Sample records for peak height values

  1. Computation of distribution of minimum resolution for log-normal distribution of chromatographic peak heights.

    PubMed

    Davis, Joe M

    2011-10-28

    General equations are derived for the distribution of minimum resolution between two chromatographic peaks, when peak heights in a multi-component chromatogram follow a continuous statistical distribution. The derivation draws on published theory by relating the area under the distribution of minimum resolution to the area under the distribution of the ratio of peak heights, which in turn is derived from the peak-height distribution. Two procedures are proposed for the equations' numerical solution. The procedures are applied to the log-normal distribution, which recently was reported to describe the distribution of component concentrations in three complex natural mixtures. For published statistical parameters of these mixtures, the distribution of minimum resolution is similar to that for the commonly assumed exponential distribution of peak heights used in statistical-overlap theory. However, these two distributions of minimum resolution can differ markedly, depending on the scale parameter of the log-normal distribution. Theory for the computation of the distribution of minimum resolution is extended to other cases of interest. With the log-normal distribution of peak heights as an example, the distribution of minimum resolution is computed when small peaks are lost due to noise or detection limits, and when the height of at least one peak is less than an upper limit. The distribution of minimum resolution shifts slightly to lower resolution values in the first case and to markedly larger resolution values in the second one. The theory and numerical procedure are confirmed by Monte Carlo simulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Surface roughness measuring system. [synthetic aperture radar measurements of ocean wave height and terrain peaks

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1978-01-01

    Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.

  3. The reliability of vertical jump tests between the Vertec and My Jump phone application.

    PubMed

    Yingling, Vanessa R; Castro, Dimitri A; Duong, Justin T; Malpartida, Fiorella J; Usher, Justin R; O, Jenny

    2018-01-01

    The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. One hundred and thirty-five healthy participants aged 18-39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump . Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747-0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897-0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050-0.859]) and poor to excellent reliability relative to absolute agreement for peak power (ICC = 0.851; 95% CI [0.272-0.946]) between the Vertec and My Jump values were found; Vertec VJ height, and thus, Vertec calculated peak power values, were significantly higher than those calculated from My Jump values ( p < 0.0001). The My Jump app may provide a reliable measure of vertical jump height and calculated peak power in multiple field and laboratory settings without the need of costly equipment such as force plates or Vertec. The reliability relative to degree of consistency between the Vertec and My Jump app was moderate to excellent. However, the reliability relative to absolute agreement between Vertec and My Jump values contained significant variation (based on CI values), thus, it is recommended that either the My Jump or the Vertec be used to assess VJ height in repeated measures within subjects' designs; these measurement tools should not be considered interchangeable within subjects or in group measurement designs.

  4. The reliability of vertical jump tests between the Vertec and My Jump phone application

    PubMed Central

    Castro, Dimitri A.; Duong, Justin T.; Malpartida, Fiorella J.; Usher, Justin R.; O, Jenny

    2018-01-01

    Background The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. Methods One hundred and thirty-five healthy participants aged 18–39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump. Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Results Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747–0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897–0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050–0.859]) and poor to excellent reliability relative to absolute agreement for peak power (ICC = 0.851; 95% CI [0.272–0.946]) between the Vertec and My Jump values were found; Vertec VJ height, and thus, Vertec calculated peak power values, were significantly higher than those calculated from My Jump values (p < 0.0001). Discussion The My Jump app may provide a reliable measure of vertical jump height and calculated peak power in multiple field and laboratory settings without the need of costly equipment such as force plates or Vertec. The reliability relative to degree of consistency between the Vertec and My Jump app was moderate to excellent. However, the reliability relative to absolute agreement between Vertec and My Jump values contained significant variation (based on CI values), thus, it is recommended that either the My Jump or the Vertec be used to assess VJ height in repeated measures within subjects’ designs; these measurement tools should not be considered interchangeable within subjects or in group measurement designs. PMID:29692955

  5. Predictive Regression Equations of Flowmetric and Spirometric Peak Expiratory Flow in Healthy Moroccan Children.

    PubMed

    Bouti, Khalid; Benamor, Jouda; Bourkadi, Jamal Eddine

    2017-08-01

    Peak Expiratory Flow (PEF) has never been characterised among healthy Moroccan school children. To study the relationship between PEF and anthropometric parameters (sex, age, height and weight) in healthy Moroccan school children, to establish predictive equations of PEF; and to compare flowmetric and spirometric PEF with Forced Expiratory Volume in 1 second (FEV1). This cross-sectional study was conducted between April, 2016 and May, 2016. It involved 222 (122 boys and 100 girls) healthy school children living in Ksar el-Kebir, Morocco. We used mobile equipments for realisation of spirometry and peak expiratory flow measurements. SPSS (Version 22.0) was used to calculate Student's t-test, Pearson's correlation coefficient and linear regression. Significant linear correlation was seen between PEF, age and height in boys and girls. The equation for prediction of flowmetric PEF in boys was calculated as 'F-PEF = -187+ 24.4 Age + 1.61 Height' (p-value<0.001, r=0.86), and for girls as 'F-PEF = -151 + 17Age + 1.59Height' (p-value<0.001, r=0.86). The equation for prediction of spirometric PEF in boys was calculated as 'S-PEF = -199+ 9.8Age + 2.67Height' (p-value<0.05, r=0.77), and for girls as 'S-PEF = -181 + 8.5Age + 2.5Height' (p-value<0.001, r=0.83). The boys had higher values than the girls. The performance of the Mini Wright Peak Flow Meter was lower than that of a spirometer. Our study established PEF predictive equations in Moroccan children. Our results appeared to be reliable, as evident by the high correlation coefficient in this sample. PEF can be an alternative of FEV1 in centers without spirometry.

  6. Diagnostic reliability of the cervical vertebral maturation method and standing height in the identification of the mandibular growth spurt.

    PubMed

    Perinetti, Giuseppe; Contardo, Luca; Castaldo, Attilio; McNamara, James A; Franchi, Lorenzo

    2016-07-01

    To evaluate the capability of both cervical vertebral maturation (CVM) stages 3 and 4 (CS3-4 interval) and the peak in standing height to identify the mandibular growth spurt throughout diagnostic reliability analysis. A previous longitudinal data set derived from 24 untreated growing subjects (15 females and nine males,) detailed elsewhere were reanalyzed. Mandibular growth was defined as annual increments in Condylion (Co)-Gnathion (Gn) (total mandibular length) and Co-Gonion Intersection (Goi) (ramus height) and their arithmetic mean (mean mandibular growth [mMG]). Subsequently, individual annual increments in standing height, Co-Gn, Co-Goi, and mMG were arranged according to annual age intervals, with the first and last intervals defined as 7-8 years and 15-16 years, respectively. An analysis was performed to establish the diagnostic reliability of the CS3-4 interval or the peak in standing height in the identification of the maximum individual increments of each Co-Gn, Co-Goi, and mMG measurement at each annual age interval. CS3-4 and standing height peak show similar but variable accuracy across annual age intervals, registering values between 0.61 (standing height peak, Co-Gn) and 0.95 (standing height peak and CS3-4, mMG). Generally, satisfactory diagnostic reliability was seen when the mandibular growth spurt was identified on the basis of the Co-Goi and mMG increments. Both CVM interval CS3-4 and peak in standing height may be used in routine clinical practice to enhance efficiency of treatments requiring identification of the mandibular growth spurt.

  7. Measurement of Cough Aerodynamics in Healthy Adults.

    PubMed

    Feinstein, Aaron J; Zhang, Zhaoyan; Chhetri, Dinesh K; Long, Jennifer

    2017-05-01

    Cough is a critical human reflex and also among the most frequent symptoms in medicine. Despite the prevalence of disordered cough in laryngeal pathologies, comprehensive and quantitative evaluation of cough in these patients is lacking. Herein we seek to establish normative values for cough aerodynamics to provide a population standard for reference in future studies. Healthy subjects were recruited from an outpatient clinic to perform voluntary cough. Subjects were instructed on the technique for maximal voluntary cough production with measurements recorded on pneumotachograph. Fifty-two subjects were studied, including 29 women and 23 men with a mean age of 51.6 and 52.3 years, respectively. Main Outcomes and Measures: Cough peak airflow, peak pressure, and expiratory rise time. Results were stratified by age, gender, and height. Peak airflow demonstrated significant differences across age, gender, and height, with flow increasing according to increasing height. Peak cough pressure also increased with height and was significantly greater in males versus females. Expiratory rise time, the time from glottal opening to peak airflow, did not vary with age or height but was statistically significantly longer in women. Cough aerodynamics can be readily measured objectively in the outpatient setting. Expiratory rise time, peak flow, and peak pressure are important aspects of each cough epoch. Normative data provided herein can be used for future studies of patients with laryngotracheal disorders, and these cough parameters may prove to be simple, accessible, and repeatable outcome measures.

  8. Countermovement depth - a variable which clarifies the relationship between the maximum power output and height of a vertical jump.

    PubMed

    Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew

    2018-01-01

    The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.

  9. Impact of long-term erythrocytapheresis on growth and peak height velocity of children with sickle cell disease.

    PubMed

    Bavle, Abhishek; Raj, Ashok; Kong, Maiying; Bertolone, Salvatore

    2014-11-01

    Children with sickle cell disease (SCD) lag in weight and height and have a delayed growth spurt compared to normal children. We studied the effect of long-term erythrocytapheresis (LTE) on the growth of children with SCD and the age at which they attained peak height velocity. A retrospective chart review was performed recording weight, height, and body mass index (BMI) measurements of 36 patients with SCD who received LTE every 3-5 weeks for an average duration of 5 years. The z-scores for weight, height, and BMI of these patients were compared with that of patients with SCD from the Cooperative Study of Sickle Cell Disease (CSSCD) and a sub-set of 64 controls matched for age, sex, and initial growth parameter z-scores at the start of LTE. The z-scores for all parameters improved significantly for our patients on LTE compared to match controls from CSSCD and the entire pediatric CSSCD cohort (P-value: <0.01). Peak height velocity was achieved 2 months earlier for females (P-value: 0.94) and 11 months earlier for males (P-value: 0.02), who started LTE before 14 years of age, compared to matched CSSCD controls. The study subjects who had not been on regular simple transfusions prior to starting LTE had a mean serum ferritin of 681 ng/ml after LTE for an average duration of 63 months. LTE improves the growth of children with SCD without the risk of iron overload. © 2014 Wiley Periodicals, Inc.

  10. The U.S. Geological Survey Peak-Flow File Data Verification Project, 2008–16

    USGS Publications Warehouse

    Ryberg, Karen R.; Goree, Burl B.; Williams-Sether, Tara; Mason, Robert R.

    2017-11-21

    Annual peak streamflow (peak flow) at a streamgage is defined as the maximum instantaneous flow in a water year. A water year begins on October 1 and continues through September 30 of the following year; for example, water year 2015 extends from October 1, 2014, through September 30, 2015. The accuracy, characterization, and completeness of the peak streamflow data are critical in determining flood-frequency estimates that are used daily to design water and transportation infrastructure, delineate flood-plain boundaries, and regulate development and utilization of lands throughout the United States and are essential to understanding the implications of climate and land-use change on flooding and high-flow conditions.As of November 14, 2016, peak-flow data existed for 27,240 unique streamgages in the United States and its territories. The data, collectively referred to as the “peak-flow file,” are available as part of the U.S. Geological Survey (USGS) public web interface, the National Water Information System, at https://nwis.waterdata.usgs.gov/usa/nwis/peak. Although the data have been routinely subjected to periodic review by the USGS Office of Surface Water and screening at the USGS Water Science Center level, these data were not reviewed in a national, systematic manner until 2008 when automated scripts were developed and applied to detect potential errors in peak-flow values and their associated dates, gage heights, and peak-flow qualification codes, as well as qualification codes associated with the gage heights. USGS scientists and hydrographers studied the resulting output, accessed basic records and field notes, and corrected observed errors or, more commonly, confirmed existing data as correct.This report summarizes the changes in peak-flow file data at a national level, illustrates their nature and causation, and identifies the streamgages affected by these changes. Specifically, the peak-flow data were compared for streamgages with peak flow measured as of November 19, 2008 (before the automated scripts were widely applied) and on November 14, 2016 (after several rounds of corrections). There were 659,332 peak-flow values in the 2008 dataset and 731,965 peak-flow values in the 2016 dataset. When compared to the 2016 dataset, 5,179 (0.79 percent) peak-flow values had changed; 36,506 (5.54 percent) of the peak-flow qualification codes had changed; 1,938 (0.29 percent) peak-flow dates had changed; 18,599 (2.82 percent) of the peak-flow gage heights had changed; and 20,683 (3.14 percent) of the gage-height qualification codes had changed—most as a direct result of the peak-flow file data verification effort led by USGS personnel. The various types of changes are summarized and mapped in this report. In addition to this report, a corresponding USGS data release is provided to identify changes in peak flows at individual streamgages. The data release and the procedures to access the data release are described in this report.

  11. Variation in light intensity with height and time from subsequent lightning return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, D.M.; Uman, M.A.

    1983-08-20

    Relative light intensity has been measured photographically as a function of height and time for seven subsequent return strokes in two lightning flashes at ranges of 7.8 and 8.7 km. The film used was Kodak 5474 Shellburst, which has a roughly constant spectral response between 300 and 670 nm. The time resolution was about 1.0 ..mu..s, and the spatial resolution was about 4 m. The observed light signals consisted of a fast rise to peak, followed by a slower decrease to a relatively constant value. The amplitude of the initial light peak decreases exponentially with height with a decay constantmore » of about 0.6 to 0.8 km. The 20% to 80% rise time of the initial light signal is between 1 and 4 ..mu..s near ground and increases by an additional 1 to 2 ..mu..s by the time the return stroke reaches the cloud base, a height between 1 and 2 km. The light intensity 30 ..mu..s after the initial peak is relatively constant with height and has an amplitude that is 15% to 30% of the initial peak near the ground and 50% to 100% of the initial peak at cloud base. The logarithm of the peak light intensity near the ground is roughly proportional to the initial peak electric field intensity, and this in turn implies that the current decrease with height may be much slower than the light decrease. The absolute light intensity has been estimated by integrating the photographic signals from individual channel segments to simulate the calibrated all-sky photoelectric data of Guo and Krider (1982). Using this method, the authors find that the mean peak radiance near the ground is 8.3 x 10/sup 5/ W/m, with a total range from 1.4 x 10/sup 5/ to 3.8 x 10/sup 6/ W/m. 16 references, 11 figures.« less

  12. Growth hormone responsiveness: peak stimulated growth hormone levels and other variables in idiopathic short stature (ISS): data from the National Cooperative Growth Study.

    PubMed

    Moore, Wayne V; Dana, Ken; Frane, James; Lippe, Barbara

    2008-09-01

    In children with idiopathic short stature (ISS), growth hormone (GH) response to a provocative test will be inversely related to the first year response to hGH and be a variable accounting for a degree of responsiveness. Because high levels of GH are a characteristic of GH insensitivity, such as in Laron syndrome, it is possible that a high stimulated GH is associated with a lower first year height velocity among children diagnosed as having ISS. We examined the relationship between the peak stimulated GH levels in 3 ISS groups; GH >10 -<25, 25-40, and >40 ng/mL and the first year growth response to rhGH therapy. We also looked at 8 other predictor variables (age, sex, height SDS, height age, body mass index (BMI), bone age, dose, and SDS deficit from target parental height. Multiple regression analysis with the first year height as the dependent variable and peak stimulated GH was the primary endpoint. The predictive value of adding each of the other variables was then assessed. Mean change in height velocity was similar among the three groups, with a maximum difference among the groups of 0.6 cm/yr. There was a small but statistically significant correlation (r=-0.12) between the stimulated GH and first year height velocity. The small correlation between first year growth response and peak GH is not clinically relevant in defining GH resistance. No cut off level by peak GH could be determined to enhance the usefulness of this measure to predict response. Baseline age was the only clinically significant predictor, R-squared, 6.4%. All other variables contributed less than an additional 2% to the R-squared.

  13. Tracking of aerobic fitness from adolescence to mid-adulthood.

    PubMed

    Van Oort, C; Jackowski, S A; Eisenmann, J C; Sherar, L B; Bailey, D A; Mirwald, R; Baxter-Jones, A D G

    2013-01-01

    Although adults' aerobic fitness is known to be correlated with cardiovascular disease risk, the longitudinal relationship with adolescent aerobic fitness is poorly described. To longitudinally investigate the relationship between aerobic fitness during adolescence and adulthood. Participants (207 boys, 149 girls) aged 7-17 years performed annual measures of VO2peak. In adulthood (40 and 50 years), 78 individuals (59 males and 18 females) were reassessed. Serial height measurements were used to estimate age at peak height velocity (APHV). During adolescence, VO2peak was measured via a treadmill test to voluntary exhaustion; adult VO2peak was assessed using submaximal predictive tests. Correlations were tested using Spearman's rho. ANCOVA was used to assess adult VO2peak group differences based off APHV VO2peak groupings (low, average or high). When sexes were pooled, moderate tracking existed from 2 years prior to APHV to APHV and APHV to 2 years after APHV (0.46, p < 0.001 and 0.35, p < 0.01, respectively). Correlations between APHV and adult values were low when sexes were pooled (p < 0.05). Comparisons of aggregated sexes revealed the low adolescent VO2peak group had lower values in adulthood relative to other groups (p < 0.05). Aerobic fitness has a low tracking between APHV and adulthood.

  14. Interaction of Lightning Electromagnetic Pulse with the Ionosphere as Inferred from Wideband Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Somu, Vijaya Bhaskar

    Apparent ionospheric reflection heights estimated using the zero-to-zero and peak-to-peak methods to measure skywave delay relative to the groundwave were compared for 108 first and 124 subsequent strokes observed at LOG in 2009. For either metric there was a considerable decrease in average re ection height for subsequent strokes relative to first strokes. Median uncertainties in daytime re ection heights did not exceed 0.7 km. The standard errors in mean re ection heights were less than 3% of the mean value. Apparent changes in re ection height (estimated using the peak-to-peak method) within individual ashes for 54 daytime and 11 nighttime events at distances ranging from 50 km to 330 km were compared. For daytime conditions, the majority of the ashes showed a monotonic decrease in re ection height. For nighttime ashes, the monotonic decrease was found to be considerably less frequent. The apparent ionospheric re ection height tends to increase with return-stroke peak current. In order to increase the sample size for nighttime conditions, additional data for 43 nighttime flashes observed at LOG in 2014 were analyzed. The "fast-break-point" method of measuring skywave delay (McDonald et al., 1979) was additionally used. The 2014 results for return strokes are generally consistent with the 2009 results. The 2014 data were also used for estimating ionospheric re ection heights for elevated sources (6 CIDs and 3 PB pulses) using the double-skywave feature. The results were compared with re ection heights estimated for corresponding return strokes (if any), and fairly good agreement was generally found. It has been shown, using two different FDTD simulation codes, that the observed differences in re ection height cannot be explained by the difference in the frequency content of first and subsequent return-stroke currents. FDTD simulations showed that within 200 km the re ection heights estimated using the peak-to-peak method are close to the hOE parameter of the ionospheric profile for both daytime and nighttime conditions and for both first and second skywaves. The TL model was used to estimate the radial extent of elves produced by the interaction of LEMP with the ionosphere as a function of return-stroke peak current. For a peak current of 100 kA and the speed equal to one-half of the speed of light, the expected radius of elves is 157 km. Skywaves associated with 24 return strokes in 6 lightning ashes triggered at CB in 2015 and recorded at LOG (at a distance of 45 km from CB) were not found for any of the strokes recorded. In contrast, natural-lightning strokes do produce skywaves at comparable distances. One possible reason is the difference in the higher-frequency content (field waveforms for triggered lightning are more narrow than for natural lightning).

  15. Required coefficient of friction during turning at self-selected slow, normal, and fast walking speeds.

    PubMed

    Fino, Peter; Lockhart, Thurmon E

    2014-04-11

    This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow μ=0.38, normal μ=0.45, and fast μ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of μ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Beyond the Kubler index

    USGS Publications Warehouse

    Eberl, D.D.; Velde, B.

    1989-01-01

    The value of peak width at half-height for the illite 001 XRD reflection is known as the Kubler index or the illite 'crystallinity' index. This measurement, which has been related to the degree of metamorphism of very low-grade, pelitic rocks, is a function of at least two crystal-chemical factors: (1) illite X-ray scattering domain size; and (2) illite structural distortions (especially swelling). Reynolds' NEWMOD computer program is used to construct a grid with which these two contributions to illite peak width can be determined independently from measurements of the 001 peak width at half-height and the Srodofi intensity ratio. This method yields more information about changes undergone by illite during metamorphism than application of the Kubler index method alone.

  17. Kinetics of phase transformations in glass forming systems

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.

    1993-01-01

    In crystallization measurements of nonisothermal nucleation for Li2O.2SiO2 (LS2) glass, using DTA, the glass sample is scanned at different constant heating rates until it is crystallized. This means that the temperature range where nucleation can occur for the glass is scanned also at different rates which allows the glass to be nucleated for different time prior to crystallization. Consequently, the concentration of nuclei developed in the glass may be different for different heating rates and the DTA peak height which has shown to be sensitive to the number of nuclei present in the sample, is expected to change with heating rate. DTA peak height depends strongly on the overlap between the nucleation rate and growth rate curves, assuming the peak height is directly proportional to the total number of nuclei present in the glass sample under investigation, which, in turn, should be proportional to the volume or weight of the sample. To verify this assumption, DTA measurements were made using a LS2 glass to determine the peak height as a function of the sample weight. Using the DTA peak height technique, a nucleation rate like curve was determined for the BaO.2SiO2 (BS2) glass which showed that the temperature for nucleation ranged from 650 to 750 C for this glass and the temperature for maximum nucleation was approximately 705 C. These values are in excellent agreement with those determined by the conventional technique. There was international collaboration with Japan and Germany on this project.

  18. Determination of ionospheric electron content from the Faraday rotation of geostationary satellite signals.

    NASA Technical Reports Server (NTRS)

    Titheridge, J. E.

    1972-01-01

    Observation that calculations of the integrated electron content up to the height of the satellite, using a wide range of model ionospheres (with a peak at 300 km) could be up to four times the value deduced from Faraday rotation measurements. However, using a fixed mean field height of 400 km, the observed Faraday rotation gives the electron content up to a height h sub F of 2000 km with an accuracy of plus or minus 3%. For observations at different magnetic and geographic latitudes, and geostationary satellites at different longitudes, the optimum value of h sub F varies by only plus or minus 200 km. Nighttime increases in the height of the ionosphere have little effect on h sub F, but increase the mean field height to about 470 km. Using a fixed value of 420 km, with h sub F = 2000 km, gives an accuracy of plus or minus 5% under most conditions.

  19. Six-minute walking test in children with ESRD: discrimination validity and construct validity.

    PubMed

    Takken, Tim; Engelbert, Raoul; van Bergen, Monique; Groothoff, Jaap; Nauta, Jeroen; van Hoeck, Koen; Lilien, Marc; Helders, Paul

    2009-11-01

    The six-minute walking test (6MWT) may be a practical test for the evaluation functional exercise capacity in children with end-stage renal disease (ESRD). The aim of this study was to investigate the 6MWT performance in children with ESRD compared to reference values obtained in healthy children and, secondly, to study the relationship between 6MWT performance with anthropometric variables, clinical parameters, aerobic capacity and muscle strength. Twenty patients (13 boys and seven girls; mean age 14.1 +/- 3.4 years) on dialysis participated in this study. Anthropometrics were taken in a standardized manner. The 6MWT was performed in a 20-m-long track in a straight hallway. Aerobic fitness was measured using a cycle ergometer test to determine peak oxygen uptake (V O(2peak)), peak rate (W(peak)) and ventilatory threshold (VT). Muscle strength was measured using hand-held myometry. Children with ESRD showed a reduced 6MWT performance (83% of predicted, p < 0.0001), irrespective of the reference values used. The strongest predictors of 6MWT performance were haematocrit and height. Regression models explained 59% (haematocrit and height) to 60% (haematocrit) of the variance in 6MWT performance. 6MWT performance was not associated with V O(2peak), strength, or other anthropometric variables, but it was significantly associated with haematocrit and height. Children with ESRD scored lower on the 6MWT than healthy children. Based on these results, the 6MWT may be a useful instrument for monitoring clinical status in children with ESRD, however it cannot substitute for other fitness tests, such as a progressive exercise test to measure V O(2peak) or muscle strength tests.

  20. Modified Maturity Offset Prediction Equations: Validation in Independent Longitudinal Samples of Boys and Girls.

    PubMed

    Kozieł, Sławomir M; Malina, Robert M

    2018-01-01

    Predicted maturity offset and age at peak height velocity are increasingly used with youth athletes, although validation studies of the equations indicated major limitations. The equations have since been modified and simplified. The objective of this study was to validate the new maturity offset prediction equations in independent longitudinal samples of boys and girls. Two new equations for boys with chronological age and sitting height and chronological age and stature as predictors, and one equation for girls with chronological age and stature as predictors were evaluated in serial data from the Wrocław Growth Study, 193 boys (aged 8-18 years) and 198 girls (aged 8-16 years). Observed age at peak height velocity for each youth was estimated with the Preece-Baines Model 1. The original prediction equations were included for comparison. Predicted age at peak height velocity was the difference between chronological age at prediction and maturity offset. Predicted ages at peak height velocity with the new equations approximated observed ages at peak height velocity in average maturing boys near the time of peak height velocity; a corresponding window for average maturing girls was not apparent. Compared with observed age at peak height velocity, predicted ages at peak height velocity with the new and original equations were consistently later in early maturing youth and earlier in late maturing youth of both sexes. Predicted ages at peak height velocity with the new equations had reduced variation compared with the original equations and especially observed ages at peak height velocity. Intra-individual variation in predicted ages at peak height velocity with all equations was considerable. The new equations are useful for average maturing boys close to the time of peak height velocity; there does not appear to be a clear window for average maturing girls. The new and original equations have major limitations with early and late maturing boys and girls.

  1. Radio science with voyager 1 at jupiter: preliminary profiles of the atmosphere and ionosphere.

    PubMed

    Eshleman, V R; Tyler, G L; Wood, G E; Lindal, G F; Anderson, J D; Levy, G S; Croft, T A

    1979-06-01

    A preliminarv profile of the atmosphere of Jupiter in the South Equatorial Belt shows (i) the tropopause occurring at a pressure level of 100 millibars and temperature of about 113K, (ii) a higher warm inversion layer at about the 35-millibar level, and (iii) a lower-altitude constant lapse rate matching the adiabatic value of about 2 K per kilometer, with the temperatutre reaching 150 K at the 600-millibar level. Preliminary afternoon and predawn ionospheric profiles at 12 degrees south latitude and near the equator, respectively, have topside plasma scale heights of 590 kilometers changing to 960 kilometers above an altitucde of 3500 kilometers for the dayside, and about 960 kilomneters at all measured heights above the peak for the nightside. The higher value of scale height corresponds to a plasma temperature of 1100 K under the assumption of a plasma of protons and electrons in ambipolar diffusive equilibrium. The peak electron concentration in the upper ionosphere is approximately 2 x 10(5) per cubic centimeter for the dayside and about a factor of 10 less for the nightside. These peaks occur at altitudes of 1600 and 2300 kilometers, respectively. Continuing analyses are expected to extend and refine these results, and to be used to investigate other regions and phenomena.

  2. Noise characteristics of barium ferrite particulate rigid disks

    NASA Astrophysics Data System (ADS)

    Kodama, Naoki; Inoue, Hitoshi; Spratt, Geoffrey; Uesaka, Yasutaro; Katsumoto, Masayuki

    1991-04-01

    This paper discusses the relationship between the noise characteristics and magnetic properties of longitudinal barium ferrite (Ba-F) rigid disks with different switching field distributions (SFD). The magnetomotive force dependencies of reverse dc-erase (RDC) noise are measured and compared with SFD values. Coated disks with acicular magnetic particles have dips and thin-film disks peaks in the RDC. In Ba-F disks, both cases are observed depending on the SFD values, though the depths or heights of the RDC noise are much smaller than those of coated disks with acicular particles or thin-film disks. Disks with small SFD values have peaks, and disks with large SFD values have dips. In order to find the relationship between noise properties and magnetic properties, interparticle interactions in Ba-F disks are investigated. Reverse dc remanence Id(H) and ac-demagnetized isothermal remanence Ir(H) are measured. Both are normalized by the saturation remanence. The deviation from the noninteracting system, ΔM = Id(H) - [1ΔM=Id(H)-[1- 2Ir(H)] and an interaction field factor (IFF) given by (H'r - Hr)/Hc, are derived from these remanent properties. Here, H'r is the field corresponding to 50% of the remanent magnetization, Hr is remanence coercivity. In Ba-F disks, ΔM shows positive interactions, and the peak heights of ΔM increase and IFF decrease with decreasing SFD values. Positive interactions between Ba-F particles seem to be caused by particle stacking. Therefore, particle stacking results in small SFD values and peak-type RDC noise.

  3. Direct measurements of the height of Ulugh Muztagh, reputedly the highest peak in the Kunlun, northern Tibet

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Bates, Robert H.; Burchfield, B. C.; Clinch, Nicholas B.; Minmin, Huang; K'uangyi, Liang; Schoening, Pete; Shuji, Wang; Ziyun, Zhao

    By using a Magnavox Geoceiver to measure a base elevation of one temporary benchmark, a Cubic Precision Uniranger to measure distances between this and two other temporary benchmarks, and a Kern (Model T-2) theodolite to measure angles among these sites and peaks in the Ulugh Muztagh area, we measure the elevation of Ulugh Muztagh and three neighboring peaks. Our measured height of 6985 ±7 m (1 σ) is very different from the widely accepted value of 7723 m obtained by Littledale in 1895 but is similar to that of 6973 m listed on some Chinese maps. This revised elevation indicates that Ulugh Muztagh is not the highest mountain outside of the Himalaya-Karakorum chain and may not be the highest in the Kunlun chain.

  4. The countermovement jump to monitor neuromuscular status: A meta-analysis.

    PubMed

    Claudino, João Gustavo; Cronin, John; Mezêncio, Bruno; McMaster, Daniel Travis; McGuigan, Michael; Tricoli, Valmor; Amadio, Alberto Carlos; Serrão, Julio Cerca

    2017-04-01

    The primary objective of this meta-analysis was to compare countermovement jump (CMJ) performance in studies that reported the highest value as opposed to average value for the purposes of monitoring neuromuscular status (i.e., fatigue and supercompensation). The secondary aim was to determine the sensitivity of the dependent variables. Systematic review with meta-analysis. The meta-analysis was conducted on the highest or average of a number of CMJ variables. Multiple literature searches were undertaken in Pubmed, Scopus, and Web of Science to identify articles utilizing CMJ to monitor training status. Effect sizes (ES) with 95% confidence interval (95% CI) were calculated using the mean and standard deviation of the pre- and post-testing data. The coefficient of variation (CV) with 95% CI was also calculated to assess the level of instability of each variable. Heterogeneity was assessed using a random-effects model. 151 articles were included providing a total of 531 ESs for the meta-analyses; 85.4% of articles used highest CMJ height, 13.2% used average and 1.3% used both when reporting changes in CMJ performance. Based on the meta-analysis, average CMJ height was more sensitive than highest CMJ height in detecting CMJ fatigue and supercompensation. Furthermore, other CMJ variables such as peak power, mean power, peak velocity, peak force, mean impulse, and power were sensitive in tracking the supercompensation effects of training. The average CMJ height was more sensitive than highest CMJ height in monitoring neuromuscular status; however, further investigation is needed to determine the sensitivity of other CMJ performance variables. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Degradation studies of Martian impact craters

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1991-01-01

    The amount of obliteration suffered by Martian impact craters is quantified by comparing measurable attributes of the current crater shape to those values expected for a fresh crater of identical size. Crater diameters are measured from profiles obtained using photoclinometry across the structure. The relationship between the diameter of a fresh crater and a crater depth, floor width, rim height, central peak height, etc. was determined by empirical studies performed on fresh Martian impact craters. We utilized the changes in crater depth and rim height to judge the degree of obliteration suffered by Martian impact craters.

  6. Biomechanical and clinical factors related to stage I posterior tibial tendon dysfunction.

    PubMed

    Rabbito, Melissa; Pohl, Michael B; Humble, Neil; Ferber, Reed

    2011-10-01

    Case control. To investigate differences in arch height, ankle muscle strength, and biomechanical factors in individuals with stage I posterior tibial tendon dysfunction (PTTD) in comparison to healthy individuals. PTTD is a progressive condition, so early recognition and treatment are essential to help delay or reverse the progression. However, no previous studies have investigated stage I PTTD, and no single study has measured static anatomical structure, muscle strength, and gait mechanics in this population. Twelve individuals with stage I PTTD and 12 healthy, age- and gender-matched control subjects, who were engaged in running-related activities, participated in this study. Measurements of arch height index, maximum voluntary ankle invertor muscle strength, and 3-dimensional rearfoot and medial longitudinal arch kinematics during walking were obtained. The runners with PTTD demonstrated significantly lower seated arch height index (P = .02) and greater (P = .03) and prolonged (P = .05) peak rearfoot eversion angle during gait, compared to the healthy runners. No differences were found in standing arch height index values (P = .28), arch rigidity index (P = .06), ankle invertor strength (P = .49), or peak medial longitudinal arch values (P = .49) between groups. The increased foot pronation is hypothesized to place greater strain on the posterior tibialis muscle, which may partially explain the progressive nature of this condition.

  7. Real-time reconstruction of topside ionosphere scale height from coordinated GPS-TEC and ionosonde observations

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Poustovalova, Ljubov

    The International Reference Ionosphere model extended to the plasmasphere, IRI-Plas, has been recently updated for assimilation of total electron content, TEC, derived from observations with Global Navigation Satellite System, GNSS. The ionosonde products of the F2 layer peak density (NmF2) and height (hmF2) ensure true electron density maximum at the F2 peak. The daily solar and magnetic indices used by IRI-Plas code are compiled in data files including the 3-hour ap and kp magnetic index from 1958 onward, 12-monthly smoothed sunspot number R12 and Global Electron Content GEC12, daily solar radio flux F10.7 and daily sunspot number Ri. The 3-h ap-index is available in Real Time, RT, mode from GFZ, Potsdam, Germany, daily update of F10.7 is provided by Space Weather Canada service, and daily estimated international sunspot number Ri is provided by Solar Influences Data Analysis Center, SIDC, Belgium. For IRI-Plas-RT operation in regime of the daily update and prediction of the F2 layer peak parameters, the proxy kp and ap forecast for 3 to 24 hours ahead based on data for preceding 12 hours is applied online at http://www.izmiran.ru/services/iweather/. The topside electron density profile of IRI-Plas code is expressed with complementary half-peak density anchor height above hmF2 which corresponds to transition O+/H+ height. The present investigation is focused on reconstruction of topside ionosphere scale height using vertical total electron content (TEC) data derived from the Global Positioning System GPS observations and the ionosonde derived F2 layer peak parameters from 25 observatories ingested into IRI-Plas model. GPS-TEC and ionosonde measurements at solar maximum (September, 2002, and October, 2003) for quiet, positively disturbed, and negatively disturbed days of the month are used to obtain the topside scale height, Htop, representing the range of altitudes from hmF2 to the height where NmF2 decay by e times occurs. Mapping of the F2 layer peak parameters and TEC allows interpolate these parameters at coordinated grid sites from independent GPS receivers and ionosondes data. Exponential scale height Htop exceeds scale height HT of the α-Chapman layer by 3 times - the latter refers to a narrow altitude range from hmF2 to the height of 1.2 times decay of NmF2. While typical quiet daytime value of the topside scale height is around 200 km, it can be enhanced by 2-3 times during the negative phase of the ionospheric storm as it is captured by IRI-Plas-RT model ingesting the F2 peak and TEC data. This study is supported by the joint grant of RFBR 13-02-91370-CT_a and TUBITAK 112E568.

  8. Model for predicting peak expiratory flow rate of Nigerian workers in a cement factory in Itori, Ogun State, Nigeria.

    PubMed

    Ismaila, Salami Olasunkanmi; Akanbi, Olusegun Gabriel; Olaoniye, Wasiu

    2015-01-01

    The main aim of the study was to propose a model for predicting the peak expiratory flow rate (PEFR) of Nigerian workers in a cement factory. Sixty randomly selected non-smoker and healthy workers (30 in production sections, 30 in the administrative section of the factory) participated in the study. Their physical characteristics and PEFR were measured. Multiple correlations using SPSS version 16.0 were performed on the data. The values of PEFR, using the obtained model, were compared with the measured values using a two-tailed t test. There were positive correlations among age, height and PEFR. A prediction equation for PEFR based on age, height, weight and years of exposure (experience) was obtained with R² = .843 (p < 0.001). The developed model will be useful for the management in determining PEFR of workers in the cement industry for possible medical attention.

  9. The value of shoe size for prediction of the timing of the pubertal growth spurt

    PubMed Central

    2011-01-01

    Background Knowing the timing of the pubertal growth spurt of the spine, represented by sitting height, is essential for the prognosis and therapy of adolescent idiopathic scoliosis. There are several indicators that reflect growth or remaining growth of the patient. For example, distal body parts have their growth spurt earlier in adolescence, and therefore the growth of the foot can be an early indicator for the growth spurt of sitting height. Shoe size is a good alternative for foot length, since patients can remember when they bought new shoes and what size these shoes were. Therefore the clinician already has access to some longitudinal data at the first visit of the patient to the outpatient clinic. The aim of this study was to describe the increase in shoe size during adolescence and to determine whether the timing of the peak increase could be an early indicator for the timing of the peak growth velocity of sitting height. Methods Data concerning shoe sizes of girls and boys were acquired from two large shoe shops from 1991 to 2008. The longitudinal series of 242 girls and 104 boys were analysed for the age of the "peak increase" in shoe size, as well as the age of cessation of foot growth based on shoe size. Results The average peak increase in shoe size occurred at 10.4 years (SD 1.1) in girls and 11.5 years (SD 1.5) in boys. This was on average 1.3 years earlier than the average peak growth velocity of sitting height in girls, and 2.5 years earlier in boys. The increase in shoe size diminishes when the average peak growth velocity of sitting height takes place at respectively 12.0 (SD 0.8) years in girls, and 13.7 (SD 1.0) years in boys. Conclusions Present data suggest that the course of the shoe size of children visiting the outpatient clinic can be a useful first tool for predicting the timing of the pubertal growth spurt of sitting height, as a representative for spinal length. This claim needs verification by direct comparison of individual shoe size and sitting height data and than a step forward can be made in clinical decision making regarding adolescent idiopathic scoliosis. PMID:21251310

  10. Quantized Majorana conductance

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.

    2018-04-01

    Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  11. Quantized Majorana conductance.

    PubMed

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D S; de Moor, Michiel W A; Car, Diana; Op Het Veld, Roy L M; van Veldhoven, Petrus J; Koelling, Sebastian; Verheijen, Marcel A; Pendharkar, Mihir; Pennachio, Daniel J; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J; Bakkers, Erik P A M; Sarma, S Das; Kouwenhoven, Leo P

    2018-04-05

    Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e 2 /h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e 2 /h, with a recent observation of a peak height close to 2e 2 /h. Here we report a quantized conductance plateau at 2e 2 /h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  12. Peak height of OH airglow derived from simultaneous observations a Fabry-Perot interferometer and a meteor radar

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Zuo, Xiaomin; Xia, Chunliang; Li, Mingyuan; Huang, Cong; Mao, Tian; Zhang, Xiaoxin; Zhao, Biqiang; Liu, Libo

    2017-04-01

    A new method for estimating daily averaged peak height of the OH airglow layer from a ground-based meteor radar (MR) and a Fabry-Perot interferometer (FPI) is presented. The first results are derived from 4 year simultaneous measurements of winds by a MR and a FPI at two adjacent stations over center China and are compared with observations from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The OH airglow peak heights, which are derived by using correlation analysis between winds of the FPI and MR, are found to generally peak at an altitude of 87 km and frequently varied between 80 km and 90 km day to day. In comparison with SABER OH 1.6 μm observations, reasonable similarity of airglow peak heights is found, and rapid day-to-day variations are also pronounced. Lomb-Scargle analysis is used to determine cycles of temporal variations of airglow peak heights, and there are obvious periodic variations both in our airglow peak heights and in the satellite observations. In addition to the annual, semiannual, monthly, and three monthly variations, the shorter time variations, e.g., day-to-day and several days' variations, are also conspicuous. The day-to-day variations of airglow height obviously could reduce observation accuracy and lead to some deviations in FPI measurements. These FPI wind deviations arising from airglow height variations are also estimated to be about 3-5 m/s from 2011 to 2015, with strong positive correlation with airglow peak height variation. More attention should be paid to the wind deviations associated with airglow height variation when using and interpreting winds measured by FPI.

  13. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping.

    PubMed

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1987-08-01

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce drop jumps the influence of dropping height on the biomechanics of the jumps. Six subjects executed bounce drop jumps from heights of 20 cm (designated here as DJ20), 40 cm (designated here as DJ40), and 60 cm (designated here as DJ60). During jumping, they were filmed, and ground reaction forces were recorded. The results of a biomechanical analysis show no difference between DJ20 and DJ40 in mechanical output about the joints during the push-off phase. Peak values of moment and power output about the ankles during the push-off phase were found to be smaller in DJ60 than in DJ40 (DJ20 = DJ60). The amplitude of joint reaction forces increased with dropping height. During DJ60, the net joint reaction forces showed a sharp peak on the instant that the heels came down on the ground. Based on the results, researchers are advised to limit dropping height to 20 or 40 cm when investigating training effects of the execution of bounce drop jumps.

  14. Measures of functional performance and their association with hip and thigh strength.

    PubMed

    Kollock, Roger; Van Lunen, Bonnie L; Ringleb, Stacie I; Oñate, James A

    2015-01-01

    Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. To determine if functional performance tests are valid indicators of hip and thigh strength. Descriptive laboratory study. Research laboratory. Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r (2). We used Pearson correlations to evaluate the associations between functional performance and strength. In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r(2) = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r(2) = 38, P ≤ .01) and hip-flexor (r(2) = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r(2) = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r(2) = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r(2) = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups.

  15. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    PubMed

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  16. Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes.

    PubMed

    Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2013-05-08

    We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.

  17. Significance of peak height velocity as a predictive factor for curve progression in patients with idiopathic scoliosis

    PubMed Central

    2015-01-01

    Background Much attention has been paid to peak height velocity (PHV) as a possible predictor of curve progression in patients with idiopathic scoliosis (IS). The aim of this study was to analyze the relationship between the magnitude of the Cobb angle at PHV and scoliosis progression, defined as having surgery prior to skeletal maturity in female patients with IS. Methods A retrospective review identified 56 skeletally immature female IS patients who were followed until maturity. The mean age and the mean pubertal status at the initial visit were 10 years and 24 months before menarche respectively, with a follow-up period of 5 years. They were divided into two groups: non-surgery group (NS) and surgery group (S), depending on their treatment method in use at the final follow-up visit. Surgery group was defined as an ultimately having surgery due to Cobb angle greater than 45 degrees prior to skeletal maturity regardless of conservative management. Height measurements were recorded at each visit; height velocity was calculated as the height change, in cm, divided by the time interval, in years. The PHV, chronological age at PHV (APHV), height at PHV (HPHV), and final height (FH) were determined for each group. In patients with Cobb angle greater than 30 degrees, the corrected height was calculated by Kono formula and corrected height velocity values were provided. The sensitivity, specificity, and area under the curve (AUC) of the receiver-operating -characteristic (ROC) analysis were calculated to predict spinal curve progression for various Cobb-angle cutoff values at PHV. Results The corrected PHV had a mean value of 8.5 and 8.9 cm/year in the NS-group and S-group, respectively. The APHV was 11.9 and 11 years, the corrected HPHV was 152.9, and 149.3 cm, and the corrected FH was 159.9 and 159.3 cm, respectively. When a Cobb angle of 31.5 degrees was at PHV, ROC analysis revealed 78% sensitivity, 82% specificity, and an AUC of 0.93, acceptable values for curve progression in patients with IS. Conclusions These findings indicate that 31.5 degrees of spinal curvature when patients are at PHV is a significant predictive indicator for progression of the curve to a magnitude requiring surgery. We suggest that the curve-progression risk assessment in patients with IS should include PHV, along with measures of skeletal and non-skeletal maturities. PMID:25815057

  18. Relaxation peak near 200 K in NiTi alloy

    NASA Astrophysics Data System (ADS)

    Zhu, J. S.; Schaller, R.; Benoit, W.

    1989-10-01

    Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.

  19. [Testing and analyzing the lung functions in the normal population in Hebei province].

    PubMed

    Chen, Li; Zhao, Ming; Han, Shao-mei; Li, Zhong-ming; Zhu, Guang-jin

    2004-08-01

    To investigate the lung function of the normal subjects living in Hebei province and its correlative factors such as living circumstance, age, height, and body weight. The lung volumes and breath capacities of 1,587 normal subjects were tested by portable spirometers (Scope Rotry) from August to October in 2002. The influences of living circumstance, age, gender, height, and body weight on lung functions were observed and analyzed. No significant difference was found between urban and rural areas in all indexes (P > 0.05); however, significant difference existed between male and female subjects (P = 0.000). The change trends of lung function in male and female subjects were similar. Growth spurt appeared at the age of 12-16 years in male subjects and 12-14 years in female subjects. Vital capacity (VC), forced vital capacity (FVC), and forced expiratory volume in one second (FEV1) reached their peaks at the age of 26-34 years and then decreased with age. Peak expiratory flow (PEF), 25% forced expiratory flow (FEF50%), and 75% forced expiratory flow (FEF75%) appeared at the age of 18 and then went down with age. Both height and weight had a correlation with all the indexes of lung functions, although the influence of height is stronger than weight. All the indexes of lung function have correlations with age, height, and weight. Lung function changes with aging, therefore different expected values shall be available for the adolescence, young adults, and middle-aged and old people. This study provides reference values of lung function for normal population.

  20. Adult height and health-related quality of life after growth hormone therapy in small for gestational age subjects.

    PubMed

    Bannink, E; Djurhuus, C B; Christensen, T; Jøns, K; Hokken-Koelega, A

    2010-01-01

    To estimate health-related quality of life (HRQoL) in non-growth hormone deficient (GHD) small for gestational age (SGA) children before and after growth hormone (GH) treatment to adult height (AH). This was a multicentre, two-arm trial. Following an initial 2-year double-blind study period, patients entered a 2-year extension period followed by treatment to AH. At baseline patients were randomised to GH (0.033 or 0.067 mg/kg/day) and continued treatment at that dose until AH. Height was assessed at baseline and 3-monthly intervals to AH (height velocity <2 cm/year). Height standard deviation score (SDS) before and after GH therapy was mapped onto estimated HRQoL scores up to AH. Of the 79 children randomised into the study 53 were non-GHD (defined as peak GH >20 mU/L [peak 24-h GH value and peak arginine tolerance test]). At baseline these children had a mean (mean [+/-SD]) height SDS of -3.2 (0.7), height velocity SDS -0.6 (1.2) and age, 8.1 (1.9) years. Estimated HRQoL scores were significantly (p < 0.001) increased from baseline at AH (ΔHRQoL, 95% CI) (0.033 mg/kg/day, 0.112 [0.092, 0.132]; 0.067 mg/kg/day, 0.115 [0.094, 0.136]). HRQoL was not different between treatment groups. A significant gain in AH, relative to an SGA reference population, was reported in GH-treated patients. Mean (95% CI) ΔAH SDS (0.033 mg/kg/day, +1.4 [1.1, 1.6]. 0.067 mg/kg/day, +1.7[1.4, 2.0]). The analysis assumes HRQoL can be mapped onto height SDS. GH treatment in short children born SGA without signs of persistent catch-up growth was associated with significant improvement in HRQoL and normalisation of AH.

  1. Quantification of thymosin beta(4) in human cerebrospinal fluid using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Urso, Elena; Le Pera, Maria; Bossio, Sabrina; Sprovieri, Teresa; Qualtieri, Antonio

    2010-07-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been applied to the analysis of a wide range of biomolecules. To date, there are two specific areas of application where MALDI-TOF-MS is viewed as impractical: analysis of low-mass analytes and relative quantitative applications. However, these limitations can be overcome and quantification can be routine. Increased levels of thymosin beta(4) (TB4) have been recently found in cerebrospinal fluid (CSF) from Creutzfeldt-Jakob disease (CJD) patients. Our objective was to apply a label-free quantitative application of MALDI-TOF-MS to measure TB4 levels in human CSF by adding the oxidized form of TB4 as an internal standard. The relative peak area or peak height ratios of the native TB4 to the added oxidized form were evaluated. Considering the relative peak area ratios, healthy individuals showed a mean value of 40.8+/-21.27 ng/ml, whereas CJD patients showed high values with a mean of 154+/-59.07 ng/ml, in agreement with the previous observation found in CJD patients. Similar results were obtained considering peak height ratios. The proposed method may provide a simple and rapid screening method for quantification on CSF of TB4 levels suitable for diagnostic purposes. 2010 Elsevier Inc. All rights reserved.

  2. Effect of Surface Roughness on Characteristics of Spherical Shock Waves

    NASA Technical Reports Server (NTRS)

    Huber, Paul W.; McFarland, Donald R.

    1959-01-01

    Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.

  3. Revisiting Tectonic Corrections Applied to Pleistocene Sea-Level Highstands

    NASA Astrophysics Data System (ADS)

    Creveling, J. R.; Mitrovica, J. X.; Hay, C.; Austermann, J.; Kopp, R. E.

    2015-12-01

    The robustness of stratigraphic- and geomorphic-based inferences of Quaternary peak interglacial sea levels — and equivalent minimum continental ice volumes — depends on the accuracy with which highstand markers can be corrected for vertical tectonic displacement. For sites that preserve a Marine Isotope Stage (MIS) 5e sea-level highstand marker, the customary method for estimating tectonic uplift/subsidence rate computes the difference between the local elevation of the highstand marker and a reference eustatic (i.e., global mean) MIS 5e sea-level height, typically assumed to be +6 m, and then divides this height difference by the age of the highstand marker. This rate is then applied to correct the elevation of other observed sea-level markers at that site for tectonic displacement. Subtracting a reference eustatic value from a local MIS 5e highstand marker elevation introduces two potentially significant errors. First, the commonly adopted peak eustatic MIS 5e sea-level value (i.e., +6 m) is likely too low; recent studies concluded that MIS 5e peak eustatic sea level was ~6-9 m. Second, local peak MIS 5e sea level was not globally uniform, but instead characterized by significant departures from eustasy due to glacial isostatic adjustment (GIA) in response to successive glacial-interglacial cycles and excess polar ice-sheet melt relative to present day. We present numerical models of GIA that incorporate both of these effects in order to quantify the plausible range in error of previous tectonic corrections. We demonstrate that, even far from melting ice sheets, local peak MIS 5e sea level may have departed from eustasy by 2-4 m, or more. Thus, adopting an assumed reference eustatic value to estimate tectonic displacement, rather than a site-specific GIA signal, can introduce significant error in estimates of peak eustatic sea level (and minimum ice volumes) during Quaternary highstands (e.g., MIS 11, MIS 5c and MIS 5a).

  4. Total peak shape analysis: detection and quantitation of concurrent fronting, tailing, and their effect on asymmetry measurements.

    PubMed

    Wahab, M Farooq; Patel, Darshan C; Armstrong, Daniel W

    2017-08-04

    Most peak shapes obtained in separation science depart from linearity for various reasons such as thermodynamic, kinetic, or flow based effects. An indication of the nature of asymmetry often helps in problem solving e.g. in column overloading, slurry packing, buffer mismatch, and extra-column band broadening. However, existing tests for symmetry/asymmetry only indicate the skewness in excess (tail or front) and not the presence of both. Two simple graphical approaches are presented to analyze peak shapes typically observed in gas, liquid, and supercritical fluid chromatography as well as capillary electrophoresis. The derivative test relies on the symmetry of the inflection points and the maximum and minimum values of the derivative. The Gaussian test is a constrained curve fitting approach and determines the residuals. The residual pattern graphically allows the user to assess the problematic regions in a given peak, e.g., concurrent tailing or fronting, something which cannot be easily done with other current methods. The template provided in MS Excel automates this process. The total peak shape analysis extracts the peak parameters from the upper sections (>80% height) of the peak rather than the half height as is done conventionally. A number of situations are presented and the utility of this approach in solving practical problems is demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Vibrational dynamics and boson peak in a supercooled polydisperse liquid.

    PubMed

    Abraham, Sneha Elizabeth; Bagchi, Biman

    2010-03-01

    Vibrational density of states (VDOS) in a supercooled polydisperse liquid is computed by diagonalizing the Hessian matrix evaluated at the potential energy minima for systems with different values of polydispersity. An increase in polydispersity leads to an increase in the relative population of localized high-frequency modes. At low frequencies, the density of states shows an excess compared to the Debye squared-frequency law, which has been identified with the boson peak. The height of the boson peak increases with polydispersity and shows a rather narrow sensitivity to changes in temperature. While the modes comprising the boson peak appear to be largely delocalized, there is a sharp drop in the participation ratio of the modes that exist just below the boson peak indicative of the quasilocalized nature of the low-frequency vibrations. Study of the difference spectrum at two different polydispersity reveals that the increase in the height of boson peak is due to a population shift from modes with frequencies above the maximum in the VDOS to that below the maximum, indicating an increase in the fraction of the unstable modes in the system. The latter is further supported by the facilitation of the observed dynamics by polydispersity. Since the strength of the liquid increases with polydispersity, the present result provides an evidence that the intensity of boson peak correlates positively with the strength of the liquid, as observed earlier in many experimental systems.

  6. A specific prediction equation is necessary to estimate peak oxygen uptake in obese patients with metabolic syndrome.

    PubMed

    Debeaumont, D; Tardif, C; Folope, V; Castres, I; Lemaitre, F; Tourny, C; Dechelotte, P; Thill, C; Darmon, A; Coquart, J B

    2016-06-01

    The aims were to: (1) compare peak oxygen uptake ([Formula: see text]peak) predicted from four standard equations to actual [Formula: see text]peak measured from a cardiopulmonary exercise test (CPET) in obese patients with metabolic syndrome (MetS), and (2) develop a new equation to accurately estimate [Formula: see text]peak in obese women with MetS. Seventy-five obese patients with MetS performed a CPET. Anthropometric data were also collected for each participant. [Formula: see text]peak was predicted from four prediction equations (from Riddle et al., Hansen et al., Wasserman et al. or Gläser et al.) and then compared with the actual [Formula: see text]peak measured during the CPET. The accuracy of the predictions was determined with the Bland-Altman method. When accuracy was low, a new prediction equation including anthropometric variables was proposed. [Formula: see text]peak predicted from the equation of Wasserman et al. was not significantly different from actual [Formula: see text]peak in women. Moreover, a significant correlation was found between the predicted and actual values (p < 0.001, r = 0.69). In men, no significant difference was noted between actual [Formula: see text]peak and [Formula: see text]peak predicted from the prediction equation of Gläser et al., and these two values were also correlated (p = 0.03, r = 0.44). However, the LoA95% was wide, whatever the prediction equation or gender. Regression analysis suggested a new prediction equation derived from age and height for obese women with MetS. The methods of Wasserman et al. and Gläser et al. are valid to predict [Formula: see text]peak in obese women and men with MetS, respectively. However, the accuracy of the predictions was low for both methods. Consequently, a new prediction equation including age and height was developed for obese women with MetS. However, new prediction equation remains to develop in obese men with MetS.

  7. Estimating Body Composition in Adolescent Sprint Athletes: Comparison of Different Methods in a 3 Years Longitudinal Design

    PubMed Central

    Aerenhouts, Dirk

    2015-01-01

    A recommended field method to assess body composition in adolescent sprint athletes is currently lacking. Existing methods developed for non-athletic adolescents were not longitudinally validated and do not take maturation status into account. This longitudinal study compared two field methods, i.e., a Bio Impedance Analysis (BIA) and a skinfold based equation, with underwater densitometry to track body fat percentage relative to years from age at peak height velocity in adolescent sprint athletes. In this study, adolescent sprint athletes (34 girls, 35 boys) were measured every 6 months during 3 years (age at start = 14.8 ± 1.5yrs in girls and 14.7 ± 1.9yrs in boys). Body fat percentage was estimated in 3 different ways: 1) using BIA with the TANITA TBF 410; 2) using a skinfold based equation; 3) using underwater densitometry which was considered as the reference method. Height for age since birth was used to estimate age at peak height velocity. Cross-sectional analyses were performed using repeated measures ANOVA and Pearson correlations between measurement methods at each occasion. Data were analyzed longitudinally using a multilevel cross-classified model with the PROC Mixed procedure. In boys, compared to underwater densitometry, the skinfold based formula revealed comparable values for body fatness during the study period whereas BIA showed a different pattern leading to an overestimation of body fatness starting from 4 years after age at peak height velocity. In girls, both the skinfold based formula and BIA overestimated body fatness across the whole range of years from peak height velocity. The skinfold based method appears to give an acceptable estimation of body composition during growth as compared to underwater densitometry in male adolescent sprinters. In girls, caution is warranted when interpreting estimations of body fatness by both BIA and a skinfold based formula since both methods tend to give an overestimation. PMID:26317426

  8. Measures of Functional Performance and Their Association With Hip and Thigh Strength

    PubMed Central

    Kollock, Roger; Van Lunen, Bonnie L.; Ringleb, Stacie I.; Oñate, James A.

    2015-01-01

    Context: Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. Objective: To determine if functional performance tests are valid indicators of hip and thigh strength. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. Intervention(s): During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Main Outcome Measure(s): Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r 2. We used Pearson correlations to evaluate the associations between functional performance and strength. Results: In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r2 = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r2 = 38, P ≤ .01) and hip-flexor (r2 = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r2 = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r2 = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r2 = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Conclusions: Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups. PMID:25347236

  9. Peak power in the hexagonal barbell jump squat and its relationship to jump performance and acceleration in elite rugby union players.

    PubMed

    Turner, Thomas S; Tobin, Daniel P; Delahunt, Eamonn

    2015-05-01

    Recent research suggests that jump squats with a loaded hexagonal barbell are superior for peak power production to comparable loads in a traditional barbell loaded jump squat. The aim of this study was to investigate the relationship between relative peak power output during performance of the hexagonal barbell jump squat (HBJS), countermovement jump (CMJ) height, and linear acceleration speed in rugby union players. Seventeen professional rugby union players performed 10- and 20-m sprints, followed by a set of 3 unloaded CMJs and a set of 3 HBJS at a previously determined optimal load corresponding with peak power output. The relationship between HBJS relative peak power output, 10- and 20-m sprint time, and CMJ height was investigated using correlation analysis. The contribution of HBJS relative peak power output and CMJ height to 10- and 20-m sprint time was investigated using standard multiple regression. Strong, significant, inverse correlations were observed between HBJS relative peak power output, 10-m sprint time (r = -0.70, p < 0.01), and 20-m sprint time (r = -0.75, p < 0.01). A strong, significant, positive correlation was observed between HBJS relative peak power output and CMJ height (r = 0.80, p < 0.01). Together, HBJS relative peak power output and CMJ height explained 46% of the variance in 10-m sprint time while explaining 59% of the variance in 20-m sprint time. The findings of the current study demonstrate a significant relationship between relative peak power in the HBJS and athletic performance as quantified by CMJ height and 10- and 20-m sprint time.

  10. Ascorbic Acid Determination in Commercial Fruit Juice Samples by Cyclic Voltammetry

    PubMed Central

    Pisoschi, Aurelia Magdalena; Danet, Andrei Florin; Kalinowski, Slawomir

    2008-01-01

    A method was developed for assessing ascorbic acid concentration in commercial fruit juice by cyclic voltammetry. The anodic oxidation peak for ascorbic acid occurs at about 490 mV on a Pt disc working electrode (versus SCE). The influence of the potential sweep speed on the peak height was studied. The obtained calibration graph shows a linear dependence between peak height and ascorbic acid concentration in the domain (0.1–10 mmol·L−1). The equation of the calibration graph was y = 6.391x + 0.1903 (where y represents the value of intensity measured for the anodic peak height, expressed as μA and x the analyte concentration, as mmol·L−1, r2 = 0.9995, r.s.d. = 1.14%, n = 10, Cascorbic acid = 2 mmol·L−1). The developed method was applied to ascorbic acid assessment in fruit juice. The ascorbic acid content determined ranged from 0.83 to 1.67 mmol·L−1 for orange juice, from 0.58 to 1.93 mmol·L−1 for lemon juice, and from 0.46 to 1.84 mmol·L−1 for grapefruit juice. Different ascorbic acid concentrations (from standard solutions) were added to the analysed samples, the degree of recovery being comprised between 94.35% and 104%. Ascorbic acid determination results obtained by cyclic voltammetry were compared with those obtained by the volumetric method with dichlorophenol indophenol. The results obtained by the two methods were in good agreement. PMID:19343183

  11. Effect of normal impurities on anisotropic superconductors with variable density of states

    NASA Astrophysics Data System (ADS)

    Whitmore, M. D.; Carbotte, J. P.

    1982-06-01

    We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.

  12. Estimation of Mesospheric Densities at Low Latitudes Using the Kunming Meteor Radar Together With SABER Temperatures

    NASA Astrophysics Data System (ADS)

    Yi, Wen; Xue, Xianghui; Reid, Iain M.; Younger, Joel P.; Chen, Jinsong; Chen, Tingdi; Li, Na

    2018-04-01

    Neutral mesospheric densities at a low latitude have been derived during April 2011 to December 2014 using data from the Kunming meteor radar in China (25.6°N, 103.8°E). The daily mean density at 90 km was estimated using the ambipolar diffusion coefficients from the meteor radar and temperatures from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The seasonal variations of the meteor radar-derived density are consistent with the density from the Mass Spectrometer and Incoherent Scatter (MSIS) model, show a dominant annual variation, with a maximum during winter, and a minimum during summer. A simple linear model was used to separate the effects of atmospheric density and the meteor velocity on the meteor radar peak detection height. We find that a 1 km/s difference in the vertical meteor velocity yields a change of approximately 0.42 km in peak height. The strong correlation between the meteor radar density and the velocity-corrected peak height indicates that the meteor radar density estimates accurately reflect changes in neutral atmospheric density and that meteor peak detection heights, when adjusted for meteoroid velocity, can serve as a convenient tool for measuring density variations around the mesopause. A comparison of the ambipolar diffusion coefficient and peak height observed simultaneously by two co-located meteor radars indicates that the relative errors of the daily mean ambipolar diffusion coefficient and peak height should be less than 5% and 6%, respectively, and that the absolute error of the peak height is less than 0.2 km.

  13. On the Use of Topside RO-Derived Electron Density for Model Validation

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Nava, B.; Haralambous, H.

    2018-05-01

    In this work, the standard Abel inversion has been exploited as a powerful observation tool, which may be helpful to model the topside of the ionosphere and therefore to validate ionospheric models. A thorough investigation on the behavior of radio occultation (RO)-derived topside electron density (Ne(h))-profiles has therefore been performed with the main purpose to understand whether it is possible to predict the accuracy of a single RO-retrieved topside by comparing the peak density and height of the retrieved profile to the true values. As a first step, a simulation study based on the use of the NeQuick2 model has been performed to show that when the RO-derived electron density peak and height match the true peak values, the full topside Ne(h)-profile may be considered accurate. In order to validate this hypothesis with experimental data, electron density profiles obtained from four different incoherent scatter radars have therefore been considered together with co-located RO-derived Ne(h)-profiles. The evidence presented in this paper show that in all cases examined, if the incoherent scatter radar and the corresponding co-located RO profile have matching peak parameter values, their topsides are in very good agreement. The simulation results presented in this work also highlighted the importance of considering the occultation plane azimuth while inverting RO data to obtain Ne(h)-profile. In particular, they have indicated that there is a preferred range of azimuths of the occultation plane (80°-100°) for which the difference between the "true" and the RO-retrieved Ne(h)-profile in the topside is generally minimal.

  14. External electric field effect on the binding energy of a hydrogenic donor impurity in InGaAsP/InP concentric double quantum rings

    NASA Astrophysics Data System (ADS)

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2018-04-01

    Within the framework of effective-mass envelope-function theory, the ground state binding energy of a hydrogenic donor impurity is calculated in the InGaAsP/InP concentric double quantum rings (CDQRs) using the plane wave method. The effects of geometry, impurity position, external electric field and alloy composition on binding energy are considered. It is shown that the peak value of the binding energy appears in two rings with large gap as the donor impurity moves along the radial direction. The binding energy reaches the peak value at the center of ring height when the donor impurity moves along the axial direction. The binding energy shows nonlinear variation with the increase of ring height. With the external electric field applied along the z-axis, the binding energy of the donor impurity located at zi ≥ 0 decreases while that located at zi < 0 increases. In addition, the binding energy decreases with increasing Ga composition, but increases with the increasing As composition.

  15. Nernst and Seebeck effects in HgTe/CdTe topological insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuan; Song, Juntao; Li, Yu-Xian, E-mail: yxli@mail.hebtu.edu.cn

    2015-03-28

    The Seebeck and Nernst effects in HgTe/CdTe quantum wells are studied using the tight-binding Hamiltonian and the nonequilibrium Green's function method. The Seebeck coefficient, S{sub c}, and the Nernst coefficient, N{sub c}, oscillate as a function of E{sub F}, where E{sub F} is the Fermi energy. The Seebeck coefficient shows peaks when the Fermi energy crosses the discrete transverse channels, and the height of the nth peak of the S{sub c} is [ln2/(1/2 +|n|)] for E{sub F} > 0. For the case E{sub F} < 0, the values of the peaks are negative, but the absolute values of the first five peaks are themore » same as those for E{sub F} > 0. The 6th peak of S{sub c} reaches the value [ln2/1.35] due to a higher density of states. When a magnetic field is applied, the Nernst coefficient appears. However, the values of the peaks for N{sub c} are all positive. For a weak magnetic field, the temperature suppresses the oscillation of the Seebeck and Nernst coefficients but increases their magnitude. For a large magnetic field, because of the highly degenerate Landau levels, the peaks of the Seebeck coefficient at position E{sub F}=−12, 10, 28meV, and Nernst coefficient at E{sub F}=−7, 10meV are robust against the temperature.« less

  16. Analysis of the temporal-spatial distribution of ionosphere scale height based on COSMIC occultation data

    NASA Astrophysics Data System (ADS)

    Ma, Xin-Xin; Lin, Zhan; Jin, Hong-Lin; Chen, Hua-Ran; Jiao, Li-Guo

    2017-11-01

    In this study, the distribution characteristics of scale height at various solar activity levels were statistically analyzed using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation data for 2007-2013. The results show that: (1) in the mid-high latitude region, the daytime (06-17LT) scale height exhibits annual variations in the form of a single peak structure with the crest appearing in summer. At the high latitude region, an annual variation is also observed for nighttime (18-05LT) scale height; (2) changes in the spatial distribution of the scale height occur. The crests are deflected towards the north during daytime (12-14LT) at a geomagnetic longitude of 60°W-180°W, and they are distributed roughly along the geomagnetic equator at 60°W-180°E. In the approximate region of 120°W-150°E and 50°S-80°S, the scale height values are significantly higher than those in other mid-latitude areas. This region enlarges with increased solar activity, and shows an approximately symmetric distribution about 0° geomagnetic longitude. Nighttime (00-02LT) scale height values in the high-latitude region are larger than those in the low-mid latitude region. These results could serve as reference for the study of ionosphere distribution and construction of the corresponding profile model.

  17. Short- and long-term (final height) growth responses to growth hormone (GH) therapy in patients with Turner syndrome: correlation of growth response to stimulated GH levels, spontaneous GH secretion, and karyotype.

    PubMed

    Schmitt, K; Haeusler, G; Blümel, P; Plöchl, E; Frisch, H

    1997-01-01

    In 41 girls with Turner syndrome, the growth hormone (GH) peak values during stimulation tests and parameters of spontaneous nocturnal GH secretion were studied and compared with respect to different karyotypes, short-term growth response to GH therapy, and final height. 22.0% of the girls tested had a subnormal (peak < 11 ng/ml) and 9.7% a pathological (< 7 ng/ml) GH response. The spontaneous GH secretion showed a good correlation with the data of the provocation tests, providing no further information regarding GH capacity. Short-term growth response to GH treatment could not be predicted by any of the investigated parameters. Although patients with isochromosomes had frequent subnormal GH tests, their growth response to GH treatment after 1 year was comparable to that of girls with XO karyotype and mosaicism. In 18 patients who had reached final height, the height gain during treatment (calculated as final height minus projected adult height) was not different among patients with normal, subnormal, or pathological GH tests. In contrast, final height minus projected adult height in 4 girls with isochromosomes was 15.7 +/- 5.1 versus 7.6 +/- 3.3 cm in 14 patients with other karyotypes (p < 0.01). These girls had a more pronounced bone age delay (3.3 +/- 0.3 vs. 1.8 +/- 1.2 years) at the start of therapy and thus a better growth potential. We conclude that short- and long-term growth responses to GH treatment in Turner syndrome could not be predicted by GH testing. Patients with isochromosomes might represent a subpopulation which is more frequently GH deficient and shows a marked bone age delay.

  18. Ionospheric scale height from the refraction of satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.; Titheridge, J. E.

    1972-01-01

    Accurate observations of the elevation angle of arrival of 20 MHz signals from the polar orbiting satellite Beacon-B for a 20 month period have provided transmission ionograms which may be reduced to give Hp the scale height at the peak of the ionosphere. Noon seasonal averages of Hp are 1.35 (in winter) to 1.55 (in summer) times greater than the scale height obtained from bottom-side ionograms. A comparison of scale height at the peak with routine measurements of total content and peak electron density indicates that the O+/H+ transition level is above 1000 km during the day but comes down to about 630 km on winter nights. A predawn peak in the overall scale height is caused by a lowering of the layer to a region of increased recombination and is magnified in winter by low O+/H+ transition levels.

  19. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.

    PubMed

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-08-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.

  20. Infrared focal plane performance in the South Atlantic anomaly

    NASA Technical Reports Server (NTRS)

    Junga, Frank A.

    1989-01-01

    Proton-induced pulse height distributions (PHD's) in Si:XX detectors were studied analytically and experimentally. In addition, a preliminary design for a flight experiment to characterize the response of Si:XX detectors to the trapped proton environment and verify PHD models was developed. PHD's were computed for two orbit altitudes for a variety of shielding configurations. Most of the proton-induced pulses have amplitudes less that about 3.5 x 10(exp 5) e-h pairs. Shielding has a small effect on the shape of the PHD's. The primary effect of shielding is to reduce the total number of pulses produced. Proton-induced PHD's in a Si:Sb focal plane array bombarded by a unidirectional 67-MeV beam were measured. The maximum pulse height recorded was 6 x 10(exp 5) pairs. The distribution had two peaks: the larger peak corresponded to 3.8 x 10(exp 5) pairs and the smaller peak to 1.2 x 10(exp 5) pairs. The maximum pulse height and the larger peak are within a factor of two of predicted values. The low-energy peak was not expected, but is believed to be an artifact of inefficient charge collection in the detector. The planned flight experiment will be conducted on a Space Shuttle flight. Lockheed's helium extended life dewar (HELD) will be used to provide the required cryogenic environment for the detector. Two bulk Si:Sb arrays and two Si:As impurity band conduction arrays will be tested. The tests will be conducted while the Space Shuttle passes through the South Atlantic Anomaly. PHD's will be recorded and responsivity changes tracked. This experiment will provide a new database on proton-induced PHD's, compare two infrared detector technologies in a space environment, and provide the data necessary to validate PHD modeling.

