, after the experiment. Also, statistically significant difference for shoulder ERPT was found at 60°/sec. Hand grip training has a positive effect on shoulder joint IRPT/ERPT and therefore can help strengthen muscles around the shoulder without using weight on the shoulder. Consequently, hand grip training would help maintain strengthen the muscles around the shoulder in the early phase of rehabilitation process after shoulder surgery.
McDonald, Michael A.; Braga, Juarez R.; Li, Jing; Manlhiot, Cedric; Ross, Heather J.; Redington, Andrew N.
2014-01-01
Background Remote ischemic preconditioning (RIPC) induced by transient limb ischemia confers multi-organ protection and improves exercise performance in the setting of tissue hypoxia. We aimed to evaluate the effect of RIPC on exercise capacity in heart failure patients. Methods We performed a randomized crossover trial of RIPC (4×5-minutes limb ischemia) compared to sham control in heart failure patients undergoing exercise testing. Patients were randomly allocated to either RIPC or sham prior to exercise, then crossed over and completed the alternate intervention with repeat testing. The primary outcome was peak VO2, RIPC versus sham. A mechanistic substudy was performed using dialysate from study patient blood samples obtained after sham and RIPC. This dialysate was used to test for a protective effect of RIPC in a mouse heart Langendorff model of infarction. Mouse heart infarct size with RIPC or sham dialysate exposure was also compared with historical control data. Results Twenty patients completed the study. RIPC was not associated with improvements in peak VO2 (15.6+/−4.2 vs 15.3+/−4.6 mL/kg/min; p = 0.53, sham and RIPC, respectively). In our Langendorff sub-study, infarct size was similar between RIPC and sham dialysate groups from our study patients, but was smaller than expected compared to healthy controls (29.0%, 27.9% [sham, RIPC] vs 51.2% [controls]. We observed less preconditioning among the subgroup of patients with increased exercise performance following RIPC (p<0.04). Conclusion In this pilot study of RIPC in heart failure patients, RIPC was not associated with improvements in exercise capacity overall. However, the degree of effect of RIPC may be inversely related to the degree of baseline preconditioning. These data provide the basis for a larger randomized trial to test the potential benefits of RIPC in patients with heart failure. Trial Registration ClinicalTrials.gov +++++NCT01128790 PMID:25181050
Olson, Kayla M; Augeri, Amanda L; Seip, Richard L; Tsongalis, Gregory J; Thompson, Paul D; Pescatello, Linda S
2012-05-01
An elevated systolic blood pressure (SBP) response to a graded maximal exercise stress test (GEST) may be a predictor of endothelial dysfunction and hypertension. We examined relationships among the GEST peak SBP response and indicators of endothelial function. Men (n=48, 43.7±1.4 yr) with high BP (145.1±1.5/85.5±1.1 mmHg) completed a GEST. Peak SBP was the highest SBP achieved during the GEST. Blood samples were taken for fasting glucose and insulin, nitric oxide (NO), and DNA. Endothelial nitric oxide synthase (NOS3, rs2070744) -786 T>C genotyping was determined by PCR. NOS3 genotypes were combined using a dominant model [TT (n=24); TC/CC (n=24)]. Brachial artery reactivity (BAR) was determined via ultrasound before, 1 min, and 3 min post occlusion and calculated as % change. Analysis of variance (ANOVA) tested changes in the peak SBP GEST response by NOS3 genotype. Multiple variable regression analyses examined relationships among the GEST peak SBP response and measures of endothelial function. %BAR change at 1 min (r(2)=0.093, p=0.020), glucose (r(2)=0.062, p=0.014), NOS3 -786 T>C (r(2)=0.040, p=0.024), NO (r(2)=0.037, p=0.064), and age (r(2)=0.009, p=0.014) explained 24.1% of the GEST peak SBP response (p=0.043). The GEST peak SBP change from baseline was 11.1±5.0 mmHg higher among those with the NOS3 C allele (92.4 mmHg+3.8) than the NOS3 TT genotype (81.3 mmHg+3.2) (p=0.03). Indicators of endothelial function appear to explain a clinically significant portion of the GEST peak SBP response. Further investigation is needed to unravel the mechanisms by which endothelial function influences the GEST peak SBP response. Published by Elsevier Ireland Ltd.
Baseline differences in the HF-ACTION trial by sex.
Piña, Ileana L; Kokkinos, Peter; Kao, Andrew; Bittner, Vera; Saval, Matt; Clare, Bob; Goldberg, Lee; Johnson, Maryl; Swank, Ann; Ventura, Hector; Moe, Gordon; Fitz-Gerald, Meredith; Ellis, Stephen J; Vest, Marianne; Cooper, Lawton; Whellan, David
2009-10-01
In patients with heart failure (HF), assessment of functional capacity plays an important prognostic role. Both 6-minute walk and cardiopulmonary exercise testing have been used to determine physical function and to determine prognosis and even listing for transplantation. However, as in HF trials, the number of women reported has been small, and the cutoffs for transplantation have been representative of male populations and extrapolated to women. It is also well known that peak VO(2) as a determinant of fitness is inherently lower in women than in men and potentially much lower in the presence of HF. Values for a female population from which to draw for this important determination are lacking. The HF-ACTION trial randomized 2,331 patients (28% women) with New York Heart Association class II-IV HF due to systolic dysfunction to either a formal exercise program in addition to optimal medical therapy or to optimal medical therapy alone without any formal exercise training. To characterize differences between men and women in the interpretation of final cardiopulmonary exercise testing models, the interaction of individual covariates with sex was investigated in the models of (1) VE/VCO(2), (2) VO(2) at ventilatory threshold (VT), (3) distance on the 6-minute walk, and (4) peak VO(2). The women were younger than the men and more likely to have a nonischemic etiology and a higher ejection fraction. Dose of angiotensin converting enzyme inhibitor (ACEI) was lower in the women, on average. The lower ACEI dose may reflect the higher use of angiotensin II receptor blocker (ARB) in women. Both the peak VO(2) and the 6-minute walk distance were significantly lower in the women than in the men. Perhaps the most significant finding in this dataset of baseline characteristics is that the peak VO(2) for women was significantly lower than that for men with similar ventricular function and health status. Therefore, in a well-medicated, stable, class II-IV HF cohort of patients who are able to exercise, women have statistically significantly lower peak VO(2) and 6-minute walk distance than men with similar health status and ventricular function. These data should prompt careful thought when considering prognostic markers for women and listing for cardiac transplant.
Hooten, W Michael; Qu, Wenchun; Townsend, Cynthia O; Judd, Jeffrey W
2012-04-01
Strength training and aerobic exercise have beneficial effects on pain in adults with fibromyalgia. However, the equivalence of strengthening and aerobic exercise has not been reported. The primary aim of this randomized equivalence trial involving patients with fibromyalgia admitted to an interdisciplinary pain treatment program was to test the hypothesis that strengthening (n=36) and aerobic (n=36) exercise have equivalent effects (95% confidence interval within an equivalence margin ± 8) on pain, as measured by the pain severity subscale of the Multidimensional Pain Inventory. Secondary aims included determining the effects of strengthening and aerobic exercise on peak Vo(2) uptake, leg strength, and pressure pain thresholds. In an intent-to-treat analysis, the mean (± standard deviation) pain severity scores for the strength and aerobic groups at study completion were 34.4 ± 11.5 and 37.6 ± 11.9, respectively. The group difference was -3.2 (95% confidence interval, -8.7 to 2.3), which was within the equivalence margin of Δ8. Significant improvements in pain severity (P<.001), peak Vo(2) (P<.001), strength (P<.001), and pain thresholds (P<.001) were observed from baseline to week 3 in the intent-to-treat analysis; however, patients in the aerobic group (mean change 2.0 ± 2.6 mL/kg/min) experienced greater gains (P<.013) in peak Vo(2) compared to the strength group (mean change 0.4 ± 2.6 mL/kg/min). Knowledge of the equivalence and physiological effects of exercise have important clinical implications that could allow practitioners to target exercise recommendations on the basis of comorbid medical conditions or patient preference for a particular type of exercise. This study found that strength and aerobic exercise had equivalent effects on reducing pain severity among patients with fibromyalgia. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Palau, Patricia; Domínguez, Eloy; Núñez, Eduardo; Ramón, José María; López, Laura; Melero, Joana; Sanchis, Juan; Bellver, Alejandro; Santas, Enrique; Bayes-Genis, Antoni; Chorro, Francisco J; Núñez, Julio
2018-04-01
Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent syndrome with an elevated risk of morbidity and mortality. To date, there is scarce evidence on the role of peak exercise oxygen uptake (peak VO 2 ) for predicting the morbidity burden in HFpEF. We sought to evaluate the association between peak VO 2 and the risk of recurrent hospitalizations in patients with HFpEF. A total of 74 stable symptomatic patients with HFpEF underwent a cardiopulmonary exercise test between June 2012 and May 2016. A negative binomial regression method was used to determine the association between the percentage of predicted peak VO 2 (pp-peak VO 2 ) and recurrent hospitalizations. Risk estimates are reported as incidence rate ratios. The mean age was 72.5 ± 9.1 years, 53% were women, and all patients were in New York Heart Association functional class II to III. Mean peak VO 2 and median pp-peak VO 2 were 10 ± 2.8mL/min/kg and 60% (range, 47-67), respectively. During a median follow-up of 276 days [interquartile range, 153-1231], 84 all-cause hospitalizations in 31 patients (41.9%) were registered. A total of 15 (20.3%) deaths were also recorded. On multivariate analysis, accounting for mortality as a terminal event, pp-peak VO 2 was independently and linearly associated with the risk of recurrent admission. Thus, and modeled as continuous, a 10% decrease of pp-peak VO 2 increased the risk of recurrent hospitalizations by 32% (IRR, 1.32; 95%CI, 1.03-1.68; P = .028). In symptomatic elderly patients with HFpEF, pp-peak VO 2 predicts all-cause recurrent admission. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Smart, N A; Meyer, T; Butterfield, J A; Faddy, S C; Passino, C; Malfatto, G; Jonsdottir, S; Sarullo, F; Wisloff, U; Vigorito, C; Giallauria, F
2012-06-01
Brain natriuretic peptide (BNP) predicts exercise performance and exercise training may modulate BNP and its N-terminal portion (NT-pro-BNP), we therefore conducted an individual patient analysis of exercise training effects on BNP and NT-pro-BNP. To use an individual patient meta-analysis to relate changes in BNP, NT-pro-BNP, and peak VO(2); to link these changes to volume parameters of exercise training programmes (intensity etc.); and to identify patient characteristics likely to lead to greater improvements in BNP, NT-pro-BNP, and peak VO(2). Individual patient meta-analysis. A systematic search was conducted of Medline (Ovid), Embase.com, Cochrane Central Register of Controlled Trials, and CINAHL (until July 2008) to identify randomized controlled trials of aerobic and/or resistance exercise training in systolic heart failure patients measuring BNP and/or NT-pro-BNP. Primary outcome measures were change in BNP, NT-pro-BNP, and peak VO2. Subanalyses were conducted to identify (1) patient groups that benefit most and (2) exercise programme parameters enhancing favourable changes in primary outcome measures. Ten randomized controlled studies measuring BNP or NT-pro-BNP met eligibility criteria, authors provided individual patient data for 565 patients (313 exercise and 252 controls). Exercise training had favourable effects on BNP (-28.3%, p < 0.0001), NT-pro-BNP (-37.4%, p = < 0.0001), and peak VO(2) (17.8%, p < 0.0001). The analysis showed a significant change in primary outcome measures; moreover, change in BNP (r = -0.31, p < 0.0001) and NT-pro-BNP (r = -0.22, p < 0.0001) were correlated with peak VO(2) change. Exercise training has favourable effects on BNP, NT-pro-BNP, and peak VO(2) in heart failure patients and BNP/NT-pro-BNP changes were correlated with peak VO(2) changes.
Oscillation in tissue oxygen index during recovery from exercise.
Yano, T; Afroundeh, R; Shirakawa, K; Lian, C-S; Shibata, K; Xiao, Z; Yunoki, T
2016-06-20
It was hypothesized that an oscillation of tissue oxygen index (TOI) determined by near-infrared spectroscopy during recovery from exercise occurs due to feedback control of adenosine triphosphate and that frequency of the oscillation is affected by blood pH. In order to examine these hypotheses, we aimed 1) to determine whether there is an oscillation of TOI during recovery from exercise and 2) to determine the effect of blood pH on frequency of the oscillation of TOI. Three exercises were performed with exercise intensities of 30 % and 70 % peak oxygen uptake (V(.)o(2)peak) for 12 min and with exercise intensity of 70 % V(.)o(2)peak for 30 s. TOI during recovery from the exercise was analyzed by fast Fourier transform in order to obtain power spectra density (PSD). There was a significant difference in the frequency at which maximal PSD of TOI appeared (Fmax) between the exercises with 70 % V(.)o(2)peak for 12 min (0.0039+/-0 Hz) and for 30 s (0.0061+/-0.0028 Hz). However, there was no significant difference in Fmax between the exercises with 30 % (0.0043+/-0.0013 Hz) and with 70 % V(.)o(2)peak for 12 min despite differences in blood pH and blood lactate from the warmed fingertips. It is concluded that there was an oscillation in TOI during recovery from the three exercises. It was not clearly shown that there was an effect of blood pH on Fmax.
Lee, Dong-Rour; Kim, Laurentius Jongsoon
2016-08-01
Many studies have explored closed kinetic chain (CKC) shoulder exercises (SEs) with a sling because they are safer and more effective than open-chain exercises, especially in early stages of treatment. However, the application of CKC SE in youth baseball players has rarely been attempted, although teenage baseball players also experience shoulder pain. To investigate the effects of CKC SE on the peak torque of shoulder internal rotation (IR) and external rotation (ER) in youth baseball players. Single-group pretest, posttest. Biomechanics laboratory. 23 Little League Baseball players with subacromial impingement syndrome. The CKC SE with a sling was CKC shoulder-flexion exercise, extension exercise, IR exercise, and ER exercise. This exercise regimen was conducted 2 or 3 times/wk for 8 wk. The peak torque of shoulder IR and ER was measured using an isokinetic dynamometer. Concentric shoulder rotation was performed, with 5 repetitions at an angular velocity of 60°/s and 15 at 180°/s. The IR and ER peak torque significantly increased at each angular velocity after the exercise program. In particular, the increase in IR and ER peak torque values was statistically significant at an angular velocity of 180°/s. CKC SE was effective in increasing shoulder IR and ER strength, demonstrating its potential benefits in the prevention and treatment of shoulder injury. In addition, increased IR peak torque appears to improve throwing velocity in baseball players.
Panissa, Valéria L. G.; Julio, Ursula F.; França, Vanessa; Lira, Fabio S.; Hofmann, Peter; Takito, Monica Y.; Franchini, Emerson
2016-01-01
The purpose of this study was to compare sex-related responses to a self-paced all out high-intensity intermittent exercise (HIIE). 9 women and 10 men were submitted to a maximal incremental test (to determine maximum aerobic power - MAP and VO2peak), and an HIIE cycling (60x8s:12s, effort:pause). During the protocol the mean value of V̇O2 and heart rate for the entire exercise (VO2total and HRtotal) as well as the values only in the effort or pause (V̇O2effort, VO2pause and HReffort and HRpause) relative to VO2peak were measured. Anaerobic power reserve (APR), blood lactate [La] and the respiratory exchange ratio (RER) were also measured. These variables were compared between men and women using the unpaired t test. Men used greater APR (109 ± 12%MAP vs 92 ± 6%MAP) with similar V̇O2total (74 ± 7 vs 78 ± 8% VO2peak), however, when effort and pause were analysed separately, V̇O2effort (80 ± 9 vs 80 ± 5%VO2peak) was similar between sexes, while V̇O2pause was lower in men (69 ± 6% vs 77 ± 11% VO2peak, respectively). Women presented lower power decrement (30 ± 11 vs 11 ± 3%), RER (1.04 ± 0.03 vs 1.00 ± 0.02) and [La]peak (8.6 ± 0.9 vs 5.9 ± 2.3 mmol.L-1). Thus, we can conclude that men self-paced HIIE at higher APR but with the same cardiovascular/aerobic solicitation as women. Key points Men self-paced high-intensity intermittent exercise at higher intensities than women. Men utilized greater anaerobic power reserve than women. Men and women had same cardiovascular solicitation. PMID:27274678
Matoulek, Martin; Tuka, Vladimír; Fialová, Magdalena; Nevšímalová, Soňa; Šonka, Karel
2017-06-01
Cardiopulmonary fitness depends on daily energy expenditure or the amount of daily exercise. Patients with narcolepsy spent more time being sleepy or asleep than controls; thus we may speculate that they have a lower quantity and quality of physical activity. The aim of the present study was thus to test the hypothesis that exercise tolerance in narcolepsy negatively depends on sleepiness. The cross-sectional study included 32 patients with narcolepsy with cataplexy, 10 patients with narcolepsy without cataplexy, and 36 age- and gender-matched control subjects, in whom a symptom-limited exercise stress test with expired gas analysis was performed. A linear regression analysis with multivariate models was used with stepwise variable selection. In narcolepsy patients, maximal oxygen uptake (VO 2peak ) was 30.1 ± 7.5 mL/kg/min, which was lower than 36.0 ± 7.8 mL/kg/min, p = 0.001, in controls and corresponded to 86.4% ± 20.0% of the population norm (VO 2peak %) and to a standard deviation (VO 2peak SD) of -1.08 ± 1.63 mL/kg/min of the population norm. VO 2peak depended primarily on gender (p = 0.007) and on sleepiness (p = 0.046). VO 2peak % depended on sleepiness (p = 0.028) and on age (p = 0.039). VO 2peak SD depended on the number of cataplexy episodes per month (p = 0.015) and on age (p = 0.030). Cardiopulmonary fitness in narcolepsy and in narcolepsy without cataplexy is inversely related to the degree of sleepiness and cataplexy episode frequency. Copyright © 2017 Elsevier B.V. All rights reserved.
Krieger, Eric V; Clair, Mathieu; Opotowsky, Alexander R; Landzberg, Michael J; Rhodes, Jonathan; Powell, Andrew J; Colan, Steven D; Valente, Anne Marie
2013-02-01
The role of exercise testing to risk stratify patients with repaired coarctation of the aorta (CoA) is controversial. Concentric left ventricular (LV) hypertrophy, defined as an increase in the LV mass-to-volume ratio (MVR), is associated with a greater incidence of adverse cardiovascular events. The objective of the present study was to determine whether a hypertensive response to exercise (HRE) is associated with increased LVMVR in patients with repaired CoA. Adults with repaired CoA who had a symptom-limited exercise test and cardiac magnetic resonance imaging examination within 2 years were identified. A hypertensive response to exercise was defined as a peak systolic blood pressure >220 mm Hg during a symptom-limited exercise test. The LV mass and volume were measured using cardiac magnetic resonance by an investigator who was unaware of patient status. We included 47 patients (median age 27.3 years, interquartile range 19.8 to 37.3), who had undergone CoA repair at a median age of 4.6 years (interquartile range 0.4 to 15.7). Those with (n = 11) and without (n = 36) HRE did not differ in age, age at repair, body surface area, arm-to-leg systolic blood pressure gradient, gender, or peak oxygen uptake with exercise. Those with a HRE had a greater mean systolic blood pressure at rest (146 ± 18 vs 137 ± 18 mm Hg, p = 0.04) and greater median LVMVR (0.85, interquartile range 0.7 to 1, vs 0.66, interquartile range 0.6 to 0.7; p = 0.04) than those without HRE. Adjusting for systolic blood pressure at rest, age, age at repair, and gender, the relation between HRE and LVMVR remained significant (p = 0.001). In conclusion, HRE was associated with increased LVMVR, even after adjusting for multiple covariates. Copyright © 2013 Elsevier Inc. All rights reserved.
Early 4-week cardiac rehabilitation exercise training in elderly patients after heart surgery.
Eder, Barbara; Hofmann, Peter; von Duvillard, Serge P; Brandt, Dieter; Schmid, Jean-Paul; Pokan, Rochus; Wonisch, Manfred
2010-01-01
The aim of this study was to assess the effects on exercise performance of supplementing a standard cardiac rehabilitation program with additional exercise programming compared to the standard cardiac rehabilitation program alone in elderly patients after heart surgery. In this prospective, randomized controlled trial, 60 patients (32 men and 28 women, mean age 73.1 +/- 4.7 years) completed cardiac rehabilitation (initiated 12.2 +/- 4.9 days postsurgery). Subjects were assigned to either a control group (CG, standard cardiac rehabilitation program [n = 19]), or an intervention group (IG, additional walking [n = 19], or cycle ergometry training [n = 22]). A symptom limited cardiopulmonary exercise test and 6-minute walk test (6MWT) were performed before and after 4 weeks of cardiac rehabilitation. The MacNew questionnaire was used to assess quality of life (QOL). At baseline, no significant differences for peak oxygen uptake ((.)VO2), maximal power output, or the 6MWT were detected between IG and CG. Global QOL was significantly higher in IG. After 4 weeks of cardiac rehabilitation, patients significantly improved in absolute values of the cardiopulmonary exercise test, 6MWT, and QOL scores. Significant differences between groups were found for peak (.)VO2 (IG: 18.2 +/- 3.1 mL x kg x min vs. CG: 16.5 +/- 2.2 mL x kg x min, P < .05); maximal power output (IG: 72.2 +/- 16 W vs. CG: 60.7 +/- 15 W, P < .05); 6MWT (IG: 454.8 +/- 76.3 m vs. CG: 400.5 +/- 75.5 m, P < .05); and QOL global (IG: 6.5 +/- 0.5 vs. CG: 6.3 +/- 0.6, P < .05). The supplementation of additional walking or cycle exercise training to standard cardiac rehabilitation programming compared to standard cardiac rehabilitation alone in elderly patients after heart surgery leads to significantly better exercise tolerance.
Youdas, James W; Hartman, James P; Murphy, Brooke A; Rundle, Ashley M; Ugorowski, Jenna M; Hollman, John H
2017-02-01
Hip extension strengthening exercises which maximize gluteus maximus contributions and minimize hamstring influences may be beneficial for persons with hip pain. This study's aim was to compare muscle activation of the gluteus maximus and hamstrings from healthy subjects during a supine resisted hip extension exercise versus supine unilateral bridge to neutral. Surface electromyographic (EMG) signals were obtained from the right gluteus maximus and hamstrings in 13 healthy male and 13 healthy female subjects. Maximum voluntary isometric contractions (MVICs) were collected to normalize data and permit meaningful comparisons across muscles. Peak median activation of the gluteus maximus was 33.8% MVIC for the bridge and 34.7% MVIC for the hip extension exercise, whereas peak median recruitment for hamstrings was 28.4% MVIC for the bridge and 51% MVIC for the hip extension exercise. The gluteus maximus to hamstrings ratio was compared between the two exercises using the Wilcoxon signed-ranks test (α = 0.05). The ratio (p = 0.014) was greater in the supine unilateral bridge (median = 111.3%) than supine hip extension exercise (median = 59.2%), suggesting a reduction of hamstring recruitment in the unilateral bridge to neutral compared to the supine resisted hip extension exercise. The supine hip extension exercise demonstrated higher EMG activity of hamstrings in comparison with supine unilateral bridge and, therefore, may be less appropriate in subjects who need to increase gluteus maximus activation.
Peak Velocity as an Alternative Method for Training Prescription in Mice.
Picoli, Caroline de Carvalho; Romero, Paulo Vitor da Silva; Gilio, Gustavo R; Guariglia, Débora A; Tófolo, Laize P; de Moraes, Solange M F; Machado, Fabiana A; Peres, Sidney B
2018-01-01
Purpose: To compare the efficiency of an aerobic physical training program prescribed according to either velocity associated with maximum oxygen uptake (vVO 2max ) or peak running speed obtained during an incremental treadmill test (V peak_K ) in mice. Methods: Twenty male Swiss mice, 60 days old, were randomly divided into two groups with 10 animals each: 1. group trained by vVO 2max (GVO 2 ), 2. group trained by V peak_K (GVP). After the adaptation training period, an incremental test was performed at the beginning of each week to adjust training load and to determine the amount of VO 2 and VCO 2 fluxes consumed, energy expenditure (EE) and run distance during the incremental test. Mice were submitted to 4 weeks of aerobic exercise training of moderate intensity (velocity referring to 70% of vVO 2max and V peak_K ) in a programmable treadmill. The sessions lasted from 30 to 40 min in the first week, to reach 60 min in the fourth week, in order to provide the mice with a moderate intensity exercise, totaling 20 training sessions. Results: Mice demonstrated increases in VO 2max (ml·kg -1 ·min -1 ) (GVO 2 = 49.1% and GVP = 56.2%), V peak_K (cm·s -1 ) (GVO 2 = 50.9% and GVP = 22.3%), EE (ml·kg -0,75 ·min -1 ) (GVO 2 = 39.9% and GVP = 51.5%), and run distance (cm) (GVO 2 = 43.5% and GVP = 33.4%), after 4 weeks of aerobic training (time effect, P < 0.05); there were no differences between the groups. Conclusions: V peak_K , as well as vVO 2max , can be adopted as an alternative test to determine the performance and correct prescription of systemized aerobic protocol training to mice.
Carvalho, Vitor Oliveira; Guimarães, Guilherme Veiga; Ciolac, Emmanuel Gomes; Bocchi, Edimar Alcides
2008-01-01
BACKGROUND Calculating the maximum heart rate for age is one method to characterize the maximum effort of an individual. Although this method is commonly used, little is known about heart rate dynamics in optimized beta-blocked heart failure patients. AIM The aim of this study was to evaluate heart rate dynamics (basal, peak and % heart rate increase) in optimized beta-blocked heart failure patients compared to sedentary, normal individuals (controls) during a treadmill cardiopulmonary exercise test. METHODS Twenty-five heart failure patients (49±11 years, 76% male), with an average LVEF of 30±7%, and fourteen controls were included in the study. Patients with atrial fibrillation, a pacemaker or noncardiovascular functional limitations or whose drug therapy was not optimized were excluded. Optimization was considered to be 50 mg/day or more of carvedilol, with a basal heart rate between 50 to 60 bpm that was maintained for 3 months. RESULTS Basal heart rate was lower in heart failure patients (57±3 bpm) compared to controls (89±14 bpm; p<0.0001). Similarly, the peak heart rate (% maximum predicted for age) was lower in HF patients (65.4±11.1%) compared to controls (98.6±2.2; p<0.0001). Maximum respiratory exchange ratio did not differ between the groups (1.2±0.5 for controls and 1.15±1 for heart failure patients; p=0.42). All controls reached the maximum heart rate for their age, while no patients in the heart failure group reached the maximum. Moreover, the % increase of heart rate from rest to peak exercise between heart failure (48±9%) and control (53±8%) was not different (p=0.157). CONCLUSION No patient in the heart failure group reached the maximum heart rate for their age during a treadmill cardiopulmonary exercise test, despite the fact that the percentage increase of heart rate was similar to sedentary normal subjects. A heart rate increase in optimized beta-blocked heart failure patients during cardiopulmonary exercise test over 65% of the maximum age-adjusted value should be considered an effort near the maximum. This information may be useful in rehabilitation programs and ischemic tests, although further studies are required. PMID:18719758
Feasibility of ballistic strengthening exercises in neurologic rehabilitation.
Williams, Gavin; Clark, Ross A; Hansson, Jessica; Paterson, Kade
2014-09-01
Conventional methods for strength training in neurologic rehabilitation are not task specific for walking. Ballistic strength training was developed to improve the functional transfer of strength training; however, no research has investigated this in neurologic populations. The aim of this pilot study was to evaluate the feasibility of applying ballistic principles to conventional leg strengthening exercises in individuals with mobility limitations as a result of neurologic injuries. Eleven individuals with neurologic injuries completed seated and reclined leg press using conventional and ballistic techniques. A 2 × 2 repeated-measures analysis of variance was used to compare power measures (peak movement height and peak velocity) between exercises and conditions. Peak jump velocity and peak jump height were greater when using the ballistic jump technique rather than the conventional concentric technique (P < 0.01). These findings suggest that when compared with conventional strengthening exercises, the incorporation of ballistic principles was associated with increased peak height and peak velocities.
Spiroski, Dejan; Andjić, Mojsije; Stojanović, Olivera Ilić; Lazović, Milica; Dikić, Ana Djordjević; Ostojić, Miodrag; Beleslin, Branko; Kostić, Snežana; Zdravković, Marija; Lović, Dragan
2017-05-01
Exercise-based rehabilitation is an important part of treatment patients following coronary artery bypass graft (CABG) surgery. To evaluate effect of very short/short-term exercise training on cardiopulmonary exercise testing (CPET) parameters. We studied 54 consecutive patients with myocardial infarction (MI) treated with CABG surgery referred for rehabilitation. The study population consisted of 50 men and 4 women (age 57.72 ± 7.61 years, left ventricular ejection fraction 55% ± 5.81%), who participated in a 3-week clinical and 6-month outpatient cardiac rehabilitation program. The Inpatient program consisted of cycling 7 times/week and daily walking for 45 minutes. The outpatient program consisted mainly of walking 5 times/week for 45 minutes and cycling 3 times/week. All patients performed symptom-limited CPET on a bicycle ergometer with a ramp protocol of 10 W/minute at the start, for 3 weeks, and for 6 months. After 3 weeks of an exercise-based cardiac rehabilitation program, exercise tolerance improved as compared to baseline, as well as peak respiratory exchange ratio. Most importantly, peak VO 2 (16.35 ± 3.83 vs 17.88 ± 4.25 mL/kg/min, respectively, P < 0.05), peak VCO 2 (1.48 ± 0.40 vs 1.68 ± 0.43, respectively, P < 0.05), peak ventilatory exchange (44.52 ± 11.32 vs 52.56 ± 12.37 L/min, respectively, P < 0.05), and peak breathing reserve (52.00% ± 13.73% vs 45.75% ± 14.84%, respectively, P < 0.05) were also improved. The same improvement trend continued after 6 months (respectively, P < 0.001 and P < 0.0001). No major adverse cardiac events were noted during the rehabilitation program. Very short/short-term exercise training in patients with MI treated with CABG surgery is safe and improves functional capacity. © 2017 Wiley Periodicals, Inc.
Woodfield, John; Zacharias, Matthew; Wilson, Genevieve; Munro, Fran; Thomas, Kate; Gray, Andrew; Baldi, James
2018-06-25
Risk factors, such as the number of pre-existing co-morbidities, the extent of the underlying pathology and the magnitude of the required operation, cannot be changed before surgery. It may, however, be possible to improve the cardiopulmonary fitness of the patient with an individualised exercise program. We are performing a randomised controlled trial (RCT) assessing the impact of High Intensity Interval Training (HIIT) on preoperative cardiopulmonary fitness and postoperative outcomes in patients undergoing major abdominal surgery. Consecutive eligible patients undergoing elective abdominal surgery are being randomised to HIIT or standard care in a 1:1 ratio. Participants allocated to HIIT will perform 14 exercise sessions on a stationary cycle ergometer, over a period of 4-6 weeks before surgery. The sessions, which are individualised, aim to start with ten repeated 1-min blocks of intense exercise with a target of reaching a heart rate exceeding 90% of the age predicted maximum, followed by 1 min of lower intensity cycling. As endurance improves, the duration of exercise is increased to achieve five 2-min intervals of high intensity exercise followed by 2 min of lower intensity cycling. Each training session lasts approximately 30 min. The primary endpoint, change in peak oxygen consumption (Peak VO 2 ) measured during cardiopulmonary exercise testing, is assessed at baseline and before surgery. Secondary endpoints include postoperative complications, length of hospital stay and three clinically validated scores: the surgical recovery scale; the postoperative morbidity survey; and the SF-36 quality of life score. The standard deviation for changes in Peak VO 2 will be assessed after the first 30 patients and will be used to calculate the required sample size. We want to assess if 14 sessions of HIIT is sufficient to improve Peak VO 2 by 2 mL/kg/min in patients undergoing major abdominal surgery and to explore the best clinical endpoint for a subsequent RCT designed to assess if improving Peak VO 2 will translate into improving clinical outcomes after surgery. Australian New Zealand Clinical Trials Registry, ACTRN12617000587303 . Registered on 26 April 2017.
Billinger, Sandra A; Vidoni, Eric D; Greer, Colby S; Graves, Rasinio S; Mattlage, Anna E; Burns, Jeffrey M
2014-09-01
To retrospectively assess whether cardiopulmonary exercise testing would be well tolerated in individuals with Alzheimer disease (AD) compared with a nondemented peer group. We retrospectively reviewed 575 cardiopulmonary exercise tests (CPETs) in individuals with and without cognitive impairment caused by AD. University medical center. Exercise tests (N=575) were reviewed for nondemented individuals (n=340) and those with AD-related cognitive impairment (n=235). Not applicable. The main outcome measure for this study was reporting the reason for CPET termination. The hypothesis reported was formulated after data collection. We found that in cognitively impaired individuals, CPETs were terminated because of fall risk more often, but that overall test termination was infrequent-5.5% versus 2.1% (P=.04) in peers without cognitive impairment. We recorded 6 cardiovascular and 7 fall risk events in those with AD, compared with 7 cardiovascular and 0 fall risk events in those without cognitive impairment. Our findings support using CPETs to assess peak oxygen consumption in older adults with cognitive impairment caused by AD. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Chomsky, D B; Lang, C C; Rayos, G; Wilson, J R
1997-08-01
Patients with heart failure frequently have elevated intracardiac diastolic pressures but no clinical evidence of excess fluid retention. We speculated that such pressure elevations may indicate subclinical fluid retention and that removal of this fluid could improve exercise intolerance. To test this hypothesis, we studied 10 patients with right atrial pressure > or = 8 mm Hg but without rales, edema, or apparent jugular venous distension. Right-sided heart catheterization was performed, after which patients underwent maximal treadmill cardiopulmonary testing. Patients were then hospitalized and underwent maximal diuresis, after which exercise was repeated. Before diuresis, right atrial pressure averaged 16 +/- 5 mm Hg (+/-standard deviation), pulmonary capillary wedge pressure 30 +/- 6 mm Hg, and peak exercise Vo2 11.2 +/- 2.3 ml/min/ kg. Patients underwent diuresis of 4.5 +/- 2.2 kg over 4 +/- 2 days to a resting right atrial pressure of 6 +/- 4 and wedge pressure of 19 +/- 7 mm Hg. After diuresis, all patients reported overall symptomatic improvement. Maximal exercise duration increased significantly from 9.2 +/- 4.2 to 12.5 +/- 4.7 minutes. At matched peak workloads, significant improvements were also seen in minute ventilation (45 +/- 12 to 35 +/- 9 L/min), lactate levels (42 +/- 16 to 29 +/- 9 mg/dl), and Borg dyspnea scores (15 +/- 3 to 12 +/- 4) (all p < 0.05). Invasive hemodynamic monitoring allows the identification of excess fluid retention in patients with heart failure when there are no clinical signs of fluid overload. Removal of this subclinical excess fluid improves exercise performance and exertional dyspnea.