  1. Statistics of Dark Matter Halos from Gravitational Lensing.

    PubMed

    Jain; Van Waerbeke L

    2000-02-10

    We present a new approach to measure the mass function of dark matter halos and to discriminate models with differing values of Omega through weak gravitational lensing. We measure the distribution of peaks from simulated lensing surveys and show that the lensing signal due to dark matter halos can be detected for a wide range of peak heights. Even when the signal-to-noise ratio is well below the limit for detection of individual halos, projected halo statistics can be constrained for halo masses spanning galactic to cluster halos. The use of peak statistics relies on an analytical model of the noise due to the intrinsic ellipticities of source galaxies. The noise model has been shown to accurately describe simulated data for a variety of input ellipticity distributions. We show that the measured peak distribution has distinct signatures of gravitational lensing, and its non-Gaussian shape can be used to distinguish models with different values of Omega. The use of peak statistics is complementary to the measurement of field statistics, such as the ellipticity correlation function, and is possibly not susceptible to the same systematic errors.

  2. Identification of atmospheric boundary layer thickness using doppler radar datas and WRF - ARW model in Merauke

    NASA Astrophysics Data System (ADS)

    Putri, R. J. A.; Setyawan, T.

    2017-01-01

    In the synoptic scale, one of the important meteorological parameter is the atmospheric boundary layer. Aside from being a supporter of the parameters in weather and climate models, knowing the thickness of the layer of the atmosphere can help identify aerosols and the strength of the vertical mixing of pollutants in it. The vertical wind profile data from C-band Doppler radar Mopah-Merauke which is operated by BMKG through Mopah-Merauke Meteorological Station can be used to identify the peak of Atmospheric Boundaryu Layer (ABL). ABL peak marked by increasing wind shear over the layer blending. Samples in January 2015 as a representative in the wet and in July 2015 as the representation of a dry month, shows that ABL heights using WRF models show that in July (sunny weather) ABL height values higher than in January (cloudy)

  3. Using SfM Photogrammetry from a Manned-aircraft to Settle Debate on the Heights of the Five Tallest Mountains in the US Arctic

    NASA Astrophysics Data System (ADS)

    Nolan, M.; Deslauriers, K.

    2015-12-01

    Due to discrepancies on the USGS topographic maps made in the late 1950s, the height of the tallest peaks in the US Arctic has remained uncertain -- until now. The five tallest peaks here are located within 40 km of each other in the eastern Brooks Range of Alaska within the Arctic National Wildlife Refuge. The 1:250,000 scale map lists Mt Isto as tallest at 9050', but the 1:63,360 scale map lists it at 8975'. These values bracket the elevation of Mt Chamberlin, which is listed as 9020' on both maps, creating the primary uncertainty. We used fodar™, an airborne photogrammetric method utilizing Structure-from-Motion (SfM) algorithms, to measure the heights of these peaks and validated these measurements using survey-grade GPS and airborne lidar. The GPS and fodar measurements of Mt Isto and Mt Chamberlin agree to within centimeters, and show that both mountains are under 9000' and that one of them is actually the third tallest. We have mapped each of the five peaks between 4 and 6 times over the past 7 years using either lidar or fodar, with a final measurement uncertainty of less than +/- 30 cm, noting a gradual loss of elevation over time on most of them, caused by ablation of glacier-capped and snow-corniced peaks. When the USGS maps were made, it is therefore conceivable that one or more of these mountains were over 9000' but have since lowered due to ice loss. Analysis of the SfM data shows that all five peaks likely have less than 10 meters of ice remaining on them and, at current loss rates, rock may be exposed on some of them within the next 10 years. The difference in height between the 4th and 5th tallest peaks varied temporally between 1 and 3 m, suggesting that their order may yet change before rock is exposed there. The measured heights of these five peaks will be revealed in the presentation. Based on the correspondence between and within data sets, we also conclude that our SfM photogrammetry is as accurate and more precise than our lidar in the measurement of these mountains and offers many other advantages. In particular, the photogrammetric hardware is 10x less expensive than lidar of similar capability, and unlike lidar the SfM measurements also create a perfectly co-registered orthoimage which is useful in interpretation of topographic change. Figure. 3D visualization of Mt Isto fodar data with GPS validation data overlain.

  4. Sharp Absorption Peaks in THz Spectra Valuable for Crystal Quality Evaluation of Middle Molecular Weight Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Sasaki, Tetsuo; Sakamoto, Tomoaki; Otsuka, Makoto

    2018-05-01

    Middle molecular weight (MMW) pharmaceuticals (MW 400 4000) are attracting attention for their possible use in new medications. Sharp absorption peaks were observed in MMW pharmaceuticals at low temperatures by measuring with a high-resolution terahertz (THz) spectrometer. As examples, high-resolution THz spectra for amoxicillin trihydrate, atorvastatin calcium trihydrate, probucol, and α,β,γ,δ-tetrakis(1-methylpyridinium-4-yl)porphyrin p-toluenesulfonate (TMPyP) were obtained at 10 K. Typically observed as peaks with full width at half-height (FWHM) values as low as 5.639 GHz at 0.96492 THz in amoxicillin trihydrate and 8.857 GHz at 1.07974 THz for probucol, many sharp peaks of MMW pharmaceuticals could be observed. Such narrow absorption peaks enable evaluation of the crystal quality of MMW pharmaceuticals and afford sensitive detection of impurities.

  5. Changes in biomechanical properties during drop jumps of incremental height.

    PubMed

    Peng, Hsien-Te

    2011-09-01

    The purpose of this study was to investigate changing biomechanical properties with increasing drop jump height. Sixteen physically active college students participated in this study and performed drop jumps from heights of 20, 30, 40, 50, and 60 cm (DJ20-DJ60). Kinematic and kinetic data were collected using 11 Eagle cameras and 2 force platforms. Data pertaining to the dominant leg for each of 3 trials for each drop height were recorded and analyzed. Statistical comparisons of vertical ground reaction force (vGRF), impulse, moment, power, work, and stiffness were made between different drop jump heights. The peak vGRF of the dominant leg exceeded 3 times the body weight during DJ50 and DJ60; these values were significantly greater than those for DJ20, DJ30, and DJ40 (all p < 0.004). The height jumped during DJ60 was significantly less than that during DJ20 and DJ30 (both p = 0.010). Both the landing impulse and total impulse during the contact phase were significantly different between each drop height (all p < 0.036) and significantly increased with drop height. There were no significant differences in the takeoff impulse. Peak and mean power absorption and negative work at the knee and ankle joints during DJ40, DJ50, and DJ60 were significantly greater than those during DJ20 and DJ30 (all p < 0.049). Leg, knee, and ankle stiffness during DJ60 were significantly less than during DJ20, DJ30, and DJ40 (all p < 0.037). The results demonstrated that drop jumps from heights >40 cm offered no advantages in terms of mechanical efficiency (SSC power output) and stiffness. Drop jumps from heights in excess of 60 cm are not recommended because of the lack of biomechanical efficiency and the potentially increased risk of injury.

  6. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic fieldmore » is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.« less

  7. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, Stephen W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate that the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower atmosphere. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2-Martian years are investigated near aphelion conditions at high Northern latitudes (64.7-77.6N). A mean ionospheric peak height of 133.5-135 km was obtained for all aphelion profiles near SZA = 78-82; a corresponding mean peak density of 7.3-8.5 x 10(exp 4)/cu cm was also measured, reflecting solar moderate conditions. Strong wave 2-3 oscillations in peak heights were observed as a function of longitude over both Martian seasons. The Mars Thermospheric General Circulation Model (MTGCM) is exercised for Mars aphelion conditions. The measured interannual variations in the mean and longitude structure of the peak heights are small (consistent with MTGCM simulations), signifying the repeatability of the Mars atmosphere during aphelion conditions. A non-migrating (semi-diurnal period, wave#l eastward propagating) tidal mode is likely responsible for the wave#3 longitude features identified. The height of this photochemically driven peak can be observed to provide an ongoing monitor of the changing state of the Mars lower atmosphere. The magnitudes of these same peaks may reflect more than changing solar EUV fluxes when they are located in the vicinity of Mars crustal magnetic field centers.

  8. [Gas chromatography with a Pulsed discharge helium ionization detector for measurement of molecular hydrogen(H2) in the atmosphere].

    PubMed

    Luan, Tian; Fang, Shuang-xi; Zhou, Ling-xi; Wang, Hong-yang; Zhang, Gen

    2015-01-01

    A high precision GC system with a pulsed discharge helium ionization detector was set up based on the commercial Agilent 7890A gas chromatography. The gas is identified by retention time and the concentration is calculated through the peak height. Detection limit of the system is about 1 x 10(-9) (mole fraction, the same as below). The standard deviation of 140 continuous injections with a standard cylinder( concentration is roughly 600 x 10(-9)) is better than 0.3 x 10(-9). Between 409.30 x 10(-9) and 867.74 x 10(-9) molecular hydrogen mole fractions and peak height have good linear response. By using two standards to quantify the air sample, the precision meets the background molecular hydrogen compatibility goal within the World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) program. Atmospheric molecular hydrogen concentration at Guangzhou urban area was preliminarily measured by this method from January to November 2013. The results show that the atmospheric molecular hydrogen mole fraction varies from 450 x 10(-9) to 700 x 10(-9) during the observation period, with the lowest value at 14:00 (Beijing time, the same as below) and the peak value at 20:00. The seasonal variation of atmospheric hydrogen at Guangzhou area was similar with that of the same latitude stations in northern hemisphere.

  9. Body Size of Male Youth Soccer Players: 1978-2015.

    PubMed

    Malina, Robert M; Figueiredo, António J; Coelho-E-Silva, Manuel J

    2017-10-01

    Studies of the body size and proportions of athletes have a long history. Comparisons of athletes within specific sports across time, though not extensive, indicate both positive and negative trends. To evaluate secular variation in heights and weights of male youth soccer players reported in studies between 1978 and 2015. Reported mean ages, heights, and weights of male soccer players 9-18 years of age were extracted from the literature and grouped into two intervals: 1978-99 and 2000-15. A third-order polynomial was fitted to the mean heights and weights across the age range for each interval, while the Preece-Baines model 1 was fitted to the grand means of mean heights and mean weights within each chronological year to estimate ages at peak height velocity and peak weight velocity for each time interval. Third-order polynomials applied to all data points and estimates based on the Preece-Baines model applied to grand means for each age group provided similar fits. Both indicated secular changes in body size between the two intervals. Secular increases in height and weight between 1978-99 and 2000-15 were especially apparent between 13 and 16 years of age, but estimated ages at peak height velocity (13.01 and 12.91 years) and peak weight velocity (13.86 and 13.77 years) did not differ between the time intervals. Although the body size of youth soccer players increased between 1978-99 and 2000-15, estimated ages at peak height velocity and peak weight velocity did not change. The increase in height and weight likely reflected improved health and nutritional conditions, in addition to the selectivity of soccer reflected in systematic selection and retention of players advanced in maturity status, and exclusion of late maturing players beginning at about 12-13 years of age. Enhanced training programs aimed at the development of strength and power are probably an additional factor contributing to secular increases in body weight.

  10. Variations of Scale Height at F-Region Peak Based on Ionosonde Measurements during Solar Maximum over the Crest of Equatorial Ionization Anomaly Region

    PubMed Central

    Chuo, Yu-Jung

    2014-01-01

    Scale height is an important parameter in characterizing the shape of the ionosphere and its physical processes. In this study, we attempt to examine and discuss the variation of scale height, H m, around the F-layer peak height during high solar activity at the northern crest of the equatorial ionization anomaly (EIA) region. H m exhibits day-to-day variation and seasonal variation, with a greater average daily variation during daytime in summer. Furthermore, the diurnal variation of H m exhibits an abnormal peak at presunrise during all the seasons, particularly in winter. This increase is also observed in the F2-layer peak height for the same duration with an upward movement associated with thermospheric wind toward the equator; this upward movement increases the N2/O ratio and H m, but it causes a decrease in the F2-layer maximum critical frequency during the presunrise period. PMID:25162048

  11. Validation of an assay for quantification of free normetanephrine, metanephrine and methoxytyramine in plasma by high performance liquid chromatography with coulometric detection: Comparison of peak-area vs. peak-height measurements.

    PubMed

    Nieć, Dawid; Kunicki, Paweł K

    2015-10-01

    Measurements of plasma concentrations of free normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MTY) constitute the most diagnostically accurate screening test for pheochromocytomas and paragangliomas. The aim of this article is to present the results from a validation of an analytical method utilizing high performance liquid chromatography with coulometric detection (HPLC-CD) for quantifying plasma free NMN, MN and MTY. Additionally, peak integration by height and area and the use of one calibration curve for all batches or individual calibration curve for each batch of samples was explored as to determine the optimal approach with regard to accuracy and precision. The method was validated using charcoal stripped plasma spiked with solutions of NMN, MN, MTY and internal standard (4-hydroxy-3-methoxybenzylamine) with the exception of selectivity which was evaluated by analysis of real plasma samples. Calibration curve performance, accuracy, precision and recovery were determined following both peak-area and peak-height measurements and the obtained results were compared. The most accurate and precise method of calibration was evaluated by analyzing quality control samples at three concentration levels in 30 analytical runs. The detector response was linear over the entire tested concentration range from 10 to 2000pg/mL with R(2)≥0.9988. The LLOQ was 10pg/mL for each analyte of interest. To improve accuracy for measurements at low concentrations, a weighted (1/amount) linear regression model was employed, which resulted in inaccuracies of -2.48 to 9.78% and 0.22 to 7.81% following peak-area and peak-height integration, respectively. The imprecisions ranged from 1.07 to 15.45% and from 0.70 to 11.65% for peak-area and peak-height measurements, respectively. The optimal approach to calibration was the one utilizing an individual calibration curve for each batch of samples and peak-height measurements. It was characterized by inaccuracies ranging from -3.39 to +3.27% and imprecisions from 2.17 to 13.57%. The established HPLC-CD method enables accurate and precise measurements of plasma free NMN, MN and MTY with reasonable selectivity. Preparing calibration curve based on peak-height measurements for each batch of samples yields optimal accuracy and precision. Copyright © 2015. Published by Elsevier B.V.

  12. [Energy accumulation and allocation of main plant populations in Aneurolepidium chinense grassland in Songnen Plain].

    PubMed

    Qu, Guohui; Wen, Mingzhang; Guo, Jixun

    2003-05-01

    The calorific value of plants is dependent on their biological characteristics and energy-containing materials. The allocation of calorific value in different organs of Aneurolepidium chinese, Calamagrostic epigejos, Puccinellia tenuiflora and Chloris virgata was inflorescence > leaf > stem > dead standing. The seasonal dynamics of standing crop energy of aboveground part of four plant populations showed single-peak curve, and the energy production was Aneurolepidium chinense > Calamagrostic epigejos > Chloris virgata > Puccinellia tenuiflora. Energy increasing rate showed double-peak curve, with the first peak at heading stage and the second peak at maturing stage of seeds. Energy increasing rate was negative at the final stage of growth. The horizontal distribution of energy of aboveground part was that the allocation ratio of different organs at different growth stages was different. There existed a similar trend for vertical distribution of energy among four plant populations, i.e., was the vertical distribution of energy of aboveground part showed a tower shape, with the maximum value in 10-30 cm height. The vertical distribution of energy of underground part showed an inverted tower shape from soil surface to deeper layer, with the maximum value in 0-10 cm depth. The standing crop energy of underground part was about 3-4 times than that of aboveground part.

  13. Reflex effects on components of synchronized renal sympathetic nerve activity.

    PubMed

    DiBona, G F; Jones, S Y

    1998-09-01

    The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.

  14. Gaussian and Lognormal Models of Hurricane Gust Factors

    NASA Technical Reports Server (NTRS)

    Merceret, Frank

    2009-01-01

    A document describes a tool that predicts the likelihood of land-falling tropical storms and hurricanes exceeding specified peak speeds, given the mean wind speed at various heights of up to 500 feet (150 meters) above ground level. Empirical models to calculate mean and standard deviation of the gust factor as a function of height and mean wind speed were developed in Excel based on data from previous hurricanes. Separate models were developed for Gaussian and offset lognormal distributions for the gust factor. Rather than forecasting a single, specific peak wind speed, this tool provides a probability of exceeding a specified value. This probability is provided as a function of height, allowing it to be applied at a height appropriate for tall structures. The user inputs the mean wind speed, height, and operational threshold. The tool produces the probability from each model that the given threshold will be exceeded. This application does have its limits. They were tested only in tropical storm conditions associated with the periphery of hurricanes. Winds of similar speed produced by non-tropical system may have different turbulence dynamics and stability, which may change those winds statistical characteristics. These models were developed along the Central Florida seacoast, and their results may not accurately extrapolate to inland areas, or even to coastal sites that are different from those used to build the models. Although this tool cannot be generalized for use in different environments, its methodology could be applied to those locations to develop a similar tool tuned to local conditions.

  15. Adjustments of the TaD electron density reconstruction model with GNSS-TEC parameters for operational application purposes

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Marinov, Pencho; Fidanova, Stefka; Belehaki, Anna; Tsagouri, Ioanna

    2012-12-01

    Validation results on the latest version of TaD model (TaDv2) show realistic reconstruction of the electron density profiles (EDPs) with an average error of 3 TECU, similar to the error obtained from GNSS-TEC calculated paremeters. The work presented here has the aim to further improve the accuracy of the TaD topside reconstruction, adjusting the TEC parameter calculated from TaD model with the TEC parameter calculated by GNSS transmitting RINEX files provided by receivers co-located with the Digisondes. The performance of the new version is tested during a storm period demonstrating further improvements in respect to the previous version. Statistical comparison of modeled and observed TEC confirms the validity of the proposed adjustment. A significant benefit of the proposed upgrade is that it facilitates the real-time implementation of TaD. The model needs a reliable measure of the scale height at the peak height, which is supposed to be provided by Digisondes. Oftenly, the automatic scaling software fails to correctly calculate the scale height at the peak, Hm, due to interferences in the receiving signal. Consequently the model estimated topside scale height is wrongly calculated leading to unrealistic results for the modeled EDP. The proposed TEC adjustment forces the model to correctly reproduce the topside scale height, despite the inaccurate values of Hm. This adjustment is very important for the application of TaD in an operational environment.

  16. Biological maturity-associated variance in peak power output and momentum in academy rugby union players.

    PubMed

    Howard, Sean M A; Cumming, Sean P; Atkinson, Mark; Malina, Robert M

    2016-11-01

    The study aimed to evaluate the mediating effect of biological maturation on anthropometrical measurements, performance indicators and subsequent selection in a group of academy rugby union players. Fifty-one male players 14-17 years of age were assessed for height, weight and BMI, and percentage of predicted mature status attained at the time of observation was used as an indicator of maturity status. Following this, initial sprint velocity (ISV), Wattbike peak power output (PPO) and initial sprint momentum (ISM) were assessed. A bias towards on-time (n = 44) and early (n = 7) maturers was evident in the total sample and magnified with age cohort. Relative to UK reference values, weight and height were above the 90th and 75th centiles, respectively. Significant (p ≤ .01) correlations were observed between maturity status and BMI (r = .48), weight (r = .63) and height (r = .48). Regression analysis (controlling for age) revealed that maturity status and height explained 68% of ISM variance; however, including BMI in the model attenuated the influence of maturity status below statistical significance (p = .72). Height and BMI explained 51% of PPO variance, while no initial significant predictors were identified for ISV. The sample consisted of players who were on-time and early in maturation with no late maturers represented. This was attributable, in part, to the mediating effect of maturation on body size, which, in turn, predicted performance variables.

  17. Recognition of Y Fragment Deletion by Genotyping Graphs after Amplified by PowerPlex® 21 Detection Kit.

    PubMed

    Wang, S C; Ding, M M; Wei, X L; Zhang, T; Yao, F

    2016-06-01

    To recognize the possibility of Y fragment deletion of Amelogenin gene intuitively and simply according to the genotyping graphs. By calculating the ratio of total peak height of genotyping graphs, the statistics of equilibrium distribution between Amelogenin and D3S1358 loci, Amelogenin X-gene and Amelogenin Y-gene, and different alleles of D3S1358 loci from 1 968 individuals was analyzed after amplified by PowerPlex ® 21 detection kit. Sum of peak height of Amelogenin X allele was not less than 60% that of D3S1358 loci alleles in 90.8% female samples, and sum of peak height of Amelogenin X allele was not higher than 70% that of D3S1358 loci alleles in 94.9% male samples. The result of genotyping after amplified by PowerPlex ® 21 detection kit shows that the possibility of Y fragment deletion should be considered when only Amelogenin X-gene of Amelogenin is detected and the peak height of Amelogenin X-gene is not higher than 70% of the total peak height of D3S1358 loci. Copyright© by the Editorial Department of Journal of Forensic Medicine

  18. Interrelationships among invasive and non-invasive indicators of biological maturation in adolescent male soccer players.

    PubMed

    Malina, Robert M; Coelho E Silva, Manuel J; Figueiredo, António J; Carling, Christopher; Beunen, Gaston P

    2012-01-01

    The relationships among indicators of biological maturation were evaluated and concordance between classifications of maturity status in two age groups of youth soccer players examined (11-12 years, n = 87; 13-14 years, n = 93). Data included chronological age (CA), skeletal age (SA, Fels method), stage of pubic hair, predicted age at peak height velocity, and percent of predicted adult height. Players were classified as on time, late or early in maturation using the SA-CA difference, predicted age at peak height velocity, and percent of predicted mature height. Factor analyses indicated two factors in players aged 11-12 years (maturity status: percent of predicted mature height, stage of pubic hair, 59% of variance; maturity timing: SA/CA ratio, predicted age at peak height velocity, 26% of variance), and one factor in players aged 13-14 years (68% of variance). Kappa coefficients were low (0.02-0.23) and indicated poor agreement between maturity classifications. Spearman rank-order correlations between categories were low to moderate (0.16-0.50). Although the indicators were related, concordance of maturity classifications between skeletal age and predicted age at peak height velocity and percent predicted mature height was poor. Talent development programmes call for the classification of youth as early, average, and late maturing for the purpose of designing training and competition programmes. Non-invasive indicators of maturity status have limitations for this purpose.

  19. TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis

    NASA Astrophysics Data System (ADS)

    Tsai, L. C.; Macalalad, Ernest P.; Liu, C. H.

    2014-10-01

    As described in a previous paper, a three-dimensional ionospheric electron density (Ne) model has been constructed from vertical Ne profiles retrieved from the FormoSat3/Constellation Observing System for Meteorology, Ionosphere, and Climate GPS radio occultation measurements and worldwide ionosonde foF2 and foE data and named the TaiWan Ionospheric Model (TWIM). The TWIM exhibits vertically fitted α-Chapman-type layers with distinct F2, F1, E, and D layers, and surface spherical harmonic approaches for the fitted layer parameters including peak density, peak density height, and scale height. To improve the TWIM into a real-time model, we have developed a time series autoregressive model to forecast short-term TWIM coefficients. The time series of TWIM coefficients are considered as realizations of stationary stochastic processes within a processing window of 30 days. These autocorrelation coefficients are used to derive the autoregressive parameters and then forecast the TWIM coefficients, based on the least squares method and Lagrange multiplier technique. The forecast root-mean-square relative TWIM coefficient errors are generally <30% for 1 day predictions. The forecast TWIM values of foE and foF2 values are also compared and evaluated using worldwide ionosonde data.

  20. Ternary isocratic mobile phase optimization utilizing resolution Design Space based on retention time and peak width modeling.

    PubMed

    Kawabe, Takefumi; Tomitsuka, Toshiaki; Kajiro, Toshi; Kishi, Naoyuki; Toyo'oka, Toshimasa

    2013-01-18

    An optimization procedure of ternary isocratic mobile phase composition in the HPLC method using a statistical prediction model and visualization technique is described. In this report, two prediction models were first evaluated to obtain reliable prediction results. The retention time prediction model was constructed by modification from past respectable knowledge of retention modeling against ternary solvent strength changes. An excellent correlation between observed and predicted retention time was given in various kinds of pharmaceutical compounds by the multiple regression modeling of solvent strength parameters. The peak width of half height prediction model employed polynomial fitting of the retention time, because a linear relationship between the peak width of half height and the retention time was not obtained even after taking into account the contribution of the extra-column effect based on a moment method. Accurate prediction results were able to be obtained by such model, showing mostly over 0.99 value of correlation coefficient between observed and predicted peak width of half height. Then, a procedure to visualize a resolution Design Space was tried as the secondary challenge. An artificial neural network method was performed to link directly between ternary solvent strength parameters and predicted resolution, which were determined by accurate prediction results of retention time and a peak width of half height, and to visualize appropriate ternary mobile phase compositions as a range of resolution over 1.5 on the contour profile. By using mixtures of similar pharmaceutical compounds in case studies, we verified a possibility of prediction to find the optimal range of condition. Observed chromatographic results on the optimal condition mostly matched with the prediction and the average of difference between observed and predicted resolution were approximately 0.3. This means that enough accuracy for prediction could be achieved by the proposed procedure. Consequently, the procedure to search the optimal range of ternary solvent strength achieving an appropriate separation is provided by using the resolution Design Space based on accurate prediction. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2004-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.

  2. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    PubMed Central

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  3. Empirical model for the electron density peak height disturbance in response to solar wind conditions

    NASA Astrophysics Data System (ADS)

    Blanch, E.; Altadill, D.

    2009-04-01

    Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron density and the electron density peak height, hmF2. Many works have been done to predict the variations of the electron density but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron density peak height disturbances in response to solar wind conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.

  4. Feasibility of ballistic strengthening exercises in neurologic rehabilitation.

    PubMed

    Williams, Gavin; Clark, Ross A; Hansson, Jessica; Paterson, Kade

    2014-09-01

    Conventional methods for strength training in neurologic rehabilitation are not task specific for walking. Ballistic strength training was developed to improve the functional transfer of strength training; however, no research has investigated this in neurologic populations. The aim of this pilot study was to evaluate the feasibility of applying ballistic principles to conventional leg strengthening exercises in individuals with mobility limitations as a result of neurologic injuries. Eleven individuals with neurologic injuries completed seated and reclined leg press using conventional and ballistic techniques. A 2 × 2 repeated-measures analysis of variance was used to compare power measures (peak movement height and peak velocity) between exercises and conditions. Peak jump velocity and peak jump height were greater when using the ballistic jump technique rather than the conventional concentric technique (P < 0.01). These findings suggest that when compared with conventional strengthening exercises, the incorporation of ballistic principles was associated with increased peak height and peak velocities.

  5. Assessment of head injury risk associated with feet-first free falls in 12-month-old children using an anthropomorphic test device.

    PubMed

    Thompson, Angela K; Bertocci, Gina; Pierce, Mary Clyde

    2009-04-01

    Short distance falls are a common false history provided in cases of child abuse. Falls are also a common occurrence in ambulating young children. The purpose of this study was to determine the risk of head injury in short distance feet-first free falls for a 12-month-old child. Feet-first free falls were simulated using an anthropomorphic test device. Three fall heights and five surfaces were tested to determine whether changing fall environment characteristics leads to differences in head injury risk outcomes. Linear head accelerations were measured and angular head accelerations in the anterior-posterior direction were determined. Head injury criteria values and impact durations were also determined for each fall. The mean peak linear head acceleration across all trials was 52.2g. HIC15 values were all below the injury assessment reference value. The mean peak angular head acceleration across all trials was 4,246 rad/s2. Impact durations ranged from 12.1 milliseconds to 27.8 milliseconds. In general, head accelerations were greater and impact durations were lower for surfaces with lower coefficients of restitution (a measure of resiliency). In falls onto wood and linoleum over concrete, the ground-based fall was associated with greater accelerations than the two higher fall heights. Results show that fall dynamics play an important role in head injury outcome measures. Different fall heights and impact surfaces led to differences in head injury risk, but the risk of severe head injury across all tested scenarios was low for a 12-month-old child in feet-first free falls.

  6. A technique for routinely updating the ITU-R database using radio occultation electron density profiles

    NASA Astrophysics Data System (ADS)

    Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno

    2013-09-01

    Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).

  7. Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces

    NASA Astrophysics Data System (ADS)

    Thakkar, Manan; Busse, Angela; Sandham, Neil

    2017-02-01

    Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface parameters.

  8. Remote sensing of the ionospheric F layer by use of O I 6300-A and O I 1356-A observations

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Reed, E. I.; Meier, R. R.; Opal, C. B.; Hicks, G. T.

    1975-01-01

    The possibility of using airglow techniques for estimating the electron density and height of the F layer is studied on the basis of a simple relationship between the height of the F2 peak and the column emission rates of the O I 6300 A and O I 1356 A lines. The feasibility of this approach is confirmed by a numerical calculation of F2 peak heights and electron densities from simultaneous measurements of O I 6300 A and O I 1356 A obtained with earth-facing photometers carried by the Ogo 4 satellite. Good agreement is established with the F2 peak heights estimates from top-side and bottom-side ionospheric sounding.

  9. Statistical trend analysis and extreme distribution of significant wave height from 1958 to 1999 - an application to the Italian Seas

    NASA Astrophysics Data System (ADS)

    Martucci, G.; Carniel, S.; Chiggiato, J.; Sclavo, M.; Lionello, P.; Galati, M. B.

    2010-06-01

    The study is a statistical analysis of sea states timeseries derived using the wave model WAM forced by the ERA-40 dataset in selected areas near the Italian coasts. For the period 1 January 1958 to 31 December 1999 the analysis yields: (i) the existence of a negative trend in the annual- and winter-averaged sea state heights; (ii) the existence of a turning-point in late 80's in the annual-averaged trend of sea state heights at a site in the Northern Adriatic Sea; (iii) the overall absence of a significant trend in the annual-averaged mean durations of sea states over thresholds; (iv) the assessment of the extreme values on a time-scale of thousand years. The analysis uses two methods to obtain samples of extremes from the independent sea states: the r-largest annual maxima and the peak-over-threshold. The two methods show statistical differences in retrieving the return values and more generally in describing the significant wave field. The r-largest annual maxima method provides more reliable predictions of the extreme values especially for small return periods (<100 years). Finally, the study statistically proves the existence of decadal negative trends in the significant wave heights and by this it conveys useful information on the wave climatology of the Italian seas during the second half of the 20th century.

  10. Pubertal Gynecomastia Coincides with Peak Height Velocity

    PubMed Central

    Limony, Yehuda; Friger, Michael; Hochberg, Ze’ev

    2013-01-01

    Objective: Pubertal gynecomastia (PG) occurs in up to 65% of adolescent boys. In this study, we investigated the relationship between the ages at which PG and peak height velocity occur in pubertal boys. Methods: This was a prospective study that was designed to detect PG within three months of its emergence. We examined one hundred and six boys who were followed for short stature and/or delayed puberty at three month intervals, and gynecomastia was observed in 43 of these boys (40.5%). Results: PG occurred in the 43 boys within a year of their peak height velocity, and most of these boys were at Tanner stage 3 for pubic hair and had testicular volumes between 8-10 mL. Conclusion: It is recommended that evaluation of height growth be included in the diagnostic approach to PG in boys with short stature and/or delayed puberty. The coincidence of age of peak height velocity and PG suggests a causal relationship between the two events and a role of insulin-like growth factor-1. Conflict of interest:None declared. PMID:24072080

  11. Evaluation of parameters in mixed male DNA profiles for the Identifiler® multiplex system

    PubMed Central

    HU, NA; CONG, BIN; GAO, TAO; HU, RONG; CHEN, YI; TANG, HUI; XUE, LUYAN; LI, SHUJIN; MA, CHUNLING

    2014-01-01

    The analysis of complex DNA mixtures is challenging for forensic DNA testing. Accurate and sensitive methods for profiling these samples are urgently required. In this study, we developed 11 groups of mixed male DNA samples (n=297) with scientific validation of D-value [>95% of D-values ≤0.1 with average peak height (APH) of the active alleles ≤2,500 rfu]. A strong linear correlation was detected between the peak height (PH) and peak area (PA) in the curve fit using the least squares method (P<2e-16). The Kruskal-Wallis rank-sum test revealed significant differences in the heterozygote balance ratio (Hb) at 16 short tandem repeat (STR) loci (P=0.0063) and 9 mixed gradients (P=0.02257). Locally weighted regression fitting of APH and Hb (inflection point at APH = 1,250 rfu) showed 92.74% of Hb >0.6 with the APH ≥1,250. The variation of Hb distribution in the different STR loci suggested the different forensic efficiencies of these loci. Allelic drop-out (ADO) correlated with the APH and mixed gradient. All ADOs had an APH of <1,000 rfu, and the number of ADO increased when the APH of mixed DNA profiles gradually decreased. These results strongly suggest that calibration parameters should be introduced to correct the deviation in the APH at each STR locus during the analysis of mixed DNA samples. PMID:24821391

  12. Estimation of the optical errors on the luminescence imaging of water for proton beam

    NASA Astrophysics Data System (ADS)

    Yabe, Takuya; Komori, Masataka; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi

    2018-04-01

    Although luminescence imaging of water during proton-beam irradiation can be applied to range estimation, the height of the Bragg peak of the luminescence image was smaller than that measured with an ionization chamber. We hypothesized that the reasons of the difference were attributed to the optical phenomena; parallax errors of the optical system and the reflection of the luminescence from the water phantom. We estimated the errors cause by these optical phenomena affecting the luminescence image of water. To estimate the parallax error on the luminescence images, we measured the luminescence images during proton-beam irradiation using a cooled charge-coupled camera by changing the heights of the optical axis of the camera from those of the Bragg peak. When the heights of the optical axis matched to the depths of the Bragg peak, the Bragg peak heights in the depth profiles were the highest. The reflection of the luminescence of water with a black wall phantom was slightly smaller than that with a transparent phantom and changed the shapes of the depth profiles. We conclude that the parallax error significantly affects the heights of the Bragg peak and the reflection of the phantom affects the shapes of depth profiles of the luminescence images of water.

  13. The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony G.; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung

    2013-01-01

    The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10MJO events show the following anticipatedMJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for EarthObserving System (EOS) (AMSR-E) columnwater vapor (CWV) increases by;5 mmduring the shallow- deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between;46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow-deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. 1.

  14. When winners become losers: Predicted nonlinear responses of arctic birds to increasing woody vegetation

    USGS Publications Warehouse

    Thompson, Sarah J.; Handel, Colleen M.; Richardson, Rachel M.; McNew, Lance B.

    2016-01-01

    Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012–2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall), percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall), and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus) abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm). Our findings suggest that increases in shrub cover and density will negatively affect abundance of only a few bird species and may potentially be beneficial for many others. As shrub height increases further, however, a considerable number of tundra bird species will likely find habitat increasingly unsuitable.

  15. When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation

    PubMed Central

    Thompson, Sarah J.; Handel, Colleen M.; Richardson, Rachel M.; McNew, Lance B.

    2016-01-01

    Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012–2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall), percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall), and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus) abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm). Our findings suggest that increases in shrub cover and density will negatively affect abundance of only a few bird species and may potentially be beneficial for many others. As shrub height increases further, however, a considerable number of tundra bird species will likely find habitat increasingly unsuitable. PMID:27851768

  16. Optimization of OT-MACH Filter Generation for Target Recognition

    NASA Technical Reports Server (NTRS)

    Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.

  17. Longitudinal development of physical and performance parameters during biological maturation of young male swimmers.

    PubMed

    Lätt, Evelin; Jürimäe, Jaak; Haljaste, Kaja; Cicchella, Antonio; Purge, Priit; Jürimäe, Toivo

    2009-02-01

    The aim of the study was to examine the development of specific physical, physiological, and biomechanical parameters in 29 young male swimmers for whom measurements were made three times for two consecutive years. During the 400-m front-crawl swimming, the energy cost of swimming, and stroking parameters were assessed. Peak oxygen consumption (VO2 peak) was assessed by means of the backward-extrapolation technique recording VO2 during the first 20 sec. of recovery period after a maximal trial of 400-m distance. Swimming performance at different points of physical maturity was mainly related to the increases in body height and arm-span values from physical parameters, improvement in sport-specific VO2 peak value from physiological characteristics, and improvement in stroke indices on biomechanical parameters. In addition, biomechanical factors characterised best the 400-m swimming performance followed by physical and physiological factors during the 2-yr. study period for the young male swimmers.

  18. Relationships between explosive and maximal triple extensor muscle performance and vertical jump height.

    PubMed

    Chang, Eunwook; Norcross, Marc F; Johnson, Sam T; Kitagawa, Taichi; Hoffman, Mark

    2015-02-01

    The purpose of this study was to examine the relationships between maximum vertical jump height and (a) rate of torque development (RTD) calculated during 2 time intervals, 0-50 milliseconds (RTD50) and 0-200 milliseconds (RTD200) after torque onset and (b) peak torque (PT) for each of the triple extensor muscle groups. Thirty recreationally active individuals performed maximal isometric voluntary contractions (MVIC) of the hip, knee and ankle extensors, and a countermovement vertical jump. Rate of torque development was calculated from 0 to 50 (RTD50) and 0 to 200 (RTD200) milliseconds after the onset of joint torque. Peak torque was identified and defined as the maximum torque value during each MVIC trial. Greater vertical jump height was associated with greater knee and ankle extension RTD50, RTD200, and PT (p ≤ 0.05). However, hip extension RTD50, RTD200, and PT were not significantly related to maximal vertical jump height (p > 0.05). The results indicate that 47.6 and 32.5% of the variability in vertical jump height was explained by knee and ankle extensor RTD50, respectively. Knee and ankle extensor RTD50 also seemed to be more closely related to vertical jump performance than RTD200 (knee extensor: 28.1% and ankle extensor: 28.1%) and PT (knee extensor: 31.4% and ankle extensor: 13.7%). Overall, these results suggest that training specifically targeted to improve knee and ankle extension RTD, especially during the early phases of muscle contraction, may be effective for increasing maximal vertical jump performance.

  19. Effects of altering heel wedge properties on gait with the Intrepid Dynamic Exoskeletal Orthosis.

    PubMed

    Ikeda, Andrea J; Fergason, John R; Wilken, Jason M

    2018-06-01

    The Intrepid Dynamic Exoskeletal Orthosis is a custom-made dynamic response carbon fiber device. A heel wedge, which sits in the shoe, is an integral part of the orthosis-heel wedge-shoe system. Because the device restricts ankle movement, the system must compensate to simulate plantarflexion and allow smooth forward progression during gait. To determine the influence of wedge height and durometer on the walking gait of individuals using the Intrepid Dynamic Exoskeletal Orthosis. Repeated measures. Twelve individuals walked over level ground with their Intrepid Dynamic Exoskeletal Orthosis and six different heel wedges of soft or firm durometer and 1, 2, or 3 cm height. Center of pressure velocity, joint moments, and roll-over shape were calculated for each wedge. Height and durometer significantly affected time to peak center of pressure velocity, time to peak internal dorsiflexion and knee extension moments, time to ankle moment zero crossing, and roll-over shape center of curvature anterior-posterior position. Wedge height had a significant influence on peak center of pressure velocity, peak dorsiflexion moment, time to peak knee extension moment, and roll-over shape radius and vertical center of curvature. Changes in wedge height and durometer systematically affected foot loading. Participants preferred wedges which produced ankle moment zero crossing timing, peak internal knee extension moment timing, and roll-over shape center of curvature anterior-posterior position close to that of able-bodied individuals. Clinical relevance Adjusting the heel wedge is a simple, straightforward way to adjust the orthosis-heel wedge-shoe system. Changing wedge height and durometer significantly alters loading of the foot and has great potential to improve an individual's gait.

  20. Relative net vertical impulse determines jumping performance.

    PubMed

    Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M

    2011-08-01

    The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.

  1. Judgments of visually perceived eye level (VPEL) in outdoor scenes: effects of slope and height.

    PubMed

    O'Shea, Robert P; Ross, Helen E

    2007-01-01

    When one looks up a hill from below, its peak appears lower than it is; when one looks at a hill across a valley from another peak, the peak of that hill appears higher than it is. These illusions have sometimes been explained by assuming that the subjective horizontal is assimilated to the nearby slope: when looking up a slope, the subjective horizontal is raised, diminishing the height of the peak above the subjective horizontal, and making the peak appear lower than it is. When looking down a slope towards another hill, the subjective horizontal is lowered, increasing the height of that hill above the subjective horizontal, and making its peak appear higher than it is. To determine subjective horizontals we measured visually perceived eye levels (VPELs) in 21 real-world scenes on a range of slopes. We found that VPEL indeed assimilates by about 40% to slopes between 7 degrees downhill and 7 degrees uphill. For larger uphill slopes up to 23 degrees, VPEL asymptotes at about 4.5 degrees. For larger downhill slopes, the assimilation of VPEL diminishes, and at 23 degrees is raised by about 1 degree. These results are consistent with the assimilation explanation of the illusions if we assume that steep downhill slopes lose their effectiveness by being out of view. We also found that VPEL was raised when viewing from a height, in comparison with ground-level views, perhaps because the perceived slope increases with viewing height.

  2. Comparison of quartz standards for X-ray diffraction analysis: HSE A9950 (Sikron F600) and NIST SRM 1878.

    PubMed

    Chisholm, Jim

    2005-06-01

    A further comparison of the Health and Safety Executive (HSE) standard quartz, A9950 (Sikron F600), and the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1878, standard respirable alpha-quartz, has been carried out for the four principal diffraction peaks. In the earlier comparison by Jeyaratnam and Nagar (1993, Ann Occup Hyg; 37: 167-79), the standards were both treated in ways which might change the particle size distribution and therefore the proportion of crystalline quartz. The two standards have now been compared in the most direct way possible with the minimum of sample treatment. There are no significant differences in the diffraction peak positions for the two standards. Nor do the peak area intensities differ significantly. The peak height intensities are consistently and significantly higher for Sikron F600 than for NIST SRM 1878. The particle size broadening of the diffraction peaks is evidently greater for NIST 1878, whose mass median diameter is quoted as 1.6 microm against 2.6 microm for Sikron F600. Taking the certified reference value for SRM 1878 as 95.5 +/- 1.1% crystalline quartz, the HSE standard A9950 (Sikron F600) contains 96.3 +/- 1.4% crystalline quartz based on a comparison of peak area intensities. On the same basis but using peak height intensities, the nominal crystalline quartz content of A9950 (Sikron F600) is 101.2 +/- 1.8%. Results obtained by comparison of quartz standards may not be generally applicable because of the effect of sample treatment on particle size and crystalline quartz content.

  3. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    PubMed

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  4. Effects of blood pressure and sex on the change of wave reflection: evidence from Gaussian fitting method for radial artery pressure waveform.

    PubMed

    Liu, Chengyu; Zhao, Lina; Liu, Changchun

    2014-01-01

    An early return of the reflected component in the arterial pulse has been recognized as an important indicator of cardiovascular risk. This study aimed to determine the effects of blood pressure and sex factor on the change of wave reflection using Gaussian fitting method. One hundred and ninety subjects were enrolled. They were classified into four blood pressure categories based on the systolic blood pressures (i.e., ≤ 110, 111-120, 121-130 and ≥ 131 mmHg). Each blood pressure category was also stratified for sex factor. Electrocardiogram (ECG) and radial artery pressure waveforms (RAPW) signals were recorded for each subject. Ten consecutive pulse episodes from the RAPW signal were extracted and normalized. Each normalized pulse episode was fitted by three Gaussian functions. Both the peak position and peak height of the first and second Gaussian functions, as well as the peak position interval and peak height ratio, were used as the evaluation indices of wave reflection. Two-way ANOVA results showed that with the increased blood pressure, the peak position of the second Gaussian significantly shorten (P < 0.01), the peak height of the first Gaussian significantly decreased (P < 0.01) and the peak height of the second Gaussian significantly increased (P < 0.01), inducing the significantly decreased peak position interval and significantly increased peak height ratio (both P < 0.01). Sex factor had no significant effect on all evaluation indices (all P > 0.05). Moreover, the interaction between sex and blood pressure factors also had no significant effect on all evaluation indices (all P > 0.05). These results showed that blood pressure has significant effect on the change of wave reflection when using the recently developed Gaussian fitting method, whereas sex has no significant effect. The results also suggested that the Gaussian fitting method could be used as a new approach for assessing the arterial wave reflection.

  5. The Effect of Arch Height and Material Hardness of Personalized Insole on Correction and Tissues of Flatfoot.

    PubMed

    Su, Shonglun; Mo, Zhongjun; Guo, Junchao; Fan, Yubo

    2017-01-01

    Flat foot is one of the common deformities in the youth population, seriously affecting the weight supporting and daily exercising. However, there is lacking of quantitative data relative to material selection and shape design of the personalized orthopedic insole. This study was to evaluate the biomechanical effects of material hardness and support height of personalized orthopedic insole on foot tissues, by in vivo experiment and finite element modeling. The correction of arch height increased with material hardness and support height. The peak plantar pressure increased with the material hardness, and these values by wearing insoles of 40° were apparently higher than the bare feet condition. Harder insole material results in higher stress in the joint and ligament stress than softer material. In the calcaneocuboid joint, the stress increased with the arch height of insoles. The material hardness did not apparently affect the stress in the ankle joints, but the support heights of insole did. In general, insole material and support design are positively affecting the correction of orthopedic insole, but negatively resulting in unreasonable stress on the stress in the joint and ligaments. There should be an integration of improving correction and reducing stress in foot tissues.

  6. Development of reference equations for spirometry in Japanese children aged 6-18 years.

    PubMed

    Takase, Masato; Sakata, Hiroshi; Shikada, Masahiro; Tatara, Katsuyoshi; Fukushima, Takayoshi; Miyakawa, Tomoo

    2013-01-01

    Spirometry is the most widely used pulmonary function test and the measured values of spirometric parameters need to be evaluated using reference values predicted for the corresponding race, sex, age, and height. However, none of the existing reference equations for Japanese children covers the entire age range of 6-18 years. The Japanese Society of Pediatric Pulmonology had organized a working group in 2006, in order to develop a new set of national standard reference equations for commonly used spirometric parameters that are applicable through the age range of 6-18 years. Quality assured spirometric data were collected through 2006-2008, from 14 institutions in Japan. We applied multiple regression analysis, using age in years (A), square of age (A(2)), height in meters (H), square of height (H(2)), and the product of age and height (AH) as explanatory variables to predict forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV(1)), peak expiratory flow (PEF), forced expiratory flow between 25% and 75% of the FVC (FEF(25-75%)), instantaneous forced expiratory flow when 50% (FEF(50%)) or 75% (FEF(75%)) of the FVC have been expired. Finally, 1,296 tests (674 boys, 622 girls) formed the reference data set. Distributions of the percent predicted values did not differ by ages, confirming excellent fit of the prediction equations throughout the entire age range from 6 to 18 years. Cut-off values (around 5 percentile points) for the parameters were also determined. We recommend the use of this new set of prediction equations together with suggested cut-off values, for assessment of spirometry in Japanese children and adolescents. Copyright © 2012 Wiley Periodicals, Inc.

  7. Statistical trend analysis and extreme distribution of significant wave height from 1958 to 1999 - an application to the Italian Seas

    NASA Astrophysics Data System (ADS)

    Martucci, G.; Carniel, S.; Chiggiato, J.; Sclavo, M.; Lionello, P.; Galati, M. B.

    2009-09-01

    The study is a statistical analysis of sea states timeseries derived using the wave model WAM forced by the ERA-40 dataset in selected areas near the Italian coasts. For the period 1 January 1958 to 31 December 1999 the analysis yields: (i) the existence of a negative trend in the annual- and winter-averaged sea state heights; (ii) the existence of a turning-point in late 70's in the annual-averaged trend of sea state heights at a site in the Northern Adriatic Sea; (iii) the overall absence of a significant trend in the annual-averaged mean durations of sea states over thresholds; (iv) the assessment of the extreme values on a time-scale of thousand years. The analysis uses two methods to obtain samples of extremes from the independent sea states: the r-largest annual maxima and the peak-over-threshold. The two methods show statistical differences in retrieving the return values and more generally in describing the significant wave field. The study shows the existence of decadal negative trends in the significant wave heights and by this it conveys useful information on the wave climatology of the Italian seas during the second half of the 20th century.

  8. Utility of Equations to Estimate Peak Oxygen Uptake and Work Rate From a 6-Minute Walk Test in Patients With COPD in a Clinical Setting.

    PubMed

    Kirkham, Amy A; Pauhl, Katherine E; Elliott, Robyn M; Scott, Jen A; Doria, Silvana C; Davidson, Hanan K; Neil-Sztramko, Sarah E; Campbell, Kristin L; Camp, Pat G

    2015-01-01

    To determine the utility of equations that use the 6-minute walk test (6MWT) results to estimate peak oxygen uptake ((Equation is included in full-text article.)o2) and peak work rate with chronic obstructive pulmonary disease (COPD) patients in a clinical setting. This study included a systematic review to identify published equations estimating peak (Equation is included in full-text article.)o2 and peak work rate in watts in COPD patients and a retrospective chart review of data from a hospital-based pulmonary rehabilitation program. The following variables were abstracted from the records of 42 consecutively enrolled COPD patients: measured peak (Equation is included in full-text article.)o2 and peak work rate achieved during a cycle ergometer cardiopulmonary exercise test, 6MWT distance, age, sex, weight, height, forced expiratory volume in 1 second, forced vital capacity, and lung diffusion capacity. Estimated peak (Equation is included in full-text article.)o2 and peak work rate were estimated from 6MWT distance using published equations. The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work to prescribe aerobic exercise intensities of 60% and 80% was calculated. Eleven equations from 6 studies were identified. Agreement between estimated and measured values was poor to moderate (intraclass correlation coefficients = 0.11-0.63). The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work rate to prescribe exercise intensities of 60% and 80% of measured values ranged from mean differences of 12 to 35 and 16 to 47 percentage points, respectively. There is poor to moderate agreement between measured peak (Equation is included in full-text article.)o2 and peak work rate and estimations from equations that use 6MWT distance, and the use of the estimated values for prescription of aerobic exercise intensity would result in large error. Equations estimating peak (Equation is included in full-text article.)o2 and peak work rate are of low utility for prescribing exercise intensity in pulmonary rehabilitation programs.

  9. Highly accurate surface maps from profilometer measurements

    NASA Astrophysics Data System (ADS)

    Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.

    2013-04-01

    Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.

  10. Challenges in Defining Tsunami Wave Height

    NASA Astrophysics Data System (ADS)

    Stroker, K. J.; Dunbar, P. K.; Mungov, G.; Sweeney, A.; Arcos, N. P.

    2017-12-01

    The NOAA National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 Mw earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were <20 cm. For this event, the maximum tsunami wave heights determined by either definition (maximum peak or amplitude) would have validated the forecasts issued by the NOAA Tsunami Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height, NCEI will consider adding an additional field for the maximum peak measurement.

  11. Challenges in Defining Tsunami Wave Heights

    NASA Astrophysics Data System (ADS)

    Dunbar, Paula; Mungov, George; Sweeney, Aaron; Stroker, Kelly; Arcos, Nicolas

    2017-08-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 M w earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 coastal tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were <20 cm. For this event, the maximum tsunami wave heights determined by either definition (maximum peak or amplitude) would have validated the forecasts issued by the NOAA Tsunami Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height for each tide gauge and deep-ocean buoy, NCEI will consider adding an additional field for the maximum peak measurement.

  12. Knee Joint Kinematics and Kinetics During a Lateral False-Step Maneuver

    PubMed Central

    Golden, Grace M.; Pavol, Michael J.; Hoffman, Mark A.

    2009-01-01

    Abstract Context: Cutting maneuvers have been implicated as a mechanism of noncontact anterior cruciate ligament (ACL) injuries in collegiate female basketball players. Objective: To investigate knee kinematics and kinetics during running when the width of a single step, relative to the path of travel, was manipulated, a lateral false-step maneuver. Design: Crossover design. Setting: University biomechanics laboratory. Patients or Other Participants: Thirteen female collegiate basketball athletes (age  =  19.7 ± 1.1 years, height  =  172.3 ± 8.3 cm, mass  =  71.8 ± 8.7 kg). Intervention(s): Three conditions: normal straight-ahead running, lateral false step of width 20% of body height, and lateral false step of width 35% of body height. Main Outcome Measure(s): Peak angles and internal moments for knee flexion, extension, abduction, adduction, internal rotation, and external rotation. Results: Differences were noted among conditions in peak knee angles (flexion [P < .01], extension [P  =  .02], abduction [P < .01], and internal rotation [P < .01]) and peak internal knee moments (abduction [P < .01], adduction [P < .01], and internal rotation [P  =  .03]). The lateral false step of width 35% of body height was associated with larger peak flexion, abduction, and internal rotation angles and larger peak abduction, adduction, and internal rotation moments than normal running. Peak flexion and internal rotation angles were also larger for the lateral false step of width 20% of body height than for normal running, whereas peak extension angle was smaller. Peak internal rotation angle increased progressively with increasing step width. Conclusions: Performing a lateral false-step maneuver resulted in changes in knee kinematics and kinetics compared with normal running. The differences observed for lateral false steps were consistent with proposed mechanisms of ACL loading, suggesting that lateral false steps represent a hitherto neglected mechanism of noncontact ACL injury. PMID:19771289

  13. Acute effects of heavy-load squats on consecutive squat jump performance.

    PubMed

    Weber, Kurt R; Brown, Lee E; Coburn, Jared W; Zinder, Steven M

    2008-05-01

    Postactivation potentiation (PAP) and complex training have generated interest within the strength and conditioning community in recent years, but much of the research to date has produced confounding results. The purpose of this study was to observe the acute effects of a heavy-load back squat [85% 1 repetition maximum (1RM)] condition on consecutive squat jump performance. Twelve in-season Division I male track-and-field athletes participated in two randomized testing conditions: a five-repetition back squat at 85% 1RM (BS) and a five-repetition squat jump (SJ). The BS condition consisted of seven consecutive squat jumps (BS-PRE), followed by five repetitions of the BS at 85% 1RM, followed by another set of seven consecutive squat jumps (BS-POST). The SJ condition was exactly the same as the BS condition except that five consecutive SJs replaced the five BSs, with 3 minutes' rest between each set. BS-PRE, BS-POST, SJ-PRE, and SJ-POST were analyzed and compared for mean and peak jump height, as well as mean and peak ground reaction force (GRF). The BS condition's mean and peak jump height and peak GRF increased 5.8% +/- 4.8%, 4.7% +/- 4.8%, and 4.6% +/- 7.4%, respectively, whereas the SJ condition's mean and peak jump height and peak GRF decreased 2.7% +/- 5.0%, 4.0% +/- 4.9%, and 1.3% +/- 7.5%, respectively. The results indicate that performing a heavy-load back squat before a set of consecutive SJs may enhance acute performance in average and peak jump height, as well as peak GRF.

  14. The slab thickness of the mid-latitude ionosphere.

    NASA Technical Reports Server (NTRS)

    Titheridge, J. E.

    1973-01-01

    The thickness of the peak of the ionosphere depends primarily on the temperature T sub n of the neutral gas, and corresponds approximately to an alpha-Chapman layer at a temperature of 0.87T sub n. The overall slab thickness, as given by Faraday rotation measurements, is then tau = 0.22T sub n + 7 km. Expansion of the topside ionosphere, and changes in the E- and F1-regions increase tau by about 20 km during the day in summer. Near solar minimum, tau is increased by a lowering of the O(+)/H(+) transition height; if the neutral temperature T sub n is estimated, this height can be obtained from observed values of tau. Hourly values of slab thickness were determined over a period of 6 yr at 34 and 42 S. Near solar maximum the nighttime values were about 260 km in all seasons. The corresponding neutral temperatures agree with satellite drag values; they show a semiannual variation of 14% and a seasonal change of 5%. Daytime values of tau were about 230 km in winter and 320 km in summer, implying a seasonal change of 30% in T sub n.

  15. The relationship between Insulin-like Growth Factor 1, sex steroids and timing of the pubertal growth spurt.

    PubMed

    Cole, T J; Ahmed, M L; Preece, M A; Hindmarsh, P; Dunger, D B

    2015-06-01

    Progress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF-1, are unknown. We reanalysed Chard growth study data to explore the tempo of puberty based on changes in both height and hormone levels, using a novel method of growth curve analysis. Schoolboys (n = 54) and girls (n = 70) from Chard, Somerset, England, recruited in 1981 at age 8/9 and followed to age 16. Every 6 months, height and Tanner stages (genitalia, breast, pubic hair) were recorded, and in a subsample (24 boys, 27 girls), blood samples were taken. Serum IGF-1, testosterone (boys) and oestradiol (girls) were measured by radioimmunoassay. Individual growth curves for each outcome were analysed using variants of the super-imposition by translation and rotation (SITAR) method, which estimates a mean curve and subject-specific random effects corresponding to size, and age and magnitude of peak velocity. The SITAR models fitted the data well, explaining 99%, 65%, 86% and 47% of variance for height, IGF-1, testosterone and oestradiol, respectively, and 69-88% for the Tanner stages. During puberty, the variables all increased steeply in value in individuals, the ages at peak velocity for the different variables being highly correlated, particularly for IGF-1 vs height (r = 0·74 for girls, 0·92 for boys). IGF-1, like height, the sex steroids and Tanner stages, rises steeply in individuals during puberty, with the timings of the rises tightly synchronized within individuals. This suggests that IGF-1 may play an important role in determining the timing of puberty. © 2015 The Authors Clinical Endocrinology Published by John Wiley & Sons Ltd.

  16. Modeling the Lower Part of the Topside Ionospheric Vertical Electron Density Profile Over the European Region by Means of Swarm Satellites Data and IRI UP Method

    NASA Astrophysics Data System (ADS)

    Pignalberi, A.; Pezzopane, M.; Rizzi, R.

    2018-03-01

    An empirical method to model the lower part of the ionospheric topside region from the F2 layer peak height to about 500-600 km of altitude over the European region is proposed. The method is based on electron density values recorded from December 2013 to June 2016 by Swarm satellites and on foF2 and hmF2 values provided by IRI UP (International Reference Ionosphere UPdate), which is a method developed to update the IRI model relying on the assimilation of foF2 and M(3000)F2 data routinely recorded by a network of European ionosonde stations. Topside effective scale heights are calculated by fitting some definite analytical functions (α-Chapman, β-Chapman, Epstein, and exponential) through the values recorded by Swarm and the ones output by IRI UP, with the assumption that the effective scale height is constant in the altitude range considered. Calculated effective scale heights are then modeled as a function of foF2 and hmF2, in order to be operationally applicable to both ionosonde measurements and ionospheric models, like IRI. The method produces two-dimensional grids of the median effective scale height binned as a function of foF2 and hmF2, for each of the considered topside profiles. A statistical comparison with Constellation Observing System for Meteorology, Ionosphere, and Climate/FORMOsa SATellite-3 collected Radio Occultation profiles is carried out to assess the validity of the proposed method and to investigate which of the considered topside profiles is the best one. The α-Chapman topside function displays the best performance compared to the others and also when compared to the NeQuick topside option of IRI.

  17. Variation in light intensity with height and time from subsequent lightning return strokes

    NASA Technical Reports Server (NTRS)

    Jordan, D. M.; Uman, M. A.

    1983-01-01

    Photographic measurements of relative light intensity as a function of height and time have been conducted for seven return strokes in two lightning flashes at 7.8 and 8.7 km ranges, using film which possesses an approximately constant spectral response in the 300-670 nm range. The amplitude of the initial light peak is noted to decrease exponentially with height, with a decay constant of 0.6-0.8 km. The logarithm of the peak light intensity near the ground is found to be approximately proportional to the initial peak electric field intensity, implying that the current decrease with height may be much slower than the light decrease. Absolute light intensity is presently estimated through the integration of the photographic signals from individual channel segments, in order to simulate the calibrated, all-sky photoelectric data of Guo and Krider (1982).

  18. Relationship of carbohydrate molecular spectroscopic features in combined feeds to carbohydrate utilization and availability in ruminants

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewei; Yu, Peiqiang

    To date, there is no study on the relationship between carbohydrate (CHO) molecular structures and nutrient availability of combined feeds in ruminants. The objective of this study was to use molecular spectroscopy to reveal the relationship between CHO molecular spectral profiles (in terms of functional groups (biomolecular, biopolymer) spectral peak area and height intensity) and CHO chemical profiles, CHO subfractions, energy values, and CHO rumen degradation kinetics of combined feeds of hulless barley with pure wheat dried distillers grains with solubles (DDGS) at five different combination ratios (hulless barley to pure wheat DDGS: 100:0, 75:25, 50:50, 25:75, 0:100). The molecular spectroscopic parameters assessed included: lignin biopolymer molecular spectra profile (peak area and height, region and baseline: ca. 1539-1504 cm-1); structural carbohydrate (STCHO, peaks area region and baseline: ca. 1485-1186 cm-1) mainly associated with hemi- and cellulosic compounds; cellulosic materials peak area (centered at ca. 1240 cm-1 with region and baseline: ca. 1272-1186 cm-1); total carbohydrate (CHO, peaks area region and baseline: ca. 1186-946 cm-1). The results showed that the functional groups (biomolecular, biopolymer) in the combined feeds are sensitive to the changes of carbohydrate chemical and nutrient profiles. The changes of the CHO molecular spectroscopic features in the combined feeds were highly correlated with CHO chemical profiles, CHO subfractions, in situ CHO rumen degradation kinetics and fermentable organic matter supply. Further study is needed to investigate possibility of using CHO molecular spectral features as a predictor to estimate nutrient availability in combined feeds for animals and quantify their relationship.

  19. Effect of dopants on the TL response of the new LiF:Mg,Cu,Ag material

    NASA Astrophysics Data System (ADS)

    Yahyaabadi, A.; Torkzadeh, F.; Rezaei-Ochbelagh, D.; Hosseini Pooya, M.

    2018-07-01

    The new TL LiF:Mg,Cu,Ag material was prepared and investigated in this study. The TL intensity of LiF:Mg,Cu,Ag is strongly dependent on the concentration of dopants and the preparation procedure. Any small change in these factors can cause alterations in TL response. In this study, the influence of Cu and Ag concentrations on the response of the LiF:Mg,Cu,Ag sample was investigated and showed that the height of the low, main and high temperature peaks changes with Ag concentration. Their intensities increased with increasing Ag concentration to a maximum value and decreased with higher Ag concentration. It was also found that Cu concentration less than 0.05 mol% influences the maximum peak height and TL intensity. The optimum Cu and Ag concentrations were found to be 0.05 and 0.1 mol% at 1005 °C QT, respectively. The role of dopants in LiF:Mg,Cu,Ag material was also investigated. The results showed that presence of three dopants is important for having material with sensitivity higher than LiF:Mg,Ti. The Mg dopant plays a crucial role in the formation of the trapping center and the position of the main dosimetric peak.

  20. Jump Shrug Height and Landing Forces Across Various Loads.

    PubMed

    Suchomel, Timothy J; Taber, Christopher B; Wright, Glenn A

    2016-01-01

    The purpose of this study was to examine the effect that load has on the mechanics of the jump shrug. Fifteen track and field and club/intramural athletes (age 21.7 ± 1.3 y, height 180.9 ± 6.6 cm, body mass 84.7 ± 13.2 kg, 1-repetition-maximum (1RM) hang power clean 109.1 ± 17.2 kg) performed repetitions of the jump shrug at 30%, 45%, 65%, and 80% of their 1RM hang power clean. Jump height, peak landing force, and potential energy of the system at jump-shrug apex were compared between loads using a series of 1-way repeated-measures ANOVAs. Statistical differences in jump height (P < .001), peak landing force (P = .012), and potential energy of the system (P < .001) existed; however, there were no statistically significant pairwise comparisons in peak landing force between loads (P > .05). The greatest magnitudes of jump height, peak landing force, and potential energy of the system at the apex of the jump shrug occurred at 30% 1RM hang power clean and decreased as the external load increased from 45% to 80% 1RM hang power clean. Relationships between peak landing force and potential energy of the system at jump-shrug apex indicate that the landing forces produced during the jump shrug may be due to the landing strategy used by the athletes, especially at lighter loads. Practitioners may prescribe heavier loads during the jump-shrug exercise without viewing landing force as a potential limitation.

  1. The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt.

    PubMed

    Sanders, James O; Qiu, Xing; Lu, Xiang; Duren, Dana L; Liu, Raymond W; Dang, Debbie; Menendez, Mariano E; Hans, Sarah D; Weber, David R; Cooperman, Daniel R

    2017-12-01

    Humans are one of the few species undergoing an adolescent growth spurt. Because children enter the spurt at different ages making age a poor maturity measure, longitudinal studies are necessary to identify the growth patterns and identify commonalities in adolescent growth. The standard maturity determinant, peak height velocity (PHV) timing, is difficult to estimate in individuals due to diurnal, postural, and measurement variation. Using prospective longitudinal populations of healthy children from two North American populations, we compared the timing of the adolescent growth spurt's peak height velocity to normalized heights and hand skeletal maturity radiographs. We found that in healthy children, the adolescent growth spurt is standardized at 90% of final height with similar patterns for children of both sexes beginning at the initiation of the growth spurt. Once children enter the growth spurt, their growth pattern is consistent between children with peak growth at 90% of final height and skeletal maturity closely reflecting growth remaining. This ability to use 90% of final height as easily identified important maturity standard with its close relationship to skeletal maturity represents a significant advance allowing accurate prediction of future growth for individual children and accurate maturity comparisons for future studies of children's growth.

  2. Diffusion-Tensor Imaging of the Physes: A Possible Biomarker for Skeletal Growth-Experience with 151 Children.

    PubMed

    Bedoya, Maria A; Delgado, Jorge; Berman, Jeffrey I; Chauvin, Nancy A; Zurakowski, David; Ramirez-Grueso, Raul; Ntoulia, Aikaterini; Jaramillo, Diego

    2017-07-01

    Purpose To determine the changes of diffusion-tensor imaging (DTI) and tractography in the distal femur and proximal tibia related to age, sex, and height. Materials and Methods Following institutional review board approval, with waiver of consent and with HIPAA compliance, the authors retrospectively analyzed DTI images of the knee in 151 children, 73 girls (median age, 14.1 years; range, 6.5-17.8 years) and 78 boys (median age, 16.6 years; range, 6.9-17.9 years), studied from January 2013 to October 2014. At sagittal echo-planar DTI (20 directions, b values of 0 and 600 sec/mm 2 ), regions of interest were placed in the tibial and femoral physes. Using a fractional anisotropy threshold of 0.15 and an angle threshold of 40°, the authors performed tractography and measured apparent diffusion coefficient (ADC) and tract length and volume. Changes related to age, sex, and height were evaluated by using fitted nonlinear polynomial functions on bootstrapped samples. Results Femoral tract volume and length increased and then decreased with age (P < .001); the peaks of femoral tract volume are consistent with the growth spurt, occurring earlier in girls (10.8 years) than in boys (13.0 years) (P < .001). Girls had smaller tract volumes in comparison to boys (P = .013). ADC peaks 2 years earlier than tract volume (girls at 9.3 years, boys at 11.0 years). Girls with greater than 50th percentile of height had longer tracts and greater tract volumes compared with girls with less than 50th percentile (P < .020). DTI parameters of boys do not correlate with percentile of height (P > .300). Conclusion DTI of the physis and metaphysis shows greater tract length and volumes in subjects who are at ages when the growth is fastest. ADC and tract length and volume have an earlier and smaller peak in girls than in boys. Femoral tract length and volume are larger in taller girls. © RSNA, 2017.

  3. Red maca (Lepidium meyenii) reduced prostate size in rats

    PubMed Central

    Gonzales, Gustavo F; Miranda, Sara; Nieto, Jessica; Fernández, Gilma; Yucra, Sandra; Rubio, Julio; Yi, Pedro; Gasco, Manuel

    2005-01-01

    Background Epidemiological studies have found that consumption of cruciferous vegetables is associated with a reduced risk of prostate cancer. This effect seems to be due to aromatic glucosinolate content. Glucosinolates are known for have both antiproliferative and proapoptotic actions. Maca is a cruciferous cultivated in the highlands of Peru. The absolute content of glucosinolates in Maca hypocotyls is relatively higher than that reported in other cruciferous crops. Therefore, Maca may have proapoptotic and anti-proliferative effects in the prostate. Methods Male rats treated with or without aqueous extracts of three ecotypes of Maca (Yellow, Black and Red) were analyzed to determine the effect on ventral prostate weight, epithelial height and duct luminal area. Effects on serum testosterone (T) and estradiol (E2) levels were also assessed. Besides, the effect of Red Maca on prostate was analyzed in rats treated with testosterone enanthate (TE). Results Red Maca but neither Yellow nor Black Maca reduced significantly ventral prostate size in rats. Serum T or E2 levels were not affected by any of the ecotypes of Maca assessed. Red Maca also prevented the prostate weight increase induced by TE treatment. Red Maca administered for 42 days reduced ventral prostatic epithelial height. TE increased ventral prostatic epithelial height and duct luminal area. These increases by TE were reduced after treatment with Red Maca for 42 days. Histology pictures in rats treated with Red Maca plus TE were similar to controls. Phytochemical screening showed that aqueous extract of Red Maca has alkaloids, steroids, tannins, saponins, and cardiotonic glycosides. The IR spectra of the three ecotypes of Maca in 3800-650 cm (-1) region had 7 peaks representing 7 functional chemical groups. Highest peak values were observed for Red Maca, intermediate values for Yellow Maca and low values for Black Maca. These functional groups correspond among others to benzyl glucosinolate. Conclusions Red Maca, a cruciferous plant from the highland of Peru, reduced ventral prostate size in normal and TE treated rats. PMID:15661081

  4. Puberty in subjects with complete androgen insensitivity syndrome.

    PubMed

    Papadimitriou, Dimitrios T; Linglart, Agnès; Morel, Yves; Chaussain, Jean-Louis

    2006-01-01

    Androgen receptor defects affect the regulation of the gonadotropic axis. However, little is known about the timing of pubertal maturation in complete androgen insensitivity syndrome (CAIS). To evaluate growth, skeletal maturation and gonadotropin and sex steroid secretion in patients with CAIS and intact gonads at puberty. Clinical, auxological and hormonal evaluation of 9 patients with CAIS from birth up to 17 years of age, prior to gonadectomy, in a single institution, retrospective study. Breast development occurred at a median age of 11.1 years, thumb sesamoid appeared at 11.5 years, and peak height velocity at 12.3 years, all consistent with average female values. However, median adult male height (+1.2 SDS) was closer to the patients' male target height (-0.3 SDS). Plasma testosterone levels rose early compared to normal boys. LH (basal and GnRH-stimulated) increased rapidly, above normal male values, in early puberty. This retrospective evaluation of a limited number of cases with a heterogeneous pattern of follow-up suggests that patients with CAIS may enter puberty at an age closer to female standards. These results imply a major role of direct androgen action, in utero or in early life, in determining the pattern of pubertal gonadotropin maturation.

  5. The Effect of Arch Height and Material Hardness of Personalized Insole on Correction and Tissues of Flatfoot

    PubMed Central

    Su, Shonglun; Mo, Zhongjun; Guo, Junchao

    2017-01-01

    Flat foot is one of the common deformities in the youth population, seriously affecting the weight supporting and daily exercising. However, there is lacking of quantitative data relative to material selection and shape design of the personalized orthopedic insole. This study was to evaluate the biomechanical effects of material hardness and support height of personalized orthopedic insole on foot tissues, by in vivo experiment and finite element modeling. The correction of arch height increased with material hardness and support height. The peak plantar pressure increased with the material hardness, and these values by wearing insoles of 40° were apparently higher than the bare feet condition. Harder insole material results in higher stress in the joint and ligament stress than softer material. In the calcaneocuboid joint, the stress increased with the arch height of insoles. The material hardness did not apparently affect the stress in the ankle joints, but the support heights of insole did. In general, insole material and support design are positively affecting the correction of orthopedic insole, but negatively resulting in unreasonable stress on the stress in the joint and ligaments. There should be an integration of improving correction and reducing stress in foot tissues. PMID:29065655

  6. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Synchrotron-Based Infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, N.; Yu, P

    2010-01-01

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm amongmore » the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm{sup -1}) and II (ca. 1550 cm{sup -1}), cellulosic compounds (ca. 1240 cm{sup -1}), CHO component peaks (the first peak at the region ca. 1184-1132 cm{sup -1}, the second peak at ca. 1132-1066 cm{sup -1}, and the third peak at ca. 1066-950 cm{sup -1}). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic information and the nutrient value of barley grain, although significant differences in biodegradation kinetics were observed. In conclusion, the studies demonstrated the potential of ultraspatially resolved synchrotron based technology (SFTIRM) to reveal the structural and chemical makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue.« less

  7. Gait Mechanics in Those With/Without Medial Compartment Knee Osteoarthritis 5 Years After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Khandha, Ashutosh; Manal, Kurt; Wellsandt, Elizabeth; Capin, Jacob; Snyder-Mackler, Lynn; Buchanan, Thomas S.

    2016-01-01

    The objective of the study was to evaluate differences in gait mechanics 5 years after unilateral anterior cruciate ligament reconstruction surgery, for non-osteoarthritic (n = 24) versus osteoarthritic (n = 9) subjects. For the involved knee, the osteoarthritic group demonstrated significantly lower peak knee flexion angles (non-osteoarthritic = 24.3 ± 4.6°, osteoarthritic = 19.1 ± 2.9°, p = 0.01) and peak knee flexion moments (non-osteoarthritic = 5.3 ± 1.2% Body Weight × Height, osteoarthritic = 4.4 ± 1.2% Body Weight × Height, p = 0.05). Differences in peak knee adduction moment approached significance, with a higher magnitude for the osteoarthritic group (non-osteoarthritic = 2.4 ±0.8% Body Weight × Height, osteoarthritic = 2.9 ± 0.5% Body Weight × Height, p = 0.09). Peak medial compartment joint load was evaluated using electromyography-informed neuromusculoskeletal modeling. Peak medial compartment joint load in the involved knee for the two groups was not different (non-osteoarthritic = 2.4 ± 0.4 Body Weight, osteoarthritic = 2.3 ± 0.6 Body Weight). The results suggest that subjects with dissimilar peak knee moments can have similar peak medial compartment joint load magnitudes. There was no evidence of inter-limb asymmetry for either group. Given the presence of inter-group differences (non-osteoarthritic vs. osteoarthritic) for the involved knee, but an absence of inter-limb asymmetry in either group, it may be necessary to evaluate how symmetry is achieved, over time, and to differentiate between good versus bad inter-limb symmetry, when evaluating knee gait parameters. PMID:27082166

  8. Velocity and bottom-stress measurements in the bottom boundary layer, outer Norton Sound, Alaska.

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.; Wiberg, P.

    1982-01-01

    We have used long-term measurements of near-bottom velocities at four heights above the sea floor in Norton Sound, Alaska, to compute hourly values of shear velocity u., roughness and bottom-drag coefficient. Maximum sediment resuspension and transport, predicted for periods when the computed value of u. exceeds a critical level, occur during peak tidal currents associated with spring tides. The fortnightly variation in u. is correlated with a distinct nepheloid layer that intensifies and thickens during spring tides and diminishes and thins during neap tides. The passage of a storm near the end of the experiment caused significantly higher u. values than those found during fair weather.-from Authros

  9. Failure Characteristics of Granite Influenced by Sample Height-to-Width Ratios and Intermediate Principal Stress Under True-Triaxial Unloading Conditions

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Feng, Fan; Li, Diyuan; Du, Kun; Ranjith, P. G.; Rostami, Jamal

    2018-05-01

    The failure modes and peak unloading strength of a typical hard rock, Miluo granite, with particular attention to the sample height-to-width ratio (between 2 and 0.5), and the intermediate principal stress was investigated using a true-triaxial test system. The experimental results indicate that both sample height-to-width ratios and intermediate principal stress have an impact on the failure modes, peak strength and severity of rockburst in hard rock under true-triaxial unloading conditions. For longer rectangular specimens, the transition of failure mode from shear to slabbing requires higher intermediate principal stress. With the decrease in sample height-to-width ratios, slabbing failure is more likely to occur under the condition of lower intermediate principal stress. For same intermediate principal stress, the peak unloading strength monotonically increases with the decrease in sample height-to-width. However, the peak unloading strength as functions of intermediate principal stress for different types of rock samples (with sample height-to-width ratio of 2, 1 and 0.5) all present the pattern of initial increase, followed by a subsequent decrease. The curves fitted to octahedral shear stress as a function of mean effective stress also validate the applicability of the Mogi-Coulomb failure criterion for all considered rock sizes under true-triaxial unloading conditions, and the corresponding cohesion C and internal friction angle φ are calculated. The severity of strainburst of granite depends on the sample height-to-width ratios and intermediate principal stress. Therefore, different supporting strategies are recommended in deep tunneling projects and mining activities. Moreover, the comparison of test results of different σ 2/ σ 3 also reveals the little influence of minimum principal stress on failure characteristics of granite during the true-triaxial unloading process.

  10. Can Pillow Height Effect the Body Pressure Distribution and Sleep Comfort: a Study of Quinquagenarian Women

    NASA Astrophysics Data System (ADS)

    Li, Xinzhu; Hu, Huimin; Liao, Su

    2018-03-01

    A proper sleeping pillow can relax the neck muscles during sleep, yet does not impose stress on the spine or other tissues. By analyzing the different body pressure and subjective comfort evaluation of quinquagenarian women with different pillow heights (3cm, 7cm, 11cm and 15cm), this paper found that as the pillow height increased, the neck contact pressure, contact area and force increased at the same time, as well as the peak force and peak contact pressure gradually shifted from the head to the hip area. It was shown that the pillow with a height of 7cm was the most comfortable for supine positions.

  11. A Biomechanical Analysis of the Effects of Bouncing the Barbell in the Conventional Deadlift.

    PubMed

    Krajewski, Kellen; LeFavi, Robert; Riemann, Bryan

    2018-02-27

    The purpose of this study is to analyze biomechanical differences between the bounce and pause styles of deadlifting. Twenty physically active males performed deadlifts at their 75% one repetition maximum testing utilizing both pause and bounce techniques in a within-subjects randomized study design. The average peak height the barbell attained from the three bounce style repetitions was used to compute a compatible phase for analysis of the pause style repetitions. Net joint moment impulse (NJMI), work, average vertical ground reaction force (vGRF), vGRF impulse and phase time were computed for two phases, lift off to peak barbell height and the entire ascent. Additionally, the ankle, knee, hip, and trunk angles at the location of peak barbell height. During the lift off to peak barbell height phase, although each of the joints demonstrated significantly less NJMI and work during the bounce style, the hip joint was impacted the most. The average vGRF was greater for the bounce however the vGRF impulse was greater for the pause. The NJMI results for the ascent phase were similar to the lift off to peak barbell height phase, while work was significantly less for the bounce condition compared to the pause condition across all three joints. Strength and conditioning specialists utilizing the deadlift should be aware that the bounce technique does not allow the athlete to develop maximal force production in the early portion of the lift. Further analyses should focus on joint angles and potential vulnerability to injury when the barbell momentum generated from the bounce is lost.

  12. A novel cell-stiffness-fingerprinting analysis by scanning atomic force microscopy: Comparison of fibroblasts and diverse cancer cell lines

    PubMed Central

    Zoellner, Hans; Paknejad, Navid; Manova, Katia; Moore, Malcolm

    2016-01-01

    Differing stimuli affect cell-stiffness while cancer metastasis further relates to cell-stiffness. Cell-stiffness determined by atomic Force Microscopy (AFM) has been limited by measurement over nuclei to avoid spurious substratum effects in thin cytoplasmic domains, and we sought to develop a more complete approach including cytoplasmic areas. 90 μm square fields were recorded from 10 sites of cultured Human Dermal Fibroblasts (HDF), and 3 sites each for melanoma (MM39, WM175, MeIRMu), osteosarcoma (SAOS-2, U2OS), and ovarian carcinoma (COLO316, PEO4) cell lines, each site providing 1,024 measurements as 32x32 square grids. Stiffness recorded below 0.8 μm height was occasionally influenced by substratum, so only stiffness recorded above 0.8 μm was analyzed, but all sites were included for height and volume analysis. COLO316 had the lowest cell height and volume, followed by HDF (p<0.0001), and then PEO4, SAOS-2, MeIRMu, WM175, U2OS, and MM39. HDF were more stiff than all other cells (p < 0.0001), while in descending order of stiffness were PEO4, COLO316, WM175, SAOS-2, U2OS, MM39, and MeIRMu (p < 0.02). Stiffness-fingerprints comprised scattergrams of stiffness values plotted against the height at which each stiffness value was recorded, and appeared unique for each cell type studied, although in most cases the overall form of fingerprints was similar, with maximum stiffness at low height measurements and a second lower peak occurring at high height levels. We suggest our stiffness-fingerprint analytical method provides a more nuanced description than previously reported, and will facilitate study of the stiffness response to cell stimulation. PMID:26357955

  13. Predicting durations of online collective actions based on Peaks' heights

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Nie, Shizhao; Wang, Zheng; Jing, Ziwei; Yang, Jianwu; Qi, Zhongxiang; Pujia, Wangmo

    2018-02-01

    Capturing the whole process of collective actions, the peak model contains four stages, including Prepare, Outbreak, Peak, and Vanish. Based on the peak model, one of the key variables, factors and parameters are further investigated in this paper, which is the rate between peaks and spans. Although the durations or spans and peaks' heights are highly diversified, it seems that the ratio between them is quite stable. If the rate's regularity is discovered, we can predict how long the collective action lasts and when it ends based on the peak's height. In this work, we combined mathematical simulations and empirical big data of 148 cases to explore the regularity of ratio's distribution. It is indicated by results of simulations that the rate has some regularities of distribution, which is not normal distribution. The big data has been collected from the 148 online collective actions and the whole processes of participation are recorded. The outcomes of empirical big data indicate that the rate seems to be closer to being log-normally distributed. This rule holds true for both the total cases and subgroups of 148 online collective actions. The Q-Q plot is applied to check the normal distribution of the rate's logarithm, and the rate's logarithm does follow the normal distribution.

  14. Aerial Rotation Effects on Vertical Jump Performance Among Highly Skilled Collegiate Soccer Players.

    PubMed

    Barker, Leland A; Harry, John R; Dufek, Janet S; Mercer, John A

    2017-04-01

    Barker, LA, Harry, JR, Dufek, JS, and Mercer, JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res 31(4): 932-938, 2017-In soccer matches, jumps involving rotations occur when attempting to head the ball for a shot or pass from set pieces, such as corner kicks, goal kicks, and lob passes. However, the 3-dimensional ground reaction forces used to perform rotational jumping tasks are currently unknown. Therefore, the purpose of this study was to compare bilateral, 3-dimensional, and ground reaction forces of a standard countermovement jump (CMJ0) with those of a countermovement jump with a 180° rotation (CMJ180) among Division-1 soccer players. Twenty-four participants from the soccer team of the University of Nevada performed 3 trials of CMJ0 and CMJ180. Dependent variables included jump height, downward and upward phase times, vertical (Fz) peak force and net impulse relative to mass, and medial-lateral and anterior-posterior force couple values. Statistical significance was set a priori at α = 0.05. CMJ180 reduced jump height, increased the anterior-posterior force couple in the downward and upward phases, and increased upward peak Fz (p ≤ 0.05). All other variables were not significantly different between groups (p > 0.05). However, we did recognize that downward peak Fz trended lower in the CMJ0 condition (p = 0.059), and upward net impulse trended higher in the CMJ0 condition (p = 0.071). It was concluded that jump height was reduced during the rotational jumping task, and rotation occurred primarily via AP ground reaction forces through the entire countermovement jump. Coaches and athletes may consider additional rotational jumping in their training programs to mediate performance decrements during rotational jump tasks.

  15. Charged-particle spectroscopy in organic semiconducting single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciavatti, A.; Basiricò, L.; Fraboni, B.

    2016-04-11

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the chargemore » collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτ{sub coplanar} = (5 .5 ± 0.6 ) × 10{sup −6} cm{sup 2}/V and μτ{sub sandwich} = (1 .9 ± 0.2 ) × 10{sup −6} cm{sup 2}/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.« less

  16. Is vacuum ultraviolet detector a concentration or a mass dependent detector?

    PubMed

    Liu, Huian; Raffin, Guy; Trutt, Guillaume; Randon, Jérôme

    2017-12-29

    The vacuum ultraviolet detector (VUV) is a very effective tool for chromatogram deconvolution and peak identification, and can also be used for quantification. To avoid quantitative issues in relation to time drift, such as variation of peak area or peak height, the detector response type has to be well defined. Due to the make-up flow and pressure regulation of make-up, the detector response (height of the peak) and peak area appeared to be dependent on experimental conditions such as inlet pressure and make-up pressure. Even if for some experimental conditions, VUV looks like mass-flow sensitive detector, it has been demonstrated that VUV is a concentration sensitive detector. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An examination of the jump-and-lift factors influencing the time to reach peak catch height during a Rugby Union lineout.

    PubMed

    Smith, Tiaki Brett; Hébert-Losier, Kim; McClymont, Doug

    2018-05-01

    The goal of an offensive Rugby Union lineout is to throw the ball in a manner that allows your team to maintain possession. Typically, the player catching the ball jumps and is lifted upwards by two teammates, reaching above the opposing player who is competing for the ball also. Despite various beliefs regarding the importance of the jumper's mass and attempted jump height, and lifters' magnitude and point of force application, there is negligible published data on the topic. The squeeze technique is one lifting method commonly employed by New Zealand teams during lineout plays, whereby the jumper initiates the jump quickly and the lifters provide assistance only once the jumper reaches 20-30 cm. While this strategy may reduce cues to the opposition, it might also constrain the jumper and lifters. We developed a model to explore how changes in the jumper's body mass and attempted jump height, and lifters' magnitude and point of force application influence the time to reach peak catch height. The magnitude of the lift force impacted the time-to-reach peak catch height the most; followed by the jumper's (attempted) jump height and body mass; and lastly, the point of lift force application.

  18. Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept.

    PubMed

    Toh, Her Shuang; Tschulik, Kristina; Batchelor-McAuley, Christopher; Compton, Richard G

    2014-08-21

    Typical urinary iodide concentrations range from 0.3 μM to 6.0 μM. The conventional analytical method is based on the Sandell-Kolthoff reaction. It involves the toxic reagent, arsenic acid, and a waiting time of 30 minutes for the iodide ions to reduce the cerium(iv) ions. In the presented work, an alternative fast electrochemical method based on a silver nanoparticle modified electrode is proposed. Cyclic voltammetry was performed with a freshly modified electrode in presence of iodide ions and the voltammetric peaks corresponding to the oxidation of silver to silver iodide and the reverse reaction were recorded. The peak height of the reduction signal of silver iodide was used to plot a calibration line for the iodide ions. Two calibration plots for the iodide ions were obtained, one in 0.1 M sodium nitrate (a chloride-ion free environment to circumvent any interference from the other halides) and another in synthetic urine (which contains 0.2 M KCl). In both of the calibration plots, linear relationships were found between the reduction peak height and the iodide ion concentration of 0.3 μM to 6.0 μM. A slope of 1.46 × 10(-2) A M(-1) and a R(2) value of 0.999 were obtained for the iodide detection in sodium nitrate. For the synthetic urine experiments, a slope of 3.58 × 10(-3) A M(-1) and a R(2) value of 0.942 were measured. A robust iodide sensor with the potential to be developed into a point-of-care system has been validated.

  19. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the lower troposphere) calculates extinction near the surface in agreement with the ship-level measurements only when the MBL aerosols are well mixed with aerosols above. Finally, a review of the MPL extinction profiles showed that the model of aerosol vertical extinction developed during an earlier INDOEX field campaign (at the Maldives) did not correctly describe the true vertical distribution over the greater Indian Ocean region. Using the average extinction profile and AOD obtained during marine conditions, a new model of aerosol vertical extinction was determined for marine atmospheres over the Indian Ocean. A new model of aerosol vertical extinction for polluted marine atmospheres was also developed using the average extinction profile and AOD obtained during marine conditions influenced by continental aerosols.

  20. Comparison of Lower Limb Segments Kinematics in a Taekwondo Kick. An Approach to the Proximal to Distal Motion

    PubMed Central

    Estevan, Isaac; Falco, Coral; Silvernail, Julia Freedman; Jandacka, Daniel

    2015-01-01

    In taekwondo, there is a lack of consensus about how the kick sequence occurs. The aim of this study was to analyse the peak velocity (resultant and value in each plane) of lower limb segments (thigh, shank and foot), and the time to reach this peak velocity in the kicking lower limb during the execution of the roundhouse kick technique. Ten experienced taekwondo athletes (five males and five females; mean age of 25.3 ±5.1 years; mean experience of 12.9 ±5.3 years) participated voluntarily in this study performing consecutive kicking trials to a target located at their sternum height. Measurements for the kinematic analysis were performed using two 3D force plates and an eight camera motion capture system. The results showed that the proximal segment reached a lower peak velocity (resultant and in each plane) than distal segments (except the peak velocity in the frontal plane where the thigh and shank presented similar values), with the distal segment taking the longest to reach this peak velocity (p < 0.01). Also, at the instant every segment reached the peak velocity, the velocity of the distal segment was higher than the proximal one (p < 0.01). It provides evidence about the sequential movement of the kicking lower limb segments. In conclusion, during the roundhouse kick in taekwondo inter-segment motion seems to be based on a proximo-distal pattern. PMID:26557189

  1. Comparison of Lower Limb Segments Kinematics in a Taekwondo Kick. An Approach to the Proximal to Distal Motion.

    PubMed

    Estevan, Isaac; Falco, Coral; Silvernail, Julia Freedman; Jandacka, Daniel

    2015-09-29

    In taekwondo, there is a lack of consensus about how the kick sequence occurs. The aim of this study was to analyse the peak velocity (resultant and value in each plane) of lower limb segments (thigh, shank and foot), and the time to reach this peak velocity in the kicking lower limb during the execution of the roundhouse kick technique. Ten experienced taekwondo athletes (five males and five females; mean age of 25.3 ±5.1 years; mean experience of 12.9 ±5.3 years) participated voluntarily in this study performing consecutive kicking trials to a target located at their sternum height. Measurements for the kinematic analysis were performed using two 3D force plates and an eight camera motion capture system. The results showed that the proximal segment reached a lower peak velocity (resultant and in each plane) than distal segments (except the peak velocity in the frontal plane where the thigh and shank presented similar values), with the distal segment taking the longest to reach this peak velocity (p < 0.01). Also, at the instant every segment reached the peak velocity, the velocity of the distal segment was higher than the proximal one (p < 0.01). It provides evidence about the sequential movement of the kicking lower limb segments. In conclusion, during the roundhouse kick in taekwondo inter-segment motion seems to be based on a proximo-distal pattern.

  2. Metabolic differences between short children with GH peak levels in the lower normal range and healthy children of normal height.

    PubMed

    Tidblad, Anders; Gustafsson, Jan; Marcus, Claude; Ritzén, Martin; Ekström, Klas

    2017-06-01

    Severe growth hormone deficiency (GHD) leads to several metabolic effects in the body ranging from abnormal body composition to biochemical disturbances. However, less is known regarding these parameters in short children with GH peak levels in the lower normal range during provocation tests. Our aim was to study the metabolic profile of this group and compare it with that of healthy children of normal height. Thirty-five pre-pubertal short children (<-2.5 SDS) aged between 7 and 10years, with peak levels of GH between 7 and 14μg/L in an arginine insulin tolerance test (AITT), were compared with twelve age- and sex-matched children of normal height. The metabolic profile of the subjects was analysed by blood samples, DEXA, frequently sampled intravenous glucose tolerance test, microdialysis and stable isotope examinations of rates of glucose production and lipolysis. There were no overall significant metabolic differences between the groups. However, in the subgroup analysis, the short children with GH peaks <10μg/L had significantly lower fasting insulin levels which also correlated to other metabolic parameters. The short pre-pubertal children with GH peak levels between 7 and 14μg/L did not differ significantly from healthy children of normal height but subpopulations within this group show significant metabolic differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Influences of CO2 increase, solar cycle variation, and geomagnetic activity on airglow from 1960 to 2015

    NASA Astrophysics Data System (ADS)

    Huang, Tai-Yin

    2018-06-01

    Variations of airglow intensity, Volume Emission Rate (VER), and VER peak height induced by the CO2 increase, and by the F10.7 solar cycle variation and geomagnetic activity were investigated to quantitatively assess their influences on airglow. This study is an extension of a previous study by Huang (2016) covering a time period of 55 years from 1960 to 2015 and includes geomagnetic variability. Two airglow models, OHCD-90 and MACD-90, are used to simulate the induced variations of O(1S) greenline, O2(0,1) atmospheric band, and OH(8,3) airglow for this study. Overall, our results demonstrate that airglow intensity and the peak VER variations of the three airglow emissions are strongly correlated, and in phase, with the F10.7 solar cycle variation. In addition, there is a linear trend, be it increasing or decreasing, existing in the airglow intensities and VERs due to the CO2 increase. On other hand, airglow VER peak heights are strongly correlated, and out of phase, with the Ap index variation of geomagnetic activity. The CO2 increase acts to lower the VER peak heights of OH(8,3) airglow and O(1S) greenline by 0.2 km in 55 years and it has no effect on the VER peak height of O2(0,1) atmospheric band.

  4. Imaging observations of lower thermospheric O(1S) and O2 airglow emissions from STS 9 - Implications of height variations

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Llewellyn, E. J.

    1989-01-01

    The lower thermospheric nightglow in the Southern Hemisphere was observed with the Atmospheric Emissions Photometric Imager during the Spacelab 1 mission in December, 1983. Observations of emission from O(1S) at 2972 and 5577A, O2 at 7620 A, OH near 6300 A, and the combined emission from the three upper states of O2 which lead to the Herzberg I and II and Chamberlain band emissions in B and near UV are discussed. The altitudes of peak emission heights are determined, showing that the peak heights are not constant with latitude. It is found that airglow heights varied with latitude by as much as 8 km. The observed airglow height pattern near the equator is similar to that of Wasser and Donahue (1979).

  5. Peak Weight and Height Velocity to Age 36 Months and Asthma Development: The Norwegian Mother and Child Cohort Study

    PubMed Central

    Magnus, Maria C.; Stigum, Hein; Håberg, Siri E.; Nafstad, Per; London, Stephanie J.; Nystad, Wenche

    2015-01-01

    Background The immediate postnatal period is the period of the fastest growth in the entire life span and a critical period for lung development. Therefore, it is interesting to examine the association between growth during this period and childhood respiratory disorders. Methods We examined the association of peak weight and height velocity to age 36 months with maternal report of current asthma at 36 months (n = 50,311), recurrent lower respiratory tract infections (LRTIs) by 36 months (n = 47,905) and current asthma at 7 years (n = 24,827) in the Norwegian Mother and Child Cohort Study. Peak weight and height velocity was calculated using the Reed1 model through multilevel mixed-effects linear regression. Multivariable log-binomial regression was used to calculate adjusted relative risks (adj.RR) and 95% confidence intervals (CI). We also conducted a sibling pair analysis using conditional logistic regression. Results Peak weight velocity was positively associated with current asthma at 36 months [adj.RR 1.22 (95%CI: 1.18, 1.26) per standard deviation (SD) increase], recurrent LRTIs by 36 months [adj.RR 1.14 (1.10, 1.19) per SD increase] and current asthma at 7 years [adj.RR 1.13 (95%CI: 1.07, 1.19) per SD increase]. Peak height velocity was not associated with any of the respiratory disorders. The positive association of peak weight velocity and asthma at 36 months remained in the sibling pair analysis. Conclusions Higher peak weight velocity, achieved during the immediate postnatal period, increased the risk of respiratory disorders. This might be explained by an influence on neonatal lung development, shared genetic/epigenetic mechanisms and/or environmental factors. PMID:25635872

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoenig, M.; Elsen, Y.V.; Cauter, R.V.

    The progressive degradation of the pyrolytic graphite surface of atomizers provides variable and misleading results of molybdenum peak-height measurements. The changes in the peak shapes produce no analytical problems during the lifetime of the atomizer (approx.300 firings) when integrated absorbance (A.s signals) is considered and the possible base-line drifts are controlled. This was demonstrated on plant samples mineralized by simple digestion with a mixture of HNO/sub 3/ and H/sub 2/O/sub 2/. The value of this method was assessed by comparison with a standard dry oxidation method and by molybdenum determination in National Bureau of Standards reference plant samples. The relativemore » standard deviations (n = 5) of the full analytical procedure do not exceed 7%. 13 references, 3 figures, 3 tables.« less

  7. The Steep Ramp Test in Dutch white children and adolescents: age- and sex-related normative values.

    PubMed

    Bongers, Bart C; de Vries, Sanne I; Obeid, Joyce; van Buuren, Stef; Helders, Paul J M; Takken, Tim

    2013-11-01

    The Steep Ramp Test (SRT), a feasible, reliable, and valid exercise test on a cycle ergometer, may be more appealing for use in children in daily clinical practice than the traditional cardiopulmonary exercise test because of its short duration, its resemblance to children's daily activity patterns, and the fact that it does not require respiratory gas analysis. The aim of the present study was to provide sex- and age-related normative values for SRT performance in Dutch white children and adolescents who were healthy and 8 to 19 years old. This was a cross-sectional, observational study. A total of 252 Dutch white children and adolescents, 118 boys (mean age=13.4 years, SD=3.0) and 134 girls (mean age=13.4 years, SD=2.9), performed the SRT (work rate increment of 10, 15, or 20 W·10 s(-1), depending on body height) to voluntary exhaustion to assess peak work rate (WRpeak). Normative values are presented as reference centiles developed by use of generalized additive models for location, scale, and shape. Peak work rate correlated highly with age (r=.915 and r=.811), body mass (r=.870 and r=.850), body height (r=.922 and r=.896), body surface area (r=.906 and r=.885), and fat free mass (r=.930 and r=.902) in boys and girls, respectively. The reference curves demonstrated an almost linear increase in WRpeak with age in boys, even when WRpeak was normalized for body mass. In contrast, absolute WRpeak in girls increased constantly until the age of approximately 13 years, when it started to level off. Peak work rate normalized for body mass in girls showed only a slight increase with age until 14 years of age, when a slight decrease in relative WRpeak was observed. The sample may not have been entirely representative of the Dutch population. The present study provides sex- and age-related normative values for SRT performance in terms of both absolute WRpeak and relative WRpeak, thereby facilitating the interpretation of SRT results by clinicians and researchers.

  8. Theoretical scaling law of coronal magnetic field and electron power-law index in solar microwave burst sources

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Song, Q. W.; Tan, B. L.

    2018-04-01

    It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength B and electron power-law index δ versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), B and δ are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of B and δ increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.

  9. The Lumbar Lordosis in Males and Females, Revisited.

    PubMed

    Hay, Ori; Dar, Gali; Abbas, Janan; Stein, Dan; May, Hila; Masharawi, Youssef; Peled, Nathan; Hershkovitz, Israel

    2015-01-01

    Whether differences exist in male and female lumbar lordosis has been debated by researchers who are divided as to the nature of variations in the spinal curve, their origin, reasoning, and implications from a morphological, functional and evolutionary perspective. Evaluation of the spinal curvature is constructive in understanding the evolution of the spine, as well as its pathology, planning of surgical procedures, monitoring its progression and treatment of spinal deformities. The aim of the current study was to revisit the nature of lumbar curve in males and females. Our new automated method uses CT imaging of the spine to measure lumbar curvature in males and females. The curves extracted from 158 individuals were based on the spinal canal, thus avoiding traditional pitfalls of using bone features for curve estimation. The model analysis was carried out on the entire curve, whereby both local and global descriptors were examined in a single framework. Six parameters were calculated: segment length, curve length, curvedness, lordosis peak location, lordosis cranial peak height, and lordosis caudal peak height. Compared to males, the female spine manifested a statistically significant greater curvature, a caudally located lordotic peak, and greater cranial peak height. As caudal peak height is similar for males and females, the illusion of deeper lordosis among females is due partially to the fact that the upper part of the female lumbar curve is positioned more dorsally (more backwardly inclined). Males and females manifest different lumbar curve shape, yet similar amount of inward curving (lordosis). The morphological characteristics of the female spine were probably developed to reduce stress on the vertebral elements during pregnancy and nursing.

  10. The visible extinction peaks of Ag nanohelixes: A periodic effective dipole model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.-Y.; Zhao, Y.-P.

    2011-02-21

    Using the discrete dipole approximation method, two visible extinction peaks are found for Ag nanohelixes. Both of them redshift periodically in an approximate half pitch with the helix height and redshift linearly with the helix diameter and pitch height. At the two absorbance peaks, an integer number of E-field maxima occur along the helix. These field maxima could be treated as results of collective electron oscillations by periodic effective dipoles within a half pitch along the helix. The wavelengths of the absorbance peaks are found to scale with the effective dipole length, which is consistent with the periodic structure ofmore » the helix.« less

  11. Micromechanical and Electrical Properties of Monolithic Aluminum Nitride at High Temperatures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2000-01-01

    Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background internal friction at less than 1x10(exp-4) logarithmic decrement (log dec) from 20 to 1200 T. Two mechanical loss peaks were observed, the first at 350 C approximating a single Debye peak with a peak height of 60x10(exp-4) log dec. The second peak was seen at 950 'C with a peak height of 20x 10' log dec and extended from 200 to over 1200 C. These micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally activated processes, with activation energies of 0.78 and 1.32 eV respectively.

  12. Micromechanical and Electrical Properties of Monolithic Aluminum Nitride at High Temperatures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2001-01-01

    Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background internal friction at less than 1 x 10 (exp -4) logarithmic decrement (log dec.) from 20 to 1200 C. Two mechanical loss peaks were observed, the first at 350 C approximating a single Debye peak with a peak height of 60 x 10 (exp -4) log dec. The second peak was seen at 950 C with a peak height of 20 x 10 (exp -4) log dec. and extended from 200 to over 1200 C. These micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally activated processes, with activation energies of 0.78 and 1.32 eV respectively.

  13. Estimations of One Repetition Maximum and Isometric Peak Torque in Knee Extension Based on the Relationship Between Force and Velocity.

    PubMed

    Sugiura, Yoshito; Hatanaka, Yasuhiko; Arai, Tomoaki; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2016-04-01

    We aimed to investigate whether a linear regression formula based on the relationship between joint torque and angular velocity measured using a high-speed video camera and image measurement software is effective for estimating 1 repetition maximum (1RM) and isometric peak torque in knee extension. Subjects comprised 20 healthy men (mean ± SD; age, 27.4 ± 4.9 years; height, 170.3 ± 4.4 cm; and body weight, 66.1 ± 10.9 kg). The exercise load ranged from 40% to 150% 1RM. Peak angular velocity (PAV) and peak torque were used to estimate 1RM and isometric peak torque. To elucidate the relationship between force and velocity in knee extension, the relationship between the relative proportion of 1RM (% 1RM) and PAV was examined using simple regression analysis. The concordance rate between the estimated value and actual measurement of 1RM and isometric peak torque was examined using intraclass correlation coefficients (ICCs). Reliability of the regression line of PAV and % 1RM was 0.95. The concordance rate between the actual measurement and estimated value of 1RM resulted in an ICC(2,1) of 0.93 and that of isometric peak torque had an ICC(2,1) of 0.87 and 0.86 for 6 and 3 levels of load, respectively. Our method for estimating 1RM was effective for decreasing the measurement time and reducing patients' burden. Additionally, isometric peak torque can be estimated using 3 levels of load, as we obtained the same results as those reported previously. We plan to expand the range of subjects and examine the generalizability of our results.

  14. Postseismic viscoelastic deformation and stress. Part 2: Stress theory and computation; dependence of displacement, strain, and stress on fault parameters

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1979-01-01

    A viscoelastic model for deformation and stress associated with earthquakes is reported. The model consists of a rectangular dislocation (strike slip fault) in a viscoelastic layer (lithosphere) lying over a viscoelastic half space (asthenosphere). The time dependent surface stresses are analyzed. The model predicts that near the fault a significant fraction of the stress that was reduced during the earthquake is recovered by viscoelastic softening of the lithosphere. By contrast, the strain shows very little change near the fault. The model also predicts that the stress changes associated with asthenospheric flow extend over a broader region than those associated with lithospheric relaxation even though the peak value is less. The dependence of the displacements, stresses on fault parameters studied. Peak values of strain and stress drop increase with increasing fault height and decrease with fault depth. Under many circumstances postseismic strains and stresses show an increase with decreasing depth to the lithosphere-asthenosphere boundary. Values of the strain and stress at distant points from the fault increase with fault area but are relatively insensitive to fault depth.

  15. Tallness versus shrinkage: do women shrink with age or grow taller with recent birth date?

    PubMed

    Davies, K M; Recker, R R; Stegman, M R; Heaney, R P

    1991-10-01

    This paper presents evidence that much of the high rate of age-related height loss in women reported in cross-sectional studies is actually a cohort effect rather than an aging effect. Data from a large cross-sectional study of healthy, white American women indicate that there has been a gain in peak adult height of 1.0 cm per decade for several decades from 1900 through 1965. Data from the HES, HANES I, and HANES II studies concur on this point. By contrast, data from a longitudinal study of 191 healthy white U.S. women show only a trivial rate of decline from peak adult height in the fifth and sixth decades of life. In an unselected population, some apparent height loss with age is probably due to disease processes, such as vertebral collapse. Caution is needed in using aging to interpret differences in height and in height-dependent variables, such as bone density, in cross-sectional studies.

  16. Height velocity curves in female patients with idiopathic scoliosis.

    PubMed

    Chazono, Masaaki; Soshi, Sigeru; Kida, Yoshikuni; Hashimoto, Kurando; Inoue, Takeshi; Nakamura, Yousuke; Shinohara, Akira; Marumo, Keishi; Kono, Katsuki; Suzuki, Nobumasa

    2012-01-01

    Following identification of peak height velocity (PHV) by a recent study as a possible prognostic factor for curve progression in patients with idiopathic scoliosis (IS), the aim of this study was to investigate PHV curves in Japanese female patients with IS. The study subjects were 20 skeletally immature IS patients who were followed until maturity. The mean age and the mean pubertal status at the initial visit were 9.8 years and 24 months before menarche, respectively, with a follow-up period of 5.2 years. Height measurements were recorded at each visit, and HV was calculated as the change in height (cm) divided by the time interval (yr.) between visits of 6 to 12 months. The PHV, age at PHV (APHV), height at PHV (HPHV), and final height (FH) were determined. Patient HV curves were plotted using their HV data, and growth periods (GPs) were calculated from the curves. PHVs and GPs of study patients were compared to standard data from unaffected girls. The median values and interquartile ranges in PHV, APHV, HPHV, and FH were 8.5 cm/yr. (7.9-9.7), 11.8 yr. (11.2-12.1), 153.2 cm (150.1-155.8), and 160.1 cm (157.4-162.4), respectively. The median GP was 27 months. The PHV and GP values in IS female patients were higher and shorter than those in unaffected girls. These findings indicate that the patterns of height velocity curves in IS patients are different from those in unaffected girls, suggesting that curve progression in IS patients is associated with the magnitude of PHV and duration of GP. Recently, we have developed an HV reader to easily and quickly identify the present HV in patients with scoliosis, applicable for the clinical setting or school screening. We conclude that risk assessments of curve progression in patients with IS should include HV along with measures of skeletal maturity such as the Risser sign and/or digital skeletal age using hand X-rays.

  17. Antagonist muscle co-contraction during a double-leg landing maneuver at two heights.

    PubMed

    Mokhtarzadeh, Hossein; Yeow, Chen Hua; Goh, James Cho Hong; Oetomo, Denny; Ewing, Katie; Lee, Peter Vee Sin

    2017-10-01

    Knee injuries are common during landing activities. Greater landing height increases peak ground reaction forces (GRFs) and loading at the knee joint. As major muscles to stabilize the knee joint, Quadriceps and Hamstring muscles provide internal forces to attenuate the excessive GRF. Despite the number of investigations on the importance of muscle function during landing, the role of landing height on these muscles forces using modeling during landing is not fully investigated. Participant-specific musculoskeletal models were developed using experimental motion analysis data consisting of anatomic joint motions and GRF from eight male participants performing double-leg drop landing from 30 and 60 cm. Muscle forces were calculated in OpenSim and their differences were analyzed at the instances of high risk during landing i.e. peak GRF for both heights. The maximum knee flexion angle and moments were found significantly higher from a double-leg landing at 60 cm compared to 30 cm. The results showed elevated GRF, and mean muscle forces during landing. At peak GRF, only quadriceps showed significantly greater forces at 60 cm. Hamstring muscle forces did not significantly change at 60 cm compared to 30 cm. Quadriceps and hamstring muscle forces changed at different heights. Since hamstring forces were similar in both landing heights, this could lead to an imbalance between the antagonist muscles, potentially placing the knee at risk of injury if combined with small flexion angles that was not observed at peak GRF in our study. Thus, enhanced neuromuscular training programs strengthening the hamstrings may be required to address this imbalance. These findings may contribute to enhance neuromuscular training programs to prevent knee injuries during landing.

  18. The signalling of German rising-falling intonation categories--the interplay of synchronization, shape, and height.

    PubMed

    Niebuhr, Oliver

    2007-01-01

    Based on the phonology of the Kiel Intonation Model (KIM), a tripartite opposition of German intonation is investigated: early, medial, and late peaks. These intonation categories, which can be projected onto H + L*, H*, and L* + H in the AM framework, are described in the KIM as rising-falling F(0) peak patterns differentiated by their synchronization with the accented-vowel onset. Perception experiments were carried out, showing that the function-based identification of the peak categories is not only influenced by peak synchronization, but also by peak shape and height. While the complete spectrum of findings is not covered by the current phonological modelling, the findings corroborate the existence of all three categories in German intonation and support the idea that the timing of the peak movements with regard to the accented vowel is important for their perceptual differentiation.

  19. Final height and gonad function after total body irradiation during childhood.

    PubMed

    Couto-Silva, A-C; Trivin, C; Esperou, H; Michon, J; Baruchel, A; Lemaire, P; Brauner, R

    2006-09-01

    Short stature and gonad failure can be a side effect of total body irradiation (TBI). The purpose of the study was to evaluate the factors influencing final height and gonad function after TBI. Fifty young adults given TBI during childhood were included. Twenty-seven had been treated with growth hormone (GH). Those given single 10 Grays (Gy) or fractionated 12 Gy TBI had similar characteristics, GH peaks, final heights and gonad function. After the end of GH treatment, 11/20 patients evaluated had GH peak >10 microg/l. Final height was <-2s.d. in 29 (58%). The height loss between TBI and final height (2.4+/-1.1 s.d.) was greater in those who were younger when irradiated (P<0.0001). When the GH-treated and -untreated patients were analyzed separately, this loss was correlated with the age at TBI at 4-8 years for the GH-treated and at 6-8 years for the untreated. Boys showed negative correlations between testicular volume and plasma follicle-stimulating hormone (FSH, P=0.0008) and between plasma FSH and inhibin B (P=0.005) concentrations. We concluded that the indications for GH treatment should be mainly based on the age at irradiation, taking into account the GH peak. The plasma FSH and inhibin B concentrations may predict sperm function. Published online 31 July 2006.

  20. Peak bone mass and patterns of change in total bone mineral density and bone mineral contents from childhood into young adulthood

    PubMed Central

    Lu, Juan; Shin, Yongyun; Yen, Miao-Shan; Sun, Shumei S.

    2014-01-01

    The literature has not reached a consensus on the age when peak bone mass is achieved. This study examines growth patterns of TBMC and TBMD, peak bone mass, effect of concurrent anthropometry measures and physical activity on growth patterns in a sample of 312 white males and 343 females aged eight to 30 years. We analyzed data from participants enrolled in Fels Longitudinal Study. Descriptive analysis was used to ascertain characteristics of participants and growth patterns of TBMC and TBMD. Mixed effects models were applied to predict ages at attainment of peak TBMC and TBMD and assess effects of height, weight, BMI and habitual physical activity on the attainment. Significant differences between sexes were observed for measures of TBMC and TBMD, and differences varied with age. For females, predicted median ages at peak TBMC and TBMD attainments are 21.96 (IQR: 21.81–22.21) and 22.31 (IQR: 21.95–22.59) years, respectively. For males, predicted median ages are 23.34 (IQR: 24.34–26.19) and 26.86 (IQR: 25.14–27.98) respectively. For females, height, weight and BMI, but not physical activity, had significant influences on attainment of TBMC and TBMD (P <0.01). For males, weight and BMI, but not height and physical activity, exerted significant influence on attainment of TBMC and TBMD (P<0.01), and also modified correlations between age and peak TBMC and TBMD. Our results suggest that (1) for both sexes, trajectories of TBMC and TBMD follow a curvilinear pattern between ages eight and 30 years; (2) predicted ages at peak TBMC and TBMD are from early to late 20s for both white males and females, with females reaching their peaks significantly earlier than males; and (3) concurrent height, weight and BMI, but not habitual physical activity, exert significant effects on trajectories of TBMC and TBMD. PMID:25440183

  1. Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in Xerta (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Ruiz-Bellet, Josep Lluís; Castelltort, Xavier; Balasch, J. Carles; Tuset, Jordi

    2017-02-01

    There is no clear, unified and accepted method to estimate the uncertainty of hydraulic modelling results. In historical floods reconstruction, due to the lower precision of input data, the magnitude of this uncertainty could reach a high value. With the objectives of giving an estimate of the peak flow error of a typical historical flood reconstruction with the model HEC-RAS and of providing a quick, simple uncertainty assessment that an end user could easily apply, the uncertainty of the reconstructed peak flow of a major flood in the Ebro River (NE Iberian Peninsula) was calculated with a set of local sensitivity analyses on six input variables. The peak flow total error was estimated at ±31% and water height was found to be the most influential variable on peak flow, followed by Manning's n. However, the latter, due to its large uncertainty, was the greatest contributor to peak flow total error. Besides, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation; all three methods gave similar peak flows. Manning's equation gave almost the same result than HEC-RAS. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed.

  2. Oceanic-wave-measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T.

    1980-01-01

    Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.

  3. Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3-101 years.

    PubMed

    McKay, Marnee J; Baldwin, Jennifer N; Ferreira, Paulo; Simic, Milena; Vanicek, Natalie; Wojciechowski, Elizabeth; Mudge, Anita; Burns, Joshua

    2017-10-01

    The purpose of this study was to establish normative reference values for spatiotemporal and plantar pressure parameters, and to investigate the influence of demographic, anthropometric and physical characteristics. In 1000 healthy males and females aged 3-101 years, spatiotemporal and plantar pressure data were collected barefoot with the Zeno™ walkway and Emed ® platform. Correlograms were developed to visualise the relationships between widely reported spatiotemporal and pressure variables with demographic (age, gender), anthropometric (height, mass, waist circumference) and physical characteristics (ankle strength, ankle range of motion, vibration perception) in children aged 3-9 years, adolescents aged 10-19 years, adults aged 20-59 years and older adults aged over 60 years. A comprehensive catalogue of 31 spatiotemporal and pressure variables were generated from 1000 healthy individuals. The key findings were that gait velocity was stable during adolescence and adulthood, while children and older adults walked at a comparable slower speed. Peak pressures increased during childhood to older adulthood. Children demonstrated highest peak pressures beneath the rearfoot whilst adolescents, adults and older adults demonstrated highest pressures at the forefoot. Main factors influencing spatiotemporal and pressure parameters were: increased age, height, body mass and waist circumference, as well as ankle dorsiflexion and plantarflexion strength. This study has established whole of life normative reference values of widely used spatiotemporal and plantar pressure parameters, and revealed changes to be expected across the lifespan. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Changes in pitch height elicit both language universal and language dependent changes in neural representation of pitch in the brainstem and auditory cortex

    PubMed Central

    Krishnan, Ananthanarayan; Suresh, Chandan H.; Gandour, Jackson T.

    2017-01-01

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on i) neural responses to variations in pitch height, ii) presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na–Pb and Pb–Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na–Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. PMID:28108254

  5. Changes in pitch height elicit both language-universal and language-dependent changes in neural representation of pitch in the brainstem and auditory cortex.

    PubMed

    Krishnan, Ananthanarayan; Suresh, Chandan H; Gandour, Jackson T

    2017-03-27

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Height Dependence of Plasma Properties of a Dark Lane and a Cool Loop in a Solar Limb Active Region Observed by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, K.; Imada, S.; Moon, Y.; Lee, J.

    2013-12-01

    We investigate spectral properties of a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in coronal spectral lines and rooted on a bright point. We determine their electron densities, Doppler velocities, and non-thermal velocities with height over the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Fe XII and the scale height temperatures of the dark lane from each spectral lines are much lower than their peak formation temperatures. The non-thermal velocity in the cool loop slightly decreases along the loop while that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  7. The Lumbar Lordosis in Males and Females, Revisited

    PubMed Central

    Hay, Ori; Dar, Gali; Abbas, Janan; Stein, Dan; May, Hila; Masharawi, Youssef; Peled, Nathan; Hershkovitz, Israel

    2015-01-01

    Background Whether differences exist in male and female lumbar lordosis has been debated by researchers who are divided as to the nature of variations in the spinal curve, their origin, reasoning, and implications from a morphological, functional and evolutionary perspective. Evaluation of the spinal curvature is constructive in understanding the evolution of the spine, as well as its pathology, planning of surgical procedures, monitoring its progression and treatment of spinal deformities. The aim of the current study was to revisit the nature of lumbar curve in males and females. Methods Our new automated method uses CT imaging of the spine to measure lumbar curvature in males and females. The curves extracted from 158 individuals were based on the spinal canal, thus avoiding traditional pitfalls of using bone features for curve estimation. The model analysis was carried out on the entire curve, whereby both local and global descriptors were examined in a single framework. Six parameters were calculated: segment length, curve length, curvedness, lordosis peak location, lordosis cranial peak height, and lordosis caudal peak height. Principal Findings Compared to males, the female spine manifested a statistically significant greater curvature, a caudally located lordotic peak, and greater cranial peak height. As caudal peak height is similar for males and females, the illusion of deeper lordosis among females is due partially to the fact that the upper part of the female lumbar curve is positioned more dorsally (more backwardly inclined). Conclusions Males and females manifest different lumbar curve shape, yet similar amount of inward curving (lordosis). The morphological characteristics of the female spine were probably developed to reduce stress on the vertebral elements during pregnancy and nursing. PMID:26301782

  8. Gender, Vertical Height and Horizontal Distance Effects on Single-Leg Landing Kinematics: Implications for Risk of non-contact ACL Injury.

    PubMed

    Ali, Nicholas; Rouhi, Gholamreza; Robertson, Gordon

    2013-01-01

    There is a lack of studies investigating gender differences in whole-body kinematics during single-leg landings from increasing vertical heights and horizontal distances. This study determined the main effects and interactions of gender, vertical height, and horizontal distance on whole-body joint kinematics during single-leg landings, and established whether these findings could explain the gender disparity in non-contact anterior cruciate ligament (ACL) injury rate. Recreationally active males (n=6) and females (n=6) performed single-leg landings from a takeoff deck of vertical height of 20, 40, and 60 cm placed at a horizontal distance of 30, 50 and 70 cm from the edge of a force platform, while 3D kinematics and kinetics were simultaneously measured. It was determined that peak vertical ground reaction force (VGRF) and the ankle flexion angle exhibited significant gender differences (p=0.028, partial η(2)=0.40 and p=0.035, partial η(2)=0.37, respectively). Peak VGRF was significantly correlated to the ankle flexion angle (r= -0.59, p=0.04), hip flexion angle (r= -0.74, p=0.006), and trunk flexion angle (r= -0.59, p=0.045). Peak posterior ground reaction force (PGRF) was significantly correlated to the ankle flexion angle (r= -0.56, p=0.035), while peak knee abduction moment was significantly correlated to the knee flexion angle (r= -0.64, p=0.03). Rearfoot landings may explain the higher ACL injury rate among females. Higher plantar-flexed ankle, hip, and trunk flexion angles were associated with lower peak ground reaction forces, while higher knee flexion angle was associated with lower peak knee abduction moment, and these kinematics implicate reduced risk of non-contact ACL injury.

  9. The pattern of facial skeletal growth and its relationship to various common indexes of maturation.

    PubMed

    Mellion, Zachary J; Behrents, Rolf G; Johnston, Lysle E

    2013-06-01

    Sequential stages in the development of the hand, wrist, and cervical vertebrae commonly are used to assess maturation and predict the timing of the adolescent growth spurt. This approach is predicated on the idea that forecasts based on skeletal age must, of necessity, be superior to those based on chronologic age. This study was undertaken to test this reasonable, albeit largely unproved, assumption in a large, longitudinal sample. Serial records of 100 children (50 girls, 50 boys) were chosen from the files of the Bolton-Brush Growth Study Center in Cleveland, Ohio. The 100 series were 6 to 11 years in length, a span that was designed to encompass the onset and the peak of the adolescent facial growth spurt in each subject. Five linear cephalometric measurements (S-Na, Na-Me, PNS-A, S-Go, Go-Pog) were summed to characterize general facial size; a sixth (Co-Gn) was used to assess mandibular length. In all, 864 cephalograms were traced and analyzed. For most years, chronologic age, height, and hand-wrist films were available, thereby permitting various alternative methods of maturational assessment and prediction to be tested. The hand-wrist and the cervical vertebrae films for each time point were staged. Yearly increments of growth for stature, face, and mandible were calculated and plotted against chronologic age. For each subject, the actual age at onset and peak for stature and facial and mandibular size served as the gold standards against which key ages inferred from other methods could be compared. On average, the onset of the pubertal growth spurts in height, facial size, and mandibular length occurred in girls at 9.3, 9.8, and 9.5 years, respectively. The difference in timing between height and facial size growth spurts was statistically significant. In boys, the onset for height, facial size, and mandibular length occurred more or less simultaneously at 11.9, 12.0, and 11.9 years, respectively. In girls, the peak of the growth spurt in height, facial size, and mandibular length occurred at 10.9, 11.5, and 11.5 years. Height peaked significantly earlier than both facial size and mandibular length. In boys, the peak in height occurred slightly (but statistically significantly) earlier than did the peaks in the face and mandible: 14.0, 14.4, and 14.3 years. Based on rankings, the hand-wrist stages provided the best indication (lowest root mean squared error) that maturation had advanced to the peak velocity stage. Chronologic age, however, was nearly as good, whereas the vertebral stages were consistently the worst. Errors from the use of statural onset to predict the peak of the pubertal growth spurt in height, facial size, and mandibular length were uniformly lower than for predictions based on the cervical vertebrae. Chronologic age, especially in boys, was a close second. The common assumption that onset and peak occur at ages 12 and 14 years in boys and 10 and 12 years in girls seems correct for boys, but it is 6 months to 1 year late for girls. As an index of maturation, hand-wrist skeletal ages appear to offer the best indication that peak growth velocity has been reached. Of the methods tested here for the prediction of the timing of peak velocity, statural onset had the lowest errors. Although mean chronologic ages were nearly as good, stature can be measured repeatedly and thus might lead to improved prediction of the timing of the adolescent growth spurt. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. Response analysis of TLD-300 dosimeters in heavy-particle beams.

    PubMed

    Loncol, T; Hamal, M; Denis, J M; Vynckier, S; Wambersie, A; Scalliet, P

    1996-09-01

    In vivo dosimetry is recommended as part of the quality control procedure for treatment verification in radiation therapy. Using thermoluminescence, such controls are planned in the p(65) + Be neutron and 85 MeV proton beams produced at the cyclotron at Louvain-La-Neuve and dedicated to therapy applications. A preliminary study of the peak 3 (150 degrees C) and peak 5 (250 degrees C) response of CaF2:Tm (TLD-300) to neutron and proton beams aimed to analyse the effect of different radiation qualities on the dosimetric behaviour of the detector irradiated in phantom. To broaden the range of investigation, the study was extended to an experimental 12C heavy ion beam (95 MeV/nucleon). The peak 3 and 5 sensitivities in the neutron beam, compared to 60Co, varied little with depth. A major change of peak 5 sensitivity was observed for samples positioned under five leaves of the multi-leaf collimator. While peak 3 sensitivity was constant with depth in the unmodulated proton beam, peak 5 sensitivity increased by 15%. Near the Bragg peak, peak 3 showed the highest decrease of sensitivity. In the modulated proton beam, the sensitivity values were not significantly smaller than those measured in the unmodulated beam far from the Bragg peak region. The ratio of the heights of peak 3 and peak 5 decreased by 70% from the 60Co reference radiation to the 12C heavy-ion beam. This parameter was strongly correlated with the change of radiation quality.

  11. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): Bottomside Parameterization

    NASA Astrophysics Data System (ADS)

    Themens, D. R.; Jayachandran, P. T.

    2017-12-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes. These inaccuracies are believed to stem, at least in part, from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. Using a spherical cap harmonic expansion to represent horizontal and diurnal variability and a Fourier expansion in day of year to represent seasonal variations, we have developed a new model of the bottomside ionosphere's electron density for the high latitude ionosphere, above 50N geomagnetic latitude. For the peak heights of the E and F1 layers (hmE and hmF1, respectively), current standards use a constant value for hmE and either use a single-parameter model for hmF1 (IRI) or scale hmF1 with the F peak (NeQuick). For E-CHAIM, we have diverged from this convention to account for the greater variability seen in these characteristics at high latitudes, opting to use a full spherical harmonic model description for each of these characteristics. For the description of the bottomside vertical electron density profile, we present a single-layer model with altitude-varying scale height. The scale height function is taken as the sum three scale height layer functions anchored to the F2 peak, hmF1, and hmE. This parameterization successfully reproduces the structure of the various bottomside layers while ensuring that the resulting electron density profile is free of strong vertical gradient artifacts and is doubly differentiable.

  12. Water level observations in mangrove swamps during two hurricanes in Florida

    USGS Publications Warehouse

    Krauss, K.W.; Doyle, T.W.; Doyle, T.J.; Swarzenski, C.M.; From, A.S.; Day, Richard H.; Conner, W.H.

    2009-01-01

    Little is known about the effectiveness of mangroves in suppressing water level heights during landfall of tropical storms and hurricanes. Recent hurricane strikes along the Gulf Coast of the United States have impacted wetland integrity in some areas and hastened the need to understand how and to what degree coastal forested wetlands confer protection by reducing the height of peak water level. In recent years, U.S. Geological Survey Gulf Coast research projects in Florida have instrumented mangrove sites with continuous water level recorders. Our ad hoc network of water level recorders documented the rise, peak, and fall of water levels (?? 0.5 hr) from two hurricane events in 2004 and 2005. Reduction of peak water level heights from relatively in-line gages associated with one storm surge event indicated that mangrove wetlands can reduce water level height by as much as 9.4 cm/km inland over intact, relatively unchannelized expanses. During the other event, reductions were slightly less for mangroves along a river corridor. Estimates of water level attenuation were within the range reported in the literature but erred on the conservative side. These synoptic data from single storm events indicate that intact mangroves may support a protective role in reducing maximum water level height associated with surge.

  13. Effect of root planing on surface topography: an in-vivo randomized experimental trial.

    PubMed

    Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F

    2015-04-01

    The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p < 0.05). Absolute height was lower in the VOU group than in the untreated ( p = 0.0026) and PU (p = 0.045) groups. Surface morphology was similar after the three treatments and was less irregular than in the untreated group. Values for the remaining roughness parameters were similar among all treatment groups ( p > 0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Bilateral contact ground reaction forces and contact times during plyometric drop jumping.

    PubMed

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C

    2010-10-01

    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  15. Investigation of the Spectroscopic Information on Functional Groups Related to Carbohydrates in Different Morphological Fractions of Corn Stover and Their Relationship to Nutrient Supply and Biodegradation Characteristics.

    PubMed

    Xin, Hangshu; Ding, Xue; Zhang, Liyang; Sun, Fang; Wang, Xiaofan; Zhang, Yonggen

    2017-05-24

    The objectives of this study were to investigate (1) nutritive values and biodegradation characteristics and (2) mid-IR spectroscopic features within the regions associated with carbohydrate functional groups (including cellulosic component (CELC), structural carbohydrate (STCHO), and total carbohydrate (CHO)) in different morphological fractions of corn stover. Furthermore, correlation and regression analyses were also applied to determine the relationship between nutritional values and spectroscopic parameters. The results showed that different morphological sections of corn stover had different nutrient supplies, in situ biodegradation characteristics, and spectral structural features within carbohydrate regions. The stem rind and ear husk were both high in fibrous content, which led to the lowest effective degradabilities (ED) among these stalk fractions. The ED values of NDF were ranked ear husk > stem pith > leaf blade > leaf sheath > whole plant > stem rind. Intensities of peak height and area within carbohydrate regions were relatively more stable compared with spectral ratio profiles. Significant difference was found only in peak area intensity of CELC, which was at the highest level for stem rind, followed by stem pith, leaf sheath, whole plant, leaf blade, and ear husk. Correlation results showed that changes in some carbohydrate spectral ratios were highly associated with carbohydrate chemical profiles and in situ rumen degradation kinetics. Among the various carbohydrate molecular spectral parameters that were tested in multiple regression analysis, CHO height ratios, and area ratios of CELC:CHO and CELC:STCHO as well as CELC area were mostly sensitive to nutrient supply and biodegradation characteristics in different morphological fractions of corn stover.

  16. Effect of area ratio on the performance of a 5.5:1 pressure ratio centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Schumann, L. F.; Clark, D. A.; Wood, J. R.

    1986-01-01

    A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/sec was tested with a vaneless diffuser for a range of design point impeller area ratios from 2.322 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.97 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower value of area ratio of approximately 2.55. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested.

  17. Probabilistic peak detection in CE-LIF for STR DNA typing.

    PubMed

    Woldegebriel, Michael; van Asten, Arian; Kloosterman, Ate; Vivó-Truyols, Gabriel

    2017-07-01

    In this work, we present a novel probabilistic peak detection algorithm based on a Bayesian framework for forensic DNA analysis. The proposed method aims at an exhaustive use of raw electropherogram data from a laser-induced fluorescence multi-CE system. As the raw data are informative up to a single data point, the conventional threshold-based approaches discard relevant forensic information early in the data analysis pipeline. Our proposed method assigns a posterior probability reflecting the data point's relevance with respect to peak detection criteria. Peaks of low intensity generated from a truly existing allele can thus constitute evidential value instead of fully discarding them and contemplating a potential allele drop-out. This way of working utilizes the information available within each individual data point and thus avoids making early (binary) decisions on the data analysis that can lead to error propagation. The proposed method was tested and compared to the application of a set threshold as is current practice in forensic STR DNA profiling. The new method was found to yield a significant improvement in the number of alleles identified, regardless of the peak heights and deviation from Gaussian shape. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tunable negative differential resistance in planar graphene superlattice resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Sattari-Esfahlan, S. M.; Fouladi-Oskuei, J.; Shojaei, S.

    2017-04-01

    Here, we study the negative differential resistance (NDR) of Dirac electrons in biased planar graphene superlattice (PGSL) and investigate the transport characteristics by adopted transfer matrix method within Landauer-Buttiker formalism. Our model device is based on one-dimensional Kronig-Penney type electrostatic potential in monolayer graphene deposited on a substrate, where the bias voltage is applied by two electrodes in the left and right. At Low bias voltages, we found that NDR appears due to breaking of minibands to Wannier-Stark ladders (WSLs). At the critical bias voltage, delocalization appeared by WS states leads to tunneling peak current in current-voltage (I-V) characteristics. With increasing bias voltage, crossing of rungs from various WSL results in multi-peak NDR. The results demonstrate that the structure parameters like barrier/well thickness and barrier height have remarkable effect on I-V characteristics of PGSL. In addition, Dirac gap enhances peak to valley (PVR) value due to suppressing Klein tunneling. Our results show that the tunable PVR in PGSL resonant tunneling diode can be achievable by structure parameters engineering. NDR at ultra-low bias voltages, such as 100 mV, with giant PVR of 20 is obtained. In our device, the multiple same NDR peaks with ultra-low bias voltage provide promising prospect for multi-valued memories and the low power nanoelectronic tunneling devices.

  19. Effect of respiratory and cardiac gating on the major diffusion-imaging metrics

    PubMed Central

    Hamaguchi, Hiroyuki; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki

    2016-01-01

    The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics—MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain—varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. PMID:27073115

  20. Effect of fiber post length and abutment height on fracture resistance of endodontically treated premolars prepared for zirconia crowns.

    PubMed

    Lin, Jie; Matinlinna, Jukka Pekka; Shinya, Akikazu; Botelho, Michael George; Zheng, Zhiqiang

    2018-04-01

    The purpose of this study was to compare the fracture resistance, mode of fracture, and stress distribution of endodontically treated teeth prepared with three different fiber post lengths and two different abutment heights, using both experimental and finite element (FE) approaches. Forty-eight human maxillary premolars with two roots were selected and endodontically treated. The teeth were randomly distributed into six equally sized groups (n = 8) with different combinations of post lengths (7.5, 11, and 15 mm) and abutment heights (3 and 5 mm). All the teeth restored with glass fiber post (Rely X Fiber Post, 3M ESPE, USA) and a full zirconia crown. All the specimens were thermocycled and then loaded to failure at an oblique angle of 135°. Statistical analysis was performed for the effects of post length and abutment height on failure loads using ANOVA and Tukey's honestly significant difference test. In addition, corresponding FE models of a premolar restored with a glass fiber post were developed to examine mechanical responses. The factor of post length (P < 0.01) had a significant effect on failure load. The abutment height (P > 0.05) did not have a significant effect on failure load. The highest mean fracture resistance was recorded for the 15 mm post length and 5 mm abutment height test group, which was significantly more resistant to fracture than the 7.5 mm post and 5 mm abutment height group (P < 0.05). The FE analysis showed the peak compression and tension stress values of 7.5 mm post length were higher than that of 11 and 15 mm post length. The stress value of remaining tooth decreased as the post length was increased. Within the limitations of this experimental and FE analysis study, increasing the post length inside the root of endodontically treated premolar teeth restored with glass-fiber posts increase the fracture resistance to non-axial forces. Failure mode is more favorable with reduced abutment heights.

  1. The height of electron content changes in the ionosphere from ATS 6 beacon data

    NASA Technical Reports Server (NTRS)

    Davies, K.; Heron, M. L.

    1984-01-01

    A technique is described which uses relative changes in Faraday rotation and modulation phase of satellite radio signals to determine the median height of the enhancement (or depletion) in the electron density of the ionosphere. During the post sunrise formation of the F layer the incremental layers have a median height of around 210 km (+ or - 40) and in the afternoon the decremental median is above the peak at 340 km (+ or - 40) on a winter day. A winter nighttime enhancement just after midnight appears as a thick layer extending upwards from the peak, with a median height at about 730 km. The method applies to large scale irregularities but not to small, dense, scintillation-causing irregularities for which Faraday and modulation phases do not represent the total electron content.

  2. Accurate prediction of cardiorespiratory fitness using cycle ergometry in minimally disabled persons with relapsing-remitting multiple sclerosis.

    PubMed

    Motl, Robert W; Fernhall, Bo

    2012-03-01

    To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Cathodic Stripping Analysis Complicated by Adsorption Processes: Determination of 2-Thiouracil at a Rotating Silver Disk Electrode,

    DTIC Science & Technology

    1983-01-01

    concentration, poten- tial sweep rate, rotation speed, deposition potential and other parameters -on the shape and height of the stripping peaks have...concentration, potential sweep rate, rotation speed, deposition potential and other parameters on the shape and height of the stripping peaks have been...of the greater surface area of a solid electrode compared to a dropping mercury electrode. Cathodic stripping voltametry at a rotating silver disk

  4. Peak fitting and integration uncertainties for the Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Othman, A.; Haskins, J. D.; Allan, J. D.; Sierau, B.; Worsnop, D. R.; Lohmann, U.; Mensah, A. A.

    2015-04-01

    The errors inherent in the fitting and integration of the pseudo-Gaussian ion peaks in Aerodyne High-Resolution Aerosol Mass Spectrometers (HR-AMS's) have not been previously addressed as a source of imprecision for these instruments. This manuscript evaluates the significance of these uncertainties and proposes a method for their estimation in routine data analysis. Peak-fitting uncertainties, the most complex source of integration uncertainties, are found to be dominated by errors in m/z calibration. These calibration errors comprise significant amounts of both imprecision and bias, and vary in magnitude from ion to ion. The magnitude of these m/z calibration errors is estimated for an exemplary data set, and used to construct a Monte Carlo model which reproduced well the observed trends in fits to the real data. The empirically-constrained model is used to show that the imprecision in the fitted height of isolated peaks scales linearly with the peak height (i.e., as n1), thus contributing a constant-relative-imprecision term to the overall uncertainty. This constant relative imprecision term dominates the Poisson counting imprecision term (which scales as n0.5) at high signals. The previous HR-AMS uncertainty model therefore underestimates the overall fitting imprecision. The constant relative imprecision in fitted peak height for isolated peaks in the exemplary data set was estimated as ~4% and the overall peak-integration imprecision was approximately 5%. We illustrate the importance of this constant relative imprecision term by performing Positive Matrix Factorization (PMF) on a~synthetic HR-AMS data set with and without its inclusion. Finally, the ability of an empirically-constrained Monte Carlo approach to estimate the fitting imprecision for an arbitrary number of known overlapping peaks is demonstrated. Software is available upon request to estimate these error terms in new data sets.

  5. Collar height and heel counter-stiffness for ankle stability and athletic performance in basketball.

    PubMed

    Liu, Hui; Wu, Zitian; Lam, Wing-Kai

    2017-01-01

    This study examined the effects of collar height and heel counter-stiffness of basketball shoes on ankle stability during sidestep cutting and athletic performance. 15 university basketball players wore customized shoes with different collar heights (high and low) and heel counter-stiffness (regular, stiffer and stiffest) for this study. Ankle stability was evaluated in sidestep cutting while athletic performance evaluated in jumping and agility tasks. All variables were analysed using two-way repeated ANOVA. Results showed shorter time to peak ankle inversion for both high collar and stiff heel counter conditions (P < 0.05), while smaller initial ankle inversion angle, peak inversion velocity and total range of inversion for wearing high collar shoes (P < 0.05). No shoe differences were found for performance variables. These findings imply that the collar height might play a larger role in lateral stability than heel counter-stiffness, while both collar height and counter-stiffness have no effect on athletic performance.

  6. Two Distinct Types of CME-flare Relationships Based on SOHO and STEREO Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Soojeong; Moon, Yong-Jae; Kim, Rok-Soon

    In this paper, we present two distinct types of coronal mass ejection (CME)-flare relationships according to their observing time differences using 107 events from 2010 to 2013. The observing time difference, Δ T , is defined as flare peak time minus CME first appearance time at Solar Terrestrial Relations Observatory ( STEREO ) COR1 field of view. There are 41 events for group A (Δ T < 0) and 66 events for group B (Δ T ≥ 0). We compare CME 3D parameters (speed and kinetic energy) based on multi-spacecraft data ( SOlar and Heliospheric Observatory ( SOHO ) andmore » STEREO A and B ) and their associated flare properties (peak flux, fluence, and duration). Our main results are as follows. First, there are better relationships between CME and flare parameters for group B than that of group A. In particular, CME 3D kinetic energy for group B is well correlated with flare fluence with the correlation coefficient of 0.67, which is much stronger than that (cc = 0.31) of group A. Second, the events belonging to group A have short flare durations of less than 1 hr (mean = 21 minutes), while the events for group B have longer durations up to 4 hr (mean = 81 minutes). Third, the mean value of height at peak speed for group B is 4.05 Rs, which is noticeably higher than that of group A (1.89 Rs). This is well correlated with the CME acceleration duration (cc = 0.75). A higher height at peak speed and a longer acceleration duration of CME for group B could be explained by the fact that magnetic reconnections for group B continuously occur for a longer time than those for group A.« less

  7. Comparison of two fractal interpolation methods

    NASA Astrophysics Data System (ADS)

    Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo

    2017-03-01

    As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has strong periodicity, which is suitable for simulating periodic surface.

  8. QCD phase transition with chiral quarks and physical quark masses.

    PubMed

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  9. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    PubMed

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman, tabun and nitrogen mustards were higher. Some CWA simulants and organic solvents gave the ion peaks eluting at the similar positions of the CWAs, resulting in false positive alarms. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of recombinant human growth hormone in the treatment of dwarfism and relationship between IGF-1, IGFBP-3 and thyroid hormone

    PubMed Central

    Ren, Shanxiang; Nie, Yuxiang; Wang, Aihong

    2016-01-01

    The effects of recombinant human growth hormone (rhGH) in the treatment of dwarfism and the relationship between insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3 and thyroid hormone were examined in the present study. For this purpose, 66 patients diagnosed with dwarfism were selected retrospectively, with 36 cases of growth hormone deficiency (GHD) and 30 cases of idiopathic short stature (ISS). The therapeutic dose of GHD 0.10 IU/kg·day and ISS 0.15 IU/kg·day were injected subcutaneously every night before sleep until adulthood. The average follow-up was 5 years, and the results were evaluated and measured every 3 months, including height, BA, secondary test of growth hormone (GH peak), IGF-1, IGFBP-3 and thyroid hormone (FT3, FT4 and TSH). After treatment, the height, BA, GH peak, IGF-A and IGFBP-3 of the GHD group were all increased, and the differences were statistically significant (P<0.05), while FT3, FT4 and TSH had no significant change (P<0.05). The height and BA increased and the differences were statistically significant (P<0.05). The indexes of the ISS group were not statistically significant (P>0.05). The results of the Pearson-related analysis suggested that GH peak of the GHD group, IGF-1 and IGFBP-3 were positively associated with height (P<0.05), and had no relationship with BA (P<0.05). None of the above indexes of the ISS group had an obvious correlation with height and BA (P>0.05). rhGH was effective for GHD and ISS, with the GHD effect being positively associated with the GH peak, IGF-1 and IGFBP-3. ISS had no obvious relationship with GH peak, IGF-1 and IGFBP-3 although other influencing factors may be involved. PMID:28105090

  11. Effects of recombinant human growth hormone in the treatment of dwarfism and relationship between IGF-1, IGFBP-3 and thyroid hormone.

    PubMed

    Ren, Shanxiang; Nie, Yuxiang; Wang, Aihong

    2016-12-01

    The effects of recombinant human growth hormone (rhGH) in the treatment of dwarfism and the relationship between insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3 and thyroid hormone were examined in the present study. For this purpose, 66 patients diagnosed with dwarfism were selected retrospectively, with 36 cases of growth hormone deficiency (GHD) and 30 cases of idiopathic short stature (ISS). The therapeutic dose of GHD 0.10 IU/kg·day and ISS 0.15 IU/kg·day were injected subcutaneously every night before sleep until adulthood. The average follow-up was 5 years, and the results were evaluated and measured every 3 months, including height, BA, secondary test of growth hormone (GH peak), IGF-1, IGFBP-3 and thyroid hormone (FT3, FT4 and TSH). After treatment, the height, BA, GH peak, IGF-A and IGFBP-3 of the GHD group were all increased, and the differences were statistically significant (P<0.05), while FT3, FT4 and TSH had no significant change (P<0.05). The height and BA increased and the differences were statistically significant (P<0.05). The indexes of the ISS group were not statistically significant (P>0.05). The results of the Pearson-related analysis suggested that GH peak of the GHD group, IGF-1 and IGFBP-3 were positively associated with height (P<0.05), and had no relationship with BA (P<0.05). None of the above indexes of the ISS group had an obvious correlation with height and BA (P>0.05). rhGH was effective for GHD and ISS, with the GHD effect being positively associated with the GH peak, IGF-1 and IGFBP-3. ISS had no obvious relationship with GH peak, IGF-1 and IGFBP-3 although other influencing factors may be involved.