Gutmann, B; Zimmer, P; Hülsdünker, T; Lefebvre, J; Binnebößel, S; Oberste, M; Bloch, W; Strüder, H K; Mierau, A
2018-03-06
Acute physical exercise (APE) induces an increase in the individual alpha peak frequency (iAPF), a cortical parameter associated with neural information processing speed. The aim of this study was to further scrutinize the influence of different APE intensities on post-exercise iAPF as well as its time course after exercise cessation. 95 healthy young (18-35 years) subjects participated in two randomized controlled experiments (EX1 and EX2). In EX1, all participants completed a graded exercise test (GXT) until exhaustion and were randomly allocated into different delay groups (immediately 0, 30, 60 and 90 min after GXT). The iAPF was determined before, immediately after as well as after the group-specific delay following the GXT. In EX2, participants exercised for 35 min at either 45-50%, 65-70% or 85-90% of their maximum heart rate (HR max ). The iAPF was determined before, immediately after as well as 20 min after exercise cessation. In EX1, the iAPF was significantly increased immediately after the GXT in all groups. This effect was not any more detectable after 30 min following exercise cessation. In EX2, a significant increase of the iAPF was found only after high-intensity (85-90% HR max ) exercise. The results indicate intense or exhaustive physical exercise is required to induce a transient increase in the iAPF that persists about 30 min following exercise cessation. Based on these findings, further research will have to scrutinize the behavioral implications associated with iAPF modulations following exercise. Copyright © 2018. Published by Elsevier B.V.
Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry.
De Souza Silveira, Raul; Carlsohn, Anja; Langen, Georg; Mayer, Frank; Scharhag-Rosenberger, Friederike
2016-01-01
Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fatpeak) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fatpeak as well as its actual velocity (VPFO) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of VPFO and Fatpeak during treadmill ergometry running. Sixteen recreational athletes (f = 7, m = 9; 25 ± 3 y; 1.76 ± 0.09 m; 68.3 ± 13.7 kg; 23.1 ± 2.9 kg/m(2)) performed 2 different running protocols on 3 different days with standardized nutrition the day before testing. At day 1, peak oxygen uptake (VO2peak) and the velocities at the aerobic threshold (VLT) and respiratory exchange ratio (RER) of 1.00 (VRER) were assessed. At days 2 and 3, subjects ran an identical submaximal incremental test (Fat-peak test) composed of a 10 min warm-up (70 % VLT) followed by 5 stages of 6 min with equal increments (stage 1 = VLT, stage 5 = VRER). Breath-by-breath gas exchange data was measured continuously and used to determine fat oxidation rates. A third order polynomial function was used to identify VPFO and subsequently Fatpeak. The reproducibility and variability of variables was verified with an intraclass correlation coefficient (ICC), Pearson's correlation coefficient, coefficient of variation (CV) and the mean differences (bias) ± 95 % limits of agreement (LoA). ICC, Pearson's correlation and CV for VPFO and Fatpeak were 0.98, 0.97, 5.0 %; and 0.90, 0.81, 7.0 %, respectively. Bias ± 95 % LoA was -0.3 ± 0.9 km/h for VPFO and -2 ± 8 % of VO2peak for Fatpeak. In summary, relative and absolute reliability indicators for VPFO and Fatpeak were found to be excellent. The observed LoA may now serve as a basis for future training prescriptions, although fat oxidation rates at prolonged exercise bouts at this intensity still need to be investigated.
Clinical Model of Exercise-Related Dyspnea in Adult Patients With Cystic Fibrosis.
Stevens, Daniel; Neyedli, Heather F
2018-05-01
Dyspnea is a highly distressing symptom of pulmonary disease that can make performing physical activities challenging. However, little is known regarding the strongest predictors of exercise-related dyspnea in adult cystic fibrosis (CF). Therefore, the purpose of the present study was to determine the best clinical model of exercise-related dyspnea in this patient group. A retrospective analysis of pulmonary function and cardiopulmonary exercise testing data from patients with CF being followed up at the Adult CF Program at St Michael's Hospital, Toronto, Canada, from 2002 to 2008 were used for the analysis. Patients (n = 88) were male 66%; aged 30.4 ± 9.4 years; body mass index (BMI) 23.1 ± 3.3 kg/m; forced expiratory volume in 1 second (FEV1) 70% ± 19% predicted; and peak oxygen uptake 74% ± 20% predicted. A multivariate linear regression model assessing the effects of age, sex, BMI, airway obstruction (FEV1), perceived muscular leg fatigue, and dynamic hyperinflation explained 54% of the variance in dyspnea severity at peak exercise (P < .01). Relative importance analysis showed that the presence of dynamic hyperinflation and perceived muscular leg fatigue were the largest contributors. Pulmonary rehabilitation programs may consider strategies to reduce dynamic hyperinflation and promote muscular function to best improve exercise-related dyspnea in this patient group.
Evaluating Upper-Body Strength and Power From a Single Test: The Ballistic Push-up.
Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R
2017-05-01
Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Evaluating upper-body strength and power from a single test: the ballistic push-up. J Strength Cond Res 31(5): 1338-1345, 2017-The purpose of this study was to examine the reliability of the ballistic push-up (BPU) exercise and to develop a prediction model for both maximal strength (1 repetition maximum [1RM]) in the bench press exercise and upper-body power. Sixty recreationally active men completed a 1RM bench press and 2 BPU assessments in 3 separate testing sessions. Peak and mean force, peak and mean rate of force development, net impulse, peak velocity, flight time, and peak and mean power were determined. Intraclass correlation coefficients were used to examine the reliability of the BPU. Stepwise linear regression was used to develop 1RM bench press and power prediction equations. Intraclass correlation coefficient's ranged from 0.849 to 0.971 for the BPU measurements. Multiple regression analysis provided the following 1RM bench press prediction equation: 1RM = 0.31 × Mean Force - 1.64 × Body Mass + 0.70 (R = 0.837, standard error of the estimate [SEE] = 11 kg); time-based power prediction equation: Peak Power = 11.0 × Body Mass + 2012.3 × Flight Time - 338.0 (R = 0.658, SEE = 150 W), Mean Power = 6.7 × Body Mass + 1004.4 × Flight Time - 224.6 (R = 0.664, SEE = 82 W); and velocity-based power prediction equation: Peak Power = 8.1 × Body Mass + 818.6 × Peak Velocity - 762.0 (R = 0.797, SEE = 115 W); Mean Power = 5.2 × Body Mass + 435.9 × Peak Velocity - 467.7 (R = 0.838, SEE = 57 W). The BPU is a reliable test for both upper-body strength and power. Results indicate that the mean force generated from the BPU can be used to predict 1RM bench press, whereas peak velocity and flight time measured during the BPU can be used to predict upper-body power. These findings support the potential use of the BPU as a valid method to evaluate upper-body strength and power.
Myocardial perfusion imaging in patients with a recent, normal exercise test.
Bovin, Ann; Klausen, Ib C; Petersen, Lars J
2013-03-26
To investigate the added value of myocardial perfusion scintigraphy imaging (MPI) in consecutive patients with suspected coronary artery disease (CAD) and a recent, normal exercise electrocardiography (ECG). This study was a retrospective analysis of consecutive patients referred for MPI during a 2-year period from 2006-2007 at one clinic. All eligible patients were suspected of suffering from CAD, and had performed a satisfactory bicycle exercise test (i.e., peak heart rate > 85% of the expected, age-predicted maximum) within 6 mo of referral, their exercise ECG was had no signs of ischemia, there was no exercise-limiting angina, and no cardiac events occurred between the exercise test and referral. The patients subsequently underwent a standard 2-d, stress-rest exercise MPI. Ischemia was defined based on visual scoring supported by quantitative segmental analysis (i.e., sum of stress score > 3). The results of cardiac catheterization were analyzed, and clinical follow up was performed by review of electronic medical files. A total of 56 patients fulfilled the eligibility criteria. Most patients had a low or intermediate ATPIII pre-test risk of CAD (6 patients had a high pre-test risk). The referral exercise test showed a mean Duke score of 5 (range: 2 to 11), which translated to a low post-exercise risk in 66% and intermediate risk in 34%. A total of seven patients were reported with ischemia by MPI. Three of these patients had high ATPIII pre-test risk scores. Six of these seven patients underwent cardiac catheterization, which showed significant stenosis in one patient with a high pre-test risk of CAD, and indeterminate lesions in three patients (two of whom had high pre-test risk scores). With MPI as a gate keeper for catheterization, no significant, epicardial stenosis was observed in any of the 50 patients (0%, 95% confidence interval 0.0 to 7.1) with low to intermediate pre-test risk of CAD and a negative exercise test. No cardiac events occurred in any patients within a median follow up period of > 1200 d. The added diagnostic value of MPI in patients with low or intermediate risk of CAD and a recent, normal exercise test is marginal.
Węgrzynowska-Teodorczyk, Kinga; Mozdzanowska, Dagmara; Josiak, Krystian; Siennicka, Agnieszka; Nowakowska, Katarzyna; Banasiak, Waldemar; Jankowska, Ewa A; Ponikowski, Piotr; Woźniewski, Marek
2016-08-01
The consequence of exercise intolerance for patients with heart failure is the difficulty climbing stairs. The two-minute step test is a test that reflects the activity of climbing stairs. The aim of the study design is to evaluate the applicability of the two-minute step test in an assessment of exercise tolerance in patients with heart failure and the association between the six-minute walk test and the two-minute step test. Participants in this study were 168 men with systolic heart failure (New York Heart Association (NYHA) class I-IV). In the study we used the two-minute step test, the six-minute walk test, the cardiopulmonary exercise test and isometric dynamometer armchair. Patients who performed more steps during the two-minute step test covered a longer distance during the six-minute walk test (r = 0.45). The quadriceps strength was correlated with the two-minute step test and the six-minute walk test (r = 0.61 and r = 0.48). The greater number of steps performed during the two-minute step test was associated with higher values of peak oxygen consumption (r = 0.33), ventilatory response to exercise slope (r = -0.17) and longer time of exercise during the cardiopulmonary exercise test (r = 0.34). Fatigue and leg fatigue were greater after the two-minute step test than the six-minute walk test whereas dyspnoea and blood pressure responses were similar. The two-minute step test is well tolerated by patients with heart failure and may thus be considered as an alternative for the six-minute walk test. © The European Society of Cardiology 2016.
Emphysema on Thoracic CT and Exercise Ventilatory Inefficiency in Mild-to-Moderate COPD.
Jones, Joshua H; Zelt, Joel T; Hirai, Daniel M; Diniz, Camilla V; Zaza, Aida; O'Donnell, Denis E; Neder, J Alberto
2017-04-01
There is growing evidence that emphysema on thoracic computed tomography (CT) is associated with poor exercise tolerance in COPD patients with only mild-to-moderate airflow obstruction. We hypothesized that an excessive ventilatory response to exercise (ventilatory inefficiency) would underlie these abnormalities. In a prospective study, 19 patients (FEV 1 = 82 ± 13%, 12 Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 1) and 26 controls underwent an incremental exercise test. Ventilatory inefficiency was assessed by the ventilation ([Formula: see text]E)/CO 2 output ([Formula: see text]CO 2 ) nadir. Pulmonary blood flow (PBF) in a submaximal test was calculated by inert gas rebreathing. Emphysema was quantified as % of attenuation areas below 950 HU. Patients typically presented with centrilobular emphysema (76.8 ± 10.1% of total emphysema) in the upper lobes (upper/total lung ratio = 0.82 ± 0.04). They had lower peak oxygen uptake ([Formula: see text]O 2 ), higher [Formula: see text]E/[Formula: see text]CO 2 nadir, and greater dyspnea scores than controls (p < 0.05). Lower peak [Formula: see text]O 2 and worse dyspnea were found in patients with higher [Formula: see text]E/[Formula: see text]CO 2 nadirs (≥30). Patients had blunted increases in PBF from rest to iso-[Formula: see text]O 2 exercise (p < 0.05). Higher [Formula: see text]E/[Formula: see text]CO 2 nadir in COPD was associated with emphysema severity (r = 0.63) which, in turn, was related to reduced lung diffusing capacity (r = -0.72) and blunted changes in PBF from rest to exercise (r = -0.69) (p < 0.01). Ventilation "wasted" in emphysematous areas is associated with impaired exercise ventilatory efficiency in mild-to-moderate COPD. Exercise ventilatory inefficiency links structure (emphysema) and function (D L CO) to a key clinical outcome (poor exercise tolerance) in COPD patients with only modest spirometric abnormalities.
Windisch, Stephanie; Seiberl, Wolfgang; Schwirtz, Ansgar; Hahn, Daniel
2017-01-01
The aim of this study was to quantify the physical demands of a simulated firefighting circuit and to establish the relationship between job performance and endurance and strength fitness measurements. On four separate days 41 professional firefighters (39 ± 9 yr, 179.6 ± 2.3 cm, 84.4 ± 9.2 kg, BMI 26.1 ± 2.8 kg/m2) performed treadmill testing, fitness testing (strength, balance and flexibility) and a simulated firefighting exercise. The firefighting exercise included ladder climbing (20 m), treadmill walking (200 m), pulling a wire rope hoist (15 times) and crawling an orientation section (50 m). Firefighting performance during the simulated exercise was evaluated by a simple time-strain-air depletion model (TSA) taking the sum of z-transformed parameters of time to finish the exercise, strain in terms of mean heart rate, and air depletion from the breathing apparatus. Multiple regression analysis based on the TSA-model served for the identification of the physiological determinants most relevant for professional firefighting. Three main factors with great influence on firefighting performance were identified (70.1% of total explained variance): VO2peak, the time firefighter exercised below their individual ventilatory threshold and mean breathing frequency. Based on the identified main factors influencing firefighting performance we recommend a periodic preventive health screening for incumbents to monitor peak VO2 and individual ventilatory threshold. PMID:28303944
Formenti, Damiano; Ludwig, Nicola; Gargano, Marco; Bosio, Andrea; Rampinini, Ermanno; Alberti, Giampietro
2018-01-01
Although moderate relationships (|r| ∼ 0.5) were reported between skin temperature and performance-related variables (e.g., kinetic), it remains unclear whether skin temperature asymmetry reflects muscle force imbalance in cycling. Therefore, the aim of this study was to assess whether a relationship exists between kinetic and thermal asymmetry during a fatiguing exercise. Ten elite cyclists were enrolled and tested on a maximal incremental cycling test. Peak crank torques of both legs were obtained at the initial and final workload. Likewise, bilateral skin temperatures were recorded before and after exercise. Asymmetric indexes were also calculated for kinetic (AIK) and skin temperature (AIT) outcomes. The bilateral peak crank torques showed a larger difference at the final compared to the initial workload (p < 0.05) of the incremental exercise. Conversely, the bilateral skin temperature did not show any differences at both initial and final workload (p > 0.05). Additionally, trivial relationships were reported between AIK and AIT (−0.3 < r < 0.2) at the initial and final workload. The obtained results showed that changes in bilateral kinetic values did not reflect concurrent changes in bilateral skin temperatures. This finding emphasizes the difficulty of associating the asymmetry of skin temperature with those of muscle effort in elite cyclists. Lastly, our study also provided further insights on thermal skin responses during exhaustive cycling exercise in very highly-trained athletes. PMID:29507831
Lower skin temperature decreases maximal cycling performance.
Imai, Daiki; Okazaki, Kazunobu; Matsumura, Shinya; Suzuki, Takashi; Miyazawa, Taiki; Suzuki, Akina; Takeda, Ryosuke; Hamamoto, Takeshi; Zako, Tetsuo; Kawabata, Takashi; Miyagawa, Toshiaki
2011-12-01
It is known that external cooling of body regions involved in exercise, prior to exercise, decreases anaerobic performance. However, there have been no studies reporting the effects of whole body skin surface cooling before exercise on maximal anaerobic capacity. In order to clarify the effects, we compared power output during the Wingate anaerobic test between preconditioning by exposure to temperature 10 degrees C and 25 degrees C. Eight healthy males carried out the Wingate test for 30 seconds, after pre-conditioning for 60 minutes using a perfusion suit with water at a temperature of 10 degrees C or 25 degrees C. We evaluated the peak power (PP) and peak power slope (PS) of the power output. Mean skin temperature (T(sk)) at 60 minutes of pre-conditioning in the 10 degrees C trial was significantly lower than in the 25 degrees C trial (p < 0.05). PP and also PS were significantly lower in the 10 degrees C trial than in the 25 degrees C trial. Changes (Δ) in PP between the 10 degrees C trial and the 25 degrees C trial were strongly correlated with ΔT(sk) and Δ in thigh and leg skin temperature (ΔT(thigh) and ΔT(leg), respectively), whereas ΔPS was strongly correlated with ΔT(sk), but not with ΔT(thigh) and ΔT(leg). Whole body skin surface cooling prior to exercise restricts anaerobic capacity, especially in the initial phase of exercise.
[Exercise in haemodyalisis patients: a literature systematic review].
Segura-Ortí, Eva
2010-01-01
Exercise as a therapeutic tool used in End-stage renal disease patients (ESRD) in hemodialysis (HD) is not routinately applied, as it occurs with cardiac or respiratory patients. Lack of awareness of research in this field may contribute to the current situation. Thus, the aims of this review are: 1) to systematically review the literature of exercise training on adult HD patients or patients at a pre-HD stage; 2) to show the evidence on the benefits of exercise for counteracting physiological, functional and psychological impairments found even in older ESRD patients; 3) to recommend requirements of future research in order to include exercise prescription in the HD patients treatment. The Data bases reviewed from 2005 to 2009 were: MEDLINE (Ovid), CINAHL (EBSCOHost), SportDicus (EBSCOHost), Academic Search Complete (EBSCOHost), Fuente Académica (EBSCOHost), MedicLatina (EBSCOHost), PEDro y PubMed. Additionally, references from identified articles, several reviews on ESRD and abstracts to Nephrology Congresses were also reviewed. Randomized Controlled Trials on aerobic, strength and combined programs for HD patients were selected. Data from the studies was compiled and Van Tulder criteria were used for methodological quality assessment. Metanalysis included 6 studies on aerobic exercise, 2 on strength exercise and 5 on combined exercise programs. 640 patients were included in 16 included studies. Effects on physical function, health related quality of life and other secondary measurements were summarized by the Standardized Mean Difference (SMD) Moderate evidence exists on positive effects of aerobic training on peak oxygen consumption at the graded exercise test (SMD 6.55; CI 95%: 4.31-8.78). There is high evidence on positive effects of strength training on health related quality of life (SMD 11.03; CI 95%: 5.63-16.43). Finally, moderate evidence exists on positive effects of combined exercise on peak oxygen consumption at the graded exercise test (SMD 5.57; CI 95%: 2.52-8.61). Summarizing, moderate evidence exists on the improvement on exercise capacity of aerobic training, isolated or combined with strength training. Strength training improves health related quality of life, functional capacity and lower limbs strength. Future studies should clarify which out of the three modalities results in higher benefits for HD patients.
Test-retest reliability of barbell velocity during the free-weight bench-press exercise.
Stock, Matt S; Beck, Travis W; DeFreitas, Jason M; Dillon, Michael A
2011-01-01
The purpose of this study was to calculate test-retest reliability statistics for peak barbell velocity during the free-weight bench-press exercise for loads corresponding to 10-90% of the 1-repetition maximum (1RM). Twenty-one healthy, resistance-trained men (mean ± SD age = 23.5 ± 2.7 years; body mass = 90.5 ± 14.6 kg; 1RM bench press = 125.4 ± 18.4 kg) volunteered for this study. A minimum of 48 hours after a maximal strength testing and familiarization session, the subjects performed single repetitions of the free-weight bench-press exercise at each tenth percentile (10-90%) of the 1RM on 2 separate occasions. For each repetition, the subjects were instructed to press the barbell as rapidly as possible, and peak barbell velocity was measured with a Tendo Weightlifting Analyzer. The test-retest intraclass correlation coefficients (model 2,1) and corresponding standard errors of measurement (expressed as percentages of the mean barbell velocity values) were 0.717 (4.2%), 0.572 (5.0%), 0.805 (3.1%), 0.669 (4.7%), 0.790 (4.6%), 0.785 (4.8%), 0.811 (5.8%), 0.714 (10.3%), and 0.594 (12.6%) for the weights corresponding to 10-90% 1RM. There were no mean differences between the barbell velocity values from trials 1 and 2. These results indicated moderate to high test-retest reliability for barbell velocity from 10 to 70% 1RM but decreased consistency at 80 and 90% 1RM. When examining barbell velocity during the free-weight bench-press exercise, greater measurement error must be overcome at 80 and 90% 1RM to be confident that an observed change is meaningful.
Hubbard, Matthew; McCullough-Shock, Tiffany; Simms, Kay; Cheng, Dunlei; Hartman, Julie; Strauss, Danielle; Anderson, Valerie; Lawrence, Anne; Malorzo, Emily
2010-01-01
Patients in cardiac rehabilitation are typically advised to complete a period of supervised endurance training before beginning resistance training. In this study, however, we compared the peak rate-pressure product (RPP, a calculated indicator of myocardial work) of patients during two types of exercise—treadmill walking and chest press—from workout session 1 through completion of cardiac rehabilitation. Twenty-one patients (4 women and 17 men, aged 35 to 70 years) were enrolled in the study; they were referred for cardiac rehabilitation after myocardial infarction, percutaneous coronary intervention, or both. The participants did treadmill walking and chest press exercises during each workout session. Peak values for heart rate (HR) and systolic blood pressure (SBP) were recorded, and the peak RPP was calculated (peak HR ⊠ peak SBP). Paired t tests were used to compare the data collected during the two types of exercise across 19 workout sessions. The mean peak values for HR, SBP, and RPP were lower during resistance training than during endurance training; the differences were statistically significant (P < 0.05), with only one exception (the SBP for session 1). Across all 19 workout sessions, the participants performed more myocardial work, as indicated by the peak RPP, during treadmill walking than during the chest press. PMID:20396420
Gkaliagkousi, Eugenia; Gavriilaki, Eleni; Yiannaki, Efi; Markala, Dimitra; Papadopoulos, Nikolaos; Triantafyllou, Areti; Anyfanti, Panagiota; Petidis, Konstantinos; Garypidou, Vasileia; Doumas, Michael; Ferro, Albert; Douma, Stella
2014-04-01
Acute exercise may exert deleterious effects on the cardiovascular system through a variety of pathophysiological mechanisms, including increased platelet activation. However, the degree of exercise-induced platelet activation in untreated hypertensive (UH) individuals as compared with normotensive (NT) individuals has yet to be established. Furthermore, the effect of antihypertensive treatment on exercise-induced platelet activation in essential hypertension (EH) remains unknown. Study 1 consisted of 30 UH and 15 NT subjects. UH subjects who received treatment were included in study 2 and were followed-up after a 3-month treatment period with an angiotensin II receptor blocker (ARB; valsartan). Circulating monocyte-platelet aggregates (MPA) and platelet P-selectin were measured as platelet activation markers at baseline, immediately after a treadmill exercise test, and 10, 30, and 90 minutes later. Maximal platelet activation was observed at 10 minutes after peak exercise in both groups. In UH subjects, MPA levels remained increased at 30 minutes after peak exercise, despite BP fall to baseline levels. MPA levels were significantly higher in UH subjects than NT subjects at maximal exercise and at 10 and 30 minutes of recovery. Post-treatment MPA levels increased significantly only at 10 minutes into recovery and were similar to those of NT subjects. Acute high-intensity exercise exaggerates platelet activation in untreated patients with EH compared with NT individuals. Angiotensin II receptor blockade with adequate BP control greatly improves exercise-induced platelet activation in EH. Further studies are needed to clarify whether this phenomenon depends purely on BP lowering or benefits also from the pleiotropic effects of ARBs.
Improved Arterial–Ventricular Coupling in Metabolic Syndrome after Exercise Training
Fournier, Sara B.; Donley, David A.; Bonner, Daniel E.; DeVallance, Evan; Olfert, I. Mark; Chantler, Paul D.
2014-01-01
Purpose The metabolic syndrome (MetS) is associated with a three-fold increase risk of cardiovascular (CV) morbidity and mortality, which is in part, due to a blunted CV reserve capacity, reflected by a reduced peak exercise left ventricular contractility and aerobic capacity, and a blunted peak arterial-ventricular coupling. To date, no study has examined whether aerobic exercise training in MetS can reverse the peak exercise CV dysfunction. Further, examining how exercise training alters CV function in a group of individuals with MetS prior to the development of diabetes and/or overt CVD, can provide insights into whether some of the pathophysiological changes to the CV can be delayed/reversed, lowering their CV risk. The objective of this study was to examine the effects of 8 weeks of aerobic exercise training in individuals with MetS on resting and peak exercise CV function. Methods Twenty MetS underwent either 8 weeks of aerobic exercise training (MetS-ExT; n=10) or remained sedentary (MetS-NonT; n=10) during this time period. Resting and peak exercise CV function was characterized using Doppler echocardiography and gas exchange. Results Exercise training did not alter resting left ventricular diastolic or systolic function and arterial-ventricular coupling in MetS. In contrast, at peak exercise an increase in LV contractility (40%, p<0.01), cardiac output (28%, p<0.05) and aerobic capacity (20%, p<0.01), while a reduction in vascular resistance (30%, p<0.05) and arterial-ventricular coupling (27%, p<0.01), were noted in the MetS-ExT but not the MetS-NonT group. Further, an improvement in Lifetime Risk Score was also noted in the MetS-ExT group. Conclusions These findings have clinical importance as they provide insight that some of the pathophysiological changes associated with MetS can be improved and lower the risk of CVD. PMID:24870568
Improved arterial-ventricular coupling in metabolic syndrome after exercise training: a pilot study.
Fournier, Sara B; Donley, David A; Bonner, Daniel E; Devallance, Evan; Olfert, I Mark; Chantler, Paul D
2015-01-01
The metabolic syndrome (MetS) is associated with threefold increased risk of cardiovascular (CV) morbidity and mortality, which is partly due to a blunted CV reserve capacity, reflected by a reduced peak exercise left ventricular (LV) contractility and aerobic capacity and a blunted peak arterial-ventricular coupling. To date, no study has examined whether aerobic exercise training in MetS can reverse peak exercise CV dysfunction. Furthermore, examining how exercise training alters CV function in a group of individuals with MetS before the development of diabetes and/or overt CV disease can provide insights into whether some of the pathophysiological CV changes can be delayed/reversed, lowering their CV risk. The objective of this study was to examine the effects of 8 wk of aerobic exercise training in individuals with MetS on resting and peak exercise CV function. Twenty participants with MetS underwent either 8 wk of aerobic exercise training (MetS-ExT, n = 10) or remained sedentary (MetS-NonT, n = 10) during this period. Resting and peak exercise CV function was characterized using Doppler echocardiography and gas exchange. Exercise training did not alter resting LV diastolic or systolic function and arterial-ventricular coupling in MetS. In contrast, at peak exercise, an increase in LV contractility (40%, P < 0.01), cardiac output (28%, P < 0.05), and aerobic capacity (20%, P < 0.01), but a reduction in vascular resistance (30%, P < 0.05) and arterial-ventricular coupling (27%, P < 0.01), were noted in the MetS-ExT but not in the MetS-NonT group. Furthermore, an improvement in lifetime risk score was also noted in the MetS-ExT group. These findings have clinical importance because they provide insight that some of the pathophysiological changes associated with MetS can be improved and can lower the risk of CV disease.
Effect of Fontan geometry on exercise haemodynamics and its potential implications.
Tang, Elaine; Wei, Zhenglun Alan; Whitehead, Kevin K; Khiabani, Reza H; Restrepo, Maria; Mirabella, Lucia; Bethel, James; Paridon, Stephen M; Marino, Bradley S; Fogel, Mark A; Yoganathan, Ajit P
2017-11-01
Exercise intolerance afflicts Fontan patients with total cavopulmonary connections (TCPCs) causing a reduction in quality of life. Optimising TCPC design is hypothesised to have a beneficial effect on exercise capacity. This study investigates relationships between TCPC geometries and exercise haemodynamics and performance. This study included 47 patients who completed metabolic exercise stress test with cardiac magnetic resonance (CMR). Phase-contrast CMR images were acquired immediately following supine lower limb exercise. Both anatomies and exercise vessel flow rates at ventilatory anaerobic threshold (VAT) were extracted. The vascular modelling toolkits were used to analyse TCPC geometries. Computational simulations were performed to quantify TCPC indexed power loss (iPL) at VAT. A highly significant inverse correlation was found between the TCPC diameter index, which factors in the narrowing of TCPC vessels, with iPL at VAT (r=-0.723, p<0.001) but positive correlations with exercise performance variables, including minute oxygen consumption (VO 2 ) at VAT (r=0.373, p=0.01), VO 2 at peak exercise (r=0.485, p=0.001) and work at VAT/weight (r=0.368, p=0.01). iPL at VAT was negatively correlated with VO 2 at VAT (r=-0.337, p=0.02), VO 2 at peak exercise (r=-0.394, p=0.007) and work at VAT/weight (r=-0.208, p=0.17). Eliminating vessel narrowing in TCPCs and reducing elevated iPL at VAT could enhance exercise tolerance for patients with TCPCs. These findings could help plan surgical or catheter-based strategies to improve patients' exercise capacity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
The influence of age, gender, and training on exercise efficiency.
Woo, J Susie; Derleth, Christina; Stratton, John R; Levy, Wayne C
2006-03-07
The aim of this study was to determine whether changes in oxygen efficiency occur with aging or exercise training in healthy young and older subjects. Exercise capacity declines with age and improves with exercise training. Whether changes in oxygen efficiency, defined as the oxygen cost per unit work, contributes to the effects of aging or training has not yet been defined. Sixty-one healthy subjects were recruited into four groups of younger women (ages 20 to 33 years, n = 15), younger men (ages 20 to 30 years, n = 12), older women (ages 65 to 79 years, n = 16), and older men (ages 65 to 77 years, n = 18). All subjects underwent cardiopulmonary exercise testing to analyze aerobic parameters before and after three to six months of supervised aerobic exercise training. Before training, younger subjects had a much higher exercise capacity, as shown by a 42% higher peak oxygen consumption (VO2) (ml/kg/min, p < 0.0001). This was associated with an 11% lower work VO2/W (p = 0.02) and an 8% higher efficiency than older subjects (p = 0.03). With training, older subjects displayed a larger increase in peak W/kg (+29% vs. +12%, p = 0.001), a larger decrease in work VO2/W (-24% vs. -2%, p < 0.0001), and a greater improvement in exercise efficiency (+30% vs. 2%, p < 0.0001) compared to the young. Older age is associated with a decreased exercise efficiency and an increase in the oxygen cost of exercise, which contribute to a decreased exercise capacity. These age-related changes are reversed with exercise training, which improves efficiency to a greater degree in the elderly than in the young.
Cabral-Santos, C; Giacon, T R; Campos, E Z; Gerosa-Neto, J; Rodrigues, B; Vanderlei, L C M; Lira, F S
2016-06-01
The aim of this study was to compare heart rate variability (HRV) recovery after two iso-volume (5 km) exercises performed at different intensities. 14 subjects volunteered (25.17±5.08 years; 74.7±6.28 kg; 175±0.05 cm; 59.56±5.15 mL·kg(-1)·min(-1)) and after determination of peak oxygen uptake (VO2Peak) and the speed associated with VO2Peak (sVO2Peak), the subjects completed 2 random experimental trials: high-intensity exercise (HIE - 1:1 at 100% sVO2Peak), and moderate-intensity continuous exercise (MIE - 70% sVO2Peak). HRV and RR intervals were monitored before, during and after the exercise sessions together with, the HRV analysis in the frequency domains (high-frequency - HF: 0.15 to 0.4 Hz and low-frequency - LF: 0.04 to 0.15 Hz components) and the ratio between them (LF/HF). Statistical analysis comparisons between moments and between HIE and MIE were performed using a mixed model. Both exercise sessions modified LFlog, HFlog, and LF/HF (F=16.54, F=19.32 and F=5.17, p<0.05, respectively). A group effect was also found for LFlog (F=23.91, p<0.05), and HFlog (F=57.55, p< 0.05). LF/HF returned to resting value 15 min after MIE exercise and 20 min after HIE exercise. This means that the heavy domain (aerobic and anaerobic threshold) induces dissimilar autonomic modification in physically active subjects. Both HIE and MIE modify HRV, and generally HIE delays parasympathetic autonomic modulation recovery after iso-volume exercise. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Ertl, A. C.; Bernauer, E. M.
1996-01-01
BACKGROUND: Maintaining intermediary metabolism is necessary for the health and well-being of astronauts on long-duration spaceflights. While peak oxygen uptake (VO2) is consistently decreased during prolonged bed rest, submaximal VO2 is either unchanged or decreased. METHODS: Submaximal exercise metabolism (61 +/- 3% peak VO2) was measured during ambulation (AMB day-2) and on bed rest days 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N = 5) control, and isotonic exercise (ITE, N = 7) and isokinetic exercise (IKE, N = 7) training groups. Exercise training was conducted supine for two 30-min periods per day for 6 d per week: ITE training was intermittent at 60-90% peak VO2; IKE training was 10 sets of 5 repetitions of peak knee flexion-extension force at a velocity of 100 degrees s-1. Cardiac output was measured with the indirect Fick CO2 method, and plasma volume with Evans blue dye dilution. RESULTS: Supine submaximal exercise VO2 decreased significantly (*p < 0.05) by 10.3%* with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output decrease of 14.5%* (ITE) and 20.3%* (IKE), but different from change in peak VO2 (+1.4% with ITE and -10.2%* with IKE) and decrease in plasma volume of -3.7% (ITE) and -18.0%* (IKE). Reduction of submaximal VO2 during bed rest correlated 0.79 (p < 0.01) with submaximal Qc, but was not related to change in peak VO2 or plasma volume. CONCLUSION: Reduction in submaximal oxygen uptake during prolonged bed rest is related to decrease in exercise but not resting cardiac output; perturbations in active skeletal muscle metabolism may be involved.