  12. Acute neuromuscular responses to short and long roundhouse kick striking paces in professional Muay Thai fighters.

    PubMed

    Cimadoro, Giuseppe; Mahaffey, Ryan; Babault, Nicolas

    2018-04-04

    Muay Thai fighters strongly rely on the use of the roundhouse kick due to its effectiveness (i.e. power) and implications on the final score. Therefore, different striking tempos at full power are used during training as a method to enhance kicking power. However, the neuromuscular responses are unknown. Thus, the goal of this study was to investigate neuromuscular responses to a single bout of shorter (every second = H1) and longer (every 3s = H3) kick striking time intervals, measured with the countermovement jump (CMJ). Nine professional Muay Thai fighters participated in this randomized, cross-over trial. CMJs were measured on force plates before and after (post 0min, post 5min, post 10min, post 20min and post 30min) two striking (1set x 20reps) conditions (H1; H3). Although no difference was observed between H1 and H3 values, neuromuscular fatigue parameters displayed different patterns over time. CMJ height decreased immediately after H3 striking (P<0.05), whereas for H1 condition CMJ height decreased from post20 as compared to baseline (P<0.05). Peak force in H3 condition was significantly lower at post10, post20 and post30 as compared to baseline. For H1, peak force values were lower than baseline only at post30. Peak power was significantly lower than baseline for both middle kick procedures. A slight but significant increase was observed at post5 for H3 condition, but decreased further post10 and remained constant during subsequent tests. In contrast, for H1 condition peak power remained unaffected after post10, whereas it decreased post20 and post30 minutes only when compared to post0. Results showed that both kick striking modes provoke comparable neuromuscular fatigue but H3 condition showed the potential to induce post activation potentiation. Muay Thai and conditioning coaches should focus on hard striking with both long and slow pacing during specific heavy bag or pad work.

  13. Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines

    NASA Technical Reports Server (NTRS)

    Ameri, A. A.; Steinthorsson, E.; Rigby, David L.

    1998-01-01

    Calculations were performed to assess the effect of the tip leakage flow on the rate of heat transfer to blade, blade tip and casing. The effect on exit angle and efficiency was also examined. Passage geometries with and without casing recess were considered. The geometry and the flow conditions of the GE-E 3 first stage turbine, which represents a modem gas turbine blade were used for the analysis. Clearance heights of 0%, 1%, 1.5% and 3% of the passage height were considered. For the two largest clearance heights considered, different recess depths were studied. There was an increase in the thermal load on all the heat transfer surfaces considered due to enlargement of the clearance gap. Introduction of recessed casing resulted in a drop in the rate of heat transfer on the pressure side but the picture on the suction side was found to be more complex for the smaller tip clearance height considered. For the larger tip clearance height the effect of casing recess was an orderly reduction in the suction side heat transfer as the casing recess height was increased. There was a marked reduction of heat load and peak values on the blade tip upon introduction of casing recess, however only a small reduction was observed on the casing itself. It was reconfirmed that there is a linear relationship between the efficiency and the tip gap height. It was also observed that the recess casing has a small effect on the efficiency but can have a moderating effect on the flow underturning at smaller tip clearances.

  14. Structure and dynamics of coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1995-01-01

    The Normal Incidence X-ray Telescope (NIXT) obtained a unique set of high resolution full disk solar images which were exposed simultaneously by X-rays in a passband at 63.5 A and by visible light. The perfect alignment of a photospheric visible light image with a coronal X-ray image enables us to present observations of X-ray intensity vs an accurately determined height above the visible limb. The height at which the observed X-ray intensity peak varies from 4000 km in active regions to 9000 km in quiet regions of the sun. The interpretation of the observations stems from the previously established fact that, for the coronal loops, emission in the NIXT bandpass peaks sharply just above the footpoints. Because there is not a sharp peak in the observed X-ray intensity vs off limb height, we conclude that the loop footpoints, when viewed at the limb, are obscured by absorption in chromospheric material along the line of sight. We calculate the X-ray intensity vs height predicted by a number of different idealizations of the solar atmosphere, and we compare these calculations with the observed X-ray intensity vs height. The calculations use existing coronal and chromospheric models. In order for the calculations to reproduce the observed off limb X-ray intensities, we are forced to assume an atmosphere in which the footpoints of coronal loops are interspersed along the line of sight with cooler chromospheric material extending to heights well above the loop footpoints. We argue that the absorption coefficient for NIXT X-rays by chromospheric material is roughly proportional to the neutral hydrogen density, and we estimate an average neutral hydrogen density and scale height implied by the data.

  15. The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes.

    PubMed

    Bloms, Lucas P; Fitzgerald, John S; Short, Martin W; Whitehead, James R

    2016-07-01

    Bloms, LP, Fitzgerald, JS, Short, MW, and Whitehead, JR. The effects of caffeine on vertical jump height and execution in collegiate athletes. J Strength Cond Res 30(7): 1855-1861, 2016-Caffeine ingestion elicits a variety of physiological effects that may be beneficial to maximal-intensity exercise performance, although its effectiveness and physical mechanism of action enhancing ballistic task performance are unclear. The purpose of this study was to examine the effects of caffeine ingestion on vertical jump height and jump execution in Division I collegiate athletes. The study used a single-blind, randomized, crossover design. Athletes (n = 25) consumed either caffeine (5 mg·kg) or placebo. After a 60-minute waiting period, athletes performed 3 squat jumps (SJ) and 3 countermovement jumps (CMJ) while standing on a force platform. Jump height and execution variables were calculated from mechanography data. In comparison with placebo, caffeine increased SJ height (32.8 ± 6.2 vs. 34.5 ± 6.7 cm; p = 0.001) and CMJ height (36.4 ± 6.9 vs. 37.9 ± 7.4 cm; p = 0.001). Peak force (p = 0.032) and average rate of force development (p = 0.037) were increased during the CMJ in the caffeine trail compared with the control. Time to half peak force was the only execution variable improved with caffeine (p = 0.019) during the SJ. It seems that caffeine affects both height and execution of jumping. Our data indicate that the physical mechanism of jump enhancement is increased peak force production or rate of force development during jumping depending on technique. The physical mechanism of jump enhancement suggests that the ergogenic effects of caffeine may transfer to other ballistic tasks involving the lower-body musculature in collegiate athletes.

  16. Pulmonary function test in healthy school children of 8 to 14 years age in south Gujarat region, India

    PubMed Central

    Doctor, Tahera H.; Trivedi, Sangeeta S.; Chudasama, Rajesh K.

    2010-01-01

    Objective: To obtain reference values for FEV1, FVC, FEV1% and PEFR among children aged 8-14 years in south Gujarat region of India. Materials and Methods: This cross-sectional study was conducted among 655 normal healthy school children (408 boys and 247 girls) of Surat city aged 8 to 14 years studying in V to VII standard during November 2007 to April 2008. Height, weight, body surface area were measured. All included children were tested in a sitting position with the head straight after taking written consent from parents. Spirometry was done using the spirometer “Spirolab II” MIR 010. Spirometer used in the study facilitates the total valuation of lung function including forced vital capacity (FVC), forced expiratory volume in one second (FEV1), forced expiratory volume ratio in one second (FEV1%) and peak expiratory flow rate (PEFR). Results: FVC, FEV1 and PEFR were found to be statistically significant in the study groups. For FVC and FEV1, highest correlation was found with age in girls and height in boys. For FEV1%, significant negative correlation was found with age and height in both sexes, but positive correlation was found with surface area. Similarly, PEFR showed highest correlation with surface area in boys and girls. Conclusion: Variables such as FVC, FEV1 and PEFR show good positive correlation with height, age and body surface area in both sexes. There is a need to have regional values for the prediction of normal spirometric parameters in a country like India with considerable diversity. PMID:20931033

  17. New dye-labeled terminators for improved DNA sequencing patterns.

    PubMed Central

    Rosenblum, B B; Lee, L G; Spurgeon, S L; Khan, S H; Menchen, S M; Heiner, C R; Chen, S M

    1997-01-01

    We have used two new dye sets for automated dye-labeled terminator DNA sequencing. One set consists of four, 4,7-dichlororhodamine dyes (d-rhodamines). The second set consists of energy-transfer dyes that use the 5-carboxy-d-rhodamine dyes as acceptor dyes and the 5- or 6-carboxy isomers of 4'-aminomethylfluorescein as the donor dye. Both dye sets utilize a new linker between the dye and the nucleotide, and both provide more even peak heights in terminator sequencing than the dye-terminators consisting of unsubstituted rhodamine dyes. The unsubstituted rhodamine terminators produced electropherograms in which weak G peaks are observed after A peaks and occasionally C peaks. The number of weak G peaks has been reduced or eliminated with the new dye terminators. The general improvement in peak evenness improves accuracy for the automated base-calling software. The improved signal-to-noise ratio of the energy-transfer dye-labeled terminators combined with more even peak heights results in successful sequencing of high molecular weight DNA templates such as bacterial artificial chromosome DNA. PMID:9358158

  18. An Investigation Into the Relationship Between Maximum Isometric Strength and Vertical Jump Performance.

    PubMed

    Thomas, Christopher; Jones, Paul A; Rothwell, James; Chiang, Chieh Y; Comfort, Paul

    2015-08-01

    Research has demonstrated a clear relationship between dynamic strength and vertical jump (VJ) performance; however, the relationship of isometric strength and VJ performance has been studied less extensively. The aim of this study was to determine the relationship between isometric strength and performance during the squat jump (SJ) and countermovement jump (CMJ). Twenty-two male collegiate athletes (mean ± SD; age = 21.3 ± 2.9 years; height = 175.63 ± 8.23 cm; body mass = 78.06 ± 10.77 kg) performed isometric midthigh pulls (IMTPs) to assess isometric peak force (IPF), maximum rate of force development, and impulse (IMP) (I100, I200, and I300). Force-time data, collected during the VJs, were used to calculate peak velocity, peak force (PF), peak power (PP), and jump height. Absolute IMTP measures of IMP showed the strongest correlations with VJ PF (r = 0.43-0.64; p ≤ 0.05) and VJ PP (r = 0.38-0.60; p ≤ 0.05). No statistical difference was observed in CMJ height (0.33 ± 0.05 m vs. 0.36 ± 0.05 m; p = 0.19; ES = -0.29) and SJ height performance (0.29 ± 0.06 m vs. 0.33 ± 0.05 m; p = 0.14; ES = -0.34) when comparing stronger to weaker athletes. The results of this study illustrate that absolute IPF and IMP are related to VJ PF and PP but not VJ height. Because stronger athletes did not jump higher than weaker athletes, dynamic strength tests may be more practical methods of assessing the relationships between relative strength levels and dynamic performance in collegiate athletes.

  19. The influence of heel height on utilized coefficient of friction during walking.

    PubMed

    Blanchette, Mark G; Brault, John R; Powers, Christopher M

    2011-05-01

    Wearing high heel shoes has been associated with an increased potential for slips and falls. The association between wearing high heels and the increased potential for slipping suggests that the friction demand while wearing high heels may be greater when compared to wearing low heel shoes. The purpose of this study was to determine if heel height affects utilized friction (uCOF) during walking. A secondary purpose of this study was to compare kinematics at the ankle, knee, and hip that may explain uCOF differences among shoes with varied heel heights. Fifteen healthy women (mean age 24.5±2.5yrs) participated. Subjects walked at self-selected velocity under 3 different shoe conditions that varied in heel height (low: 1.27cm, medium: 6.35cm, and high: 9.53cm). Ground reaction forces (GRFs) were recorded using a force platform (1560Hz). Kinematic data were obtained using an 8 camera motion analysis system (120Hz). Utilized friction was calculated as the ratio of resultant shear force to vertical force. One-way repeated measures ANOVAs were performed to test for differences in peak uCOF, GRFs at peak uCOF and lower extremity joint angles at peak uCOF. On average, peak uCOF was found to increase with heel height. The increased uCOF observed in high heel shoes was related to an increase in the resultant shear force and decrease in the vertical force. Our results signify the need for proper public education and increased footwear industry awareness of how high heel shoes affect slip risk. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. MISR Aoba Volcano Plume

    Atmospheric Science Data Center

    2018-06-07

    ... in ongoing eruptions using parallax. View the MISR Active Aerosol Plume-Height (AAP) Project paper to see peak altitude and settling ... R. Kahn/NASA GSFC Access Project Paper: MISR Active Aerosol Plume-Height (AAP) Project Access and Order MISR Data and ...

  1. 49 CFR 572.32 - Head.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... midsagittal plane is vertical. EC01AU91.162 (4) Drop the head from the specified height by means that ensure... dropped from a height of 14.8 inches in accordance with paragraph (c) of this section, the peak resultant...

  2. 49 CFR 572.32 - Head.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... midsagittal plane is vertical. EC01AU91.162 (4) Drop the head from the specified height by means that ensure... dropped from a height of 14.8 inches in accordance with paragraph (c) of this section, the peak resultant...

  3. Hexamethonium produces both twitch and tetanic depression without fade in common African toad (Bufo regularis).

    PubMed

    Ajibola, E S; Adebayo, A O; Thomas, F C; Rahman, S A; Gbadebo, A M; Odunbaku, T A

    2009-12-01

    The study was designed to investigate the nature of the cholinoceptors at the sciatic nerve-gastrocnemius muscle junction of the common African toad (Bufo regularis). Using myographic technique, the twitch properties of the sciatic-gastrocnemius muscle preparation of the common African toad was studied. Both the twitch height and peak tetanic height were measured as a percentage of control. Hexamethonium at a concentration of 0.1 mM significantly [P<0.05] reduced the mean twitch height from 2.62 cm to 1.0 cm and mean peak tetanic height from 5.38 cm to 4.32 cm. Hexamethonium, however does not produce tetanic fade at the same concentration. We hypothesized that the cholinoceptors of the neuromuscular junction of the common African toad (Bufo regularis) resemble the developing synapse of African clawed toad (Xenopus laevis) and may contain muscarinic M1 autoreceptors at the pre juntional membrane.

  4. On the effectiveness of incorporating shear thickening fluid with fumed silica particles in hip protectors

    NASA Astrophysics Data System (ADS)

    Haris, A.; Goh, B. W. Y.; Tay, T. E.; Lee, H. P.; Rammohan, A. V.; Tan, V. B. C.

    2018-01-01

    The objective of this research is to develop a smart hip protector by incorporating shear thickening fluid (STF) into conventional foam hip protectors. The shear thickening properties of fumed silica particles dispersed in liquid polyethylene glycol (PEG) were determined from rheological tests. Dynamic drop tests, using a 4 kg drop platen at 0.5 m drop height, were conducted to study how STF improves energy absorption as compared to unfilled foam and PEG filled foam. The results show that PEG filled foam reduces the mean peak force transmitted by a further 55% and mean peak displacement by 32.5% as compared to the unfilled foam; the STF filled foam further reduces mean peak force and displacement by 15% and 41% respectively when compared to the PEG filled foam. At a displacement of 22 mm, the STF filled foam absorbs 7.4 times more energy than the PEG filled foam. The results of varying the drop mass and drop height show that the energy absorbed per unit displacement for STF filled foam is always higher than that of PEG filled foam. Finally, the effectiveness of a prototype of hip protector made from 15 mm thick STF filled foam in preventing hip fractures was studied under two different loading conditions: distributed load (plate drop test) and concentrated load (ball drop test). The results of the plate and ball drop tests show that among all hip protectors tested in this study, only the prototype can reduce the mean peak impact force to be lower than the force required to fracture a hip bone (3.1 kN) regardless of the type of loading. Moreover, the peak force of the prototype is about half of this value, suggesting thinner prototype could have been used instead. These findings show that STF is effective in improving the performance of hip protectors.

  5. Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization

    NASA Astrophysics Data System (ADS)

    Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.

    The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.

  6. Upper and Lower Body Muscle Power Increases After 3-Month Resistance Training in Overweight and Obese Men

    PubMed Central

    Zemková, Erika; Kyselovičová, Oľga; Jeleň, Michal; Kováčiková, Zuzana; Ollé, Gábor; Štefániková, Gabriela; Vilman, Tomáš; Baláž, Miroslav; Kurdiová, Timea; Ukropec, Jozef; Ukropcová, Barbara

    2016-01-01

    This study evaluates the effect of 3 months resistance and aerobic training on muscle strength and power in 17 male overweight and obese men. Subjects underwent either a resistance or aerobic training for a period of 3 months (three sessions per week). Peak isometric force, rate of force development, peak power and height of countermovement and squat jumps, reactive strength index, and mean power in the concentric phase of bench presses were all assessed prior to and after completing the training program. Results identified a significant increase of mean power during both countermovement bench presses at 30 kg (18.6%, p = .021), 40 kg (14.6%, p = .033), and 50 kg (13.1%, p = .042) and concentric-only bench presses at 30 kg (19.6%, p = .017) and 40 kg (13.9%, p = .037) after the resistance training. There was also a significant increase in the height of the jump (12.8%, p = .013), peak power (10.1%, p = .026), and peak velocity (9.7%, p = .037) during the countermovement jump and height of the jump (11.8%, p = .019), peak power (9.6%, p = .032), and peak velocity (9.5%, p = .040) during the squat jump. There were no significant changes in the reactive strength index, peak force, and the rate of force development after the resistance training. The aerobic group failed to show any significant improvements in these parameters. It may be concluded that 3 months of resistance training without caloric restriction enhances upper and lower body muscle power in overweight and obese men. PMID:27530821

  7. Hand grip strength and maximum peak expiratory flow: determinants of bone mineral density of adolescent students.

    PubMed

    Cossio-Bolaños, Marco; Lee-Andruske, Cynthia; de Arruda, Miguel; Luarte-Rocha, Cristian; Almonacid-Fierro, Alejandro; Gómez-Campos, Rossana

    2018-03-02

    Maintaining and building healthy bones during the lifetime requires a complicated interaction between a number of physiological and lifestyle factors. Our goal of this study was to analyze the association between hand grip strength and the maximum peak expiratory flow with bone mineral density and content in adolescent students. The research team studied 1427 adolescent students of both sexes (750 males and 677 females) between the ages of 11.0 and 18.9 years in the Maule Region of Talca (Chile). Weight, standing height, sitting height, hand grip strength (HGS), and maximum peak expiratory flow (PEF) were measured. Furthermore, bone mineral density (BMD) and total body bone mineral content (BMC) were determined by using the Dual-Energy X-Ray Absorptiometry (DXA). Hand grip strength and PEF were categorized in tertiles (lowest, middle, and highest). Linear regression was performed in steps to analyze the relationship between the variables. Differences between categories were determined through ANOVA. In males, the hand grip strength explained 18-19% of the BMD and 20-23% of the BMC. For the females, the percentage of variation occurred between 12 and 13% of the BMD and 17-18% of the BMC. The variation of PEF for the males was observed as 33% of the BMD and 36% of the BMC. For the females, both the BMD and BMC showed a variation of 19%. The HGS and PEF were divided into three categories (lowest, middle, and highest). In both cases, significant differences occurred in bone density health between the three categories. In conclusion, the HGS and the PEF related positively to the bone density health of both sexes of adolescent students. The adolescents with poor values for hand grip strength and expiratory flow showed reduced values of BMD and BMC for the total body. Furthermore, the PEF had a greater influence on bone density health with respect to the HGS of the adolescents of both sexes.

  8. Analysis of Wien filter spectra from Hall thruster plumes.

    PubMed

    Huang, Wensheng; Shastry, Rohit

    2015-07-01

    A method for analyzing the Wien filter spectra obtained from the plumes of Hall thrusters is derived and presented. The new method extends upon prior work by deriving the integration equations for the current and species fractions. Wien filter spectra from the plume of the NASA-300M Hall thruster are analyzed with the presented method and the results are used to examine key trends. The new integration method is found to produce results slightly different from the traditional area-under-the-curve method. The use of different velocity distribution forms when performing curve-fits to the peaks in the spectra is compared. Additional comparison is made with the scenario where the current fractions are assumed to be proportional to the heights of peaks. The comparison suggests that the calculated current fractions are not sensitive to the choice of form as long as both the height and width of the peaks are accounted for. Conversely, forms that only account for the height of the peaks produce inaccurate results. Also presented are the equations for estimating the uncertainty associated with applying curve fits and charge-exchange corrections. These uncertainty equations can be used to plan the geometry of the experimental setup.

  9. Effect of respiratory and cardiac gating on the major diffusion-imaging metrics.

    PubMed

    Hamaguchi, Hiroyuki; Tha, Khin Khin; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki

    2016-08-01

    The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics-MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain-varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. © The Author(s) 2016.

  10. A comparison of take-off dynamics during three different spikes, block and counter-movement jump in female volleyball players.

    PubMed

    Kabacinski, Jaroslae; Dworak, Lecholslaw B; Murawa, Michal; Ostarello, John; Rzepnicka, Agata; Maczynski, Jacek

    2016-12-01

    The purpose of the study was to compare the take-off dynamics in counter-movement jump (CMJ), volleyball block and spikes. Twelve professional female players, representing the highest volleyball league in Poland, participated in the laboratory tests. A force platform was used to record ground reaction force (GRF) during take-off phase in CMJ test, block from a run-up and spikes: front row attack, slide attack, back row attack. Vertical (v) GRF (peak: Rmax and integral mean: ), impulse of vGRF (J) and mechanical power (peak: Pmax and integral mean:

    ) were analyzed. Significant differences (P<0.05) of values of the dynamic parameters (Rmax, , J, Pmax, and

    ) were found between CMJ, block from a run-up and three different technique spikes. The highest values were recorded during take-off in the back row attack: peak vGRF (2.93±0.05 BW), integral mean vGRF (1.90±0.08 BW), impulse of vGRF (354±40 Ns), peak power (5320±918 W) and integral mean power (3604±683 W). Peak power (2608±217 W) and integral mean power (1417±94 W) were determined in CMJ test to evaluate the force-velocity capabilities of the players. In terms of GRF and the mechanical power, high level of dynamics in take-off influences positively the jumping height and significantly increases the effectiveness of attacks during spike of the ball over the block of the opponent.

  11. Multi-Pixel Photon Counters for Optofluidic Characterization of Particles and Microalgae

    PubMed Central

    Asrar, Pouya; Sucur, Marta; Hashemi, Nastaran

    2015-01-01

    We have developed an optofluidic biosensor to study microscale particles and different species of microalgae. The system is comprised of a microchannel with a set of chevron-shaped grooves. The chevrons allows for hydrodynamic focusing of the core stream in the center using a sheath fluid. The device is equipped with a new generation of highly sensitive photodetectors, multi-pixel photon counter (MPPC), with high gain values and an extremely small footprint. Two different sizes of high intensity fluorescent microspheres and three different species of algae (Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana) were studied. The forward scattering emissions generated by samples passing through the interrogation region were carried through a multimode fiber, located in 135 degree with respect to the excitation fiber, and detected by a MPPC. The signal outputs obtained from each sample were collected using a data acquisition system and utilized for further statistical analysis. Larger particles or cells demonstrated larger peak height and width, and consequently larger peak area. The average signal output (integral of the peak) for Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana falls between the values found for the 3.2 and 10.2 μm beads. Different types of algae were also successfully characterized. PMID:26075506

  12. Orbital and Physical Characteristics of Meter-sized Earth Impactors

    NASA Astrophysics Data System (ADS)

    Brown, Peter G.; Wiegert, Paul; Clark, David; Tagliaferri, Edward

    2015-11-01

    We have analysed the orbits and ablation characteristics in the atmosphere of more than 60 earth-impacting meteoroids of one meter in diameter or larger. Using heights at peak luminosity as a proxy for strength, we find that there is roughly an order of magnitude spread in the apparent strength of the population of meter-sized impactors at the Earth. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. We find ~10-15% of our objects have a probable cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, show evidence for the expected weaker than average structure compared to asteroidal bodies. Almost all impactors show peak brightness between 20-40 km altitude. Several events have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though all were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several NEOs in our population with the Taurid meteoroid complex. No other major meteoroid streams show linkages with the pre-atmospheric orbits of our meter-class impactors. Our events cover almost four orders of magnitude in mass, but no trend in height of peak brightness is evident, suggesting no strong trend in strength with size for small NEOs, a finding consistent with the results of Popova et al (2011).

  13. Effects of 8-week in-season plyometric training on upper and lower limb performance of elite adolescent handball players.

    PubMed

    Chelly, Mohamed Souhaiel; Hermassi, Souhail; Aouadi, Ridha; Shephard, Roy J

    2014-05-01

    We hypothesized that replacement of a part of the normal in-season regimen of top-level adolescent handball players by an 8-week biweekly course of lower and upper limb plyometric training would enhance characteristics important to competition, including peak power output (Wpeak), jump performance, muscle volume, and ball throwing velocity. Study participants (23 men, age: 17.4 ± 0.5 years, body mass: 79.9 ± 11.5 kg, height: 1.79 ± 6.19 m, body fat: 13.8 ± 2.1%) were randomly assigned between controls (C; n = 11) and an experimental group (E, n = 12). Measures preintervention and postintervention included force-velocity ergometer tests for upper (Wupper peak) and lower limbs (Wlower peak), force platform determinations of squat jump (SJ) and countermovement jump (CMJ) characteristics (jump height, maximal force, initial velocity, and average power), video filming of sprint velocities (first step [V1S], first 5 m [V5m], and 25-30 m [Vmax]), and anthropometric estimates of leg muscle volume. E showed gains relative to C in Wupper peak and Wlower peak (p < 0.01 and p < 0.001), SJ (height p < 0.01; force p ≤ 0.05), CMJ (height p < 0.01; force p < 0.01 and relative power p ≤ 0.05), and sprint velocities (p < 0.001 for V1S, V5m, and Vmax). E also showed increases in leg and thigh muscle volumes (p < 0.001), but arm muscle volumes did not differ from control. We conclude that introduction of biweekly plyometric training into the standard regimen improved components important to handball performance, particularly explosive actions, such as sprinting, jumping, and ball throwing velocity.

  14. A Comparison of Tropical Storm (TS) and Non-TS Gust Factors for Assessing Peak Wind Probabilities at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Crawford, Winifred C.

    2010-01-01

    Knowledge of peak wind speeds is important to the safety of personnel and flight hardware at Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS), but they are more difficult to forecast than mean wind speeds. Development of a reliable model for the gust factor (GF) relating the peak to the mean wind speed motivated a previous study of GF in tropical storms. The same motivation inspired a climatological study of non-TS peak wind speed statistics without the use of GF. Both studies presented their respective statistics as functions of mean wind speed and height. The few comparisons of IS and non-TS GF in the literature suggest that the non-TS GF at a given height and mean wind speed are smaller than the corresponding TS GF. The investigation reported here converted the non-TS peak wind statistics mentioned above to the equivalent GF statistics and compared the results with the previous TS GF results. The advantage of this effort over all previously reported studies of its kind is that the TS and non-TS data are taken from the same towers in the same locations. That eliminates differing surface attributes, including roughness length and thermal properties, as a major source of variance in the comparison. The results are consistent with the literature, but include much more detailed, quantitative information on the nature of the relationship between TS and non-TS GF as a function of height and mean wind speed. In addition, the data suggest the possibility of providing an operational model for non-TS GF as a function of height and wind speed in a manner similar to the one previously developed for TS GF.

  15. TEC data ingestion into IRI and NeQuick over the antarctic region

    NASA Astrophysics Data System (ADS)

    Nava, Bruno; Pezzopane, Michael; Radicella, Sandro M.; Scotto, Carlo; Pietrella, Marco; Migoya Orue, Yenca; Alazo Cuartas, Katy; Kashcheyev, Anton

    2016-07-01

    In the present work a comparative analysis to evaluate the IRI and NeQuick 2 models capabilities in reproducing the ionospheric behaviour over the Antarctic Region has been performed. A technique to adapt the two models to GNSS-derived vertical Total Electron Content (TEC) has been therefore implemented to retrieve the 3-D ionosphere electron density at specific locations where ionosonde data were available. In particular, the electron density profiles used in this study have been provided in the framework of the AUSPICIO (AUtomatic Scaling of Polar Ionograms and Cooperative Ionospheric Observations) project applying the Adaptive Ionospheric Profiler (AIP) to ionograms recorded at eight selected mid, high-latitude and polar ionosondes. The relevant GNSS-derived vertical TEC values have been obtained from the Global Ionosphere Maps (GIM) produced by the Center for Orbit Determination in Europe (CODE). The effectiveness of the IRI and NeQuick 2 in reconstructing the ionosphere electron density at the given locations and epochs has been primarily assessed in terms of statistical comparison between experimental and model-retrieved peak parameters values (foF2 and hmF2). The analysis results indicate that in general the models are equivalent in their ability to reproduce the critical frequency of the F2 layer and they also tend to overestimate the height of the peak electron density, especially during high solar activity periods. Nevertheless this tendency is more noticeable in NeQuick 2 than in IRI. For completeness, the statistics indicating the models bottomside reconstruction capabilities, computed as height integrated electron density profile mismodeling, will also be discussed.

  16. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Newsom, Rob K.; Turner, David D.

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less

  17. Multivariate Profiles of Selected versus Non-Selected Elite Youth Brazilian Soccer Players

    PubMed Central

    Alves, Isabella S.; Padilha, Maickel B.; Casanova, Filipe; Puggina, Enrico F.; Maia, José

    2017-01-01

    Abstract This study determined whether a multivariate profile more effectively discriminated selected than non-selected elite youth Brazilian soccer players. This examination was carried out on 66 youth soccer players (selected, n = 28, mean age 16.3 ± 0.1; non-selected, n = 38, mean age 16.7 ± 0.4) using objective instruments. Multivariate profiles were assessed through anthropometric characteristics, biological maturation, tactical-technical skills, and motor performance. The Student’s t-test identified that selected players exhibited significantly higher values for height (t = 2.331, p = 0.02), lean body mass (t = 2.441, p = 0.01), and maturity offset (t = 4.559, p < 0.001), as well as performed better in declarative tactical knowledge (t = 10.484, p < 0.001), shooting (t = 2.188, p = 0.03), dribbling (t = 5.914, p < 0.001), speed – 30 m (t = 8.304, p < 0.001), countermovement jump (t = 2.718, p = 0.008), and peak power tests (t = 2.454, p = 0.01). Forward stepwise discriminant function analysis showed that declarative tactical knowledge, running speed –30 m, maturity offset, dribbling, height, and peak power correctly classified 97% of the selected players. These findings may have implications for a highly efficient selection process with objective measures of youth players in soccer clubs. PMID:29339991

  18. Effects of low-dose cranial radiation on growth hormone secretory dynamics and hypothalamic-pituitary function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costin, G.

    1988-08-01

    Spontaneous growth hormone (GH) secretory dynamics and hypothalamic-pituitary function were studied in 16 long-term survivors of acute lymphoblastic leukemia who were aged 9 to 15 1/2 years and had been treated with prophylactic central nervous system radiation and combined chemotherapy. At the time of study, the mean height was -1.5 SD score below the mean, less than genetic potential, and significantly less than the mean pretreatment height of -0.25 SD score. Height velocity was subnormal for age and sexual stage in all patients. Two patients had compensated hypothyroidism, and four had evidence of gonadal failure. In 11 patients, the peakmore » GH level after two provocative tests was below 10 micrograms/L, which was consistent with GH deficiency. In ten of 13 patients tested, spontaneous GH secretion determined by a 24-hour GH concentration (GHC), GH pulse amplitude, frequency of GH pulses greater than or equal to 5 micrograms/L, and GH peak during wake and sleep hours was significantly less than in normal height controls. Although in three pubertal patients the 24-hour GHC was within normal limits, the GHC during sleep hours, GH pulse amplitude during 24 hours and sleep hours, and peak GH during wake hours were significantly less than in normal height controls. In all pubertal and in two of the prepubertal patients, the somatomedin C (SmC) level was significantly less than in controls. The 24-hour GHC correlated well with the GHC during sleep, peak-stimulated GH level, gonadal steroid level, and the SmC level, but not with height velocity, dose of radiation, or age at radiation. A significant increase in height velocity and the SmC level was noted in all patients treated with GH. These results indicate that GH deficiency occurs after 18 to 24 Gy of cranial radiation and that the puberty-associated growth spurt may mask the decline in height velocity owing to GH deficiency.« less

  19. Semiannual and annual variations in the height of the ionospheric F2-peak

    NASA Astrophysics Data System (ADS)

    Rishbeth, H.; Sedgemore-Schulthess, K. J. F.; Ulich, T.

    2000-03-01

    Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately isobaric , in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not isobaric . The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.

  20. An investigation of airborne allergenic pollen at different heights.

    PubMed

    Xiao, Xiaojun; Fu, Aixiang; Xie, Xiongjie; Kang, Minxiong; Hu, Dongsheng; Yang, Pingchang; Liu, Zhigang

    2013-01-01

    Airborne pollen is an important source of allergens in a number of allergic diseases. Data on the concentrations of pollen at different heights in the air are scarce. The aim of the present study was to investigate different types and numbers of airborne pollen and their seasonal variation at different heights in the urban area of Shenzhen (China) and their associations with meteorological factors. The concentration of airborne pollen at different heights was monitored with Burkard traps from July 1, 2006, to June 30, 2007, in Shenzhen; the results were analyzed with SAS 9.13 software. In total, 1,095 films (at 3 heights, 365 films at each height) were exposed throughout the year, and 48 families and 85 genera of pollen taxa were identified. The total pollen count was 55,830 grains (25,204 grains at 1.5 m; 16,218 grains at 35 m, and 14,408 grains at 70 m); pollen grains were present in the atmosphere throughout the year, with two peaks of airborne pollen: one peak in February to April and the other in September to November. On the basis of our local investigations, the pollen concentrations and the pollen types in the air decrease gradually with increasing height. The distribution and concentrations of airborne pollen at different heights in the atmosphere were influenced by composite factors such as the season and meteorological factors. Copyright © 2012 S. Karger AG, Basel.

  1. Effect of pillow height on the biomechanics of the head-neck complex: investigation of the cranio-cervical pressure and cervical spine alignment

    PubMed Central

    Yang, Hui; Zhou, Yan; Lin, Jin

    2016-01-01

    Background While appropriate pillow height is crucial to maintaining the quality of sleep and overall health, there are no universal, evidence-based guidelines for pillow design or selection. We aimed to evaluate the effect of pillow height on cranio-cervical pressure and cervical spine alignment. Methods Ten healthy subjects (five males) aged 26 ± 3.6 years were recruited. The average height, weight, and neck length were 167 ± 9.3 cm, 59.6 ± 11.9 kg, and 12.9 ± 1.2 cm respectively. The subjects lay on pillows of four different heights (H0, 110 mm; H1, 130 mm; H2, 150 mm; and H3, 170 mm). The cranio-cervical pressure distribution over the pillow was recorded; the peak and average pressures for each pillow height were compared by one-way ANOVA with repeated measures. Cervical spine alignment was studied using a finite element model constructed based on data from the Visible Human Project. The coordinate of the center of each cervical vertebra were predicted for each pillow height. Three spine alignment parameters (cervical angle, lordosis distance and kyphosis distance) were identified. Results The average cranial pressure at pillow height H3 was approximately 30% higher than that at H0, and significantly different from those at H1 and H2 (p < 0.05). The average cervical pressure at pillow height H0 was 65% lower than that at H3, and significantly different from those at H1 and H2 (p < 0.05). The peak cervical pressures at pillow heights H2 and H3 were significantly different from that at H0 (p < 0.05). With respect to cervical spine alignment, raising pillow height from H0 to H3 caused an increase of 66.4% and 25.1% in cervical angle and lordosis distance, respectively, and a reduction of 43.4% in kyphosis distance. Discussion Pillow height elevation significantly increased the average and peak pressures of the cranial and cervical regions, and increased the extension and lordosis of the cervical spine. The cranio-cervical pressures and cervical spine alignment were height-specific, and they were believed to reflect quality of sleep. Our results provide a quantitative and objective evaluation of the effect of pillow height on the biomechanics of the head-neck complex, and have application in pillow design and selection. PMID:27635354

  2. The 4-Day Wave as Observed from the Upper Atmosphere Research Satellite Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Allen, D. R.; Stanford, J. L.; Elson, L. S.; Fishbein, E. F.; Froidevaux, L.; Waters, J. W.

    1997-01-01

    The "4-day wave" is an eastward moving quasi-nondispersive feature with period near 4 days occurring near the winter polar stratopause. This paper presents evidence of the 4-day feature in Microwave Limb Sounder (MLS) temperature, geopotential height, and ozone data from the late southern winters of 1992 and 1993. Space-time spectral analyses reveal a double-peaked temperature structure consisting of one peak near the stratopause and another in the lower mesosphere, with an out-of-phase relationship between the two peaks. This double- peaked structure is reminiscent of recent three-dimensional barotropic/baroclinic instability model predictions and is observed here for the first time. The height variation of the 4-day ozone signal is shown to compare well with a linear advective-photochemical tracer model. Negative regions of quasigeostrophic potential vorticity (PV) gradient and positive Eliassen-Palm flux divergence are shown to occur, consistent with instability dynamics playing a role in wave forcing. Spectral analyses of PV derived from MLS geopotential height fields reveal a 4-day signal peaking near the polar stratopause. The three-dimensional structure of the 4-day wave resembles the potential vorticity "charge" concept, wherein a PV anomaly in the atmosphere (analogous to an electrical charge in a dielectric material) induces a geopotential field, a vertically oriented temperature dipole, and circulation about the vertical axis.

  3. Relationship between height and width of resonance peaks in a whispering gallery mode resonator immersed in water and sucrose solutions

    NASA Astrophysics Data System (ADS)

    Teraoka, Iwao; Yao, Haibei; Huiyi Luo, Natalie

    2017-06-01

    We employed a recently developed whispering gallery mode (WGM) dip sensor made of silica to obtain spectra for many resonance peaks in water and solutions of sucrose at different concentrations and thus having different refractive indices (RI). The apparent Q factor was estimated by fitting each peak profile in the busy resonance spectrum by a Lorentzian or a sum of Lorentzians. A plot of the Q factor as a function the peak height for all the peaks analyzed indicates a straight line with a negative slope as the upper limit, for each of water and the solutions. A coupling model for a resonator and a pair of fiber tapers to feed and pick up light, developed here, supports the presence of the upper limit. We also found that the round-trip attenuation of WGM was greater than the one estimated from light absorption by water, and the difference increased with the concentration of sucrose.

  4. A climatology of extreme wave height events impacting eastern Lake Ontario shorelines

    NASA Astrophysics Data System (ADS)

    Grieco, Matthew B.; DeGaetano, Arthur T.

    2018-05-01

    Model-derived wave height data for points along the eastern Lake Ontario shoreline provide the basis for a 36-year climatology of extreme wave heights. The most extreme wave heights exceed 6 m at all locations, except for those along the extreme northeastern shoreline of the Lake. Typically extreme wave events are a regional phenomenon, affecting multiple locations along the eastern and southeastern shoreline. A pronounced seasonal cycle in wave event occurrence is characterized by peaks in autumn and spring, with an absence of 99.9th percentile wave heights during summer. Less extreme (90th percentile heights) occur in all months with a peak in winter. Extreme wave events are most often associated with a low pressure center tracking to the north of Lake Ontario from the Ohio Valley. This track produces the strong winds > 10 ms-1 and predominantly west-to-east wind fetch that characterize high wave height events. The seasonal frequency of the wave events exceeding the historical 95th percentile has shown a statistically significant increase at most locations since 1979. This has been partially offset by declines in the frequency of events with wave heights between the 90 and 95th percentile. Seasonal extreme wave height frequency is also found to be related to the occurrence of El Niño. During El Niño winters, there are significantly fewer events with wave heights exceeding 2.5 m than would be expected by chance. A corresponding relationship to La Niña occurrence is not evident.

  5. Visual and non-visual control of landing movements in humans

    PubMed Central

    Santello, Marco; McDonagh, Martin J N; Challis, John H

    2001-01-01

    The role of vision in controlling leg muscle activation in landing from a drop was investigated. Subjects (n = 8) performed 10 drops from four heights (0.2, 0.4, 0.6 and 0.8 m) with and without vision. Drop height was maintained constant throughout each block of trials to allow adaptation. The aim of the study was to assess the extent to which proprioceptive and vestibular information could substitute for the lack of vision in adapting landing movements to different heights. At the final stages of the movement, subjects experienced similar peak centre of body mass (CM) displacements and joint rotations, regardless of the availability of vision. This implies that subjects were able to adapt the control of landing to different heights. The amplitude and timing of electromyographic signals from the leg muscles scaled to drop height in a similar fashion with and without vision. However, variables measured throughout the execution of the movement indicated important differences. Without vision, landings were characterised by 10 % larger ground reaction forces, 10 % smaller knee joint rotations, different time lags between peak joint rotations, and more variable ground reaction forces and times to peak CM displacement. We conclude that non-visual sensory information (a) could not fully compensate for the lack of continuous visual feedback and (b) this non-visual information was used to reorganise the motor output. These results suggest that vision is important for the very accurate timing of muscle activity onset and the kinematics of landing. PMID:11711583

  6. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    NASA Technical Reports Server (NTRS)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather than focusing on PF alone.

  7. Comparison of palladium and zirconium treated graphite tubes for in-atomizer trapping of hydrogen selenide in hydride generation electrothermal atomization atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Laborda, Francisco; Medrano, Jesús; Cortés, José I.; Mir, José M.; Castillo, Juan R.

    1999-02-01

    Zirconium treated graphite tubes were investigated and compared with non-treated and palladium coated ones for in situ trapping of selenium hydride generated in a flow injection system. Selenium was effectively trapped on zirconium treated tubes at trapping temperatures of 300-600°C, similar to those observed for palladium, whereas trapping temperatures higher than 600°C had to be used with non-treated tubes. Zirconium treated tubes used in this work showed good stability up to 300 trapping/atomization cycles, with precision better than 5%, characteristic masses of 42 (peak height) and 133 pg (peak area) of selenium were obtained. Sensitivity of zirconium and palladium treatments were similar, but zirconium offered the advantage of a single application per tube. Detection limits were 0.11 (peak height) and 0.23 ng (peak area) for a 1 ml sample volume.

  8. Seasonal variation of seismic ambient noise level at King Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, W.; Sheen, D.; Seo, K.; Yun, S.

    2009-12-01

    The generation of the secondary- or double-frequency (DF) microseisms with dominant frequencies between 0.1 and 0.5 Hz has been explained by nonlinear second-order pressure perturbations on the ocean bottom due to the interference of two ocean waves of equal wavelengths traveling in opposite directions. Korea Polar Research Institute (KOPRI) has been operating a broadband seismic station (KSJ1) at King George Island (KGI), Antarctica, since 2001. Examining the ambient seismic noise level for the period from 2006 to 2008 at KSJ1, we found a significant seasonal variation in the frequency range 0.1-0.5 Hz. Correlation of the DF peaks with significant ocean wave height and peak wave period models indicates that the oceanic infragravity waves in the Drake Passage is a possible source to excite the DF microseisms at KGI. Location of King Sejong Station, Antarctica Seasonal variations of DF peak, significant wave height, and peak wave period

  9. On the relation between the peak frequency and the corresponding rise time of solar microwave impulsive bursts and the height dependence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhao, Ren-Yang; Magun, Andreas; Schanda, Erwin

    1990-12-01

    Results are reported from a correlation analysis for 57 microwave impulsive bursts observed at six frequencies. A regression line between the peak frequency and the corresponding rise time of microwave impulsive bursts is obtained, with a correlation coefficient of -0.43. This can be explained in the frame of a thermal model. The magnetic field decrease with height has to be much slower than in a dipole field in order to explain the weak dependence of f(p) on t(r). This decrease of magnetic field with height in burst sources is based on the relationship between f(p) and t(r) found by assuming a thermal flare model with a collisionless conduction front.

  10. [Oxygen peak consumption is a better predictor of cardiovascular risk than handgrip strength in older Chilean women].

    PubMed

    Farías-Valenzuela, Claudio; Pérez-Luco, Cristian; Ramírez-Campillo, Rodrigo; Álvarez, Cristian; Castro-Sepúlveda, Mauricio

    Handgrip strength (HS) and peak oxygen consumption (Vo2peak) are powerful predictors of cardiovascular risk, although it is unknown which of the two variables is the better predictor. The objective of the following study was to relate HS and Vo2peak to cardiovascular risk markers in older Chilean women. Physically active adult women (n=51; age, 69±4.7years) participated in this study. The HS and Vo2peak were evaluated and related to the anthropometric variables of body mass, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist ratio (WR), and waist height ratio (WHR), as well as with the cardiovascular variables systolic (SBP) and diastolic (DBP) and cardiac recovery in one minute (RHR1). A multilinear regression model was used for the analysis of the associated variables (P<.05). The cardiovascular risk markers associated (P<.05) with the handgrip strength of the dominant limb (HS DL ) were body mass, BMI, WR, and WHR. The handgrip strength of the non-dominant limb (HS NDL ) was associated with body mass. Vo2peak was associated with body mass, BMI, HC and RHR1. The multilinear regression model showed a value of r=0.43 in HS DL , r=0.39 in HS NDL and r=0.69 in peak Vo2. Although HS and Vo2peak were related to cardiovascular risk markers, Vo2peak offers greater associative power with these cardiovascular risk factors. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Angiogenesis and Invasiveness in Prostate Cancer Detected with High Spectral and Spatial Resolution MRi

    DTIC Science & Technology

    2006-07-01

    peaks located half of the spectral bandwidth away from the fat peak and the water peak , respectively. We picked the peak with the largest magnitude...cancer. This was described in a published paper (Fan et al, MRM , 2001). SOW4. We demonstrated quantitatively that HiSS provides improved fat...contrast agent. Images of water signal peak height in non-metastatic tumors were smoother in the tumor interior than images of metastatic tumors (p

  12. [General growth patterns and simple mathematic models of height and weight of Chinese children].

    PubMed

    Zong, Xin-nan; Li, Hui

    2009-05-01

    To explore the growth patterns and simple mathematic models of height and weight of Chinese children. The original data had been obtained from two national representative cross-sectional surveys which were 2005 National Survey of Physical Development of Children (under 7 years of age) and 2005 Chinese National Survey on Students Constitution and Health (6 - 18 years). Reference curves of height and weight of children under 7 years of age was constructed by LMS method, and data of children from 6 to 18 years of age were smoothed by cubic spline function and transformed by modified LMS procedure. Growth velocity was calculated by smoothed values of height and weight. Simple linear model was fitted for children 1 to 10 years of age, for which smoothed height and weight values were used. (1) Birth length of Chinese children was about 50 cm, average length 61 cm, 67 cm, 76 cm and 88 cm at the 3rd, 6th, 12th and 24th month. Height gain was stable from 2 to 10 years of age, average 6 - 7 cm each year. Birth length doubles by 3.5 years, and triples by 12 years. The formula estimating average height of normal children aged 2 - 10 years was, height (cm) = age (yr) x 6.5 + 76 (cm). (2) Birth weight was about 3.3 kg. Growth velocity was at peak about 1.0 - 1.1 kg/mon in the first 3 months, decreased by half and was about 0.5 - 0.6 kg/mon in the second 3 months, and was reduced by a quarter, which was about 0.25 - 0.30 kg/mon, in the last 6 months of the first year. Body mass was up to doubles, triples and quadruple of birth weight at about the 3rd, 12th and 24th month. Average annual gain was about 2 kg and 3 kg from 1 - 6 years and 7 - 10 years, respectively. The estimated formula for children 1 to 6 years of age was weight (kg) = age (yr) x 2 + 8 (kg), but for those 7 - 10 years old, weight (kg) = age (yr) x 3 + 2 (kg). Growth patterns of height and weight at the different age stages were summarized for Chinese children, and simple reference data of height and weight velocity from 0 to 18 years and approximate estimation formula from 1 - 10 years was presented for clinical practice.

  13. Orbital and physical characteristics of meter-scale impactors from airburst observations

    NASA Astrophysics Data System (ADS)

    Brown, P.; Wiegert, P.; Clark, D.; Tagliaferri, E.

    2016-03-01

    We have analyzed the orbits and ablation characteristics in the atmosphere of 59 Earth-impacting fireballs, produced by meteoroids 1 m in diameter or larger, described here as meter-scale. Using heights at peak luminosity as a proxy for strength, we determine that there is roughly an order of magnitude spread in strengths of the population of meter-scale impactors at the Earth. We use fireballs producing recovered meteorites and well documented fireballs from ground-based camera networks to calibrate our ablation model interpretation of the observed peak height of luminosity as a function of speed. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. This is in contrast to earlier suggestions by Ceplecha (Ceplecha, Z. [1994]. Astron. Astrophys. 286, 967-970) that the majority of meter-tens of meter sized meteoroids are ;… cometary bodies of the weakest known structure;. We find a lower limit of ∼10-15% of our objects have a possible cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, also show evidence for weaker than average structure. Two events, Sumava and USG 20131121, have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though both were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several events in our population with the Taurid meteoroid complex; no other major meteoroid streams show probable linkages to the orbits of our meter-scale population. Our impactors cover almost four orders of magnitude in mass, but no trend in height of peak brightness as a function of mass is evident, suggesting no strong trend in strength with size for meter-scale impactors consistent with the results of Popova et al. (Popova, O.P. et al. [2011]. Meteorit. Planet. Sci. 46, 1525-1550).

  14. Response analysis of TLD-300 dosimeters in heavy-particle beams

    NASA Astrophysics Data System (ADS)

    Loncol, Th; Hamal, M.; Denis, J. M.; Vynckier, S.; Wambersie, A.; Scalliet, P.

    1996-09-01

    In vivo dosimetry is recommended as part of the quality control procedure for treatment verification in radiation therapy. Using thermoluminescence, such controls are planned in the p(65)+Be neutron and 85 MeV proton beams produced at the cyclotron at Louvain-La-Neuve and dedicated to therapy applications. A preliminary study of the peak 3 (C) and peak 5 (C) response of :Tm (TLD-300) to neutron and proton beams aimed to analyse the effect of different radiation qualities on the dosimetric behaviour of the detector irradiated in phantom. To broaden the range of investigation, the study was extended to an experimental C-12 heavy ion beam (95 MeV/nucleon). The peak 3 and 5 sensitivities in the neutron beam, compared to Co-60, varied little with depth. A major change of peak 5 sensitivity was observed for samples positioned under five leaves of the multi-leaf collimator. While peak 3 sensitivity was constant with depth in the unmodulated proton beam, peak 5 sensitivity increased by 15%. Near the Bragg peak, peak 3 showed the highest decrease of sensitivity. In the modulated proton beam, the sensitivity values were not significantly smaller than those measured in the unmodulated beam far from the Bragg peak region. The ratio of the heights of peak 3 and peak 5 decreased by 70% from the Co-60 reference radiation to the C-12 heavy-ion beam. This parameter was strongly correlated with the change of radiation quality.

  15. Large Footprint LiDAR Data Processing for Ground Detection and Biomass Estimation

    NASA Astrophysics Data System (ADS)

    Zhuang, Wei

    Ground detection in large footprint waveform Light Detection And Ranging (LiDAR) data is important in calculating and estimating downstream products, especially in forestry applications. For example, tree heights are calculated as the difference between the ground peak and first returned signal in a waveform. Forest attributes, such as aboveground biomass, are estimated based on the tree heights. This dissertation investigated new metrics and algorithms for estimating aboveground biomass and extracting ground peak location in large footprint waveform LiDAR data. In the first manuscript, an accurate and computationally efficient algorithm, named Filtering and Clustering Algorithm (FICA), was developed based on a set of multiscale second derivative filters for automatically detecting the ground peak in an waveform from Land, Vegetation and Ice Sensor. Compared to existing ground peak identification algorithms, FICA was tested in different land cover type plots and showed improved accuracy in ground detections of the vegetation plots and similar accuracy in developed area plots. Also, FICA adopted a peak identification strategy rather than following a curve-fitting process, and therefore, exhibited improved efficiency. In the second manuscript, an algorithm was developed specifically for shrub waveforms. The algorithm only partially fitted the shrub canopy reflection and detected the ground peak by investigating the residual signal, which was generated by deducting a Gaussian fitting function from the raw waveform. After the deduction, the overlapping ground peak was identified as the local maximum of the residual signal. In addition, an applicability model was built for determining waveforms where the proposed PCF algorithm should be applied. In the third manuscript, a new set of metrics was developed to increase accuracy in biomass estimation models. The metrics were based on the results of Gaussian decomposition. They incorporated both waveform intensity represented by the area covered by a Gaussian function and its associated heights, which was the centroid of the Gaussian function. By considering signal reflection of different vegetation layers, the developed metrics obtained better estimation accuracy in aboveground biomass when compared to existing metrics. In addition, the new developed metrics showed strong correlation with other forest structural attributes, such as mean Diameter at Breast Height (DBH) and stem density. In sum, the dissertation investigated the various techniques for large footprint waveform LiDAR processing for detecting the ground peak and estimating biomass. The novel techniques developed in this dissertation showed better performance than existing methods or metrics.

  16. Stochastic sampling effects in STR typing: Implications for analysis and interpretation.

    PubMed

    Timken, Mark D; Klein, Sonja B; Buoncristiani, Martin R

    2014-07-01

    The analysis and interpretation of forensic STR typing results can become more complicated when reduced template amounts are used for PCR amplification due to increased stochastic effects. These effects are typically observed as reduced heterozygous peak-height balance and increased frequency of undetected alleles (allelic "dropout"). To investigate the origins of these effects, a study was performed using the AmpFlSTR(®) Identifiler Plus(®) and MiniFiler(®) kits to amplify replicates from a dilution series of NIST Human DNA Quantitation Standard (SRM(®) 2372A). The resulting amplicons were resolved and detected on two different genetic analyzer platforms, the Applied Biosystems 3130xL and 3500 analyzers. Results from our study show that the four different STR/genetic analyzer combinations exhibited very similar peak-height ratio statistics when normalized for the amount of template DNA in the PCR. Peak-height ratio statistics were successfully modeled using the Poisson distribution to simulate pre-PCR stochastic sampling of the alleles, confirming earlier explanations that sampling is the primary source for peak-height imbalance in reduced template dilutions. In addition, template-based pre-PCR sampling simulations also successfully predicted allelic dropout frequencies, as modeled by logistic regression methods, for the low-template DNA dilutions. We discuss the possibility that an accurately quantified DNA template might be used to characterize the linear signal response for data collected using different STR kits or genetic analyzer platforms, so as to provide a standardized approach for comparing results obtained from different STR/CE combinations and to aid in validation studies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan

    USGS Publications Warehouse

    Bennett, J.P.; Jepsen, E.A.; Roth, J.A.

    2006-01-01

    Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed. Decreased cherry branch elongation, milkweed stem height and pod production, and foliar injury on both species occurred at sites around southern Lake Michigan at ozone exposures of 13 SUM06 ppm-h and 93a??98 ppb peak hourly.

  18. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    NASA Astrophysics Data System (ADS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC™ PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study.

  19. Thunderstorm vertical velocities and mass flux estimated from satellite data

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Fenn, D. D.

    1979-01-01

    Infrared geosynchronous satellite data with an interval of five minutes between images are used to estimate thunderstorm top ascent rates on two case study days. A mean vertical velocity of 3.5/ms for 19 clouds is calculated at a height of 8.7 km. This upward motion is representative of an area of approximately 10km on a side. Thunderstorm mass flux of approximately 2x10 to the 11th power/gs is calculated, which compares favorably with previous estimates. There is a significant difference in the mean calculated vertical velocity between elements associated with severe weather reports (w bar=4.6/ms) and those with no such reports (2.5/ms). Calculations were made using a velocity profile for an axially symmetric jet to estimate the peak updraft velocity. For the largest observed w value of 7.8/ms the calculation indicates a peak updraft of approximately 50/ms.

  20. Determination of ammonium in river water and sewage samples by capillary zone electrophoresis with direct UV detection.

    PubMed

    Fukushi, Keiichi; Ito, Hideyuki; Kimura, Kenichi; Yokota, Kuriko; Saito, Keiitsu; Chayama, Kenji; Takeda, Sahori; Wakida, Shin-ichi

    2006-02-17

    We developed capillary zone electrophoresis (CZE) with direct UV detection for determination of ammonium in environmental water samples. Ammonium in the samples was partly converted into ammonia in the alkaline background electrolyte (BGE) during migration and was detected by molecular absorption of ammonia at 190 nm in approximately 7 min. The limit of detection (LOD) for ammonium was 0.24 mg/l (as nitrogen) at a signal-to-noise ratio of three. The respective values of the relative standard deviation (RSD) of peak area, peak height, and migration time for ammonium were 2.1, 1.8, and 0.46%. Major alkali and alkaline earth metal ions coexisting in the samples did not interfere with ammonium determination by the proposed method. The proposed method determined ammonium in surface water and sewage samples. The results were compared to those obtained using ion chromatography (IC).

  1. Comparison of Coastal Inundation in the Outer Banks during Three Recent Hurricanes

    NASA Astrophysics Data System (ADS)

    Liu, T.; Sheng, Y.

    2012-12-01

    Coastal inundation in the Outer Banks and Chesapeake Bay during several recent hurricanes - Isabel, Earl and Irene, in 2005, 2010 and 2011, respectively, have been successfully simulated using the storm surge modeling system, CH3D-SSMS, which includes coupled coastal and basin-scale storm surge and wave models. Hurricane Isabel, which made landfall at the Outer Banks area in 2005, generated high waves up to 20 m offshore and 2.5 m inside the Chesapeake Bay which significantly affected the peak surge, with wave induced set-up contributing up to about 20% of the peak surge. During Isabel, the observed wave height at Duck station (1 km offshore) reached over 6 meters at landfall time, while Earl and Irene generated relatively moderate waves, with peak wave height around 4 meters at that station but a much lower wave height before landfall. Simulations show that during Earl and Irene, wave induced set-up did not contribute as much as that during Isabel. At Duck Pier, wave effects accounted for ~36 cm or 20% of the peak surge of 1.71 m during Isabel, while waves contributed ~10 cm (10%) toward the peak surge of 1 m during Irene and even less during Earl. The maximum surge during Irene was largely caused by the strong wind, as confirmed by the model using H* wind. Inundation maps have been generated and compared based on the simulations of Isabel, Earl and Irene.

  2. Assessment of skeletal maturity in scoliosis patients to determine clinical management: a new classification scheme using distal radius and ulna radiographs.

    PubMed

    Luk, Keith D K; Saw, Lim Beng; Grozman, Samuel; Cheung, Kenneth M C; Samartzis, Dino

    2014-02-01

    Assessment of skeletal maturity in patients with adolescent idiopathic scoliosis (AIS) is important to guide clinical management. Understanding growth peak and cessation is crucial to determine clinical observational intervals, timing to initiate or end bracing therapy, and when to instrument and fuse. The commonly used clinical or radiologic methods to assess skeletal maturity are still deficient in predicting the growth peak and cessation among adolescents, and bone age is too complicated to apply. To address these concerns, we describe a new distal radius and ulna (DRU) classification scheme to assess skeletal maturity. A prospective study. One hundred fifty young, female AIS patients with hand x-rays and no previous history of spine surgery from a single institute were assessed. Radius and ulna plain radiographs, and various anthropomorphic parameters were assessed. We identified various stages of radius and ulna epiphysis maturity, which were graded as R1-R11 for the radius and U1-U9 for the ulna. The bone age, development of sexual characteristics, standing height, sitting height, arm span, radius length, and tibia length were studied prospectively at each stage of these epiphysis changes. Standing height, sitting height, and arm span growth were at their peak during stages R7 (mean, 11.4 years old) and U5 (mean, 11.0 years old). The long bone growths also demonstrated a common peak at R7 and U5. Cessation of height and arm span growth was noted after stages R10 (mean, 15.6 years old) and U9 (mean, 17.3 years old). The new DRU classification is a practical and easy-to-use scheme that can provide skeletal maturation status. This classification scheme provides close relationship with adolescent growth spurt and cessation of growth. This classification may have a tremendous utility in improving clinical-decision making in the conservative and operative management of scoliosis patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Echocardiographic nomograms for upper abdominal aorta Doppler systolic wave values and systo-diastolic diameters variations in children.

    PubMed

    Cantinotti, Massimiliano; Giordano, Raffaele; Corsini, Iuri; Dani, Carlo; Scalese, Marco; Murzi, Bruno; Assanta, Nadia; Spadoni, Isabella; Molinaro, Sabrina; Kutty, Shelby; Iervasi, Giorgio; Franchi, Eliana

    2018-04-01

    Abdominal aorta pulsatility and blood flow patterns are important diagnostic indicators in congenital heart disease. Reference values for these indexes are lacking. We prospectively studied abdominal aorta pulsed-wave Doppler systolic peak velocity, deceleration time, and wave duration, and two-dimensional vessel diameters in systole and diastole in healthy Caucasian children. Heteroscedasticity was accounted for by White or Breusch-Pagan test. Age, weight, height, heart rate (HR), and body surface area (BSA) were used as independent variables in different analyses to predict the mean values of each measurement. Structured Z-scores were then computed. In all, 853 subjects (age 0 days to 17 years; 45% females; BSA 0.12-2.12m 2 ) were studied. The predicted values and Z-score boundaries are presented. Data are also presented as mean±2 SDs for a given BSA. We report paediatric echocardiographic nomograms for multiple proximal abdominal aorta parameters including pulsed-wave Doppler systolic velocities, deceleration time, wave duration, and two-dimensional vessel diameter variations. Significant variations in these functional indexes with age were found that should be taken into account in clinical practice. At lower ages, steeper and shorter pulsed-wave Doppler peak velocity and limited pulsatility should be expected as physiologic findings. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  4. Analysis of three different equations for predicting quadriceps femoris muscle strength in patients with COPD *

    PubMed Central

    Nellessen, Aline Gonçalves; Donária, Leila; Hernandes, Nidia Aparecida; Pitta, Fabio

    2015-01-01

    Abstract Objective: To compare equations for predicting peak quadriceps femoris (QF) muscle force; to determine the agreement among the equations in identifying QF muscle weakness in COPD patients; and to assess the differences in characteristics among the groups of patients classified as having or not having QF muscle weakness by each equation. Methods: Fifty-six COPD patients underwent assessment of peak QF muscle force by dynamometry (maximal voluntary isometric contraction of knee extension). Predicted values were calculated with three equations: an age-height-weight-gender equation (Eq-AHWG); an age-weight-gender equation (Eq-AWG); and an age-fat-free mass-gender equation (Eq-AFFMG). Results: Comparison of the percentage of predicted values obtained with the three equations showed that the Eq-AHWG gave higher values than did the Eq-AWG and Eq-AFFMG, with no difference between the last two. The Eq-AHWG showed moderate agreement with the Eq-AWG and Eq-AFFMG, whereas the last two also showed moderate, albeit lower, agreement with each other. In the sample as a whole, QF muscle weakness (< 80% of predicted) was identified by the Eq-AHWG, Eq-AWG, and Eq-AFFMG in 59%, 68%, and 70% of the patients, respectively (p > 0.05). Age, fat-free mass, and body mass index are characteristics that differentiate between patients with and without QF muscle weakness. Conclusions: The three equations were statistically equivalent in classifying COPD patients as having or not having QF muscle weakness. However, the Eq-AHWG gave higher peak force values than did the Eq-AWG and the Eq-AFFMG, as well as showing greater agreement with the other equations. PMID:26398750

  5. Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.

    PubMed

    Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H

    2004-12-01

    To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.

  6. Assessment of Governor Control Parameter Settings of a Submarine Diesel Engine

    DTIC Science & Technology

    2013-03-01

    on the mean back pressure. The amplitude was 6.25 kPa (corresponding to a significant wave height of 1.25 m ) and a period of 7.4 s . The peak-peak...was 30 kPa (corresponding to a significant wave height of 6 m ) and a period of 10.3 s . The results are shown in Figure 17 to Figure 20. Comparison of... a loss in the system. Hopka et al. [9] obtain the ‘indicated torque’ from an empirical relationship  1 2 3 4 5 ,find f cc eng out in in eng m b

  7. Computation of marginal distributions of peak-heights in electropherograms for analysing single source and mixture STR DNA samples.

    PubMed

    Cowell, Robert G

    2018-05-04

    Current models for single source and mixture samples, and probabilistic genotyping software based on them used for analysing STR electropherogram data, assume simple probability distributions, such as the gamma distribution, to model the allelic peak height variability given the initial amount of DNA prior to PCR amplification. Here we illustrate how amplicon number distributions, for a model of the process of sample DNA collection and PCR amplification, may be efficiently computed by evaluating probability generating functions using discrete Fourier transforms. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.

    PubMed

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-11-01

    Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = -0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.

  9. On the relation between the peak frequency and the corresponding rise time of solar microwave impulsive bursts and the height dependence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Ren-Yang, Zhao; Magun, Andreas; Schanda, Erwin

    1990-12-01

    In the present paper we report the results of a correlation analysis for 57 microwave impulsive bursts observed at six frequencies in which we have obtained a regression line between the peak frequency and the corresponding rise time of microwave impulsive bursts: {ie361-01} (with a correlation coefficient of - 0.43). This can be explained in the frame of a thermal model. The magnetic field decrease with height has to be much slower than in a dipole field in order to explain the weak dependence of f p on t r . This decrease of magnetic field with height in burst sources is based on the relationship between f p and t r found by assuming a thermal flare model with a collisionless conduction front.

  10. Study on Diagnosing Three Dimensional Cloud Region

    NASA Astrophysics Data System (ADS)

    Cai, M., Jr.; Zhou, Y., Sr.

    2017-12-01

    Cloud mask and relative humidity (RH) provided by Cloudsat products from 2007 to 2008 are statistical analyzed to get RH Threshold between cloud and clear sky and its variation with height. A diagnosis method is proposed based on reanalysis data and applied to three-dimensional cloud field diagnosis of a real case. Diagnostic cloud field was compared to satellite, radar and other cloud precipitation observation. Main results are as follows. 1.Cloud region where cloud mask is bigger than 20 has a good space and time corresponding to the high value relative humidity region, which is provide by ECWMF AUX product. Statistical analysis of the RH frequency distribution within and outside cloud indicated that, distribution of RH in cloud at different height range shows single peak type, and the peak is near a RH value of 100%. Local atmospheric environment affects the RH distribution outside cloud, which leads to TH distribution vary in different region or different height. 2. RH threshold and its vertical distribution used for cloud diagnostic was analyzed from Threat Score method. The method is applied to a three dimension cloud diagnosis case study based on NCEP reanalysis data and th diagnostic cloud field is compared to satellite, radar and cloud precipitation observation on ground. It is found that, RH gradient is very big around cloud region and diagnosed cloud area by RH threshold method is relatively stable. Diagnostic cloud area has a good corresponding to updraft region. The cloud and clear sky distribution corresponds to satellite the TBB observations overall. Diagnostic cloud depth, or sum cloud layers distribution consists with optical thickness and precipitation on ground better. The cloud vertical profile reveals the relation between cloud vertical structure and weather system clearly. Diagnostic cloud distribution correspond to cloud observations on ground very well. 3. The method is improved by changing the vertical interval from altitude to temperature. The result shows that, the five factors , including TS score for clear sky, empty forecast, missed forecast, and especially TS score for cloud region and the accurate rate increased obviously. So, the RH threshold and its vertical distribution with temperature is better than with altitude. More tests and comparision should be done to assess the diagnosis method.

  11. Early diet and peak bone mass: 20 year follow-up of a randomized trial of early diet in infants born preterm.

    PubMed

    Fewtrell, Mary S; Williams, Jane E; Singhal, Atul; Murgatroyd, Peter R; Fuller, Nigel; Lucas, Alan

    2009-07-01

    Preterm infants are at risk of metabolic bone disease due to inadequate mineral intake with unknown consequences for later bone health. To test the hypotheses that (1) early diet programs peak bone mass and bone turnover; (2) human milk has a beneficial effect on these outcomes; (3) preterm subjects have reduced peak bone mass compared to population reference data. 20 year follow-up of 202 subjects (43% male; 24% of survivors) who were born preterm and randomized to: (i) preterm formula versus banked breast milk or (ii) preterm versus term formula; as sole diet or supplement to maternal milk. Outcome measures were (i) anthropometry; (ii) hip, lumbar spine (LS) and whole body (WB) bone mineral content (BMC) and bone area (BA) measured using DXA; (iii) bone turnover markers. Infant dietary randomization group did not influence peak bone mass or turnover. The proportion of human milk in the diet was significantly positively associated with WBBA and BMC. Subjects receiving >90% human milk had significantly higher WBBA (by 3.5%, p=0.01) and BMC (by 4.8%, p=0.03) than those receiving <10%. Compared to population data, subjects had significantly lower height SDS (-0.41 (SD 1.05)), higher BMI SDS (0.31 (1.33)) and lower LSBMD SDS (-0.29 (1.16)); height and bone mass deficits were greatest in those born SGA with birthweight <1250 g (height SDS -0.81 (0.95), LSBMD SDS -0.61 (1.3)). Infant dietary randomization group did not affect peak bone mass or turnover suggesting the observed reduced final height and LS bone mass, most marked in growth restricted subjects with the lowest birthweight, may not be related to sub-optimal early nutrition. The higher WB bone mass associated with human milk intake, despite its low nutrient content, may reflect non-nutritive factors in breast milk. These findings may have implications for later osteoporosis risk and require further investigation.

  12. Physical Determinants of Interval Sprint Times in Youth Soccer Players

    PubMed Central

    Amonette, William E.; Brown, Denham; Dupler, Terry L.; Xu, Junhai; Tufano, James J.; De Witt, John K.

    2014-01-01

    Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10–19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=−0.59; p<0.01), body mass (r=−0.52; p<0.01), lean mass (r=−0.61; p<0.01), vertical jump height (r=−0.67; p<0.01), peak power (r=−0.64; p<0.01), and peak force (r=−0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=−0.71; p<0.01), body mass (r=−0.67; p<0.01), lean mass (r=−0.76; p<0.01), vertical jump height (r=−0.75; p<0.01), peak power (r=−0.78; p<0.01), and peak force (r=−0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential. PMID:25031679

  13. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions

    PubMed Central

    Capurso, Daniel; Bengtsson, Henrik; Segal, Mark R.

    2016-01-01

    The spatial organization of the genome influences cellular function, notably gene regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional annotations (e.g. centromeres, long terminal repeats) using 3D genome reconstructions from Hi-C (genome-wide chromosome conformation capture) data; however, corresponding assessments for continuous functional genomic data (e.g. chromatin immunoprecipitation-sequencing (ChIP-seq) peak height) are lacking. Here, we demonstrate that applying bump hunting via the patient rule induction method (PRIM) to ChIP-seq data superposed on a Saccharomyces cerevisiae 3D genome reconstruction can discover ‘functional 3D hotspots’, regions in 3-space for which the mean ChIP-seq peak height is significantly elevated. For the transcription factor Swi6, the top hotspot by P-value contains MSB2 and ERG11 – known Swi6 target genes on different chromosomes. We verify this finding in a number of ways. First, this top hotspot is relatively stable under PRIM across parameter settings. Second, this hotspot is among the top hotspots by mean outcome identified by an alternative algorithm, k-Nearest Neighbor (k-NN) regression. Third, the distance between MSB2 and ERG11 is smaller than expected (by resampling) in two other 3D reconstructions generated via different normalization and reconstruction algorithms. This analytic approach can discover functional 3D hotspots and potentially reveal novel regulatory interactions. PMID:26869583

  14. Reduced exercise capacity in untreated adults with primary growth hormone resistance (Laron syndrome).

    PubMed

    Ben-Dov, Issahar; Gaides, Mark; Scheinowitz, Mickey; Wagner, Rivka; Laron, Zvi

    2003-12-01

    Primary IGF-I deficiency (Laron syndrome, LS) may decrease exercise capacity as a result of a lack of an IGF-I effect on heart, peripheral muscle or lung structure and/or function. Eight patients (six females) who had never received treatment with IGF-I, with mean age of 36 +/- 10 (SD) years (range 21-48), weight 47 +/- 9 kg (31-61), height 126 +/- 12 cm (112-140) and body mass index of 29 +/- 4 kg/m2 (24-34), and 12 age-matched controls, underwent lung function tests and incremental cycling to the limit of tolerance (CPX, MedGraphics). Predicted values for the patients were derived from adult equations based on height. In LS patients, lung function was near normal; vital capacity was 84 +/- 11% of expected (66-103). Peak exercise O2-uptake and the anaerobic threshold were reduced, 57 +/- 20% of predicted and 33 +/- 9% of predicted peak (P = 0.005 vs. controls), despite normal mean exercise breathing reserve. All parameters were normal in the controls. Exercise capacity in untreated adults with LS is significantly reduced. The limitation for most patients was not ventilatory but resulted either from low cardiac output and/or from dysfunction of the peripheral muscles. However, the relative contribution of each of these elements and/or the role of poor fitness needs further study.

  15. Biomechanical analysis of the jump shot in basketball.

    PubMed

    Struzik, Artur; Pietraszewski, Bogdan; Zawadzki, Jerzy

    2014-09-29

    Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player's jumping ability.

  16. Analytical study of seismic effects of a solar receiver mounted on concrete towers with different fundamental periods

    NASA Astrophysics Data System (ADS)

    Deng, Lin

    2016-05-01

    This paper examines the seismic effects experienced by a solar receiver mounted on concrete towers with different fundamental periods. Ten concrete towers are modeled with the empty solar receiver structure and loaded solar receiver structure to examine the tower seismic effects on the solar receiver. The fundamental periods of the towers range from 0.22 seconds to 4.58 seconds, with heights ranging from 40.5 meters to 200 meters. Thirty earthquake ground motion records are used to investigate the responses of each of the combined receiver-on-tower models as well as the receiver-on-ground models by the STAAD Pro software using time history analyses. The earthquake ground motion records are chosen based on the ratio of the peak ground acceleration to the peak ground velocity, ranging from 0.29 g/m/s to 4.88 g/m/s. For each of the combined models, the base shear at the interface between the receiver and the concrete tower is compared with the base shear of the receiver-on-ground model, and the ratio of the two base shears represents the structure amplification factor. It is found that the peak mean plus one standard deviation value of the structure amplification factor matches well with equation 13.3-1 in ASCE 7-10 for the empty solar receiver structure. However, when the solar receiver structure is loaded with dead loads, the peak value is greatly suppressed, and using equation 13.3-1 in ASCE 7-10 will be overly conservative.

  17. Numerical investigation of freak waves

    NASA Astrophysics Data System (ADS)

    Chalikov, D.

    2009-04-01

    Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).

  18. Growth references for Tsimane forager-horticulturalists of the Bolivian Amazon

    PubMed Central

    Blackwell, Aaron D.; Urlacher, Samuel S.; Beheim, Bret; von Rueden, Christopher; Jaeggi, Adrian; Stieglitz, Jonathan; Trumble, Benjamin C.; Gurven, Michael; Kaplan, Hillard

    2016-01-01

    Objectives Growth standards and references currently used to assess population and individual health are derived primarily from urban populations, including few individuals from indigenous or subsistence groups. Given environmental and genetic differences, growth may vary in these populations. Thus, there is a need to assess whether international standards are appropriate for all populations, and to produce population specific references if growth differs. Here we present and assess growth references for the Tsimane, an indigenous population of Bolivian forager-horticulturalists. Methods Mixed cross-sectional/longitudinal anthropometrics (9,614 individuals; 30,118 observations; ages 0–29 years) were used to generate centile curves and Lambda-Mu-Sigma (LMS) tables for height-for-age, weight-for-age, body mass index (BMI)-for-age, and weight-for-height (WFH) using Generalized Additive Models for Location Shape and Scale (GAMLSS). Velocity curves were generated using SuperImposition by Translation and Rotation (SITAR). Tsimane ≤5 years were compared World Health Organization (WHO) standards while those >5 years were compared to WHO school age references. All ages were compared to published references for Shuar forager-horticulturalists of the Ecuadorian Amazon. Results Tsimane growth differs from WHO values in height and weight, but is similar for BMI and WFH. Tsimane growth is characterized by slow height velocity in childhood and early adolescent peak height velocity at 11.3 and 13.2 years for girls and boys. Tsimane growth patterns are similar to Shuar, suggesting shared features of growth among indigenous South Americans. Conclusions International references for BMI-for-age and WFH are likely appropriate for Tsimane, but differences in height-for-age and weight-for-age suggest Tsimane specific references may be useful for these measures. PMID:28218400

  19. Growth references for Tsimane forager-horticulturalists of the Bolivian Amazon.

    PubMed

    Blackwell, Aaron D; Urlacher, Samuel S; Beheim, Bret; von Rueden, Christopher; Jaeggi, Adrian; Stieglitz, Jonathan; Trumble, Benjamin C; Gurven, Michael; Kaplan, Hillard

    2017-03-01

    Growth standards and references currently used to assess population and individual health are derived primarily from urban populations, including few individuals from indigenous or subsistence groups. Given environmental and genetic differences, growth may vary in these populations. Thus, there is a need to assess whether international standards are appropriate for all populations, and to produce population specific references if growth differs. Here we present and assess growth references for the Tsimane, an indigenous population of Bolivian forager-horticulturalists. Mixed cross-sectional/longitudinal anthropometrics (9,614 individuals; 30,118 observations; ages 0-29 years) were used to generate centile curves and Lambda-Mu-Sigma (LMS) tables for height-for-age, weight-for-age, body mass index (BMI)-for-age, and weight-for-height (WFH) using Generalized Additive Models for Location Shape and Scale (GAMLSS). Velocity curves were generated using SuperImposition by Translation and Rotation (SITAR). Tsimane ≤5 years were compared to World Health Organization (WHO) standards while those >5 years were compared to WHO school age references. All ages were compared to published references for Shuar forager-horticulturalists of the Ecuadorian Amazon. Tsimane growth differs from WHO values in height and weight, but is similar for BMI and WFH. Tsimane growth is characterized by slow height velocity in childhood and early adolescent peak height velocity at 11.3 and 13.2 years for girls and boys. Tsimane growth patterns are similar to Shuar, suggesting shared features of growth among indigenous South Americans. International references for BMI-for-age and WFH are likely appropriate for Tsimane, but differences in height-for-age and weight-for-age suggest Tsimane specific references may be useful for these measures. © 2016 Wiley Periodicals, Inc.

  20. Titan dune heights retrieval by using Cassini Radar Altimeter

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C.

    2014-02-01

    The Cassini Radar is a Ku band multimode instrument capable of providing topographic and mapping information. During several of the 93 Titan fly-bys performed by Cassini, the radar collected a large amount of data observing many dune fields in multiple modes such as SAR, Altimeter, Scatterometer and Radiometer. Understanding dune characteristics, such as shape and height, will reveal important clues on Titan's climatic and geological history providing a better understanding of aeolian processes on Earth. Dunes are believed to be sculpted by the action of the wind, weak at the surface but still able to activate the process of sand-sized particle transport. This work aims to estimate dunes height by modeling the shape of the real Cassini Radar Altimeter echoes. Joint processing of SAR/Altimeter data has been adopted to localize the altimeter footprints overlapping dune fields excluding non-dune features. The height of the dunes was estimated by applying Maximum Likelihood Estimation along with a non-coherent electromagnetic (EM) echo model, thus comparing the real averaged waveform with the theoretical curves. Such analysis has been performed over the Fensal dune field observed during the T30 flyby (May 2007). As a result we found that the estimated dunes' peak to trough heights difference was in the order of 60-120 m. Estimation accuracy and robustness of the MLE for different complex scenarios was assessed via radar simulations and Monte-Carlo approach. We simulated dunes-interdunes different composition and roughness for a large set of values verifying that, in the range of possible Titan environment conditions, these two surface parameters have weak effects on our estimates of standard dune heights deviation. Results presented here are the first part of a study that will cover all Titan's sand seas.

  1. Effect of Leg-to-Body Ratio on Body Shape Attractiveness.

    PubMed

    Kiire, Satoru

    2016-05-01

    Recent studies have examined various aspects of human physical attractiveness. Attractiveness is considered an evolved psychological mechanism acquired via natural selection because an attractive body reflects an individual's health and fertility. The length of the legs is an often-emphasized aspect of attractiveness and has been investigated using the leg-to-body ratio (LBR), which reflects nutritional status of the infant, health status, fecundity, and other factors that are predictive of physical fitness. However, previous studies of leg length and physical fitness have produced mixed results. The present study investigated the relationship between LBR, defined as the height to perineum divided by total height, and perceived attractiveness. Three-dimensional stimuli (11 male and 11 female) were constructed with various LBR features. Each stimulus was rated by 40 women and 40 men in Japan on a 7-point scale. The results showed that the values closest to the average LBRs were rated as the most attractive. Furthermore, by fitting a quadratic curve on the relationship between attractiveness and LBR, an inverted U-shaped curve with the peak located at the average LBR was observed. In addition, high LBR values were rated as more attractive in females, whereas the opposite was true for males. These results suggest that average LBR is indicative of good health and good reproductive potential, whereas more extreme values are avoided because they could be indicative of diseases and other maladaptive conditions.

  2. Impact of skeletal maturation on bone metabolism biomarkers and bone mineral density in healthy Brazilian male adolescents.

    PubMed

    Silva, Carla C; Goldberg, Tamara B L; Nga, Hong S; Kurokawa, Cilmery S; Capela, Renata C; Teixeira, Altamir S; Dalmas, José C

    2011-01-01

    To evaluate the behavior of biomarkers of bone formation and resorption in healthy male Brazilian adolescents according to their biological maturation. Eighty-seven volunteers were divided into age groups according to bone age (BA): 10-12 years (n = 25), 13-15 years (n = 36), and 16-18 years (n = 26). Weight (kg), height (m), body mass index (kg/m(2)), calcium intake from 3 days assessed by 24-h food recall (mg/day), pubertal event evaluation by Tanner criteria, and serum biomarker levels (osteocalcin [OC] [ng/mL], bone alkaline phosphatase [BAP] [U/L], and serum carboxyterminal telopeptide [S-CTx] [ng/mL]) were recorded and correlated to bone mineral density (BMD) (g/cm(2)) measured by dual energy X-ray absorptiometry of the lumbar spine, proximal femur, and whole body. Biomarkers showed similar behaviors, presenting higher median values in the 13-15 year group (BAP = 154.71 U/L, OC = 43.0 ng/mL, S-CTx = 2.09 ng/mL; p < 0.01) and when adolescents were in the pubertal stage G4. Median biomarker values decreased with advancing BA and sexual maturation. Biomarker values showed parallelism with peak height velocity, and, interestingly, bone formation biomarkers indicated significant negative correlation with BMD in the different evaluated locations, i.e., higher BMD values correlated with lower bone biomarker values. This is the first study of healthy Brazilian adolescents with rigid and careful inclusion and exclusion criteria to assess the correlation of bone markers and BMD with biological maturation indicators. Our results can help understand bone turnover and monitor bone metabolism.

  3. Influence of body mass index on the growth hormone response to provocative testing in short children without growth hormone deficiency.

    PubMed

    Lee, Jieun; Yoon, Juyoung; Kang, Min Jae; Lee, Young Ah; Lee, Seong Yong; Shin, Choong Ho; Yang, Sei Won

    2013-09-01

    Obesity and its related factors are known to suppress the secretion of growth hormone (GH). We aimed to evaluate the influence of body mass index (BMI) on the peak GH response to provocative testing in short children without GH deficiency. We conducted a retrospective review of medical records of 88 children (2-15 yr old) whose height was less than 3 percentile for one's age and sex, with normal results (peak GH level > 10 ng/mL) of GH provocative testing with clonidine and dopamine. Peak stimulated GH level, height, weight, pubertal status and serum IGF-1 level were measured. Univariate analysis showed that the BMI standard deviation score (SDS) correlated negatively with the natural log (ln) of the peak stimulated GH level (ln peak GH). BMI SDS did not correlate significantly with sex, age, pubertal status, or ln IGF-1 level. BMI SDS correlated negatively with ln peak GH level induced by clonidine but not by dopamine. In stepwise multivariate regression analysis, BMI SDS was the only significant predictor of ln peak GH level in the combination of tests and the clonidine test, but not in the dopamine test. In children without GH deficiency, BMI SDS correlates negatively with the peak GH level. BMI SDS should be included in the analysis of the results of GH provocation tests, especially tests with clonidine.

  4. A mechanical protocol to replicate impact in walking footwear.

    PubMed

    Price, Carina; Cooper, Glen; Graham-Smith, Philip; Jones, Richard

    2014-01-01

    Impact testing is undertaken to quantify the shock absorption characteristics of footwear. The current widely reported mechanical testing method mimics the heel impact in running and therefore applies excessive energy to walking footwear. The purpose of this study was to modify the ASTM protocol F1614 (Procedure A) to better represent walking gait. This was achieved by collecting kinematic and kinetic data while participants walked in four different styles of walking footwear (trainer, oxford shoe, flip-flop and triple-density sandal). The quantified heel-velocity and effective mass at ground-impact were then replicated in a mechanical protocol. The kinematic data identified different impact characteristics in the footwear styles. Significantly faster heel velocity towards the floor was recorded walking in the toe-post sandals (flip-flop and triple-density sandal) compared with other conditions (e.g. flip-flop: 0.36±0.05 ms(-1) versus trainer: 0.18±0.06 ms(-1)). The mechanical protocol was adapted by altering the mass and drop height specific to the data captured for each shoe (e.g. flip-flop: drop height 7 mm, mass 16.2 kg). As expected, the adapted mechanical protocol produced significantly lower peak force and accelerometer values than the ASTM protocol (p<.001). The mean difference between the human and adapted protocol was 12.7±17.5% (p<.001) for peak acceleration and 25.2±17.7% (p=.786) for peak force. This paper demonstrates that altered mechanical test protocols can more closely replicate loading on the lower limb in walking. This therefore suggests that testing of material properties of footbeds not only needs to be gait style specific (e.g. running versus walking), but also footwear style specific. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The Relationship between Ionospheric Slab Thickness and the Peak Density Height, hmF2

    NASA Astrophysics Data System (ADS)

    Meehan, J.; Sojka, J. J.

    2017-12-01

    The electron density profile is one of the most critical elements in the ionospheric modeling-related applications today. Ionosphere parameters, hmF2, the height of the peak density layer, and slab thickness, the ratio of the total electron content, TEC, to the peak density value, NmF2, are generally obtained from any global sounding observation network and are easily incorporated into models, theoretical or empirical, as numerical representations. Slab thickness is a convenient one-parameter summary of the electron density profile and can relate a variety of elements of interest that effect the overall electron profile shape, such as the neutral and ionospheric temperatures and gradients, the ionospheric composition, and dynamics. Using ISR data from the 2002 Millstone Hill ISR data campaign, we found, for the first time, slab thickness to be correlated to hmF2. For this, we introduce a new ionospheric index, k, which ultimately relates electron density parameters and can be a very useful tool for describing the topside ionosphere shape. Our study is an initial one location, one season, 30-day study, and future work is needed to verify the robustness of our claim. Generally, the ionospheric profile shape, requires knowledge of several ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric fields, and neutral winds, and is dependent upon seasons, local time, location, and the level of solar and geomagnetic activity; however, with this new index, only readily-available, ionospheric density information is needed. Such information, as used in this study, is obtained from a bottomside electron density profile provided by an ionosonde, and TEC data provided by a local, collocated GPS receiver.

  6. A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.

    PubMed

    Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak

    2008-09-01

    We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of <10%, while the peak at 1573 cm(-1) has a RSD of >or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon).

  7. Quantification of carbamylated albumin in serum based on capillary electrophoresis.

    PubMed

    Delanghe, Sigurd; Moerman, Alena; Pletinck, Anneleen; Schepers, Eva; Glorieux, Griet; Van Biesen, Wim; Delanghe, Joris R; Speeckaert, Marijn M

    2017-09-01

    Protein carbamylation, a nonenzymatic posttranslational modification promoted during uremia, is linked to a poor prognosis. In the present study, carbamylation of serum albumin was assayed using the symmetry factor on a capillary electrophoresis instrument (Helena V8). The symmetry factor has been defined as the distance from the center line of the peak to the back slope, divided by the distance from the center line of the peak to the front slope, with all measurements made at 10% of the maximum peak height. Serum albumin, creatinine, and urea concentrations were assayed using routine methods, whereas uremic toxins were determined using HPLC. In vitro carbamylation induced a marked albumin peak asymmetry. Reference values for the albumin symmetry factor were 0.69-0.92. In kidney patients, albumin peak asymmetry corresponded to the chronic kidney disease stage (p < 0.0001). The symmetry factor correlated well with serum urea (r = -0.5595, p < 0.0001) and creatinine (r = -0.5986, p < 0.0001) concentrations. Several protein-bound uremic toxins showed a significant negative correlation with the symmetry factor. Morphology of the albumin fraction was not affected by presence of glycated albumin and protein-bound antibiotics. In conclusion, the presented method provides a simple, practical way for monitoring protein carbamylation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Detection of protonated non-Watson-Crick base pairs using electrospray ionization mass spectrometry.

    PubMed

    Ishida, Riyoko; Iwahashi, Hideo

    2018-03-01

    Many studies have shown that protonated nucleic acid base pairs are involved in a wide variety of nucleic acid structures. However, little information is available on relative stability of hemiprotonated self- and non-self-dimers at monomer level. We used electrospray ionization mass spectrometry (ESI-MS) to evaluate the relative stability under various concentrations of hydrogen ion. These enable conjecture of the formation of protonated non-Watson-Crick base pairs based on DNA and RNA base sequence. In the present study, we observed that ESI-MS peaks corresponded to respective self-dimers for all examined nucleosides except for adenosine. Peak heights depended on the concentration of hydrogen ion. The ESI-MS peak heights of the hemiprotonated cytidine dimers and the hemiprotonated thymidine dimer sharply increased with increased concentration of hydrogen ion, suggesting direct participation of hydrogen ion in dimer formations. In ESI-MS measurements of the solutions containing adenosine, cytidine, thymidine and guanosine, we observed protonated cytidine-guanosine dimer (CH+-G) and protonated cytidine-thymidine dimer (CH+-T) in addition to hemiprotonated cytidine-cytidine dimer (CH+-C) with following relative peak height, (CH+-C) > (CH+-G) ≈ (CH+-T) > (CH+-A). Additionally, in the ESI-MS measurements of solutions containing adenosine, thymidine and guanosine, we observed a considerable amount of protonated adenosine-guanosine (AH+-G) and protonated adenosine-thymidine (AH+-T).

  9. The influence of heel height on vertical ground reaction force during landing tasks in recreationally active and athletic collegiate females.

    PubMed

    Lindenberg, Kelly M; Carcia, Christopher R

    2013-02-01

    To determine if heel height alters vertical ground reaction forces (vGRF) when landing from a forward hop or drop landing. Increased vGRF during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a athletic shoe. Using a force plate, peak vGRF at landing was examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- Peak vGRF (normalized for body mass) with 0 mm, 12 mm, and 24 mm lifts were 2.613±0.498, 2.616±0.497 and 2.495±0.518% BW, respectively. Significant differences were noted between 0 and 24 mm lift (p<.001) and 12 and 24 mm lifts (p=.004), but not between the 0 and 12 mm conditions (p=.927). Jump-landing task- No significant differences were found in peak vGRF (p=.192) between any of the heel lift conditions. The addition of a 24 mm heel lift to the bottom of a sneaker significantly alters peak vGRF upon landing from a unilateral forward hop but not from a jumping maneuver.

  10. Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers

    NASA Astrophysics Data System (ADS)

    Krustok, J.; Kaupmees, R.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Li, B.; Gong, Y.

    2017-06-01

    Optical properties of aged WS2 monolayers grown by CVD method on Si/SiO2 substrates are studied using temperature dependent photoluminescence and reflectance contrast spectroscopy. Aged WS2 monolayers have a typical surface roughness about 0.5 nm and, in addition, a high density of nanoparticles (nanocaps) with the base diameter about 30 nm and average height of 7 nm. The A-exciton of aged monolayer has a peak position at 1.951 eV while in as-grown monolayer the peak is at about 24 meV higher energy at room temperature. This red-shift is explained using local tensile strain concept, where strain value of 2.1% was calculated for these nanocap regions. Strained nanocaps have lower band gap energy and excitons will funnel into these regions. At T=10K a double exciton and trion peaks were revealed. The separation between double peaks is about 20 meV and the origin of higher energy peaks is related to the optical band gap energy fluctuations caused by random distribution of local tensile strain due to increased surface roughness. In addition, a wide defect related exciton band XD was found at about 1.93 eV in all aged monolayers. It is shown that the theory of localized excitons describes well the temperature dependence of peak position and halfwidth of the A-exciton band. The possible origin of nanocaps is also discussed.

  11. The effect of massive neutrinos on the BAO peak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloso, Marco; Pietroni, Massimo; Viel, Matteo

    2015-07-01

    We study the impact of neutrino masses on the shape and height of the BAO peak of the matter correlation function, both in real and redshift space. In order to describe the nonlinear evolution of the BAO peak we run N-body simulations and compare them with simple analytic formulae. We show that the evolution with redshift of the correlation function and its dependence on the neutrino masses is well reproduced in a simplified version of the Zel'dovich approximation, in which the mode-coupling contribution to the power spectrum is neglected. While in linear theory the BAO peak decreases for increasing neutrinomore » masses, the effect of nonlinear structure formation goes in the opposite direction, since the peak broadening by large scale flows is less effective. As a result of this combined effect, the peak decreases by ∼ 0.6 % for  ∑ m{sub ν} = 0.15 eV and increases by ∼1.2% for  ∑ m{sub ν} = 0.3 eV, with respect to a massless neutrino cosmology with equal value of the other cosmological parameters. We extend our analysis to redshift space and to halos, and confirm the agreement between simulations and the analytic formulae. We argue that all analytical approaches having the Zel'dovich propagator in their lowest order approximation should give comparable performances, irrespectively to their formulation in Lagrangian or in Eulerian space.« less

  12. International Reference Ionosphere -2010

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Reinisch, Bodo

    The International Reference Ionosphere 2010 includes several important improvements and ad-ditions. This presentation introduces these changes and discusses their benefits. The electron and ion density profiles for the bottomside ionosphere will be significantly improved by using more ionosonde data as well as photochemical considerations. As an additional lower iono-sphere parameter IRI-2010 will include the transition height from molecular to cluster ions. At the F2 peak Neural Net models for the peak density and the propagation factor M3000F2, which is related to the F2 peak height, are introduced as new options. At high latitudes the model will benefit from the introduction of auroral oval boundaries and their variation with magnetic activity. Regarding the electron temperature, IRI-2010 now models variations with solar activity. The homepage for the IRI project is at http://IRI.gsfc.nasa.gov/.

  13. Unsupervised parameter optimization for automated retention time alignment of severely shifted gas chromatographic data using the piecework alignment algorithm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Karisa M.; Wright, Bob W.; Synovec, Robert E.

    2007-02-02

    First, simulated chromatographic separations with declining retention time precision were used to study the performance of the piecewise retention time alignment algorithm and to demonstrate an unsupervised parameter optimization method. The average correlation coefficient between the first chromatogram and every other chromatogram in the data set was used to optimize the alignment parameters. This correlation method does not require a training set, so it is unsupervised and automated. This frees the user from needing to provide class information and makes the alignment algorithm more generally applicable to classifying completely unknown data sets. For a data set of simulated chromatograms wheremore » the average chromatographic peak was shifted past two neighboring peaks between runs, the average correlation coefficient of the raw data was 0.46 ± 0.25. After automated, optimized piecewise alignment, the average correlation coefficient was 0.93 ± 0.02. Additionally, a relative shift metric and principal component analysis (PCA) were used to independently quantify and categorize the alignment performance, respectively. The relative shift metric was defined as four times the standard deviation of a given peak’s retention time in all of the chromatograms, divided by the peak-width-at-base. The raw simulated data sets that were studied contained peaks with average relative shifts ranging between 0.3 and 3.0. Second, a “real” data set of gasoline separations was gathered using three different GC methods to induce severe retention time shifting. In these gasoline separations, retention time precision improved ~8 fold following alignment. Finally, piecewise alignment and the unsupervised correlation optimization method were applied to severely shifted GC separations of reformate distillation fractions. The effect of piecewise alignment on peak heights and peak areas is also reported. Piecewise alignment either did not change the peak height, or caused it to slightly decrease. The average relative difference in peak height after piecewise alignment was –0.20%. Piecewise alignment caused the peak areas to either stay the same, slightly increase, or slightly decrease. The average absolute relative difference in area after piecewise alignment was 0.15%.« less

  14. Evaluation of gas-liquid chromatography for the rapid diagnosis of Clostridium difficile associated disease.

    PubMed Central

    Gianfrilli, P; Pantosti, A; Luzzi, I

    1985-01-01

    Direct gas-liquid chromatography of faecal specimens with isocaproic acid as a marker was used for the rapid diagnosis of Clostridium difficile associated diarrhoeal diseases. Ninety stools were examined and results were compared with conventional culture on selective medium and cytotoxin assay in tissue culture. Using a combined analysis of isocaproic acid and butyric acid peak heights we defined three categories: positive, negative, and indeterminate. When the indeterminate group was excluded, the positive and negative predictive values of gas-liquid chromatography analysis were 86.9% and 85% respectively compared with culture and 71.4% and 95% respectively compared with cytotoxin assay. PMID:4008667

  15. Modes competition in superradiant emission from an inverted sub-wavelength thick slab of two-level atoms

    NASA Astrophysics Data System (ADS)

    Manassah, Jamal T.

    2016-08-01

    Using the expansion in the eigenmodes of 1-D Lienard-Wiechert kernel, the temporal and spectral profiles of the radiation emitted by a fully inverted collection of two-level atoms in a sub-wavelength slab geometry are computed. The initial number of amplifying modes determine the specific regime of radiation. In particular, the temporal profile of the field intensity is oscillatory and the spectral profile is non-Lorentzian with two unequal height peaks in a narrow band centered at the slab thickness value at which the real parts of the lowest order odd and even eigenvalues are equal.

  16. Earthquake response of storey building in Jakarta using accelerographs data analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julius, Admiral Musa, E-mail: admiralmusajulius@yahoo.com; Jakarta Geophysics Observatory, Indonesia Agency of Meteorology Climatology and Geophysics; Sunardi, Bambang, E-mail: b.sunardi@gmail.com

    As seismotectonic, the Jakarta city will be greatly affected by the earthquake which originated from the subduction zone of the Sunda Strait and south of Java. Some occurrences of earthquakes in these location are often perceived by the occupants in the upper floors of multi-storey buildings in Jakarta but was not perceived by the occupants on the ground floor. The case shows the difference in ground-motion parameters on each floor height. The analysis of the earthquake data recorded by accelerographs on different floors need to be done to know the differences in ground-motion parameters. Data used in this research ismore » accelerograph data installed on several floors in the main building of Meteorology Climatology and Geophysics Agency with a case study of Kebumen earthquake on January 25{sup th} 2014. Parameters analyzed include the Peak Ground Acceleration (PGA), Peak Ground Displacement (PGD), Peak Spectral Acceleration (PSA), Amplification (Ag), and the Effective Duration of earthquake (t{sub e}). Research stages include accelerographs data acquisition in three (3) different floors, conversion and data partition for each component, conversion to units of acceleration, determination of PGA, PGD, PSA, Ag and t{sub e} as well as data analysis. The study shows the value of PGA on the ground floor, 7{sup th} floor and 15{sup th} floors, respectively are 0.016 g, 0.053 g and 0.116 g. PGD on the ground floor, 7{sup th} floor and 15{sup th} floor respectively are 2.15 cm, 2.98 cm and 4.92 cm. PSA on the ground floor, 7{sup th} floor and 15{sup th} floor respectively are 0.067 g, 0.308 g and 0.836 g. Amplification of the peak acceleration value on the ground floor, 7{sup th} floor and 15{sup th} floor to the surface rock are 4.37, 6.07 and 7.30. Effective duration of the earthquake on the ground floor, 7{sup th} floor and 15{sup th} floor respectively are 222.28 s, 202.28 s and 91.58 s. In general, with increasing floor of the building, the value of the peak ground acceleration, peak ground displacement, peak spectral acceleration and amplification growing, contrary to the value of the effective duration of earthquake decreases. The difference in this parameter is strongly influenced by local soil conditions and building construction.« less

  17. Height distributions of two species of cacti in relation to rainfall, seedling establishment, and growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordon, P.W.; Nobel, P.S.

    1982-01-01

    In three populations of Ferocactus acanthodes and two of Carnegiea gigantea, multiple discrete peaks in the height distribution were observed, suggesting that seedling establishment was intermittent. To identify periods of establishment, we determined the relationship between stem height and age for each site, based on observed growth rates in the field, gas-exchange data, and weather records. The average yearly growth for the globular F. acanthodes was relatively constant at about 9 mm yr/sup -1/, but for the club-shaped C. gigantea, it increased with age from 2 mm yr/sup -1/ in the first year to 44 mm yr/sup -1/ at 13more » yr. In years suitable for establishment, seedlings grow to sufficient size that stored water is not depleted by cuticular transpiration during the ensuing drought. The pattern of such suitable years over the last 3 decades correlated with the measured height distributions when the relation between stem height and age was considered. At a Sonoran Desert site, major peaks in the height distribution were centered at 0.05 m and 0.19 m, which corresponded to suitable conditions for establishment in 1976 and 1959, respectively. Rainfall records from various weather stations indicated that both species occurred where at least 10% of the years are suitable for seedling establishment.« less

  18. Ground Reaction Forces of the Lead and Trail Limbs when Stepping Over an Obstacle

    PubMed Central

    Bovonsunthonchai, Sunee; Khobkhun, Fuengfa; Vachalathiti, Roongtiwa

    2015-01-01

    Background Precise force generation and absorption during stepping over different obstacles need to be quantified for task accomplishment. This study aimed to quantify how the lead limb (LL) and trail limb (TL) generate and absorb forces while stepping over obstacle of various heights. Material/Methods Thirteen healthy young women participated in the study. Force data were collected from 2 force plates when participants stepped over obstacles. Two limbs (right LL and left TL) and 4 conditions of stepping (no obstacle, stepping over 5 cm, 20 cm, and 30 cm obstacle heights) were tested for main effect and interaction effect by 2-way ANOVA. Paired t-test and 1-way repeated-measure ANOVA were used to compare differences of variables between limbs and among stepping conditions, respectively. The main effects on the limb were found in first peak vertical force, minimum vertical force, propulsive peak force, and propulsive impulse. Results Significant main effects of condition were found in time to minimum force, time to the second peak force, time to propulsive peak force, first peak vertical force, braking peak force, propulsive peak force, vertical impulse, braking impulse, and propulsive impulse. Interaction effects of limb and condition were found in first peak vertical force, propulsive peak force, braking impulse, and propulsive impulse. Conclusions Adaptations of force generation in the LL and TL were found to involve adaptability to altered external environment during stepping in healthy young adults. PMID:26169293

  19. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation tomore » zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.« less

  20. Relationships between body composition, body dimensions, and peak speed in cross-country sprint skiing.

    PubMed

    Stoggl, Thomas; Enqvist, Jonas; Muller, Erich; Holmberg, Hans-Christer

    2010-01-01

    In modern sprint cross-country skiing, strength and maximal speed are major determinants of performance. The aims of this study were to ascertain the anthropometric characteristics of world-class sprint skiers and to evaluate whether a specific body composition and/or body dimension characterizes a successful sprint skier. Our hypothesis was that body height and lean body mass are related to peak speed in double poling and diagonal stride. Fourteen male national and international elite skiers performed two peak speed tests in double poling and diagonal stride roller skiing on a treadmill and were analysed using dual-energy X-ray absorptiometry to determine body composition and body dimensions. Relative pole length was positively correlated with both techniques (double poling: r = 0.77, P < 0.01; diagonal stride: r = 0.60, P < 0.05) and was the only variable that was part of the multiple regression model for both double poling and diagonal stride peak speed. Body height was not correlated with any technique, whereas lean trunk mass (r = 0.75, P < 0.01), body mass index (r = 0.66, P < 0.01), total lean mass (r = 0.69, P < 0.01), and body mass (r = 0.57, P < 0.05) were positively related to double poling peak speed. Total lean mass (absolute: r = 0.58, P < 0.05; relative: r = 0.76, P < 0.001) and relative lean mass of the trunk, arms (both r = 0.72, P < 0.01), and legs (r = 0.54, P < 0.05) were positively related to diagonal stride peak speed. In conclusion, skiers should aim to achieve a body composition with a high percentage of lean mass and low fat mass. A focus on trunk mass through increased muscle mass appears to be important, especially for double poling. The use of longer poles (percent body height) seems to be advantageous for both double poling and diagonal stride peak speed, whereas body dimensions do not appear to be a predictive factor.

  1. Analysis of positive control STR experiments reveals that results obtained for FGA, D3S1358, and D13S317 condition the success rate of the analysis of routine reference samples.

    PubMed

    Murigneux, Valentine; Dufour, Anne-Béatrice; Lobry, Jean R; Pène, Laurent

    2014-07-01

    About 120,000 reference samples are analyzed each year in the Forensic Laboratory of Lyon. A total of 1640 positive control experiments used to validate and optimize the analytical method in the routine process were submitted to a multivariate exploratory data analysis approach with the aim of better understanding the underlying sources of variability. The peak heights of the 16 genetic markers targeted by the AmpFℓSTR(®) Identifiler(®) STR kit were used as variables of interest. Six different 3130xl genetic analyzers located in the same controlled environment were involved. Two major sources of variability were found: (i) the DNA load of the sample modulates all peak heights in a similar way so that the 16 markers are highly correlated, (ii) the genetic analyzer used with a locus-specific response for peak height and a better sensitivity for the most recently acquired. Three markers (FGA, D3S1358, and D13S317) were found to be of special interest to predict the success rate observed in the routine process. © 2014 American Academy of Forensic Sciences.

  2. Effects of Run-Up Velocity on Performance, Kinematics, and Energy Exchanges in The Pole Vault

    PubMed Central

    Linthorne, Nicholas P.; Weetman, A. H. Gemma

    2012-01-01

    This study examined the effect of run-up velocity on the peak height achieved by the athlete in the pole vault and on the corresponding changes in the athlete's kinematics and energy exchanges. Seventeen jumps by an experienced male pole vaulter were video recorded in the sagittal plane and a wide range of run-up velocities (4.5-8.5 m/s) was obtained by setting the length of the athlete's run-up (2-16 steps). A selection of performance variables, kinematic variables, energy variables, and pole variables were calculated from the digitized video data. We found that the athlete's peak height increased linearly at a rate of 0.54 m per 1 m/s increase in run-up velocity and this increase was achieved through a combination of a greater grip height and a greater push height. At the athlete's competition run-up velocity (8.4 m/s) about one third of the rate of increase in peak height arose from an increase in grip height and about two thirds arose from an increase in push height. Across the range of run-up velocities examined here the athlete always performed the basic actions of running, planting, jumping, and inverting on the pole. However, he made minor systematic changes to his jumping kinematics, vaulting kinematics, and selection of pole characteristics as the run-up velocity increased. The increase in run-up velocity and changes in the athlete's vaulting kinematics resulted in substantial changes to the magnitudes of the energy exchanges during the vault. A faster run-up produced a greater loss of energy during the take-off, but this loss was not sufficient to negate the increase in run-up velocity and the increase in work done by the athlete during the pole support phase. The athlete therefore always had a net energy gain during the vault. However, the magnitude of this gain decreased slightly as run-up velocity increased. Key pointsIn the pole vault the optimum technique is to run-up as fast as possible.The athlete's vault height increases at a rate of about 0.5 m per 1 m/s increase in run-up velocity.The increase in vault height is achieved through a greater grip height and a greater push height. At the athlete's competition run-up velocity about one third of the rate of increase in vault height arises from an increase in grip height and two thirds arises from an increase in push height.The athlete has a net energy gain during the vault. A faster run-up velocity produces a greater loss of energy during the take-off but this loss of energy is not sufficient to negate the increase in run-up velocity and the increase in the work done by the athlete during the pole support phase. PMID:24149197

  3. Generation of multivariate near shore extreme wave conditions based on an extreme value copula for offshore boundary conditions.

    NASA Astrophysics Data System (ADS)

    Leyssen, Gert; Mercelis, Peter; De Schoesitter, Philippe; Blanckaert, Joris

    2013-04-01

    Near shore extreme wave conditions, used as input for numerical wave agitation simulations and for the dimensioning of coastal defense structures, need to be determined at a harbour entrance situated at the French North Sea coast. To obtain significant wave heights, the numerical wave model SWAN has been used. A multivariate approach was used to account for the joint probabilities. Considered variables are: wind velocity and direction, water level and significant offshore wave height and wave period. In a first step a univariate extreme value distribution has been determined for the main variables. By means of a technique based on the mean excess function, an appropriate member of the GPD is selected. An optimal threshold for peak over threshold selection is determined by maximum likelihood optimization. Next, the joint dependency structure for the primary random variables is modeled by an extreme value copula. Eventually the multivariate domain of variables was stratified in different classes, each of which representing a combination of variable quantiles with a joint probability, which are used for model simulation. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The analysis is repeated for 9 different wind directions. The secondary variable is water level. In shallow waters extreme waves will be directly affected by water depth. Hence the joint probability of occurrence for water level and wave height is of major importance for design of coastal defense structures. Wind velocity and water levels are only dependent for some wind directions (wind induced setup). Dependent directions are detected using a Kendall and Spearman test and appeared to be those with the longest fetch. For these directions, wind velocity and water level extreme value distributions are multivariately linked through a Gumbel Copula. These distributions are stratified into classes of which the frequency of occurrence can be calculated. For the remaining directions the univariate extreme wind velocity distribution is stratified, each class combined with 5 high water levels. The wave height at the model boundaries was taken into account by a regression with the extreme wind velocity at the offshore location. The regression line and the 95% confidence limits where combined with each class. Eventually the wave period is computed by a new regression with the significant wave height. This way 1103 synthetic events were selected and simulated with the SWAN wave model, each of which a frequency of occurrence is calculated for. Hence near shore significant wave heights are obtained with corresponding frequencies. The statistical distribution of the near shore wave heights is determined by sorting the model results in a descending order and accumulating the corresponding frequencies. This approach allows determination of conditional return periods. For example, for the imposed univariate design return periods of 100 years for significant wave height and 30 years for water level, the joint return period for a simultaneous exceedance of both conditions can be computed as 4000 years. Hence, this methodology allows for a probabilistic design of coastal defense structures.

  4. Estimation of the mixing layer height over a high altitude site in Central Himalayan region by using Doppler lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, K. K.; Phanikumar, D. V.; Newsom, Rob K.

    2014-03-01

    A Doppler lidar was installed at Manora Peak, Nainital (29.4 N; 79.2 E, 1958 amsl) to estimate mixing layer height for the first time by using vertical velocity variance as basic measurement parameter for the period September-November 2011. Mixing layer height is found to be located ~0.57 +/- 0.1and 0.45 +/- 0.05km AGL during day and nighttime, respectively. The estimation of mixing layer height shows good correlation (R>0.8) between different instruments and with different methods. Our results show that wavelet co-variance transform is a robust method for mixing layer height estimation.

  5. Clinical, biochemical and genetic features with nonclassical 21-hydroxylase deficiency and final height.

    PubMed

    Savaş-Erdeve, Şenay; Çetinkaya, Semra; Abalı, Zehra Yavaş; Poyrazoğlu, Şükran; Baş, Firdevs; Berberoğlu, Merih; Sıklar, Zeynep; Korkmaz, Özlem; Buluş, Derya; Akbaş, Emine Demet; Güran, Tülay; Böber, Ece; Akın, Onur; Yılmaz, Gülay Can; Aycan, Zehra

    2017-07-26

    The clinical, laboratory, genetic properties and final height of a large cohort of patients with nonclassical 21-hydroxylase deficiency (NC21OHD) in Turkey were analyzed. This multicenter, nationwide web-based study collected data. The mean age was 9.79±4.35 years (229 girls, 29 boys). The most common symptoms were premature pubarche (54.6%) and hirsutism (28.6%). The peak cortisol was found below 18 μg/dL in three (15.45%) patients. A mutation was detected in the CYP21A2 gene of 182 (87.5%) patients. The most common mutation was V281L. Final height in female patients who were diagnosed and treated before attaining final height or near final height was found to be shorter than the final height in female patients who were diagnosed after attaining final height or near final height. The final height of the patients who were treated during childhood was found to be shorter than the final height of patients during the adolescent period.

  6. Jumping and hopping in elite and amateur orienteering athletes and correlations to sprinting and running.

    PubMed

    Hébert-Losier, Kim; Jensen, Kurt; Holmberg, Hans-Christer

    2014-11-01

    Jumping and hopping are used to measure lower-body muscle power, stiffness, and stretch-shortening-cycle utilization in sports, with several studies reporting correlations between such measures and sprinting and/or running abilities in athletes. Neither jumping and hopping nor correlations with sprinting and/or running have been examined in orienteering athletes. The authors investigated squat jump (SJ), countermovement jump (CMJ), standing long jump (SLJ), and hopping performed by 8 elite and 8 amateur male foot-orienteering athletes (29 ± 7 y, 183 ± 5 cm, 73 ± 7 kg) and possible correlations to road, path, and forest running and sprinting performance, as well as running economy, velocity at anaerobic threshold, and peak oxygen uptake (VO(2peak)) from treadmill assessments. During SJs and CMJs, elites demonstrated superior relative peak forces, times to peak force, and prestretch augmentation, albeit lower SJ heights and peak powers. Between-groups differences were unclear for CMJ heights, hopping stiffness, and most SLJ parameters. Large pairwise correlations were observed between relative peak and time to peak forces and sprinting velocities; time to peak forces and running velocities; and prestretch augmentation and forest-running velocities. Prestretch augmentation and time to peak forces were moderately correlated to VO(2peak). Correlations between running economy and jumping or hopping were small or trivial. Overall, the elites exhibited superior stretch-shortening-cycle utilization and rapid generation of high relative maximal forces, especially vertically. These functional measures were more closely related to sprinting and/or running abilities, indicating benefits of lower-body training in orienteering.

  7. Structural parameters associated with location of peaks of peripapillary retinal nerve fiber layer thickness in young healthy eyes.

    PubMed

    Yamashita, Takehiro; Asaoka, Ryo; Kii, Yuya; Terasaki, Hiroto; Murata, Hiroshi; Sakamoto, Taiji

    2017-01-01

    The location of the peaks of the circumpapillary retinal nerve fiber layer (cpRNFL) thickness is affected by several ocular parameters. In this study, we have generated equations that can determine the peaks of the cpRNFL. This study was a prospective, observational, cross sectional study of 118 healthy right eyes. The axial length, optic disc tilt, superiortemporal (ST)- and inferiortemporal (IT)-peaks of the cpRNFL thickness, and angles of the ST and IT retinal arteries (RA) and veins (RV) were determined. The correlations between the location of the ST- and IT-peaks and ocular structural parameters and the sex, body height and weight were calculated. The best fit equations to generate the location of the ST/IT-peaks were determined using corrected-Akaike Information Criteria. The location of the ST-peak was 0.72+(0.40 x ST-RA)+(0.27 x ST-RV)+(0.14 x height)-(0.47 x papillo-macular-position)-(0.11 x disc tilt) with a coefficient of correlation of 0.61 (P<0.0001). The location of the IT-peak was 21.88+(0.53 x IT-RA)+(0.15 x IT-RV)+(0.041 x corneal thickness)-(1.00 x axial length) with a coefficient of correlation of 0.59 (P<0.0001). The location of ST/IT peaks is determined by different parameters of the ocular structure. These equations allow clinicians to obtain an accurate location of the peaks for a more accurate diagnosis of glaucoma.

  8. Electronic tunneling through a fullerene-like molecular bridge

    NASA Astrophysics Data System (ADS)

    Vanaie, H.; Yaghobi, M.

    2018-04-01

    This study was conducted to consider the electronic transport properties of the N_{36} B_{36} molecule, using the Green's function method based on the GW model. The number, width, height and position of density of state peaks are dramatically dependent on the correlation effect, the contact type and symmetric properties of the molecule. Also, negative differential resistance behavior was observed for all modes in voltages 4.4 V (- 4.5 V) to 4.7 V (- 4.7 V). The N_{36} B_{36} molecule behaves as an insulator where the total current becomes zero for the same values of the gate voltages but acts as a metal at other values. Therefore, the physical picture of electron conduction may change in N_{36} B_{36}—based molecular devices and it could behave as a semiconductor.

  9. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows

    NASA Astrophysics Data System (ADS)

    Sun, Baoli; Khan, Nazir Ahmad; Yu, Peiqiang

    2018-05-01

    The first aim of this study was to investigate the nutritional value of crude protein (CP) in CDC [Crop Development Centre (CDC), University of Saskatchewan] chickpea varieties (Frontier kabuli and Corinne desi) in comparison with a CDC barley variety in terms of: 1) CP chemical profile and subfractions; (2) in situ rumen degradation kinetics and intestinal digestibility of CP; 2) metabolizable protein (MP) supply to dairy cows; and (3) protein molecular structure characteristics using advanced molecular spectroscopy. The second aim was to quantify the relationship between protein molecular spectral characteristics and CP subfractions, in situ rumen CP degradation characteristics, intestinal digestibility of CP, and MP supply to dairy cows. Samples (n = 4) of each variety, from two consecutive years were analyzed. Chickpeas had higher (P < 0.01) CP content (21.71-22.11 vs 12.96% DM), with higher (P < 0.05) soluble CP subfraction (59.07-70.27 vs 26.18% CP), and in situ soluble (23.44-25.85 vs 1.30% CP) and rumen degradable (RDP; 72.23-72.57 vs 58.48% CP) fractions than barley. The potentially slowly rumen degradable (D; 74.14-76.56 vs 93.31% CP) and undegradable (RUP; 27.43-27.66 vs 41.52% CP) fractions were lower (P < 0.01) in the chickpeas than barley. The effective degradability ratio of N to organic matter (OM) (36.07-38.44 g N/kg OM) of the chickpeas was higher than the optimal for achieving optimum microbial CP (MCP) synthesis. The truly digested MCP (64.94-66.43 vs. 41.43 g/kg DM); MP (81.10-83.67 vs 61.0 g/kg DM) feed milk value (1.64-1.70 vs 1.24) was higher in the chickpeas than barley grain. The chickpeas had higher (P < 0.05) amide I and II peaks area and height, and α-helix and β-sheet peaks height than barley. Multivariate analysis showed that protein molecular spectral data of chickpeas can be distinguished from the barley. The two chickpeas did not differ in CP content, and any of the measured in situ degradation and molecular spectral characteristics of protein. The content of RUP was positively (r = 0.94, P < 0.01) and that of RDP was negatively (r = -0.94, P < 0.01) correlated with amide I/II area ratio. The regression analysis showed that the content of CP (R2 = 0.91) D-fraction (R2 = 0.82), RDP (R2 = 0.77), RUP (R2 = 0.77), TDP (R2 = 0.98), MP (R2 = 0.80), and FMV (R2 = 0.80) can be predicted from amide II peak height. Despite extensive ruminal degradation, chickpea is a good source of MP for dairy cows, and molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their digestibility and nutritive value.

  10. Conditions and phase shift of fluid resonance in narrow gaps of bottom mounted caissons

    NASA Astrophysics Data System (ADS)

    Zhu, Da-tong; Wang, Xing-gang; Liu, Qing-jun

    2017-12-01

    This paper studies the viscid and inviscid fluid resonance in gaps of bottom mounted caissons on the basis of the plane wave hypothesis and full wave model. The theoretical analysis and the numerical results demonstrate that the condition for the appearance of fluid resonance in narrow gaps is kh=(2 n+1)π ( n=0, 1, 2, 3, …), rather than kh= nπ ( n=0, 1, 2, 3, …); the transmission peaks in viscid fluid are related to the resonance peaks in the gaps. k and h stand for the wave number and the gap length. The combination of the plane wave hypothesis or the full wave model with the local viscosity model can accurately determine the heights and the locations of the resonance peaks. The upper bound for the appearance of fluid resonance in gaps is 2 b/ L<1 (2 b, grating constant; L, wave length) and the lower bound is h/ b≤1. The main reason for the phase shift of the resonance peaks is the inductive factors. The number of resonance peaks in the spectrum curve is dependent on the ratio of the gap length to the grating constant. The heights and the positions of the resonance peaks predicted by the present models agree well with the experimental data.

  11. Adaptive Alterations in Shoulder Range of Motion and Strength in Young Tennis Players

    PubMed Central

    Gillet, Benoit; Begon, Mickaël; Sevrez, Violaine; Berger-Vachon, Christian; Rogowski, Isabelle

    2017-01-01

    Context: Playing tennis requires unilateral and intensive movement of the upper limb, which may lead to functional adaptations of the shoulder and an increased injury risk. Identifying which athletes will be future elite tennis players starts at 5 to 6 years of age. Therefore, highly skilled players practice intensively in their childhood. However, whether these functional changes occur during the prepubertal years has not been established. Objectives: To assess changes in glenohumeral-joint–rotation range of motion and strength of the shoulder-complex muscles in prepubertal elite tennis players. Design: Cross-sectional study. Setting: Tennis training sports facilities. Patients or Other Participants: Sixty-seven male tennis players (age range = 7–13 years) selected by a regional tennis center of excellence were divided into 3 biological age groups relative to their predicted age at peak height velocity: greater than 4 (n = 26; age = 8.7 ± 0.7 years, height = 132.4 ± 12.9 cm, mass = 27.8 ± 3.8 kg), 3 to 4 (n = 21; age = 10.3 ± 0.6 years, height = 144.9 ± 5.7 cm, mass = 34.7 ± 4.0 kg), and 2 (n = 20; age = 12.8 ± 1.4 years, height = 158.5 ± 8.7 cm, mass = 43.0 ± 8.2 kg) years before their age at peak height velocity. Main Outcome Measures(s): We measured the internal- and external-rotation ranges of motion of the glenohumeral joint using a goniometer and calculated the total arc of motion. Maximal isometric strength of 8 shoulder muscles was measured using a handheld dynamometer. Strength values were normalized to body weight and used to calculate 4 agonist-to-antagonist strength ratios. Results: The total arc of motion of the glenohumeral joint decreased gradually with biological age (P ≤ .01) due to the decrease in internal-rotation range of motion (P < .001). Absolute strength increased gradually with biological age (P < .001), but the relative strengths and ratios remained similar. Conclusions: Functional adaptations of the shoulder seen in adolescent and adult tennis players were observed in healthy prepubertal players. This knowledge could help clinicians and coaches more effectively monitor shoulder adaptations to tennis practice during the prepubertal years. PMID:28145740

  12. Antarctic meteor observations using the Davis MST and meteor radars

    NASA Astrophysics Data System (ADS)

    Holdsworth, David A.; Murphy, Damian J.; Reid, Iain M.; Morris, Ray J.

    2008-07-01

    This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050-1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s -1 and 32 km s -1, respectively). The meteoroid speeds estimated for these showers show decreasing speed with decreasing height, consistent with the effects of meteoroid deceleration. Finally, we illustrate how the new radiant mapping and meteoroid speed techniques can be combined for unambiguous meteor shower detection, and use these techniques to detect a previously unknown weak shower.

  13. Profiles of Ionospheric Storm-enhanced Density during the 17 March 2015 Great Storm

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.

    2015-12-01

    Ionospheric F2 region peak densities (NmF2) are expected to show a positive phase correlation with total electron content (TEC), and electron density is expected to have an anti-correlation with electron temperature near the ionospheric F2 peak. However, we show that, during the 17 March 2015 great storm, TEC and F2 region electron density peak height (hmF2) over Millstone Hill increased, but the F2 region electron density peak (NmF2) decreased significantly during the storm-enhanced density (SED) phase of the storm compared with the quiet-time ionosphere. This SED occurred where there was a negative ionospheric storm near the F2 peak and below it. The weak ionosphere below the F2 peak resulted in much reduced downward heat conduction for the electrons, trapping the heat in the topside. This, in turn, increased the topside scale height, so that, even though electron densities at the F2 peak were depleted, TEC increased in the SED. The depletion in NmF2 was probably caused by an increase in the density of the molecular neutrals, resulting in enhanced recombination. In addition, the storm-time topside ionospheric electron density profile was much closer to diffusive equilibrium than non-storm time profile because of less daytime plasma flow from the ionosphere to the plasmasphere.

  14. Workload of horses on a water treadmill: effect of speed and water height on oxygen consumption and cardiorespiratory parameters.

    PubMed

    Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, Renaud

    2017-11-28

    Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O 2 ), ventilation (respiratory frequency, tidal volume (V T )), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O 2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Water height and its interaction with speed had a significant effect on V̇O 2 , V T and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O 2  = 16.70 ml/(kg.min), V T  = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.

  15. Observations of neutral circulation at mid-latitudes during the Equinox Transition Study

    NASA Technical Reports Server (NTRS)

    Buonsanto, M. J.; Salah, J. E.; Miller, K. L.; Oliver, W. L.; Burnside, R. G.; Richards, P. G.

    1988-01-01

    Measurements of ion drift velocity made by the Millstone Hill incoherent scatter radar have been used to calculate the meridional neutral wind velocity during the Sept. 17 to 24, 1984 period. Strong daytime southward neutral surges were observed during the magnetically disturbed days of September 19 and 23, in contrast to the small daytime winds obtained as expected during the magnetically quiet days. The surge on September 19 was also seen at Arecibo. In addition, two approaches have been used to calculate the meridional wind component from the radar-derived height of the F-layer electron density peak. Results confirm the wind surge, particularly when the strong electric fields measured during the disturbed days are included in the calculations. The two approaches for the F-layer peak wind calculations are applied to the radar-derived electron density peak height as a function of latitude to study the variation of the southward daytime surges with latitude.

  16. Dispersion-convolution model for simulating peaks in a flow injection system.

    PubMed

    Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing

    2007-01-12

    A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.

  17. Remote Sensing of Multiple Cloud Layer Heights Using Multi-Angular Measurements

    NASA Technical Reports Server (NTRS)

    Sinclair, Kenneth; Van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej; Mcgill, Matthew

    2017-01-01

    Cloud top height (CTH) affects the radiative properties of clouds. Improved CTH observations will allow for improved parameterizations in large-scale models and accurate information on CTH is also important when studying variations in freezing point and cloud microphysics. NASAs airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. For the determination of CTH, a set of consecutive nadir reflectances is selected and the cross-correlations between this set and co-located sets at other viewing angles are calculated for a range of assumed cloud top heights, yielding a correlation profile. Under the assumption that cloud reflectances are isotropic, local peaks in the correlation profile indicate cloud layers. This technique can be applied to every RSP footprint and we demonstrate that detection of multiple peaks in the correlation profile allow retrieval of heights of multiple cloud layers within single RSP footprints. This paper provides an in-depth description of the architecture and performance of the RSPs CTH retrieval technique using data obtained during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC(exp. 4)RS) campaign. RSP retrieved cloud heights are evaluated using collocated data from the Cloud Physics Lidar (CPL). The method's accuracy associated with the magnitude of correlation, optical thickness, cloud thickness and cloud height are explored. The technique is applied to measurements at a wavelength of 670 nm and 1880 nm and their combination. The 1880-nm band is virtually insensitive to the lower troposphere due to strong water vapor absorption.

  18. ESR study of free radicals in mango

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masahiro; Hussain, Mohammad S.; Morishita, Norio; Ukai, Mitsuko; Kobayashi, Yasuhiko; Shimoyama, Yuhei

    2010-01-01

    An electron spin resonance (ESR) spectroscopic study of radicals induced in irradiated fresh mangoes was performed. Mangoes in the fresh state were irradiated with γ-rays, lyophilized and then crushed into a powder. The ESR spectrum of the powder showed a strong main peak at g = 2.004 and a pair of peaks centered at the main peak. The main peak was detected from both flesh and skin specimens. This peak height gradually decreased during storage following irradiation. On the other hand, the side peaks showed a well-defined dose-response relationship even at 9 days post-irradiation. The side peaks therefore provide a useful means to define the irradiation of fresh mangoes.

  19. Control of trunk motion following sudden stop perturbations during cart pushing.

    PubMed

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2011-01-04

    External perturbations during pushing tasks have been suggested to be a risk factor for low-back symptoms. An experiment was designed to investigate whether self-induced and externally induced sudden stops while pushing a high inertia cart influence trunk motions, and how flexor and extensor muscles counteract these perturbations. Twelve healthy male participants pushed a 200 kg cart at shoulder height and hip height. Pushing while walking was compared to situations in which participants had to stop the cart suddenly (self-induced stop) or in which the wheels of the cart were unexpectedly blocked (externally induced stop). For the perturbed conditions, the peak values and the maximum changes from the reference condition (pushing while walking) of the external moment at L5/S1, trunk inclination and electromyographic amplitudes of trunk muscles were determined. In the self-induced stop, a voluntary trunk extension occurred. Initial responses in both stops consisted of flexor and extensor muscle cocontraction. In self-induced stops this was followed by sustained extensor activity. In the externally induced stops, an external extension moment caused a decrease in trunk inclination. The opposite directions of the internal moment and trunk motion in the externally induced stop while pushing at shoulder height may indicate insufficient active control of trunk posture. Consequently, sudden blocking of the wheels in pushing at shoulder height may put the low back at risk of mechanical injury. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Use of impact testing to predict softness, cow preference, and hardening over time of stall bases.

    PubMed

    Fulwider, W K; Palmer, R W

    2004-09-01

    The objective of this study was to assess the softness and durability of commercially available free-stall bases, and to determine the relationship of stall base softness to cow preference. Clegg impact values were recorded at the University of Wisconsin-Madison Arlington Agricultural Research Station on June 19, 2002, and again on July 24, 2003. The Clegg Impact Soil Tester (model 95051, Lafayette Instruments, Lafayette, IN) with a 20-kg hammer was used in this study. The impact of the hammer on the free-stall base results in a digital display based on peak deceleration of the hammer's impact with the free-stall base in tens of gravities (CIV/H). The CIV/H value, as measured by the Clegg Impact hammer, is based on peak deceleration of the 20-kg hammer's impact with the surface, from a height of 30 cm. Clegg impact measures were highly correlated with cow preference measurements. This relationship suggests that Clegg impact measures of compressibility were good indicators for predicting stall-base acceptance. A cork mattress, 4 foam mattresses, 4 rubber mattresses, 4 rubber mats, and a waterbed were evaluated in this study. Foam-based mattresses lost cushioning ability faster than rubber mattresses or rubber mats. Clegg impact values increased over the 13-mo time period for most stall base types, which indicated a tendency of stall bases to harden.

  1. Comparison of ionospheric profile parameters with IRI-2012 model over Jicamarca

    NASA Astrophysics Data System (ADS)

    Bello, S. A.; Abdullah, M.; Hamid, N. S. A.; Reinisch, B. W.

    2017-05-01

    We used the hourly ionogram data obtained from Jicamarca station (12° S, 76.9° W, dip latitude: 1.0° N) an equatorial region to study the variation of the electron density profile parameters: maximum height of F2-layer (hmF2), bottomside thickness (B0) and shape (B1) parameter of F-layer. The period of study is for the year 2010 (solar minimum period).The diurnal monthly averages of these parameters are compared with the updated IRI-2012 model. The results show that hmF2 is highest during the daytime than nighttime. The variation in hmF2 was observed to modulate the thickness of the bottomside F2-layer. The observed hmF2 and B0 post-sunset peak is as result of the upward drift velocity of ionospheric plasma. We found a close agreement between IRI-CCIR hmF2 model and observed hmF2 during 0000-0700 LT while outside this period the model predictions deviate significantly with the observational values. Significant discrepancies are observed between the IRI model options for B0 and the observed B0 values. Specifically, the modeled values do not show B0 post-sunset peak. A fairly good agreement was observed between the observed B1 and IRI model options (ABT-2009 and Bill 2000) for B1.

  2. Global height datum unification: a new approach in gravity potential space

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  3. Optimization of Surface Roughness Parameters of Al-6351 Alloy in EDC Process: A Taguchi Coupled Fuzzy Logic Approach

    NASA Astrophysics Data System (ADS)

    Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar

    2017-10-01

    This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.

  4. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, J.R.; Otagawa, T.

    1991-09-10

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level. 5 figures.

  5. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, Joseph R.; Otagawa, Takaaki

    1991-01-01

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level.

  6. Photon-assisted tunneling through a topological superconductor with Majorana bound states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Han-Zhao; Zhang, Ying-Tao, E-mail: zhangyt@mail.hebtu.edu.cn; Liu, Jian-Jun, E-mail: liujj@mail.hebtu.edu.cn

    Employing the Keldysh Nonequilibrium Green’s function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit) photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that themore » photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.« less

  7. Effects of indoor air pollution on lung function of primary school children in Kuala Lumpur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizi, B.H.; Henry, R.L.

    1990-01-01

    In a cross-sectional study of 7-12 year-old primary school children in Kuala Lumpur city, lung function was assessed by spirometric and peak expiratory flow measurements. Spirometric and peak expiratory flow measurements were successfully performed in 1,214 and 1,414 children, respectively. As expected, the main predictors of forced vital capacity (FVC), forced expiratory volume in one second (FEV1), forced expiratory flow between 25% and 75% of vital capacity (FEF25-75), and peak expiratory flow rate (PEFR) were standing height, weight, age, and sex. In addition, lung function values of Chinese and Malays were generally higher than those of Indians. In multiple regressionmore » models which included host and environmental factors, asthma was associated with significant decreases in FEV1, FEF25-75, and PEFR. However, family history of chest illness, history of allergies, low paternal education, and hospitalization during the neonatal period were not independent predictors of lung function. Children sharing rooms with adult smokers had significantly lower levels of FEF25-75. Exposures to wood or kerosene stoves were, but to mosquito repellents were not, associated with decreased lung function.« less

  8. Evidence of prompt penetration electric fields during HILDCAA events

    NASA Astrophysics Data System (ADS)

    Pereira Silva, Regia; Sobral, Jose Humberto Andrade; Koga, Daiki; Rodrigues Souza, Jonas

    2017-10-01

    High-intensity, long-duration continuous auroral electrojet (AE) activity (HILDCAA) events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23) using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S). Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE) peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.

  9. Detection of Early Right Ventricular Dysfunction in Young Patients With Thalassemia Major Using Tissue Doppler Imaging

    PubMed Central

    Bornaun, Helen; Dedeoglu, Reyhan; Oztarhan, Kazim; Dedeoglu, Savas; Erfidan, Erkan; Gundogdu, Muge; Aydogan, Gonul; Cengiz, Dicle

    2016-01-01

    Background Myocardial iron overload is the most common cause of mortality in patients with thalassemia major (TM), also known as beta-thalassemia. T2* cardiovascular magnetic resonance imaging (MRI) is the best way of monitoring cardiac iron, and new echocardiographic techniques can be used to assess cardiac function. Objectives The aim of this study was to assess the systolic and diastolic right ventricular (RV) function of patients with TM using tissue Doppler imaging (TDI) and to determine whether this echocardiographic technique is an adequate diagnostic tool for the screening and detection of subclinical cardiac dysfunction. Patients and Methods Eighty-four patients with TM were evaluated by conventional echocardiography and pulse-wave TDI. The data of the TM group (Group 1) were compared with that of 85 age- and sex-matched healthy controls (Group 2). Cardiovascular T2* MRI examinations were performed in 49 of the 85 patients. Results The patients with TM had significantly lower values for weight, height, body mass index, systolic arterial pressure, deceleration time, E’/A’, and ejection time (ET) than the controls. Group 1 also had significantly higher values for peak early diastolic velocity (E) over peak late diastolic velocity (A), peak early diastolic velocity of TDI (E’), peak late diastolic velocity of TDI (A’), E/E’, isovolumetric relaxation time, isovolumetric contraction time, and RV magnetic perfusion imaging (MPI) than Group 2. Conclusions RV diastolic dysfunction occurs before systolic deterioration in patients with TM and cannot be screened with conventional echocardiographic techniques. In routine practice, TDI measurements, MPI (for global function) and the E/E’ parameter (for diastolic function) can be used to screen and detect early RV dysfunction. PMID:27617076

  10. Flood of June 2008 in Southern Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.; Walker, John F.; Rose, William J.; Waschbusch, Robert J.; Kennedy, James L.

    2008-01-01

    In June 2008, heavy rain caused severe flooding across southern Wisconsin. The floods were aggravated by saturated soils that persisted from unusually wet antecedent conditions from a combination of floods in August 2007, more than 100 inches of snow in winter 2007-08, and moist conditions in spring 2008. The flooding caused immediate evacuations and road closures and prolonged, extensive damages and losses associated with agriculture, businesses, housing, public health and human needs, and infrastructure and transportation. Record gage heights and streamflows occurred at 21 U.S. Geological Survey streamgages across southern Wisconsin from June 7 to June 21. Peak-gage-height data, peak-streamflow data, and flood probabilities are tabulated for 32 USGS streamgages in southern Wisconsin. Peak-gage-height and peak-streamflow data also are tabulated for three ungaged locations. Extensive flooding along the Baraboo River, Kickapoo River, Crawfish River, and Rock River caused particularly severe damages in nine communities and their surrounding areas: Reedsburg, Rock Springs, La Farge, Gays Mills, Milford, Jefferson, Fort Atkinson, Janesville, and Beloit. Flood-peak inundation maps and water-surface profiles were generated for the nine communities in a geographic information system by combining flood high-water marks with available 1-10-meter resolution digital-elevation-model data. The high-water marks used in the maps were a combination of those surveyed during the June flood by communities, counties, and Federal agencies and hundreds of additional marks surveyed in August by the USGS. The flood maps and profiles outline the extent and depth of flooding through the communities and are being used in ongoing (as of November 2008) flood response and recovery efforts by local, county, State, and Federal agencies.

  11. Ensemble method for dengue prediction.

    PubMed

    Buczak, Anna L; Baugher, Benjamin; Moniz, Linda J; Bagley, Thomas; Babin, Steven M; Guven, Erhan

    2018-01-01

    In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.

  12. Ensemble method for dengue prediction

    PubMed Central

    Baugher, Benjamin; Moniz, Linda J.; Bagley, Thomas; Babin, Steven M.; Guven, Erhan

    2018-01-01

    Background In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Methods Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Principal findings Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. Conclusions The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru. PMID:29298320

  13. North-south components of the annual asymmetry in the ionosphere

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Veselovsky, I. S.

    2014-07-01

    A retrospective study of the asymmetry in the ionosphere during the solstices is made using the different geospace parameters in the North and South magnetic hemispheres. Data of total electron content (TEC) and global electron content (GEC) produced from global ionospheric maps, GIM-TEC for 1999-2013, the ionospheric electron content (IEC) measured by TOPEX-Jason 1 and 2 satellites for 2001-2012, the F2 layer critical frequency and peak height measured on board ISIS 1, ISIS 2, and IK19 satellites during 1969-1982, and the earthquakes M5+ occurrences for 1999-2013 are analyzed. Annual asymmetry is observed with GEC and IEC for the years of observation with asymmetry index, AI, showing January > July excess from 0.02 to 0.25. The coincident pattern of January-to-July asymmetry ratio of TEC and IEC colocated along the magnetic longitude sector of 270° ± 5°E in the Pacific Ocean is obtained varying with local time and magnetic latitude. The sea/land differences in the F2 layer peak electron density, NmF2, and the peak height, hmF2, gathered with topside sounding data exhibit tilted ionosphere along the seashores with denser electron population at greater peak heights over the sea. The topside peak electron density NmF2, TEC, IEC, and the hemisphere part of GEC are dominant in the South hemisphere which resembles the pattern for seismic activity with dominant earthquake occurrence in the South magnetic hemisphere. Though the study is made for the hemispheric and annual asymmetry during solstices in the ionosphere, the conclusions seem valid for other aspects of seismic-ionospheric associations with tectonic plate boundaries representing zones of enhanced risk for space weather.

  14. Status of the Topside Vary-Chap Ionospheric Model

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Nsumei, Patrick; Huang, Xueqin; Bilitza, Dieter

    Status of the Topside Vary-Chap Ionospheric Model The general alpha-Chapman function for a multi-constituent gas which includes a continuously varying scale height and was therefore dubbed the Vary-Chap function, can present the topside electron density profiles in analytical form. The Vary-Chap profile is defined by the scale height function H(h) and the height and density of the F2 layer peak. By expressing 80,000 ISIS-2 measured topside density profiles as Vary-Chap functions we derived 80,000 scale height functions, which form the basis for the topside density profile modeling. The normalized scale height profiles Hn = H(h)/Hm were grouped according to season, MLAT, and MLT for each 50 km height bin from 200 km to 1400 km, and the median, lower, and upper quartiles for each bin were calculated. Hm is the scale height at the F2 layer peak. The resulting Hn functions are modeled in terms of hyperbolic tangent functions using 5 parameters that are determined by multivariate least squares, including the transition height hT where the scale height gradient has a maximum. These normalized scale height functions, representing the model of the topside electron density profiles from hmF2 to 1,400 km altitude, are independent of hmF2 and NmF2 and can therefore be directly used for the topside Ne profile in IRI. Similarly, this model can extend measured bottomside profiles to the topside, replacing the simple alpha-Chapman function with constant scale height that is currently used for construction of the topside profile in the Digisondes / ARTIST of the Global Ionospheric Radio Observatory (GIRO). It turns out that Hm(top) calculated from the topside profiles is generally several times larger than Hm(bot) derived from the bottomside profiles. This follows necessarily from the difference in the definition of the scale height functions for the topside and bottomside profiles. The diurnal variations of the ratio Hm(top) / Hm(bot) has been determined for different latitudes which makes it now possible to specify the topside profile for any given bottomside profile.

  15. Predictive Value of Dental Maturity for a Positive Gonadotropin-Releasing Hormone Stimulation Test Result in Girls with Precocious Puberty

    PubMed Central

    2017-01-01

    Dental maturity is associated with skeletal maturity, which is advanced in girls with central precocious puberty (CPP). We investigated the performance of dental maturity as a screening method for CPP using mandibular second premolar and molar calcification stages, assessed the associated anthropometric and laboratory factors, and evaluated pubertal response predictors using the gonadotropin-releasing hormone stimulation test (GnRHST) in prepubertal and pubertal girls. A prospective case-control study was conducted in girls, aged 7.0–8.9 years, classified into pubertal (peak luteinizing hormone [LH] after GnRHST ≥ 5 IU/L), prepubertal (peak LH < 5 IU/L), and control groups. Auxological and biochemical tests, panoramic radiographs, and GnRHSTs in participants with breast development were conducted. Dental maturity was assessed using the Demirjian index (DI). We included 103 girls (pubertal, 40; prepubertal, 19; control, 44). Chronological age (CA) was not significantly different between groups. Bone age (BA) and BA advancement was higher in the pubertal and prepubertal groups. Increased DI values at the mandibular second premolar and molar were significantly associated with CA, BA, BA advancement, height standard deviation score (SDS), peak LH after GnRHST, and insulin-like growth factor-I (IGF-I) (all P < 0.05). Moreover, odds ratio (OR) of the mandibular second premolar and molar (a DI value of ≥ E) for predicting a positive response to GnRHST was 8.7 (95% confidence intervals [CI], 2.9–26.1) and 5.2 (95% CI, 2.2–12.7), respectively. Dental maturity was a strong predictor for diagnosing CPP. Determining dental maturity in girls with suspected precocious puberty might help determine the performance of GnRHSTs. PMID:28049241

  16. Predictive Value of Dental Maturity for a Positive Gonadotropin-Releasing Hormone Stimulation Test Result in Girls with Precocious Puberty.