Lunt, Heather; Roiz De Sa, Daniel; Roiz De Sa, Julia; Allsopp, Adrian
2013-07-01
To provide an accurate estimate of peak oxygen uptake (VO2 peak) for British Royal Navy Personnel aged between 18 and 39, comparing a gold standard treadmill based maximal exercise test with a submaximal one-mile walk test. Two hundred military personnel consented to perform a treadmill-based VO2 peak test and two one-mile walk tests round an athletics track. The estimated VO2 peak values from three different one-mile walk equations were compared to directly measured VO2 peak values from the treadmill-based test. One hundred participants formed a validation group from which a new equation was derived and the other 100 participants formed the cross-validation group. Existing equations underestimated the VO2 peak values of the fittest personnel and overestimated the VO2 peak of the least aerobically fit by between 2% and 18%. The new equation derived from the validation group has less bias, the highest correlation with the measured values (r = 0.83), and classified the most people correctly according to the Royal Navy's Fitness Test standards, producing the fewest false positives and false negatives combined (9%). The new equation will provide a more accurate estimate of VO2 peak for a British military population aged 18 to 39. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Hansen, Dominique; Rovelo Ruiz, Gustavo; Doherty, Patrick; Iliou, Marie-Christine; Vromen, Tom; Hinton, Sally; Frederix, Ines; Wilhelm, Matthias; Schmid, Jean-Paul; Abreu, Ana; Ambrosetti, Marco; Garcia-Porrero, Esteban; Coninx, Karin; Dendale, Paul
2018-05-01
Background Although disease-specific exercise guidelines for cardiovascular disease (CVD) are widely available, it remains uncertain whether these different exercise guidelines are integrated properly for patients with different CVDs. The aim of this study was to assess the inter-clinician variance in exercise prescription for patients with various CVDs and to compare these prescriptions with recommendations from the EXercise Prescription in Everyday practice and Rehabilitative Training (EXPERT) tool, a digital decision support system for integrated state-of-the-art exercise prescription in CVD. Design The study was a prospective observational survey. Methods Fifty-three CV rehabilitation clinicians from nine European countries were asked to prescribe exercise intensity (based on percentage of peak heart rate (HR peak )), frequency, session duration, programme duration and exercise type (endurance or strength training) for the same five patients. Exercise prescriptions were compared between clinicians, and relationships with clinician characteristics were studied. In addition, these exercise prescriptions were compared with recommendations from the EXPERT tool. Results A large inter-clinician variance was found for prescribed exercise intensity (median (interquartile range (IQR)): 83 (13) % of HR peak ), frequency (median (IQR): 4 (2) days/week), session duration (median (IQR): 45 (18) min/session), programme duration (median (IQR): 12 (18) weeks), total exercise volume (median (IQR): 1215 (1961) peak-effort training hours) and prescription of strength training exercises (prescribed in 78% of all cases). Moreover, clinicians' exercise prescriptions were significantly different from those of the EXPERT tool ( p < 0.001). Conclusions This study reveals significant inter-clinician variance in exercise prescription for patients with different CVDs and disagreement with an integrated state-of-the-art system for exercise prescription, justifying the need for standardization efforts regarding integrated exercise prescription in CV rehabilitation.
Ko, Kwang-Jun; Ha, Gi-Chul; Kim, Dong-Woo; Kang, Seol-Jung
2017-10-01
[Purpose] The study investigated the effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players. [Subjects and Methods] The study assessed U High School soccer players (n=40) in S area, South Korea, divided into 2 groups: a lower extremity injury group (n=16) comprising those with knee and ankle injuries and a control group (n=24) without injury. Aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function were compared and analyzed. [Results] Regarding the aerobic exercise capacity test, significant differences were observed in maximal oxygen uptake and anaerobic threshold between both groups. For the anaerobic power test, no significant difference was observed in peak power and average power between the groups; however, a significant difference in fatigue index was noted. Regarding the knee isokinetic muscular test, no significant difference was noted in knee flexion, extension, and flexion/extension ratio between both groups. [Conclusion] Lower extremity injury was associated with reduced aerobic exercise capacity and a higher fatigue index with respect to anaerobic exercise capacity. Therefore, it seems necessary to establish post-injury training programs that improve aerobic and anaerobic exercise capacity for soccer players who experience lower extremity injury.
Screening adolescent athletes for exercise-induced asthma.
Feinstein, R A; LaRussa, J; Wang-Dohlman, A; Bartolucci, A A
1996-04-01
To pilot test an exercise-induced asthma (EIA) screening program using a submaximal step-test and pulmonary function test (PFT) to identify athletes with EIA and to determine if a physical examination or self-reported history could be used to predict the existence of EIA. Screening and diagnostic testing using a convenience sample. Birmingham, Alabama, during athletic preparticipation examination (PPE). Fifty-two African-American, male football players aged 14-18 years being evaluated for participation in scholastic athletics. No athlete refused participation. Four were excluded because of need for further evaluation unrelated to any pulmonary condition. Each athlete completed a medical history, allergy history, physical examination, preexercise pulmonary function test (PFT), submaximal step-test, and a series of postexercise PFTs. Major outcome measurements were changes in forced expiration volume in 1s (FEV1) or peak expiratory flow rate (PEFR) after completing an exercise challenge. Seventeen of 48 athletes had a > or = 15% decrease in PEFR after exercise. Nine of 48 athletes had a > or = 15% decrease in FEV1 after exercise. The only self-reported item that differentiated subjects with normal and abnormal PFTs was a personal history of asthma (p < 0.05). Many athletes can be identified as having abnormal PFTs by use of a submaximal step-test as an exercise challenge. Self-reporting questionnaires and PPEs do not appear to be sensitive enough to identify athletes with this condition. If validated by future studies, this protocol could be used for the diagnosis of EIA.
Kinematic analysis of the thoracic limb of healthy dogs during descending stair and ramp exercises.
Kopec, Nadia L; Williams, Jane M; Tabor, Gillian F
2018-01-01
OBJECTIVE To compare the kinematics of the thoracic limb of healthy dogs during descent of stairs and a ramp with those during a trot across a flat surface (control). ANIMALS 8 privately owned dogs. PROCEDURES For each dog, the left thoracic limb was instrumented with 5 anatomic markers to facilitate collection of 2-D kinematic data during each of 3 exercises (descending stairs, descending a ramp, and trotting over a flat surface). The stair exercise consisted of 4 steps with a 35° slope. For the ramp exercise, a solid plank was placed over the steps to create a ramp with a 35° slope. For the flat exercise, dogs were trotted across a flat surface for 2 m. Mean peak extension, peak flexion, and range of movement (ROM) of the shoulder, elbow, and carpal joints were compared among the 3 exercises. RESULTS Mean ROM for the shoulder and elbow joints during the stair exercise were significantly greater than during the flat exercise. Mean peak extension of the elbow joint during the flat exercise was significantly greater than that during both the stair and ramp exercises. Mean peak flexion of the elbow joint during the stair exercise was significantly greater than that during the flat exercise. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that descending stairs may be beneficial for increasing the ROM of the shoulder and elbow joints of dogs. Descending stair exercises may increase elbow joint flexion, whereas flat exercises may be better for targeting elbow joint extension.
Salbutamol intake and substrate oxidation during submaximal exercise.
Arlettaz, A; Le Panse, B; Portier, H; Lecoq, A-M; Thomasson, R; De Ceaurriz, J; Collomp, K
2009-01-01
In order to test the hypothesis that salbutamol would change substrate oxidation during submaximal exercise, eight recreationally trained men twice performed 1 h at 60% VO(2) peak after ingestion of placebo or 4 mg of salbutamol. Gas exchange was monitored and blood samples were collected during exercise for GH, ACTH, insulin, and blood glucose and lactate determination. With salbutamol versus placebo, there was no significant difference in total energy expenditure and substrate oxidation, but the substrate oxidation balance was significantly modified after 40 min of exercise. ACTH was significantly decreased with salbutamol during the last 10 min of exercise, whereas no difference was found between the two treatments in the other hormonal and metabolic parameters. The theory that the ergogenic effect of salbutamol results from a change in substrate oxidation has little support during relatively short term endurance exercise, but it is conceivable that longer exercise duration can generate positive findings.
Effect of Body Mass Index on Exercise Capacity in Patients With Hypertrophic Cardiomyopathy.
Larsen, Carolyn M; Ball, Caroline A; Hebl, Virginia B; Ong, Kevin C; Siontis, Konstantinos C; Olson, Thomas P; Ackerman, Michael J; Ommen, Steve R; Allison, Thomas G; Geske, Jeffrey B
2018-01-01
The objective of this study was to evaluate the relation between body mass index (BMI), exercise capacity, and symptoms in patients with hypertrophic cardiomyopathy (HC) and to utilize results of cardiopulmonary exercise tests (CPX) and transthoracic echocardiograms to understand the mechanism(s) of reduced exercise capacity across body mass index groups. Over a 6-year period, 510 consecutive patients with HC seen at a tertiary referral center underwent (CPX) and a transthoracic echocardiogram. Increasing BMI was associated with decreased exercise capacity as assessed by peak VO 2 (ml/kg/min). However, the prevalence of cardiac impairment did not vary by BMI group. In conclusion, these findings suggest that in some patients with hypertrophic cardiomyopathy, cardiac impairment is not the primary cause of exercise limitation and weight loss may result in improved exercise capacity. Copyright © 2017 Elsevier Inc. All rights reserved.
Domínguez, Eloy; Palau, Patricia; Núñez, Eduardo; Ramón, José María; López, Laura; Melero, Joana; Bellver, Alejandro; Santas, Enrique; Chorro, Francisco J; Núñez, Julio
2018-03-24
The mechanisms of exercise intolerance in heart failure with preserved ejection fraction (HFpEF) are not yet elucidated. Chronotropic incompetence has emerged as a potential mechanism. We aimed to evaluate whether heart rate (HR) response to exercise is associated to functional capacity in patients with symptomatic HFpEF. We prospectively studied 74 HFpEF patients [35.1% New York Heart Association Class III, 53% female, age (mean ± standard deviation) 72.5 ± 9.1 years, and 59.5% atrial fibrillation]. Functional performance was assessed by peak oxygen consumption (peak VO 2 ). The mean (standard deviation) peak VO 2 was 10 ± 2.8 mL/min/kg. The following chronotropic parameters were calculated: Delta-HR (HR at peak exercise - HR at rest), chronotropic index (CI) = (HR at peak exercise - resting HR)/[(220 - age) - resting HR], and CI according to the equation developed by Keteyian et al. (CIK) (HR at peak exercise - HR at rest)/[119 + (HR at rest/2) - (age/2) - 5 - HR at rest]. In a bivariate setting, peak VO 2 was positively and significantly correlated with Delta-HR (r = 0.35, P = 0.003), CI (r = 0.27, P = 0.022), CIK (r = 0.28, P = 0.018), and borderline with HR at peak exercise (r = 0.22, P = 0.055). In a multivariable linear regression analysis that included clinical, analytical, echocardiographic, and functional capacity covariates, the chronotropic parameters were positively associated with peak VO 2 . We found a linear relationship between Delta-HR and peak VO 2 (β coefficient of 0.03; 95% confidence interval: 0.004-0.05; P = 0.030); conversely, the association among CIs and peak VO 2 was exponentially shaped. In patients with chronic HFpEF, the HR response to exercise was positively associated to patient's functional capacity. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Cordery, P; Peirce, N; Maughan, R J; Watson, P
2017-11-01
Catecholamine reuptake inhibition improves the performance of male volunteers exercising in warm conditions, but sex differences in thermoregulation, circulating hormones, and central neurotransmission may alter this response. With local ethics committee approval, nine physically active women (mean ± SD age 21 ± 2 years; height 1.68 ± 0.08 m; body mass 64.1 ± 6.0 kg; VO 2peak 51 ± 7 mL/kg/min) were recruited to examine the effect of pre-exercise administration of Bupropion (BUP; 4 × 150 mg) on prolonged exercise performance in a warm environment. Participants completed a VO 2peak test, two familiarization trials, and two randomized, double-blind experimental trials. All trials took place during the first 10 days of the follicular phase of the menstrual cycle. Participants cycled for 1 h at 60% VO 2peak followed by a 30-min performance test. Total work done was greater during the BUP trial (291 ± 48 kJ) than the placebo trial (269 ± 46 kJ, P = 0.042, d = 0.497). At the end of the performance test, core temperature was higher on the BUP trial (39.5 ± 0.4 °C) than on the placebo trial (39.2 ± 0.6 °C, P = 0.021; d = 0.588), as was heart rate (185 ± 9 vs 179 ± 13, P = 0.043; d = 0.537). The results indicate that during the follicular phase of the menstrual cycle, an acute dosing protocol of BUP can improve self-regulated performance in warm conditions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Van Laethem, Christophe; Goethals, Marc; Verstreken, Sofie; Walravens, Maarten; Wellens, Francis; De Proft, Margot; Bartunek, Jozef; Vanderheyden, Marc
2007-09-01
Recently, a new linear measure of ventilatory response to exercise, the oxygen uptake efficiency slope (OUES), was proposed in the evaluation of heart failure patients. No data are available on the response of the OUES after orthotopic heart transplantation (HTx). Thirty patients who underwent HTx between 1999 and 2003 were included in the study. Data from maximal cardiopulmonary exercise test, resting pulmonary function and hemodynamic assessment were collected before the transplant at time of screening and 1 year after HTx. During the first year after HTx, OUES and normalized OUES for body weight (OUES/kg) increased significantly from 15.6 +/- 4.9 to 19.7 +/- 4.8 (p < 0.05). Changes in OUES/kg were significantly correlated with changes in peak VO2, VAT and peak VE, and inversely to changes in peak VD/VT, but not to changes in VE/VCO2 slope (all p < 0.05). Changes in OUES or OUES/kg did not correlate with any changes in measures of resting lung volumes or capacities and measures of central hemodynamic function after HTx. OUES improved significantly after HTx, but, similar to other exercise parameters, remained considerably impaired. The changes in OUES were highly correlated with the improvements in other exercise variables, but did not correlate with marked improvements in central hemodynamics or resting lung function.
Effects of unilateral and bilateral plyometric training on power and jumping ability in women.
Makaruk, Hubert; Winchester, Jason B; Sadowski, Jerzy; Czaplicki, Adam; Sacewicz, Tomasz
2011-12-01
Makaruk, H, Winchester, JB, Sadowski, J, Czaplicki, A, and Sacewicz, T. Effects of unilateral and bilateral plyometric training on power and jumping ability in women. J Strength Cond Res 25(12): 3311-3318, 2011-The purpose of this study was to examine the effects of unilateral and bilateral plyometric exercise on peak power and jumping performance during different stages of a 12-week training and detraining in women. Forty-nine untrained but physically active female college students were randomly assigned to 1 of 3 groups: unilateral plyometric group (n = 16), bilateral plyometric group (BLE; n = 18), and a control group (n = 15). Peak power and jumping ability were assessed by means of the alternate leg tests (10-second Wingate test and 5 alternate leg bounds), bilateral leg test (countermovement jump [CMJ]) and unilateral leg test (unilateral CMJ). Performance indicators were measured pretraining, midtraining, posttraining, and detraining. Differences between dependent variables were assessed with a 3 × 4 (group × time) repeated analysis of variance with Tukey's post hoc test applied where appropriate. Effect size was calculated to determine the magnitude of significant differences between the researched parameters. Only the unilateral plyometric training produced significant (p < 0.05) improvement in all tests from pretraining to midtraining, but there was no significant (p < 0.05) increase in performance indicators from midtraining to posttraining. The BLE group significantly (p < 0.05) improved in all tests from pretraining to posttraining and did not significantly (p > 0.05) decrease power and jumping ability in all tests during detraining. These results suggest that unilateral plyometric exercises produce power and jumping performance during a shorter period when compared to bilateral plyometric exercises but achieved performance gains last longer after bilateral plyometric training. Practitioners should consider the inclusion of both unilateral and bilateral modes of plyometric exercise to elicit rapid improvements and guard against detraining.
Thompson, Randall C; Patil, Harshal; Thompson, Elaine C; Thomas, Gregory S; Al-Amoodi, Mohammed; Kennedy, Kevin F; Bybee, Kevin A; Iain McGhie, A; O'Keefe, James H; Oakes, Lisa; Bateman, Timothy M
2013-04-01
Regadenoson (Reg) is being administered with increasing frequency either at peak exercise (ExPeak-Reg) or during a slow-down/walking recovery state (ExRec-Reg) rather than at rest (Rest-Reg). The aim of this study was to compare the clinical response of ExPeak-Reg, ExRec-Reg, and Rest-Reg. We compared 531 patients divided equally between Rest-Reg, ExPeak-Reg, and ExRec-Reg matched for age, sex, and BMI. The average systolic blood pressure (SBP) rise following Reg was modest, but there was considerable heterogeneity and the ExPeak-Reg group had a higher percentage of patients who had a SBP rise of 40 mm Hg or a fall of 20 mm Hg than either the ExRec-Reg or the Rest-Reg groups (≥40 mm Hg rise 6.8%, 1.7%, and 1.7%, respectively) (P < .02) (≥20 mm Hg fall 15.8%, 13.0%, and 7.3%, respectively) (P < .05). Chest discomfort, nausea, dizziness, and interfering abdominal radiotracer activity were less common in both exercise Reg groups compared to Rest-Reg (P < .05). Regadenoson injected at peak of symptom-limited exercise was generally well tolerated, but some patients had a significant rise or drop in SBP. There is no apparent advantage of administering regadenoson at peak exercise rather than during walk recovery, and the latter approach may have a greater safety margin.
Jankowska, Ewa A; Wegrzynowska, Kinga; Superlak, Malgorzata; Nowakowska, Katarzyna; Lazorczyk, Malgorzata; Biel, Bartosz; Kustrzycka-Kratochwil, Dorota; Piotrowska, Katarzyna; Banasiak, Waldemar; Wozniewski, Marek; Ponikowski, Piotr
2008-10-30
Abnormalities in the skeletal musculature underlie exercise intolerance in chronic heart failure (CHF). We investigated, whether in CHF selective resistance training without accompanying aerobic regime favourably affects muscle strength, muscle mass and improves exercise capacity. Ten patients with stable ischaemic CHF in NYHA class III (9 men, age: 70+/-6 years [mean+/-SD], left ventricular ejection fraction: 30+/-5%, peak oxygen consumption [peak VO(2)]: 12.4+/-3.0 mL/min/kg) underwent the rehabilitation programme which consisted of a 12-week training phase (progressive resistance exercises restricted to the quadriceps muscles) followed by a 12-week detraining phase. All subjects completed a training phase of the programme with no adverse events. Resistance training markedly increased quadriceps strength (right leg: 260+/-34 vs. 352+/-28 N, left leg: 264+/-38 vs. 342+/-30 N, both p<0.01 - all comparisons: baseline vs. after training), but did not affect lean tissue mass of lower extremities (both p>0.2). It was accompanied by an improvement in clinical status (all NYHA III vs. all NYHA II, p<0.01), quality of life (Minnesota questionnaire: 44+/-15 vs. 33+/-18 points, p<0.05), exercise capacity assessed using a distance during 6-minute walk test (6MWT: 362+/-83 vs. 455+/-71 m, p<0.01), but not peak VO(2) (p>0.2). Plasma NT-proBNP remained unchanged during the training. At the end of detraining phase, only a partial improvement in quadriceps strength (p<0.05), a 6MWT distance (p<0.05) and NYHA class (p=0.07 vs. baseline) persisted. Applied resistance quadriceps training is safe in patients with CHF. It increases muscle strength, improves clinical status, exercise capacity, and quality of life.
A Descriptive Analysis of Exercise Tolerance Test at Seremban Hospital : An Audit for the Year 2001
Mohamed, Abdul Latiff; Nee, Chan Chee; Azzad, Ahmed
2004-01-01
Our purpose is to report on the epidemiological variables and their association with the results of the exercise tolerance test (ETT) in the series of patients referred for standard diagnostic ETT at Seremban Hospital during the year 2001. ETT is widely performed, but, in Malaysia, an analysis of the associations between the epidemiological data and the results of the ETT has not been presented. All patients referred for ETT at Seremban Hospital who underwent exercise treadmill tests for the year 2001 were taken as the study population. Demographic details and patients with established heart disease (i.e. prior coronary bypass surgery, myocardial infarction, or congestive heart failure) were noted. Clinical and ETT variables were collected retrospectively from the hospital records. Testing and data management were performed in a standardized fashion with a computer-assisted protocol. This study showed that there was no significant predictive epidemiological variable on the results of the ETT. However, it was found that there was statistically significant difference between the peak exercise time of males and females undergoing the ETT. PMID:22973128
The prognostic role of exercise echocardiography in heart failure.
Rubiś, Paweł; Drabik, Leszek; Kopeć, Grzegorz; Olszowska, Maria; Płazak, Wojciech; Podolec, Piotr
2011-01-01
Gradual impairment of exercise tolerance is the commonest sign of heart failure (HF). Little is known as to which cardiac contributors of poor exercise capacity carry an independent prognostic information in HF. We investigated the prognostic role of exercise echocardiography (ex-echo) in HF patients. We studied 85 consecutive, symptomatic HF patients (66 males, mean age 62.5 ± 11.8 [range 21-83] years, mean left ventricular ejection fraction [LVEF] 27.2 ± 9.5%). The end-point was all-cause mortality. During the follow-up period (mean 43 ± 21 months) 21 patients died. Resting echocardiography and ex-echo, with the simultaneous measurement of peak oxygen uptake (VO(2peak)), was performed in each patient using a semi-supine ergometer (20 W, 2-min increments). Apart from conventional assessment of systolic and diastolic function (EF, E/A, DT, IVRT) or right ventricular systolic pressure (RVSP), tissue Doppler imaging was used for the assessment of LV and RV peak velocity (IVV) as well as acceleration during isovolumic contraction (IVA), peak velocity during ejection phase (S'), peak early diastolic velocity (E'), peak late diastolic velocity (A'), and ratio of early diastolic mitral/tricuspid velocity to peak early diastolic velocity (E/E'). Patients who died were significantly older, had lower exercise capacity, more advanced HF, greater impairment of baseline systolic function, higher baseline pulmonary artery systolic pressure, and most importantly a lack of improvement in EF, diastolic function, and further increase of RVSP during exercise. Out of all echocardiographic parameters, only peak stress EF (x(2) 6.1; p = 0.01), baseline and peak exercise RVSP (x(2) 12.5 and c(2) 18.7; p 〈 0.001; respectively), and mitral E/E' ratio (x(2) 8.9; p 〈 0.01) were univariate predictors of prognosis and remained independently prognostic when adjusted for age and sex but were eliminated from the model by NT-proBNP. During exercise, more severe systolic and diastolic dysfunction with the elevation of pulmonary arterial pressure is more prevalent in HF patients who have a poorer outcome. The estimation of common parameters such as EF, RVSP and E/E' using ex-echo, provides prognostic information in HF.
Jones, David E J; Hollingsworth, Kieren G; Jakovljevic, Djordje G; Fattakhova, Gulnar; Pairman, Jessie; Blamire, Andrew M; Trenell, Michael I; Newton, Julia L
2012-02-01
Chronic fatigue syndrome (CFS) patients frequently describe difficulties with repeat exercise. Here, we explore muscle bioenergetic function in response to three bouts of exercise. A total of 18 CFS (CDC 1994) patients and 12 sedentary controls underwent assessment of maximal voluntary contraction (MVC), repeat exercise with magnetic resonance spectroscopy and cardio-respiratory fitness test to determine anaerobic threshold. Chronic fatigue syndrome patients undertaking MVC fell into two distinct groups: 8 (45%) showed normal PCr depletion in response to exercise at 35% of MVC (PCr depletion >33%; lower 95% CI for controls); 10 CFS patients had low PCr depletion (generating abnormally low MVC values). The CFS whole group exhibited significantly reduced anaerobic threshold, heart rate, VO(2) , VO(2) peak and peak work compared to controls. Resting muscle pH was similar in controls and both CFS patient groups. However, the CFS group achieving normal PCr depletion values showed increased intramuscular acidosis compared to controls after similar work after each of the three exercise periods with no apparent reduction in acidosis with repeat exercise of the type reported in normal subjects. This CFS group also exhibited significant prolongation (almost 4-fold) of the time taken for pH to recover to baseline. When exercising to comparable levels to normal controls, CFS patients exhibit profound abnormality in bioenergetic function and response to it. Although exercise intervention is the logical treatment for patients showing acidosis, any trial must exclude subjects who do not initiate exercise as they will not benefit. This potentially explains previous mixed results in CFS exercise trials. © 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation.
Giallauria, Francesco; De Lorenzo, Anna; Pilerci, Francesco; Manakos, Athanasio; Lucci, Rosa; Psaroudaki, Marianna; D'Agostino, Mariantonietta; Del Forno, Domenico; Vigorito, Carlo
2006-08-01
N-terminal-pro-brain (B-type) natriuretic peptide (NT-pro-BNP) is a peptide hormone released from ventricles in response to myocyte stretch. The aim of the study was to investigate the influence of exercise training on plasma NT-pro-BNP to verify if this parameter could be used as a biological marker of left ventricular remodelling in myocardial infarction patients undergoing an exercise training programme. Forty-four patients after myocardial infarction were enrolled into a cardiac rehabilitation programme, and were randomized in two groups of 22 patients each. Group A patients followed a 3-month exercise training programme, while group B patients received only routine recommendations. All patients underwent NT-pro-BNP assay, and cardiopulmonary exercise test before hospital discharge and after 3 months. In Group A, exercise training reduced NT-pro-BNP levels (from 1498+/-438 to 470+/-375 pg/ml, P=0.0026), increased maximal (VO2peak+4.3+/-2.9 ml/kg per min, P<0.001; Powermax+38+/-7, P<0.001) exercise parameters and work efficiency (Powermax/VO2peak+1.3+/-0.4 Power/ml per kg per min, P<0.001); there was also an inverse correlation between changes in NT-pro-BNP levels and in VO2peak (r=-0.72, P<0.001), E-wave (r=-0.51, P<0.001) and E/A ratio (r=0.59, P<0.001). In group B, at 3 months, no changes were observed in NT-pro-BNP levels, exercise and echocardiographic parameters. Three months exercise training in patients with moderate left ventricular systolic dysfunction after myocardial infarction induced a reduction in NT-pro-BNP levels, an improvement of exercise capacity and early left ventricular diastolic filling, without negative left ventricular remodelling. Whether the reduction of NT-pro-BNP levels could be useful as a surrogate marker of favourable left ventricular remodelling at a later follow-up remains to be further explored.
Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Reed, Erik; Cavanagh, Peter
2011-01-01
Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.
Type 2 diabetes exaggerates exercise effort and impairs exercise performance in older women.
Huebschmann, A G; Kohrt, W M; Herlache, L; Wolfe, P; Daugherty, S; Reusch, J Eb; Bauer, T A; Regensteiner, J G
2015-01-01
Type 2 diabetes mellitus (T2DM) is associated with high levels of disability and mortality. Regular exercise prevents premature disability and mortality, but people with T2DM are generally sedentary for reasons that are not fully established. We previously observed that premenopausal women with T2DM report greater effort during exercise than their counterparts without diabetes, as measured by the Rating of Perceived Exertion (RPE) scale. We hypothesized that RPE is greater in older women with T2DM versus no T2DM. We enrolled overweight, sedentary women aged 50-75 years with (n=26) or without T2DM (n=28). Participants performed submaximal cycle ergometer exercise at 30 W and 35% of individually-measured peak oxygen consumption (35% VO2peak). We assessed exercise effort by RPE (self-report) and plasma lactate concentration. VO2peak was lower in T2DM versus controls (p=0.003). RPE was not significantly greater in T2DM versus controls (30 W: Control, 10.4±3.2, T2DM, 11.7±2.3, p=0.08; 35% VO2peak: Control, 11.1±0.5, T2DM, 12.1±0.5, p=0.21). However, lactate was greater in T2DM versus controls (p=0.004 at 30 W; p<0.05 at 35% VO2peak). Greater RPE was associated with higher lactate, higher heart rate, and a hypertension diagnosis (p<0.05 at 30 W and 35% VO2peak). Taken together, physiological measures of exercise effort were greater in older women with T2DM than controls. Exercise effort is a modifiable and thereby targetable end point. In order to facilitate regular exercise, methods to reduce exercise effort in T2DM should be sought. NCT00785005.
Sridhara, B S; Bhattacharya, S; Liu, X J; Broadhurst, P; Lahiri, A
1993-01-01
OBJECTIVE--To detect and characterise rapid temporal changes in the left ventricular response to exercise in patients with ischaemic heart disease and to relate these changes to the functional severity of coronary artery disease. BACKGROUND--The gamma camera does not allow the detection of rapid changes in cardiac function during exercise radionuclide ventriculography, the monitoring of which may improve the assessment of patients with ischaemic heart disease. METHODS--A miniature nuclear probe (Cardioscint) was used to monitor continuously left ventricular function during exercise in 31 patients who had coronary angiography for suspected coronary artery disease. A coronary angiographic jeopardy score was calculated for each patient. RESULTS--The coronary jeopardy score ranged from 0 to 12 (median 4). Ejection fraction fell significantly during exercise from 46% to 34%. Patients were divided into two groups based on the response of their ejection fraction to exercise. In 14 patients (group I), the peak change in ejection fraction coincided with the end of exercise, whereas in the other 17 patients (group II) the peak change in ejection fraction occurred before the end of exercise, resulting in a brief plateau. The peak change in ejection fraction and the time to its occurrence were independent predictors of coronary jeopardy (r = -0.59, p < 0.001 for peak change and r = -0.69, p < 0.001 for time to that change). The rate of change in ejection fraction was the strongest predictor of coronary jeopardy (r = -0.81, p < 0.001). In group I the peak change in ejection fraction was a poor predictor severity of coronary disease (r = -0.28, NS), whereas the time to peak and the rate of change in ejection fraction were good predictors (r = -0.65 and r = -0.73, p < 0.01). In group II the peak, the time to the peak, and the rate of change in ejection fraction were good predictors of coronary jeopardy (r = -0.75, r = -0.61, and r = -0.83, p < 0.01). CONCLUSION--The rate of change of ejection fraction during exercise can be assessed by continuous monitoring of left ventricular function with the nuclear probe, and is the best predictor of functionally significant coronary artery disease. PMID:8280514
Angadi, Siddhartha S; Jarrett, Catherine L; Sherif, Moustafa; Gaesser, Glenn A; Mookadam, Farouk
2017-08-01
High-intensity interval training (HIIT) improves peak oxygen uptake and left ventricular diastology in patients with heart failure with preserved ejection fraction (HFpEF). However, its effects on myocardial strain in HFpEF remain unknown. We explored the effects of HIIT and moderate-intensity aerobic continuous training (MI-ACT) on left and right ventricular strain parameters in patients with HFpEF. Furthermore, we explored their relationship with peak oxygen uptake (VO 2peak ). Fifteen patients with HFpEF (age = 70 ± 8.3 years) were randomized to either: (i) HIIT (4 × 4 min, 85-90% peak heart rate, interspersed with 3 min of active recovery; n = 9) or (ii) MI-ACT (30 min at 70% peak heart rate; n = 6). Patients were trained 3 days/week for 4 weeks and underwent VO 2peak testing and 2D echocardiography at baseline and after completion of the 12 sessions of supervised exercise training. Left ventricular (LV) and right ventricular (RV) average global peak systolic longitudinal strain (GLS) and peak systolic longitudinal strain rate (GSR) were quantified. Paired t-tests were used to examine within-group differences and unpaired t-tests used for between-group differences (α = 0.05). Right ventricular average global peak systolic longitudinal strain improved significantly in the HIIT group after training (pre = -18.4 ± 3.2%, post = -21.4 ± 1.7%; P = 0.02) while RV-GSR, LV-GLS, and LV-GSR did not (P > 0.2). No significant improvements were observed following MI-ACT. No significant between-group differences were observed for any strain measure. ΔLV-GLS and ΔRV-GLS were modestly correlated with ΔVO 2peak (r = -0.48 and r = -0.45; P = 0.1, respectively). In patients with HFpEF, 4 weeks of HIIT significantly improved RV-GLS. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Schmidt, Thomas; Bjarnason-Wehrens, Birna; Bartsch, Petra; Deniz, Ezin; Schmitto, Jan; Schulte-Eistrup, Sebastian; Willemsen, Detlev; Reiss, Nils
2018-01-01
Adequate physical and functional performance is an important prerequisite for renewed participation and integration in self-determined private and (where appropriate) professional lives following left ventricular assist device (LVAD) implantation. During cardiac rehabilitation (CR), individually adapted exercise programs aim to increase exercise capacity and functional performance. A retrospective analysis of cardiopulmonary exercise capacity and functional performance in LVAD patients at discharge from a cardiac rehabilitation program was conducted. The results from 68 LVAD patients (59 males, 9 females; 55.9 ± 11.7 years; 47 HVAD, 2 MVAD, 15 HeartMate II, 4 HeartMate 3, and 4 different implanting centers) were included in the analysis. Exercise capacity was assessed using a cardiopulmonary exercise test on a bicycle ergometer (ramp protocol; 10 W/min). The 6-min walk test was used to determine functional performance. At discharge from CR (53 ± 17 days after implantation), the mean peak work load achieved was 62.2 ± 19.3 W (38% of predicted values) or 0.79 ± 0.25 W/kg body weight. The mean cardiopulmonary exercise capacity (relative peak oxygen uptake) was 10.6 ± 5.3 mL/kg/min (37% of predicted values). The 6-min walk distance improved significantly during CR (325 ± 106 to 405 ± 77 m; P < 0.01). No adverse events were documented during CR. The results show that, even following LVAD implantation, cardiopulmonary exercise capacity remains considerably restricted. In contrast, functional performance, measured by the 6-min walk distance, reaches an acceptable level. Light everyday tasks seem to be realistically surmountable for patients, making discharge from inpatient rehabilitation possible. Long-term monitoring is required in order to evaluate the situation and how it develops further. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Mendham, Amy E; Duffield, Rob; Marino, Frank; Coutts, Aaron J
2015-07-01
This study assessed the effect of a 12-week sports-based exercise intervention on glucose regulation, anthropometry and inflammatory markers associated with the prevalence of type 2 diabetes mellitus (T2DM) in Indigenous Australian men. Twenty-six inactive Indigenous Australian men (48.6±6.6 years) were randomized into exercise (n=16) or control (n=10)conditions. Training included ∼2-3 days/week for 12 weeks of sports and gym exercises in a group environment, whilst control participants maintained normal activity and dietary patterns. Pre- and post-intervention testing included: anthropometry, peak aerobic capacity, fasting blood chemistry of inflammatory cytokines, adiponectin, leptin, cholesterol, glucose, insulin and C-peptide. An oral glucose tolerance test measured glucose, insulin and C-peptide 30, 60, 90 and 120min post 75g glucose ingestion. The exercise condition decreased insulin area under the curve (25±22%), increased estimated insulin sensitivity (35±62%) and decreased insulin resistance (9±35%; p<0.05), compared with control (p>0.05). The exercise condition decreased in body mass index, waist circumference and waist to hip ratio (p<0.05), compared to control (p>0.05). Leptin decreased in the exercise group, with no changes for adiponectin (p>0.05) or inflammatory markers (p>0.05) in either condition. Aerobic fitness variables showed significant increases in peak oxygen consumption for the exercise condition compared to no change in control (p>0.05). Findings indicate positive clinical outcomes in metabolic, anthropometric and aerobic fitness variables. This study provides evidence for sport and group-based activities leading to improved clinical risk factors associated with T2DM development in clinically obese Indigenous Australian men. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Gibson, Oliver R; Mee, Jessica A; Tuttle, James A; Taylor, Lee; Watt, Peter W; Maxwell, Neil S
2015-01-01
Heat acclimation requires the interaction between hot environments and exercise to elicit thermoregulatory adaptations. Optimal synergism between these parameters is unknown. Common practise involves utilising a fixed workload model where exercise prescription is controlled and core temperature is uncontrolled, or an isothermic model where core temperature is controlled and work rate is manipulated to control core temperature. Following a baseline heat stress test; 24 males performed a between groups experimental design performing short term heat acclimation (STHA; five 90 min sessions) and long term heat acclimation (LTHA; STHA plus further five 90 min sessions) utilising either fixed intensity (50% VO2peak), continuous isothermic (target rectal temperature 38.5 °C for STHA and LTHA), or progressive isothermic heat acclimation (target rectal temperature 38.5 °C for STHA, and 39.0 °C for LTHA). Identical heat stress tests followed STHA and LTHA to determine the magnitude of adaptation. All methods induced equal adaptation from baseline however isothermic methods induced adaptation and reduced exercise durations (STHA = -66% and LTHA = -72%) and mean session intensity (STHA = -13% VO2peak and LTHA = -9% VO2peak) in comparison to fixed (p < 0.05). STHA decreased exercising heart rate (-10 b min(-1)), core (-0.2 °C) and skin temperature (-0.51 °C), with sweat losses increasing (+0.36 Lh(-1)) (p<0.05). No difference between heat acclimation methods, and no further benefit of LTHA was observed (p > 0.05). Only thermal sensation improved from baseline to STHA (-0.2), and then between STHA and LTHA (-0.5) (p<0.05). Both the continuous and progressive isothermic methods elicited exercise duration, mean session intensity, and mean T(rec) analogous to more efficient administration for maximising adaptation. Short term isothermic methods are therefore optimal for individuals aiming to achieve heat adaptation most economically, i.e. when integrating heat acclimation into a pre-competition taper. Fixed methods may be optimal for military and occupational applications due to lower exercise intensity and simplified administration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scribbans, Trisha D; Ma, Jasmin K; Edgett, Brittany A; Vorobej, Kira A; Mitchell, Andrew S; Zelt, Jason G E; Simpson, Craig A; Quadrilatero, Joe; Gurd, Brendon J
2014-11-01
The present study examined the effect of concurrent exercise training and daily resveratrol (RSV) supplementation (150 mg) on training-induced adaptations following low-dose high-intensity interval training (HIIT). Sixteen recreationally active (∼22 years, ∼51 mL·kg(-1)·min(-1)) men were randomly assigned in a double-blind fashion to either the RSV or placebo group with both groups performing 4 weeks of HIIT 3 days per week. Before and after training, participants had a resting muscle biopsy taken, completed a peak oxygen uptake test, a Wingate test, and a submaximal exercise test. A main effect of training (p < 0.05) and interaction effect (p < 0.05) on peak aerobic power was observed; post hoc pairwise comparisons revealed that a significant (p < 0.05) increase occurred in the placebo group only. Main effects of training (p < 0.05) were observed for both peak oxygen uptake (placebo - pretraining: 51.3 ± 1.8, post-training: 54.5 ± 1.5 mL·kg(-1)·min(-1), effect size (ES) = 0.93; RSV - pretraining: 49.6 ± 2.2, post-training: 52.3 ± 2.5 mL·kg(-1)·min(-1), ES = 0.50) and Wingate peak power (placebo: pretraining: 747 ± 39, post-training: 809 ± 31 W, ES = 0.84; RSV - pretraining: 679 ± 39, post-training: 691 ± 43 W, ES = 0.12). Fibre-type distribution was unchanged, while a main effect of training (p < 0.05) was observed for succinate dehydrogenase activity and glycogen content, but not α-glycerophosphate dehydrogenase activity or intramuscular lipids in type I and IIA fibres. The fold change in PGC-1α, SIRT1, and SOD2 gene expression following training was significantly (p < 0.05) lower in the RSV group than placebo. These results suggest that concurrent exercise training and RSV supplementation may alter the normal training response induced by low-volume HIIT.