    PubMed

    Baik, Jee Seon; Choi, Jin Woo; Kim, Su Jin; Kim, Ji Hyun; Kim, Sollip; Kim, Jae Hyun

    2017-02-01

    Dental maturity is associated with skeletal maturity, which is advanced in girls with central precocious puberty (CPP). We investigated the performance of dental maturity as a screening method for CPP using mandibular second premolar and molar calcification stages, assessed the associated anthropometric and laboratory factors, and evaluated pubertal response predictors using the gonadotropin-releasing hormone stimulation test (GnRHST) in prepubertal and pubertal girls. A prospective case-control study was conducted in girls, aged 7.0-8.9 years, classified into pubertal (peak luteinizing hormone [LH] after GnRHST ≥ 5 IU/L), prepubertal (peak LH < 5 IU/L), and control groups. Auxological and biochemical tests, panoramic radiographs, and GnRHSTs in participants with breast development were conducted. Dental maturity was assessed using the Demirjian index (DI). We included 103 girls (pubertal, 40; prepubertal, 19; control, 44). Chronological age (CA) was not significantly different between groups. Bone age (BA) and BA advancement was higher in the pubertal and prepubertal groups. Increased DI values at the mandibular second premolar and molar were significantly associated with CA, BA, BA advancement, height standard deviation score (SDS), peak LH after GnRHST, and insulin-like growth factor-I (IGF-I) (all P < 0.05). Moreover, odds ratio (OR) of the mandibular second premolar and molar (a DI value of ≥ E) for predicting a positive response to GnRHST was 8.7 (95% confidence intervals [CI], 2.9-26.1) and 5.2 (95% CI, 2.2-12.7), respectively. Dental maturity was a strong predictor for diagnosing CPP. Determining dental maturity in girls with suspected precocious puberty might help determine the performance of GnRHSTs.

  17. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height

    PubMed Central

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-01-01

    Background: Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. Hypothesis: A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. Results: The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association (r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association (r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = –0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Conclusion: Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research. PMID:29147670

  18. The diagnostic capability of laser induced fluorescence in the characterization of excised breast tissues

    NASA Astrophysics Data System (ADS)

    Galmed, A. H.; Elshemey, Wael M.

    2017-08-01

    Differentiating between normal, benign and malignant excised breast tissues is one of the major worldwide challenges that need a quantitative, fast and reliable technique in order to avoid personal errors in diagnosis. Laser induced fluorescence (LIF) is a promising technique that has been applied for the characterization of biological tissues including breast tissue. Unfortunately, only few studies have adopted a quantitative approach that can be directly applied for breast tissue characterization. This work provides a quantitative means for such characterization via introduction of several LIF characterization parameters and determining the diagnostic accuracy of each parameter in the differentiation between normal, benign and malignant excised breast tissues. Extensive analysis on 41 lyophilized breast samples using scatter diagrams, cut-off values, diagnostic indices and receiver operating characteristic (ROC) curves, shows that some spectral parameters (peak height and area under the peak) are superior for characterization of normal, benign and malignant breast tissues with high sensitivity (up to 0.91), specificity (up to 0.91) and accuracy ranking (highly accurate).

  19. Man-Computer Interactive Data Access System (McIDAS). Continued development of McIDAS and operation in the GARP Atlantic tropical experiment

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1975-01-01

    The complete output of the Synchronous Meteorological Satellite was recorded on one inch magnetic tape. A quality control subsystem tests cloud track vectors against four sets of criteria: (1) rejection if best match occurs on correlation boundary; (2) rejection if major correlation peak is not distinct and significantly greater than secondary peak; (3) rejection if correlation is not persistent; and (4) rejection if acceleration is too great. A cloud height program determines cloud optical thickness from visible data and computer infrared emissivity. From infrared data and temperature profile, cloud height is determined. A functional description and electronic schematics of equipment are given.

  20. Validating multiplexes for use in conjunction with modern interpretation strategies.

    PubMed

    Taylor, Duncan; Bright, Jo-Anne; McGoven, Catherine; Hefford, Christopher; Kalafut, Tim; Buckleton, John

    2016-01-01

    In response to requests from the forensic community, commercial companies are generating larger, more sensitive, and more discriminating STR multiplexes. These multiplexes are now applied to a wider range of samples including complex multi-person mixtures. In parallel there is an overdue reappraisal of profile interpretation methodology. Aspects of this reappraisal include 1. The need for a quantitative understanding of allele and stutter peak heights and their variability, 2. An interest in reassessing the utility of smaller peaks below the often used analytical threshold, 3. A need to understand not just the occurrence of peak drop-in but also the height distribution of such peaks, and 4. A need to understand the limitations of the multiplex-interpretation strategy pair implemented. In this work we present a full scheme for validation of a new multiplex that is suitable for informing modern interpretation practice. We predominantly use GlobalFiler™ as an example multiplex but we suggest that the aspects investigated here are fundamental to introducing any multiplex in the modern interpretation environment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Five-class height-weight mean and SD system applying Estonian reference values of height-weight mean and SD for systematization of seventeen-year-old conscripts' anthropometric data.

    PubMed

    Lintsi, Mart; Kaarma, Helje; Aunapuu, Marina; Arend, Andres

    2007-03-01

    A study of 739 conscripts aged 17 years from the town of Tartu and from the Tartu county was performed. Height, weight, 33 anthropometric measurements and 12 skinfolds were measured. The data were classified into five height-weight mean and SD-classes applying the Estonian reference values for this age and sex (Grünberg et al. 1998). There were 3 classes with conformity between height and weight class: 1--small (small height and small weight), 2--medium (medium height and medium weight), 3--large (large height and large weight), 4--weight class dominating (pyknomorphic) and 5--height class dominating (leptomorphic). It was found, that in classes 1, 2 and 3 the height and weight increase was in accordance with the increase in all heights, breadths and depths, circumferences, skinfolds, body fat, muscle and bone mass. In class 4 circumferences, skinfolds, body fat and muscle mass were bigger. In class 5 all heights and the relative bone mass were bigger. The present investigation confirms the assumption that the five height-weight mean and SD five-class system applying the Estonian reference values for classifying the anthropometric variables is suitable for seventeen-year-old conscripts. As well the border values of 5%, 50% and 95% for every anthropometrical variable in the five-classes were calculated, which may be helpful for practical classifying.

  2. THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h and k LINES IN THE SOLAR ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leenaarts, J.; Pereira, T. M. D.; Carlsson, M.

    NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h and k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h and k line formation from three-dimensional (3D) radiation-magnetohydrodynamic (RMHD) models. This paper is the second in a series where we undertake this modeling. We compute the vertically emergent h and k intensity from a snapshot of a dynamic 3D RMHD model of the solar atmosphere, and investigate whichmore » diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and k lines we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anti-correlated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the TR. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h and k lines are excellent probes of the very upper chromosphere just below the TR, a height regime that is impossible to probe with other spectral lines. They also provide decent temperature and velocity diagnostics of the middle chromosphere.« less

  3. Uncertainties in derived temperature-height profiles

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.

    1974-01-01

    Nomographs were developed for relating uncertainty in temperature T to uncertainty in the observed height profiles of both pressure p and density rho. The relative uncertainty delta T/T is seen to depend not only upon the relative uncertainties delta P/P or delta rho/rho, and to a small extent upon the value of T or H, but primarily upon the sampling-height increment Delta h, the height increment between successive observations of p or delta. For a fixed value of delta p/p, the value of delta T/T varies inversely with Delta h. No limit exists in the fineness of usable height resolution of T which may be derived from densities, while a fine height resolution in pressure-height data leads to temperatures with unacceptably large uncertainties.

  4. Evaluation of the GHRH-arginine retest for young adolescents with childhood-onset GH deficiency.

    PubMed

    Dreismann, Laura; Schweizer, Roland; Blumenstock, Gunnar; Weber, Karin; Binder, Gerhard

    2016-04-01

    Retesting of adolescents with childhood-onset GH deficiency (GHD) is recommended, but age-related reference data are scarce. We aimed to establish a cut-off value for the GHRH-arginine test (GHRH+ARG) at the typical age of retesting at near-adult height. We retrospectively studied 149 patients (108 males) with childhood-onset GHD aged 16.8 ± 1.7 years (mean ± SD) with a BMI of 20.9 ± 3.5 kg/m(2) who had received GHRH+ARG in one single center during 8 consecutive years. Based on the IGF-I serum concentration falling below -2 SDS when off GH, 22 patients suffered from severe GHD of adulthood while 122 were GH sufficient. Five patients could not be determined definitively. GH and IGF-I were measured by in-house RIAs. IGF-I values were transformed into age-related SDS values. ROC-analysis was used to determine the cut-off value. For GHRH+ARG, a cut-off limit of 15.9 ng/ml had the highest pair of sensitivity (91%) and specificity (88%). GH peaks of the patients with a normal BMI between -1 and 0 SDS were higher than those with a high BMI >1 SDS (p<0.01). When retesting adolescents at near-adult height for severe GHD of adulthood, a GH value of <15.9 ng/ml in GHRH+ARG is discriminatory with good accuracy. Conversion factors for other GH assays in use are provided. A rational decision for or against the continuation of GH therapy into adulthood can be made based on the clinical history of the patient and the combination of the GHRH+ARG retest result and the IGF-I serum concentrations when off GH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions.

    PubMed

    Capurso, Daniel; Bengtsson, Henrik; Segal, Mark R

    2016-03-18

    The spatial organization of the genome influences cellular function, notably gene regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional annotations (e.g. centromeres, long terminal repeats) using 3D genome reconstructions from Hi-C (genome-wide chromosome conformation capture) data; however, corresponding assessments for continuous functional genomic data (e.g. chromatin immunoprecipitation-sequencing (ChIP-seq) peak height) are lacking. Here, we demonstrate that applying bump hunting via the patient rule induction method (PRIM) to ChIP-seq data superposed on a Saccharomyces cerevisiae 3D genome reconstruction can discover 'functional 3D hotspots', regions in 3-space for which the mean ChIP-seq peak height is significantly elevated. For the transcription factor Swi6, the top hotspot by P-value contains MSB2 and ERG11 - known Swi6 target genes on different chromosomes. We verify this finding in a number of ways. First, this top hotspot is relatively stable under PRIM across parameter settings. Second, this hotspot is among the top hotspots by mean outcome identified by an alternative algorithm, k-Nearest Neighbor (k-NN) regression. Third, the distance between MSB2 and ERG11 is smaller than expected (by resampling) in two other 3D reconstructions generated via different normalization and reconstruction algorithms. This analytic approach can discover functional 3D hotspots and potentially reveal novel regulatory interactions. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Occurrence and average behavior of pulsating aurora

    NASA Astrophysics Data System (ADS)

    Partamies, N.; Whiter, D.; Kadokura, A.; Kauristie, K.; Nesse Tyssøy, H.; Massetti, S.; Stauning, P.; Raita, T.

    2017-05-01

    Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.

  7. TEC Variations Over Korean Peninsula During Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Ji, E.-Y.; Choi, B.-K.; Kim, K.-H.; Lee, D.-H.; Cho, J.-H.; Chung, J.-K.; Park, J.-U.

    2008-03-01

    By analyzing the observations from a number of ground- and space-based instruments, including ionosonde, magnetometers, and ACE interplanetary data, we examine the response of the ionospheric TEC over Korea during 2003 magnetic storms. We found that the variation of vertical TEC is correlated with the southward turning of the interplanetary magnetic field B_z. It is suggested that the electric fields produced by the dynamo process in the high-latitude region and the prompt penetration in the low-latitude region are responsible for TEC increases. During the June 16 event, dayside TEC values increase more than 15%. And the ionospheric F2-layer peak height (hmF2) was ˜300km higher and the vertical E×B drift (estimated from ground-based magnetometer equatorial electrojet delta H) showed downward drift, which may be due to the ionospheric disturbance dynamo electric field produced by the large amount of energy dissipation into high-latitude regions. In contr! ast, during November 20 event, the nightside TEC increases may be due to the prompt penetration westward electric field. The ionospheric F2-layer peak height was below 200km and the vertical E×B drift showed downward drift. Also, a strong correlation is observed between enhanced vertical TEC and enhanced interplanetary electric field. It is shown that, even though TEC increases are caused by the different processes, the electric field disturbances in the ionosphere play an important role in the variation of TEC over Korea.

  8. Somatic maturation and the relationship between bone mineral variables and types of sports among adolescents: cross-sectional study.

    PubMed

    Agostinete, Ricardo Ribeiro; Ito, Igor Hideki; Kemper, Han; Pastre, Carlos Marcelo; Rodrigues-Júnior, Mário Antônio; Luiz-de-Marco, Rafael; Fernandes, Rômulo Araújo

    2017-01-01

    Peak height velocity (PHV) is an important maturational event during adolescence that affects skeleton size. The objective here was to compare bone variables in adolescents who practiced different types of sports, and to identify whether differences in bone variables attributed to sports practice were dependent on somatic maturation status. Cross-sectional study, São Paulo State University (UNESP). The study was composed of 93 adolescents (12 to 16.5 years old), divided into three groups: no-sport group (n = 42), soccer/basketball group (n = 26) and swimming group (n = 25). Bone mineral density and content were measured using dual-energy x-ray absorptiometry and somatic maturation was estimated through using peak height velocity. Data on training load were provided by the coaches. Adolescents whose PHV occurred at an older age presented higher bone mineral density in their upper limbs (P = 0.018). After adjustments for confounders, such as somatic maturation, the swimmers presented lower values for bone mineral density in their lower limbs, spine and whole body. Only the bone mineral density in the upper limbs was similar between the groups. There was a negative relationship between whole-body bone mineral content and the weekly training hours (β: -1563.967; 95% confidence interval, CI: -2916.484 to -211.450). The differences in bone variables attributed to sport practice occurred independently of maturation, while high training load in situations of hypogravity seemed to be related to lower bone mass in swimmers.

  9. Analysis of the Characteristics and Evolution Modes of PM2.5 Pollution Episodes in Beijing, China During 2013

    PubMed Central

    Song, Ci; Pei, Tao; Yao, Ling

    2015-01-01

    Fine particulate matter (PM2.5) has been recognized as a serious hazard linked to deleterious health effects. In this study, all PM2.5 Pollution Episodes (PPEs) in Beijing during 2013 were investigated with hourly PM2.5 observations from the Olympic Sport Center site, and then their characteristics and evolution modes analysed. Results show that 80 PPEs, covering 209 days, occurred in Beijing during 2013. Average PM2.5 concentrations during PPEs were almost twice (1.86) the annual mean value, although the PPEs showed significant seasonal variations. The most hazardous PPEs tended to occur in winter, whereas PPEs with long duration occurred in autumn. The PPEs could be divided into six clusters based on their compositions of different pollution levels, which were strongly related to meteorological factors. We used series peaks of PM2.5 concentrations to analyse the evolution modes of PPEs and found that the more peaks there were within the evolution mode, the longer the duration, and the higher the average and maximum PM2.5 concentrations. Each peak within a PPE can be identified by “rise” and “fall” patterns. The “rise” patterns are widely related to relative humidity, whereas the “fall” patterns are affected principally by wind speed for one-peak PPEs and boundary layer height for multi-peak PPEs. The peak patterns cannot be explained fully by meteorological factors; however, they might also be closely related to complex and diversified human activities. PMID:25648172

  10. A 26 year physiological description of a National Hockey League team.

    PubMed

    Quinney, H A; Dewart, Randy; Game, Alex; Snydmiller, Gary; Warburton, Darren; Bell, Gordon

    2008-08-01

    The primary purpose of this investigation was to examine the physiological profile of a National Hockey League (NHL) team over a period of 26 years. All measurements were made at a similar time of year (pre-season) in 703 male (mean age +/- SD = 24 +/- 4 y) hockey players. The data were analyzed across years, between positions (defensemen, forwards, and goaltenders), and between what were deemed successful and non-successful years using a combination of points acquired during the season and play-off success. Most anthropometric (height, mass, and BMI) and physiological parameters (absolute and relative VO2 peak, relative peak 5 s power output, abdominal endurance, and combined grip strength) showed a gradual increase over the 26 year period. Defensemen were taller and heavier, had higher absolute VO2 peak, and had greater combined grip strength than forwards and goaltenders. Forwards were younger and had higher values for relative VO2 peak. Goaltenders were shorter, had less body mass, a higher sum of skinfolds, lower VO2 peak, and better flexibility. The overall pre-season fitness profile was not related to team success. In conclusion, this study revealed that the fitness profile for a professional NHL ice-hockey team exhibited increases in player size and anaerobic and aerobic fitness parameters over a 26 year period that differed by position. However, this evolution of physiological profile did not necessarily translate into team success in this particular NHL franchise.

  11. Error of the modelled peak flow of the hydraulically reconstructed 1907 flood of the Ebro River in Xerta (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Lluís Ruiz-Bellet, Josep; Castelltort, Xavier; Carles Balasch, J.; Tuset, Jordi

    2016-04-01

    The estimation of the uncertainty of the results of the hydraulic modelling has been deeply analysed, but no clear methodological procedures as to its determination have been formulated when applied to historical hydrology. The main objective of this study was to calculate the uncertainty of the resulting peak flow of a typical historical flood reconstruction. The secondary objective was to identify the input variables that influenced the result the most and their contribution to peak flow total error. The uncertainty of 21-23 October 1907 flood of the Ebro River (NE Iberian Peninsula) in the town of Xerta (83,000 km2) was calculated with a series of local sensitivity analyses of the main variables affecting the resulting peak flow. Besides, in order to see to what degree the result depended on the chosen model, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation. The peak flow of 1907 flood in the Ebro River in Xerta, reconstructed with HEC-RAS, was 11500 m3·s-1 and its total error was ±31%. The most influential input variable over HEC-RAS peak flow results was water height; however, the one that contributed the most to peak flow error was Manning's n, because its uncertainty was far greater than water height's. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed. The peak flow was 12000 m3·s-1 when calculated with the 2D model Iber and 11500 m3·s-1 when calculated with the Manning equation.

  12. Study of atmospheric aerosols over the central Himalayan region using a newly developed Mie light detection and ranging system: preliminary results

    NASA Astrophysics Data System (ADS)

    Bangia, Tarun; Omar, Amitesh; Sagar, Ram; Kumar, Ashish; Bhattacharjee, Samaresh; Reddy, Arjun; Agarwal, Prem Kumar; Phanikumar

    2011-01-01

    A LIDAR system to receive Mie backscattered photons has been developed at the Manora peak, Nainital, India and it is the first of its kind in the central Himalayan region. The system is sensitive to receive backscattered photons from heights up to ~20 km (above ground level). The atmospheric extinction profiles using Mie LIDAR have been estimated for the first time at this site in January (winter) and March (spring) seasons in three campaigns and maximum values are found to be ~0.01, 0.03, and 0.08 km-1, respectively. The aerosol optical depth (AOD) values are found to be ~0.051, 0.098, and 0.233 in three campaigns, respectively, showing enhancement from January (winter) to March (spring) indicating a seasonal variation. AOD values of LIDAR, aerosol robotic network, and moderate resolution imaging spectroradiometer were found within the standard deviations. The aerosol loading at the site has increased during the last decade as evident from previous studies.

  13. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    DOE PAGES

    Chang, G.; Ruehl, K.; Jones, C. A.; ...

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less

  14. The Use of Arm Span as a Substitute for Height in Calculating Body Mass Index (BMI) for Spine Deformity Patients.

    PubMed

    Opoku, Harriet; Yirerong, Theresa; Osei-Onwona, Belinda; Boachie-Adjei, Oheneba

    To compare arm span and height in body mass index (BMI) calculation in patients with spinal curvature and investigate their impact on interpretation of BMI. Prospective case-control cohorts. The BMI value is based on weight to height ratio. Spine deformity patients experience height loss and its use in calculating BMI is likely to produce errors. A surrogate for height should therefore be sought in BMI determination. Ninety-three spine deformity patients were matched with 64 normal children. Anthropometric values (height, arm span, and weight) and spinal curve were obtained. BMIs using arm span and height were calculated, and statistical analysis performed to assess the relationship between BMI/height and BMI/arm span in both groups as well as the relationship between these values and Arm Span to Height difference (Delta AH). There were 46 males and 47 females, the average age was 15.5 years in Group 1 versus 33 males and 31 females, average age 14.8 years in Group 2. Major scoliosis in Group 1 averaged 125.7° (21° to 252°). The extreme curves show vertebral transposition, with overlapping segments making it more than 180°. A logistic regression showed that there was linearity in BMI scores (R 2 = 0.97) for both arm span and height (R 2 = 0.94) in group 2 patients. For group 1 patients there was a significant difference in the BMI values when comparing BMI/arm span versus BMI/height (p < .0001). Mean BMI values using height was overstated by 2.8 (18.6%). The threshold at which BMI score must be calculated using arm span as opposed to the height (Delta AH) was determined to be 3 cm. Spine deformity patients experience height loss, which can impact their true BMI values thereby giving an erroneous impression of their nutritional status. The arm span should be used in patients with Delta AH >3 cm to properly assess nutritional status. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  15. The effects of the structure characteristics on Magnetic Barkhausen noise in commercial steels

    NASA Astrophysics Data System (ADS)

    Deng, Yu; Li, Zhe; Chen, Juan; Qi, Xin

    2018-04-01

    This study has been done by separately measuring Magnetic Barkhausen noise (MBN) under different structure characteristics, namely the carbon content, hardness, roughness, and elastic modulus in commercial steels. The result of the experiments shows a strong dependence of MBN parameters (peak height, Root mean square (RMS), and average value) on structure characteristics. These effects, according to this study, can be explained by two kinds of source mechanisms of the MBN, domain wall nucleation and wall propagation. The discovery obtained in this paper can provide basic knowledge to understand the existing surface condition problem of Magnetic Barkhausen noise as a non-destructive evaluation technique and bring MBN into wider application.

  16. Factors dominating 3-dimensional ozone distribution during high tropospheric ozone period.

    PubMed

    Chen, Xiaoyang; Liu, Yiming; Lai, Anqi; Han, Shuangshuang; Fan, Qi; Wang, Xuemei; Ling, Zhenhao; Huang, Fuxiang; Fan, Shaojia

    2018-01-01

    Data from an in situ monitoring network and five ozone sondes are analysed during August of 2012, and a high tropospheric ozone episode is observed around the 8th of AUG. The Community Multi-scale Air Quality (CMAQ) model and its process analysis tool were used to study factors and mechanisms for high ozone mixing ratio at different levels of ozone vertical profiles. A sensitive scenario without chemical initial and boundary conditions (ICBCs) from MOZART4-GEOS5 was applied to study the impact of stratosphere-troposphere exchange (STE) on vertical ozone. The simulation results indicated that the first high ozone peak near the tropopause was dominated by STE. Results from process analysis showed that: in the urban area, the second peak at approximately 2 km above ground height was mainly caused by local photochemical production. The third peak (near surface) was mainly caused by the upwind transportation from the suburban/rural areas; in the suburban/rural areas, local photochemical production of ozone dominated the high ozone mixing ratio from the surface to approximately 3 km height. Furthermore, the capability of indicators to distinguish O 3 -precursor sensitivity along the vertical O 3 profiles was investigated. Two sensitive scenarios, which had cut 30% anthropogenic NO X or VOC emissions, showed that O 3 -precursor indicators, specifically the ratios of O 3 /NOy, H 2 O 2 /HNO 3 or H 2 O 2 /NO Z , could partly distinguish the O 3 -precursor sensitivity between VOCs-sensitive and NOx-sensitive along the vertical profiles. In urban area, the O 3 -precursor relationship transferred from VOCs-sensitive within the boundary layer to NOx-sensitive at approximately 1-3 km above ground height, further confirming the dominant roles of transportation and photochemical production in high O 3 peaks at the near-ground layer and 2 km above ground height, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Ion chromatography of L-ascorbic acid, sulfite and thiosulfate using their postcolumn reactions with cerium (IV) and fluorescence detection of cerium (III)].

    PubMed

    Chen, Q; Hu, K; Miura, Y

    1999-09-01

    An ion chromatographic method was used to separate the species of L-ascorbic acid, sulfite and thiosulfate in their mixtures. This method is based on the separation of each anion in their mixtures by using a separation column, and then on the fluorimetric measurement of cerium (III) formed by a postcolumn reaction of cerium (IV) with the species of L-ascorbic acid, sulfite and thiosulfate in the effluent. The optimal conditions for separating and determining the above three species have been established. By using a 3 mmol/L carbonate eluent, the species of L-ascorbic acid, sulfite and thiosulfate could be eluted at the proper retention times of 1.7, 2.6 and 5.0 min, respectively, and these three anions could be separated completely. The effects of the concentrations of cerium (IV) and sulfuric acid in the postcolumn reaction solution on the chromatographic peak-height were tested in order to obtain the optimal peak-height. It was found that the peak-height at first increases rapidly with an increase in the concentration of cerium (IV) and sulfuric acid respectively up to a certain concertation, then increases slowly. These critical concentrations of cerium (IV) and sulfuric acid also depend on the amount of the analyte injected. Meanwhile the baseline signals of the sepectra increase with an increase in the concentration of cerium (IV). Some concentrations above the critical concentration of sulfuric acid could be selected as the optimal concentration of sulfuric acid, but the concentration of cerium (IV) should be optimized by establishing a compromise between the higher peak-height and the lower baseline signal. The detection limit of this method was found to be 1 mumol/L for thiosulfate when an amount of 100 microL analyte was injected.

  18. Implementation of the RAMMS DEBRIS FLOW to Italian case studies

    NASA Astrophysics Data System (ADS)

    Vennari, Carmela; Mc Ardell, Brian; Parise, Mario; Santangelo, Nicoletta; Santo, Antonio

    2016-04-01

    RAMMS (RApid Mass MovementS) Debris Flow runout model solves 2D shallow-water equation using the Voellmy friction law. The model has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), and the Swiss Federal Institute for Snow and Avalanche Research (SLF). It requires as input the following data: topography, release area or hydrograph, and the friction parameters μ and ξ. Deposition height, velocity, pressure and momentum are the most important outcomes, also in terms of Max values. The model was applied primarily in Alpine catchments to simulate debris flow runout. Beside the Alps, alluvial events are very common even in torrential catchments of the Southern Apennines of Italy, and contribute to build alluvial fans mainly located at the foothill of carbonate and volcanic mountains. During the last decades several events occurred in these areas, often highly populated, and caused serious damage to society and to people. Several case studies have been selected from a database on alluvial events in torrential catchments of Campania region, aimed at applying the RAMMS model to back-analyze the documented events, and to simulate future similar scenarios in different triggering conditions. In order to better understand the obtained data and choose the best results, field data are mandatories. For this reason we focused our attention on torrential events for which field data concerning deposition area and deposition height were available. We simulated different scenarios, with variable peak discharge and friction parameters, reproducing also the influence of anthropogenic structures. To choose the best results, observed data and predicted data were compared in an objective way, by means of a quantitative analysis. Predicted and observed deposition areas were compared in a GIS environment, and the best test was evaluated by computing several statistics accuracy derived from the confusion matrix, including the sensitivity, that provides a measure of the proportion of positives cases that have been correctly identified. As regards deposition height, first of all we: i) classified the RAMMS results and the field data in the same class values, ii) associated to each observed value the predicted value in that point, and iii) calculated the frequency value for each class. Further, for every test we analyzed the wrong results by considering the proximity to the correct class. Application of a quantitative analysis gives the advantage to evaluate impartially the best results, but it is applicable only in those cases for which there field data are available. The RAMMS simulations are useful to understand the anthropogenic influence on flow direction, the most vulnerable areas and the elements at higher risk. On the other hand, RAMMS applications on case studies where no field data is available will be useful to evaluate future scenarios, simulating different triggering events and different peak discharges, but they do not allow to choose the best result among the model outcomes.

  19. Onset temperature for Si nanostructure growth on Si substrate during high vacuum electron beam annealing.

    PubMed

    Fang, F; Markwitz, A

    2009-05-01

    Silicon nanostructures, called Si nanowhiskers, are successfully synthesized on Si(100) substrate by high vacuum electron beam annealing. The onset temperature and duration needed for the Si nanowhiskers to grow was investigated. It was found that the onset and growth morphology of Si nanowhiskers strongly depend on the annealing temperature and duration applied in the annealing cycle. The onset temperature for nanowhisker growth was determined as 680 degrees C using an annealing duration of 90 min and temperature ramps of +5 degrees C s(-1) for heating and -100 degrees C s(-1) for cooling. Decreasing the annealing time at peak temperature to 5 min required an increase in peak temperature to 800 degrees C to initiate the nanowhisker growth. At 900 degrees C the duration for annealing at peak temperature can be set to 0 s to grow silicon nanowhiskers. A correlation was found between the variation in annealing temperature and duration and the nanowhisker height and density. Annealing at 900 degrees C for 0 s, only 2-3 nanowhiskers (average height 2.4 nm) grow on a surface area of 5 x 5 microm, whereas more than 500 nanowhiskers with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 degrees C for 0 s. Selected results are presented showing the possibility of controlling the density and height of Si nanowhisker growth for field emission applications by applying different annealing temperature and duration.

  20. Left ventricular long axis tissue Doppler systolic velocity is independently related to heart rate and body size.

    PubMed

    Peverill, Roger E; Chou, Bon; Donelan, Lesley

    2017-01-01

    The physiological factors which affect left ventricular (LV) long-axis function are not fully defined. We investigated the relationships of resting heart rate and body size with the peak velocities and amplitudes of LV systolic and early diastolic long axis motion, and also with long-axis contraction duration. Two groups of adults free of cardiac disease underwent pulsed-wave tissue Doppler imaging at the septal and lateral mitral annular borders. Group 1 (n = 77) were healthy subjects <50 years of age and Group 2 (n = 65) were subjects between 40-80 years of age referred for stress echocardiography. Systolic excursion (SExc), duration (SDur) and peak velocity (s') and early diastolic excursion (EDExc) and peak velocity (e') were measured. SExc was not correlated with heart rate, height or body surface area (BSA) for either LV wall in either group, but SDur was inversely correlated with heart rate for both walls and both groups, and after adjustment for heart rate, males in both groups had a shorter septal SDur. Septal and lateral s` were independently and positively correlated with SExc, heart rate and height in both groups, independent of sex and age. There were no correlations of heart rate, height or BSA with either e` or EDExc for either wall in either group. Heart rate and height independently modify the relationship between s` and SExc, but neither are related to EDExc or e`. These findings suggest that s` and SExc cannot be used interchangeably for the assessment of LV long-axis contraction.

  1. Secondary IGF-I deficiency as a prognostic factor of growth hormone (GH) therapy effectiveness in children with isolated, non-acquired GH deficiency.

    PubMed

    Smyczyńska, J; Stawerska, R; Hilczer, M; Lewiński, A

    2015-04-01

    Growth hormone (GH) deficiency (GHD) has recently been classified as secondary IGF-I deficiency but the significance of IGF-I measurement in diagnosing GHD is still discussed. The aim of the study was to assess the relationships between IGF-I secretion and GH therapy effectiveness in children with GHD. The analysis comprised 300 children with isolated, non-acquired GHD (GH peak below 10 μg/l) who completed GH therapy and attained final height (FH). In all patients IGF-I concentration was measured before the treatment and IGF-I deficiency was diagnosed if IGF-I SDS for age and sex was below -1.0. The following auxological indices were assessed: patients' height SDS before treatment (H₀SDS), FH SDS and improvement of FHSDS vs. H₀SDS (ΔHSDS). In the patients with IGF-I deficiency when compared with those with normal IGF-I secretion before treatment, significantly better FH SDS (-1.42±0.90 vs. -1.74±0.86, p=0.004) and ΔHSDS (1.64±1.01 vs. 1.32±1.05, p=0.010) were observed, despite similar H₀SDS (- 3.07±0.78 vs. - 3.11±0.77, p=0.63) and GH peak (7.0±3.1 μg/l vs. 6.8±2.1 μg/l, p=0.55). The patients who achieved FH over 10(th) centile had significantly lower IGF-I SDS before treatment than those with FH below 10(th) centile (- 1.59±1.54 vs. - 1.20±1.64, p=0.04), despite similar GH peak (7.0±2.3 μg/l vs. 6.7±3.1 μg/l, p=0.45). The patients with ΔHSDS over the median value had significantly lower IGF-I SDS than those with ΔHSDS below the median value (- 1.59±1.71 vs. - 1.09±1.47, p<0.0001), despite similar GH peak (6.8±2.5 μg/l vs. 7.0±2.7 μg/l, p=0.86). In children with isolated, non-acquired GHD, secondary IGF-I deficiency is an important predictor of better GH therapy effectiveness. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures

    NASA Astrophysics Data System (ADS)

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH3 asymmetric, CH2 asymmetric, CH3 symmetric and CH2 symmetric groups, (ii) unsaturation (Cdbnd C) group, and (iii) carbonyl ester (Cdbnd O) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P < 0.05) in nutrient profile and lipid related molecular spectral intensity (CH2 asymmetric stretching peak height, CH2 symmetric stretching peak height, ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality.

  3. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Astrophysics Data System (ADS)

    Justus, C. G.; James, B. F.

    1999-05-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  4. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    1999-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  5. Thumb Ossification Composite Index (TOCI) for Predicting Peripubertal Skeletal Maturity and Peak Height Velocity in Idiopathic Scoliosis

    PubMed Central

    Hung, Alec L.H.; Chau, W.W.; Shi, B.; Chow, Simon K.; Yu, Fiona Y.P.; Lam, T.P.; Ng, Bobby K.W.; Qiu, Y.; Cheng, Jack C.Y.

    2017-01-01

    Background: Accurate skeletal maturity assessment is important to guide clinical evaluation of idiopathic scoliosis, but commonly used methods are inadequate or too complex for rapid clinical use. The objective of the study was to propose a new simplified staging method, called the thumb ossification composite index (TOCI), based on the ossification pattern of the 2 thumb epiphyses and the adductor sesamoid bone; to determine its accuracy in predicting skeletal maturation when compared with the Sanders simplified skeletal maturity system (SSMS); and to validate its interrater and intrarater reliability. Methods: Hand radiographs of 125 girls, acquired when they were newly diagnosed with idiopathic scoliosis prior to menarche and during longitudinal follow-up until skeletal maturity (a minimum of 4 years), were scored with the TOCI and SSMS. These scores were compared with digital skeletal age (DSA) and radius, ulna, and small hand bones (RUS) scores; anthropometric data; peak height velocity; and growth-remaining profiles. Correlations were analyzed with the chi-square test, Spearman and Cramer V correlation methods, and receiver operating characteristic curve analysis. Reliability analysis using the intraclass correlation (ICC) was conducted. Results: Six hundred and forty-five hand radiographs (average, 5 of each girl) were scored. The TOCI staging system was highly correlated with the DSA and RUS scores (r = 0.93 and 0.92, p < 0.01). The mean peak height velocity (and standard deviation) was 7.43 ± 1.45 cm/yr and occurred at a mean age of 11.9 ± 0.86 years, with 70.1% and 51.4% of the subjects attaining their peak height velocity at TOCI stage 5 and SSMS stage 3, respectively. The 2 systems predicted peak height velocity with comparable accuracy, with a strong Cramer V association (0.526 and 0.466, respectively; p < 0.01) and similar sensitivity and specificity on receiver operating characteristic curve analysis. The mean age at menarche was 12.57 ± 1.12 years, with menarche occurring over several stages in both the TOCI and the SSMS. The growth remaining predicted by TOCI stage 8 matched well with that predicted by SSMS stage 7, with a mean of <2 cm/yr of growth potential over a mean of <1.7 years at these stages. The TOCI also demonstrated excellent reliability, with an overall ICC of >0.97. Conclusions: The new proposed TOCI could provide a simplified staging system for the assessment of skeletal maturity of subjects with idiopathic scoliosis. The index needs to be subjected to further multicenter validation in different ethnic groups. PMID:28872525

  6. Subcutaneous gonadotropin-releasing hormone agonist (triptorelin) test for diagnosing precocious puberty.

    PubMed

    Poomthavorn, Preamrudee; Khlairit, Patcharin; Mahachoklertwattana, Pat

    2009-01-01

    A test involving 100 microg of intravenous gonadotropin-releasing hormone (GnRH) is a gold standard for confirming the diagnosis of central precocious puberty (CPP). However, intravenous GnRH for testing is commercially limited. To develop subcutaneous GnRH agonist (GnRH-A) testing and define a peak luteinizing hormone (LH) cutoff value in diagnosing CPP. A retrospective study of 101 girls with sexual precocity was undertaken. All girls underwent 100 microg subcutaneous GnRH-A (triptorelin) testing. Blood samples before and 30, 60, 90 and 120 min after GnRH-A injection were analyzed for LH and follicle-stimulating hormone levels. Criteria for diagnosing CPP include accelerated height, advanced bone age and pubertal-sized uterus and ovaries. Fifty-five girls were documented as having CPP. The remaining 46 girls were diagnosed with premature thelarche (PT). Peak LH concentration in the CPP group was significantly greater than that of the PT group with a median (range) of 10.0 IU/l (2.93-65.39) and 3.04 IU/l (0.19-8.82), respectively. Peak LH was achieved within 60 min following GnRH-A injection. Peak LH of 6 IU/l provided the most appropriate cutoff level in diagnosing CPP with a sensitivity of 89.1% and a specificity of 91.3%. Subcutaneous GnRH-A can be used as an alternative to confirm the diagnosis of CPP. Copyright 2009 S. Karger AG, Basel.

  7. Direct numerical simulation of flow over dissimilar, randomly distributed roughness elements: A systematic study on the effect of surface morphology on turbulence

    NASA Astrophysics Data System (ADS)

    Forooghi, Pourya; Stroh, Alexander; Schlatter, Philipp; Frohnapfel, Bettina

    2018-04-01

    Direct numerical simulations are used to investigate turbulent flow in rough channels, in which topographical parameters of the rough wall are systematically varied at a fixed friction Reynolds number of 500, based on a mean channel half-height h and friction velocity. The utilized roughness generation approach allows independent variation of moments of the surface height probability distribution function [thus root-mean-square (rms) surface height, skewness, and kurtosis], surface mean slope, and standard deviation of the roughness peak sizes. Particular attention is paid to the effect of the parameter Δ defined as the normalized height difference between the highest and lowest roughness peaks. This parameter is used to understand the trends of the investigated flow variables with departure from the idealized case where all roughness elements have the same height (Δ =0 ). All calculations are done in the fully rough regime and for surfaces with high slope (effective slope equal to 0.6-0.9). The rms roughness height is fixed for all cases at 0.045 h and the skewness and kurtosis of the surface height probability density function vary in the ranges -0.33 to 0.67 and 1.9 to 2.6, respectively. The goal of the paper is twofold: first, to investigate the possible effect of topographical parameters on the mean turbulent flow, Reynolds, and dispersive stresses particularly in the vicinity of the roughness crest, and second, to investigate the possibility of using the wall-normal turbulence intensity as a physical parameter for parametrization of the flow. Such a possibility, already suggested for regular roughness in the literature, is here extended to irregular roughness.

  8. Reference values for airway resistance in newborns, infants and preschoolers from a Latin American population.

    PubMed

    Gochicoa, Laura G; Thomé-Ortiz, Laura P; Furuya, María E Y; Canto, Raquel; Ruiz-García, Martha E; Zúñiga-Vázquez, Guillermo; Martínez-Ramírez, Filiberto; Vargas, Mario H

    2012-05-01

    Several studies have determined reference values for airway resistance measured by the interrupter technique (Rint) in paediatric populations, but only one has been done on Latin American children, and no studies have been performed on Mexican children. Moreover, these previous studies mostly included children aged 3 years and older; therefore, information regarding Rint reference values for newborns and infants is scarce. Rint measurements were performed on preschool children attending eight kindergartens (Group 1) and also on sedated newborns, infants and preschool children admitted to a tertiary-level paediatric hospital due to non-cardiopulmonary disorders (Group 2). In both groups, Rint values were inversely associated with age, weight and height, but the strongest association was with height. The linear regression equation for Group 1 (n = 209, height 86-129 cm) was Rint = 2.153 - 0.012 × height (cm) (standard deviation of residuals 0.181 kPa/L/s). The linear regression equation for Group 2 (n = 55, height 52-113 cm) was Rint = 4.575 - 0.035 × height (cm) (standard deviation of residuals 0.567 kPa/L/s). Girls tended to have slightly higher Rint values than boys, a difference that diminished with increasing height. In this study, Rint reference values applicable to Mexican children were determined, and these values are probably also applicable to other paediatric populations with similar Spanish-Amerindian ancestries. There was an inverse relationship between Rint and height, with relatively large between-subject variability. © 2012 The Authors. Respirology © 2012 Asian Pacific Society of Respirology.

  9. Patterns of linear growth and skeletal maturation from birth to 18 years of age in overweight young adults.

    PubMed

    Johnson, W; Stovitz, S D; Choh, A C; Czerwinski, S A; Towne, B; Demerath, E W

    2012-04-01

    To estimate differences in skeletal maturity and stature from birth to age 18 years between individuals who are overweight vs normal weight in young adulthood. Weight, length and height, and relative skeletal age (skeletal-chronological age) were assessed annually from birth to age 18 years in 521 subjects (255 women) in the Fels Longitudinal Study who were overweight or obese (body mass index (BMI) >25 kg m(-2), n=131) or normal weight (n=390) in young adulthood (18-30 years). Generalized estimating equations were used to test for skeletal maturity and stature differences by young adult BMI status. Differences in height increased during puberty, being significant for girls at ages 10 to 12 years, and for boys at ages 11 to 13 years (P-values<0.001), with overweight or obese adults being ∼3 cm taller at those ages than normal weight adults. These differences then diminished so that by age 18 years, overweight or obese adults were not significantly different in stature to their normal weight peers. Differences in skeletal maturity were similar, but more pervasive; overweight or obese adults were more skeletally advanced throughout childhood. Skeletal maturity differences peaked at chronological age 12 in boys and 14 in girls (P-values<0.001), with overweight or obese adults being ∼1 year more advanced than normal weight adults. This descriptive study is the first to track advanced skeletal maturity and linear growth acceleration throughout infancy, childhood and adolescence in individuals who become overweight, showing that differences occur primarily around the time of the pubertal growth spurt. Increased BMI in children on a path to becoming overweight adults precedes an advancement in skeletal development and subsequently tall stature during puberty. Further work is required to assess the predictive value of accelerated pubertal height growth for assessing obesity risk in a variety of populations.

  10. Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor Grading

    PubMed Central

    Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye

    2013-01-01

    Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = <0.001, 0.014 and <0.001, respectively) and between grade III and IV gliomas (P = <0.001, 0.001 and <0.001, respectively). The diagnostic accuracy of nCBV C99 was significantly higher than that of the mean nCBV (P = 0.016) in distinguishing high- from low-grade gliomas and was comparable to that of the peak height (P = 1.000). Validation using the two cutoff values of nCBV C99 achieved a diagnostic accuracy of 66.7% (6/9) for the separation of all three glioma grades. Conclusion Cumulative histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910

  11. Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.

    PubMed

    Mahboubi, Masoumeh; Movahed, Saeid; Hosseini Abardeh, Reza; Hoshyargar, Vahid

    2017-06-01

    A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the microchannel. Electrophoretic velocity has a significant effect on the cell uptake.

  12. Optimizing the Determination of Roughness Parameters for Model Urban Canopies

    NASA Astrophysics Data System (ADS)

    Huq, Pablo; Rahman, Auvi

    2018-05-01

    We present an objective optimization procedure to determine the roughness parameters for very rough boundary-layer flow over model urban canopies. For neutral stratification the mean velocity profile above a model urban canopy is described by the logarithmic law together with the set of roughness parameters of displacement height d, roughness length z_0 , and friction velocity u_* . Traditionally, values of these roughness parameters are obtained by fitting the logarithmic law through (all) the data points comprising the velocity profile. The new procedure generates unique velocity profiles from subsets or combinations of the data points of the original velocity profile, after which all possible profiles are examined. Each of the generated profiles is fitted to the logarithmic law for a sequence of values of d, with the representative value of d obtained from the minima of the summed least-squares errors for all the generated profiles. The representative values of z_0 and u_* are identified by the peak in the bivariate histogram of z_0 and u_* . The methodology has been verified against laboratory datasets of flow above model urban canopies.

  13. M Dwarfs from Hubble Space Telescope Star Counts. IV.

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Flynn, Chris; Gould, Andrew; Bahcall, John N.; Salim, Samir

    2001-07-01

    We study a sample of about 1400 disk M dwarfs that are found in 148 fields observed with the Wide Field Camera 2 (WFC2) on the Hubble Space Telescope and 162 fields observed with pre-repair Planetary Camera 1 (PC1), of which 95 of the WFC2 fields are newly analyzed. The method of maximum likelihood is applied to derive the luminosity function and the Galactic disk parameters. At first, we use a local color-magnitude relation and a locally determined mass-luminosity relation in our analysis. The results are consistent with those of previous work but with considerably reduced statistical errors. These small statistical errors motivate us to investigate the systematic uncertainties. Considering the metallicity gradient above the Galactic plane, we introduce a modified color-magnitude relation that is a function of Galactic height. The resultant M dwarf luminosity function has a shape similar to that derived using the local color-magnitude relation but with a higher peak value. The peak occurs at MV~12, and the luminosity function drops sharply toward MV~14. We then apply a height-dependent mass-luminosity function interpolated from theoretical models with different metallicities to calculate the mass function. Unlike the mass function obtained using local relations, which has a power-law index α=0.47, the one derived from the height-dependent relations tends to be flat (α=-0.10). The resultant local surface density of disk M dwarfs (12.2+/-1.6 Msolar pc-2) is somewhat smaller than the one obtained using local relations (14.3+/-1.3 Msolar pc-2). Our measurement favors a short disk scale length, H=2.75+/-0.16 (statistical)+/-0.25 (systematic) kpc. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  14. Comparison of plasmaspheric electron content over sea and land using Jason-2 observations

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Cherniak, Iurii; Zakharenkova, Irina

    2016-07-01

    The Global Ionospheric Maps of Total Electron Content, GIM-TEC, may suffer from model assumptions, in particular, over the oceans where relatively few measurements are available due to a scarcity of ground-based GPS receivers network only on seashores and islands which involve more assumptions or interpolations imposed on GIM mapping techniques. The GPS-derived TEC represents the total electron content integrated through the ionosphere, iTEC, and the plasmasphere, pTEC. The sea/land differences in the F2 layer peak electron density, NmF2, and the peak height, hmF2, gathered with topside sounding data exhibit tilted ionosphere along the seashores with denser electron population at greater peak heights over the sea. Derivation of a sea/land proportion of total electron content from the new source of the satellite-based measurements would allow improve the mapping GIM-TEC products and their assimilation by the ionosphere-plasmasphere IRI-Plas model. In this context the data of Jason-2 mission provided through the NOAA CLASS Website (http://www.nsof.class.noaa.gov/saa/products/catSearch) present a unique database of pTEC measured through the plasmasphere over the Jason-2 orbit (1335 km) to GPS orbit (20,200 km) which become possible from GPS receivers placed onboard of Jason-2 with a zenith looking antenna that can be used not only for precise orbit determination (POD), but can also provide new data on the plasma density distribution in the plasmasphere. Special interest represents possibility of the potential increase of the data volume in two times due to the successful launch of the Jason-3 mission on 17 January 2016. The present study is focused on a comparison of plasmasphere electron content, pTEC, over the sea and land with a unique data base of the plasmasphere electron content, pTEC, using measurements onboard Jason-2 satellite during the solar minimum (2009) and solar maximum (2014). Slant TEC values were scaled to estimate vertical pTEC using a geometric factor derived by assuming the plasma occupies a spherical thin shell at 1400 km. The elevation angle cut-off was selected as 40 deg. Global distribution of POD TEC values has been presented in the form of pTEC maps, that were made by projecting the pTEC values on the Earth from the ionosphere pierce point at the shell altitude. Along the satellite pass for each epoch we have pTEC values for several linked LEO-GPS simultaneously, that can be binned and averaged into map cells. Results of pTEC maps analysis in terms of local time, season and solar activity are presented in the paper.

  15. Quantum theory of rotational isomerism and Hill equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugulava, A.; Toklikishvili, Z.; Chkhaidze, S.

    2012-06-15

    The process of rotational isomerism of linear triatomic molecules is described by the potential with two different-depth minima and one barrier between them. The corresponding quantum-mechanical equation is represented in the form that is a special case of the Hill equation. It is shown that the Hill-Schroedinger equation has a Klein's quadratic group symmetry which, in its turn, contains three invariant subgroups. The presence of these subgroups makes it possible to create a picture of energy spectrum which depends on a parameter and has many merging and branch points. The parameter-dependent energy spectrum of the Hill-Schroedinger equation, like Mathieu-characteristics, containsmore » branch points from the left and from the right of the demarcation line. However, compared to the Mathieu-characteristics, in the Hill-Schroedinger equation spectrum the 'right' points are moved away even further for some distance that is the bigger, the bigger is the less deep well. The asymptotic wave functions of the Hill-Schroedinger equation for the energy values near the potential minimum contain two isolated sharp peaks indicating a possibility of the presence of two stable isomers. At high energy values near the potential maximum, the height of two peaks decreases, and between them there appear chaotic oscillations. This form of the wave functions corresponds to the process of isomerization.« less

  16. Influence of human body composition on serum peak thyrotropin (TSH) after recombinant human TSH administration in patients with differentiated thyroid carcinoma.

    PubMed

    Castagna, Maria Grazia; Pinchera, Aldo; Marsili, Alessandro; Giannetti, Monica; Molinaro, Eleonora; Fierabracci, Paola; Grasso, Lucia; Pacini, Furio; Santini, Ferruccio; Elisei, Rossella

    2005-07-01

    In this study, we evaluated the influence of height, weight, body mass index (BMI), body surface area, and body composition [total lean body mass (LBM) and fat body mass] on serum peak TSH levels obtained after recombinant human (rh)TSH. Furthermore, to verify whether the serum peak TSH influenced the efficacy of radioiodine ((131)I), we compared the rate of thyroid remnant ablation according to the patients' BMI. We studied 105 patients with differentiated thyroid carcinoma who underwent rhTSH stimulation test. Serum TSH measurements were performed before and 24, 48, and 72 h after rhTSH administration. We also compared the rate of thyroid remnant ablation among 70 differentiated thyroid carcinoma patients with different BMI. The serum peak TSH after rhTSH was significantly lower in overweight and obese subjects compared with normal-weight subjects (92.1 +/- 41.8, 82.4 +/- 24.2, and 112.7 +/- 46.3 microU/ml, respectively; P = 0.01) and in males compared with females (74.6 +/- 22.3 and 105.0 +/- 43.0 microU/ml, respectively; P = 0.0002). By univariate analysis, serum peak TSH was negatively related to weight, height, body surface area, BMI, LBM, and fat body mass, but only LBM was independently associated with serum peak TSH levels. Although it was confirmed that overweight and obese patients had a lower serum peak TSH, the rate of ablation did not differ among normal-weight, overweight, and obese patients. With this study we demonstrated that LBM is the only parameter independently associated with serum peak TSH after rhTSH administration. However, the serum peak TSH does not influence the rate of (131)I remnant ablation.

  17. Lightning Attachment to Wind Turbines in Central Kansas: Video Observations, Correlation with the NLDN and in-situ Peak Current Measurements

    NASA Astrophysics Data System (ADS)

    Myers, J.; Cummins, K. L.; Hutchinson, M.; Nag, A.

    2012-12-01

    Lightning attachment to tall objects has been studied for decades. The attachment of lightning to electric power transmission towers in elevated terrain has driven much of the quantitative assessment of lightning characteristics in the 1970's and 80's. This has led to the understanding that in flat terrain, the probability of upward-initiated lightning is negligible for tower heights less than 100 m. For tower heights greater than 100, the probability increases roughly linearly with the log of height, reaching 100% at a height of 400 m. Additionally, the probability of upward initiation increases when the object resides on locally-elevated terrain. Over the last decade, there has been renewed interest in the study of lightning attachment to tall objects in general, and wind turbines in particular, following the establishment of large "wind farms" in lightning-prone regions. In this study, we present video observations, radiation magnetic field, and in-situ peak current measurements of lightning from an ongoing field program in a large wind farm in north-central Kansas, located in the U.S. Central Great Plains. The terrain variations within the wind farm are small rolling hills with peak variations on the order of 25 m. All turbines had a turbine hub height of 80 m, and a blade tip maximum height of 125 m. Two digital video camera systems (60 fields-per-second) were configured to self-trigger 2-second video sequences using a sequential-field-subtraction scene analysis (ufo-Capture). The two cameras had a common field of view that included 8 of the wind turbines. Nearby NLDN sensors were configured to record information that allows reconstruction of magnetic field waveforms within the bandwidth of the NLDN sensors. Some of the turbines were equipped with semi-quantitative in-situ peak current measuring devices. To date, more than 100 cloud-to-ground (CG) flashes have terminated within the perimeter of the wind farm. Video observations of flashes that attached to turbines (all to turbine blades) include five natural (downward leader) flashes and two "upward flashes" (fully developed upward leaders lasting 10's of milliseconds). Both upward flashes appear to have been triggered by nearby positive CG flashes, resulting in upward (presumably positive) leaders. Selected video observations in conjunction with NLDN data and waveform measurements, and in situ current measurements obtained during this campaign, will be presented and discussed in the context of storm characteristics. Differences with previous findings for fixed towers (no rotating blades) will also be discussed.

  18. Variations of plasmaspheric field-aligned electron and ion densities (90-4000 km) during quiet to moderately active (Kp < 4) geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Reddy, A.

    2017-12-01

    Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 < Kpmax,24 <4). The measurements were obtained in the L=1.7 to 3.3 range (90- 4000 km, 13 or 15 MLT). Our results show that, under similar geomagnetic activity, at similar L-shells but with different geographic longitudes and MLTs, the O+/H+ transition height varied within ±12% of 1100 km at L 2 and within ±8% of 1350 km at L 3. The electron densities along flux tubes varied within 30% and 20%, respectively, below (including F2 peak) and above HT. With increasing L shell: (a) O+/H+ transition height increased; (b) electron density variations below HT including F2 peak showed no trend; (c) electron density above HT decreased. For flux tubes at similar longitudes, L-shells, and MLT's, relative to quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.

  19. The effects of ion adsorption on the potential of zero charge and the differential capacitance of charged aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan

    2018-02-01

    Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson-Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights.

  20. Determination of the optimized single-layer ionospheric height for electron content measurements over China

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Yunbin; Zhang, Baocheng; Wang, Ningbo; Li, Zishen; Liu, Xifeng; Zhang, Xiao

    2018-02-01

    The ionosphere effective height (IEH) is a very important parameter in total electron content (TEC) measurements under the widely used single-layer model assumption. To overcome the requirement of a large amount of simultaneous vertical and slant ionospheric observations or dense "coinciding" pierce points data, a new approach comparing the converted vertical TEC (VTEC) value using mapping function based on a given IEH with the "ground truth" VTEC value provided by the combined International GNSS Service Global Ionospheric Maps is proposed for the determination of the optimal IEH. The optimal IEH in the Chinese region is determined using three different methods based on GNSS data. Based on the ionosonde data from three different locations in China, the altitude variation of the peak electron density (hmF2) is found to have clear diurnal, seasonal and latitudinal dependences, and the diurnal variation of hmF2 varies from approximately 210 to 520 km in Hainan. The determination of the optimal IEH employing the inverse method suggested by Birch et al. (Radio Sci 37, 2002. doi: 10.1029/2000rs002601) did not yield a consistent altitude in the Chinese region. Tests of the method minimizing the mapping function errors suggested by Nava et al. (Adv Space Res 39:1292-1297, 2007) indicate that the optimal IEH ranges from 400 to 600 km, and the height of 450 km is the most frequent IEH at both high and low solar activities. It is also confirmed that the IEH of 450-550 km is preferred for the Chinese region instead of the commonly adopted 350-450 km using the determination method of the optimal IEH proposed in this paper.

  1. Influence of a Horizontal Approach on the Mechanical Output during Drop Jumps

    ERIC Educational Resources Information Center

    Ruan, Mianfang; Li, Li

    2008-01-01

    This study investigated the influence of a horizontal approach to mechanical output during drop jumps. Participants performed drop jumps from heights of 15, 30, 45, and 60 cm with zero, one, two, and three approach steps. The peak summed power during the push-off phase changed quadratically across heights (6.2 [plus or minus] 0.3, 6.7 [plus or…

  2. Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, K.; Imada, S.; Moon, Y.; Lee, J.

    2012-12-01

    We investigate a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer (EIS). The cool loop is clearly seen in the EIS spectral lines formed at the transition region temperature (log T = 5.8). The dark lane is characterized by an elongated faint structure in coronal spectral lines (log T = 5.8 - 6.1) and rooted on a bright point. We examine their electron densities, Doppler velocities, and non-thermal velocities as a function of distance from the limb using the spectral lines formed at different temperatures (log T = 5.4 - 6.4). The electron densities of the cool loop and the dark lane are derived from the density sensitive line pairs of Mg VII, Fe XII, and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Mg VII (log T = 5.8) and the scale height temperature of the dark lane is close to a peak formation temperature of the Fe XII and Fe XIII (log T = 6.1 - 6.2). It is interesting to note that the structures of the cool loop and the dark lane are most visible in these temperature lines. While the non-thermal velocity in the cool loop slightly decreases (less than 7 km {s-1}) along the loop, that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the fast solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  3. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman spectrometric study

    USGS Publications Warehouse

    Spotl, C.; Houseknecht, D.W.; Jaques, R.C.

    1998-01-01

    Dispersed kerogen of the Woodford-Chattanooga and Atoka Formations from the subsurface of the Arkoma Basin show a wide range of thermal maturities (0.38 to 6.1% R(o)) indicating thermal conditions ranging from diagenesis to incipient rock metamorphism. Raman spectral analysis reveals systematic changes of both the first- and second-order spectrum with increasing thermal maturity. These changes include a pronounced increase in the D/O peak height ratio accompanied by a narrowing of the D peak, a gradual decrease in the D/O peak width ratio, and a shift of both peaks toward higher wave numbers. Second-order Raman peaks, though less intensive, also show systematic peak shifting as a function of R(o). These empirical results underscore the high potential of Raman spectrometry as a fast and reliable geothermometer of mature to supermature hydrocarbon source rocks, and as an indicator of thermal maturity levels within the anchizone.Dispersed kerogen of the Woodford-Chattanooga and Atoka Formations from the subsurface of the Arkoma Basin show a wide range of thermal maturities (0.38 to 6.1% Ro) indicating thermal conditions ranging from diagenesis to incipient rock metamorphism. Raman spectral analysis reveals systematic changes of both the first- and second-order spectrum with increasing thermal maturity. These changes include a pronounced increase in the D/O peak height ratio accompanied by a narrowing of the D peak, a gradual decrease in the D/O peak width ratio, and a shift of both peaks toward higher wave numbers. Second-order Raman peaks, though less intensive, also show systematic peak shifting as a function of Ro. These empirical results underscore the high potential of Raman spectrometry as a fast and reliable geothermometer of mature to supermature hydrocarbon source rocks, and as an indicator of thermal maturity levels within the anchizone.

  4. Raman spectroscopic characterization of gas mixtures. II. Quantitative composition and pressure determination of the CO2-CH4 system

    USGS Publications Warehouse

    Seitz, J.C.; Pasteris, J.D.; Chou, I.-Ming

    1996-01-01

    Raman spectral parameters were determined for the v1 band of CH4 and the v1 and 2v2 bands (Fermi diad) of CO2 in pure CO2 and CO2-CH4 mixtures at pressures up to 700 bars and room temperature. Peak position, area, height, and width were investigated as functions of pressure and composition. The peak positions of the CH4 and CO2 bands shift to lower relative wavenumbers as fluid pressure is increased. The peak position of the lower-wavenumber member of the Fermi diad for CO2 is sensitive to fluid composition, whereas the peak positions of the CH4 band and the upper Fermi diad member for CO2 are relatively insensitive in the CO2-CH4 system. The magnitude of the shifts in each of the three peak positions (as a function of pressure) is sufficient to be useful as a monitor of fluid pressure. The relative molar proportions in a CO2-CH4 mixture may be determined from the peak areas: the ratio of the peak areas of the CH4 band and the CO2 upper Fermi diad member is very sensitive to composition, whereas above about 100 bars, it is insensitive to pressure. Likewise, the peak height ratio is very sensitive to composition but also to fluid pressure. The individual peak widths of CO2 and CH4, as well as the ratios of the widths of the CH4 peak to the CO2 peaks are a sensitive function of pressure and, to a lesser extent, composition. Thus, upon determination of fluid composition, the peak width ratios may be used as a monitor of fluid pressure. The application of these spectral parameters to a suite of natural CO2-CH4 inclusions has yielded internally-consistent, quantitative determinations of the fluid composition and density.

  5. Longitudinal structure of stationary planetary waves in the middle atmosphere - extraordinary years

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan; Krizan, Peter; Kozubek, Michal

    2018-01-01

    One important but little studied factor in the middle atmosphere meridional circulation is its longitudinal structure. Kozubek et al. (2015) disclosed the existence of the two-cell longitudinal structure in meridional wind at 10 hPa at higher latitudes in January. This two-cell structure is a consequence of the stratospheric stationary wave SPW1 in geopotential heights. Therefore here the longitudinal structure in geopotential heights and meridional wind is analysed based on MERRA data over 1979-2013 and limited NOGAPS-ALPHA data in order to find its persistence and altitudinal dependence with focus on extraordinary years. The SPW1 in geopotential heights and related two-cell structure in meridional wind covers the middle stratosphere (lower boundary ˜ 50 hPa), upper stratosphere and most of the mesosphere (almost up to about 0.01 hPa). The two-cell longitudinal structure in meridional wind is a relatively persistent feature; only 9 out of 35 winters (Januaries) display more complex structure. Morphologically the deviation of these extraordinary Januaries consists in upward propagation of the second (Euro-Atlantic) peak (i.e. SPW2 structure) to higher altitudes than usually, mostly up to the mesosphere. All these Januaries occurred under the positive phase of PNA (Pacific North American) index but there are also other Januaries under its positive phase, which behave in an ordinary way. The decisive role in the existence of extraordinary years (Januaries) appears to be played by the SPW filtering by the zonal wind pattern. In all ordinary years the mean zonal wind pattern in January allows the upward propagation of SPW1 (Aleutian peak in geopotential heights) up to the mesosphere but it does not allow the upward propagation of the Euro-Atlantic SPW2 peak to and above the 10 hPa level. On the other hand, the mean zonal wind filtering pattern in extraordinary Januaries is consistent with the observed pattern of geopotential heights at higher altitudes.

  6. Strong anisotropic optical conductivity in two-dimensional puckered structures: The role of the Rashba effect

    NASA Astrophysics Data System (ADS)

    Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.; Peeters, F. M.

    2017-08-01

    We calculate the optical conductivity of an anisotropic two-dimensional system with Rashba spin-flip excitation within the Kubo formalism. We show that the anisotropic Rashba effect caused by an external field significantly changes the magnitude of the spin splitting. Furthermore, we obtain an analytical expression for the longitudinal optical conductivity associated with interband transitions as a function of the frequency for arbitrary polarization angle. We find that the diagonal components of the optical conductivity tensor are direction dependent and the optical absorption spectrum exhibits a strongly anisotropic absorption window. The height and width of this absorption window are very sensitive to the anisotropy of the system. While the height of absorption peak increases with increasing effective mass anisotropy ratio, the peak intensity is larger when the light polarization is along the armchair direction. Moreover, the absorption peak width becomes broader as the density-of-states mass or Rashba interaction is enhanced. These features in the optical absorption spectrum can be used to determine parameters relevant for spintronics.

  7. Characteristics of haze and the atmospheric boundary layer height during the periods with different category of haze over Suzhou observed by Micro-Pulse Lidar

    NASA Astrophysics Data System (ADS)

    Huijuan, L.

    2015-12-01

    Based on the observed hourly meterological data, atmospheric composition data, and the Micro-Pulse Lidar (MPL) detecting data over Suzhou during 2010 to 2014, this study concentrates on revealing the characteristics of haze weather and the atmospheric boundary layer height during the periods with different category of haze over Suzhou. The main results are shown as follows: The haze frequency over Suzhou is 30.9% with the frequency of 18% for the slight haze, 7.8% for the light haze, 3.1% for the moderate haze and 2.0% for the heavy haze. The haze frequency shows an obvious diurnal variation with a peak (valley) value at the local solar time around 08:00~09:00 am (14:00~16:00pm).The haze happens much more frequent in nighttime than in daytime. The atmospheric boundary layer height (ABLH) associated with haze also shows a clear diurnal variation. The mean ABLH over Suzhou during the period of haze is more (less) than 1000m (500m) in daytime (nighttime). Meanwhile, the ABLH during the period of haze is higher in summer than in winter. In addition, the mean ABLH during the period without (with) haze is around 700m (500m) in winter. The diurnal variation of the ABLH during the period of moderate to heavy haze in winter ranges from 350m to 500m, which is less than the winter mean ABLH by 50~150m. KEY WORDS: Micro-Pulse Lidar; haze frequency; moderate and heavy haze;atmospheric boundary layer height

  8. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows.

    PubMed

    Sun, Baoli; Khan, Nazir Ahmad; Yu, Peiqiang

    2018-05-05

    The first aim of this study was to investigate the nutritional value of crude protein (CP) in CDC [Crop Development Centre (CDC), University of Saskatchewan] chickpea varieties (Frontier kabuli and Corinne desi) in comparison with a CDC barley variety in terms of: 1) CP chemical profile and subfractions; (2) in situ rumen degradation kinetics and intestinal digestibility of CP; 2) metabolizable protein (MP) supply to dairy cows; and (3) protein molecular structure characteristics using advanced molecular spectroscopy. The second aim was to quantify the relationship between protein molecular spectral characteristics and CP subfractions, in situ rumen CP degradation characteristics, intestinal digestibility of CP, and MP supply to dairy cows. Samples (n=4) of each variety, from two consecutive years were analyzed. Chickpeas had higher (P<0.01) CP content (21.71-22.11 vs 12.96% DM), with higher (P<0.05) soluble CP subfraction (59.07-70.27 vs 26.18% CP), and in situ soluble (23.44-25.85 vs 1.30% CP) and rumen degradable (RDP; 72.23-72.57 vs 58.48% CP) fractions than barley. The potentially slowly rumen degradable (D; 74.14-76.56 vs 93.31% CP) and undegradable (RUP; 27.43-27.66 vs 41.52% CP) fractions were lower (P<0.01) in the chickpeas than barley. The effective degradability ratio of N to organic matter (OM) (36.07-38.44gN/kg OM) of the chickpeas was higher than the optimal for achieving optimum microbial CP (MCP) synthesis. The truly digested MCP (64.94-66.43 vs. 41.43g/kg DM); MP (81.10-83.67 vs 61.0g/kg DM) feed milk value (1.64-1.70 vs 1.24) was higher in the chickpeas than barley grain. The chickpeas had higher (P<0.05) amide I and II peaks area and height, and α-helix and β-sheet peaks height than barley. Multivariate analysis showed that protein molecular spectral data of chickpeas can be distinguished from the barley. The two chickpeas did not differ in CP content, and any of the measured in situ degradation and molecular spectral characteristics of protein. The content of RUP was positively (r=0.94, P<0.01) and that of RDP was negatively (r=-0.94, P<0.01) correlated with amide I/II area ratio. The regression analysis showed that the content of CP (R2=0.91) D-fraction (R 2 =0.82), RDP (R 2 =0.77), RUP (R 2 =0.77), TDP (R 2 =0.98), MP (R 2 =0.80), and FMV (R 2 =0.80) can be predicted from amide II peak height. Despite extensive ruminal degradation, chickpea is a good source of MP for dairy cows, and molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their digestibility and nutritive value. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  9. Physical and physiological demands in women pole dance: a single case study.

    PubMed

    Ruscello, Bruno; Iannelli, Sara; Partipilo, Filippo; Esposito, Mario; Pantanella, Laura; Dring, Mary B; D'Ottavio, Stefano

    2017-04-01

    to investigate the physical and physiological demands of a pole dancer's performance studied during a simulated competition, lasting 3 min 30 sec. one single woman pole dancer, (age: 22 years; height: 1.56m; body weight: 52kg; BMI: 21.4kg·m-2; estimated HRmax:192.6 bpm) participated in the study. Physical data pertaining to accelerations and rotational values were collected by the means of a tri-axial accelerometer device integrating three gyroscopes. A complete video footage was recorded using four video cameras, using different sampling rates. Blood Pressure, Heart Rates, Breathing Rates, Blood Lactate concentrations were recorded during the performance. Accelerations (positive and negative), along the vertical axis reached 2G and rotational movements around the pole, reached 400°/s. Blood Pressure values ranged from 120/75 before and to 145/58 mmHg at the end of performance, respectively. Heart Rates reached a peak value of 96% of the Maximal Estimated Heart Rate (HRmax) and a mean %HRmax of 92.85 ± 3.15% during the simulated competition. Breathing Rate reached a peak value of 37 bpm and a mean value during competition of 31.87±3.42 bpm. Blood Lactate concentration ranged from 10.2 to 10.7 mmol/L measured at 1 min and 5 min after the completion of the competition, respectively. The results of this case study confirm that the Pole Dance is a performing art requiring heavy physiological and physical demands on the performers. Specific training routines should be designed in order to cope efficiently with this physical activity, taking into account the performance model we provided with this study.

  10. Vertically Oriented Graphene Electrochemical Double Layer Capacitor with Very Fast Dynamic Response

    DTIC Science & Technology

    2013-01-01

    cauliflower type of morphology (see Figure A-2c). Figure A-3. (a) The intensity of D to G peak ratio in Raman spectra and the thickness (height) of...in a random, cauliflower type of morphology (see Figure A-2c). Figure A-2. (a) The intensity of D to G peak ratio in Raman spectra and the

  11. Optimized in vivo detection of dopamine release using 18F-fallypride PET.

    PubMed

    Ceccarini, Jenny; Vrieze, Elske; Koole, Michel; Muylle, Tom; Bormans, Guy; Claes, Stephan; Van Laere, Koen

    2012-10-01

    The high-affinity D(2/3) PET radioligand (18)F-fallypride offers the possibility of measuring both striatal and extrastriatal dopamine release during activation paradigms. When a single (18)F-fallypride scanning protocol is used, task timing is critical to the ability to explore both striatal and extrastriatal dopamine release simultaneously. We evaluated the sensitivity and optimal timing of task administration for a single (18)F-fallypride PET protocol and the linearized simplified reference region kinetic model in detecting both striatal and extrastriatal reward-induced dopamine release, using human and simulation studies. Ten healthy volunteers underwent a single-bolus (18)F-fallypride PET protocol. A reward responsiveness learning task was initiated at 100 min after injection. PET data were analyzed using the linearized simplified reference region model, which accounts for time-dependent changes in (18)F-fallypride displacement. Voxel-based statistical maps, reflecting task-induced D(2/3) ligand displacement, and volume-of-interest-based analysis were performed to localize areas with increased ligand displacement after task initiation, thought to be proportional to changes in endogenous dopamine release (γ parameter). Simulated time-activity curves for baseline and hypothetical dopamine release functions (different peak heights of dopamine and task timings) were generated using the enhanced receptor-binding kinetic model to investigate γ as a function of these parameters. The reward task induced increased ligand displacement in extrastriatal regions of the reward circuit, including the medial orbitofrontal cortex, ventromedial prefrontal cortex, and dorsal anterior cingulate cortex. For task timing of 100 min, ligand displacement was found for the striatum only when peak height of dopamine was greater than 240 nM, whereas for frontal regions, γ was always positive for all task timings and peak heights of dopamine. Simulation results for a peak height of dopamine of 200 nM showed that an effect of striatal ligand displacement could be detected only when task timing was greater than 120 min. The prefrontal and anterior cingulate cortices are involved in reward responsiveness that can be measured using (18)F-fallypride PET in a single scanning session. To measure both striatal and extrastriatal dopamine release, the height of dopamine released and task timing need to be considered in designing activation studies depending on regional D(2/3) density.