A Pilot Test of the Additive Benefits of Physical Exercise to CBT for OCD.
Rector, Neil A; Richter, Margaret A; Lerman, Bethany; Regev, Rotem
2015-01-01
The majority of "responders" to first-line cognitive-behavioural therapy (CBT) and pharmacological treatments for obsessive-compulsive disorder (OCD) are left with residual symptoms that are clinically relevant and disabling. Therefore, there is pressing need for widely accessible efficacious alternative and/or adjunctive treatments for OCD. Accumulating evidence suggests that physical exercise may be one such intervention in the mood and anxiety disorders broadly, although we are aware of only two positive small-scale pilot studies that have tested its clinical benefits in OCD. This pilot study aimed to test the feasibility and preliminary efficacy of adding a structured physical exercise programme to CBT for OCD. A standard CBT group was delivered concurrently with a 12-week customized exercise programme to 11 participants. The exercise regimen was individualized for each participant based on peak heart rate measured using an incremental maximal exercise test. Reports of exercise adherence across the 12-week regimen exceeded 80%. A paired-samples t-test indicated very large treatment effects in Yale-Brown Obsessive-Compulsive Scale scores from pre- to post-treatment in CBT group cohorts led by expert CBT OCD specialists (d = 2.55) and junior CBT clinician non-OCD specialists (d = 2.12). These treatment effects are very large and exceed effects typically observed with individual and group-based CBT for OCD based on leading meta-analytic reviews, as well as previously obtained treatment effects for CBT using the same recruitment protocol without exercise. As such, this pilot work demonstrates the feasibility and significant potential clinical utility of a 12-week aerobic exercise programme delivered in conjunction with CBT for OCD.
Acute Effects of Three Different Stretching Protocols on the Wingate Test Performance
Franco, Bruno L.; Signorelli, Gabriel R.; Trajano, Gabriel S.; Costa, Pablo B.; de Oliveira, Carlos G.
2012-01-01
The purpose of this study was to examine the acute effects of different stretching exercises on the performance of the traditional Wingate test (WT). Fifteen male participants performed five WT; one for familiarization (FT), and the remaining four after no stretching (NS), static stretching (SS), dynamic stretching (DS), and proprioceptive neuromuscular facilitation (PNF). Stretches were targeted for the hamstrings, quadriceps, and calf muscles. Peak power (PP), mean power (MP), and the time to reach PP (TP) were calculated. The MP was significantly lower when comparing the DS (7.7 ± 0.9 W/kg) to the PNF (7.3 ± 0.9 W/kg) condition (p < 0.05). For PP, significant differences were observed between more comparisons, with PNF stretching providing the lowest result. A consistent increase of TP was observed after all stretching exercises when compared to NS. The results suggest the type of stretching, or no stretching, should be considered by those who seek higher performance and practice sports that use maximal anaerobic power. Key points The mean power was significantly lower when comparing dynamic stretching.to proprioceptive neuromuscular facilitation. For peak power, significant differences were observed between more comparisons, with proprioceptive neuromuscular facilitation stretching providing the lowest result. A consistent increase of time to reach the peak was observed after all stretching exercises when compared to non-stretching. The type of stretching, or no stretching, should be considered by those who seek higher performance and practice sports that use maximal anaerobic power. PMID:24149116
Effects of Exercise Rehab on Male Asthmatic Patients: Aerobic Verses Rebound Training
Zolaktaf, Vahid; Ghasemi, Gholam A; Sadeghi, Morteza
2013-01-01
Background: There are some auspicious records on applying aerobic exercise for asthmatic patients. Recently, it is suggested that rebound exercise might even increase the gains. This study was designed to compare the effects of rebound therapy to aerobic training in male asthmatic patients. Methods: Sample included 37 male asthmatic patients (20-40 years) from the same respiratory clinic. After signing the informed consent, subjects volunteered to take part in control, rebound, or aerobic groups. There was no change in the routine medical treatment of patients. Supervised exercise programs continued for 8 weeks, consisting of two sessions of 45 to 60 minutes per week. Criteria measures were assessed pre- and post exercise program. Peak exercise capacity (VO2peak) was estimated by modified Bruce protocol, Forced vital capacity (FVC), Forced expiratory volume in 1 second (FEV1), and FEV1% were measured by spirometer. Data were analyzed by repeated measure analysis of variance (ANOVA). Results: Significant interactions were observed for all 4 criteria measures (P < 0.01), meaning that both the exercise programs were effective in improving FVC, FEV1, FEV1%, and VO2peak. Rebound exercise produced more improvement in FEV1, FEV1%, and VO2peak. Conclusions: Regular exercise strengthens the respiratory muscles and improves the cellular respiration. At the same time, it improves the muscular, respiratory, and cardio-vascular systems. Effects of rebound exercise seem to be promising. Findings suggest that rebound exercise is a useful complementary means for asthmatic male patients. PMID:23717762
NASA Technical Reports Server (NTRS)
Rodgers, Sandra L.
1992-01-01
The in-flight exercise test performed by cosmonauts as part of the Russian Exercise Countermeasure Program is limited to 5 minutes due to communication restrictions. During a recent graded exercise test on a U.S. Shuttle flight, the test was terminated early due to an upcoming loss of signal (LOS) with the ground. This exercise test was a traditional test where the subject's exercise capacity dictates the length of the test. For example, one crew member may take 15 minutes to complete the test, while another may take 18 minutes. The traditional exercise test limits the flight schedulers to large blocks of space flight time in order to provide medical and research personnel information on the fitness capacity (maximal oxygen uptake: VO2max) of crew members during flight. A graded exercise test that would take a finite amount of time and a set preparation and recovery time would ease this problem by allowing flight schedulers to plan exercise tests in advance of LOS. The Graded Universal Testing System (GUTS) was designed to meet this goal. Fitness testing of astronauts before and after flight provides pertinent data on many variables. The Detailed Supplemental Objective (DSO608) protocol (6) is one of the graded exercise tests (GXT) currently used in astronaut testing before and after flight. Test times for this protocol have lasted from 11 to 18 minutes. Anaerobic capacity is an important variable that is currently not being evaluated before and after flight. Recent reports (1,2,5) from the literature have suggested that the oxygen deficit at supramaximal exercise is a measure of anaerobic capacity. We postulated that the oxygen deficit at maximal exercise would be an indication of anaerobic capacity. If this postulate can be accepted, then the efficiency of acquiring data from a graded exercise test would increase at least twofold. To examine this hypothesis anaerobic capacity was measured using a modified treadmill test (3,4) designed to exhaust the anaerobic systems in approximately 45 to 75 seconds. Lactate concentration in the blood was analyzed after all tests, since lactate is the end-product of anaerobic energy production. Therefore, the peak lactate response is an additional indication of anaerobic capacity. A preliminary comparison of the GUTS and the DSO608 suggests that the GUTS protocol would increase the efficiency of VO2max testing of astronauts before and after flight. Results for anaerobic capacity have not been tabulated.
Exercise training, vascular function, and functional capacity in middle-aged subjects.
Maiorana, A; O'Driscoll, G; Dembo, L; Goodman, C; Taylor, R; Green, D
2001-12-01
The aim of this study was to investigate the effect of 8 wk of exercise training on functional capacity, muscular strength, body composition, and vascular function in sedentary but healthy subjects by using a randomized, crossover protocol. After familiarization sessions, 19 subjects aged 47 +/- 2 yr (mean +/- SE) undertook a randomized, crossover design study of the effect of 8 wk of supervised circuit training consisting of combined aerobic and resistance exercise. Peak oxygen uptake (.VO(2peak)), sum of 7 maximal voluntary contractions and the sum of 8 skinfolds and 5 segment girths were determined at entry, crossover, and 16 wk. Endothelium-dependent and -independent vascular function were determined by forearm strain-gauge plethysmography and intrabrachial infusions of acetylcholine (ACh) and sodium nitroprusside (SNP) in 16 subjects. Training did not alter ACh or SNP responses. .VO(2peak), (28.6 +/- 1.1 to 32.6 +/- 1.3 mL.kg(-1).min(-1), P < 0.001), exercise test duration (17.4 +/- 1.1 to 22.1 +/- 1.2 min, P < 0.001), and muscular strength (465 +/- 27 to 535 +/- 27 kg, P < 0.001) significantly increased after the exercise program, whereas skinfolds decreased (144 +/- 10 vs 134 +/- 9 mm, P < 0.001). These results suggest that moderate intensity circuit training designed to minimize the involvement of the arms improves functional capacity, body composition, and strength in healthy, middle-aged subjects without significantly influencing upper limb vascular function. This finding contrasts with previous studies in subjects with type 2 diabetes and heart failure that employed an identical training program.
Iannetta, Danilo; Fontana, Federico Y; Maturana, Felipe Mattioni; Inglis, Erin Calaine; Pogliaghi, Silvia; Keir, Daniel A; Murias, Juan M
2018-05-23
The maximal lactate steady state (MLSS) represents the highest exercise intensity at which an elevated blood lactate concentration ([Lac] b ) is stabilized above resting values. MLSS quantifies the boundary between the heavy-to-very-heavy intensity domains but its determination is not widely performed due to the number of trials required. This study aimed to: (i) develop a mathematical equation capable of predicting MLSS using variables measured during a single ramp-incremental cycling test and (ii) test the accuracy of the optimized mathematical equation. The predictive MLSS equation was determined by stepwise backward regression analysis of twelve independent variables measured in sixty individuals who had previously performed ramp-incremental exercise and in whom MLSS was known (MLSS obs ). Next, twenty-nine different individuals were prospectively recruited to test the accuracy of the equation. These participants performed ramp-incremental exercise to exhaustion and two-to-three 30-min constant-power output cycling bouts with [Lac] b sampled at regular intervals for determination of MLSS obs . Predicted MLSS (MLSS pred ) and MLSS obs in both phases of the study were compared by paired t-test, major-axis regression and Bland-Altman analysis. The predictor variables of MLSS were: respiratory compensation point (Wkg -1 ), peak oxygen uptake (V˙O 2peak ) (mlkg -1 min -1 ) and body mass (kg). MLSS pred was highly correlated with MLSS obs (r=0.93; p<0.01). When this equation was tested on the independent group, MLSS pred was not different from MLSS obs (234±43 vs. 234±44W; SEE 4.8W; r=0.99; p<0.01). These data support the validity of the predictive MLSS equation. We advocate its use as a time-efficient alternative to traditional MLSS testing in cycling. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Angadi, Siddhartha S; Mookadam, Farouk; Lee, Chong D; Tucker, Wesley J; Haykowsky, Mark J; Gaesser, Glenn A
2015-09-15
Heart failure with preserved ejection fraction (HFpEF) is a major cause of morbidity and mortality. Exercise training is an established adjuvant therapy in heart failure; however, the effects of high-intensity interval training (HIIT) in HFpEF are unknown. We compared the effects of HIIT vs. moderate-intensity aerobic continuous training (MI-ACT) on peak oxygen uptake (V̇o₂peak), left ventricular diastolic dysfunction, and endothelial function in patients with HFpEF. Nineteen patients with HFpEF (age 70 ± 8.3 yr) were randomized to either HIIT (4 × 4 min at 85-90% peak heart rate, with 3 min active recovery) or MI-ACT (30 min at 70% peak heart rate). Fifteen patients completed exercise training (HIIT: n = 9; MI-ACT: n = 6). Patients trained 3 days/wk for 4 wk. Before and after training patients underwent a treadmill test for V̇o₂peak determination, 2D-echocardiography for assessment of left ventricular diastolic dysfunction, and brachial artery flow-mediated dilation (FMD) for assessment of endothelial function. HIIT improved V̇o₂peak (pre = 19.2 ± 5.2 ml·kg(-1)·min(-1); post = 21.0 ± 5.2 ml·kg(-1)·min(-1); P = 0.04) and left ventricular diastolic dysfunction grade (pre = 2.1 ± 0.3; post = 1.3 ± 0.7; P = 0.02), but FMD was unchanged (pre = 6.9 ± 3.7%; post = 7.0 ± 4.2%). No changes were observed following MI-ACT. A trend for reduced left atrial volume index was observed following HIIT compared with MI-ACT (-3.3 ± 6.6 vs. +5.8 ± 10.7 ml/m(2); P = 0.06). In HFpEF patients 4 wk of HIIT significantly improved V̇o₂peak and left ventricular diastolic dysfunction. HIIT may provide a more robust stimulus than MI-ACT for early exercise training adaptations in HFpEF. Copyright © 2015 the American Physiological Society.
Fitzgerald, John S; Peterson, Ben J; Warpeha, Joseph M; Wilson, Patrick B; Rhodes, Greg S; Ingraham, Stacy J
2014-11-01
Vitamin D status has been associated with cardiorespiratory fitness (CRF) in cross-sectional investigations in the general population. Data characterizing the association between 25-hydroxyvitamin D (25(OH)D) concentration and CRF in athletes are lacking. Junior and collegiate ice hockey players were recruited from the Minneapolis, MN (44.9° N), area during the off-season period (May 16-June 28). The purpose of this study was to examine the cross-sectional association between 25(OH)D concentration and CRF in a sample population of competitive ice hockey players. Circulating 25(OH)D level was assessed from a capillary blood sample analyzed using liquid chromatography-tandem mass spectrometry. V[Combining Dot Above]O2peak during a skate treadmill graded exercise test (GXT) was used to assess CRF. Data on both 25(OH)D concentration and V[Combining Dot Above]O2peak were available for 52 athletes. Insufficient 25(OH)D concentrations were found in 37.7% of the athletes (<32 ng·ml). Vitamin D status was not significantly associated with any physiological or physical parameter during the skate treadmill GXT.
Verification testing to confirm VO2max attainment in persons with spinal cord injury.
Astorino, Todd A; Bediamol, Noelle; Cotoia, Sarah; Ines, Kenneth; Koeu, Nicolas; Menard, Natasha; Nyugen, Brianna; Olivo, Cassandra; Phillips, Gabrielle; Tirados, Ardreen; Cruz, Gabriela Velasco
2018-01-22
Maximal oxygen uptake (VO 2 max) is a widely used measure of cardiorespiratory fitness, aerobic function, and overall health risk. Although VO 2 max has been measured for almost 100 yr, no standardized criteria exist to verify VO 2 max attainment. Studies document that incidence of 'true' VO 2 max obtained from incremental exercise (INC) can be confirmed using a subsequent verification test (VER). In this study, we examined efficacy of VER in persons with spinal cord injury (SCI). Repeated measures, within-subjects study. University laboratory in San Diego, CA. Ten individuals (age and injury duration = 33.3 ± 10.5 yr and 6.8 ± 6.2 yr) with SCI and 10 able-bodied (AB) individuals (age = 24.1 ± 7.4 yr). Peak oxygen uptake (VO 2 peak) was determined during INC on an arm ergometer followed by VER at 105 percent of peak power output (% PPO). Gas exchange data, heart rate (HR), and blood lactate concentration (BLa) were measured during exercise. Across all participants, VO 2 peak was highly related between protocols (ICC = 0.98) and the mean difference was equal to 0.08 ± 0.11 L/min. Compared to INC, VO 2 peak from VER was not different in SCI (1.30 ± 0.45 L/min vs. 1.31 ± 0.43 L/min) but higher in AB (1.63 ± 0.40 L/min vs. 1.76 ± 0.40 L/min). Data show similar VO 2 peak between incremental and verification tests in SCI, suggesting that VER confirms VO 2 max attainment. However, in AB participants completing arm ergometry, VER is essential to validate appearance of 'true' VO 2 peak.
Anaerobic and Aerobic Performance of Elite Female and Male Snowboarders
Żebrowska, Aleksandra; Żyła, Dorota; Kania, Damian; Langfort, Józef
2012-01-01
The physiological adaptation to training is specific to the muscle activity, dominant energy system involved, muscle groups trained, as well as intensity and volume of training. Despite increasing popularity of snowboarding only little scientific data is available on the physiological characteristics of female and male competitive snowboarders. Therefore, the purpose of this study was to compare the aerobic capacity and maximal anaerobic power of elite Polish snowboarders with untrained subjects. Ten snowboarders and ten aged matched students of Physical Education performed two exercise tests. First, a 30-second Wingate test was conducted and next, a cycle ergometer exercise test with graded intensity. In the first test, peak anaerobic power, the total work, relative peak power and relative mean power were measured. During the second test, relative maximal oxygen uptake and lactate threshold were evaluated. There were no significant differences in absolute and relative maximal oxygen uptake between snowboarders and the control group. Mean maximal oxygen uptake and lactate threshold were significantly higher in men than in women. Significant differences were found between trained men and women regarding maximal power and relative maximal power. The elite snowboarders demonstrated a high level of anaerobic power. The level of relative peak power in trained women correlated negatively with maximal oxygen uptake. In conclusion, our results seem to indicate that the demanding competition program of elite snowboarders provides a significant training stimulus mainly for anaerobic power with minor changes in anaerobic performance. PMID:23487498
Hutchinson, Michael J; Paulson, Thomas A W; Eston, Roger; Goosey-Tolfrey, Victoria L
2017-01-01
To examine the reliability of a perceptually-regulated maximal exercise test (PRETmax) to measure peak oxygen uptake ([Formula: see text]) during handcycle exercise and to compare peak responses to those derived from a ramp-incremented protocol (RAMP). Twenty recreationally active individuals (14 male, 6 female) completed four trials across a 2-week period, using a randomised, counterbalanced design. Participants completed two RAMP protocols (20 W·min-1) in week 1, followed by two PRETmax in week 2, or vice versa. The PRETmax comprised five, 2-min stages clamped at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20. Participants changed power output (PO) as often as required to maintain target RPE. Gas exchange variables (oxygen uptake, carbon dioxide production, minute ventilation), heart rate (HR) and PO were collected throughout. Differentiated RPE were collected at the end of each stage throughout trials. For relative [Formula: see text], coefficient of variation (CV) was equal to 4.1% and 4.8%, with ICC(3,1) of 0.92 and 0.85 for repeated measures from PRETmax and RAMP, respectively. Measurement error was 0.15 L·min-1 and 2.11 ml·kg-1·min-1 in PRETmax and 0.16 L·min-1 and 2.29 ml·kg-1·min-1 during RAMP for determining absolute and relative [Formula: see text], respectively. The difference in [Formula: see text] between PRETmax and RAMP was tending towards statistical significance (26.2 ± 5.1 versus 24.3 ± 4.0 ml·kg-1·min-1, P = 0.055). The 95% LoA were -1.9 ± 4.1 (-9.9 to 6.2) ml·kg-1·min-1. The PRETmax can be used as a reliable test to measure [Formula: see text] during handcycle exercise in recreationally active participants. Whilst PRETmax tended towards significantly greater [Formula: see text] values than RAMP, the difference is smaller than measurement error of determining [Formula: see text] from PRETmax and RAMP.
Afroundeh, R; Arimitsu, T; Yamanaka, R; Lian, C S; Shirakawa, K; Yunoki, T; Yano, T
2014-01-01
Time delay in the mediation of ventilation (V(.)E) by arterial CO(2) pressure (PaCO(2)) was studied during recovery from short impulse-like exercises with different work loads of recovery. Subjects performed two tests including 10-s impulse like exercise with work load of 200 watts and 15-min recovery with 25 watts in test one and 50 watts in test two. V(.)E, end tidal CO(2) pressure (PETCO(2)) and heart rate (HR) were measured continuously during rest, warming up, exercise and recovery. PaCO(2) was estimated from PETCO(2) and tidal volume (V(T)). Results showed that predicted arterial CO(2) pressure (PaCO(2 pre)) increased during recovery in both tests. In both tests, V(.)E increased and peaked at the end of exercise. V(.)E decreased in the first few seconds of recovery but started to increase again. The highest correlation coefficient between PaCO(2 pre) and V(.)E was obtained in the time delay of 7 s (r=0.854) in test one and in time delays of 6 s (r=0.451) and 31 s (r=0.567) in test two. HR was significantly higher in test two than in test one. These results indicate that PaCO(2 pre) drives V(.)E with a time delay and that higher work intensity induces a shorter time delay.
Harrison, Michael; O'Gorman, Donal J; McCaffrey, Noel; Hamilton, Marc T; Zderic, Theodore W; Carson, Brian P; Moyna, Niall M
2009-03-01
Acute exercise, undertaken on the day before an oral fat tolerance test (OFTT), typically reduces postprandial triglycerides (TG) and increases high-density lipoprotein-cholesterol (HDL-C). However, the benefits of acute exercise may be overstated when studies do not account for compensatory changes in dietary intake. The objective of this study was to determine the influence of acute exercise, with and without carbohydrate (CHO) replacement, on postprandial lipid metabolism. Eight recreationally active young men underwent an OFTT on the morning after three experimental conditions: no exercise [control (Con)], prolonged exercise without CHO replacement (Ex-Def) and prolonged exercise with CHO replacement to restore CHO and energy balance (Ex-Bal). The exercise session in Ex-Def and Ex-Bal consisted of 90 min cycle ergometry at 70% peak oxygen uptake (Vo(2peak)) followed by 10 maximal 1-min sprints. CHO replacement was achieved using glucose solutions consumed at 0, 2, and 4 h postexercise. Muscle glycogen was 40 +/- 4% (P < 0.05) and 94 +/- 3% (P = 0.24) of Con values on the morning of the Ex-Def and Ex-Bal OFTT, respectively. Postprandial TG were 40 +/- 14% lower and postprandial HDL-C, free fatty acids, and 3-hydroxybutyrate were higher in Ex-Def compared with Con (P < 0.05). Most importantly, these exercise effects were not evident in Ex-Bal. Postprandial insulin and glucose and the homeostatic model assessment of insulin resistance (HOMA(IR)) were not significantly different across trials. There was no relation between the changes in postprandial TG and muscle glycogen across trials. In conclusion, the influence of acute exhaustive exercise on postprandial lipid metabolism is largely dependent on the associated CHO and energy deficit.
Haykowsky, Mark J.; Brubaker, Peter H.; Stewart, Kathryn P.; Morgan, Timothy M.; Eggebeen, Joel; Kitzman, Dalane W.
2012-01-01
Objective Evaluate the mechanism(s) for improved exercise capacity after endurance exercise training (ET) in elderly patients with heart failure and preserved ejection fraction (HFPEF). Background: Exercise intolerance, measured objectively by reduced peak oxygen consumption (VO2), is the primary chronic symptom in HFPEF and is improved by ET. However, the mechanism(s) are unknown. Methods Forty stable, compensated HFPEF outpatients (mean age 69 ± 6 yrs) were examined at baseline and after 4 months of ET (n=22) or attention control (n=18). VO2 and its determinants were assessed during rest and peak upright cycle exercise. Results Following ET, peak VO2 was higher than controls (16.3 ± 2.6 vs. 13.1 ± 3.4 ml/kg/min; p=0.002). This was associated with higher peak heart rate (139 ± 16 vs. 131 ± 20 beats/min; p=0.03), but no difference in peak end-diastolic volume (77 ± 18 vs. 77 ± 17 ml; p=0.51), stroke volume (48 ± 9 vs. 46 ± 9 ml; p=0.83), or cardiac output (6.6 ± 1.3 vs. 5.9 ± 1.5 L/min; p=0.32). However, estimated peak arterial-venous oxygen difference (A-VO2 Diff) was significantly higher in ET (19.8 ± 4.0 vs. 17.3 ± 3.7 ml/dl; p=0.03). The effect of ET on cardiac output was responsible for < 15% of the improvement in peak VO2. Conclusions In elderly stable compensated HFPEF patients, peak A-VO2 Diff was higher following ET and was the primary contributor to improved peak VO2. This suggests that peripheral mechanisms (improved microvascular and/or skeletal muscle function) contribute to the improved exercise capacity after ET in HFPEF. PMID:22766338
Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E
2014-01-01
To investigate the frequency characteristics of the ground reaction force (GRF) recorded throughout the eccentric Achilles tendon rehabilitation programme described by Alfredson. Controlled laboratory study, longitudinal. Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. Ground reaction force was recorded throughout the exercise protocol. For each exercise repetition the frequency power spectrum of the resultant ground reaction force was calculated and normalised to total power. The magnitude of peak relative power within the 8-12 Hz bandwidth and the frequency at which this peak occurred was determined. The magnitude of peak relative power within the 8-12 Hz bandwidth increased with each successive exercise set and following the 4th set (60 repetitions) of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. The increase in magnitude and frequency of ground reaction force vibrations with an increasing number of exercise repetitions is likely connected to changes in muscle activation with fatigue and tendon conditioning. This research illustrates the potential for the number of exercise repetitions performed to influence the tendons' mechanical environment, with implications for tendon remodelling and the clinical efficacy of eccentric rehabilitation programmes for Achilles tendinopathy. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Martin, Wade H; Xian, Hong; Chandiramani, Pooja; Bainter, Emily; Klein, Andrew J P
2015-08-01
No data exist comparing outcome prediction from arm exercise vs pharmacologic myocardial perfusion imaging (MPI) stress test variables in patients unable to perform treadmill exercise. In this retrospective study, 2,173 consecutive lower extremity disabled veterans aged 65.4 ± 11.0years (mean ± SD) underwent either pharmacologic MPI (1730 patients) or arm exercise stress tests (443 patients) with MPI (n = 253) or electrocardiography alone (n = 190) between 1997 and 2002. Cox multivariate regression models and reclassification analysis by integrated discrimination improvement (IDI) were used to characterize stress test and MPI predictors of cardiovascular mortality at ≥10-year follow-up after inclusion of significant demographic, clinical, and other variables. Cardiovascular death occurred in 561 pharmacologic MPI and 102 arm exercise participants. Multivariate-adjusted cardiovascular mortality was predicted by arm exercise resting metabolic equivalents (hazard ratio [HR] 0.52, 95% CI 0.39-0.69, P < .001), 1-minute heart rate recovery (HR 0.61, 95% CI 0.44-0.86, P < .001), and pharmacologic and arm exercise delta (peak-rest) heart rate (both P < .001). Only an abnormal arm exercise MPI prognosticated cardiovascular death by multivariate Cox analysis (HR 1.98, 95% CI 1.04-3.77, P < .05). Arm exercise MPI defect number, type, and size provided IDI over covariates for prediction of cardiovascular mortality (IDI = 0.074-0.097). Only pharmacologic defect size prognosticated cardiovascular mortality (IDI = 0.022). Arm exercise capacity, heart rate recovery, and pharmacologic and arm exercise heart rate responses are robust predictors of cardiovascular mortality. Arm exercise MPI results are equivalent and possibly superior to pharmacologic MPI for cardiovascular mortality prediction in patients unable to perform treadmill exercise. Published by Elsevier Inc.
Janyacharoen, Taweesak; Kunbootsri, Narupon; Arayawichanon, Preeda; Chainansamit, Seksun; Sawanyawisuth, Kittisak
2015-06-01
Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients. Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks. There were statistically significant increased low frequency normal units (LF n.u.), PNIF and showed decreased high frequency normal units (HF n.u.) at six weeks after aquatic exercise compared with the control group. Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergic rhinitis patients.
Imamura, Teruhiko; Kinugawa, Koichiro; Okada, Ikuko; Kato, Naoko; Fujino, Takeo; Inaba, Toshiro; Maki, Hisataka; Hatano, Masaru; Kinoshita, Osamu; Nawata, Kan; Kyo, Shunei; Ono, Minoru
2015-01-01
Although sympathetic reinnervation is accompanied by the improvement of exercise tolerability during the first years after heart transplantation (HTx), little is known about parasympathetic reinnervation and its clinical impact. We enrolled 21 recipients (40 ± 16 years, 71% male) who had received successive cardiopulmonary exercise testing at 6 months, and 1 and 2 years after HTx. Exercise parameters such as peak oxygen consumption or achieved maximum load remained unchanged, whereas recovery parameters including heart rate (HR) recovery during 2 minutes and the delay of peak HR, which are influenced by parasympathetic activity, improved significantly during post-HTx 2 years (P < 0.05 for both). HR variability was analysed at post-HTx 6 months in 18 recipients, and high frequency power, representing parasympathetic activity, was significantly associated with the 2 recovery parameters (P < 0.05 for all). We also assessed quality of life using the Minnesota Living with Heart Failure (HF) Questionnaire at post-HTx 6 months and 2 years in the same 18 recipients, and those with improved recovery parameters enjoyed a better HF-specific quality of life (P < 0.05 for both). In conclusion, parasympathetic reinnervation emerges along with improved post-exercise recovery ability of HR and quality of life during post-HTx 2 years.
Tsaklis, Panagiotis; Malliaropoulos, Nikos; Mendiguchia, Jurdan; Korakakis, Vasileios; Tsapralis, Kyriakos; Pyne, Debasish; Malliaras, Peter
2015-01-01
Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises. Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG) was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC) was used to normalize the mean data across ten repetitions of each exercise. An electrogoniometer synchronized to the EMG was used to determine whether peak EMG activity occurred during muscle-tendon unit lengthening, shortening, or no change in length. Mean EMG values were compared between the two recording sites for each exercise using the Student's t-test. The lunge, dead lift, and kettle swings were low intensity (<50% MVIC) and all showed higher EMG activity for semitendinosus than for biceps femoris. Bridge was low but approaching medium intensity, and the TRX, hamstring bridge, and hamstring curl were all medium intensity exercises (≥50% or <80% MVIC). The Nordic, fitball, and slide leg exercises were all high intensity exercises. Only the fitball exercise showed higher EMG activity in the biceps femoris compared with the semitendinosus. Only lunge and kettle swings showed peak EMG in the muscle-tendon unit lengthening phase and both these exercises involved faster speed. Some exercises selectively activated the lateral and medial distal hamstrings. Low, medium, and high intensity exercises were demonstrated. This information enables the clinician, strength and conditioning coach and physiotherapist to better understand intensity- and muscle-specific activation during hamstring muscle rehabilitation. Therefore, these results may help in designing progressive strengthening and rehabilitation and prevention programs.
Exercise countermeasures for bed-rest deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, John (Editor)
1993-01-01
The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.
Effect of a lateral step-up exercise protocol on quadriceps and lower extremity performance.
Worrell, T W; Borchert, B; Erner, K; Fritz, J; Leerar, P
1993-12-01
Closed kinetic chain exercises have been promoted as more functional and more appropriate than open kinetic chain exercises. Limited research exists demonstrating the effect of closed kinetic chain exercise on quadriceps and lower extremity performance. The purpose of this study was to determine the effect of a lateral step-up exercise protocol on isokinetic quadriceps peak torque and the following lower extremity activities: 1) leg press, 2) maximal step-up repetitions with body weight plus 25%, 3) hop for distance, and 4) 6-m timed hop. Twenty subjects participated in a 4-week training period, and 18 subjects served as controls. For the experimental group, a repeated measure ANOVA comparing pretest and posttest values revealed significant improvements in the leg press (p < or = .05), step-ups (p < or = .05), hop for distance (p < or = .05), and hop for time (p < or = .05) and no significant increase in isokinetic quadriceps peak torque (p > or = .05). Over the course of the training period, weight used for the step-up exercise increased (p < or = .05), repetitions decreased (p < or = .05), and step-up work did not change (p > or = .05). For the control group, no significant change (p > or = .05) occurred in any variable. The inability of the isokinetic dynamometer to detect increases in quadriceps performance is important because the isokinetic values are frequently used as criteria for return to functional activities. We conclude that closed kinetic chain testing and exercise provide additional means to assess and rehabilitate the lower extremity.
Repeatability of a running heat tolerance test.
Mee, Jessica A; Doust, Jo; Maxwell, Neil S
2015-01-01
At present there is no standardised heat tolerance test (HTT) procedure adopting a running mode of exercise. Current HTTs may misdiagnose a runner's susceptibility to a hyperthermic state due to differences in exercise intensity. The current study aimed to establish the repeatability of a practical running test to evaluate individual's ability to tolerate exercise heat stress. Sixteen (8M, 8F) participants performed the running HTT (RHTT) (30 min, 9 km h(-1), 2% elevation) on two separate occasions in a hot environment (40 °C and 40% relative humidity). There were no differences in peak rectal temperature (RHTT1: 38.82 ± 0.47 °C, RHTT2: 38.86 ± 0.49 °C, Intra-class correlation coefficient (ICC)=0.93, typical error of measure (TEM) = 0.13 °C), peak skin temperature (RHTT1: 38.12 ± 0.45, RHTT2: 38.11 ± 0.45 °C, ICC = 0.79, TEM = 0.30 °C), peak heart rate (RHTT1: 182 ± 15 beats min(-1), RHTT2: 183 ± 15 beats min(-1), ICC = 0.99, TEM = 2 beats min(-1)), nor sweat rate (1721 ± 675 g h(-1), 1716 ± 745 g h(-1), ICC = 0.95, TEM = 162 g h(-1)) between RHTT1 and RHTT2 (p>0.05). Results demonstrate good agreement, strong correlations and small differences between repeated trials, and the TEM values suggest low within-participant variability. The RHTT was effective in differentiating between individuals physiological responses; supporting a heat tolerance continuum. The findings suggest the RHTT is a repeatable measure of physiological strain in the heat and may be used to assess the effectiveness of acute and chronic heat alleviating procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Parikh, Mona N; Lund, Lars H; Goda, Ayumi; Mancini, Donna
2009-04-01
Peak exercise oxygen consumption (Vo(2)) and the Heart Failure (HF) Survival Score (HFSS) were developed in middle-aged patient cohorts referred for heart transplantation with HF. The prognostic value of Vo(2) in patients >65 years has not been well studied. Accordingly, the prognostic value of peak Vo(2) was evaluated in these patients with HF. A retrospective analysis of 396 patients with HF >65 years with cardiopulmonary exercise testing was performed. Peak Vo(2) and components of the HFSS (presence of coronary artery disease, left ventricular ejection fraction, heart rate, mean arterial blood pressure, presence of intraventricular conduction defects, and serum sodium) were collected. Follow-up averaged 1,038 +/- 983 days. Outcome events were defined as death, implantation of a left ventricular assist device, or urgent transplantation. Patients were divided into risk strata for peak Vo(2) and HFSS based on previous cut-off points. Survival curves were derived using Kaplan-Meier analysis and compared using log-rank analysis. Survival differed markedly by Vo(2) stratum (p <0.0001), with significantly better survival rates for the low- (>14 ml/kg/min) versus medium- (10 to 14 ml/kg/min), low- versus high- (<10 ml/kg/min), and medium- versus high-risk strata (all p <0.05). Survival also differed markedly by HFSS stratum (p <0.0001), with significantly better survival rates for the low- (> or =8.10) versus medium- (7.20 to 8.09), low- versus high- (< or =7.19), and medium- versus high-risk strata (all p <0.0001). In conclusion, peak Vo(2) and the HFSS were both excellent parameters to predict survival in patients >65 years with HF.
Exercise thermoregulation in men after 1 and 24-hours of 6 degrees head-down tilt
NASA Technical Reports Server (NTRS)
Ertl, A. C.; Dearborn, A. S.; Weidhofer, A. R.; Bernauer, E. M.; Greenleaf, J. E.
2000-01-01
BACKGROUND: Exercise thermoregulation is dependent on heat loss by increased skin blood flow (convective and conductive heat loss) and through enhanced sweating (evaporative heat loss). Reduction of plasma volume (PV), increased plasma osmolality, physical deconditioning, and duration of exposure to simulated and actual microgravity reduces the ability to thermoregulate during exercise. HYPOTHESIS: We hypothesized that 24 h of head down tilt (HDT24) would alter thermoregulatory responses to a submaximal exercise test and result in a higher exercise rectal temperature (Tre) when compared with exercise Tre after 1 h of head down tilt (HDT1). METHODS: Seven men (31+/-SD 6 yr, peak oxygen uptake (VpO2peak) of 44+/-6 ml x kg(-1) x min(-1)) were studied during 70 min of supine cycling at 58+/-SE 1.5% VO2peak at 22.0 degrees C Tdb and 47% rh. RESULTS: Relative to pre-tilt sitting chair rest data, HDT1 resulted in a 6.1+/-0.9% increase and HDT24 in a 4.3+/-2.3% decrease in PV (delta = 10.4% between experiments, p<0.05) while plasma osmolality remained unchanged (NS). Pre-exercise Tre was elevated after HDT24 (36.71 degrees C +/-0.06 HDT1 vs. 36.93 degrees C+/-0.11 HDT24, p<0.05). The 70 min of exercise did not alter this relationship (p<0.05) with respective end exercise increases in Tre to 38.01 degrees C and 38.26 degrees C (degrees = 1.30 degrees C (HDT1) and 1.33 degrees C (HDT24)). While there were no pre-exercise differences in mean skin temperature (Tsk), a significant (p<0.05) time x treatment interaction occurred during exercise: after min 30 in HDT24 the Tsk leveled off at 31.1 degrees C, while it continued to increase reaching 31.5 degrees C at min 70 in HDT1. A similar response (NS) occurred in skin blood velocity. Neither local sweating rates nor changes in body weight during exercise of -1.63+/-0.24 kg (HDT1) or - 1.33+/-0.09 kg (HDT24) were different (NS) between experiments. CONCLUSION: While HDT24 resulted in elevated pre-exercise Tre, reduced PV, attenuation of Tsk and skin blood velocity during exercise, the absolute increase in exercise Tre was not altered. But if sweat rate and cutaneous vascular responses were similar at different core temperatures (unchanged thermoregulation), the Tre offset could have been caused by the HDT-induced hypovolemia.
Oxygen uptake kinetics and exercise capacity in children with cystic fibrosis.
Fielding, Jeremy; Brantley, Lucy; Seigler, Nichole; McKie, Katie T; Davison, Gareth W; Harris, Ryan A
2015-07-01
Exercise capacity, an objective measure of exercise intolerance, is known to predict quality of life and mortality in cystic fibrosis (CF). The mechanisms for exercise intolerance in patients with cystic fibrosis (CF), however, have yet to be fully elucidated. Accordingly, this study sought to investigate oxygen uptake kinetics and the impact of fat-free mass (FFM) on exercise capacity in young patients with CF. 16 young patients with CF (age 13 ± 4 years; 10 female) and 15 matched controls (age 14 ± 3 years; nine female) participated. Pulmonary function and a maximal exercise test on a cycle ergometer using the Godfrey protocol were performed. Exercise capacity (VO2 peak), VO2 response time (VO2 RT), and functional VO2 gain (ΔVO2 /ΔWR) were all determined. Lung function was the only demographic parameter significantly lower (P < 0.05) in CF compared to controls. Exercise capacity was lower in CF (P < 0.014) only when VO2 peak was normalized for FFM (43.5 ± 7.7 vs. 50.6 ± 7.4 ml/kg-FFM/min) or expressed as % predicted (70.1 ± 14.3 vs. 85.4 ± 16.0%). The VO2 RT was slower (36.1 ± 15.1 vs. 25.0 ± 12.4 sec; P = 0.03) and the ΔVO2 /ΔWR slope was lower (8.4 ± 3 ml/min/watt vs. 10.1 ± 1.4 ml/min/watt; P = 0.02) in patients compared to controls, respectively. In conclusion, a delayed VO2 response time coupled with the lower functional VO2 gain (ΔVO2 /ΔWR) suggest that young patients with CF have impairment in oxygen transport and oxygen utilization by the muscles. These data in addition to differences in VO2 peak normalized for FFM provide some insight that muscle mass and muscle metabolism contribute to exercise intolerance in CF. © 2015 Wiley Periodicals, Inc.
Low Cardiorespiratory Fitness is Partially Linked to Ventilatory Factors in Obese Adolescents.
Mendelson, Monique; Michallet, Anne-Sophie; Tonini, Julia; Favre-Juvin, Anne; Guinot, Michel; Wuyam, Bernard; Flore, Patrice
2016-02-01
To examine the role of ventilatory constraint on cardiorespiratory fitness in obese adolescents. Thirty obese adolescents performed a maximal incremental cycling exercise and were divided into 2 groups based on maximal oxygen uptake (VO2peak): those presenting low (L; n = 15; VO2peak: 72.9 ± 8.6% predicted) or normal (N; n = 15; VO2peak: 113.6 ± 19.2% predicted) cardiorespiratory fitness. Both were compared with a group of healthy controls (C; n = 20; VO2peak: 103.1 ± 11.2% predicted). Ventilatory responses were explored using the flow volume loop method. Cardiorespiratory fitness (VO2peak, in % predicted) was lower in L compared with C and N and was moderately associated with the percent predicted forced vital capacity (FVC) (r = .52; p < .05) in L. At peak exercise, end inspiratory point was lower in L compared with N and C (77.4 ± 8.1, 86.4 ± 7.7, and 89.9 ± 7.6% FVC in L, N, and C, respectively; p < .05), suggesting an increased risk of ventilatory constraint in L, although at peak exercise this difference could be attributed to the lower maximal ventilation in L. Forced vital capacity and ventilatory strategy to incremental exercise slightly differed between N and L. These results suggest a modest participation of ventilatory factors to exercise intolerance.
Roberts, Timothy J; Burns, Andrew T; MacIsaac, Richard J; MacIsaac, Andrew I; Prior, David L; La Gerche, André
2018-03-23
The reasons for reduced exercise capacity in diabetes mellitus (DM) remains incompletely understood, although diastolic dysfunction and diabetic cardiomyopathy are often favored explanations. However, there is a paucity of literature detailing cardiac function and reserve during incremental exercise to evaluate its significance and contribution. We sought to determine associations between comprehensive measures of cardiac function during exercise and maximal oxygen consumption ([Formula: see text]peak), with the hypothesis that the reduction in exercise capacity and cardiac function would be associated with co-morbidities and sedentary behavior rather than diabetes itself. This case-control study involved 60 subjects [20 with type 1 DM (T1DM), 20 T2DM, and 10 healthy controls age/sex-matched to each diabetes subtype] performing cardiopulmonary exercise testing and bicycle ergometer echocardiography studies. Measures of biventricular function were assessed during incremental exercise to maximal intensity. T2DM subjects were middle-aged (52 ± 11 years) with a mean T2DM diagnosis of 12 ± 7 years and modest glycemic control (HbA 1c 57 ± 12 mmol/mol). T1DM participants were younger (35 ± 8 years), with a 19 ± 10 year history of T1DM and suboptimal glycemic control (HbA 1c 65 ± 16 mmol/mol). Participants with T2DM were heavier than their controls (body mass index 29.3 ± 3.4 kg/m 2 vs. 24.7 ± 2.9, P = 0.001), performed less exercise (10 ± 12 vs. 28 ± 30 MET hours/week, P = 0.031) and had lower exercise capacity ([Formula: see text]peak = 26 ± 6 vs. 38 ± 8 ml/min/kg, P < 0.0001). These differences were not associated with biventricular systolic or left ventricular (LV) diastolic dysfunction at rest or during exercise. There was no difference in weight, exercise participation or [Formula: see text]peak in T1DM subjects as compared to their controls. After accounting for age, sex and body surface area in a multivariate analysis, significant positive predictors of [Formula: see text]peak were cardiac size (LV end-diastolic volume, LVEDV) and estimated MET-hours, while T2DM was a negative predictor. These combined factors accounted for 80% of the variance in [Formula: see text]peak (P < 0.0001). Exercise capacity is reduced in T2DM subjects relative to matched controls, whereas exercise capacity is preserved in T1DM. There was no evidence of sub-clinical cardiac dysfunction but, rather, there was an association between impaired exercise capacity, small LV volumes and sedentary behavior.
The role of exercise testing in heart failure.
Swedberg, K; Gundersen, T
1993-01-01
The objectives of exercise testing in congestive heart failure (CHF) may be summarized as follows: (a) detect impaired cardiac performance, (b) grade severity of cardiac failure and classify functional capability, and (c) assess effects of interventions. Several different methods are available to make these assessments, and we have to ask ourselves how well exercise testing achieves these objectives. It has to be kept in mind that the power generated by the exercising muscles is dependent on the oxygen delivery to the skeletal muscles. Oxygen uptake is the result of an integrated performance of the lungs, heart, and peripheral circulation. In patients, as well as in normal subjects, oxygen uptake is related to hemodynamic indices such as cardiac output, stroke volume, or exercise duration when a stepwise regulated maximal exercise protocol is used. However, there are major differences in the concept of a true maximum in normal subjects versus heart failure patients. Fit-normal subjects will achieve a real maximal oxygen uptake, whereas patients may stop testing before a maximum is reached because of symptoms such as dyspnea or leg fatigue. Therefore, it is better if the actual oxygen uptake can be measured. "Peak" rather than true maximal oxygen uptake has been suggested for the classification of the severity of heart failure. Peripheral factors modify the cardiac output through such factors as vascular resistance, organ function, and hormonal release. Maximal exercise will stress the cardiovascular system to a point where the weakest chain will impose a limiting effect.(ABSTRACT TRUNCATED AT 250 WORDS)
Nakade, Taisuke; Adachi, Hitoshi; Murata, Makoto; Oshima, Shigeru
2018-05-14
Cardiopulmonary exercise testing (CPX) is used to evaluate functional capacity and assess prognosis in cardiac patients. Ventilatory efficiency (VE/VCO 2 ) reflects ventilation-perfusion mismatch; the minimum VE/VCO 2 value (minVE/VCO 2 ) is representative of pulmonary arterial blood flow in individuals without pulmonary disease. Usually, minVE/VCO 2 has a strong relationship with the peak oxygen uptake (VO 2 ), but dissociation can occur. Therefore, we investigated the relationship between minVE/VCO 2 and predicted peak VO 2 (peak VO 2 %) and evaluated the parameters associated with a discrepancy between these two parameters. A total of 289 Japanese patients underwent CPX using a cycle ergometer with ramp protocols between 2013 and 2014. Among these, 174 patients with a peak VO 2 % lower than 70% were enrolled. Patients were divided into groups based on their minVE/VCO 2 [Low group: minVE/VCO 2 < mean - SD (38.8-5.6); High group: minVE/VCO 2 > mean + SD (38.8 + 5.6)]. The characteristics and cardiac function at rest, evaluated using echocardiography, were compared between groups. The High group had a significantly lower ejection fraction, stroke volume, and cardiac output, and higher brain natriuretic peptide, tricuspid regurgitation pressure gradient, right ventricular systolic pressure, and peak early diastolic LV filling velocity/peak atrial filling velocity ratio compared with the Low group (p's < 0.01). In addition, the Low group had a significantly higher prevalence of pleural effusion than did the High group (26 vs 11%, p < 0.01). Patients with a relatively greater minVE/VCO 2 in comparison with peak VO 2 had impaired cardiac output as well as restricted pulmonary blood flow increase during exercise, partly due to accumulated pleural effusion.
Crowther, Robert G; Leicht, Anthony S; Spinks, Warwick L; Sangla, Kunwarjit; Quigley, Frank; Golledge, Jonathan
2012-01-01
The purpose of this study was to examine the effects of a 6-month exercise program on submaximal walking economy in individuals with peripheral arterial disease and intermittent claudication (PAD-IC). Participants (n = 16) were randomly allocated to either a control PAD-IC group (CPAD-IC, n = 6) which received standard medical therapy, or a treatment PAD-IC group (TPAD-IC; n = 10) which took part in a supervised exercise program. During a graded treadmill test, physiological responses, including oxygen consumption, were assessed to calculate walking economy during submaximal and maximal walking performance. Differences between groups at baseline and post-intervention were analyzed via Kruskal-Wallis tests. At baseline, CPAD-IC and TPAD-IC groups demonstrated similar walking performance and physiological responses. Postintervention, TPAD-IC patients demonstrated significantly lower oxygen consumption during the graded exercise test, and greater maximal walking performance compared to CPAD-IC. These preliminary results indicate that 6 months of regular exercise improves both submaximal walking economy and maximal walking performance, without significant changes in maximal walking economy. Enhanced walking economy may contribute to physiological efficiency, which in turn may improve walking performance as demonstrated by PAD-IC patients following regular exercise programs.
Mendelson, Monique; Marillier, Mathieu; Bailly, Sébastien; Flore, Patrice; Borel, Jean-Christian; Vivodtzev, Isabelle; Doutreleau, Stéphane; Tamisier, Renaud; Pépin, Jean-Louis; Verges, Samuel
2018-04-26
Maximal aerobic capacity is a strong health predictor and peak oxygen consumption (VO 2peak ) is considered a reflection of total body health. No systematic reviews or meta-analysis' to date have synthesised the existing data regarding VO 2peak in patients with obstructive sleep apnoea (OSA).A systematic review of English and French articles using Pubmed/Medline and Embase included studies assessing VO 2peak of OSA patients in mL·kg -1 ·min -1 compared with controls or in % predicted. Two independent reviewers analysed the studies, extracted the data and assessed the quality of evidence.Mean VO 2peak expressed in mL·kg -1 ·min -1 was significantly lower in patients with OSA when compared with controls (mean difference=-2.7 mL·kg -1 ·min -1 ; p<0.001; n=850). This reduction in VO 2peak was found to be larger in non-obese patients (BMI<30 kg·m -2 ). Mean VO 2peak in % predicted was 90.7±21.0% in OSA patients (n=643).OSA patients present reduced maximal aerobic capacity, which can be associated with increased cardiovascular risks and reduced survival in certain patient subgroups. Maximal exercise testing can be useful to characterise functional limitation and to evaluate health status in OSA patients. Registration # CRD42017057319. Copyright ©ERS 2018.
Haykowsky, Mark J.; Brubaker, Peter H.; John, Jerry M.; Stewart, Kathryn P.; Morgan, Timothy M.; Kitzman, Dalane W.
2011-01-01
Objectives To determine the mechanisms responsible for reduced aerobic capacity (peak VO2) in heart failure patients with preserved ejection fraction (HFPEF). Background HFPEF is the predominant form of HF in older persons. Exercise intolerance is the primary symptom among patients with HFPEF and a major determinant of reduced quality of life. In contrast to patients with HF and reduced EF, the mechanism of exercise intolerance in HFPEF is less well understood. Methods Left ventricular volumes (2D echocardiography), cardiac output (CO), VO2 and calculated arterial-venous oxygen content difference (A-VO2 Diff) were measured at rest and during incremental, exhaustive upright cycle exercise in 48 HFPEF patients (age 69±6 years) and 25 healthy age-matched controls (HC). Results In HFPEF compared to HC, VO2 was reduced at peak exercise (mean±SE: 14.3±0.5 vs. 20.4±0.6 mL·kg min−1; p<0.0001) and was associated with a reduced peak CO (6.3±0.2 vs. 7.6±0.2 L·min−1, p<0.0001) and A-VO2 Diff (17±0.4 vs. 19±0.4 ml·dl−1, p<0.0007). The strongest independent predictor of peak VO2 was the change in A-VO2 Diff from rest to peak exercise (A-VO2 Diff reserve) for both HFPEF (partial correlant 0.58, standardized β coefficient 0.66; p=0.0002) and HC (partial correlant 0.61, standardized β coefficient 0.41; p=0.005) Conclusions Both reduced CO and A-VO2 Diff contribute significantly to the severe exercise intolerance in elderly HFPEF patients. The finding that A-VO2 Diff reserve is an independent predictor of peak exercise VO2 suggests that peripheral, ‘non-cardiac’ factors are important contributors to exercise intolerance in these patients. PMID:21737017
Kinetic quantification of plyometric exercise intensity.
Ebben, William P; Fauth, McKenzie L; Garceau, Luke R; Petushek, Erich J
2011-12-01
Ebben, WP, Fauth, ML, Garceau, LR, and Petushek, EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res 25(12): 3288-3298, 2011-Quantification of plyometric exercise intensity is necessary to understand the characteristics of these exercises and the proper progression of this mode of exercise. The purpose of this study was to assess the kinetic characteristics of a variety of plyometric exercises. This study also sought to assess gender differences in these variables. Twenty-six men and 23 women with previous experience in performing plyometric training served as subjects. The subjects performed a variety of plyometric exercises including line hops, 15.24-cm cone hops, squat jumps, tuck jumps, countermovement jumps (CMJs), loaded CMJs equal to 30% of 1 repetition maximum squat, depth jumps normalized to the subject's jump height (JH), and single leg jumps. All plyometric exercises were assessed with a force platform. Outcome variables associated with the takeoff, airborne, and landing phase of each plyometric exercise were evaluated. These variables included the peak vertical ground reaction force (GRF) during takeoff, the time to takeoff, flight time, JH, peak power, landing rate of force development, and peak vertical GRF during landing. A 2-way mixed analysis of variance with repeated measures for plyometric exercise type demonstrated main effects for exercise type and all outcome variables (p ≤ 0.05) and for the interaction between gender and peak vertical GRF during takeoff (p ≤ 0.05). Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the outcome variables assessed (p ≤ 0.05). These findings can be used to guide the progression of plyometric training by incorporating exercises of increasing intensity over the course of a program.
Intermittent versus continuous exercise training in chronic heart failure: a meta-analysis.
Smart, Neil A; Dieberg, Gudrun; Giallauria, Francesco
2013-06-20
We conducted a meta-analysis of randomized, controlled trials of combined strength and intermittent aerobic training, intermittent aerobic training only and continuous exercise training in heart failure patients. A systematic search was conducted of Medline (Ovid) (1950-September 2011), Embase.com (1974-September 2011), Cochrane Central Register of Controlled Trials and CINAHL (1981-September 19 2011). The search strategy included a mix of MeSH and free text terms for the key concepts heart failure, exercise training, interval training and intermittent exercise training. The included studies contained an aggregate of 446 patients, 212 completed intermittent exercise training, 66 only continuous exercise training, 59 completed combined intermittent and strength training and 109 sedentary controls. Weighted mean difference (MD) in Peak VO2 was 1.04mlkg(-1)min(-1) and (95% C.I.) was 0.42-1.66 (p=0.0009) in intermittent versus continuous exercise training respectively. Weighted mean difference in Peak VO2 was -1.10mlkg(-1)min(-1) (95% C.I.) was -1.83-0.37 p=0.003 for intermittent only versus intermittent and strength (combined) training respectively. In studies reporting VE/VCO2 for intermittent versus control groups, MD was -1.50 [(95% C.I. -2.64, -0.37), p=0.01] and for intermittent versus continuous exercise training MD was -1.35 [(95% C.I. -2.15, -0.55), p=0.001]. Change in peak VO2 was positively correlated with weekly exercise energy expenditure for intermittent exercise groups (r=0.48, p=0.05). Combined strength and intermittent exercise appears superior for peak VO2 changes when compared to intermittent exercise of similar exercise energy expenditure. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Regterschot, G Ruben H; Folkersma, Marjanne; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren
2014-01-01
Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS peak power and related measures are sensitive to the effects of increasing leg strength, leg power and overall balance in older adults. A further aim was to compare sensitivity between sensor-based STS measures and standard clinical measures of leg strength, leg power, balance, mobility and fall risk, following an exercise-based intervention. To achieve these aims, 26 older adults (age: 70-84 years) participated in an eight-week exercise program aimed at improving leg strength, leg power and balance. Before and after the intervention, performance on normal and fast STS transfers was evaluated with a hybrid motion sensor worn on the hip. In addition, standard clinical tests (isometric quadriceps strength, Timed Up and Go test, Berg Balance Scale) were performed. Standard clinical tests as well as sensor-based measures of peak power, maximal velocity and duration of normal and fast STS showed significant improvements. Sensor-based measurement of peak power, maximal velocity and duration of normal STS demonstrated a higher sensitivity (absolute standardized response mean (SRM): ≥ 0.69) to the effects of training leg strength, leg power and balance than standard clinical measures (absolute SRM: ≤ 0.61). Therefore, the presented sensor-based method appears to be useful for detecting changes in mobility and fall risk. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Chien-Liang; Tang, Jing-Shia; Li, Ping-Chia; Chou, Pi-Ling
2015-01-01
This study compared the immediate effects of smoking on cardiorespiratory responses to dynamic arm and leg exercises. This randomized crossover study recruited 14 college students. Each participant underwent two sets of arm-cranking (AC) and leg-cycling (LC) exercise tests. The testing sequences of the control trial (participants refrained from smoking for 8 h before testing) and the experimental trial (participants smoked two cigarettes immediately before testing) were randomly chosen. We observed immediate changes in pulmonary function and heart rate variability after smoking and before the exercise test. The participants then underwent graded exercise tests of their arms and legs until reaching exhaustion. We compared the peak work achieved and time to exhaustion during the exercise tests with various cardiorespiratory indices [i.e., heart rate, oxygen consumption (VO2), minute ventilation (VE)]. The differences between the smoking and control trials were calculated using paired t-tests. For the exercise test periods, VO2, heart rate, and VE values were calculated at every 10% increment of the maximal effort time. The main effects of the time and trial, as well as their trial-by-time (4 × 10) interaction effects on the outcome measures, were investigated using repeated measure ANOVA with trend analysis. 5 min after smoking, the participants exhibited reduced forced vital capacities and forced expiratory volumes in the first second (P < 0.05), in addition to elevated resting heart rates (P < 0.001). The high-frequency, low-frequency, and the total power of the heart rate variability were also reduced (P < 0.05) at rest. For the exercise test periods, smoking reduced the time to exhaustion (P = 0.005) and the ventilatory threshold (P < 0.05) in the LC tests, whereas no significant effects were observed in the AC tests. A trend analysis revealed a significant trial-by-time interaction effect for heart rate, VO2, and VE during the graded exercise test (all P < 0.001). Lower VO2 and VE levels were exhibited in the exercise response of the smoking trial than in those of the control LC trials, whereas no discernable inter-trial difference was observed in the AC trials. Moreover, the differences in heart rate and VE response between the LC and AC exercises were significantly smaller after the participants smoked. This study verified that smoking significantly decreased performance and cardiorespiratory responses to leg exercises. However, the negative effects of smoking on arm exercise performance were not as pronounced.
Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.
2012-01-01
Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255
Higher fine particulate matter and temperature levels impair exercise capacity in cardiac patients.
Giorgini, Paolo; Rubenfire, Melvyn; Das, Ritabrata; Gracik, Theresa; Wang, Lu; Morishita, Masako; Bard, Robert L; Jackson, Elizabeth A; Fitzner, Craig A; Ferri, Claudio; Brook, Robert D
2015-08-01
Fine particulate matter (PM2.5) air pollution and variations in ambient temperature have been linked to increased cardiovascular morbidity and mortality. However, no large-scale study has assessed their effects on directly measured aerobic functional capacity among high-risk patients. Using a cross-sectional observational design, we evaluated the effects of ambient PM2.5 and temperature levels over 7 days on cardiopulmonary exercise test results performed among 2078 patients enrolling into a cardiac rehabilitation programme at the University of Michigan (from January 2003 to August 2011) using multiple linear regression analyses (controlling for age, sex, body mass index). Peak exercise oxygen consumption was significantly decreased by approximately 14.9% per 10 μg/m(3) increase in ambient PM2.5 levels (median 10.7 μg/m(3), IQR 10.1 μg/m(3)) (lag days 6-7). Elevations in PM2.5 were also related to decreases in ventilatory threshold (lag days 5-7) and peak heart rate (lag days 2-3) and increases in peak systolic blood pressure (lag days 4-5). A 10°C increase in temperature (median 10.5°C, IQR 17.5°C) was associated with reductions in peak exercise oxygen consumption (20.6-27.3%) and ventilatory threshold (22.9-29.2%) during all 7 lag days. In models including both factors, the outcome associations with PM2.5 were attenuated whereas the effects of temperature remained significant. Short-term elevations in ambient PM2.5, even at low concentrations within current air quality standards, and/or higher temperatures were associated with detrimental changes in aerobic exercise capacity, which can be linked to a worse quality of life and cardiovascular prognosis among cardiac rehabilitation patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The effect of active recovery on power performance during the bench press exercise.
Lopes, Felipe A S; Panissa, Valéria L G; Julio, Ursula F; Menegon, Elton M; Franchini, Emerson
2014-03-27
The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise.
The Effect of Active Recovery on Power Performance During the Bench Press Exercise
Lopes, Felipe A. S.; Panissa, Valéria L. G.; Julio, Ursula F.; Menegon, Elton M.; Franchini, Emerson
2014-01-01
The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise. PMID:25031684
Cardiopulmonary Exercise Testing in Adult Congenital Heart Disease.
Mantegazza, Valentina; Apostolo, Anna; Hager, Alfred
2017-07-01
Recently, the number of patients with congenital heart diseases reaching adulthood has been progressively increasing in developed countries, and new issues are emerging: the evaluation of their capacity to cope with physical activity and whether this knowledge can be used to optimize medical management. A symptom-limited cardiopulmonary exercise test has proven to be an essential tool, because it can objectively evaluate the functional cardiovascular capacity of these patients, identify the pathological mechanisms of the defect (circulatory failure, shunts, and/or pulmonary hypertension), and help prescribe an individualized rehabilitation program when needed. The common findings on cardiopulmonary exercise testing in patients with congenital heart diseases are a reduced peak [Formula: see text]o 2 , an early anaerobic threshold, a blunted heart rate response, a reduced increase of Vt, and an increased [Formula: see text]e/[Formula: see text]co 2 . All these measures suggest common pathophysiological abnormalities: (1) a compromised exercise capacity from anomalies affecting the heart, vessels, lungs, or muscles; (2) chronotropic incompetence secondary to cardiac autonomic dysfunction or β-blockers and antiarrhythmic therapy; and (3) ventilatory inefficiency caused by left-heart failure with pulmonary congestion, pulmonary hypertension, pulmonary obstructive vascular disease, or cachexia. Most of these variables also have prognostic significance. For these patients, cardiopulmonary exercise testing allows evaluation and decisions affecting lifestyle and therapeutic interventions.
Tucker, Wesley J; Nelson, Michael D; Beaudry, Rhys I; Halle, Martin; Sarma, Satyam; Kitzman, Dalane W; Gerche, Andre La
2016-01-01
Heart failure with preserved ejection (HFpEF) accounts for over 50 % of all HF cases, and the proportion is higher among women and older individuals. A hallmark feature of HFpEF is dyspnoea on exertion and reduced peak aerobic power (VO2peak) secondary to central and peripheral abnormalities that result in reduced oxygen delivery to and/or utilisation by exercising skeletal muscle. The purpose of this brief review is to discuss the role of exercise training to improve VO2peak and the central and peripheral adaptations that reduce symptoms following physical conditioning in patients with HFpEF. PMID:28785460
Subclinical cardiopulmonary dysfunction in stage 3 chronic kidney disease.
Nelson, Alexander; Otto, James; Whittle, John; Stephens, Robert C M; Martin, Daniel S; Prowle, John R; Ackland, Gareth L
2016-01-01
Reduced exercise capacity is well documented in end-stage chronic kidney disease (CKD), preceded by changes in cardiac morphology in CKD stage 3. However, it is unknown whether subclinical cardiopulmonary dysfunction occurs in CKD stage 3 independently of heart failure. Prospective observational cross-sectional study of exercise capacity assessed by cardiopulmonary exercise testing in 993 preoperative patients. Primary outcome was peak oxygen consumption (VO2peak). Anaerobic threshold (AT), oxygen pulse and exercise-evoked measures of autonomic function were analysed, controlling for CKD stage 3, age, gender, diabetes mellitus and hypertension. CKD stage 3 was present in 93/993 (9.97%) patients. Diabetes mellitus (RR 2.49 (95% CI 1.59 to 3.89); p<0.001), and hypertension (RR 3.20 (95% CI 2.04 to 5.03); p<0.001)) were more common in CKD stage 3. Cardiac failure (RR 0.83 (95% CI 0.30 to 2.24); p=0.70) and ischaemic heart disease (RR 1.40 (95% CI 0.97 to 2.02); p=0.09) were not more common in CKD stage 3. Patients with CKD stage 3 had lower predicted VO2peak (mean difference: 6% (95% CI 1% to 11%); p=0.02), lower peak heart rate (mean difference:9 bpm (95% CI 3 to 14); p=0.03)), lower AT (mean difference: 1.1 mL/min/kg (95% CI 0.4 to 1.7); p<0.001) and impaired heart rate recovery (mean difference: 4 bpm (95% CI 1 to 7); p<0.001)). Subclinical cardiopulmonary dysfunction in CKD stage 3 is common. This study suggests that maladaptive cardiovascular/autonomic dysfunction may be established in CKD stage 3, preceding pathophysiology reported in end-stage CKD.
Acute effects of self-selected regimen of rapid body mass loss in combat sports athletes.
Timpmann, Saima; Oöpik, Vahur; Pääsuke, Mati; Medijainen, Luule; Ereline, Jaan
2008-01-01
The purpose of the study was to assess the acute effects of the self-selected regimen of rapid body mass loss (RBML) on muscle performance and metabolic response to exercise in combat sports athletes. Seventeen male athletes (20.8 ± 1.0 years; mean ± SD) reduced their body mass by 5.1 ± 1.1% within 3 days. The RBML was achieved by a gradual reduction of energy and fluid intake and mild sauna procedures. A battery of tests was performed before (Test 1) and immediately after (Test 2) RBML. The test battery included the measurement of the peak torque of knee extensors for three different speeds, assessment of total work (Wtot) performed during a 3-min intermittent intensity knee extension exercise and measurements of blood metabolites (ammonia, lactate, glucose and urea). Absolute peak torque was lower in Test 2 compared with Test 1 at angular velocities of 1.57 rad·s(-1) (218.6 ± 40.9 vs. 234.4 ± 42.2 N·m; p = 0.013) and 3.14 rad·s(-1) (100.3 ± 27.8 vs. 111.7 ± 26.2 N·m; p = 0.008). The peak torque in relation to body mass remained unchanged for any speed. Absolute Wtot was lower in Test 2 compared with Test 1 (6359 ± 2326 vs. 7452 ± 3080 J; p = 0.003) as well as Wtot in relation to body mass (89.1 ± 29.9 vs. 98.6 ± 36.4 J·kg(-1); p = 0.034), respectively. As a result of RBML, plasma urea concentration increased from 4.9 to 5.9 mmol·l(-1) (p = 0.003). The concentration of ammonia in a post-test sample in Test 2 tended to be higher in comparison with Test 1 (80.9 ± 29.1 vs. 67.6 ± 26.5 mmol·l(-1); p = 0.082). The plasma lactate and glucose responses to exercise were similar in Test 1 and Test 2. We conclude that the self-selected regimen of RBML impairs muscle performance in 3-min intermittent intensity exercise and induces an increase in blood urea concentration in experienced male combat sports athletes. Key pointsPrevious studies have revealed a negative effect of rapid body mass loss on performance. However, there are some performance characteristics that may not change or even improve.The methods used for inducing rapid body mass loss have been prescribed by researchers and not chosen by the subjects in many previous studies. The duration of tests, which have revealed a negative impact of rapid body mass loss on performance have also been rather long (5-6 min) in previous studies.We assessed the acute effects of the self-selected regimen of rapid body mass loss on muscle performance and metabolic response to 3-min intermittent intensity exercise in experienced male combat sports athletes.The results suggest that the self-selected regimen of rapid body mass loss impairs muscle performance in 3-min intermittent intensity exercise and induces an increase in blood urea concentration. Hence, the recent changes in the rules of some events (wrestling), including shortening of the duration of a match, have not reduced the likelihood of the occurrence of a negative impact of rapid body mass loss on athletes' performance capacity.