  12. Shock-absorbing effect of shoe insert materials commonly used in management of lower extremity disorders.

    PubMed

    Shiba, N; Kitaoka, H B; Cahalan, T D; Chao, E Y

    1995-01-01

    The efficacy of 3 shock-absorbing materials was compared by determining impact characteristics with a drop test method and also by testing the effect of each material when used as a shoe insert in 16 asymptomatic subjects. Peak vertical ground reaction force (F1, F2, F3) and temporal force factors (T1, T2, T3) were obtained with a force plate at a high-frequency sampling rate. Impact force, impact time, impact slope, and impact energy were determined. A standard weight was dropped from 3 heights on each material covering the force plate while reduction of peak force was compared. Impact force was attenuated most effectively by Insert 3 (polymeric foam rubber) and averaged 11% less than that in shoes without inserts. Impact time was increased for all 3 inserts. Impact slope and impact energy were reduced significantly in Insert 3. There was a significant difference in peak vertical force F1 for all 3 inserts, in vertical force F2 for Insert 2 (viscoelastic polymeric material), and in vertical force F3 for Insert 2. Drop-test studies showed that at all ball heights, the highest mean peak force was observed consistently in Insert 2.

  13. Water ice and sub-micron ice particles on Tethys and Mimas

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side.References[1] Clark, R., et al., 2013. Observed ices in the solar system. In: Gudipati, M. S., Castillo-Rogez, J. (Eds.), The Science of Solar System Ices. Vol. 356. Astrophysics and Space Science Library, Springer Science+Business Media New York, p. 3.

  14. The use of human hair as biodosimeter.

    PubMed

    Tepe Çam, S; Polat, M; Seyhan, N

    2014-12-01

    The potential use of human hair samples as biologic dosimeter was investigated by electron spin resonance (ESR) spectroscopy. The hair samples were obtained from female volunteers and classified according to the color, age and whether they are natural or dyed. Natural black, brown, red, blonde and dyed black hair samples were irradiated at low doses (5-50Gy) and high doses (75-750Gy) by gamma source giving the dose rate of 0.25Gy/s in The Sarayköy Establishment of Turkish Atomic Energy Authority. While the peak heights and g-values (2.0021-2.0023) determined from recorded spectra of hair were color dependent, the peak-to-peak line widths were varied according to natural or dyed hair (ΔHpp: 0.522-0.744mT). In all samples, the linear dose-response curves at low doses saturated after ~300Gy. In black hair samples taken from different individuals, differences in the structure of the spectrum and signal intensities were not observed. The EPR signal intensities of samples stored at room temperature for 22 days fell to their half-values in 44h in black hair, 41h in blonde and brown hairs, 35h in dyed black hair and in 17h in red hair. The activation energies of samples annealed at high temperatures for different periods of time were correlated well with those obtained in the literature. In conclusion, hair samples can be used as a biological dosimeter considering the limitations showed in this study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Head circumference and body growth in autism spectrum disorders.

    PubMed

    Fukumoto, Aya; Hashimoto, Toshiaki; Mori, Kenji; Tsuda, Yoshimi; Arisawa, Kokichi; Kagami, Shoji

    2011-08-01

    Research has shown that there is a relationship between increased head circumference and autism spectrum disorders (ASD). This study examined this relationship during the first year of life in subjects with ASD. We compared 280 children with ASD and 609 controls. In the ASD-male group, increases were observed in head circumference from 3 to 12months, in height from 3 to 9months, and in body weight from 3 to 6 and 12months. On the other hand, in the ASD-female group increases in head circumference, in body height, and in body weight were only observed at 3months. After adjusting for height, weight, and age, only the head circumference in the male ASD group was significantly increased from 6 to 9months after birth, reaching a peak at 6months after birth. No difference was found in the female ASD group. Although body overgrowth in the ASD group also started early after birth, the increase in head circumference was more marked than that in body growth. The values of physical measurements in the first year may be useful, minimally invasive parameters for the early detection of autism in combination with observing the timing of certain behaviors such as smiling, eye contact, crawling, pointing, and joint attention. Copyright © 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. The effects of a supportive knee brace on leg performance in healthy subjects.

    PubMed

    Veldhuizen, J W; Koene, F M; Oostvogel, H J; von Thiel, T P; Verstappen, F T

    1991-12-01

    Eight healthy volunteers were fitted with a supportive knee brace (Push Brace 'Heavy') to one knee for a duration of four weeks wherein they were tested before, during and after the application to establish the effect of bracing on performance. The tests consisted of isokinetic strength measurement of knee flexion and extension, 60 meter dash, vertical jump height and a progressive horizontal treadmill test until exhaustion (Vmax) with determination of oxygen uptake, heart rate and plasma lactate concentration. Wearing the brace for one day, the performance indicators showed a decline compared with the test before application (base values). Sprint time was 4% longer (p less than 0.01) and Vmax 6% slower (p less than 0.01). Peak torque of knee flexion at 60 and 240 deg.sec-1 was 6% (p less than 0.05) respectively 9% (p less than 0.05) less. Peak extension torque at 60 deg.sec-1 was 9% less (p less than 0.05). While wearing the brace for four weeks, the test performances were practically identical to their base values. After removal of the brace, all test parameters were statistically similar to the base values. Heart rate at submaximal exercise levels was even lower (p less than 0.05). In conclusion, performance in sports with test-like exercise patterns is not affected by the brace tested. Bracing does not "weaken the knee" as it is widely believed in sports practice.

  17. Height velocity and IGF-I assessment in the diagnosis of childhood onset GH insufficiency: do we still need a second GH stimulation test?

    PubMed

    Cianfarani, Stefano; Tondinelli, Tiziana; Spadoni, Gian Luigi; Scirè, Giuseppe; Boemi, Sergio; Boscherini, Brunetto

    2002-08-01

    The diagnosis of GH insufficiency (GHI) in childhood is not straightforward. Our aim was to test the sensitivity and specificity of height velocity (HV), IGF-I, IGFBP-3 and GH stimulation tests alone or in combination in the diagnosis of GHI. A retrospective review of patients with GHI and idiopathic short stature (ISS) diagnosed in our centre and followed up to the completion of linear growth. Thirty-three GHI children and 56 children with ISS were evaluated. GHI diagnosis was based on fulfilment of anthropometric, endocrine and neuroradiological criteria: stature < or = -2 z-score, delayed bone age (at least 1 year), GH peak response to at least two different provocative tests < 10 micro g/l (20 mU/l), brain MRI positive for hypothalamus-pituitary abnormalities, catch-up growth during the first year of GH replacement therapy > or = 75th centile, peak GH response to a third provocative test after growth completion < 10 micro g/l (20 mU/l). Children with anthropometry resembling that of GHI but with peak GH responses > 10 micro g/l (20 mU/l) were diagnosed as ISS. All subjects underwent standard anthropometry. GH secretory status was assessed by clonidine, arginine and GHRH plus arginine stimulation tests. IGF-I and IGFBP-3 circulating levels were measured by immunoradiometric assay (IRMA). The following cut-off values were chosen to discriminate between GHI and nonGHI short children: HV < 25th centile over the 6-12 months prior to the initiation of GH therapy, peak GH responses < 10 or < 7 micro g/l (< 20 or < 14 mU/l) and IGF-I and IGFBP-3-values < -1.9 z-score. Sensitivity (true positive ratio) and specificity (true negative ratio) were evaluated. Taking 10 micro g/l (20 mU/l) as the cut-off value, sensitivity was 100% and specificity 57% for GH provocative tests, whereas taking 7 as the cut-off value, sensitivity was 66% and specificity rose to 78%. Sensitivity was 73% for IGF-I and 30% for IGFBP-3 measurement, whilst specificity was 95% for IGF-I and 98% for IGFBP-3 evaluation. HV assessment revealed a sensitivity of 82% and a specificity of 43%. When HV and IGF-I evaluations were used in combination, sensitivity reached 95% and specificity 96%. When both HV and IGF-I are normal (26% of our subjects) GHI may be ruled out, whereas when both the indices are subnormal (23%) GHI is so highly likely that the child may undergo only one GH provocative test and brain MRI and, thereafter, may begin GH therapy without any further test. In case of discrepancy, when IGF-I is normal and HV < 25th centile (44% of children), due to the relatively low sensitivity of IGF-I assessment and low specificity of HV, the patient should undergo GH tests and brain MRI. Finally, in the rare case of HV > 25th centile and subnormal IGF-I-values (7%), due to the high specificity of IGF-I measurement, the child should undergo one provocative test and brain MRI for the high suspicion of GHI. Our results suggest that a simple assessment of HV and basal IGF-I may exclude or, in association with only one stimulation test, confirm the diagnosis of GH insufficiency in more than half of patients with short stature.

  18. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study.

    PubMed

    Hussain, Sara J; Frey-Law, Laura

    2016-01-01

    The ankle is an important component of the human kinetic chain, and deficits in ankle strength can negatively impact functional tasks such as balance and gait. While peak torque is influenced by joint angle and movement velocity, ankle strength is typically reported for a single angle or movement speed. To better identify deficits and track recovery of ankle strength after injury or surgical intervention, ankle strength across a range of movement velocities and joint angles in healthy adults is needed. Thus, the primary goals of this study were to generate a database of strength values and 3-dimensional strength surface models for plantarflexion (PF) and dorsiflexion (DF) ankle strength in healthy men and women. Secondary goals were to develop a means to estimate ankle strength percentiles as well as examine predictors of maximal ankle strength in healthy adults. Using an isokinetic dynamometer, we tested PF and DF peak torques at five joint angles (-10° [DF], 0° [neutral], 10° [PF], 20° [PF] and 30° [PF]) and six velocities (0°/s, 30°/s, 60°/s, 90°/s, 120°/s and 180°/s) in 53 healthy adults. These data were used to generate 3D plots, or "strength surfaces", for males and females for each direction; surfaces were fit using a logistic equation. We also tested predictors of ankle strength, including height, weight, sex, and self-reported physical activity levels. Torque-velocity and torque-angle relationships at the ankle interact, indicating that these relationships are interdependent and best modeled using 3D surfaces. Sex was the strongest predictor of ankle strength over height, weight, and self-reported physical activity levels. 79 to 97 % of the variance in mean peak torque was explained by joint angle and movement velocity using logistic equations, for men and women and PF and DF directions separately. The 3D strength data and surface models provide a more comprehensive dataset of ankle strength in healthy adults than previously reported. These models may allow researchers and clinicians to quantify ankle strength deficits and track recovery in patient populations, using angle- and velocity-specific ankle strength values and/or strength percentiles from healthy adults.

  19. MTR and In-vivo 1H-MRS studies on mouse brain with parkinson's disease

    NASA Astrophysics Data System (ADS)

    Yoon, Moon-Hyun; Kim, Hyeon-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2012-12-01

    The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson's disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p < 0.05). The midbrain MTR values for volume were lower in the PD group than the control group(p < 0.05). The complex peak (Glx: glutamine+glutamate+ GABA)/creatine (Cr) ratio of the right ST in the PD group was significantly increased as compared to that of the control group. The present study revealed that the peak height of the MTR histogram was significantly decreased in the ST and substantia nigra, and a significant increase in the Gl x /Cr ratio was found in the ST of the PD group, as compared with that of the control group. These findings could reflect the early phase of neuronal dysfunction of neurotransmitters.

  20. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    NASA Astrophysics Data System (ADS)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P < 0.05) in oat than in barley. The starch content was greater (P < 0.05) in barley than in oat. The CDC Meredith showed greater total rumen degradable carbohydrate (RDC), intestinal digestible fraction carbohydrate (FC) and lower total rumen undegradable carbohydrate (RUC). However, the estimated milk production did not differ for CDC Nasser oat and CDC Meredith barley. Lignin peak area and peak height did not differ (P > 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  1. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    USGS Publications Warehouse

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics may be appropriate for different problems. ?? 2008 Elsevier Ltd.

  2. Smith machine counterbalance system affects measures of maximal bench press throw performance.

    PubMed

    Vingren, Jakob L; Buddhadev, Harsh H; Hill, David W

    2011-07-01

    Equipment with counterbalance weight systems is commonly used for the assessment of performance in explosive resistance exercise movements, but it is not known if such systems affect performance measures. The purpose of this study was to determine the effect of using a counterbalance weight system on measures of smith machine bench press throw performance. Ten men and 14 women (mean ± SD: age, 25 ± 4 years; height, 173 ± 10 cm; weight, 77.7 ± 18.3 kg) completed maximal smith machine bench press throws under 4 different conditions (2 × 2; counterbalance × load): with or without a counterbalance weight system and using 'light' or 'moderate' net barbell loads. Performance variables (peak force, peak velocity, and peak power) were measured using a linear accelerometer attached to the barbell. The counterbalance weight system resulted in significant (p < 0.001) reductions in measures of peak force (mean difference ± standard error: light: -112 ± 20 N; moderate: -140 ± 23 N), peak velocity (light: -0.49 ± 0.10 m·s; moderate: -0.33 ± 0.07 m·s), and peak power (light: -220 ± 43 W; moderate: -143 ± 28 W) compared with no counterbalance system for both load conditions. Load condition did not affect absolute or percentage reductions from the counterbalance weight system for any variable. In conclusion, the use of a counterbalance weight system reduces accelerometer-based performance measures for the bench press throw exercise at light and moderate loads. This reduction in measures is likely because of an increase in the external resistance during the movement, which results in a discrepancy between the manually input and the actual value for external load. A counterbalance weight system should not be used when measuring performance in explosive resistance exercises with an accelerometer.

  3. Biomechanics of Thoracolumbar Burst and Chance-Type Fractures during Fall from Height

    PubMed Central

    Ivancic, Paul C.

    2014-01-01

    Study Design In vitro biomechanical study. Objective To investigate the biomechanics of thoracolumbar burst and Chance-type fractures during fall from height. Methods Our model consisted of a three-vertebra human thoracolumbar specimen (n = 4) stabilized with muscle force replication and mounted within an impact dummy. Each specimen was subjected to a single fall from an average height of 2.1 m with average velocity at impact of 6.4 m/s. Biomechanical responses were determined using impact load data combined with high-speed movie analyses. Injuries to the middle vertebra of each spinal segment were evaluated using imaging and dissection. Results Average peak compressive forces occurred within 10 milliseconds of impact and reached 40.3 kN at the ground, 7.1 kN at the lower vertebra, and 3.6 kN at the upper vertebra. Subsequently, average peak flexion (55.0 degrees) and tensile forces (0.7 kN upper vertebra, 0.3 kN lower vertebra) occurred between 43.0 and 60.0 milliseconds. The middle vertebra of all specimens sustained pedicle and endplate fractures with comminution, bursting, and reduced height of its vertebral body. Chance-type fractures were observed consisting of a horizontal split fracture through the laminae and pedicles extending anteriorly through the vertebral body. Conclusions We hypothesize that the compression fractures of the pedicles and vertebral body together with burst fracture occurred at the time of peak spinal compression, 10 milliseconds. Subsequently, the onset of Chance-type fracture occurred at 20 milliseconds through the already fractured and weakened pedicles and vertebral body due to flexion-distraction and a forward shifting spinal axis of rotation. PMID:25083357

  4. Interaction of Highly Underexpanded Jets with Simulated Lunar Surfaces

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1961-01-01

    Pressure distributions and erosion patterns on simulated lunar surfaces (hard and soft) and interference effects between the surface and two representative lunar vehicles (cylindrical and spherical) were obtained with cold-air jets at various descent heights and nozzle total-pressure ratios up to 288,000. Surface pressure distributions were dependent on both nozzle area ratio and, nozzle contour. Peak pressures obtained with a sonic nozzle agreed closely with those predicted theoretically for a near-sonic jet expanding into a vacuum. Short bell-shaped nozzles gave annular pressure distributions; the low center pressure resulted from the coalescence of shocks that originated within the nozzle. The high surface pressures were contained within a circle whose diameter was about 16 throat diameters, regardless of nozzle area ratio or contour. The peak pressure increased rapidly as the vehicle approached the surface; for example, at a descent height of 40 throat diameters the peak pressure was 0.4 percent of the chamber pressure, but increased to 6 percent at 13 throat diameters. The exhaust jet eroded a circular concave hole in white sand at descent heights from about 200 to 600 throat diameters. The hole diameter was about 225 throat diameters, while the depth was approximately 60 throat diameters. The sand particles, which formed a conical sheet at a semivertex angle of 50 deg, appeared to follow a ballistic trajectory and at no time struck the vehicle. An increase in pressure was measured on the base of the cylindrical lunar vehicle when it approached to within 14 throat diameters of the hard, flat surface. No interference effects were noted between the spherical model and the surface to descent heights as low as 8 throat diameters.

  5. The acute effect of a plyometric stimulus on jump performance in professional rugby players.

    PubMed

    Tobin, Daniel P; Delahunt, Eamonn

    2014-02-01

    Post-activation potentiation (PAP) is the elevation of motor performance to a higher level in response to a conditioning stimulus. Extensive research exists examining the PAP effect after a heavy resistance exercise. However, there is limited research examining the PAP effect after a plyometric stimulus. This study was designed to examine whether a plyometric stimulus could produce a PAP effect comparable to that typically reported with a heavy resistance protocol. Importantly, it was hypothesized that the PAP effect would exist without the same levels of acute fatigue resulting from a heavy stimulus, thus allowing improvement in performance within a short rest interval range. Twenty professional rugby players were recruited for the study. Subjects performed 2 countermovement jumps (CMJs) at baseline and at 1, 3, and 5 minutes after a plyometric stimulus consisting of 40 jumps. Two separate 1-way repeated-measures analyses of variance were conducted to compare the dependent variables CMJ height and peak force at the 4 time points. Results of the Bonferroni adjusted pairwise comparisons indicated that jump height and peak force before plyometric exercises were significantly lower than all other time points (p < 0.01). The main finding of this study indicates that a series of plyometric exercises causes a significant acute enhancement in CMJ height (p < 0.01) and peak force (p < 0.01) throughout the rest interval range of 1-5 minutes. The plyometric series induced an improvement in CMJ height comparable to that reported elsewhere after a heavy lifting stimulus but without the need for a prolonged rest interval. Performing repeated series of plyometric jumps appears to be an efficient method of taking advantage of the PAP phenomenon, thus possibly eliminating the need for a complex training protocol.

  6. A numerical simulation approach to studying anterior cruciate ligament strains and internal forces among young recreational women performing valgus inducing stop-jump activities.

    PubMed

    Kar, Julia; Quesada, Peter M

    2012-08-01

    Anterior cruciate ligament (ACL) injuries are commonly incurred by recreational and professional women athletes during non-contact jumping maneuvers in sports like basketball and volleyball, where incidences of ACL injury is more frequent to females compared to males. What remains a numerical challenge is in vivo calculation of ACL strain and internal force. This study investigated effects of increasing stop-jump height on neuromuscular and bio-mechanical properties of knee and ACL, when performed by young female recreational athletes. The underlying hypothesis is increasing stop-jump (platform) height increases knee valgus angles and external moments which also increases ACL strain and internal force. Using numerical analysis tools comprised of Inverse Kinematics, Computed Muscle Control and Forward Dynamics, a novel approach is presented for computing ACL strain and internal force based on (1) knee joint kinematics and (2) optimization of muscle activation, with ACL insertion into musculoskeletal model. Results showed increases in knee valgus external moments and angles with increasing stop-jump height. Increase in stop-jump height from 30 to 50 cm lead to increase in average peak valgus external moment from 40.5 ± 3.2 to 43.2 ± 3.7 Nm which was co-incidental with increase in average peak ACL strain, from 9.3 ± 3.1 to 13.7 ± 1.1%, and average peak ACL internal force, from 1056.1 ± 71.4 to 1165.4 ± 123.8 N for the right side with comparable increases in the left. In effect this study demonstrates a technique for estimating dynamic changes to knee and ACL variables by conducting musculoskeletal simulation on motion analysis data, collected from actual stop-jump tasks performed by young recreational women athletes.

  7. Correlates of the peak height velocity in girls with idiopathic scoliosis.

    PubMed

    Sanders, James O; Browne, Richard H; Cooney, Timothy E; Finegold, David N; McConnell, Sharon J; Margraf, Susan A

    2006-09-15

    Prospective longitudinal. Determine correlates of the peak height velocity (PHV) in girls with idiopathic scoliosis. Only identifiable retrospectively, the PHV is the most useful known maturity marker in idiopathic scoliosis. Clinically useful correlates are needed to make PHV timing helpful. A total of 24 immature girls with idiopathic scoliosis were followed with serial heights, sexual staging, skeletal ages, spinal radiographs, insulin-like growth factor (IGF)-1, IGF binding protein-3, dehydroepiandrosterone sulfate, estradiol, bone-specific alkaline phosphatase, and osteocalcin levels. These markers were correlated to PHV timing. There were 14 girls who had identifiable growth peaks that averaged 10.5 +/- 1.8 cm/y at age 11.7 +/- 1 years. At the PHV, all girls were Risser 0 with open triradiate cartilages. On a skeletal age radiograph, digital uncapped phalangeal epiphyses were indicative of pre-PHV and fused epiphyses of post-PHV. Capped but unfused epiphyses were indeterminate. Tanner stage 1 for breast strongly indicates pre-PHV. Stage 3 for breast and pubic hair occurred at or after the PHV, and stage 4 always occurred after PHV. Higher IGF-1 and estradiol levels after PHV are potentially discriminatory. The PHV occurs during Risser 0 with open triradiate cartilages. If triradiate cartilages are open, then Tanner stages, IGF-1, estradiol levels, and the appearance of the epiphyses on a skeletal age radiograph are useful in determining status before or after PHV.

  8. An analysis of the errors associated with the determination of atmospheric temperature from atmospheric pressure and density data

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.

    1976-01-01

    A graph was developed for relating delta T/T, the relative uncertainty in atmospheric temperature T, to delta p/p, the relative uncertainty in the atmospheric pressure p, for situations, when T is derived from the slope of the pressure-height profile. A similar graph relates delta T/T to delta roh/rho, the relative uncertainty in the atmospheric density rho, for those cases when T is derived from the downward integration of the density-height profile. A comparison of these two graphs shows that for equal uncertainties in the respective basic parameters, p or rho, smaller uncertainties in the derived temperatures are associated with density-height rather than with pressure-height data. The value of delta T/T is seen to depend not only upon delta p or delta rho, and to a small extent upon the value of T or the related scale height H, but also upon the inverse of delta h, the height increment between successive observations of p or rho. In the case of pressure-height data, delta T/T is dominated by 1/delta h for all values of delta h; for density-height data, delta T/T is dominated by delta rho/rho for delta h smaller than about 5 km. In the case of T derived from density-height data, this inverse relationship between delta T/T and delta h applies only for large values of delta h, that is, for delta h 35 km. No limit exists in the fineness of usable height resolution of T which may be derived from densities, while a fine height resolution in pressure-height data leads to temperature with unacceptably large uncertainties.

  9. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures.

    PubMed

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH(3) asymmetric, CH(2) asymmetric, CH(3) symmetric and CH(2) symmetric groups, (ii) unsaturation (CC) group, and (iii) carbonyl ester (CO) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P<0.05) in nutrient profile and lipid related molecular spectral intensity (CH(2) asymmetric stretching peak height, CH(2) symmetric stretching peak height, ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Prominent metallic surface conduction and the singular magnetic response of topological Dirac fermion in three-dimensional topological insulator Bi1.5Sb0.5Te1.7Se1.3.

    PubMed

    Dutta, Prithwish; Pariari, Arnab; Mandal, Prabhat

    2017-07-07

    We report semiconductor to metal-like crossover in the temperature dependence of resistivity (ρ) due to the switching of charge transport from bulk to surface channel in three-dimensional topological insulator Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 . Unlike earlier studies, a much sharper drop in ρ(T) is observed below the crossover temperature due to the dominant surface conduction. Remarkably, the resistivity of the conducting surface channel follows a rarely observable T 2 dependence at low temperature, as predicted theoretically for a two-dimensional Fermi liquid system. The field dependence of magnetization shows a cusp-like paramagnetic peak in the susceptibility (χ) at zero field over the diamagnetic background. The peak is found to be robust against temperature and χ decays linearly with the field from its zero-field value. This unique behavior of the χ is associated with the spin-momentum locked topological surface state in Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 . The reconstruction of the surface state with time is clearly reflected through the reduction of the peak height with the age of the sample.

  11. Structural, morphological, optical and electrical properties of Schottky diodes based on CBD deposited ZnO:Cu nanorods

    NASA Astrophysics Data System (ADS)

    Mwankemwa, Benard S.; Legodi, Matshisa J.; Mlambo, Mbuso; Nel, Jackie M.; Diale, Mmantsae

    2017-07-01

    Undoped and copper doped zinc oxide (ZnO) nanorods have been synthesized by a simple chemical bath deposition (CBD) method at a temperature of 90 °C. Structural, morphological, optical and electrical properties of the synthesized ZnO nanorods were found to be dependent on the Cu doping percentage. X-ray diffraction (XRD) patterns revealed strong diffraction peaks of hexagonal wurtzite of ZnO, and no impurity phases from metallic zinc or copper. Scanning electron microscopy (SEM) images showed changes in diameter and shape of nanorods, where by those doped with 2 at.% and 3 at.% aggregated and became compact. Selected area electron diffraction (SAED) patterns indicates high quality, single crystalline wurtzite structure ZnO and intensities of bright spots varied with copper doping concentration. UV-visible absorption peaks of ZnO red shifted with increasing copper doping concentration. Raman studies demonstrated among others, strong and sharp E2 (low) and E2 (high) optical phonon peaks confirming crystal structure of ZnO. Current-voltage measurements based on the gold/ZnO nanorods/ITO showed good rectifying behavior of the Schottky diode. The predicted Schottky barrier height of 0.60 eV was obtained which is not far from the theoretical Schottky-Mott value of 0.80 eV.

  12. Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range.

    PubMed

    Xue, Peihong; Ye, Shunsheng; Su, Hongyang; Wang, Shuli; Nan, Jingjie; Chen, Xingchi; Ruan, Weidong; Zhang, Junhu; Cui, Zhanchen; Yang, Bai

    2017-05-25

    We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.

  13. Elastomer degradation sensor using a piezoelectric material

    DOEpatents

    Olness, Dolores U.; Hirschfeld, deceased, Tomas B.

    1990-01-01

    A method and apparatus for monitoring the degradation of elastomeric materials is provided. Piezoelectric oscillators are placed in contact with the elastomeric material so that a forced harmonic oscillator with damping is formed. The piezoelectric material is connected to an oscillator circuit,. A parameter such as the resonant frequency, amplitude or Q value of the oscillating system is related to the elasticity of the elastomeric material. Degradation of the elastomeric material causes changes in its elasticity which, in turn, causes the resonant frequency, amplitude or Q of the oscillator to change. These changes are monitored with a peak height monitor, frequency counter, Q-meter, spectrum analyzer, or other measurement circuit. Elasticity of elastomers can be monitored in situ, using miniaturized sensors.

  14. Stratosphere-Troposphere Coupling in the Northern Hemisphere analyzed with climate network measures

    NASA Astrophysics Data System (ADS)

    Kirsch, C.; Donner, R. V.

    2017-12-01

    The Stratosphere-Troposphere Coupling (STC) is a climate phenomenon providing additional predictive skills for extended-range weather forecasting. The variability of the winter stratospheric polar vortex can particularly influence the tropospheric circulation and, hence, mid-to-high latitude weather for a few weeks or months by strong or weak vortex signals propagating downward with time. This study investigates the STC with climate networks. For this purpose, we use the geopotential height field between 20°N and 90°N at 37 vertical levels from the ERA-Interim reanalysis data from 1979 until 2016. There are two main research questions: (i) Is it possible to define a new, more robust index of the variability of the polar vortex than the currently used NAM index by exploiting climate network properties? (ii) What additional information on STC is provided by climate networks? By calculating the transitivity of evolving climate networks at 10 hPa height, we obtain a new characteristic measure for tracing evolving patterns in stratospheric variability. A higher value than the baseline transitivity indicates an anomalous (strong or weak) polar vortex. Displayed for all vertical levels, the transitivity also exhibits the downward propagation of pressure anomalies into the troposphere. Beyond these findings, we observe additional peaks in the transitivity that does not coincide with weak and strong vortex events. These peaks could be used for identifying the change between winter and summer circulation, also called final warming. We will discuss how these results could potentially affect the predictability of tropospheric weather during boreal spring.

  15. Step-induced deconstruction and step-height evolution of the Au(110) surface

    NASA Astrophysics Data System (ADS)

    Romahn, U.; von Blanckenhagen, P.; Kroll, C.; Göpel, W.

    1993-05-01

    We use temperature-dependent high-resolution low-energy electron diffraction and spot-profile analysis low-energy electron diffraction to study the Au(110) surface at room temperature up to 786 K. The experimental data were analyzed within the framework of the kinematic theory. Oscillations were determined of the positions of half order and fundamental Bragg peaks as well as of the full width at half maximum of the specular peak as a function of perpendicular momentum transfer. Evidence of mono- atomic steps occurring in the [001] direction was found below and around the (2×1)-->(1×1) transition at Tc. Above Tc, the surface gets smoother in the [001] direction; at the roughening temperature, TR, the evolution of multiple-height steps starts in both symmetry directions.

  16. Generation of valley-polarized electron beam in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Park, Changsoo

    2015-12-01

    We propose a method to produce valley-polarized electron beams using a bilayer graphene npn junction. By analyzing the transmission properties of electrons through the junction with zigzag interface in the presence of trigonal warping, we observe that there exist a range of incident energies and barrier heights in which transmitted electrons are well polarized and collimated. From this observation and by performing numerical simulations, it is demonstrated that valley-dependent electronic currents with nearly perfect polarization can be generated. We also show that the peak-to-peak separation angle between the polarized currents is tunable either by incident energy or by barrier height each of which is controlled by using top and back gate voltages. The results can be used for constructing an electron beam splitter to produce valley-polarized currents.

  17. Cocaine effects on pulsatile secretion of anterior pituitary, gonadal, and adrenal hormones.

    PubMed

    Mendelson, J H; Mello, N K; Teoh, S K; Ellingboe, J; Cochin, J

    1989-12-01

    Pulse frequency analysis of LH, PRL, testosterone, and cortisol was carried out with the Cluster Analysis Program in eight male cocaine abusers and eight aged-matched normal men. Four of the eight cocaine abusers had hyperprolactinemia (range, 22.08-44.65 micrograms/L). Cocaine users as a group had significantly higher mean peak height (P less than 0.02) than control subjects. Cocaine users with hyperprolactinemia had higher mean peak height than control subjects or cocaine users with normal PRL levels (P less than 0.01). Cocaine users with hyperprolactinemia also had higher mean amplitude increments than control subjects (P less than 0.02). Cocaine users with hyperprolactinemia had a higher mean valley than controls (P less than 0.01) and cocaine users with normal PRL levels (P less than 0.03). However, there were no significant differences in PRL peak frequency, peak duration, or interpulse intervals between cocaine users with or without hyperprolactinemia and control subjects. There were minimal differences between cocaine users and control subjects in pulse frequency analysis of LH parameters; the small differences in mean LH levels and average interpulse interval were not in the abnormal range and were probably not biologically significant. No differences between cocaine users and controls were detected for pulse frequency analysis of testosterone or cortisol. Cocaine-induced hyperprolactinemia may contribute to disorders of sexual and reproductive function in men who abuse the drug, and recent reports that PRL modulates immune function suggest that cocaine-induced derangements of PRL secretion may also contribute to cocaine-related comorbidity in infectious disease. Since cocaine users with hyperprolactinemia had a higher mean valley as well as a higher peak pulse PRL height than control subjects, but did not have greater PRL pulse frequencies, we conclude that hyperprolactinemia in these men may be due to a cocaine-induced derangement of dopaminergic inhibition of basal PRL secretion.

  18. Lung function in North American Indian children: reference standards for spirometry, maximal expiratory flow volume curves, and peak expiratory flow.

    PubMed

    Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S

    1982-02-01

    Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.

  19. Distinguishing Playing Status Through a Functionally Relevant Performance Measure in Female Division I Collegiate Soccer Athletes.

    PubMed

    Magrini, Mitchel A; Colquhoun, Ryan J; Sellers, John H; Conchola, Eric C; Hester, Garrett M; Thiele, Ryan M; Pope, Zach K; Smith, Doug B

    2017-06-08

    Although soccer is predominately an endurance sport, high velocity movements may be an important indicator of athletic success. The purpose of this investigation was to establish whether squat jumps (SJ) can differentiate starters from non-starters with a female collegiate division I soccer team. Eighteen female division I soccer athletes were separated into two groups: 9 starters (age: 19.5 ± 1.0; mass = 64.8 ± 11.5 kg; height = 167.5 ± 7.7 cm; games started = 18.2 ± 4.7; minutes played = 1633.8 ± 478.2 min) and 9 non-starters (age: 19.4 ± 1.4 years; mass = 63.3 ± 4.2 kg; height = 164.7 ± 6.8 cm; games started 0.7 ± 1.3; minutes played 158.2 ± 269.3). Each athlete performed 3 maximal SJs at a starting knee angle of 110° without arm swing. Each participant's SJ height, mean power (MP), peak power (PP), mean velocity (MV), and peak velocity (PV) were measured during each attempt by a linear position transducer (LPT). No statistically significant differences (p ≥ 0.05) in MP and PP between the starters and non-starters were observed. However, starters performed significantly better than non-starters in SJ height (p = 0.002), MV (p = 0.025), and PV (p = 0.015). Additionally, SJ height was strongly correlated with MV (r = 0.628) and PV (r = 0.647). These findings suggest that SJ height, MV and PV, may be important variables for discriminating differences between starters and non-starters in division I female soccer athletes and a strong indicator of explosive performance.

  20. Electron density extrapolation above F2 peak by the linear Vary-Chap model supporting new Global Navigation Satellite Systems-LEO occultation missions

    NASA Astrophysics Data System (ADS)

    Hernández-Pajares, Manuel; Garcia-Fernández, Miquel; Rius, Antonio; Notarpietro, Riccardo; von Engeln, Axel; Olivares-Pulido, Germán.; Aragón-Àngel, Àngela; García-Rigo, Alberto

    2017-08-01

    The new radio-occultation (RO) instrument on board the future EUMETSAT Polar System-Second Generation (EPS-SG) satellites, flying at a height of 820 km, is primarily focusing on neutral atmospheric profiling. It will also provide an opportunity for RO ionospheric sounding, but only below impact heights of 500 km, in order to guarantee a full data gathering of the neutral part. This will leave a gap of 320 km, which impedes the application of the direct inversion techniques to retrieve the electron density profile. To overcome this challenge, we have looked for new ways (accurate and simple) of extrapolating the electron density (also applicable to other low-Earth orbiting, LEO, missions like CHAMP): a new Vary-Chap Extrapolation Technique (VCET). VCET is based on the scale height behavior, linearly dependent on the altitude above hmF2. This allows extrapolating the electron density profile for impact heights above its peak height (this is the case for EPS-SG), up to the satellite orbital height. VCET has been assessed with more than 3700 complete electron density profiles obtained in four representative scenarios of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in the United States and the Formosa Satellite Mission 3 (FORMOSAT-3) in Taiwan, in solar maximum and minimum conditions, and geomagnetically disturbed conditions, by applying an updated Improved Abel Transform Inversion technique to dual-frequency GPS measurements. It is shown that VCET performs much better than other classical Chapman models, with 60% of occultations showing relative extrapolation errors below 20%, in contrast with conventional Chapman model extrapolation approaches with 10% or less of the profiles with relative error below 20%.

  1. Monitoring and Analyses of Initial Stages of Graphene Growth in Plasma-Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Hayashi, Yasuaki; Yamada, Junya; Kawano, Masahiro; Sano, Kazuya

    2015-09-01

    RF magnetron plasma was used for the growth of graphene. Copper films deposited by sputtering on mirror-polished silicon were used for substrates. Slant view-ports are welded to the side wall of vacuum chamber. In-situ ellipsometry is able to be carried out for the monitoring of substrate surface. The growth of graphene was started by the introduction of C2H4 gas in addition to hydrogen. Substrate temperature was controlled at 680°C at the first stage. An RF power up to 100 W was applied. C2H4 and H2 gases were introduced with the flow rate of 20 and 10 sccm, respectively. The pressure in the vacuum chamber was maintained at 200 Pa. The result of Raman analysis showed that the ratio of height of D (1350 cm-1) peak to G (1580 cm-1) peak, as well as that of 2D (2700 cm-1) peak to G peak, increased with time. Time evolution of height and width of graphene or graphite tips showed that, during the first 5 min, the width abruptly increases, while the increase speed of the height is lower than that after 5 min. The result implies that graphene sheets horizontally grow on the surface of substrate first before perpendicularly aligned CNWs grow. In order to analyze the first stage of the graphene growth, in-situ and precise measurement is required. For this purpose, in-situ ellipsometry should play an important role. Therefore we carried out a preliminary experiment of in-situ ellipsometry monitoring. Evolutions of ellipsometric parameters, Ψ and Δ, were precisely measured before the growth of graphene of 1 nm in thickness.

  2. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    PubMed

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  3. A Comparison of Tropical Storm (TS) and Non-TS Gust Factors for Assessing Peak Wind Probabilities at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Crawford, Winifred C.

    2010-01-01

    Peak wind speed is an important forecast element to ensure the safety of personnel and flight hardware at Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) in East-Central Florida. The 45th Weather Squadron (45 WS), the organization that issues forecasts for the KSC/CCAFS area, finds that peak winds are more difficult to forecast than mean winds. This difficulty motivated the 45 WS to request two independent studies. The first (Merceret 2009) was the development of a reliable model for gust factors (GF) relating the peak to the mean wind speed in tropical storms (TS). The second (Lambert et al. 2008) was a climatological study of non-TS cool season (October-April) mean and peak wind speeds by the Applied Meteorology Unit (AMU; Bauman et al. 2004) without the use of GF. Both studies presented their statistics as functions of mean wind speed and height. Most of the few comparisons of TS and non-TS GF in the literature suggest that non-TS GF at a given height and mean wind speed are smaller than the corresponding TS GF. The investigation reported here converted the non-TS peak wind statistics calculated by the AMU to the equivalent GF statistics and compared them with the previous TS GF results. The advantage of this effort over all previously reported studies of its kind is that the TS and non-TS data were taken from the same towers in the same locations. This eliminates differing surface attributes, including roughness length and thermal properties, as a major source of variance in the comparison. The goal of this study is two-fold: to determine the relationship between the non-TS and TS GF and their standard deviations (GFSD) and to determine if models similar to those developed for TS data in Merceret (2009) could be developed for the non-TS environment. The results are consistent with the literature, but include much more detailed, quantitative information on the nature of the relationship between TS and non-TS GF and GFSD as a function of height and mean wind speed.

  4. Thumb Ossification Composite Index (TOCI) for Predicting Peripubertal Skeletal Maturity and Peak Height Velocity in Idiopathic Scoliosis: A Validation Study of Premenarchal Girls with Adolescent Idiopathic Scoliosis Followed Longitudinally Until Skeletal Maturity.

    PubMed

    Hung, Alec L H; Chau, W W; Shi, B; Chow, Simon K; Yu, Fiona Y P; Lam, T P; Ng, Bobby K W; Qiu, Y; Cheng, Jack C Y

    2017-09-06

    Accurate skeletal maturity assessment is important to guide clinical evaluation of idiopathic scoliosis, but commonly used methods are inadequate or too complex for rapid clinical use. The objective of the study was to propose a new simplified staging method, called the thumb ossification composite index (TOCI), based on the ossification pattern of the 2 thumb epiphyses and the adductor sesamoid bone; to determine its accuracy in predicting skeletal maturation when compared with the Sanders simplified skeletal maturity system (SSMS); and to validate its interrater and intrarater reliability. Hand radiographs of 125 girls, acquired when they were newly diagnosed with idiopathic scoliosis prior to menarche and during longitudinal follow-up until skeletal maturity (a minimum of 4 years), were scored with the TOCI and SSMS. These scores were compared with digital skeletal age (DSA) and radius, ulna, and small hand bones (RUS) scores; anthropometric data; peak height velocity; and growth-remaining profiles. Correlations were analyzed with the chi-square test, Spearman and Cramer V correlation methods, and receiver operating characteristic curve analysis. Reliability analysis using the intraclass correlation (ICC) was conducted. Six hundred and forty-five hand radiographs (average, 5 of each girl) were scored. The TOCI staging system was highly correlated with the DSA and RUS scores (r = 0.93 and 0.92, p < 0.01). The mean peak height velocity (and standard deviation) was 7.43 ± 1.45 cm/yr and occurred at a mean age of 11.9 ± 0.86 years, with 70.1% and 51.4% of the subjects attaining their peak height velocity at TOCI stage 5 and SSMS stage 3, respectively. The 2 systems predicted peak height velocity with comparable accuracy, with a strong Cramer V association (0.526 and 0.466, respectively; p < 0.01) and similar sensitivity and specificity on receiver operating characteristic curve analysis. The mean age at menarche was 12.57 ± 1.12 years, with menarche occurring over several stages in both the TOCI and the SSMS. The growth remaining predicted by TOCI stage 8 matched well with that predicted by SSMS stage 7, with a mean of <2 cm/yr of growth potential over a mean of <1.7 years at these stages. The TOCI also demonstrated excellent reliability, with an overall ICC of >0.97. The new proposed TOCI could provide a simplified staging system for the assessment of skeletal maturity of subjects with idiopathic scoliosis. The index needs to be subjected to further multicenter validation in different ethnic groups.

  5. Peak data for U.S. Geological Survey gaging stations, Texas network and computer program to estimate peak-streamflow frequency

    USGS Publications Warehouse

    Slade, R.M.; Asquith, W.H.

    1996-01-01

    About 23,000 annual peak streamflows and about 400 historical peak streamflows exist for about 950 stations in the surface-water data-collection network of Texas. These data are presented on a computer diskette along with the corresponding dates, gage heights, and information concerning the basin, and nature or cause for the flood. Also on the computer diskette is a U.S. Geological Survey computer program that estimates peak-streamflow frequency based on annual and historical peak streamflow. The program estimates peak streamflow for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals and is based on guidelines established by the Interagency Advisory Committee on Water Data. Explanations are presented for installing the program, and an example is presented with discussion of its options.

  6. Frontal facial proportions of 12-year-old southern Chinese: a photogrammetric study.

    PubMed

    Yeung, Charles Yat Cheong; McGrath, Colman Patrick; Wong, Ricky Wing Kit; Hägg, Erik Urban Oskar; Lo, John; Yang, Yanqi

    2015-08-14

    This study aimed to establish norm values for facial proportion indices among 12-year-old southern Chinese children, to determine lower facial proportion, and to identify gender differences in facial proportions.A random population sample of 514 children was recruited. Fifteen facial landmarks were plotted with ImageJ (V1.45) on standardized photos and 22 Facial proportion index values were obtained. Gender differences were analyzed by 2-sample t-test with 95% confidence interval. Repeated measurements were conducted on approximately 10% of the cases.The rate of adopted subjects was 52.5% (270/514). Intraclass correlation coefficient values (ICC) for intra- examiner reliability were >0.87. Population facial proportion index values were derived. Gender differences in 11 of the facial proportion indices were evident (P < 0.05).Upper face-face height (N- Sto/ N- Gn), vermilion height (Ls-Sto/Sto-Li), upper face height-biocular width (N-Sto/ExR-ExL) and nose -face height (N-Sn/N-Gn) indices were found to be larger among girls (P < 0.01). Males had larger lower face-face height (Sn -Gn/ N-Gn), mandibulo-face height (Sto-Gn/N-Gn), mandibulo-upper face height (Sto-Gn/N-Sto), nasal (AlR-AlL/N-Sn), upper lip height-mouth width (Sn-Sto/ChR-ChL), upper lip-upper face height (Sn-Sto/N-Sto) and upper lip-nose height (Sn-Sto/N-Sn) indices (P < 0.05).Population norm of facial proportion indices for 12-year-old Southern Chinese were derived and mean lower facial proportion were obtained. Sexual dimorphism is apparent.

  7. Effects of dilute aqueous NaCl solution on caffeine aggregation

    NASA Astrophysics Data System (ADS)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  8. Effects of dilute aqueous NaCl solution on caffeine aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogenmore » bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.« less

  9. Dissociated time course between peak torque and total work recovery following bench press training in resistance trained men.

    PubMed

    Ferreira, Diogo V; Gentil, Paulo; Ferreira-Junior, João B; Soares, Saulo R S; Brown, Lee E; Bottaro, Martim

    2017-10-01

    To evaluate the time course of peak torque and total work recovery after a resistance training session involving the bench press exercise. Repeated measures with a within subject design. Twenty-six resistance-trained men (age: 23.7±3.7years; height: 176.0±5.7cm; mass: 79.65±7.61kg) performed one session involving eight sets of the bench press exercise performed to momentary muscle failure with 2-min rest between sets. Shoulder horizontal adductors peak torque (PT), total work (TW), delayed onset muscle soreness (DOMS) and subjective physical fitness were measured pre, immediately post, 24, 48, 72 and 96h following exercise. The exercise protocol resulted in significant pectoralis major DOMS that lasted for 72h. Immediately after exercise, the reduction in shoulder horizontal adductors TW (25%) was greater than PT (17%). TW, as a percentage of baseline values, was also less than PT at 24, 48 and 96h after exercise. Additionally, PT returned to baseline at 96h, while TW did not. Resistance trained men presented dissimilar PT and TW recovery following free weight bench press exercise. This indicates that recovery of maximal voluntary contraction does not reflect the capability to perform multiple contractions. Strength and conditioning professionals should be cautious when evaluating muscle recovery by peak torque, since it can lead to the repetition of a training session sooner than recommended. Copyright © 2017. Published by Elsevier Inc.

  10. [Maturation of Cordyceps sinensis associates with alterations of fungal expressions of multiple Ophiocordyceps sinensis mutants in stroma of Cordyceps sinensis].

    PubMed

    Gao, Ling; Li, Xiao-hong; Zhao, Jian-qing; Lu, Ji-hong; Zhao, Jia-gang; Zhu, Jia-shi

    2012-06-18

    To examine maturational changes in expressions of Ophiocordyceps sinensis (O.sinensis) transition and transversion mutation genotypes in Cordyceps sinensis (C.sinensis) stroma. MassARRAY single nucleotide polymorphism (SNP) matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrum genotyping was used, and 8 SNP extension primers were designed based on the scattered, multiple point mutations of known sequences for the O.sinensis mutants within their internal transcribed spacer (ITS) segments. Of the extension primers, 5 (not capable of distinguishing between the 2 AT-biased genotypes) located in rDNA ITS1 and ITS2 regions: 067721-211, 067721-240, 067721-477, 067721-531 and 067721-581. The other 3 extension primers located in 5.8S rDNA region: 067740-324, 067740-328 and 067740-360, to distinguish between the 2 AT-biased genotypes. MS chromatograms at the 8 SNP sites showed dynamic alterations of mutant alleles in C.sinensis stroma. The allele for the AT-biased genotypes at 067721-211 site showed higher peak height than its GC-biased counterpart in the premature C.sinensis stroma, but disappeared with C.sinensis maturation. Chromatograms displayed not only the transition mutation alleles, but also transversion mutants. Some of the transversion mutation alleles displayed higher peak heights than those for GC- and AT-biased alleles, but their peak heights and detection rates tended to be decreased with C.sinensis maturation. When distinguishing between the 2 AT-biases, AB067744 and AB067740 genotype alleles co-existed in the premature C.sinensis stroma. The allele peak height for AB067744 genotype was greatly decreased with C.sinensis maturation, while that for AB067740 genotype increased. Co-existence of at least 5 transition and transversion mutant genotypes of O.sinensis and the dynamic changes in their expressions in C.sinensis stroma along with C.sinensis maturation may be of extreme importance in C.sinensis stroma germination and maturation, enabling C.sinensis to complete its life cycle.

  11. Site index, height growth, normal yields and stocking levels for larch in Oregon and Washington.

    Treesearch

    P.H. Cochran

    1985-01-01

    Even-aged stands of larch in Oregon and Washington have cubic volume yields similar to yields from larch in Idaho and Montana. Site index values derived from the heights of the single tallest tree on 1/5-acre plots at an age at breast height of 50 years range from 50 to 110 feet. These values have the same index to productivity as the site index values of 30 to 90 feet...

  12. Wingate anaerobic test reference values for male power athletes.

    PubMed

    Coppin, Erin; Heath, Edward M; Bressel, Eadric; Wagner, Dale R

    2012-09-01

    The aim of this study was to develop reference values for the Wingate Anaerobic Test (WAnT) for peak power (PP), mean power (MP), and fatigue index (FI) in NCAA Division IA male athletes. Seventy-seven athletes (age 20.8±1.8 y, mass 84.4±9.4 kg, height 183.9±6.2 cm) participating in American football (n=52) and track and field (n=25) performed a 30-s WAnT resisted at 0.085 kp/kg body mass (BM). Absolute mean (±SD) values for PP and MP were 1084.2±137.0 and 777.1±80.9 W, respectively, whereas values normalized to BM were 12.9±1.5 and 9.3±0.9 W/kg BM, respectively. Mean FI values were 49.1%±8.4%. PP outputs>13.6, 12.4-13.6, and <12.4 W/kg BM were classified as high, medium, and low, respectively. MP outputs>9.8, 9.0-9.8, and <9.0 W/kg BM were classified as high, medium, and low, respectively. The reference values developed in this study can be used in various athletic training and research programs to more accurately assess athletes' anaerobic fitness and to monitor changes resulting from anaerobic training.

  13. Hydraulic properties of fronds from palms of varying height and habitat.

    PubMed

    Renninger, Heidi J; Phillips, Nathan

    2011-12-01

    Because palms grow in highly varying climates and reach considerable heights, they present a unique opportunity to evaluate how environment and plant size impact hydraulic function. We studied hydraulic properties of petioles from palms of varying height from three species: Iriartea deltoidea, a tropical rainforest species; Mauritia flexuosa, a tropical rainforest, swamp species; and Washingtonia robusta, a subtropical species. We measured leaf areas, petiole cross-sectional areas, specific conductivity (K(S)), petiole anatomical properties, vulnerability to embolism and leaf water potentials and calculated petiole Huber values and leaf-specific conductivities (K(L)). Leaf and petiole cross-sectional areas varied widely with height. However, hydraulic properties including Huber values, K(S) and K(L), remained constant. The two palmate species, M. flexuosa and W. robusta, had larger Huber values than I. deltoidea, a pinnately-compound species which exhibited the highest K(S). Metaxylem vessel diameters and vascular bundle densities varied with height in opposing patterns to maintain petiole conductivities. I. deltoidea and W. robusta petioles had similar P(50) values (the point at which 50% of hydraulic conductivity is lost) averaged over all crown heights, but W. robusta exhibited more negative P(50) values in taller palms. Comparison of P (50) values with transpiring midday leaf water potentials, as well as a double-dye staining experiment in a 1-m-tall palm, suggested that a fairly significant amount of embolisms were occurring and refilled on a diurnal basis. Therefore, across palms differing widely in height and growing environments, we found convergence in water transport per unit leaf area (K(L)) with individuals exhibiting differing strategies for achieving this.

  14. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.

    PubMed

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-07-01

    Running-specific prostheses enable athletes with lower limb amputations to run by emulating the spring-like function of biological legs. Current prosthetic stiffness and height recommendations aim to mitigate kinematic asymmetries for athletes with unilateral transtibial amputations. However, it is unclear how different prosthetic configurations influence the biomechanics and metabolic cost of running. Consequently, we investigated how prosthetic model, stiffness, and height affect the biomechanics and metabolic cost of running. Ten athletes with unilateral transtibial amputations each performed 15 running trials at 2.5 or 3.0 m/s while we measured ground reaction forces and metabolic rates. Athletes ran using three different prosthetic models with five different stiffness category and height combinations per model. Use of an Ottobock 1E90 Sprinter prosthesis reduced metabolic cost by 4.3 and 3.4% compared with use of Freedom Innovations Catapult [fixed effect (β) = -0.177; P < 0.001] and Össur Flex-Run (β = -0.139; P = 0.002) prostheses, respectively. Neither prosthetic stiffness ( P ≥ 0.180) nor height ( P = 0.062) affected the metabolic cost of running. The metabolic cost of running was related to lower peak (β = 0.649; P = 0.001) and stance average (β = 0.772; P = 0.018) vertical ground reaction forces, prolonged ground contact times (β = -4.349; P = 0.012), and decreased leg stiffness (β = 0.071; P < 0.001) averaged from both legs. Metabolic cost was reduced with more symmetric peak vertical ground reaction forces (β = 0.007; P = 0.003) but was unrelated to stride kinematic symmetry ( P ≥ 0.636). Therefore, prosthetic recommendations based on symmetric stride kinematics do not necessarily minimize the metabolic cost of running. Instead, an optimal prosthetic model, which improves overall biomechanics, minimizes the metabolic cost of running for athletes with unilateral transtibial amputations. NEW & NOTEWORTHY The metabolic cost of running for athletes with unilateral transtibial amputations depends on prosthetic model and is associated with lower peak and stance average vertical ground reaction forces, longer contact times, and reduced leg stiffness. Metabolic cost is unrelated to prosthetic stiffness, height, and stride kinematic symmetry. Unlike nonamputees who decrease leg stiffness with increased in-series surface stiffness, biological limb stiffness for athletes with unilateral transtibial amputations is positively correlated with increased in-series (prosthetic) stiffness.

  15. Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan.

    PubMed

    Bennett, J P; Jepsen, E A; Roth, J A

    2006-07-01

    Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed.

  16. Magnitude and frequency of flooding on the Myakka River, Southwest Florida

    USGS Publications Warehouse

    Hammett, K.M.; Turner, J.F.; Murphy, W.R.

    1978-01-01

    Increasing numbers of urban and agricultural developments are being located on waterfront property in the Myakka River flood plain in southwest Florida. Under natural conditions, a large depression, Tatum Sawgrass, was available as a flood storage area in the upper Myakka River basin. Construction of dikes across the lower part of Tatum Sawgrass has restricted use of the depression for temporary storage of Myakka River flood water overflow, and has resulted in increased flood-peak discharges and flood heights in downstream reaches of the Myakka River. The difference between natural and diked condition flood-peak discharges and flood heights is presented to illustrate the effects of the dikes. Flood-peak discharges, water-surface elevations and flood profiles also are provided for diked conditions. Analytical procedures used to evaluate diking effects are described in detail. The study reach includes Myakka River main stem upstream from U.S. Highway 41, near Myakka Shores in Sarasota County, to State Road 70 near Myakka City in Manatee County (including Tatum Sawgrass and Clay Gully), and Blackburn Canal from Venice By-Way to Myakka River. (Woodard-USGS)

  17. Physiological correlates of skating performance in women's and men's ice hockey.

    PubMed

    Gilenstam, Kajsa M; Thorsen, Kim; Henriksson-Larsén, Karin B

    2011-08-01

    The purpose of the current investigation was to identify relationships between physiological off-ice tests and on-ice performance in female and male ice hockey players on a comparable competitive level. Eleven women, 24 ± 3.0 years, and 10 male ice hockey players, 23 ± 2.4 years, were tested for background variables: height, body weight (BW), ice hockey history, and lean body mass (LBM) and peak torque (PT) of the thigh muscles, VO2peak and aerobic performance (Onset of Blood Lactate Accumulation [OBLA], respiratory exchange ratio [RER1]) during an incremental bicycle ergometer test. Four different on-ice tests were used to measure ice skating performance. For women, skating time was positively correlated (p < 0.05) to BW and negatively correlated to LBM%, PT/BW, OBLA, RER 1, and VO2peak (ml O2·kg(-1) BW(-1)·min(-1)) in the Speed test. Acceleration test was positively correlated to BW and negatively correlated to OBLA and RER 1. For men, correlation analysis revealed only 1 significant correlation where skating time was positively correlated to VO2peak (L O2·min(-1)) in the Acceleration test. The male group had significantly higher physiological test values in all variables (absolute and relative to BW) but not in relation to LBM. Selected off-ice tests predict skating performance for women but not for men. The group of women was significantly smaller and had a lower physiological performance than the group of men and were slower in the on-ice performance tests. However, gender differences in off-ice variables were reduced or disappeared when values were related to LBM, indicating a similar capacity of producing strength and aerobic power in female and male hockey players. Skating performance in female hockey players may be improved by increasing thigh muscle strength, oxygen uptake, and relative muscle mass.

  18. Novel Processes for Modular Integration of Silicon-Germanium MEMS with CMOS Electronics

    DTIC Science & Technology

    2007-02-28

    process limits the compatibility with further lithography steps. Using silicon as the MEMS structural material, most of the integration processes...structures are defined by lithography and deep reactive ion etching. A layer of gasket oxide is deposited as the sacrificial material between the...When the Bragg condition for constructive interference is obtained, a diffraction peak is produced and the relative peak height is proportional to

  19. Spectroscopic Determination of the AC Voltammetric Response.

    DTIC Science & Technology

    1984-01-06

    characterization of electrode processes. More recently, with the advent of linear sweep cyclic AC voltanmetry(12’ 13), it has been shown that AC methods...implemented with the same instrumentation ( 7 ) as previously used in MSRS and retains both the qualitative and quantitative utility of linear sweep ...voltammetric response (eg. peak width at balf-height, peak separation and cross-over potential in cyclic AC voltametry ) apply equally well to the SACRS

  20. [Evolution of breathing pattern and ventilation at maximal exercise during growth. Definition of reference values].

    PubMed

    Prioux, J; Mercier, J; Ramonatxo, M; Granier, P; Mercier, B; Prefaut, C

    1995-01-01

    The aim of the study was to define the changes of parameters of breathing pattern and ventilation (VE) as a function of age during maximal exercise in children. A multi-longitudinal survey was conducted in forty four untrained schoolboys, divided in three groups with initial age of 11.2 years for group I, 12.9 years for group II, and 14.9 for group III. These children were subsequently followed three years ago at the same period. The range age was thus 11.2 to 16.9 years. This study showed that, during growth, ventilation (VE max), tidal volume (VT max) and mean inspiratory flow (VT/TI max) increased significantly with age, that inspiratory frequency (f max) decreased, that inspiratory, expiratory and total time of the respiratory cycle (TI max, TE max, TTOT max) increased slightly and that the inspiration fraction (TI/TTOT max) was identical at 11 and 17 years. Furthermore we observed that the peak height velocity and peak tidal volume velocity took place at the same age, i.e., 14 years and that those of weight and VT/TI at the same age of 15 years. In conclusion, this study allowed us to define reference values for breathing pattern at maximal exercise in sedentary boys and to specify the relation between growth and parameters of breathing pattern in these children.

  1. Impact sports and bone fractures among adolescents.

    PubMed

    Lynch, Kyle R; Kemper, Han C G; Turi-Lynch, Bruna; Agostinete, Ricardo R; Ito, Igor H; Luiz-De-Marco, Rafael; Rodrigues-Junior, Mario A; Fernandes, Rômulo A

    2017-12-01

    The objective of the present study was to investigate the effects of different sports on stress fractures among adolescents during a 9-month follow-up period. The sample was composed of 184 adolescents divided into three groups (impact sports [n = 102]; swimming [n = 35]; non-sports [n = 47]). The occurrence of stress fracture was reported by participants and coaches. As potential confounders we considered age, sex, resistance training, body composition variables and age at peak of height velocity. There were 13 adolescents who reported fractures during the 9-month period. Bone mineral density values were higher in adolescents engaged in impact sports (P-value = 0.002). Independently of confounders, the risk of stress fracture was lower in adolescents engaged in impact sports than in non-active adolescents (hazard ratio [HR] = 0.23 [95% confidence interval (CI) = 0.05 to 0.98]), while swimming practice was not associated to lower risk of fracture (HR = 0.49 [95% CI = 0.09 to 2.55]). In conclusion, the findings from this study indicate the importance of sports participation among adolescents in the reduction of stress fracture risk, especially with impact sports. More importantly, these results could be relevant for recognising adolescents in danger of not reaching their potential for peak bone mass and later an increased risk of fractures.

  2. Sequential capillary electrophoresis analysis using optically gated sample injection and UV/vis detection.

    PubMed

    Liu, Xiaoxia; Tian, Miaomiao; Camara, Mohamed Amara; Guo, Liping; Yang, Li

    2015-10-01

    We present sequential CE analysis of amino acids and L-asparaginase-catalyzed enzyme reaction, by combing the on-line derivatization, optically gated (OG) injection and commercial-available UV-Vis detection. Various experimental conditions for sequential OG-UV/vis CE analysis were investigated and optimized by analyzing a standard mixture of amino acids. High reproducibility of the sequential CE analysis was demonstrated with RSD values (n = 20) of 2.23, 2.57, and 0.70% for peak heights, peak areas, and migration times, respectively, and the LOD of 5.0 μM (for asparagine) and 2.0 μM (for aspartic acid) were obtained. With the application of the OG-UV/vis CE analysis, sequential online CE enzyme assay of L-asparaginase-catalyzed enzyme reaction was carried out by automatically and continuously monitoring the substrate consumption and the product formation every 12 s from the beginning to the end of the reaction. The Michaelis constants for the reaction were obtained and were found to be in good agreement with the results of traditional off-line enzyme assays. The study demonstrated the feasibility and reliability of integrating the OG injection with UV/vis detection for sequential online CE analysis, which could be of potential value for online monitoring various chemical reaction and bioprocesses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of tensile deformation on micromagnetic parameters in 0.2% carbon steel and 2.25Cr-1Mo steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorthy, V.; Vaidyanathan, S.; Jayakumar, T.

    The influence of prior tensile deformation on the magnetic Barkhausen emission (MBE) and the hysteresis (B-H) curve has been studied in 0.2% carbon steel and 2.25Cr-1Mo steel under different tempered conditions. This study shows that the micromagnetic parameters can be used to identify the four stages of deformation, namely (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding and (4) progressive plastic deformation. However, it is observed that the MBE profile shows more distinct changes at different stages of tensile deformation than the hysteresis curve. It has been established that the beginning of microplastic yielding and macroyielding can be identified frommore » the MBE profile which is not possible from the stress-strain plot. The onset of microplastic yielding can be identified from the decrease in the MBE peak height. The macroyielding can be identified from the merging of the initially present two-peak MBE profile into a single central peak with relatively higher peak height and narrow profile width. The difference between the variation of MBE and hysteresis curve parameters with strain beyond macroyielding indicates the difference in the deformation state of the surface and bulk of the sample.« less

  4. Increased medial longitudinal arch mobility, lower extremity kinematics, and ground reaction forces in high-arched runners.

    PubMed

    Williams, D S Blaise; Tierney, Robin N; Butler, Robert J

    2014-01-01

    Runners with high medial longitudinal arch structure demonstrate unique kinematics and kinetics that may lead to running injuries. The mobility of the midfoot as measured by the change in arch height is also suspected to play a role in lower extremity function during running. The effect of arch mobility in high-arched runners is an important factor in prescribing footwear, training, and rehabilitating the running athlete after injury. To examine the effect of medial longitudinal arch mobility on running kinematics, ground reaction forces, and loading rates in high-arched runners. Cross-sectional study. Human movement research laboratory. A total of 104 runners were screened for arch height. Runners were then identified as having high arches if the arch height index was greater than 0.5 SD above the mean. Of the runners with high arches, 11 rigid runners with the lowest arch mobility (R) were compared with 8 mobile runners with the highest arch mobility (M). Arch mobility was determined by calculating the left arch height index in all runners. Three-dimensional motion analysis of running over ground. Rearfoot and tibial angular excursions, eversion-to-tibial internal-rotation ratio, vertical ground reaction forces, and the associated loading rates. Runners with mobile arches exhibited decreased tibial internal-rotation excursion (mobile: 5.6° ± 2.3° versus rigid: 8.0° ± 3.0°), greater eversion-to-tibial internal-rotation ratio (mobile: 2.1 ± 0.8 versus rigid: 1.5 ± 0.5), decreased second peak vertical ground reaction force values (mobile: 2.3 ± 0.2 × body weight versus rigid: 2.4 ± 0.1 × body weight), and decreased vertical loading rate values (mobile: 55.7 ± 14.1 × body weight/s versus rigid: 65.9 ± 11.4 × body weight/s). Based on the results of this study, it appears that runners with high arch structure but differing arch mobility exhibited differences in select lower extremity movement patterns and forces. Future authors should investigate the impact of arch mobility on running-related injuries.

  5. IGF-I generation test in prepubertal children with Noonan syndrome due to mutations in the PTPN11 gene.

    PubMed

    Bertelloni, Silvano; Baroncelli, Giampiero I; Dati, Eleonora; Ghione, Silvia; Baldinotti, Fulvia; Toschi, Benedetta; Simi, Paolo

    2013-01-01

    Short stature represents one of the main features of children with Noonan syndrome. The reason for impaired growth remains largely unknown. To assess GH and IGF1 secretion in children with Noonan syndrome. 12 prepubertal children with Noonan syndrome due to mutations in the PTPN11 gene [7 males, 6 females; median age, years: 8.6 (range 5.1-13.4)] were studied; 12 prepubertal children with short stature (SS) [7 males, 5 females; median age, years: 8.1 (range 4.8-13.1)] served as the control group. GH secretion after arginine stimulation test; IGF1 generation test by measurement of IGF1 levels before and after recombinant GH (rGH) administration (0.05 mg/kg/day for 4 days). Baseline and stimulated peak values of GH were not significantly different between the two groups. At +120 minutes, GH levels remained significantly higher (p = 0.0121) in comparison with baseline values in children with Noonan syndrome. Baseline IGFI levels in patients and in SS controls were not significantly different, in contrast to values after the rGH generation test [205 ng/mL (interquartiles 138.2-252.5 ng/mL) and 284.5 ng/mL (interquartiles 172-476 ng/mL), respectively; p = 0.0248]. IGF1 values were significantly related to height (baseline: r = 773, p = 0.0320; peak: r = 0.591, p = 0.0428) in children with Noonan syndrome. Blunted increase of IGF1 after the rGH generation test was present in children with Noonan syndrome due to mutations in the PTPN11 gene in comparison with SS children. This finding may be due to partial GH resistance in the former likely related to altered Ras-MAPK signaling pathway.

  6. Metric Scale Calculation for Visual Mapping Algorithms

    NASA Astrophysics Data System (ADS)

    Hanel, A.; Mitschke, A.; Boerner, R.; Van Opdenbosch, D.; Hoegner, L.; Brodie, D.; Stilla, U.

    2018-05-01

    Visual SLAM algorithms allow localizing the camera by mapping its environment by a point cloud based on visual cues. To obtain the camera locations in a metric coordinate system, the metric scale of the point cloud has to be known. This contribution describes a method to calculate the metric scale for a point cloud of an indoor environment, like a parking garage, by fusing multiple individual scale values. The individual scale values are calculated from structures and objects with a-priori known metric extension, which can be identified in the unscaled point cloud. Extensions of building structures, like the driving lane or the room height, are derived from density peaks in the point distribution. The extension of objects, like traffic signs with a known metric size, are derived using projections of their detections in images onto the point cloud. The method is tested with synthetic image sequences of a drive with a front-looking mono camera through a virtual 3D model of a parking garage. It has been shown, that each individual scale value improves either the robustness of the fused scale value or reduces its error. The error of the fused scale is comparable to other recent works.

  7. Effect on adult height of pubertal growth hormone retesting and withdrawal of therapy in patients with previously diagnosed growth hormone deficiency.

    PubMed

    Zucchini, Stefano; Pirazzoli, Piero; Baronio, Federico; Gennari, Monia; Bal, Milva Orquidea; Balsamo, Antonio; Gualandi, Stefano; Cicognani, Alessandro

    2006-11-01

    GH replacement therapy in GH-deficient (GHD) patients is usually continued until adult height despite the fact that most of these subjects display a normal secretion when retested at the end of growth. Puberty is the most likely time for normalization of GH secretion. The objectives of this study are to establish the characteristics and the percentage of the subjects with isolated GHD who normalized secretion at puberty and to compare their statural outcomes with those of the subjects with persistent deficiency treated also after retesting. This was a prospective, nonrandomized, open-label study conducted in a university research hospital. Sixty-nine subjects (40 male, 29 female) with a diagnosis before puberty of isolated GHD by means of arginine and l-dopa tests were reevaluated with the same tests after at least 2 yr of therapy and after puberty onset. If GH peak at retesting was more than 10 microg/liter, therapy was withdrawn. Percentage and characteristics of normalized subjects at retesting, outcome of treatment in the subjects treated or untreated to adult height, and factors predictive of growth outcome were measured. At retesting, 44 subjects (63.7%) confirmed a GH peak less than 10 microg/liter (24 of 40 male and 20 of 29 female). Apart from a less delayed bone age at diagnosis in females, the subjects with confirmed GHD were not different at diagnosis from the other group for height deficit at diagnosis, first year growth response to GH, age and height at puberty onset, height, and IGF-I at retesting. Mean adult height was 165.1 +/- 4.5 cm in the male group treated until adult height vs. 164.0 +/- 3.4 cm in the group who suspended therapy at retesting. Mean adult height was 153.2 +/- 4.1 cm in the female group treated until adult height vs. 152.9 +/- 5.2 cm in the group that suspended therapy at retesting. As regards the parameters expressing the final outcome, the only difference was found in the mean increment adult height-target height sd score in favor of the male group treated until adult height. In both sexes, therapy duration and GH levels at diagnosis and at retesting were unrelated to adult height parameters and to height increments during the period of observation. One third of our GHD subjects diagnosed before puberty presented a normal secretion at puberty. The withdrawal of GH therapy in these subjects after retesting was not associated with a catch down growth, and they obtained an adult height similar to those obtained by the GHD subjects treated until adult height. It seems convenient, in subjects with nonsevere GHD, to retest GH secretion at midpuberty and to withdraw treatment for the subjects that are no longer deficient.

  8. Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yuma; Kusne, A. Gilad; Takeuchi, Ichiro

    2017-12-01

    Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition-phase maps from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis and the choice of measure's performance impact on automatic composition-phase map determination. Nine dissimilarity measures are investigated for their impact in analyzing X-ray diffraction patterns for a Fe-Co-Ni ternary alloy composition spread. The cosine, Pearson correlation coefficient, and Jensen-Shannon divergence measures are shown to provide the best performance in the presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction patterns in general beyond data from combinatorial libraries.

  9. Flexible nonlinear estimates of the association between height and mental ability in early life.

    PubMed

    Murasko, Jason E

    2014-01-01

    To estimate associations between early-life mental ability and height/height-growth in contemporary US children. Structured additive regression models are used to flexibly estimate the associations between height and mental ability at approximately 24 months of age. The sample is taken from the Early Childhood Longitudinal Study-Birth Cohort, a national study whose target population was children born in the US during 2001. A nonlinear association is indicated between height and mental ability at approximately 24 months of age. There is an increasing association between height and mental ability below the mean value of height, but a flat association thereafter. Annualized growth shows the same nonlinear association to ability when controlling for baseline length at 9 months. Restricted growth at lower values of the height distribution is associated with lower measured mental ability in contemporary US children during the first years of life. Copyright © 2013 Wiley Periodicals, Inc.

  10. Growth process and model simulation of three different classes of Schima superba in a natural subtropical forest in China

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Deng, Xiangwen; Ouyang, Shuai; Chen, Lijun; Chu, Yonghe

    2017-01-01

    Schima superba is an important fire-resistant, high-quality timber species in southern China. Growth in height, diameter at breast height (DBH), and volume of the three different classes (overtopped, average and dominant) of S. superba were examined in a natural subtropical forest. Four growth models (Richards, edited Weibull, Logistic and Gompertz) were selected to fit the growth of the three different classes of trees. The results showed that there was a fluctuation phenomenon in height and DBH current annual growth process of all three classes. Multiple intersections were found between current annual increment (CAI) and mean annual increment (MAI) curves of both height and DBH, but there was no intersection between volume CAI and MAI curves. All selected models could be used to fit the growth of the three classes of S. superba, with determinant coefficients above 0.9637. However, the edited Weibull model performed best with the highest R2 and the lowest root of mean square error (RMSE). S. superba is a fast-growing tree with a higher growth rate during youth. The height and DBH CAIs of overtopped, average and dominant trees reached growth peaks at ages 5-10, 10-15 and 15-20 years, respectively. According to model simulation, the volume CAIs of overtopped, average and dominant trees reached growth peaks at ages 17, 55 and 76 years, respectively. The biological rotation ages of the overtopped, average and dominant trees of S. superba were 29, 85 and 128 years, respectively.