Guazzi, Marco; Dickstein, Kenneth; Vicenzi, Marco; Arena, Ross
2009-11-01
The six-minute walk test (6MWT) and cardiopulmonary exercise testing (CPET) are the 2 testing modalities most broadly used for assessing functional limitation in patients with heart failure (HF). A comprehensive comparison on clinical and prognostic validity of the 2 techniques has not been performed and is the aim of the present investigation. Two hundred fifty-three patients diagnosed with systolic (n=211) or diastolic (n=42) HF (age: 61.9+/-10.1 years; New York Heart Association Class: 2.2+/-0.78) underwent a 6MWT and a symptom-limited CPET evaluation and were prospectively followed up. During the 4-year tracking period, there were 43 cardiac-related deaths with an annual cardiac mortality rate of 8.7%. The 6MWT distance correlated with CPET-derived variables (ie, peak Vo(2), Vo(2) at anaerobic threshold, and Ve/Vco(2) slope) and was significantly reduced in proportion with lower peak Vo(2) and higher Ve/Vco(2) slope classes and presence of an exercise oscillatory breathing (EOB) pattern (P<0.01). However, no significant differences were observed in distance covered between survivors and nonsurvivors (353.2+/-95.8 m versus 338.5+/-76.4 m; P=NS). At univariate and multivariate Cox proportional analyses, the association of the 6MWT distance with survival was not significant either as a continuous or dicotomized variable (< or =300 m). Conversely, CPET-derived variables emerged as prognostic with the strongest association found for EOB (systolic HF) and Ve/Vco(2) slope (entire population with HF and patients with a 6MWT< or =300 m). The 6MWT is confirmed to be a simple and reliable first-line test for quantification of exercise intolerance in patients with HF. However, there is no supportive evidence for its use as a prognostic marker in alternative to or in conjunction with CPET-derived variables.
Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Ogoh, Shigehiko; Hashimoto, Takeshi
2016-06-01
A single bout of aerobic exercise improves executive function (EF), but only for a short period. Compared with a single bout of aerobic exercise, we recently found that high-intensity interval exercise (HIIE) could maintain a longer improvement in EF. However, the mechanism underlying the effect of different exercise modes on the modifications of EF remains unclear. The purpose of the current investigation was to test our hypothesis that the amount of exercise-induced lactate production and its accumulation affects human brain function during and after exercise, thereby affecting post-exercise EF. Ten healthy male subjects performed cycle ergometer exercise. The HIIE protocol consisted of four 4-min bouts at 90% peak VO2 with a 3-min active recovery period at 60% peak VO2. The amount of lactate produced during exercise was manipulated by repeating the HIIE twice with a resting period of 60min between the 1st HIIE and 2nd HIIE. To evaluate EF, a color-word Stroop task was performed, and reverse-Stroop interference scores were obtained. EF immediately after the 1st HIIE was significantly improved compared to that before exercise, and the improved EF was sustained during 40min of the post-exercise recovery. However, for the 2nd HIIE, the improved EF was sustained for only 10min of the post-exercise recovery period, despite the performance of the same exercise. In addition, during and following HIIE, the glucose and lactate accumulation induced by the 2nd HIIE was significantly lower than that induced by the 1st HIIE. Furthermore, there was an inverse relationship between lactate and EF by plotting the changes in lactate levels against changes in EF from pre-exercise during the late phase of post-exercise recovery. These findings suggested the possibility that repeated bouts of HIIE, which decreases lactate accumulation, may dampen the positive effect of exercise on EF during the post-exercise recovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Pasquini, Guido; Vannetti, Federica; Molino-Lova, Raffaele
2015-05-01
During maximal incremental exercise, the ability to work in the anaerobic condition, expressed by the respiratory exchange ratio, is associated with physical performance. Further, peak respiratory exchange ratio is regarded as the best non-invasive measure of a patient's actual exercise effort. This study examined whether ability to work in the anaerobic condition is also associated with physical performance in submaximal constant work rate exercise. A total of 75 older patients (51 men, 24 women), mean age 71.1 years (standard deviation 6.7 years), who had recently undergone cardiac surgery, performed cardiopulmonary exercise testing in a 6-min walk test before and after rehabilitation. The distance walked, steady-state oxygen uptake, carbon dioxide output and respiratory exchange ratio increased significantly after rehabilitation (p < 0.001 for all). In multivariable models predicting the distance walked before and after rehabilitation, higher steady-state respiratory exchange ratio was independently associated with longer distance (p < 0.001 for both). In older patients receiving post-acute cardiac rehabilitation the ability to work in the anaerobic condition is associated with physical performance in submaximal constant work rate exercises. Thus the steady-state respiratory exchange ratio might be regarded as a measure of the patient's actual exercise effort. This information may prove useful in customizing exercise prescription and assessing the effects of rehabilitation.
Zheng, Huan; Xie, Nanzi; Xu, Huifeng; Huang, Junling; Xie, Xiaoyun; Luo, Ming
2016-03-01
We sought to investigate effects of supervised exercise training on left ventricular remodeling, left ventricular function and autonomic nervous system of hypertensive patients without medication. Fifty borderline and mildly hypertensive patients were enrolled and randomly divided into 2 groups (25 in each). Exercise group received a 4 months' exercise program, prescribed according to their first cardiopulmonary exercise tests, while the control group received routine dietary recommendation. All patients underwent noradrenalin assay, cardiopulmonary exercise tests and echocardiographic studies at enrollment and 4 month follow-up. At baseline no statistically difference between the two groups were observed in clinical characteristics, echographic variants or cardiopulmonary test index. Four months later, exercise group showed higher values of VO2peak, Powermax (max workload), AT (anaerobic threshold), VO2AT (VO2 at anaerobic threshold), tAT (time from beginning to anaerobic threshold) and heart rate recovery compared to the control group (P<0.05). Additionally, systolic/diastolic blood pressure decreased significantly in the exercise group compared to the control group (P<0.05). Moreover, there was significant reduction in left ventricular mass index in the exercise group (P<0.01), and there was also an inverse correlation between changes in left ventricular mass index and heart rate recovery (r=-0.52, P<0.01). Four-month exercise training in borderline and mildly hypertensive patients not only decreased their blood pressure levels, but also induced an improvement of exercise capability, left ventricular remodeling and heart rate recovery. Heart rate recovery improvement was significantly associated with decrease of left ventricular mass index, which indicated that favorable adjustment in autonomic nervous system of exercise training might be an important pathway to reverse left ventricular remodeling.
Peak oxygen consumption measured during the stair-climbing test in lung resection candidates.
Brunelli, Alessandro; Xiumé, Francesco; Refai, Majed; Salati, Michele; Di Nunzio, Luca; Pompili, Cecilia; Sabbatini, Armando
2010-01-01
The stair-climbing test is commonly used in the preoperative evaluation of lung resection candidates, but it is difficult to standardize and provides little physiologic information on the performance. To verify the association between the altitude and the V(O2peak) measured during the stair-climbing test. 109 consecutive candidates for lung resection performed a symptom-limited stair-climbing test with direct breath-by-breath measurement of V(O2peak) by a portable gas analyzer. Stepwise logistic regression and bootstrap analyses were used to verify the association of several perioperative variables with a V(O2peak) <15 ml/kg/min. Subsequently, multiple regression analysis was also performed to develop an equation to estimate V(O2peak) from stair-climbing parameters and other patient-related variables. 56% of patients climbing <14 m had a V(O2peak) <15 ml/kg/min, whereas 98% of those climbing >22 m had a V(O2peak) >15 ml/kg/min. The altitude reached at stair-climbing test resulted in the only significant predictor of a V(O2peak) <15 ml/kg/min after logistic regression analysis. Multiple regression analysis yielded an equation to estimate V(O2peak) factoring altitude (p < 0.0001), speed of ascent (p = 0.005) and body mass index (p = 0.0008). There was an association between altitude and V(O2peak) measured during the stair-climbing test. Most of the patients climbing more than 22 m are able to generate high values of V(O2peak) and can proceed to surgery without any additional tests. All others need to be referred for a formal cardiopulmonary exercise test. In addition, we were able to generate an equation to estimate V(O2peak), which could assist in streamlining the preoperative workup and could be used across different settings to standardize this test. Copyright (c) 2010 S. Karger AG, Basel.
Micalos, P S; Harris, J; Drinkwater, E J; Cannon, J; Marino, F E
2015-11-01
The aim of this study was to evaluate the effect of aerobic exercise on perceptual and cerebro-spinal responses to graded electrocutaneous stimuli. The design comprised 2 x 30 min of cycling exercise at 30% and 70% of peak oxygen consumption (VO2 peak) on separate occasions in a counter-balanced order in 10 healthy participants. Assessment of nociceptive withdrawal reflex threshold (NWR-T), pain threshold (PT), and somatosensory evoked potentials (SEPs) to graded electrocutaneous stimuli were performed before and after exercise. Perceptual magnitude ratings and SEPs were compared at 30%PT, 60%PT, 100%PT before (Pre), 5 min after (Post1), and 15 min after (Post2) aerobic exercise. There was no difference in the NWR-T and the PT following exercise at 30% and 70% of VO2 peak. ANOVA for the perceptual response within pooled electrocutaneous stimuli show a significant main effect for time (F2,18=5.41, P=0.01) but no difference for exercise intensity (F1,9=0.02, P=0.88). Within-subject contrasts reveal trend differences between 30%PT and 100%PT for Pre-Post1 (P=0.09) and Pre-Post2 (P=0.02). ANOVA for the SEPs peak-to-peak signal amplitude (N1-P1) show significant main effect for time (F2,18=4.04, P=0.04) but no difference for exercise intensity (F1,9=1.83, P=0.21). Pairwise comparisons for time reveal differences between Pre-Post1 (P=0.06) and Pre-Post2 (P=0.01). There was a significant interaction for SEPs N1-P1 between exercise intensity and stimulus intensity (F2,18=3.56, P=0.05). These results indicate that aerobic exercise did not increase the electrocutaneous threshold for pain and the NWR-T. Aerobic exercise attenuated perceptual responses to innocuous stimuli and SEPs N1-P1 response to noxious stimuli.
de Souza, Kristopher Mendes; Dekerle, Jeanne; Salvador, Paulo Cesar do Nascimento; de Lucas, Ricardo Dantas; Guglielmo, Luiz Guilherme Antonacci; Greco, Camila Coelho; Denadai, Benedito Sérgio
2016-04-01
What is the central question of this study? Does the rate of utilization of W' (the curvature constant of the power-duration relationship) affect fatigue during severe-intensity exercise? What is the main finding and its importance? The magnitude of fatigue after two severe-intensity exercises designed to deplete the same fraction of W' (70%) at two different rates of utilization (fast versus slow) was similar after both exercises. Moreover, the magnitude of fatigue was related to critical power (CP), supporting the contention that CP is a key determinant in fatigue development during high-intensity exercise. Thus, the CP model is a suitable approach to investigate fatigue mechanisms during high-intensity exercise. The depletion of W' (the curvature constant of the power-duration relationship) seems to contribute to fatigue during severe-intensity exercise. Therefore, the aim of this study was to determine the effect of a fast versus a slow rate of utilization of W' on the occurrence of fatigue within the severe-intensity domain. Fifteen healthy male subjects performed tests to determine the critical power, W' and peak torque in the control condition (TCON ) and immediately after two fatiguing work rates (THREE and TEN) set to deplete 70% W' in either 3 (TTHREE ) or 10 min (TTEN ). The TTHREE and TTEN were significantly reduced (F = 19.68, P = 0.01) in comparison to TCON . However, the magnitude of reduction in peak torque (TTHREE = -19.8 ± 10.1% versus TTEN = -16.8 ± 13.3%) was the same in the two fatiguing exercises (t = -0.76, P = 0.46). There was a significant inverse relationship between the critical power and the reduction in peak torque during both THREE (r = -0.49, P = 0.03) and TEN (r = -0.62, P = 0.02). In contrast, the W' was not significantly correlated with the reduction in peak torque during both THREE (r = -0.14, P = 0.33) and TEN (r = -0.30, P = 0.10). Thus, fatigue following severe-intensity exercises performed at different rates of utilization of W' was similar when the same work was done above the critical power (i.e. same amount of W' used). © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
The effect of caffeine as an ergogenic aid in anaerobic exercise.
Woolf, Kathleen; Bidwell, Wendy K; Carlson, Amanda G
2008-08-01
The study examined caffeine (5 mg/kg body weight) vs. placebo during anaerobic exercise. Eighteen male athletes (24.1+/-5.8 yr; BMI 26.4+/-2.2 kg/m2) completed a leg press, chest press, and Wingate test. During the caffeine trial, more total weight was lifted with the chest press, and a greater peak power was obtained during the Wingate test. No differences were observed between treatments for the leg press and average power, minimum power, and power drop (Wingate test). There was a significant treatment main effect found for postexercise glucose and insulin concentrations; higher concentrations were found in the caffeine trial. A significant interaction effect (treatment and time) was found for cortisol and glucose concentrations; both increased with caffeine and decreased with placebo. Postexercise systolic blood pressure was significantly higher during the caffeine trial. No differences were found between treatments for serum free-fatty-acid concentrations, plasma lactate concentrations, serum cortisol concentrations, heart rate, and rating of perceived exertion. Thus, a moderate dose of caffeine resulted in more total weight lifted for the chest press and a greater peak power attained during the Wingate test in competitive athletes.
Devin, James L; Jenkins, David G; Sax, Andrew T; Hughes, Gareth I; Aitken, Joanne F; Chambers, Suzanne K; Dunn, Jeffrey C; Bolam, Kate A; Skinner, Tina L
2018-06-01
Deteriorations in cardiorespiratory fitness (V˙o 2peak ) and body composition are associated with poor prognosis after colorectal cancer treatment. However, the optimal intensity and frequency of aerobic exercise training to improve these outcomes in colorectal cancer survivors is unknown. This trial compared 8 weeks of moderate-intensity continuous exercise (MICE; 50 minutes; 70% peak heart rate [HR peak ]; 24 sessions), with high-intensity interval exercise (HIIE; 4 × 4 minutes; 85%-95% HR peak ) at an equivalent (HIIE; 24 sessions) and tapered frequency (HIIE-T; 16 sessions) on V˙o 2peak and on lean and fat mass, measured at baseline, 4, 8, and 12 weeks. Increases in V˙o 2peak were significantly greater after both 4 (+3.0 mL·kg -1 ·min -1 , P = .008) and 8 (+2.3 mL·kg -1 ·min -1 , P = .049) weeks of HIIE compared to MICE. After 8 weeks, there was a significantly greater reduction in fat mass after HIIE compared to MICE (-0.7 kg, P = .038). Four weeks after training, the HIIE group maintained elevated V˙o 2peak (+3.3 mL·kg -1 ·min -1 , P = .006) and reduced fat mass (-0.7 kg, P = .045) compared to the MICE group, with V˙o 2peak in the HIIE-T also being superior to the MICE group (+2.8 mL·kg -1 ·min -1 , P = .013). Compared to MICE, HIIE promotes superior improvements and short-term maintenance of V˙o 2peak and fat mass improvements. HIIE training at a reduced frequency also promotes maintainable cardiorespiratory fitness improvements. In addition to promoting accelerated and superior benefits to the current aerobic exercise guidelines, HIIE promotes clinically relevant improvements even with a substantial reduction in exercise training and for a period after withdrawal. Copyright © 2018 Elsevier Inc. All rights reserved.
Rynders, Corey A.; Weltman, Judy Y.; Jiang, Boyi; Breton, Marc; Patrie, James; Barrett, Eugene J.
2014-01-01
Background: A single bout of exercise improves postprandial glycemia and insulin sensitivity in prediabetic patients; however, the impact of exercise intensity is not well understood. The present study compared the effects of acute isocaloric moderate (MIE) and high-intensity (HIE) exercise on glucose disposal and insulin sensitivity in prediabetic adults. Methods: Subjects (n = 18; age 49 ± 14 y; fasting glucose 105 ± 11 mg/dL; 2 h glucose 170 ± 32 mg/dL) completed a peak O2 consumption/lactate threshold (LT) protocol plus three randomly assigned conditions: 1) control, 1 hour of seated rest, 2) MIE (at LT), and 3) HIE (75% of difference between LT and peak O2 consumption). One hour after exercise, subjects received an oral glucose tolerance test (OGTT). Plasma glucose, insulin, and C-peptide concentrations were sampled at 5- to 10-minute intervals at baseline, during exercise, after exercise, and for 3 hours after glucose ingestion. Total, early-phase, and late-phase area under the glucose and insulin response curves were compared between conditions. Indices of insulin sensitivity (SI) were derived from OGTT data using the oral minimal model. Results: Compared with control, SI improved by 51% (P = .02) and 85% (P < .001) on the MIE and HIE days, respectively. No differences in SI were observed between the exercise conditions (P = .62). Improvements in SI corresponded to significant reductions in the glucose, insulin, and C-peptide area under the curve values during the late phase of the OGTT after HIE (P < .05), with only a trend for reductions after MIE. Conclusion: These results suggest that in prediabetic adults, acute exercise has an immediate and intensity-dependent effect on improving postprandial glycemia and insulin sensitivity. PMID:24243632
Kim, Ji-Hyun; Choe, Yu-Ri; Song, Min-Keun; Choi, In-Sung; Han, Jae-Young
2017-12-01
To determine whether heart rate recovery (HRR) following an exercise tolerance test (ETT) is correlated with a changing ratio of peak oxygen consumption (VO 2 ) and maximal metabolic equivalents (MET max ). A total of 60 acute myocardial infarction (AMI) patients who underwent ETT at both assessment points - 3 weeks (T0) after the AMI attack and 3 months after T0 (T1) were included. After achieving a peak workload, the treadmill was stopped with a 5-minute cooldown period, and the patients recovered in a comfortable and relaxed seated position. HRR was defined as the difference between the maximal heart rate (HR max ) and the HR measured at specific time intervals - immediately after the cool down period (HRR-0) and 3 minutes after the completion of the ETT (HRR-3). HRR-0 and HRR-3 increased over time, whereas VO 2max and MET max did not show significant changes. There was a positive correlation between HRR at T0 and the exercise capacity at T0. HRR at T0 also showed a positive correlation with the exercise capacity at T1. There was no significant correlation between HRR measured at T0 and the change in the ratio of VO 2max and MET max , as calculated by subtracting VO 2max and MET max obtained at T0 from those obtained at T1, divided by VO 2max at T0 and multiplied by 100. Post-exercise HRR measured at 3 weeks after the AMI onset can reflect the exercise capacity 3 months after the first ETT. However, it may be difficult to correlate post-exercise HRR at T0 with the degree of increase in cardiopulmonary exercise capacity in patients with AMI.
Caldwell, Lydia K; DuPont, William H; Beeler, Matthew K; Post, Emily M; Barnhart, Emily C; Hardesty, Vincent H; Anders, John P; Borden, Emily C; Volek, Jeff S; Kraemer, William J
2018-03-01
The purpose of this double-blind, placebo-controlled investigation was to examine the effects of a Korean Ginseng (GINST15) on measures of perception and physical performance following an acute bout of resistance exercise. Ten women (age: 38.7 ± 7.8 years; height: 1.64 ± 0.05 m; body mass: 76.0 ± 11.6 kg) and nine men (age: 41.2. ± 9.7 years; height: 1.77 ± 0.05 m; body mass: 88.5 ± 5.0 kg) completed the investigation. Participants were randomized to a three-cycle testing scheme consisting of high dose ginseng (HIGH: 960 mg/day), low dose ginseng (LOW: 160 mg/day) and placebo (PBO: 0 mg/day). After 14 days of supplementation participants returned to the laboratory for an acute resistance exercise trial (5 sets of 12 repetitions of the leg press at 70% of one-repetition-maximum [1RM]). Ratings of perceived exertion (RPE) were assessed after each set. Muscle pain/soreness was assessed before exercise and 24 hours post exercise. Psychomotor performance and peak power were measured before exercise, immediately post exercise and 24 hours after exercise. Each treatment cycle was separated by a minimum one-week washout period. HIGH significantly reduced perceived exertion during exercise. HIGH and LOW significantly reduced change in muscle soreness at 24 hours post exercise. Analysis of peak power demonstrated the presence of responders (n = 13) and non-responders (n = 6). Responders showed a significant effect of HIGH GINST15 on maintenance of neuromuscular function. The appearance of responders and non-responders, could explain the mixed literature base on the ergogenic properties of ginseng.
Stout, Martin; Tew, Garry A; Doll, Helen; Zwierska, Irena; Woodroofe, Nicola; Channer, Kevin S; Saxton, John M
2012-12-01
This study assessed the feasibility of a 12-week program of exercise, with and without intramuscular testosterone supplementation, in male patients with chronic heart failure (CHF) and low testosterone status and collected preliminary data for key health outcomes. Male patients with CHF (n = 41, age 67.2 years, range 51-84 years) with mean ± SD testosterone levels of 10.7 ± 2.6 nmol/L (309 ± 76 ng/dL) were randomly allocated to exercise with testosterone or placebo groups. Feasibility was assessed in terms of recruitment, intervention compliance, and attrition. Outcomes included an incremental shuttle walk test, peak oxygen uptake, muscular strength, echocardiographic measures, N-terminal pro-brain natriuretic peptide, inflammatory markers, depression (Beck Depression Inventory), and health-related quality of life (Minnesota Living with Heart Failure Questionnaire and Medical Outcomes Study Short-Form). Attrition was 30% but with 100% compliance to exercise and injections in patients who completed the study. Similar improvements in shuttle walk test (18% vs 19%), body mass (-1.3 kg vs -1.0 kg), and hand grip strength (2.1 kg vs 2.5 kg) from baseline were observed in both groups. The exercise with testosterone group showed improvements from baseline in peak oxygen uptake (P < .01), Beck Depression Inventory (P < .05), leg strength (P < .05), and several Medical Outcomes Study Short-Form quality of life domains (P < .05), which were generally not apparent in the exercise with placebo group. Echocardiographic measures, N-terminal pro-brain natriuretic peptide, and inflammatory markers were mostly unchanged. This study shows for the first time that testosterone supplementation during a program of exercise rehabilitation is feasible and can positively impact on a range of key health outcomes in elderly male patients with CHF who have a low testosterone status. Copyright © 2012 Mosby, Inc. All rights reserved.
Andrade, Marília S.; Lira, Claudio A. B.; Vancini, Rodrigo L.; Nakamoto, Fernanda P.; Cohen, Moisés; Silva, Antonio C.
2014-01-01
Objectives To investigate whether the muscle strength decrease that follows anterior cruciate ligament (ACL) reconstruction would lead to different cardiorespiratory adjustments during dynamic exercise. Method Eighteen active male subjects were submitted to isokinetic evaluation of knee flexor and extensor muscles four months after ACL surgery. Thigh circumference was also measured and an incremental unilateral cardiopulmonary exercise test was performed separately for both involved and uninvolved lower limbs in order to compare heart rate, oxygen consumption, minute ventilation, and ventilatory pattern (breath rate, tidal volume, inspiratory time, expiratory time, tidal volume/inspiratory time) at three different workloads (moderate, anaerobic threshold, and maximal). Results There was a significant difference between isokinetic extensor peak torque measured in the involved (116.5±29.1 Nm) and uninvolved (220.8±40.4 Nm) limbs, p=0.000. Isokinetic flexor peak torque was also lower in the involved limb than in the uninvolved limb (107.8±15.4 and 132.5±26.3 Nm, p=0.004, respectively). Lower values were also found in involved thigh circumference as compared with uninvolved limb (46.9±4.3 and 48.5±3.9 cm, p=0.005, respectively). No differences were found between the lower limbs in any of the variables of the incremental cardiopulmonary tests at all exercise intensities. Conclusions Our findings indicate that, four months after ACL surgery, there is a significant deficit in isokinetic strength in the involved limb, but these differences in muscle strength requirement do not produce differences in the cardiorespiratory adjustments to exercise. Based on the hypotheses from the literature which explain the differences in the physiological responses to exercise for different muscle masses, we can deduce that, after 4 months of a rehabilitation program after an ACL reconstruction, individuals probably do not present differences in muscle oxidative and peripheral perfusion capacities that could elicit higher levels of peripheral cardiorepiratory stimulus during exercise. PMID:24838811
Freis, Tanja; Hecksteden, Anne; Such, Ulf; Meyer, Tim
2017-01-01
The ability to sustain intense exercise seems to be partially limited by the body's capability to counteract decreases in both intra- and extracellular pH. While the influence of an enhanced buffering capacity via sodium bicarbonate (BICA) on short-term, high-intensity exercise performance has been repeatedly investigated, studies on prolonged endurance performances are comparatively rare, especially for running. The aim of the following study was to assess the ergogenic effects of an oral BICA substitution upon exhaustive intensive endurance running performance. In a double-blind randomized cross-over study, 18 trained runners (VO2peak: 61.2 ± 6.4 ml•min-1•kg-1) performed two exhaustive graded exercise tests and two constant load tests (30 main at 95% individual anaerobic threshold (IAT) followed by 110% IAT until exhaustion) after ingestion of either sodium bicarbonate (BICA) (0.3 g/kg) or placebo (4 g NaCl) diluted in 700 ml of water. Time to exhaustion (TTE) in the constant load test was defined as the main outcome measure. Throughout each test respiratory gas exchange measurements were conducted as well as determinations of heart rate, blood gases and blood lactate concentration. TTE in the constant load test did not differ significantly between BICA and placebo conditions (BICA: 39.6 ± 5.6 min, placebo: 39.3 ± 5.6 min; p = 0.78). While pH in the placebo test dropped to a slightly acidotic value two minutes after cessation of exercise (7.34 ± 0.05) the value in the BICA trial remained within the normal range (7.41 ± 0.06) (p < 0.001). In contrast, maximum running speed (Vmax) in the exhaustive graded exercise test was significantly higher with BICA (17.4 ± 1.0 km/h) compared to placebo (17.1 ± 1.0 km/h) (p = 0.009). The numerical difference in maximum oxygen consumption (VO2peak) failed to reach statistical significance (BICA: 61.2 ± 6.4 ml•min-1•kg-1, placebo: 59.8 ± 6.4 ml•min-1•kg-1; p = 0.31). Maximum blood lactate was significantly higher with BICA compared to the corresponding placebo test (BICA: 11.1 ± 2.3 mmol/l, placebo: 8.9 ± 3.0 mmol/l; p < 0.001). At the end of exercise, an acidotic pH value was found in both exhaustive graded exercise tests (p = 0.002). BICA caused gastrointestinal side effects in 15 patients. Maximal performance was enhanced significantly after BICA administration. The ergogenic effect of BICA in the exhaustive graded exercise test can most likely be attributed to an increased anaerobic glycolysis that is reflected by an accumulation of lactate. However, TTE in prolonged high-intensity running was not improved. Even at the end of exercise no severe metabolic acidosis was found. Metabolic acidification as one of the dominant factors causing muscular fatigue should therefore be reconsidered. German Clinical Trials Register (DRKS) DRKS00011284.
Acute effects of high- and low-intensity exercise bouts on leukocyte counts.
Neves, Pedro Rogério Da Silva; Tenório, Thiago Ricardo Dos Santos; Lins, Tatiana Acioli; Muniz, Maria Tereza Cartaxo; Pithon-Curi, Tânia Cristina; Botero, João Paulo; Do Prado, Wagner Luiz
2015-06-01
It is widely accepted that physical exercise may bring about changes in the immune system. Even acute bouts of exercise can alter the number and function of leukocytes, but the degree of white blood cell trafficking depends on the intensity and duration of exercise. The aim of this study was to analyze the acute and short-term effects of exercise intensity on leukocyte counts and leukocyte subsets. Nine physically healthy, active young males (21.0 ± 1.9 years) underwent three experimental trials: high exercise intensity [80% peak oxygen consumption (VO 2peak )], low exercise intensity (40% VO 2peak ), and the control condition (no exercise). Blood samples were collected prior to exercise, immediately after exercise, and 2 hours after exercise. Two-way analysis of variance for repeated measures was used to evaluate differences between the trials and the time-points, and to compare times within trials. There was a greater increase in the leukocyte count after high-intensity exercise, compared to the control condition ( p < 0.01) and low-intensity exercise ( p < 0.01). This effect was still present 2 hours after passive recovery ( p < 0.01). When the same participants were submitted to different exercise intensities, the acute and short-term effects of exercise on white blood cells were intensity-dependent immediately after exercise (i.e., lymphocytosis and monocytosis) and 2 hours after passive recovery (i.e., neutrophilia).
Tuomi, Tiinamaija; Honkanen, Elina H; Isomaa, Bo; Sarelin, Leena; Groop, Leif C
2006-02-01
To study the effect of the short-acting insulin secretagogue nateglinide in patients with maturity-onset diabetes of the young type 3 (MODY3), which is characterized by a defective insulin response to glucose and hypersensitivity to sulfonylureas. We compared the acute effect of nateglinide, glibenclamide, and placebo on prandial plasma glucose and serum insulin, C-peptide, and glucagon excursions in 15 patients with MODY3. After an overnight fast, they received on three randomized occasions placebo, 1.25 mg glibenclamide, or 30 mg nateglinide before a standard 450-kcal test meal and light bicycle exercise for 30 min starting 140 min after the ingestion of the first test drug. Insulin peaked earlier after nateglinide than after glibenclamide or placebo (median [interquartile range] time 70 [50] vs. 110 [20] vs. 110 [30] min, P = 0.0002 and P = 0.0025, respectively). Consequently, compared with glibenclamide and placebo, the peak plasma glucose (P = 0.031 and P < 0.0001) and incremental glucose areas under curve during the first 140 min of the test (P = 0.041 and P < 0.0001) remained lower after nateglinide. The improved prandial glucose control with nateglinide was achieved with a lower peak insulin concentration than after glibenclamide (47.0 [26.0] vs. 80.4 [71.7] mU/l; P = 0.023). Exercise did not induce hypoglycemia after nateglinide or placebo, but after glibenclamide six patients experienced symptomatic hypoglycemia and three had to interrupt the test. A low dose of nateglinide prevents the acute postprandial rise in glucose more efficiently than glibenclamide and with less stimulation of peak insulin concentrations and less hypoglycemic symptoms.
Exercise economy in skiing and running
Losnegard, Thomas; Schäfer, Daniela; Hallén, Jostein
2014-01-01
Substantial inter-individual variations in exercise economy exist even in highly trained endurance athletes. The variation is believed to be determined partly by intrinsic factors. Therefore, in the present study, we compared exercise economy in V2-skating, double poling, and uphill running. Ten highly trained male cross-country skiers (23 ± 3 years, 180 ± 6 cm, 75 ± 8 kg, VO2peak running: 76.3 ± 5.6 mL·kg−1·min−1) participated in the study. Exercise economy and VO2peak during treadmill running, ski skating (V2 technique) and double poling were compared based on correlation analysis. There was a very large correlation in exercise economy between V2-skating and double poling (r = 0.81) and large correlations between V2-skating and running (r = 0.53) and double poling and running (r = 0.58). There were trivial to moderate correlations between exercise economy and the intrinsic factors VO2peak (r = 0.00–0.23), cycle rate (r = 0.03–0.46), body mass (r = −0.09–0.46) and body height (r = 0.11–0.36). In conclusion, the inter-individual variation in exercise economy could be explained only moderately by differences in VO2peak, body mass and body height. Apparently other intrinsic factors contribute to the variation in exercise economy between highly trained subjects. PMID:24478718
Oscillation in O2 uptake in impulse exercise.
Yano, T; Afroundeh, R; Yamanaka, R; Arimitsu, T; Lian, C S; Shirakawa, K; Yunoki, T
2014-06-01
The purpose of the present study was to examine 1) whether O(2) uptake (VO(2)) oscillates during light exercise and 2) whether the oscillation is enhanced after impulse exercise. After resting for 1 min on a bicycle seat, subjects performed 5-min pre-exercise with 25 watts work load, 10-s impulse exercise with 200 watts work load and 15-min post exercise with 25 watts work load at 80 rpm. VO(2) during pre-exercise significantly increased during impulse exercise and suddenly decreased and re-increased until 23 s after impulse exercise. In the cross correlation between heart rate (HR) and VO(2) after impulse exercise, VO(2) strongly correlated to HR with a time delay of -4 s. Peak of power spectral density (PSD) in HR appeared at 0.0039 Hz and peak of PSD in VO(2) appeared at 0.019 Hz. The peak of the cross power spectrum between VO(2) and HR appeared at 0.0078 Hz. The results suggested that there is an oscillation in O(2) uptake during light exercise that is associated with the oscillation in O(2) consumption in active muscle. The oscillation is enhanced not only by change in O(2) consumption but also by O(2) content transported from active muscle to the lungs.
Hassel, Erlend; Stensvold, Dorthe; Halvorsen, Thomas; Wisløff, Ulrik; Langhammer, Arnulf; Steinshamn, Sigurd
2017-01-01
Peak oxygen uptake (VO2peak) is an indicator of cardiovascular health and a useful tool for risk stratification. Direct measurement of VO2peak is resource-demanding and may be contraindicated. There exist several non-exercise models to estimate VO2peak that utilize easily obtainable health parameters, but none of them includes lung function measures or hemoglobin concentrations. We aimed to test whether addition of these parameters could improve prediction of VO2peak compared to an established model that includes age, waist circumference, self-reported physical activity and resting heart rate. We included 1431 subjects aged 69-77 years that completed a laboratory test of VO2peak, spirometry, and a gas diffusion test. Prediction models for VO2peak were developed with multiple linear regression, and goodness of fit was evaluated. Forced expiratory volume in one second (FEV1), diffusing capacity of the lung for carbon monoxide and blood hemoglobin concentration significantly improved the ability of the established model to predict VO2peak. The explained variance of the model increased from 31% to 48% for men and from 32% to 38% for women (p<0.001). FEV1, diffusing capacity of the lungs for carbon monoxide and hemoglobin concentration substantially improved the accuracy of VO2peak prediction when added to an established model in an elderly population.
Moderate acute exercise (70% VO2 peak) induces TGF-β, α-amylase and IgA in saliva during recovery.
Rosa, L; Teixeira, Aas; Lira, Fs; Tufik, S; Mello, Mt; Santos, Rvt
2014-03-01
Strenuous exercise promotes changes in salivary IgA and can be associated with a high incidence of upper respiratory tract Infections. However, moderate exercise enhances immune function. The effect of exercise on salivary IgA has been well studied, but its effect on other immunological parameters is poorly studied. Thus, this study determined the effect of moderate acute exercise on immunological salivary parameters, such as the levels of cytokines (TGF-β and IL-5), IgA, α-amylase and total protein, over 24 h. Ten male adult subjects exercised for 60 min at an intensity of 70% VO2 peak. Saliva samples were collected before ('basal') and 0, 12 and 24 h after an exercise session. The total salivary protein was lower after 12 and 24 h than immediately after exercise, whereas α-amylase increased at 12 and 24 h after exercise compared with basal levels. The IgA concentration was increased at 24 h after exercise relative to immediately after exercise, and there was no difference in the IL-5 while TGF-β concentration increased in recovery. In conclusion, 70% VO2 peak exercise does not induce changes immediately after exercise, but after 24 h, it produces an increase in salivary TGF-β without changing IL-5. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lanzi, Stefano; Codecasa, Franco; Cornacchia, Mauro; Maestrini, Sabrina; Salvadori, Alberto; Brunani, Amelia; Malatesta, Davide
2014-01-01
This study aimed to compare fat oxidation, hormonal and plasma metabolite kinetics during exercise in lean (L) and obese (O) men. Sixteen L and 16 O men [Body Mass Index (BMI): 22.9 ± 0.3 and 39.0 ± 1.4 kg · m(-2)] performed a submaximal incremental test (Incr) on a cycle-ergometer. Fat oxidation rates (FORs) were determined using indirect calorimetry. A sinusoidal model, including 3 independent variables (dilatation, symmetry, translation), was used to describe fat oxidation kinetics and determine the intensity (Fat(max)) eliciting maximal fat oxidation. Blood samples were drawn for the hormonal and plasma metabolite determination at each step of Incr. FORs (mg · FFM(-1) · min(-1)) were significantly higher from 20 to 30% of peak oxygen uptake (VO2peak) in O than in L and from 65 to 85% VO2peak in L than in O (p ≤ 0.05). FORs were similar in O and in L from 35 to 60% VO2peak. Fat max was 17% significantly lower in O than in L (p<0.01). Fat oxidation kinetics were characterized by similar translation, significantly lower dilatation and left-shift symmetry in O compared with L (p<0.05). During whole exercise, a blunted lipolysis was found in O [lower glycerol/fat mass (FM) in O than in L (p ≤ 0.001)], likely associated with higher insulin concentrations in O than in L (p<0.01). Non-esterified fatty acids (NEFA) were significantly higher in O compared with L (p<0.05). Despite the blunted lipolysis, O presented higher NEFA availability, likely due to larger amounts of FM. Therefore, a lower Fat(max), a left-shifted and less dilated curve and a lower reliance on fat oxidation at high exercise intensities suggest that the difference in the fat oxidation kinetics is likely linked to impaired muscular capacity to oxidize NEFA in O. These results may have important implications for the appropriate exercise intensity prescription in training programs designed to optimize fat oxidation in O.
Littlefield, Laurel A; Papadakis, Zacharias; Rogers, Katie M; Moncada-Jiménez, José; Taylor, J Kyle; Grandjean, Peter W
2017-09-01
Reductions in postprandial lipemia have been observed following aerobic exercise of sufficient energy expenditure. Increased excess postexercise oxygen consumption (EPOC) has been documented when comparing high- versus low-intensity exercise. The contribution of EPOC energy expenditure to alterations in postprandial lipemia has not been determined. The purpose of this study was to evaluate the effects of low- and high-intensity exercise on postprandial lipemia in healthy, sedentary, overweight and obese men (age, 43 ± 10 years; peak oxygen consumption, 31.1 ± 7.5 mL·kg -1 ·min -1 ; body mass index, 31.8 ± 4.5 kg/m 2 ) and to determine the contribution of EPOC to reductions in postprandial lipemia. Participants completed 4 conditions: nonexercise control, low-intensity exercise at 40%-50% oxygen uptake reserve (LI), high-intensity exercise at 70%-80% oxygen uptake reserve (HI), and HI plus EPOC re-feeding (HI+EERM), where the difference in EPOC energy expenditure between LI and HI was re-fed in the form of a sports nutrition bar (Premier Nutrition Corp., Emeryville, Calif., USA). Two hours following exercise participants ingested a high-fat (1010 kcals, 99 g sat fat) test meal. Blood samples were obtained before exercise, before the test meal, and at 2, 4, and 6 h postprandially. Triglyceride incremental area under the curve was significantly reduced following LI, HI, and HI+EERM when compared with nonexercise control (p < 0.05) with no differences between the exercise conditions (p > 0.05). In conclusions, prior LI and HI exercise equally attenuated postprandial triglyceride responses to the test meal. The extra energy expended during EPOC does not contribute significantly to exercise energy expenditure or to reductions in postprandial lipemia in overweight men.
Foot-Ground Reaction Force During Resistance Exercise in Parabolic Flight
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Cobb, Kendall; Loehr, James A.; Nguyen, Daniel; Schneider, Suzanne M.
2003-01-01
An interim Resistance Exercise Device (iRED) was designed to provide resistive exercise as a countermeasure to space flight-induced loss of muscle strength and endurance as well as decreased bone mineral density. The purpose of this project was to compare foot-ground reaction force during iRED exercise in normal gravity (l-g) versus micro gravity (O-g) achieved during parabolic flight. METHODS: Four subjects performed three exercises using the iRED (squat, heel raise, and deadlift) during I-g and O-g at a moderate intensity (60% of maximum strength during deadlift exercise). Foot-ground reaction force was measured in three axes (x,y,z) using a force plate, and the magnitude of the resultant force vector was calculated (r = X 2 + y2 + Z2 ). Range of motion (ROM) was measured using a linear encoder. Peak force (PkF) and total work (TW) were calculated using a customized computer program. Paired t-tests were used to test if significant differences (p.::::0.05) were observed between I-g and O-g exercise. RESULTS: PkF and TW measured in the resultant axis were significantly less in O-g for each of the exercises tested. During O-g, PkF was 42-46% and TW was 33- 37% of that measured during I-g. ROM and average time to complete each repetition were not different from I-g to O-g. CONCLUSIONS: When performing exercises in which body mass is a portion of the resistance during I-g, PkF and TW measured during resistive exercise were reduced approximately 60-70% during O-g. Thus, a resistive exercise device during O-g will be required to provided higher resistances to induce a similar training stimulus to that on Earth.
Denadai, B S; Higino, W P
2004-12-01
The objective of this study was to verify the effect of the passive recovery time following a supramaximal sprint exercise and the incremental exercise test on the lactate minimum speed (LMS). Thirteen sprinters and 12 endurance runners performed the following tests: (1) a maximal 500 m sprint followed by a passive recovery to determine the time to reach the peak blood lactate concentration; (2) after the maximal 500 m sprint, the athletes rested eight mins, and then performed 6 x 800 m incremental test, in order to determine the speed corresponding to the lower blood lactate concentration (LMS1) and; (3) identical procedures of the LMS1, differing only in the passive rest time, that was performed in accordance with the time to peak lactate (LMS2). The time (min) to reach the peak blood lactate concentration was significantly higher in the sprinters (12.76 +/- 2.83) than in the endurance runners (10.25 +/- 3.01). There was no significant difference between LMS 1 and LMS2, for both endurance (285.7 +/- 19.9; 283.9 +/- 17.8 m/min; r = 0.96) and sprint runners (238.0 +/- 14.1; 239.4 +/- 13.9 m/min; r = 0.93), respectively. We can conclude that the LMS is not influenced by a passive recovery period longer than eight mins (adjusted according with the time to peak blood lactate), although blood lactate concentration may differ at this speed. The predominant type of training (aerobic or anaerobic) of the athletes does not seem to influence the phenomenon previously described.
Apostolopoulos, Nikos C; Lahart, Ian M; Plyley, Michael J; Taunton, Jack; Nevill, Alan M; Koutedakis, Yiannis; Wyon, Matthew; Metsios, George S
2018-03-12
Effects of passive static stretching intensity on recovery from unaccustomed eccentric exercise of right knee extensors was investigated in 30 recreationally active males randomly allocated into three groups: high-intensity (70-80% maximum perceived stretch), low-intensity (30-40% maximum perceived stretch), and control. Both stretching groups performed 3 sets of passive static stretching exercises of 60s each for hamstrings, hip flexors, and quadriceps, over 3 consecutive days, post-unaccustomed eccentric exercise. Muscle function (eccentric and isometric peak torque) and blood biomarkers (CK and CRP) were measured before (baseline) and after (24, 48, and 72h) unaccustomed eccentric exercise. Perceived muscle soreness scores were collected immediately (time 0), and after 24, 48, and 72h post-exercise. Statistical time x condition interactions observed only for eccentric peak torque (p=.008). Magnitude-based inference analyses revealed low-intensity stretching had most likely, very likely, or likely beneficial effects on perceived muscle soreness (48-72h and 0-72h) and eccentric peak torque (baseline-24h and baseline-72h), compared with high-intensity stretching. Compared with control, low-intensity stretching had very likely or likely beneficial effects on perceived muscle soreness (0-24h and 0-72h), eccentric peak torque (baseline-48h and baseline-72h), and isometric peak torque (baseline-72h). High-intensity stretching had likely beneficial effects on eccentric peak torque (baseline-48h), but likely harmful effects eccentric peak torque (baseline-24h) and CK (baseline-48h and baseline-72h), compared with control. Therefore, low-intensity stretching is likely to result in small-to-moderate beneficial effects on perceived muscle soreness and recovery of muscle function post-unaccustomed eccentric exercise, but not markers of muscle damage and inflammation, compared with high-intensity or no stretching.
Clinical Usefulness of Response Profiles to Rapidly Incremental Cardiopulmonary Exercise Testing
Ramos, Roberta P.; Alencar, Maria Clara N.; Treptow, Erika; Arbex, Flávio; Ferreira, Eloara M. V.; Neder, J. Alberto
2013-01-01
The advent of microprocessed “metabolic carts” and rapidly incremental protocols greatly expanded the clinical applications of cardiopulmonary exercise testing (CPET). The response normalcy to CPET is more commonly appreciated at discrete time points, for example, at the estimated lactate threshold and at peak exercise. Analysis of the response profiles of cardiopulmonary responses at submaximal exercise and recovery, however, might show abnormal physiologic functioning which would not be otherwise unraveled. Although this approach has long been advocated as a key element of the investigational strategy, it remains largely neglected in practice. The purpose of this paper, therefore, is to highlight the usefulness of selected submaximal metabolic, ventilatory, and cardiovascular variables in different clinical scenarios and patient populations. Special care is taken to physiologically justify their use to answer pertinent clinical questions and to the technical aspects that should be observed to improve responses' reproducibility and reliability. The most recent evidence in favor of (and against) these variables for diagnosis, impairment evaluation, and prognosis in systemic diseases is also critically discussed. PMID:23766901
Vivodtzev, Isabelle; Gagnon, Philippe; Pepin, Véronique; Saey, Didier; Laviolette, Louis; Brouillard, Cynthia; Maltais, François
2011-01-01
Rationale The endurance time (Tend) during constant-workrate cycling exercise (CET) is highly variable in COPD. We investigated pulmonary and physiological variables that may contribute to these variations in Tend. Methods Ninety-two patients with COPD completed a CET performed at 80% of peak workrate capacity (Wpeak). Patients were divided into tertiles of Tend [Group 1: <4 min; Group 2: 4–6 min; Group 3: >6 min]. Disease severity (FEV1), aerobic fitness (Wpeak, peak oxygen consumption [ peak], ventilatory threshold [ VT]), quadriceps strength (MVC), symptom scores at the end of CET and exercise intensity during CET (heart rate at the end of CET to heart rate at peak incremental exercise ratio [HRCET/HRpeak]) were analyzed as potential variables influencing Tend. Results Wpeak, peak, VT, MVC, leg fatigue at end of CET, and HRCET/HRpeak were lower in group 1 than in group 2 or 3 (p≤0.05). VT and leg fatigue at end of CET independently predicted Tend in multiple regression analysis (r = 0.50, p = 0.001). Conclusion Tend was independently related to the aerobic fitness and to tolerance to leg fatigue at the end of exercise. A large fraction of the variability in Tend was not explained by the physiological parameters assessed in the present study. Individualization of exercise intensity during CET should help in reducing variations in Tend among patients with COPD. PMID:21386991
Endurance Exercise in Hypoxia, Hyperoxia and Normoxia: Mitochondrial and Global Adaptations.
Przyklenk, Axel; Gutmann, Boris; Schiffer, Thorsten; Hollmann, Wildor; Strueder, Heiko K; Bloch, Wilhelm; Mierau, Andreas; Gehlert, Sebastian
2017-07-01
We hypothesized short-term endurance exercise (EN) in hypoxia (HY) to exert decreased mitochondrial adaptation, peak oxygen consumption (VO 2peak ) and peak power output (PPO) compared to EN in normoxia (NOR) and hyperoxia (PER). 11 male subjects performed repeated unipedal cycling EN in HY, PER, and NOR over 4 weeks in a cross-over design. VO 2peak , PPO, rate of perceived exertion (RPE) and blood lactate (Bla) were determined pre- and post-intervention to assess physiological demands and adaptation. Skeletal muscle biopsies were collected to determine molecular mitochondrial signaling and adaptation. Despite reduced exercise intensity (P<0.05), increased Bla and RPE levels in HY revealed higher metabolic load compared to PER (P<0.05) and NOR (n.s.). PPO increased in all groups (P<0.05) while VO 2peak and mitochondrial signaling were unchanged (P>0.05). Electron transport chain complexes tended to increase in all groups with the highest increase in HY (n.s.). EN-induced mitochondrial adaptability and exercise capacity neither decreased significantly in HY nor increased in PER compared to NOR. Despite decreased exercise intensity, short term EN under HY may not necessarily impair mitochondrial adaptation and exercise capacity while PER does not augment adaptation. HY might strengthen adaptive responses under circumstances when absolute training intensity has to be reduced. © Georg Thieme Verlag KG Stuttgart · New York.
Skeletal muscle mass and exercise performance in stable ambulatory patients with heart failure.
Lang, C C; Chomsky, D B; Rayos, G; Yeoh, T K; Wilson, J R
1997-01-01
The purpose of this study was to determine whether skeletal muscle atrophy limits the maximal exercise capacity of stable ambulatory patients with heart failure. Body composition and maximal exercise capacity were measured in 100 stable ambulatory patients with heart failure. Body composition was assessed by using dual-energy X-ray absorption. Peak exercise oxygen consumption (VO2peak) and the anaerobic threshold were measured by using a Naughton treadmill protocol and a Medical Graphics CardioO2 System. VO2peak averaged 13.4 +/- 3.3 ml.min-1.kg-1 or 43 +/- 12% of normal. Lean body mass averaged 52.9 +/- 10.5 kg and leg lean mass 16.5 +/- 3.6 kg. Leg lean mass correlated linearly with VO2peak (r = 0.68, P < 0.01), suggesting that exercise performance is influences by skeletal muscle mass. However, lean body mass was comparable to levels noted in 1,584 normal control subjects, suggesting no decrease in muscle mass. Leg muscle mass was comparable to levels noted in 34 normal control subjects, further supporting this conclusion. These findings suggest that exercise intolerance in stable ambulatory patients with heart failure is not due to skeletal muscle atrophy.
Ehlken, Nicola; Lichtblau, Mona; Klose, Hans; Weidenhammer, Johannes; Fischer, Christine; Nechwatal, Robert; Uiker, Sören; Halank, Michael; Olsson, Karen; Seeger, Werner; Gall, Henning; Rosenkranz, Stephan; Wilkens, Heinrike; Mertens, Dirk; Seyfarth, Hans-Jürgen; Opitz, Christian; Ulrich, Silvia; Egenlauf, Benjamin; Grünig, Ekkehard
2016-01-01
Abstract Aims The impact of exercise training on the right heart and pulmonary circulation has not yet been invasively assessed in patients with pulmonary hypertension (PH) and right heart failure. This prospective randomized controlled study investigates the effects of exercise training on peak VO2/kg, haemodynamics, and further clinically relevant parameters in PH patients. Methods and results Eighty-seven patients with pulmonary arterial hypertension and inoperable chronic thrombo-embolic PH (54% female, 56 ± 15 years, 84% World Health Organization functional class III/IV, 53% combination therapy) on stable disease-targeted medication were randomly assigned to a control and training group. Medication remained unchanged during the study period. Non-invasive assessments and right heart catheterization at rest and during exercise were performed at baseline and after 15 weeks. Primary endpoint was the change in peak VO2/kg. Secondary endpoints included changes in haemodynamics. For missing data, multiple imputation and responder analyses were performed. The study results showed a significant improvement of peak VO2/kg in the training group (difference from baseline to 15 weeks: training +3.1 ± 2.7 mL/min/kg equals +24.3% vs. control −0.2 ± 2.3 mL/min/kg equals +0.9%, P < 0.001). Cardiac index (CI) at rest and during exercise, mean pulmonary arterial pressure, pulmonary vascular resistance, 6 min walking distance, quality of life, and exercise capacity significantly improved by exercise training. Conclusion Low-dose exercise training at 4–7 days/week significantly improved peak VO2/kg, haemodynamics, and further clinically relevant parameters. The improvements of CI at rest and during exercise indicate that exercise training may improve the right ventricular function. Further, large multicentre trials are necessary to confirm these results. PMID:26231884
Iron Status and the Acute Post-Exercise Hepcidin Response in Athletes
Peeling, Peter; Sim, Marc; Badenhorst, Claire E.; Dawson, Brian; Govus, Andrew D.; Abbiss, Chris R.; Swinkels, Dorine W.; Trinder, Debbie
2014-01-01
This study explored the relationship between serum ferritin and hepcidin in athletes. Baseline serum ferritin levels of 54 athletes from the control trial of five investigations conducted in our laboratory were considered; athletes were grouped according to values <30 μg/L (SF<30), 30–50 μg/L (SF30–50), 50–100 μg/L (SF50–100), or >100 μg/L (SF>100). Data pooling resulted in each athlete completing one of five running sessions: (1) 8×3 min at 85% vVO2peak; (2) 5×4 min at 90% vVO2peak; (3) 90 min continuous at 75% vVO2peak; (4) 40 min continuous at 75% vVO2peak; (5) 40 min continuous at 65% vVO2peak. Athletes from each running session were represented amongst all four groups; hence, the mean exercise duration and intensity were not different (p>0.05). Venous blood samples were collected pre-, post- and 3 h post-exercise, and were analysed for serum ferritin, iron, interleukin-6 (IL-6) and hepcidin-25. Baseline and post-exercise serum ferritin levels were different between groups (p<0.05). There were no group differences for pre- or post-exercise serum iron or IL-6 (p>0.05). Post-exercise IL-6 was significantly elevated compared to baseline within each group (p<0.05). Pre- and 3 h post-exercise hepcidin-25 was sequentially greater as the groups baseline serum ferritin levels increased (p<0.05). However, post-exercise hepcidin levels were only significantly elevated in three groups (SF30–50, SF50–100, and SF>100; p<0.05). An athlete's iron stores may dictate the baseline hepcidin levels and the magnitude of post-exercise hepcidin response. Low iron stores suppressed post-exercise hepcidin, seemingly overriding any inflammatory-driven increases. PMID:24667393
Recovery of pectoralis major and triceps brachii after bench press exercise.
Ferreira, Diogo V; Gentil, Paulo; Soares, Saulo Rodrigo Sampaio; Bottaro, Martim
2017-11-01
The present study evaluated and compared the recovery of pectoralis major (PM) and triceps brachii (TB) muscles of trained men after bench press exercise. Eighteen volunteers performed eight sets of bench press exercise to momentary muscle failure and were evaluated for TB and PM peak torque and total work on an isokinetic dynamometer. PM peak torque and total work remained lower than baseline for 72 and 96 h, respectively. TB peak torque was only different from baseline immediately post training, while total work was significantly lower than baseline immediately and 48 h after training. Normalized peak torque values were only different between TB and PM at 48 h after training. Considering the small and nonsignificant difference between the recovery of TB and PM muscles, the results suggest that bench press exercise may promote a similar stress on these muscles. Muscle Nerve 56: 963-967, 2017. © 2016 Wiley Periodicals, Inc.
Giardino, Nicholas D; Curtis, Jeffrey L; Andrei, Adin-Cristian; Fan, Vincent S; Benditt, Joshua O; Lyubkin, Mark; Naunheim, Keith; Criner, Gerard; Make, Barry; Wise, Robert A; Murray, Susan K; Fishman, Alfred P; Sciurba, Frank C; Liberzon, Israel; Martinez, Fernando J
2010-03-09
Anxiety in patients with chronic obstructive pulmonary disease (COPD) is associated with self-reported disability. The purpose of this study is to determine whether there is an association between anxiety and functional measures, quality of life and dyspnea. Data from 1828 patients with moderate to severe emphysema enrolled in the National Emphysema Treatment Trial (NETT), collected prior to rehabilitation and randomization, were used in linear regression models to test the association between anxiety symptoms, measured by the Spielberger State Trait Anxiety Inventory (STAI) and: (a) six-minute walk distance test (6 MWD), (b) cycle ergometry peak workload, (c) St. Georges Respiratory Questionnaire (SRGQ), and (d) UCSD Shortness of Breath Questionnaire (SOBQ), after controlling for potential confounders including age, gender, FEV1 (% predicted), DLCO (% predicted), and the Beck Depression Inventory (BDI). Anxiety was significantly associated with worse functional capacity [6 MWD (B = -0.944, p < .001), ergometry peak workload (B = -.087, p = .04)], quality of life (B = .172, p < .001) and shortness of breath (B = .180, p < .001). Regression coefficients show that a 10 point increase in anxiety score is associated with a mean decrease in 6 MWD of 9 meters, a 1 Watt decrease in peak exercise workload, and an increase of almost 2 points on both the SGRQ and SOBQ. In clinically stable patients with moderate to severe emphysema, anxiety is associated with worse exercise performance, quality of life and shortness of breath, after accounting for the influence of demographic and physiologic factors known to affect these outcomes. ClinicalTrials.gov NCT00000606.
Using the Human Activity Profile to Assess Functional Performance in Heart Failure.
Ribeiro-Samora, Giane Amorim; Pereira, Danielle Aparecida Gomes; Vieira, Otávia Alves; de Alencar, Maria Clara Noman; Rodrigues, Roseane Santo; Carvalho, Maria Luiza Vieira; Montemezzo, Dayane; Britto, Raquel Rodrigues
2016-01-01
To investigate (1) the validity of using the Human Activity Profile (HAP) in patients with heart failure (HF) to estimate functional capacity; (2) the association between the HAP and 6-Minute Walk Test (6MWT) distance; and (3) the ability of the HAP to differentiate between New York Heart Association (NYHA) functional classes. In a cross-sectional study, we evaluated 62 clinically stable patients with HF (mean age, 47.98 years; NYHA class I-III). Variables included maximal functional capacity as measured by peak oxygen uptake ((Equation is included in full-text article.)O2) using a cardiopulmonary exercise test (CPET), peak (Equation is included in full-text article.)O2 as estimated by the HAP, and exercise capacity as measured by the 6MWT. The difference between the measured (CPET) and estimated (HAP) peak (Equation is included in full-text article.)O2 against the average values showed a bias of 2.18 mL/kg/min (P = .007). No agreement was seen between these measures when applying the Bland-Altman method. Peak (Equation is included in full-text article.)O2 in the HAP showed a moderate association with the 6MWT distance (r = 0.62; P < .0001). Peak (Equation is included in full-text article.)O2 in the HAP was able to statistically differentiate NYHA functional classes I, II, and III (P < .05). The estimated peak (Equation is included in full-text article.)O2 using the HAP was not concordant with the gold standard CPET measure. On the contrary, the HAP was able to differentiate NYHA functional class associated with the 6MWT distance; therefore, the HAP is a useful tool for assessing functional performance in patients with HF.
Yano, T; Lian, C-S; Afroundeh, R; Shirakawa, K; Yunoki, T
2014-03-01
The purpose of the present study was to compare oscillation of skin blood flow with that of deoxygenation in muscle during light exercise in order to determine the physiological significance of oscillations in deoxygenation. Prolonged exercise with 50% of peak oxygen uptake was performed for 60 min. Skin blood flow (SBF) was measured using a laser blood flow meter on the right vastus lateralis muscle. Deoxygenated haemoglobin/myoglobin (DHb/Mb) concentration in the left vastus lateralis were measured using a near-infrared spectroscopy system. SBF and DHb/Mb during exercise were analysed by fast Fourier transform. We classified frequency bands according to previous studies (Kvernmo et al. 1999, Kvandal et al. 2006) into phase I (0.005-0.0095 and 0.0095-0.02 Hz), phase II (0.02-0.06 Hz: phase II) and phase III (0.06-0.16 Hz). The first peak of power spectra density (PSD) in SBF appeared at 0.0078 Hz in phase I. The second peak of PSD in SBF appeared at 0.035 Hz. The third peak of PSD in SBF appeared at 0.078 Hz. The first peak of PSD in DHb/Mb appeared at 0.0039 Hz, which was out of phase I. The second peak of PSD in DHb/Mb appeared at 0.016 Hz. The third peak of PSD in DHb/Mb appeared at 0.035 Hz. The coefficient of cross correlation was very low. Cross power spectra density showed peaks of 0.0039, 0.016 and 0.035 Hz. It is concluded that a peak of 0.016 Hz in oscillations of DHb/Mb observed in muscle during exercise is associated with endothelium-dependent vasodilation (phase I) and that a peak of 0.035 Hz in DHb/Mb is associated with sympathetic nerve activity (phase II). It is also confirmed that each peak of SBF oscillations is observed in each phase.
Kou, Seisyou; Suzuki, Kengo; Akashi, Yoshihiro J; Mizukoshi, Kei; Takai, Manabu; Izumo, Masaki; Shimozato, Takashi; Hayashi, Akio; Ohtaki, Eiji; Osada, Naohiko; Omiya, Kazuto; Nobuoka, Sachihiko; Miyake, Fumihiko
2011-06-01
Left ventricular ejection fraction (LVEF) predicts mortality in patients with chronic heart failure (CHF). However, a weak correlation was found between LVEF and peak oxygen uptake ([Formula: see text]) in CHF patients. Global longitudinal strain measured by two-dimensional (2D) strain is regarded as a more useful predictor of cardiac events than LVEF. We investigated whether 2D strain obtained at rest could predict peak [Formula: see text] in patients with CHF. Fifty-one patients (mean age of 54.0 ± 12.0 years, 14 females, LVEF 46.0 ± 15.0%) with stable CHF underwent resting echocardiography and cardiopulmonary exercise testing. Leg muscle strength was measured for the evaluation of peripheral factors. Global longitudinal strain (GLS) in the apical 4-, 3-, and 2-chamber views and global circumferential strain (GCS) in the parasternal mid short-axis view were measured. In all patients, peak [Formula: see text] correlated with leg muscle strength (r = 0.55, p < 0.0001), LVEF (r = 0.46, p < 0.001), GLS (r = -0.45, p < 0.001), and GCS (r = -0.41, p = 0.005), respectively. No significant correlation was found between the ratio of early transmitral velocity to peak early diastolic mitral annulus velocity (E/E') and peak [Formula: see text]. In the patients with heart failure and reduced LVEF, a multiple stepwise linear regression analysis based on leg muscle strength, LVEF, E/E', GLS, and GCS was performed to identify independent predictors of peak [Formula: see text], resulting in leg muscle strength and GLS (R (2) = 0.888) as independent predictors of peak [Formula: see text]. Global longitudinal strain at rest could possibly predict exercise capacity, which appeared to be more useful than LVEF, E/E', and GCS in CHF patients with reduced LVEF.
Storer, Thomas W; Bhasin, Shalender; Travison, Thomas G; Pencina, Karol; Miciek, Renee; McKinnon, Jennifer; Basaria, Shehzad
2016-06-01
Testosterone increases skeletal muscle mass and strength, but the effects of testosterone on aerobic performance in mobility-limited older men have not been evaluated. To determine the effects of testosterone supplementation on aerobic performance, assessed as peak oxygen uptake (V̇O2peak) and gas exchange lactate threshold (V̇O2θ), during symptom-limited incremental cycle ergometer exercise. Subgroup analysis of the Testosterone in Older Men with Mobility Limitations Trial. Exercise physiology laboratory in an academic medical center. Sixty-four mobility-limited men 65 years or older with low total (100-350 ng/dL) or free (<50 pg/dL) testosterone. Participants were randomized to receive 100-mg testosterone gel or placebo gel daily for 6 months. V̇O2peak and V̇O2θ from a symptom-limited cycle exercise test. Mean (SD) baseline V̇O2peak was 20.5 (4.3) and 19.9 (4.7) mL/kg/min for testosterone and placebo, respectively. V̇O2peak increased by 0.83 (2.4) mL/kg/min in testosterone but decreased by -0.89 (2.5) mL/kg/min in placebo (P = .035); between group difference in change in V̇O2peak was significant (P = .006). This 6-month reduction in placebo was greater than the expected -0.4-mL/kg/min/y rate of decline in the general population. V̇O2θ did not change significantly in testosterone but decreased by 1.1 (1.8) mL/kg/min in placebo, P = .011 for between-group comparisons. Hemoglobin increased by 1.0 ± 3.5 and 0.1 ± 0.8 g/dL in testosterone and placebo groups, respectively. Testosterone supplementation in mobility-limited older men increased hemoglobin and attenuated the age-related declines in V̇O2peak and V̇O2θ. Long-term intervention studies are needed to determine the durability of this effect.
The effect of caffeine ingestion on mood state and bench press performance to failure.
Duncan, Michael J; Oxford, Samuel W
2011-01-01
Research has suggested that caffeine enhances aerobic performance. The evidence for high-intensity, short-term exercise, particularly resistance exercise is mixed and has not fully examined the psychological changes that occur after this mode of exercise with caffeine ingestion. This study examined the effect of caffeine (5 mg · kg(-1)) vs. placebo on bench press exercise to failure and the mood state response pre to postexercise. Thirteen moderately trained men (22.7 ± 6.0 years) completed 2 laboratory visits, after determination of 1 repetition maximum (1RM) on the bench press, where they performed bench press repetitions to failure at a load of 60% 1RM. Mood state was assessed 60 minutes pre and immediately post-substance ingestion. Borg's rating of perceived exertion (RPE) and peak blood lactate (PBla) were assessed after each test, and peak heart rate (PHR) was determined using heart rate telemetry. Participants completed significantly more repetitions to failure (p = 0.031) and lifted significantly greater weight (p = 0.027) in the caffeine condition compared to the placebo condition. The PHR (p = 0.0001) and PBla (p = 0.002) were higher after caffeine ingestion. The RPE was not different across conditions (p = 0.082). Mood state scores for vigor were greater (p = 0.001) and fatigue scores lower (p = 0.04) in the presence of caffeine. Fatigue scores were greater postexercise (p = 0.001) compared to scores pre exercise across conditions. Caffeine ingestion enhances performance in short-term, resistance exercise to failure and may favorably change the mood state response to exercise compared to a placebo.
Bogdanis, G C; Stavrinou, P; Fatouros, I G; Philippou, A; Chatzinikolaou, A; Draganidis, D; Ermidis, G; Maridaki, M
2013-11-01
This study investigated the changes in oxidative stress biomarkers and antioxidant status indices caused by a 3-week high-intensity interval training (HIT) regimen. Eight physically active males performed three HIT sessions/week over 3 weeks. Each session included four to six 30-s bouts of high-intensity cycling separated by 4 min of recovery. Before training, acute exercise elevated protein carbonyls (PC), thiobarbituric acid reactive substances (TBARS), glutathione peroxidase (GPX) activity, total antioxidant capacity (TAC) and creatine kinase (CK), which peaked 24h post-exercise (252 ± 30%, 135 ± 17%, 10 ± 2%, 85 ± 14% and 36 ± 13%, above baseline, respectively; p<0.01), while catalase activity (CAT) peaked 30 min post-exercise (56 ± 18% above baseline; p<0.01). Training attenuated the exercise-induced increase in oxidative stress markers (PC by 13.3 ± 3.7%; TBARS by 7.2 ± 2.7%, p<0.01) and CK activity, despite the fact that total work done was 10.9 ± 3.6% greater in the post- compared with the pre-training exercise test. Training also induced a marked elevation of antioxidant status indices (TAC by 38.4 ± 7.2%; CAT by 26.2 ± 10.1%; GPX by 3.0 ± 0.6%, p<0.01). Short-term HIT attenuates oxidative stress and up-regulates antioxidant activity after only nine training sessions totaling 22 min of high intensity exercise, further supporting its positive effect not only on physical conditioning but also on health promotion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Moller, Thomas; Lindberg, Harald; Lund, May Brit; Holmstrom, Henrik; Dohlen, Gaute; Thaulow, Erik
2018-06-01
We previously demonstrated an abnormally high right ventricular systolic pressure response to exercise in 50% of adolescents operated on for isolated ventricular septal defect. The present study investigated the prevalence of abnormal right ventricular systolic pressure response in 20 adult (age 30-45 years) patients who underwent surgery for early ventricular septal defect closure and its association with impaired ventricular function, pulmonary function, or exercise capacity. The patients underwent cardiopulmonary tests, including exercise stress echocardiography. Five of 19 patients (26%) presented an abnormal right ventricular systolic pressure response to exercise ⩾ 52 mmHg. Right ventricular systolic function was mixed, with normal tricuspid annular plane systolic excursion and fractional area change, but abnormal tricuspid annular systolic motion velocity (median 6.7 cm/second) and isovolumetric acceleration (median 0.8 m/second2). Left ventricular systolic and diastolic function was normal at rest as measured by the peak systolic velocity of the lateral wall and isovolumic acceleration, early diastolic velocity, and ratio of early diastolic flow to tissue velocity, except for ejection fraction (median 53%). The myocardial performance index was abnormal for both the left and right ventricle. Peak oxygen uptake was normal (mean z score -0.4, 95% CI -2.8-0.3). There was no association between an abnormal right ventricular systolic pressure response during exercise and right or left ventricular function, pulmonary function, or exercise capacity. Abnormal right ventricular pressure response is not more frequent in adult patients compared with adolescents. This does not support the theory of progressive pulmonary vascular disease following closure of left-to-right shunts.
Kerling, Arno; Tegtbur, Uwe; Gützlaff, Elke; Kück, Momme; Borchert, Luise; Ates, Zeynep; von Bohlen, Anne; Frieling, Helge; Hüper, Katja; Hartung, Dagmar; Schweiger, Ulrich; Kahl, Kai G
2015-05-15
Major depressive disorder (MDD) is associated with decreased physical activity and increased rates of the metabolic syndrome (MetS), a risk factor for the development of type 2 diabetes and cardiovascular disorders. Exercise training has been shown to improve cardiorespiratory fitness and metabolic syndrome factors. Therefore, our study aimed at examining whether patients receiving an exercise program as an adjunct to inpatient treatment will benefit in terms of physiological and psychological factors. Fourty-two inpatients with moderate to severe depression were included. Twenty-two patients were randomized to additional 3x weekly exercise training (EXERCISE) and compared to treatment as usual (TAU). Exercise capacity was assessed as peak oxygen uptake (VO2peak), ventilatory anaerobic threshold (VAT) and workload expressed as Watts (W). Metabolic syndrome was defined according to NCEP ATPIII panel criteria. After 6 weeks of treatment, cardiorespiratory fitness (VO2peak, VAT, Watt), waist circumference and HDL cholesterol were significantly improved in EXERCISE participants. Treatment response expressed as ≥50% MADRS reduction was more frequent in the EXERCISE group. Adjunctive exercise training in depressed inpatients improves physical fitness, MetS factors, and psychological outcome. Given the association of depression with cardiometablic disorders, exercise training is recommended as an adjunct to standard antidepressant treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Changes in technique and efficiency after high-intensity exercise in cross-country skiers.
Åsan Grasaas, Christina; Ettema, Gertjan; Hegge, Ann Magdalen; Skovereng, Knut; Sandbakk, Øyvind
2014-01-01
This study investigated changes in technique and efficiency after high-intensity exercise to exhaustion in elite cross-country skiers. Twelve elite male skiers completed 4 min submaximal exercise before and after a high-intensity incremental test to exhaustion with the G3 skating technique on a 5% inclined roller-ski treadmill. Kinematics and kinetics were monitored by instrumented roller skis, work rate was calculated as power against roller friction and gravity, aerobic metabolic cost was determined from gas exchange, and blood lactate values indicated the anaerobic contribution. Gross efficiency was the work rate divided by aerobic metabolic rate. A recovery period of 10 min between the incremental test and the posttest was included to allow the metabolic values to return to baseline. Changes in neuromuscular fatigue in upper and lower limbs before and after the incremental test were indicated by peak power in concentric bench press and squat-jump height. From pretest to posttest, cycle length decreased and cycle rate increased by approximately 5% (P < 0.001), whereas the amount of ski forces did not change significantly. Oxygen uptake increased by 4%, and gross efficiency decreased from 15.5% ± 0.7% to 15.2% ± 0.5% from pretest to posttest (both P < .02). Correspondingly, blood lactate concentration increased from 2.4 ± 1.0 to 6.2 ± 2.5 mmol/L (P < .001). Bench-press and squat-jump performance remained unaltered. Elite cross-country skiers demonstrated a less efficient technique and shorter cycle length during submaximal roller-ski skating after high-intensity exercise. However, there were no changes in ski forces or peak power in the upper and lower limbs that could explain these differences.
Currie, Katharine D; Sless, Ryan T; Notarius, Catherine F; Thomas, Scott G; Goodman, Jack M
2017-08-01
Untrained individuals with exaggerated blood pressure (EBP) responses to graded exercise testing are characterized as having resting dysfunction of the sympathetic and cardiovascular systems. The purpose of this study was to determine the resting cardiovascular state of endurance-trained individuals with EBP through a comparison of normotensive athletes with and without EBP. EBP was defined as a maximal systolic blood pressure (SBP) at least 190 mmHg and at least 210 mmHg for women and men respectively, in response to a graded exercise test. Twenty-two life-long endurance-trained athletes (56 ± 5 years, 16 men) with EBP (EBP+) and 11 age and sex-matched athletes (55 ± 5 years, eight men) without EBP (EBP-) participated in the study. Sympathetic reactivity was assessed using BP responses to a cold pressor test, isometric handgrip exercise, and postexercise muscle ischemia. Resting left ventricular structure and function was assessed using two-dimensional echocardiography, whereas central arterial stiffness was assessed using carotid-to-femoral pulse wave velocity. Calf vascular conductance was measured at rest and peak postexercise using strain-gauge plethysmography. All sympathetic reactivity, left ventricular, and arterial stiffness indices were similar between groups. There was no between-group difference in resting vascular conductance, whereas peak vascular conductance was higher in EBP+ relative to EBP- (1.81 ± 0.65 vs. 1.45 ± 0.32 ml/100 ml/min/mmHg, P < 0.05). Findings from this study suggest that athletes with EBP do not display the resting cardiovascular state typically observed in untrained individuals with EBP. This response in athletes, therefore, is likely a compensatory mechanism to satisfy peripheral blood-flow demands rather than indicative of latent dysfunction.
Wieshammer, S; Hetzel, M; Hetzel, J; Kochs, M; Hombach, V
1993-07-01
To test the hypothesis that the addition of nitrates improves exercise tolerance in patients with heart failure caused by coronary artery disease already treated with an angiotensin converting enzyme inhibitor and diuretics. Randomised, double blind, placebo controlled, 16 week treatment periods. Outpatient clinic at a university hospital. 54 patients with previous myocardial infarction, symptoms of mild to moderate heart failure, left ventricular ejection fraction below 40%, no exercise-induced angina or electrocardiographic signs of ischaemia. Four patients in the nitrate group (n = 24) and one patient of the placebo group (n = 25) were withdrawn from the study. After the patients had been on constant doses of captopril and diuretics for at least 2 weeks, they were randomised to receive a target dose of 40 mg isosorbide dinitrate twice daily or placebo in addition to the continuation of captopril and diuretics. Bicycle exercise tests with measurement of gas exchange were carried out before randomisation and after 1, 6, 12, and 16 weeks of the double blind treatment. The change in peak oxygen uptake from control to week 16 was prospectively defined as the main outcome measure. The increase in peak oxygen uptake from before randomisation tended to be greater in the placebo group (before randomisation 17.4 (3.4) ml/min/kg) than in the nitrate group (before randomisation 17.1 (3.5) ml/min/kg) after 12 weeks (mean increase 1.1 (2.7) v 0.0 (2.7) ml/min/kg, p < 0.12) and 16 weeks (1.7 (3.0) v 0.3 (2.6) ml/min/kg, p < 0.14) of treatment. The addition of nitrates to a baseline treatment consisting of captopril and diuretics did not improve exercise tolerance.
Does cerebral oxygen delivery limit incremental exercise performance?
Olin, J. Tod; Dimmen, Andrew C.; Polaner, David M.; Kayser, Bengt; Roach, Robert C.
2011-01-01
Previous studies have suggested that a reduction in cerebral oxygen delivery may limit motor drive, particularly in hypoxic conditions, where oxygen transport is impaired. We hypothesized that raising end-tidal Pco2 (PetCO2) during incremental exercise would increase cerebral blood flow (CBF) and oxygen delivery, thereby improving peak power output (Wpeak). Amateur cyclists performed two ramped exercise tests (25 W/min) in a counterbalanced order to compare the normal, poikilocapnic response against a clamped condition, in which PetCO2 was held at 50 Torr throughout exercise. Tests were performed in normoxia (barometric pressure = 630 mmHg, 1,650 m) and hypoxia (barometric pressure = 425 mmHg, 4,875 m) in a hypobaric chamber. An additional trial in hypoxia investigated effects of clamping at a lower PetCO2 (40 Torr) from ∼75 to 100% Wpeak to reduce potential influences of respiratory acidosis and muscle fatigue imposed by clamping PetCO2 at 50 Torr. Metabolic gases, ventilation, middle cerebral artery CBF velocity (transcranial Doppler), forehead pulse oximetry, and cerebral (prefrontal) and muscle (vastus lateralis) hemoglobin oxygenation (near infrared spectroscopy) were monitored across trials. Clamping PetCO2 at 50 Torr in both normoxia (n = 9) and hypoxia (n = 11) elevated CBF velocity (∼40%) and improved cerebral hemoglobin oxygenation (∼15%), but decreased Wpeak (6%) and peak oxygen consumption (11%). Clamping at 40 Torr near maximal effort in hypoxia (n = 6) also improved cerebral oxygenation (∼15%), but again limited Wpeak (5%). These findings demonstrate that increasing mass cerebral oxygen delivery via CO2-mediated vasodilation does not improve incremental exercise performance, at least when accompanied by respiratory acidosis. PMID:21921244
Beam, Jason R; Gibson, Ann L; Kerksick, Chad M; Conn, Carole A; White, Ailish C; Mermier, Christine M
2015-02-01
The aim of this study was to investigate the effects of ingesting caffeine and green coffee bean extract on blood glucose and insulin concentrations during a post-exercise oral glucose tolerance test. Ten male cyclists (age: 26 ± 5 y; height: 179.9 ± 5.4 cm; weight: 77.6 ± 13.3 kg; body mass index: 24 ± 4.3 kg/m(2); VO2 peak: 55.9 ± 8.4 mL·kg·min(-1)) participated in this study. In a randomized order, each participant completed three 30-min bouts of cycling at 60% of peak power output. Immediately after exercise, each participant consumed 75 g of dextrose with either 5 mg/kg body weight of caffeine, 10 mg/kg of green coffee bean extract (5 mg/kg chlorogenic acid), or placebo. Venous blood samples were collected immediately before and after exercise during completion of the oral glucose tolerance test. No significant time × treatment effects for blood glucose and insulin were found. Two-h glucose and insulin area under the curve values, respectively, for the caffeine (658 ± 74 mmol/L and 30,005 ± 13,304 pmol/L), green coffee bean extract (637 ± 100 mmol/L and 31,965 ± 23,586 pmol/L), and placebo (661 ± 77 mmol/L and 27,020 ± 12,339 pmol/L) trials were not significantly different (P > 0.05). Caffeine and green coffee bean extract did not significantly alter postexercise blood glucose and insulin concentrations when compared with a placebo. More human research is needed to determine the impact of these combined nutritional treatments and exercise on changes in blood glucose and insulin. Copyright © 2015 Elsevier Inc. All rights reserved.
Bruñó, Alejandro; Escobar, Patricia; Cebolla, Ausias; Álvarez-Pitti, Julio; Guixeres, Jaime; Lurbe, Empar; Baños, Rosa; Lisón, Juan F
2018-05-07
To compare the impact of adhering to a Mediterranean diet plus mixed physical exercise program (Move-It) implemented by means of printed instructions or via a web-platform (with or without e-mail support) on body composition, physical fitness, and blood pressure. Randomized clinical trial. Fifty-two overweight or obese Spanish children and adolescents were randomly assigned to the print-based (n = 18), Move-It (n = 18), or Move-It plus support (n = 16) intervention groups. Two-way mixed ANOVA tests were used to compare any changes between the groups in terms of percentage body fat, physical fitness (VO 2 peak), handgrip strength, and systolic and diastolic blood pressure. The measurements were taken before and after a three-month mixed-exercise (aerobic and resistance) and Mediterranean-diet program which was either implemented by means of printed instructions or via a web-platform (with or without e-mail support). No statistical differences were found between groups. However, the results highlighted significant improvements in body fat percentage metrics over time for all three groups (print-based: -1.8%, 95%CI -3.3% to -0.3%; Move-It: -1.8%, 95%CI -3.3% to -0.3%; Move-It plus support: -2.0%, 95%CI -3.7% to -0.4%, P < 0.05). We also observed a tendency towards improvement in the VO 2 peak, handgrip strength, and blood pressure variable values 10 min after the exercise-stress test in these three groups. The program improved the body composition, regardless of the way it is implemented. A mixed physical exercise program lasting for three months, combined with a Mediterranean diet, improves the body composition of children and adolescents with overweight/obesity. Copyright © 2018 Elsevier Inc. All rights reserved.
Meyer, Timothy E; Karamanoglu, Mustafa; Ehsani, Ali A; Kovács, Sándor J
2004-11-01
Impaired exercise tolerance, determined by peak oxygen consumption (VO2 peak), is predictive of mortality and the necessity for cardiac transplantation in patients with chronic heart failure (HF). However, the role of left ventricular (LV) diastolic function at rest, reflected by chamber stiffness assessed echocardiographically, as a determinant of exercise tolerance is unknown. Increased LV chamber stiffness and limitation of VO2 peak are known correlates of HF. Yet, the relationship between chamber stiffness and VO2 peak in subjects with HF has not been fully determined. Forty-one patients with HF New York Heart Association [(NYHA) class 2.4 +/- 0.8, mean +/- SD] had echocardiographic studies and VO2 peak measurements. Transmitral Doppler E waves were analyzed using a previously validated method to determine k, the LV chamber stiffness parameter. Multiple linear regression analysis of VO(2 peak) variance indicated that LV chamber stiffness k (r2 = 0.55) and NYHA classification (r2 = 0.43) were its best independent predictors and when taken together account for 59% of the variability in VO2 peak. We conclude that diastolic function at rest, as manifested by chamber stiffness, is a major determinant of maximal exercise capacity in HF.
Elgendi, Mohamed; Norton, Ian; Brearley, Matt; Abbott, Derek; Schuurmans, Dale
2013-01-01
Photoplethysmogram (PPG) monitoring is not only essential for critically ill patients in hospitals or at home, but also for those undergoing exercise testing. However, processing PPG signals measured after exercise is challenging, especially if the environment is hot and humid. In this paper, we propose a novel algorithm that can detect systolic peaks under challenging conditions, as in the case of emergency responders in tropical conditions. Accurate systolic-peak detection is an important first step for the analysis of heart rate variability. Algorithms based on local maxima-minima, first-derivative, and slope sum are evaluated, and a new algorithm is introduced to improve the detection rate. With 40 healthy subjects, the new algorithm demonstrates the highest overall detection accuracy (99.84% sensitivity, 99.89% positive predictivity). Existing algorithms, such as Billauer's, Li's and Zong's, have comparable although lower accuracy. However, the proposed algorithm presents an advantage for real-time applications by avoiding human intervention in threshold determination. For best performance, we show that a combination of two event-related moving averages with an offset threshold has an advantage in detecting systolic peaks, even in heat-stressed PPG signals.
Predictors of VO2Peak in children age 6- to 7-years-old.
Dencker, Magnus; Hermansen, Bianca; Bugge, Anna; Froberg, Karsten; Andersen, Lars B
2011-02-01
This study investigated the predictors of aerobic fitness (VO2PEAK) in young children on a population-base. Participants were 436 children (229 boys and 207 girls) aged 6.7 ± 0.4 yrs. VO2PEAK was measured during a maximal treadmill exercise test. Physical activity was assessed by accelerometers. Total body fat and total fat free mass were estimated from skinfold measurements. Regression analyses indicated that significant predictors for VO2PEAK per kilogram body mass were total body fat, maximal heart rate, sex, and age. Physical activity explained an additional 4-7%. Further analyses showed the main contributing factors for absolute values of VO2PEAK were fat free mass, maximal heart rate, sex, and age. Physical activity explained an additional 3-6%.
Postmeal exercise blunts postprandial glucose excursions in people on metformin monotherapy.
Erickson, Melissa L; Little, Jonathan P; Gay, Jennifer L; McCully, Kevin K; Jenkins, Nathan T
2017-08-01
Metformin is used clinically to reduce fasting glucose with minimal effects on postprandial glucose. Postmeal exercise reduces postprandial glucose and may offer additional glucose-lowering benefit beyond that of metformin alone, yet controversy exists surrounding exercise and metformin interactions. It is currently unknown how postmeal exercise and metformin monotherapy in combination will affect postprandial glucose. Thus, we examined the independent and combined effects of postmeal exercise and metformin monotherapy on postprandial glucose. A randomized crossover design was used to assess the influence of postmeal exercise on postprandial glucose excursions in 10 people treated with metformin monotherapy (57 ± 10 yr, HbA 1C = 6.3 ± 0.6%). Each participant completed the following four conditions: sedentary and postmeal exercise (5 × 10-min bouts of treadmill walking at 60% V̇o 2max ) with metformin and sedentary and postmeal exercise without metformin. Peak postprandial glucose within a 2-h time window and 2-h total area under the curve was assessed after a standardized breakfast meal, using continuous glucose monitoring. Postmeal exercise significantly blunted 2-h peak ( P = 0.001) and 2-h area under the curve ( P = 0.006), with the lowest peak postprandial glucose excursion observed with postmeal exercise and metformin combined ( P < 0.05 vs. all other conditions: metformin/sedentary: 12 ± 3.4, metformin/exercise: 9.7 ± 2.3, washout/sedentary: 13.3 ± 3.2, washout/exercise: 11.1 ± 3.4 mmol/l). Postmeal exercise and metformin in combination resulted in the lowest peak postprandial glucose excursion compared with either treatment modality alone. Exercise timed to the postprandial phase may be important for optimizing glucose control during metformin monotherapy. NEW & NOTEWORTHY The interactive effects of metformin and exercise on key physiological outcomes remain an area of controversy. Findings from this study show that the combination of metformin monotherapy and moderate-intensity postmeal exercise led to beneficial reductions in postprandial glucose excursions. Postmeal exercise may be a useful strategy for the management of postprandial glucose in people on metformin. Copyright © 2017 the American Physiological Society.
Aerobic Exercise Training Improves Orthostatic Tolerance in Aging Humans.
Xu, Diqun; Wang, Hong; Chen, Shande; Ross, Sarah; Liu, Howe; Olivencia-Yurvati, Albert; Raven, Peter B; Shi, Xiangrong
2017-04-01
This study was designed to test the hypothesis that aerobic exercise training of the elderly will increase aerobic fitness without compromising orthostatic tolerance (OT). Eight healthy sedentary volunteers (67.0 ± 1.7 yr old, four women) participated in 1 yr of endurance exercise training (stationary bicycle and/or treadmill) program at the individuals' 65%-75% of HRpeak. Peak O2 uptake (V˙O2peak) and HRpeak were determined by a maximal exercise stress test using a bicycle ergometer. Carotid baroreceptor reflex (CBR) control of HR and mean arterial pressure (MAP) were assessed by a neck pressure-neck suction protocol. Each subject's maximal gain (Gmax), or sensitivity, of the CBR function curves were derived from fitting their reflex HR and MAP responses to the corresponding neck pressure-neck suction stimuli using a logistic function curve. The subjects' OT was assessed using lower-body negative pressure (LBNP) graded to -50 mm Hg; the sum of the product of LBNP intensity and time (mm Hg·min) was calculated as the cumulative stress index. Training increased V˙O2peak (before vs after: 22.8 ± 0.92 vs 27.9 ± 1.33 mL·min·kg, P < 0.01) and HRpeak (154 ± 4 vs 159 ± 3 bpm, P < 0.02) and decreased resting HR (65 ± 5 vs 59 ± 5 bpm, P < 0.02) and MAP (99 ± 2 vs 87 ± 2 mm Hg, P < 0.05). CBR stimulus-response curves identified a leftward shift with an increase in CBR-HR Gmax (from -0.13 ± 0.02 to -0.27 ± 0.04 bpm·mm Hg, P = 0.01). Cumulative stress index was increased from 767 ± 68 mm Hg·min pretraining to 946 ± 44 mm Hg·min posttraining (P < 0.05). Aerobic exercise training improved the aerobic fitness and OT in elderly subjects. An improved OT is likely associated with an enhanced CBR function that has been reset to better maintain cerebral perfusion and cerebral tissue oxygenation during LBNP.
Prognostic value of indeterminable anaerobic threshold in heart failure.
Agostoni, Piergiuseppe; Corrà, Ugo; Cattadori, Gaia; Veglia, Fabrizio; Battaia, Elisa; La Gioia, Rocco; Scardovi, Angela B; Emdin, Michele; Metra, Marco; Sinagra, Gianfranco; Limongelli, Giuseppe; Raimondo, Rosa; Re, Federica; Guazzi, Marco; Belardinelli, Romualdo; Parati, Gianfranco; Magrì, Damiano; Fiorentini, Cesare; Cicoira, Mariantonietta; Salvioni, Elisabetta; Giovannardi, Marta; Mezzani, Alessandro; Scrutinio, Domenico; Di Lenarda, Andrea; Mantegazza, Valentina; Ricci, Roberto; Apostolo, Anna; Iorio, Annamaria; Paolillo, Stefania; Palermo, Pietro; Contini, Mauro; Vassanelli, Corrado; Passino, Claudio; Piepoli, Massimo F
2013-09-01
In patients with heart failure (HF), during maximal cardiopulmonary exercise test, anaerobic threshold (AT) is not always identified. We evaluated whether this finding has a prognostic meaning. We recruited and prospectively followed up, in 14 dedicated HF units, 3058 patients with systolic (left ventricular ejection fraction <40%) HF in stable clinical conditions, New York Heart Association class I to III, who underwent clinical, laboratory, echocardiographic, and cardiopulmonary exercise test investigations at study enrollment. We excluded 921 patients who did not perform a maximal exercise, based on lack of achievement of anaerobic metabolism (peak respiratory quotient ≤1.05). Primary study end point was a composite of cardiovascular death and urgent cardiac transplant, and secondary end point was all-cause death. Median follow-up was 3.01 (1.39-4.98) years. AT was identified in 1935 out of 2137 patients (90.54%). At multivariable logistic analysis, failure in detecting AT resulted significantly in reduced peak oxygen uptake and higher metabolic exercise and cardiac and kidney index score value, a powerful prognostic composite HF index (P<0.001). At multivariable analysis, the following variables were significantly associated with primary study end point: peak oxygen uptake (% pred; P<0.001; hazard ratio [HR]=0.977; confidence interval [CI]=0.97-0.98), ventilatory efficiency slope (P=0.01; HR=1.02; CI=1.01-1.03), hemoglobin (P<0.05; HR=0.931; CI=0.87-1.00), left ventricular ejection fraction (P<0.001; HR=0.948; CI=0.94-0.96), renal function (modification of diet in renal disease; P<0.001; HR=0.990; CI=0.98-0.99), sodium (P<0.05; HR=0.967; CI=0.94-0.99), and AT nonidentification (P<0.05; HR=1.41; CI=1.06-1.89). Nonidentification of AT remained associated to prognosis also when compared with metabolic exercise and cardiac and kidney index score (P<0.01; HR=1.459; CI=1.09-1.10). Similar results were obtained for the secondary study end point. The inability to identify AT most often occurs in patients with severe HF, and it has an independent prognostic role in HF.
Cooper, Simon B; Dring, Karah J; Morris, John G; Sunderland, Caroline; Bandelow, Stephan; Nevill, Mary E
2018-05-08
An acute bout of exercise elicits a beneficial effect on subsequent cognitive function in adolescents. The effect of games-based activity, an ecologically valid and attractive exercise model for young people, remains unknown; as does the moderating effect of fitness on the acute exercise-cognition relationship. Therefore, the aim of the present study was to examine the effect of games-based activity on subsequent cognition in adolescents, and the moderating effect of fitness on this relationship. Following ethical approval, 39 adolescents (12.3 ± 0.7 year) completed an exercise and resting trial in a counterbalanced, randomised crossover design. During familiarisation, participants completed a multi-stage fitness test to predict VO 2 peak. The exercise trial consisted of 60-min games-based activity (basketball), during which heart rate was 158 ± 11 beats∙min - 1 . A battery of cognitive function tests (Stroop test, Sternberg paradigm, trail making and d2 tests) were completed 30-min before, immediately following and 45-min following the basketball. Response times on the complex level of the Stroop test were enhanced both immediately (p = 0.021) and 45-min (p = 0.035) post-exercise, and response times on the five item level of the Sternberg paradigm were enhanced immediately post-exercise (p = 0.023). There were no effects on the time taken to complete the trail making test or any outcome of the d2 test. In particular, response times were enhanced in the fitter adolescents 45-min post-exercise on both levels of the Stroop test (simple, p = 0.005; complex, p = 0.040) and on the three item level of the Sternberg paradigm immediately (p = 0.017) and 45-min (p = 0.008) post-exercise. Games-based activity enhanced executive function and working memory scanning speed in adolescents, an effect particularly evident in fitter adolescents, whilst the high intensity intermittent nature of games-based activity may be too demanding for less fit children.
Effects of exercise position on the ventilatory responses to exercise in chronic heart failure.
Armour, W; Clark, A L; McCann, G P; Hillis, W S
1998-09-01
Patients with heart failure frequently complain of orthopnoea. The objective was to assess the ventilatory response of patients with chronic heart failure during erect and supine exercise. Maximal incremental exercise testing with metabolic gas exchange measurements in erect and supine positions conducted in random order. Tertiary referral centre for cardiology. Nine patients with heart failure (aged 61.9+/-6.1 years) and 10 age matched controls (63.8+/-4.6). Metabolic gas exchange measurements. The slope of the relation between ventilation and carbon dioxide production. Ratings of perceived breathlessness during exercise. Oxygen consumption (VO2) and ventilation were higher during erect exercise at each stage in each group. Peak VO2 was [mean (SD)] 17.12 ml/kg/min (4.07) erect vs 12.92 (3.61) supine in the patients (P<0.01) and 22.62 (5.03) erect-supine vs 19.16 (3.78) erect (P<0.01) in the controls. Ratings of perceived exertion were higher in the patients at each stage, but unaffected by posture. There was no difference in the slope of the relation between ventilation and carbon dioxide production between erect and supine exercise 36.39 (6.12) erect vs 38.42 (8.89) supine for patients; 30.05 (4.52) vs 28.80 (3.96) for controls. In this group of patients during exercise, there was no change in the perception of breathlessness, nor the ventilatory response to carbon dioxide production with change in posture, although peak ventilation was greater in the erect position. The sensation of breathlessness may be related to the appropriateness of the ventilatory response to exertion rather than to the absolute ventilation.
Lindinger, Michael I; Ecker, Gayle L
2013-01-01
Horses lose considerably more electrolytes through sweating during prolonged exercise than can be readily replaced through feeds. The present study tested an oral electrolyte supplement (ES) designed to replace sweat electrolyte losses. We measured gastric emptying of 3 litres of ES (using gamma imaging of (99)Tc-sulfide colloid), the absorption of Na(+) and K(+) from the gastrointestinal tract using (24)Na(+) and (42)K(+), and the distribution of these ions in the body by measuring radioactivity within plasma and sweat during exercise. Three litres of ES emptied from the stomach as fast as water, with a half-time of 47 min, and appeared in plasma by 10 min after administration (n = 4 horses). Peak values of plasma (24)Na(+) and (42)K(+) radioactivity occurred at 20-40 min, and a more rapid disappearance of K(+) radioactivity from plasma was indicative of movement of K(+) into cells (n = 3 horses). In a randomized crossover experiment (n = 4 horses), 1 h after administration of placebo (water), 1 or 3 litres of ES containing (24)Na(+), horses exercised on a treadmill at 30% of peak oxygen uptake until voluntary fatigue. The (24)Na(+) appeared in sweat at 10 min of exercise, and when horses received 3 litres of ES the duration to voluntary fatigue was increased in all horses by 33 ± 10%. It is concluded that an oral ES designed to replace sweat ion losses was rapidly emptied from the gastrointestinal tract, rapidly absorbed in the upper intestinal tract and rapidly distributed within the body. The ES clearly served as a reservoir to replace sweat ion losses during exercise, and administration of ES prior to exercise resulted in increased duration of submaximal exercise.
Teffaha, Daline; Mourot, Laurent; Vernochet, Philippe; Ounissi, Fawzi; Regnard, Jacques; Monpère, Catherine; Dugué, Benoit
2011-08-01
Exercise training is included in cardiac rehabilitation programs to enhance physical capacity and cardiovascular function. Among the existing rehabilitation programs, exercises in water are increasingly prescribed. However, it has been questioned whether exercises in water are safe and relevant in patients with stable chronic heart failure (CHF), coronary artery disease (CAD) with normal systolic left ventricular function. The goal was to assess whether a rehabilitation program, including water-based gymnastic exercises, is safe and induces at least similar benefits as a traditional land-based training. Twenty-four male CAD patients and 24 male CHF patients with stable clinical status participated in a 3-week rehabilitation. They were randomized to either a group performing the training program totally on land (CADl, CHFl; endurance + callisthenic exercises) or partly in water (CADw, CHFw; land endurance + water callisthenic exercises). Before and after rehabilitation, left ventricular systolic and cardiorespiratory functions, hemodynamic variables and autonomic nervous activities were measured. No particular complications were associated with both of our programs. At rest, significant improvements were seen in CHF patients after both types of rehabilitation (increases in stroke volume and left ventricular ejection fraction [LVEF]) as well as a decrease in heart rate (HR) and in diastolic arterial pressure. Significant increases in peaks VO(2), HR, and power output were observed in all patients after rehabilitation in exercise test. The increase in LVEF at rest, in HR and power output at the exercise peak were slightly higher in CHFw than in CHFl. Altogether, both land and water-based programs were well tolerated and triggered improvements in cardiorespiratory function. Copyright © 2011 Elsevier Inc. All rights reserved.
Exaggerated blood pressure response to exercise and late-onset hypertension in young adults.
Yzaguirre, Ignasi; Grazioli, Gonzalo; Domenech, Mónica; Vinuesa, Antonio; Pi, Ramon; Gutierrez, Josep; Coca, Antonio; Brugada, Josep; Sitges, Marta
2017-12-01
Exaggerated blood pressure response (EBPR) during exercise has been associated with an increased risk of incidental systemic hypertension and cardiovascular morbidity; however, there is no consensus definition of EBPR. We aimed to determine which marker best defines EBPR during exercise and to predict the long-term development of hypertension in individuals younger than 50 years. We reviewed 107 exercise tests performed in 1992, applied several reported methods to define EBPR at moderate and maximum exercise, and contacted the patients by telephone 20 years after the test to verify hypertension status. Finally, we determined which definition best predicted incidental hypertension at 20-year follow-up. The mean age of the participants at the time of exercise testing was 25.7±11.1 years. Logistic regression showed a significant association of diastolic blood pressure of more than 95 mmHg at peak exercise and systolic pressure more than 180 mmHg at moderate exercise with new-onset hypertension at 20-year follow-up [odds ratio: 6.3 (2.09-18.9) and odds ratio: 7.09 (2.31-21.7), respectively]. If EBPR was present, as defined by at least one of these parameters, the probability of incidental later onset hypertension was 70%. In our population, diastolic blood pressure of more than 95 mmHg at maximum exercise or systolic blood pressure more than 180 mmHg at moderate-intensity exercise (100 W) were the best predictors of new-onset hypertension at long-term follow-up. Individuals with EBPR according to these criteria should be monitored closely to detect the early development of hypertension.
Foot-ground reaction force during resistive exercise in parabolic flight
NASA Technical Reports Server (NTRS)
Lee, Stuart M C.; Cobb, Kendall; Loehr, James A.; Nguyen, Daniel; Schneider, Suzanne M.
2004-01-01
INTRODUCTION: An interim resistance exercise device (iRED) was designed to provide resistive exercise as a countermeasure to spaceflight-induced loss of muscle strength and endurance as well as decreased bone mineral density. The purpose of this project was to compare foot-ground reaction force during iRED exercise in normal gravity (1 G) vs. microgravity (0 G) achieved during parabolic flight. METHODS: There were four subjects who performed three exercises (squat, heel raise, and deadlift) using the iRED during 1 G and 0 G at a moderate intensity (60% of maximum strength during deadlift exercise). Foot-ground reaction force was measured in the three orthogonal axes (x, y, z) using a force plate, and the magnitude of the resultant force vector was calculated (r = square root(x2 + y2 + z2)). Linear displacement (LD) was measured using a linear transducer. Peak force (Fpeak) and an index of total work (TWi) were calculated using a customized computer program. Paired t-tests were used to test if significant differences (p < or = 0.05) were observed between 1 G and 0 G exercise. RESULTS: Fpeak and TWi measured in the resultant axis were significantly less in 0 G for each of the exercises tested. During 0 G, Fpeak was 42-46% and TWi was 33-37% of that measured during 1 G. LD and average time to complete each repetition were not different from 1 G to 0 G. CONCLUSIONS: Crewmembers who perform resistive exercises during spaceflight that include the movement of a large portion of their body mass will require much greater external resistive force during 0 G than 1 G exercise to provide a sufficient stimulus to maintain muscle and bone mass.
Aoike, Danilo Takashi; Baria, Flavia; Kamimura, Maria Ayako; Ammirati, Adriano; Cuppari, Lilian
2018-02-01
The association between chronic kidney disease (CKD) and obesity can decrease the patients' cardiopulmonary capacity, physical functioning and quality of life. The search for effective and practical alternative methods of exercise to engage patients in training programs is of great importance. Therefore, we aimed to compare the effects of home-based versus center-based aerobic exercise on the cardiopulmonary and functional capacities, quality of life and quality of sleep of overweight non-dialysis-dependent patients with CKD (NDD-CKD). Forty sedentary overweight patients CKD stages 3 and 4 were randomly assigned to an exercise group [home-based group (n = 12) or center-based exercise group (n = 13)] or to a control group (n = 15) that did not perform any exercise. Cardiopulmonary exercise test, functional capacity tests, quality of life, quality of sleep and clinical parameters were assessed at baseline, 12 and 24 weeks. The VO 2peak and all cardiopulmonary parameters evaluated were similarly improved (p < 0.05) after 12 and 24 weeks in both exercise groups. The functional capacity tests improved during the follow-up in the home-based group (p < 0.05) and reached values similar to those obtained in the center-based group. The benefits achieved in both exercise groups were also reflected in improvement of quality of life and sleep (p < 0.05). No differences were observed between the exercise groups, and no changes in any of the parameters investigated were found in the control group. Home-based aerobic training was as effective as center-based training in improving the physical and functional capabilities, quality of life and sleep in overweight NDD-CKD patients.
Ben-Dov, Issahar; Gaides, Mark; Scheinowitz, Mickey; Wagner, Rivka; Laron, Zvi
2003-12-01
Primary IGF-I deficiency (Laron syndrome, LS) may decrease exercise capacity as a result of a lack of an IGF-I effect on heart, peripheral muscle or lung structure and/or function. Eight patients (six females) who had never received treatment with IGF-I, with mean age of 36 +/- 10 (SD) years (range 21-48), weight 47 +/- 9 kg (31-61), height 126 +/- 12 cm (112-140) and body mass index of 29 +/- 4 kg/m2 (24-34), and 12 age-matched controls, underwent lung function tests and incremental cycling to the limit of tolerance (CPX, MedGraphics). Predicted values for the patients were derived from adult equations based on height. In LS patients, lung function was near normal; vital capacity was 84 +/- 11% of expected (66-103). Peak exercise O2-uptake and the anaerobic threshold were reduced, 57 +/- 20% of predicted and 33 +/- 9% of predicted peak (P = 0.005 vs. controls), despite normal mean exercise breathing reserve. All parameters were normal in the controls. Exercise capacity in untreated adults with LS is significantly reduced. The limitation for most patients was not ventilatory but resulted either from low cardiac output and/or from dysfunction of the peripheral muscles. However, the relative contribution of each of these elements and/or the role of poor fitness needs further study.
The effects of carbohydrate ingestion on the badminton serve after fatiguing exercise.
Bottoms, Lindsay; Sinclair, Jonathan; Taylor, Katrina; Polman, Remco; Fewtrell, David
2012-01-01
The badminton serve requires great skill and may be affected by fatigue. The aim of the present study was to determine whether carbohydrate ingestion affects badminton performance. Nine male badminton players (age 25 ± 7 years, mass 80.6 ± 8.0 kg) attended the laboratory on three occasions. The first visit involved an incremental exercise test to exhaustion to determine peak heart rate. Participants were given 1 L of a carbohydrate-electrolyte drink or a matched placebo during the experimental trials. The accuracy of 10 long and 10 short serves was determined before and after exercise. The fatiguing exercise was 33 min in duration (83 ± 10% and 84 ± 8% peak heart rate for the placebo and carbohydrate trial respectively). Capillary blood samples (20 μL) were taken before and after exercise for determination of blood glucose and lactate. There was deterioration in long serve accuracy with fatigue (P = 0.002), which carbohydrate ingestion had a tendency to prevent (P = 0.077). There was no effect of fatigue (P = 0.402) or carbohydrate ingestion (P = 0.109) on short serve accuracy. There was no difference in blood glucose concentration between trials (P = 0.851). Blood lactate concentration was higher during the placebo trial (P = 0.016). These results suggest that only the long serve is influenced by fatigue and carbohydrate had a tendency to prevent the deterioration in performance.