  11. Do physical maturity and birth date predict talent in male youth ice hockey players?

    PubMed

    Sherar, Lauren B; Baxter-Jones, Adam D G; Faulkner, Robert A; Russell, Keith W

    2007-06-01

    The aim of this study was to examine the relationships among biological maturity, physical size, relative age (i.e. birth date), and selection into a male Canadian provincial age-banded ice hockey team. In 2003, 619 male ice hockey players aged 14-15 years attended Saskatchewan provincial team selection camps, 281 of whom participated in the present study. Data from 93 age-matched controls were obtained from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991-1997). During the initial selection camps, birth dates, heights, sitting heights, and body masses were recorded. Age at peak height velocity, an indicator of biological maturity, was determined in the controls and predicted in the ice hockey players. Data were analysed using one-way analysis of variance, logistic regression, and a Kolmogorov-Smirnov test. The ice hockey players selected for the final team were taller, heavier, and more mature (P < 0.05) than both the unselected players and the age-matched controls. Furthermore, age at peak height velocity predicted (P < 0.05) being selected at the first and second selection camps. The birth dates of those players selected for the team were positively skewed, with the majority of those selected being born in the months January to June. In conclusion, team selectors appear to preferentially select early maturing male ice hockey players who have birth dates early in the selection year.

  12. Height and body mass index values of nineteenth-century New York legislators.

    PubMed

    Bodenhorn, Howard

    2010-03-01

    Previous studies of mid-nineteenth-century American BMI values have used data created by military academies and penitentiaries. This paper uses an alternative data set, constructed from legislative documents in which the heights and weights of New York State legislators were recorded. The results reveal that middle- to upper-middle class Americans maintained BMI values closer to the modern standard than did students and prisoners. The average BMI value among this group was 24 and their height-weight combinations did not greatly diverge from historical mortality risk optima. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Optimization of digital image processing to determine quantum dots' height and density from atomic force microscopy.

    PubMed

    Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L

    2018-01-01

    An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. SO2 plume height retrieval from direct fitting of GOME-2 backscattered radiance measurements

    NASA Astrophysics Data System (ADS)

    van Gent, J.; Spurr, R.; Theys, N.; Lerot, C.; Brenot, H.; Van Roozendael, M.

    2012-04-01

    The use of satellite measurements for SO2 monitoring has become an important aspect in the support of aviation control. Satellite measurements are sometimes the only information available on SO2 concentrations from volcanic eruption events. The detection of SO2 can furthermore serve as a proxy for the presence of volcanic ash that poses a possible hazard to air traffic. In that respect, knowledge of both the total vertical column amount and the effective altitude of the volcanic SO2 plume is valuable information to air traffic control. The Belgian Institute for Space Aeronomy (BIRA-IASB) hosts the ESA-funded Support to Aviation Control Service (SACS). This system provides Volcanic Ash Advisory Centers (VAACs) worldwide with near real-time SO2 and volcanic ash data, derived from measurements from space. We present results from our algorithm for the simultaneous retrieval of total vertical columns of O3 and SO2 and effective SO2 plume height from GOME-2 backscattered radiance measurements. The algorithm is an extension to the GODFIT direct fitting algorithm, initially developed at BIRA-IASB for the derivation of improved total ozone columns from satellite data. The algorithm uses parameterized vertical SO2 profiles which allow for the derivation of the peak height of the SO2 plume, along with the trace gas total column amounts. To illustrate the applicability of the method, we present three case studies on recent volcanic eruptions: Merapi (2010), Grímsvotn (2011), and Nabro (2011). The derived SO2 plume altitude values are validated with the trajectory model FLEXPART and with aerosol altitude estimations from the CALIOP instrument on-board the NASA A-train CALIPSO platform. We find that the effective plume height can be obtained with a precision as fine as 1 km for moderate and strong volcanic events. Since this is valuable information for air traffic, we aim at incorporating the plume height information in the SACS system.

  15. Differences in Lateral Drop Jumps From an Unknown Height Among Individuals With Functional Ankle Instability

    PubMed Central

    Rosen, Adam; Swanik, Charles; Thomas, Stephen; Glutting, Joseph; Knight, Christopher; Kaminski, Thomas W.

    2013-01-01

    Context: Functional ankle instability (FAI) is a debilitating condition that has been reported to occur after 20% to 50% of all ankle sprains. Landing from a jump is one common mechanism of ankle injury, yet few researchers have explored the role of visual cues and anticipatory muscle contractions, which may influence ankle stability, in lateral jumping maneuvers. Objective: To examine muscle-activation strategies between FAI and stable ankles under a lateral load and to evaluate the differences in muscle activation in participants with FAI and participants with stable ankles when they were unable to anticipate the onset of lateral loads during eyes-open versus eyes-closed conditions. Design: Case-control study. Setting: Controlled laboratory setting. Patients or Other Participants: A total of 40 people participated: 20 with FAI and 20 healthy, uninjured, sex- and age-matched persons (control group). Intervention(s): Participants performed a 2-legged lateral jump off a platform onto a force plate set to heights of 35 cm or 50 cm and then immediately jumped for maximal height. They performed jumps in 2 conditions (eyes open, eyes closed) and were unaware of the jump height when their eyes were closed. Main Outcome Measure(s): Amplitude normalized electromyographic (EMG) area (%), peak (%), and time to peak in the tibialis anterior (TA), peroneus longus (PL), and lateral gastrocnemius (LG) muscles were measured. Results: Regardless of the eyes-open or eyes-closed condition, participants with FAI had less preparatory TA (t158 = 2.22, P = .03) and PL (t158 = 2.09, P = .04) EMG area and TA (t158 = 2.45, P = .02) and PL (t158 = 2.17, P = .03) peak EMG than control-group participants. Conclusions: By removing visual cues, unanticipated lateral joint loads occurred simultaneously with decreased muscle activity, which may reduce dynamic restraint capabilities in persons with FAI. Regardless of visual impairment and jump height, participants with FAI exhibited PL and TA inhibition, which may limit talonavicular stability and intensify lateral joint surface compression and pain. PMID:23952040

  16. Effects of electric field on micro-scale flame properties of biobutanol fuel

    PubMed Central

    Xu, Tao; Chen, Qinglin; Zhang, Bingjian; Lu, Shushen; Mo, Dongchuan; Zhang, Zhengguo; Gao, Xuenong

    2016-01-01

    With the increasing need of smaller power sources for satellites, energy systems and engine equipment, microcombustion pose a potential as alternative power source to conventional batteries. As the substitute fuel source for gasoline, biobutanol shows more promising characteristics than ethanol. In this study, the diffusion microflame of liquid biobutanol under electric field have been examined through in-lab experiment and numerical simulation. It is found that traditional gas jet diffusion flame theory shows significant inconsistency with the experimental results of micro scale flame in electric field. The results suggest that with the increase of electric field intensity, the quenching flow rate decrease first and increase after it reach its minimum, while the flame height and highest flame temperature increase first and drop after its peak value. In addition, it was also observed that the flame height and highest temperature for smaller tube can reach its maximum faster. Therefore, the interaction between microscale effect and electric field plays a significant role on understanding the microcombustion of liquid fuel. Therefore, FLUENT simulation was adopted to understand and measure the impacts of microflame characteristic parameters. The final numerical results are consistent with the experimental data and show a high reliability. PMID:27609428

  17. Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore 560013; Mukundan, Shruti

    2015-03-15

    We have grown InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy and studied the temperature dependent electrical transport characteristics. The barrier height (φ{sub b}) and the ideally factor (η) estimated using thermionic emission model were found to be temperature dependent. The conventional Richardson plot of ln(J{sub s}/T{sup 2}) versus 1/kT showed two temperature regions (region-I: 400–500 K and region-II: 200–350 K) and it provides Richardson constants (A{sup ∗}) which are much lower than the theoretical value of GaN. The observed variation in the barrier height and the presence of two temperature regions were attributed to spatial barrier inhomogeneities at the heterojunctionmore » interface and was explained by assuming a double Gaussian distribution of barrier heights with mean barrier height values 1.61 and 1.21 eV with standard deviation (σ{sub s}{sup 2}) of 0.044 and 0.022 V, respectively. The modified Richardson plot of ln(J{sub s}/T{sup 2}) − (q{sup 2}σ{sub s}{sup 2}/2k{sup 2}T{sup 2}) versus 1/kT for two temperature regions gave mean barrier height values as 1.61 eV and 1.22 eV with Richardson constants (A{sup ∗}) values 25.5 Acm{sup −2}K{sup −2} and 43.9 Acm{sup −2}K{sup −2}, respectively, which are very close to the theoretical value. The observed barrier height inhomogeneities were interpreted on the basis of the existence of a double Gaussian distribution of barrier heights at the interface.« less

  18. The glucagon test in the diagnosis of growth hormone deficiency in children with short stature younger than 6 years.

    PubMed

    Secco, Andrea; di Iorgi, Natascia; Napoli, Flavia; Calandra, Erika; Ghezzi, Michele; Frassinetti, Costanza; Parodi, Stefano; Casini, Maria Rosaria; Lorini, Renata; Loche, Sandro; Maghnie, Mohamad

    2009-11-01

    Few studies have addressed the diagnostic role of the glucagon test in children with suspected GH deficiency (GHD). The objective of the study was to investigate the diagnostic value of the glucagon test as an alternative test to insulin tolerance test (ITT) and arginine in GHD children younger than 6 yr. This study was conducted in two pediatric endocrinology centers. Forty-eight children (median age 4.2 yr, median height -3.0 sd score) with GHD confirmed by a peak GH to ITT and arginine less than 10 microg/liter (median 4.7 and 3.4 microg/liter, respectively) underwent a glucagon stimulation test. Magnetic resonance imaging showed normal hypothalamic-pituitary anatomy in 24 children, isolated anterior pituitary hypoplasia in seven, and structural hypothalamic-pituitary abnormalities in 17. Median GH peak response to glucagon (13.5 microg/liter) was significantly higher than that observed after ITT and arginine (P < 0.0001). GH peak after glucagon was less than 10 microg/liter in 20 subjects (group 1) and greater than 10 microg/liter in 28 subjects (group 2) without significant clinical or biochemical differences between the two groups. Median GH peak after glucagon was similar between patients with multiple pituitary hormone deficiency and those with isolated GHD and between subjects with and without structural hypothalamic-pituitary abnormalities. The magnitude of the GH peak after glucagon was negatively correlated to age at diagnosis (rho = -0.636, P < 0.0001). This study shows that glucagon has an effective GH-releasing activity and can be used to evaluate somatotroph function in young children with short stature. Normative data for this test in young children need to be established before its use in clinical practice.

  19. Reliability and validity of the 6-min walk test in adults and seniors with intellectual disabilities.

    PubMed

    Guerra-Balic, Myriam; Oviedo, Guillermo R; Javierre, Casimiro; Fortuño, Jesús; Barnet-López, Silvia; Niño, Oscar; Alamo, Juan; Fernhall, Bo

    2015-12-01

    Adults with intellectual disabilities (ID) have significantly lower rates of physical activity and fitness than adults without ID. The 6-min walk test (6 MWT) is an inexpensive and simple way to test mobility and submaximal work capacity. To evaluate the test-retest reliability and validity of the 6 MWT in adults and seniors with ID and explore factors contributing to the 6 MWT distance (6 MWD). 46 participants with mild, moderate and severe ID levels (age=41 ± 11 years) performed the 6 MWT three times (T1; T2; T3) to determine test-retest reliability. To test validity, peak oxygen uptake (VO2 peak) was measured using a treadmill protocol. To analyze factors contributing to the 6 MWD, sex, height, fat mass % and fat free mass %, ID level, isometric leg strength and relative VO2 peak were also measured. The walking distances for T1, T2 and T3 were 460.3 ± 76.9; 489.4 ± 81.2 and 491.4 ± 77.9 m, respectively. The 6 MWDs between T1-T2 and T1-T3 were significantly different (p<0.001), but T2 and T3 were not different. The intraclass correlation coefficient between T2 and T3 was 0.96 indicating high reliability. Relative VO2 peak and isometric leg strength significantly contributed to the 6 MWD (R(2)=0.55). The 6 MWT is an easy, inexpensive, reliable and valid test in adults and seniors with ID. Familiarization is necessary to obtain reliable values. Relative VO2 peak and leg strength have significant impact on the distance walked. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Peak holding circuit for extremely narrow pulses

    NASA Technical Reports Server (NTRS)

    Oneill, R. W. (Inventor)

    1975-01-01

    An improved pulse stretching circuit comprising: a high speed wide-band amplifier connected in a fast charge integrator configuration; a holding circuit including a capacitor connected in parallel with a discharging network which employs a resistor and an FET; and an output buffer amplifier. Input pulses of very short duration are applied to the integrator charging the capacitor to a value proportional to the input pulse amplitude. After a predetermined period of time, conventional circuitry generates a dump pulse which is applied to the gate of the FET making a low resistance path to ground which discharges the capacitor. When the dump pulse terminates, the circuit is ready to accept another pulse to be stretched. The very short input pulses are thus stretched in width so that they may be analyzed by conventional pulse height analyzers.

  1. Dynamical mean field theory equations on nearly real frequency axis

    NASA Astrophysics Data System (ADS)

    Fathi, M. B.; Jafari, S. A.

    2010-03-01

    The iterated perturbation theory (IPT) equations of the dynamical mean field theory (DMFT) for the half-filled Hubbard model are solved on nearly real frequencies at various values of the Hubbard parameters, U, to investigate the nature of metal-insulator transition (MIT) at finite temperatures. This method avoids the instabilities associated with the infamous Padé analytic continuation and reveals fine structures across the MIT at finite temperatures, which cannot be captured by conventional methods for solving DMFT-IPT equations on Matsubara frequencies. Our method suggests that at finite temperatures, there is a crossover from a bad metal to a bad insulator in which the height of the quasi-particle (Kondo) peak decreases to a non-zero small bump, which gradually suppresses as one moves deeper into the bad insulating regime.

  2. Performance of an asymmetric short annular diffuser with a nondiverging inner wall using suction. [control of radial profiles of diffuser exit velocity

    NASA Technical Reports Server (NTRS)

    Juhasz, A.

    1974-01-01

    The performance of a short highly asymmetric annular diffuser equipped with wall bleed (suction) capability was evaluated at nominal inlet Mach numbers of 0.188, 0.264, and 0.324 with the inlet pressure and temperature at near ambient values. The diffuser had an area ratio of 2.75 and a length- to inlet-height ratio of 1.6. Results show that the radial profiles of diffuser exit velocity could be controlled from a severely hub peaked to a slightly tip biased form by selective use of bleed. At the same time, other performance parameters were also improved. These results indicate the possible application of the diffuser bleed technique to control flow profiles to gas turbine combustors.

  3. F-region neutral winds from ionosonde measurements of h/sub mF2/ at low-latitude magnetic conjugate regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bittencourt, J.A.

    1977-08-01

    The behavior of the F2-peak height difference, delta h/sub F2/, between low-latitude magnetic conjugate points, is known to be governed by thermospheric winds blowing along the magnetic meridian. Ground-based ionosonde measurement of h/sub m F2/, at two pairs of magnetic conjugate stations, were analyzed in conjunction with the results of a realistic dynamic computer model of the tropical ionospheric F-region, to determine thermospheric wind velocities. The behavior of monthly average values of the sun, at conjugate points, of the thermospheric horizontal wind velocity component in the magnetic meridian, at low latitudes, is inferred for months of solstice and equinox, asmore » well as for periods of low and high solar activity.« less

  4. A Novel Method to Describe Early Offspring Body Mass Index (BMI) Trajectories and to Study Its Determinants

    PubMed Central

    Carles, Sophie; Charles, Marie-Aline; Forhan, Anne; Slama, Rémy; Heude, Barbara; Botton, Jérémie

    2016-01-01

    Background Accurately characterizing children’s body mass index (BMI) trajectories and studying their determinants is a statistical challenge. There is a need to identify early public health measures for obesity prevention. We describe a method that allows studies of the determinants of height, weight and BMI growth up to five years of age. We illustrated this method using maternal smoking during pregnancy as one of the early-life factors that is potentially involved in prenatal programming of obesity. Methods Individual height and weight trajectories were fitted using the Jenss-Bayley model on 28,381 and 30,515 measurements, respectively, from 1,666 children to deduce BMI trajectories. We assessed global associations between smoking and growth trajectories and cross-sectional associations at specific ages. Results Children exposed in late pregnancy had a 0.24 kg/m2 (95% confidence interval: 0.07, 0.41) higher BMI at 5 years of age compared with non-exposed children. Although the BMIs of children exposed during late pregnancy became significantly higher compared with those of non-exposed children from 2 years onwards, the trajectories began to diverge during the first weeks of life. Conclusion Our method is relevant for studies on the relationships between individual-level exposures and the dynamics and shapes of BMI growth during childhood, including key features such as instantaneous growth velocities and the age or BMI value at the BMI infancy peak that benefit from the monotonic pattern of height and weight growth. PMID:27327164

  5. COMPARISON OF CORONAL EXTRAPOLATION METHODS FOR CYCLE 24 USING HMI DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arden, William M.; Norton, Aimee A.; Sun, Xudong

    2016-05-20

    Two extrapolation models of the solar coronal magnetic field are compared using magnetogram data from the Solar Dynamics Observatory /Helioseismic and Magnetic Imager instrument. The two models, a horizontal current–current sheet–source surface (HCCSSS) model and a potential field–source surface (PFSS) model, differ in their treatment of coronal currents. Each model has its own critical variable, respectively, the radius of a cusp surface and a source surface, and it is found that adjusting these heights over the period studied allows for a better fit between the models and the solar open flux at 1 au as calculated from the Interplanetary Magneticmore » Field (IMF). The HCCSSS model provides the better fit for the overall period from 2010 November to 2015 May as well as for two subsets of the period: the minimum/rising part of the solar cycle and the recently identified peak in the IMF from mid-2014 to mid-2015 just after solar maximum. It is found that an HCCSSS cusp surface height of 1.7 R {sub ⊙} provides the best fit to the IMF for the overall period, while 1.7 and 1.9 R {sub ⊙} give the best fits for the two subsets. The corresponding values for the PFSS source surface height are 2.1, 2.2, and 2.0 R {sub ⊙} respectively. This means that the HCCSSS cusp surface rises as the solar cycle progresses while the PFSS source surface falls.« less

  6. Reductions in Sprint Paddling Ability and Countermovement Jump Performance After Surfing Training.

    PubMed

    Secomb, Josh L; Sheppard, Jeremy M; Dascombe, Ben J

    2015-07-01

    The present study aimed to determine whether any meaningful change in a surfer's sprint paddling ability and countermovement jump (CMJ) performance developed after a 2-hour surfing training session and also whether any physical demands of the surfing session were related to the resultant changes in the capacities. Fifteen competitive male surfing athletes (age, 22.1 ± 3.9 years; height, 175.4 ± 6.4 cm; body mass, 72.5 ± 7.7 kg) performed a 2-hour surfing training session, with 15-m sprint paddle and CMJ trials performed both before and after the surfing session. Pre- to posttesting measures were analyzed using magnitude-based inferences. Likely declines were observed in the velocity achieved at the 5-, 10-, and 15-m splits of the 15-m sprint paddle, as well as peak velocity. Similarly, likely declines were calculated for CMJ peak force, relative peak force, and jump height. Furthermore, large correlations were calculated between presurfing session peak velocity and the change in 5, 10, 15 m, and peak velocity of the 15-m sprint paddle and total distance covered, wave riding bouts, and success rate. Surfing athletes and coaches may need to consider implementing shorter duration training sessions to reduce the decline in sprint paddling ability and CMJ performance. Furthermore, surfing athletes should possess highly developed sprint paddling ability because this may allow them to undertake a greater workload and catch more waves, which will increase the opportunity for technical refinement of maneuvers and skill acquisition.

  7. Finger Flexor Force Influences Performance in Senior Male Air Pistol Olympic Shooting

    PubMed Central

    Mon, Daniel; Zakynthinaki, María S.; Cordente, Carlos A.; Antón, Antonio J. Monroy; Rodríguez, Bárbara Rodríguez; Jiménez, David López

    2015-01-01

    The ability to stabilize the gun is crucial for performance in Olympic pistol shooting and is thought to be related to the shooters muscular strength. The present study examines the relation between performance and finger flexor force as well as shoulder abduction isometric force in senior male air pistol shooting. 46 Spanish national level shooters served as test subjects of the study. Two maximal force tests were carried out recording handgrip and deltoid force data under competition conditions, during the official training time at national Spanish championships. Performance was measured as the total score of 60 shots at competition. Linear regressions were calculated to examine the relations between performance and peak and average finger flexor forces, peak and average finger flexor forces relative to the BMI, peak and average shoulder abduction isometric forces, peak shoulder abduction isometric force relative to the BMI. The connection between performance and other variables such as age, weight, height, BMI, experience in years and training hours per week was also analyzed. Significant correlations were found between performance at competition and average and peak finger flexor forces. For the rest of the force variables no significant correlations were found. Significant correlations were also found between performance at competition and experience as well as training hours. No significant correlations were found between performance and age, weight, height or BMI. The study concludes that hand grip strength training programs are necessary for performance in air pistol shooting. PMID:26121145

  8. Finger Flexor Force Influences Performance in Senior Male Air Pistol Olympic Shooting.

    PubMed

    Mon, Daniel; Zakynthinaki, María S; Cordente, Carlos A; Antón, Antonio J Monroy; Rodríguez, Bárbara Rodríguez; Jiménez, David López

    2015-01-01

    The ability to stabilize the gun is crucial for performance in Olympic pistol shooting and is thought to be related to the shooters muscular strength. The present study examines the relation between performance and finger flexor force as well as shoulder abduction isometric force in senior male air pistol shooting. 46 Spanish national level shooters served as test subjects of the study. Two maximal force tests were carried out recording handgrip and deltoid force data under competition conditions, during the official training time at national Spanish championships. Performance was measured as the total score of 60 shots at competition. Linear regressions were calculated to examine the relations between performance and peak and average finger flexor forces, peak and average finger flexor forces relative to the BMI, peak and average shoulder abduction isometric forces, peak shoulder abduction isometric force relative to the BMI. The connection between performance and other variables such as age, weight, height, BMI, experience in years and training hours per week was also analyzed. Significant correlations were found between performance at competition and average and peak finger flexor forces. For the rest of the force variables no significant correlations were found. Significant correlations were also found between performance at competition and experience as well as training hours. No significant correlations were found between performance and age, weight, height or BMI. The study concludes that hand grip strength training programs are necessary for performance in air pistol shooting.

  9. Effect of bed height and use of hands on trunk angular velocity during the sit-to-stand transfer.

    PubMed

    Lindemann, Ulrich; van Oosten, Leon; Evers, Jordi; Becker, Clemens; van Dieen, Jaap H; van Lummel, Rob C

    2014-01-01

    The ability to rise from a chair or bed is critical to an individual's quality of life because it determines functional independence. This study was to investigate the effect of bed height and use of hands on trunk angular velocity and trunk angles during the sit-to-stand (STS) performance. Twenty-four older persons (median age 74 years) were equipped with a body-fixed gyroscopic sensor and stood up from a bed adjusted to different heights, with and without the use of hands at each height. Peak angular velocity and trunk range of motion decreased with increasing bed height (all p ≤ 0.038) and were lower using hands during STS transfer indicating less effort. In conclusion, gyroscopic sensor data of the STS transfer of older persons show differences as an effect of bed height and use of hands. These results provide the rationale for recommending a relatively high bed height for most of the older persons. To minimise the effort during sit-to-stand transfer performance from bed, it is necessary to understand the effect of bed height and use of hands. It is concluded that a relatively high bed height and the use of hands is helpful for most of the older persons during sit-to-stand transfer.

  10. Measurement of the Area of Corneal Exposure Using Digital Image and Its Application During Assessment for Blepharoplasty.

    PubMed

    Park, Kisoo; Guo, Ziyi; Park, Dae Hwan

    2018-02-01

    The normal morphological and functional values of orbits vary according to race, sex, and age. We measured the palpebral fissure using the marginal reflex distance (MRD 1 ), marginal limbal distance (MLD), and vertical height of the palpebral fissure (VHPF). Unfortunately, these measurements are all one-dimensional figures that measure the distance between two points; they have limitations when it comes to measuring the three-dimensional ocular surface. Therefore, this study used the area of corneal exposure (ACE), which shows a two-dimensional area, to measure changes between the sizes of eyes according to age. This study was conducted using preoperative photographs of Koreans in Daegu city, Korea, who underwent plastic surgery in our department except for eyelid surgery. We divided the subjects into eight groups, including ten males and ten females in each decade of age, from age 10 to over 80 years. A total of 160 people were recruited who were followed up for photograph analysis using Adobe Photoshop 7.0 software. In terms of the mean value, the ACEs were 73.3 ± 2% in male subjects and 77.1 ± 2% in female subjects, and values for female subjects were greater than those for male subjects (p < 0.05). Significant differences in ACEs were observed according to age. The peak level of growth in the ACE was reached between 20 and 29 years of age. After the 20 s, a gradual decrease was observed (p < 0.05). The peak level of growth in the ACE was reached between 20 and 29 years of age. The growth pattern can be classified as continuously decreasing after reaching the peak level. The data from this study are significant in that they can be used as comprehensive data for normal eyelid values according to age. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  11. Optical monitoring of ion beam Y-Ba-Cu-O sputtering

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1990-11-01

    The emission spectra resulting from ion beam sputtering a Y-Ba-Cu-O target were observed as a function of beam voltage and beam current. The spectra were relatively clean with several peaks readily attributed to each of Y, Ba, and Ar. Monitoring of copper and oxygen was more difficult with a single CuO peak and one O peak evident. The intensities of the cation peaks were linear with respect to beam voltage above 400 V. Since target current was found not to be directly proportional to beam current, target power was defined as the product of beam voltage and target current. The response of cation peak height to changes in target power was linear and similar for variations of either beam voltage or target current.

  12. Pressure Effect on the Boson Peak in Deeply Cooled Confined Water: Evidence of a Liquid-Liquid Transition.

    PubMed

    Wang, Zhe; Kolesnikov, Alexander I; Ito, Kanae; Podlesnyak, Andrey; Chen, Sow-Hsin

    2015-12-04

    The boson peak in deeply cooled water confined in nanopores is studied to examine the liquid-liquid transition (LLT). Below ∼180  K, the boson peaks at pressures P higher than ∼3.5  kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. These phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. In addition, the P dependence of the librational band also agrees with the above conclusion.

  13. Pressure Effect on the Boson Peak in Deeply Cooled Confined Water: Evidence of a Liquid-Liquid Transition

    DOE PAGES

    Wang, Zhe; Kolesnikov, Alexander I.; Ito, Kanae; ...

    2015-12-03

    We studied the boson peak in deeply cooled water confined in nanopores in order to examine the liquid-liquid transition (LLT). Below ~180 K, the boson peaks at pressures P higher than ~3.5 kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. Moreover, these phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. Additionally,more » the P dependence of the librational band also agrees with the above conclusion.« less

  14. Detecting molecular features of spectra mainly associated with structural and non-structural carbohydrates in co-products from bioEthanol production using DRIFT with uni- and multivariate molecular spectral analyses.

    PubMed

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485-1188 cm(-1)), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm(-1) with region and baseline: ca. 1292-1198 cm(-1)), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187-950 cm(-1)), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm(-1) with region and baseline: ca. 952-910 cm(-1)), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm(-1) with region and baseline: ca. 880-827 cm(-1)), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm(-1) with baseline: ca. 1485-1188 cm(-1)), H_1370 (structural carbohydrate, peak height at ca. 1370 cm(-1) with a baseline: ca. 1485-1188 cm(-1)). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05), higher (P < 0.05) intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292-1198 cm(-1) and A_CHO (total CHO) at 1187-950 cm(-1) with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared with the original grains. However, the sensitivities of different types of carbohydrates and different grains (corn and wheat) to the processing differ. In general, the bioethanol processing increases the molecular spectral intensities for the structural carbohydrates and decreases the intensities for the non-structural carbohydrates. Further study is needed to quantify carbohydrate related molecular spectral features of the bioethanol co-products in relation to nutrient supply and availability of carbohydrates.

  15. Intra-annual growth and mortality of four Populus clones in pure and mixed plantings

    Treesearch

    Warren D. Devine; Constance A. Harrington; Dean S. DeBell

    2010-01-01

    Intra-annual growth rates were assessed during 3 years for four Populus clones grown in pure and mixed clonal stands at square spacings of 0.5, 1.0, and 1.5 m in western Washington, USA. Height growth rate peaked in August, except at the 0.5-m spacing where it peaked in July and June in years 2 and 3, respectively. Diameter growth rate generally...

  16. Validity of parent-reported weight and height of preschool children measured at home or estimated without home measurement: a validation study

    PubMed Central

    2011-01-01

    Background Parental reports are often used in large-scale surveys to assess children's body mass index (BMI). Therefore, it is important to know to what extent these parental reports are valid and whether it makes a difference if the parents measured their children's weight and height at home or whether they simply estimated these values. The aim of this study is to compare the validity of parent-reported height, weight and BMI values of preschool children (3-7 y-old), when measured at home or estimated by parents without actual measurement. Methods The subjects were 297 Belgian preschool children (52.9% male). Participation rate was 73%. A questionnaire including questions about height and weight of the children was completed by the parents. Nurses measured height and weight following standardised procedures. International age- and sex-specific BMI cut-off values were employed to determine categories of weight status and obesity. Results On the group level, no important differences in accuracy of reported height, weight and BMI were identified between parent-measured or estimated values. However, for all 3 parameters, the correlations between parental reports and nurse measurements were higher in the group of children whose body dimensions were measured by the parents. Sensitivity for underweight and overweight/obesity were respectively 73% and 47% when parents measured their child's height and weight, and 55% and 47% when parents estimated values without measurement. Specificity for underweight and overweight/obesity were respectively 82% and 97% when parents measured the children, and 75% and 93% with parent estimations. Conclusions Diagnostic measures were more accurate when parents measured their child's weight and height at home than when those dimensions were based on parental judgements. When parent-reported data on an individual level is used, the accuracy could be improved by encouraging the parents to measure weight and height of their children at home. PMID:21736757

  17. Equivalent peak resolution: characterization of the extent of separation for two components based on their relative peak overlap.

    PubMed

    Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav

    2015-03-01

    Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite.

    PubMed

    Spevak, Lyudmila; Flach, Carol R; Hunter, Tracey; Mendelsohn, Richard; Boskey, Adele

    2013-05-01

    Acid phosphate substitution into mineralized tissues is an important determinant of their mechanical properties and their response to treatment. This study identifies and validates Fourier transform infrared spectroscopic imaging (FTIRI) spectral parameters that provide information on the acid phosphate (HPO4) substitution into hydroxyapatite in developing mineralized tissues. Curve fitting and Fourier self-deconvolution were used to identify subband positions in model compounds (with and without HPO4). The intensity of subbands at 1127 and 1110 cm(-1) correlated with the acid phosphate content in these models. Peak height ratios of these subbands to the ν3 vibration at 1096 cm(-1) found in stoichiometric apatite were evaluated in the model compounds and mixtures thereof. FTIRI spectra of bones and teeth at different developmental ages were analyzed using these spectral parameters. Factor analysis (a chemometric technique) was also conducted on the tissue samples and resulted in factor loadings with spectral features corresponding to the HPO4 vibrations described above. Images of both factor correlation coefficients and the peak height ratios 1127/1096 and 1112/1096 cm(-1) demonstrated higher acid phosphate content in younger vs. more mature regions in the same specimen. Maps of the distribution of acid phosphate content will be useful for characterizing the extent of new bone formation, the areas of potential decreased strength, and the effects of therapies such as those used in metabolic bone diseases (osteoporosis, chronic kidney disease) on mineral composition. Because of the wider range of values obtained with the 1127/1096 cm(-1) parameter compared to the 1110/1096 cm(-1) parameter and the smaller scatter in the slope, it is suggested that this ratio should be the parameter of choice.

  19. FTIRI Parameters describing Acid Phosphate Substitution in Biologic Hydroxyapatite

    PubMed Central

    Spevak, Lyudmila; Flach, Carol R.; Hunter, Tracey; Mendelsohn, Richard; Boskey, Adele

    2013-01-01

    Acid phosphate substitution into mineralized tissue is an important determinant of their mechanical properties and their response to treatment. This study identifies and validates Fourier Transform Infrared Spectroscopic Imaging (FTIRI) spectral parameters that provide information on the acid phosphate (HPO4) substitution into hydroxyapatite in developing mineralized tissues. Curve fitting and Fourier self-deconvolution were used to identify subband positions in model compounds (with and without HPO4). The intensity of subbands at 1127 cm−1 and 1110 cm−1 correlated with the acid phosphate content in these models. Peak height ratios of these subbands to the ν3 vibration at 1096 cm−1 found in stoichiometric apatite, were evaluated in the model compounds and mixtures thereof. FTIRI spectra of bones and teeth at different developmental ages were analyzed using these spectral parameters. Factor analysis (a chemometric technique) was also conducted on the tissue samples and resulted in factor loadings with spectral features corresponding to the HPO4 vibrations described above. Images of both factor correlation coefficients and the peak height ratios 1127cm−1/1096cm−1 and 1112cm−1/1096cm−1 demonstrated higher acid phosphate content in younger vs. more mature regions in the same specimen. Maps of the distribution of acid phosphate content will be useful for characterizing the extent of new bone formation, areas of potential decreased strength, and the effects of therapies such as those used in metabolic bone diseases (osteoporosis, chronic kidney disease) on mineral composition. Because of the wider range of values obtained with the 1127 cm−1/1096 cm−1 parameter compared to the 1110 cm−1/1096 cm−1 parameter, and the smaller scatter in the slope, it is suggested that this ratio should be the parameter of choice. PMID:23380987

  20. Application of Non-Equilibrium Thermo Field Dynamics to quantum teleportation under the environment

    NASA Astrophysics Data System (ADS)

    Kitajima, S.; Arimitsu, T.; Obinata, M.; Yoshida, K.

    2014-06-01

    Quantum teleportation for continuous variables is treated by Non-Equilibrium Thermo Field Dynamics (NETFD), a canonical operator formalism for dissipative quantum systems, in order to study the effect of imperfect quantum entanglement on quantum communication. We used an entangled state constructed by two squeezed states. The entangled state is imperfect due to two reasons, i.e., one is the finiteness of the squeezing parameter r and the other comes from the process that the squeezed states are created under the dissipative interaction with the environment. We derive the expressions for one-shot fidelity (OSF), probability density function (PDF) associated with OSF and (averaged) fidelity by making full use of the algebraic manipulation of operator algebra within NETFD. We found that OSF and PDF are given by Gaussian forms with its peak at the original information α to be teleported, and that for r≫1 the variances of these quantities blow up to infinity for κ/χ≤1, while they approach to finite values for κ/χ>1. Here, χ represents the intensity of a degenerate parametric process, and κ the relaxation rate due to the interaction with the environment. The blow-up of the variances for OSF and PDF guarantees higher security against eavesdropping. With the blow-up of the variances, the height of PDF reduces to small because of the normalization of probability, while the height of OSF approaches to 1 indicating a higher performance of the quantum teleportation. We also found that in the limit κ/χ≫1 the variances of both OSF and PDF for any value of r (>0) reduce to 1 which is the same value as the case r=0, i.e., no entanglement.

  1. Evaluation of our prognosis of ST-phenomena made according to the solar inertial motion (SIM) and expected further development

    NASA Astrophysics Data System (ADS)

    Charvátová, Ivanka; Hejda, Pavel

    2016-04-01

    During several latest years, a behavior of the Sun is slightly unusual (hibernation stage?). Our prediction of cycle 24 height and of geomagnetic index aa (Charvátová, 2011) was confirmed in two basic points: the cycle 24 height is around 100 W (predicted value according to a close similarity between the SIMs in the years 1840-1905 and 1980-2045 was 140(100) W). (Other predictions for cycle 24 were between 40 W and 185 W.) As concerns aa-index of geomagnetic activity, predicted great depression bellow 10 nT appeared, but before the predicted year. Although the continuation of our SIMs prediction shows lower future sunspot cycles 25(65 W), 26 (80 W), 27 (60 W), the values are much higher than during the Maunder minimum. These cycles could be longer, up to 12 years. A future course of geomagnetic index aa could follow its course after 1880. In aa-index and also in sunspot numbers, the cycle of 1.6 years, dominant period in the SIM due to the inner planets (synodic period of Venus and Earth), is permanently seen, including in distances between two peaks of sunspot cycles. We can use this for prediction of higher values of these both phenomena - it can occur in the years 2016.42, 2018.02, 2019.62. During the interval 1840-1905 also higher volcanic activity occurred - up to force of Krakatoa (1883, DVI=400). Since 1980, several great volcanic events appeared again (e.g. Mt. Pinatubo (1991), DVI=350). Survey and comparison of volcanic indices DVI and AI in the two corresponding mentioned intervals will be also presented.

  2. Structure and growth of Bi(110) islands on Si(111)√{3 }×√{3 }-B substrates

    NASA Astrophysics Data System (ADS)

    Nagase, Kentaro; Kokubo, Ikuya; Yamazaki, Shiro; Nakatsuji, Kan; Hirayama, Hiroyuki

    2018-05-01

    The structure and growth of ultrathin Bi(110) islands were investigated on a Si(111)√{3 }×√{3 }-B substrate by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Both even- and odd-layer-height islands nucleated on a one-monolayer-thick wetting layer. The islands preferred the even layer heights over the odd layer heights with an area ratio of 3:1. A weak, long-range corrugation was observed to overlap on the atomic arrangement at the top of the islands. The average distance between the peaks of the corrugation oscillated in accordance with the alternation of even and odd layer heights. Nucleation of single- and double-layer terraces occurred on the islands with even layer heights but not on those with odd layer heights. The unit cell of the single-layer terrace was aligned with that of the underlying even-layer-height island. The inequality in the height preference and the height-dependent oscillation of the corrugation suggested that the even- and odd-layer-height islands possessed different structures. The dominance and stability against terrace nucleation of the even-layer-height islands were consistent with the theoretically predicted stability of the paired layer-stacked black-phosphorus (BP)-like structure for ultrathin Bi(110) films. The alignment of the unit cell at the terrace on the island and STS spectra suggested a BP-like/bulklike/BP-like sandwich structure for the odd-layer-height Bi(110) islands.

  3. Ionosphere of venus: first observations of the dayside ion composition near dawn and dusk.

    PubMed

    Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Donahue, T M; Cloutier, P A; Michel, F C; Daniell, R E; Blackwell, B H

    1979-02-23

    The first in situ measurements of the composition of the ionosphere of Venus are provided by independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bits and orbiter spacecraft, exploring the dawn and duskside regions, respectively. An extensive composition of ion species, rich in oxygen, nitrogen, and carbon chemistry is idenitified. The dominant topside ion is O(+), with C(+), N(+), H(+), and He(+) as prominent secondary ions. In the lower ionosphere, the ionzization peak or F(1) layer near 150 kilometers reaches a concentration of about 5 x l0(3) ions per cubic centimeter, and is composed of the dominant molecular ion, O(2)(+), with NO(+), CO(+), and CO(2)(+), constituting less than 10 percent of the total. Below the O(+) peak near 200 kilometers, the ions exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport, which lifts the composition upward to the often abrupt ionopause, or thermal ion boundary, which is observed to vary in height between 250 to 1800 kilometers, in response to solar wind dynamics.

  4. Quasiclassical trajectory study of the Cl+CH4 reaction dynamics on a quadratic configuration interaction with single and double excitation interpolated potential energy surface.

    PubMed

    Castillo, J F; Aoiz, F J; Bañares, L

    2006-09-28

    An ab initio interpolated potential energy surface (PES) for the Cl+CH(4) reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl+CH(4) and Cl+CD(4) reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl+CH(4) and Cl+CD(4) reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH(4) molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH(3) and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.

  5. Quasiclassical trajectory study of the Cl +CH4 reaction dynamics on a quadratic configuration interaction with single and double excitation interpolated potential energy surface

    NASA Astrophysics Data System (ADS)

    Castillo, J. F.; Aoiz, F. J.; Bañares, L.

    2006-09-01

    An ab initio interpolated potential energy surface (PES) for the Cl +CH4 reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl +CH4 and Cl +CD4 reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl +CH4 and Cl +CD4 reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH4 molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH3 and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.

  6. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  7. Statistical Significance of Periodicity and Log-Periodicity with Heavy-Tailed Correlated Noise

    NASA Astrophysics Data System (ADS)

    Zhou, Wei-Xing; Sornette, Didier

    We estimate the probability that random noise, of several plausible standard distributions, creates a false alarm that a periodicity (or log-periodicity) is found in a time series. The solution of this problem is already known for independent Gaussian distributed noise. We investigate more general situations with non-Gaussian correlated noises and present synthetic tests on the detectability and statistical significance of periodic components. A periodic component of a time series is usually detected by some sort of Fourier analysis. Here, we use the Lomb periodogram analysis, which is suitable and outperforms Fourier transforms for unevenly sampled time series. We examine the false-alarm probability of the largest spectral peak of the Lomb periodogram in the presence of power-law distributed noises, of short-range and of long-range fractional-Gaussian noises. Increasing heavy-tailness (respectively correlations describing persistence) tends to decrease (respectively increase) the false-alarm probability of finding a large spurious Lomb peak. Increasing anti-persistence tends to decrease the false-alarm probability. We also study the interplay between heavy-tailness and long-range correlations. In order to fully determine if a Lomb peak signals a genuine rather than a spurious periodicity, one should in principle characterize the Lomb peak height, its width and its relations to other peaks in the complete spectrum. As a step towards this full characterization, we construct the joint-distribution of the frequency position (relative to other peaks) and of the height of the highest peak of the power spectrum. We also provide the distributions of the ratio of the highest Lomb peak to the second highest one. Using the insight obtained by the present statistical study, we re-examine previously reported claims of ``log-periodicity'' and find that the credibility for log-periodicity in 2D-freely decaying turbulence is weakened while it is strengthened for fracture, for the ion-signature prior to the Kobe earthquake and for financial markets.

  8. Peak torque and muscle balance in the knees of young U-15 and U-17 soccer athletes playing various tactical positions.

    PubMed

    Chiamonti Bona, Cleiton; Tourinho Filho, Hugo; Izquierdo, Mikel; Pires Ferraz, Ricardo M; Marques, Mário C

    2017-01-01

    Soccer is a sport that is practiced worldwide and has been investigated in its various aspects, particularly muscle strength, which is an essential motor skill for sports performance. The objective of this study was to investigate the peak torque and muscle balance on the knee extensor and flexor of young soccer players in the tactical positions of goalkeeper, defender, full back, midfielder, defensive midfielder and striker, as well as to determine which field position has the highest peak torque. Forty-nine male players were recruited and divided into two categories during the preparatory period of the season: the Under-15 (U-15) group (N.=23, mean age 14.7±0.5 years, body mass 58.2±10.5 kg, body height 168.5±7.6 cm), and the Under-17 (U-17) group (N.=26, mean age 16.8±0.4 years, body mass 69.2±7.9 kg, body height 176.2±6.6 cm). The U-17 athletes presented a higher peak torque in all the movements of flexion and extension in the two angular velocities (i.e. 60°/s and 300°/s), but only the dominant knee extensor at 300°/s was significantly different between the two categories as well as the percentage change in peak torque compared between U-15 and U-17 was always above 20%. The peak torque variation in the U-17 category (i.e. mostly above 20%) highlights a higher peak torque compared to U-15 athletes. The muscular deficit of the two categories presented a low average of 10-15%, indicating a good muscle balance between knee extensors and flexors. Finally, goalkeepers and defenders achieved the highest peak torque amongst the field positions.

  9. Influence of heel height and shoe insert on comfort perception and biomechanical performance of young female adults during walking.

    PubMed

    Hong, Wei-Hsien; Lee, Yung-Hui; Chen, Hsieh-Ching; Pei, Yu-Cheng; Wu, Ching-Yi

    2005-12-01

    The possible negative effects of high-heeled shoes on subjective comfort perception and objective biomechanical assessment have been noted. Although shoe inserts have been widely applied in footwear to increase comfort and to reduce the frequency of movement-related injury, no study has attempted to identify insert effectiveness in high heels. The purpose of this study was to determine the effects of heel height and shoe inserts on comfort and biomechanics as represented by plantar pressure and ground reaction force (GRF). Twenty young female adults performed the test conditions formed by the cross-matching of shoe inserts (shoe without insert and shoe with total contact insert [TCI]) and heel height (a flat, a low heel [3.8 cm] and a high heel [7.6 cm]). Two-way analyses of variance for repeated measures design were used to test condition effects on comfort rating, plantar pressure, and GRF during gait. To determine the biomechanical variables that can predict comfort, a multiple linear regression with stepwise method was done. The results showed that discomfort increased with heel height. In high heels, the plantar pressure in the heel and midfoot shifted to the medial forefoot, and the vertical and anteroposterior GRF increased. Use of the TCI reduced the peak pressure in the medial forefoot. Interestingly, the effectiveness of the TCI was greater in the higher heels than in the lower heels and in flat heels. The peak pressure in the medial forefoot, impact force, and the first peak vertical GRF could explain 75.6% of the variance of comfort in high-heeled gait. These findings suggest that higher heels result in decreased comfort, which can be reflected by both the subjective rating scale and biomechanical variables. Use of a TCI altered the biomechanics and therefore improved the comfort in high-heeled shoes.

  10. A controlled evaluation of oral screen effects on intra-oral pressure curve characteristics.

    PubMed

    Knösel, Michael; Jung, Klaus; Kinzinger, Gero; Bauss, Oskar; Engelke, Wilfried

    2010-10-01

    The purpose of this study was to quantify the impact of oral screen (OS) application on intra-oral pressure characteristics in three malocclusion groups. Fifty-six randomly recruited participants (26 males and 30 females) who met the inclusion criteria of either an Angle Class I occlusal relationships or Angle Class II1 or II2 malocclusions, were assigned by dentition to group I (n = 31), group II1 (n = 12), or group II2 (n = 13). Two 3 minute periods of intra-oral pressure monitoring were conducted on each participant, using two different oral end fittings connected to a piezo-resistive relative pressure sensor: (1) a flexible OS and (2) a small-dimensioned air-permeable end cap (EC), which was placed laterally in the premolar region, thus recording intra-oral pressure independent of the influence of the OS. Pressure curve characteristics for both periods and between the malocclusion groups were evaluated with reference to the frequency of swallowing peaks, duration, and altitude of negative pressure plateau phases and the area under the pressure curve. Statistical analysis was undertaken using analysis of variance (ANOVA), the Wilcoxon Mann-Whitney test, and spearman correlation coefficient. A median number of two peaks (median height -20.9 mbar) and three plateau phases (median height of -2.3 mbar) may be regarded as normative for normal occlusion subjects during a 3 minute period, at rest. OS application raised the median average duration and height of intra-oral negative pressure plateau phases in the II1 subjects, exceeding those of group I, but less than the plateau duration in group II2. Median peak heights were distinctively lower in groups I and II1 during OS application. It is concluded that additional training for extension of intra-oral pressure phases may be a promising approach to pre-orthodontic Class II division 1 treatment.

  11. The International Reference Ionosphere: Model Update 2016

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Altadill, David; Reinisch, Bodo; Galkin, Ivan; Shubin, Valentin; Truhlik, Vladimir

    2016-04-01

    The International Reference Ionosphere (IRI) is recognized as the official standard for the ionosphere (COSPAR, URSI, ISO) and is widely used for a multitude of different applications as evidenced by the many papers in science and engineering journals that acknowledge the use of IRI (e.g., about 11% of all Radio Science papers each year). One of the shortcomings of the model has been the dependence of the F2 peak height modeling on the propagation factor M(3000)F2. With the 2016 version of IRI, two new models will be introduced for hmF2 that were developed directly based on hmF2 measurements by ionosondes [Altadill et al., 2013] and by COSMIC radio occultation [Shubin, 2015], respectively. In addition IRI-2016 will include an improved representation of the ionosphere during the very low solar activities that were reached during the last solar minimum in 2008/2009. This presentation will review these and other improvements that are being implemented with the 2016 version of the IRI model. We will also discuss recent IRI workshops and their findings and results. One of the most exciting new projects is the development of the Real-Time IRI [Galkin et al., 2012]. We will discuss the current status and plans for the future. Altadill, D., S. Magdaleno, J.M. Torta, E. Blanch (2013), Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Advances in Space Research 52, 1756-1769, doi:10.1016/j.asr.2012.11.018. Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Science, 47, RS0L07, doi:10.1029/2011RS004952. Shubin V.N. (2015), Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations, Advances in Space Research 56, 916-928, doi:10.1016/j.asr.2015.05.029.

  12. Comparison of pulmonary function between children living in rural and urban areas in northern Nigeria.

    PubMed

    Glew, R H; Kassam, H; Vander Voort, J; Agaba, P A; Harkins, M; VanderJagt, D J

    2004-08-01

    Children in northern Nigeria and elsewhere in the hot, arid western Sahel, are at risk of having their lung function compromised by a variety of factors, including undernutrition, environmental factors (e.g. airborne pollutants such as dust and smoke from wood fires), chronic upper-respiratory tract infections, and low socioeconomic class. We were interested in using spirometry to compare the pulmonary function of Nigerian children and adolescents aged 6-18 years who were living in urban and rural settings with the corresponding standards for African-American children. A total of 183 boys and girls in the rural village of Sabon Fobur on the Jos Plateau and another 128 boys and girls in the city of Jos were tested to determine their forced vital capacity (FVC), FVC at 1 s (FVC1), and peak expiratory flow (PEF). The nutritional status of the subjects was determined by measuring the body mass index (BMI), triceps skin-fold thickness, and mid-arm circumference, and fat-free mass (FFM) and fat mass (FM) by bioelectrical impedance analysis. According to the results of anthropometry, the subjects in Sabon Fobur and Jos were lean but generally adequately nourished. The mean FVC, FVC1 and PEF values for the rural males were 1.851,1.761, and 3.521, and for the urban males they were 1.971,1.791, and 3.471, respectively. The corresponding values for the rural females were 1.791,1.701, and 3.371, and for the urban females they were 1.761,1.671, and 3.091. These values were approximately 100 per cent of the corresponding values for African-American children. In general, strong correlations were found between each of the three lung function parameters and age, weight, height (only for the males), BMI, MAC, and FFM. These results show that: (1) the lung function of Nigerian children and adolescents living in either rural or urban areas were similar and compared favorably with African-American standards, and (2) weight was as important as height in determining pulmonary function. The inclusion of FFM as an explanatory variable did notfurther increase the accuracy of the prediction, even in a population where malnutrition may be prevalent. Therefore, we conclude that measurements of height and weight are all that are required for the assessment of lung function using spirometry in Nigerian children.

  13. Vehicle and enhancer effects on human skin penetration of aminophylline from cream formulations: evaluation in vivo.

    PubMed

    Wang, Lai-Hao; Wang, Chia-Chen; Kuo, Su-Ching

    2007-01-01

    The effects of four essential oils (rosemary, ylang, lilacin, and peppermint oils), and three plant oils (jojoba oil, corn germ oil, and olive oil) on the permeation of aminophylline were studied using human skin. The permeation effects of these oils were compared with those of three chemical penetration enhancers. Although all oils enhanced the permeation of aminophylline, their effects were less than that of ethanol. Jojoba oil was found to be the most active, causing about a 32% peak height decrease of N-H bending absorbances in comparison with the control, while peppermint, lilacin, rosemary, and ylang oils caused 28%, 24%, 18%, and 12% peak height decreases, respectively. Microemulsions containing 10% jojoba oil and 30% corn germ oil were found to be superior vehicles for the percutaneous absorption of aminophylline. Comparision with results obtained from high-performance liquid chromatography shows good agreement.

  14. Pelvic kinematic method for determining vertical jump height.

    PubMed

    Chiu, Loren Z F; Salem, George J

    2010-11-01

    Sacral marker and pelvis reconstruction methods have been proposed to approximate total body center of mass during relatively low intensity gait and hopping tasks, but not during a maximum effort vertical jumping task. In this study, center of mass displacement was calculated using the pelvic kinematic method and compared with center of mass displacement using the ground-reaction force-impulse method, in experienced athletes (n = 13) performing restricted countermovement vertical jumps. Maximal vertical jumps were performed in a biomechanics laboratory, with data collected using an 8-camera motion analysis system and two force platforms. The pelvis center of mass was reconstructed from retro-reflective markers placed on the pelvis. Jump height was determined from the peak height of the pelvis center of mass minus the standing height. Strong linear relationships were observed between the pelvic kinematic and impulse methods (R² = .86; p < .01). The pelvic kinematic method underestimated jump height versus the impulse method, however, the difference was small (CV = 4.34%). This investigation demonstrates concurrent validity for the pelvic kinematic method to determine vertical jump height.

  15. Method and apparatus for analog pulse pile-up rejection

    DOEpatents

    De Geronimo, Gianluigi

    2013-12-31

    A method and apparatus for pulse pile-up rejection are disclosed. The apparatus comprises a delay value application constituent configured to receive a threshold-crossing time value, and provide an adjustable value according to a delay value and the threshold-crossing time value; and a comparison constituent configured to receive a peak-occurrence time value and the adjustable value, compare the peak-occurrence time value with the adjustable value, indicate pulse acceptance if the peak-occurrence time value is less than or equal to the adjustable value, and indicate pulse rejection if the peak-occurrence time value is greater than the adjustable value.

  16. Method and apparatus for analog pulse pile-up rejection

    DOEpatents

    De Geronimo, Gianluigi

    2014-11-18

    A method and apparatus for pulse pile-up rejection are disclosed. The apparatus comprises a delay value application constituent configured to receive a threshold-crossing time value, and provide an adjustable value according to a delay value and the threshold-crossing time value; and a comparison constituent configured to receive a peak-occurrence time value and the adjustable value, compare the peak-occurrence time value with the adjustable value, indicate pulse acceptance if the peak-occurrence time value is less than or equal to the adjustable value, and indicate pulse rejection if the peak-occurrence time value is greater than the adjustable value.

  17. Accurate Drift Time Determination by Traveling Wave Ion Mobility Spectrometry: The Concept of the Diffusion Calibration.

    PubMed

    Kune, Christopher; Far, Johann; De Pauw, Edwin

    2016-12-06

    Ion mobility spectrometry (IMS) is a gas phase separation technique, which relies on differences in collision cross section (CCS) of ions. Ionic clouds of unresolved conformers overlap if the CCS difference is below the instrumental resolution expressed as CCS/ΔCCS. The experimental arrival time distribution (ATD) peak is then a superimposition of the various contributions weighted by their relative intensities. This paper introduces a strategy for accurate drift time determination using traveling wave ion mobility spectrometry (TWIMS) of poorly resolved or unresolved conformers. This method implements through a calibration procedure the link between the peak full width at half-maximum (fwhm) and the drift time of model compounds for wide range of settings for wave heights and velocities. We modified a Gaussian equation, which achieves the deconvolution of ATD peaks where the fwhm is fixed according to our calibration procedure. The new fitting Gaussian equation only depends on two parameters: The apex of the peak (A) and the mean drift time value (μ). The standard deviation parameter (correlated to fwhm) becomes a function of the drift time. This correlation function between μ and fwhm is obtained using the TWIMS calibration procedure which determines the maximum instrumental ion beam diffusion under limited and controlled space charge effect using ionic compounds which are detected as single conformers in the gas phase. This deconvolution process has been used to highlight the presence of poorly resolved conformers of crown ether complexes and peptides leading to more accurate CCS determinations in better agreement with quantum chemistry predictions.

  18. Comparison of midlatitude ionospheric F region peak parameters and topside Ne profiles from IRI2012 model prediction with ground-based ionosonde and Alouette II observations

    NASA Astrophysics Data System (ADS)

    Gordiyenko, G. I.; Yakovets, A. F.

    2017-07-01

    The ionospheric F2 peak parameters recorded by a ground-based ionosonde at the midlatitude station Alma-Ata [43.25N, 76.92E] were compared with those obtained using the latest version of the IRI model (http://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html). It was found that for the Alma-Ata (Kazakhstan) location, the IRI2012 model describes well the morphology of seasonal and diurnal variations of the ionospheric critical frequency (foF2) and peak density height (hmF2) monthly medians. The model errors in the median foF2 prediction (percentage deviations between the median foF2 values and their model predictions) were found to vary approximately in the range from about -20% to 34% and showed a stable overestimation in the median foF2 values for daytime in January and July and underestimation for day- and nighttime hours in the equinoctial months. The comparison between the ionosonde hmF2 and IRI results clearly showed that the IRI overestimates the nighttime hmF2 values for March and September months, and the difference is up to 30 km. The daytime Alma-Ata hmF2 data were found to be close to the IRI predictions (deviations are approximately ±10-15 km) in winter and equinoctial months, except in July when the observed hmF2 values were much more (from approximately 50-200 km). The comparison between the Alouette foF2 data and IRI predictions showed mixed results. In particular, the Alouette foF2 data showed a tendency to be overestimated for daytime in winter months similar to the ionosonde data; however, the overestimated foF2 values for nighttime in the autumn equinox were in disagreement with the ionosonde observations. There were large deviations between the observed hmF2 values and their model predictions. The largest deviations were found during winter and summer (up to -90 km). The comparison of the Alouette II electron density profiles with those predicted by the adapted IRI2012 model in the altitude range hmF2 of the satellite position showed a great difference in the shape of the Alouette-, NeQuick-, IRI02-coorr, and IRI2001-derived Ne profiles, with overestimated Ne values at some altitudes and underestimated Ne values at others. The results obtained in the study showed that the observation-model differences were significant especially for the real observed (not median) data. For practical application, it is clearly important for the IRI2012 model to be adapted to the observed F2-layer peak parameters. However, the model does not offer a simple solution to predict the shape of the vertical electron density profile in the topside ionosphere, because of the problem with the topside shape parameters.

  19. Power and impulse applied during push press exercise.

    PubMed

    Lake, Jason P; Mundy, Peter D; Comfort, Paul

    2014-09-01

    The aim of this study was to quantify the load, which maximized peak and mean power, and impulse applied to these loads, during the push press and to compare them to equivalent jump squat data. Resistance-trained men performed 2 push press (n = 17; age: 25.4 ± 7.4 years; height: 183.4 ± 5 cm; body mass: 87 ± 15.6 kg) and jump squat (n = 8 of original 17; age: 28.7 ± 8.1 years; height: 184.3 ± 5.5 cm; mass: 98 ± 5.3 kg) singles with 10-90% of their push press and back squat 1 repetition maximum (1RM), respectively, in 10% 1RM increments while standing on a force platform. Push press peak and mean power was maximized with 75.3 ± 16.4 and 64.7 ± 20% 1RM, respectively, and impulses applied to these loads were 243 ± 29 N·s and 231 ± 36 N·s. Increasing and decreasing load, from the load that maximized peak and mean power, by 10 and 20% 1RM reduced peak and mean power by 6-15% (p ≤ 0.05). Push press and jump squat maximum peak power (7%, p = 0.08) and the impulse that was applied to the load that maximized peak (8%, p = 0.17) and mean (13%, p = 0.91) power were not significantly different, but push press maximum mean power was significantly greater than the jump squat equivalent (∼9.5%, p = 0.03). The mechanical demand of the push press is comparable with the jump squat and could provide a time-efficient combination of lower-body power and upper-body and trunk strength training.

  20. Simulated transcatheter aortic valve deformation: A parametric study on the impact of leaflet geometry on valve peak stress.

    PubMed

    Li, Kewei; Sun, Wei

    2017-03-01

    In this study, we developed a computational framework to investigate the impact of leaflet geometry of a transcatheter aortic valve (TAV) on the leaflet stress distribution, aiming at optimizing TAV leaflet design to reduce its peak stress. Utilizing a generic TAV model developed previously [Li and Sun, Annals of Biomedical Engineering, 2010. 38(8): 2690-2701], we first parameterized the 2D leaflet geometry by mathematical equations, then by perturbing the parameters of the equations, we could automatically generate a new leaflet design, remesh the 2D leaflet model and build a 3D leaflet model from the 2D design via a Python script. Approximately 500 different leaflet designs were investigated by simulating TAV closure under the nominal circular deployment and physiological loading conditions. From the simulation results, we identified a new leaflet design that could reduce the previously reported valve peak stress by about 5%. The parametric analysis also revealed that increasing the free edge width had the highest overall impact on decreasing the peak stress. A similar computational analysis was further performed for a TAV deployed in an abnormal, asymmetric elliptical configuration. We found that a minimal free edge height of 0.46 mm should be adopted to prevent central backflow leakage. This increase of the free edge height resulted in an increase of the leaflet peak stress. Furthermore, the parametric study revealed a complex response surface for the impact of the leaflet geometric parameters on the peak stress, underscoring the importance of performing a numerical optimization to obtain the optimal TAV leaflet design. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. The application of musculoskeletal modeling to investigate gender bias in non-contact ACL injury rate during single-leg landings.

    PubMed

    Ali, Nicholas; Andersen, Michael Skipper; Rasmussen, John; Robertson, D Gordon E; Rouhi, Gholamreza

    2014-01-01

    The central tenet of this study was to develop, validate and apply various individualised 3D musculoskeletal models of the human body for application to single-leg landings over increasing vertical heights and horizontal distances. While contributing to an understanding of whether gender differences explain the higher rate of non-contact anterior cruciate ligament (ACL) injuries among females, this study also correlated various musculoskeletal variables significantly impacted by gender, height and/or distance and their interactions with two ACL injury-risk predictor variables; peak vertical ground reaction force (VGRF) and peak proximal tibia anterior shear force (PTASF). Kinematic, kinetic and electromyography data of three male and three female subjects were measured. Results revealed no significant gender differences in the musculoskeletal variables tested except peak VGRF (p = 0.039) and hip axial compressive force (p = 0.032). The quadriceps and the gastrocnemius muscle forces had significant correlations with peak PTASF (r = 0.85, p < 0.05 and r = - 0.88, p < 0.05, respectively). Furthermore, hamstring muscle force was significantly correlated with peak VGRF (r = - 0.90, p < 0.05). The ankle flexion angle was significantly correlated with peak PTASF (r = - 0.82, p < 0.05). Our findings indicate that compared to males, females did not exhibit significantly different muscle forces, or ankle, knee and hip flexion angles during single-leg landings that would explain the gender bias in non-contact ACL injury rate. Our results also suggest that higher quadriceps muscle force increases the risk, while higher hamstring and gastrocnemius muscle forces as well as ankle flexion angle reduce the risk of non-contact ACL injury.

  2. Comprehensive multi-stage linkage analyses identify a locus for adult height on chromosome 3p in a healthy Caucasian population.

    PubMed

    Ellis, Justine A; Scurrah, Katrina J; Duncan, Anna E; Lamantia, Angela; Byrnes, Graham B; Harrap, Stephen B

    2007-04-01

    There have been a number of genome-wide linkage studies for adult height in recent years. These studies have yielded few well-replicated loci, and none have been further confirmed by the identification of associated gene variants. The inconsistent results may be attributable to the fact that few studies have combined accurate phenotype measures with informative statistical modelling in healthy populations. We have performed a multi-stage genome-wide linkage analysis for height in 275 adult sibling pairs drawn randomly from the Victorian Family Heart Study (VFHS), a healthy population-based Caucasian cohort. Height was carefully measured in a standardised fashion on regularly calibrated equipment. Following genome-wide identification of a peak Z-score of 3.14 on chromosome 3 at 69 cM, we performed a fine-mapping analysis of this region in an extended sample of 392 two-generation families. We used a number of variance components models that incorporated assortative mating and shared environment effects, and we observed a peak LOD score of approximately 3.5 at 78 cM in four of the five models tested. We also demonstrated that the most prevalent model in the literature gave the worst fit, and the lowest LOD score (2.9) demonstrating the importance of appropriate modelling. The region identified in this study replicates the results of other genome-wide scans of height and bone-related phenotypes, strongly suggesting the presence of a gene important in bone growth on chromosome 3p. Association analyses of relevant candidate genes should identify the genetic variants responsible for the chromosome 3p linkage signal in our population.

  3. Male sex, height, weight, and body mass index can increase external pressure to calf region using knee-crutch-type leg holder system in lithotomy position.

    PubMed

    Mizuno, Ju; Takahashi, Toru

    2016-01-01

    Well-leg compartment syndrome (WLCS) is one of the catastrophic complications related to prolonged surgical procedures performed in the lithotomy position, using a knee-crutch-type leg holder (KCLH) system, to support the popliteal fossae and calf regions. Obesity has been implicated as a risk factor in the lithotomy position-related WLCS during surgery. In the present study, we investigated the relationship between the external pressure (EP) applied to the calf region using a KCLH system in the lithotomy position and selected physical characteristics. Twenty-one young, healthy volunteers (21.4±0.5 years of age, eleven males and ten females) participated in this study. The KCLH system used was Knee Crutch(®). We assessed four types of EPs applied to the calf region: box pressure, peak box pressure, contact pressure, and peak contact pressure, using pressure-distribution measurement system (BIG-MAT(®)). Relationships between these four EPs to the calf regions of both lower legs and a series of physical characteristics (sex, height, weight, and body mass index [BMI]) were analyzed. All four EPs applied to the bilateral calf regions were higher in males than in females. For all subjects, significant positive correlations were observed between all four EPs and height, weight, and BMI. EP applied to the calf region is higher in males than in females when the subject is supported by a KCLH system in the lithotomy position. In addition, EP increases with the increase in height, weight, and BMI. Therefore, male sex, height, weight, and BMI may contribute to the risk of inducing WLCS.

  4. The Acute Effects of Heavy Deadlifts on Vertical Jump Performance in Men

    PubMed Central

    Arias, Jerry C.; Coburn, Jared W.; Brown, Lee E.; Galpin, Andrew J.

    2016-01-01

    The purpose of this study was to investigate the effects of deadlifts as a postactivation potentiation stimulus on vertical jump performance. Fifteen men (age, 23.9 ± 4.2 years; height, 176.3 ± 8.6 cm; mass, 76.1 ± 16.3 kg) participated in the study. Participants visited the lab for three sessions, each separated by at least 48 h. One repetition maximum (1RM) in the deadlift was measured during the first visit. For Visit 2, participants performed one of two experimental sessions: a deadlift session or a control session. Participants performed a single maximal vertical jump (VJ; counter movement jump without an arm swing), then either performed five repetitions of the deadlift using 85% 1RM (deadlift session) or were told to stand still for ten seconds (control). Following either condition, participants performed single VJ at 15 s, 2, 4, 6, 8, 10, 12, 14, and 16 min post condition. Peak VJ height and peak ground reaction forces (pGRF) were measured using a force plate. For Visit 3, whatever condition was not administered at Visit 2 was performed. The results showed that VJ height was significantly lower 15 s following deadlifting (36.9 ± 5.1 cm) compared to the control condition (40.1 ± 4.6 cm). In addition, VJ height 15 s after the deadlift was lower than VJ height measured at minutes 2–16 following the deadlift. Performance of five repetitions of deadlifting did not affect pGRF. These results suggest that performing five repetitions of the deadlift exercise at 85% 1RM does not induce a postactivation potentiation (PAP) effect, and may in fact cause an acute reduction in VJ performance.

  5. Effects of the midnight temperature maximum observed in the thermosphere-ionosphere over the northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, Cosme Alexandre O. B.; Buriti, Ricardo A.; Paulino, Igo; Meriwether, John W.; Makela, Jonathan J.; Batista, Inez S.; Barros, Diego; Medeiros, Amauri F.

    2017-08-01

    The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry-Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU = 10-22 W m-2 Hz-1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h'F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s-1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s-1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to -50 m s-1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in the MTM generation. From February to April and from September to December, the h'F and the hmF2 showed an increase around 18:00-20:00 LT within a range between 300 and 550 km and reached a minimal height of about 200-300 km close to midnight; then the layer rose again by about 40 km or, sometimes, remained at constant height. Furthermore, during the winter months, the h'F and hmF2 showed a different behavior; the signature of the pre-reversal enhancement did not appear as in other months and the heights did not exceed 260 and 350 km. Our observation indicated that the midnight collapse of the F region was a consequence of the MTM in the meridional wind that was reflected in the height of the F region. Lastly, the behavior of the OI6300 showed, from February to April and from September to December, an increase in intensity around midnight or 1 h before, which was associated with the MTM, whereas, from May to August, the relative intensity was more intense in the early evening and decayed during the night.

  6. Parentally-adjusted deficit of height as a prognostic factor of the effectiveness of growth hormone (GH) therapy in children with GH deficiency.

    PubMed

    Hilczer, Maciej; Smyczyńska, Joanna; Lewiński, Andrzej

    2006-01-01

    Parental height is the most important identifiable factor influencing final height (FH) of children with growth hormone (GH) deficiency (GHD), treated with GH. Assessment of FH of patients with GHD--classified into familial short stature (FSS) and non-familial short stature (non-FSS) according to parentally adjusted deficit of height. The analysis comprised 101 patients (76 boys) with childhood-onset GHD. Final height was compared with patients' height before GH therapy, predicted adult height (PAH) and target height (TH). Both GH peak in stimulating tests and height standard deviation score (SDS) before the therapy were significantly lower in non-FSS than in FSS. Target height was significantly lower in FSS than in non-FSS. Parentally-adjusted deficit of height was significantly more profound in non-FSS than in FSS. The prognosis of adult height was very similar in both groups of patients, being significantly worse in non-FSS than in FSS while corrected by TH. The absolute FH was similar in FSS and non-FSS, being, however, significantly lower in non-FSS than in FSS while corrected by TH. Improvement of height was significantly better in non-FSS than in FSS. In both groups, FH SDS was significantly better than height SDS before the therapy (H0SDS). In FSS group, PAH was similar to TH, moreover, FH corresponded to both PAH and TH. In non-FSS group FH was significantly higher than PAH, but both FH and PAH were significantly lower than TH. 1) Growth hormone therapy was more effective in the patients with non-FSS than in those with FSS. 2) Parentally-adjusted deficit of height is an important prognostic factor of GH therapy effectiveness.

  7. Assessment of power output in jump tests for applicants to a sports sciences degree.

    PubMed

    Lara, A J; Abián, J; Alegre, L M; Jiménez, L; Aguado, X

    2006-09-01

    Our study aimed: 1) to describe the jump performance in a population of male applicants to a Faculty of Sports Sciences, 2) to apply different power equations from the literature to assess their accuracy, and 3) to develop a new regression equation from this population. The push off phases of the counter-movement jumps (CMJ) on a force platform of 161 applicants (age: 19+/-2.9 years; weight: 70.4+/-8.3 kg) to a Spanish Faculty of Sports Sciences were recorded and subsequently analyzed. Their hands had to be placed on the hips and the knee angle during the counter movement was not controlled. Each subject had 2 trials to reach a minimum of 29 cm of jump height, and when 2 jumps were performed the best trial was analyzed. Multiple regression analysis was performed to develop a new regression equation. Mean jump height was 34.6+/-4.3 cm, peak vertical force 1 663.9+/-291.1 N and peak power 3524.4+/-562 W. All the equations underestimated power, from 74% (Lewis) to 8% (Sayers). However, there were high and significant correlations between peak power measured on the force platform, and those assessed by the equations. The results of the present study support the development of power equations for specific populations, to achieve more accurate assessments. The power equation from this study [Power = (62.5 x jump height (cm)) + (50.3 x body mass (kg)) 2184.7] can be used accurately in populations of male physical education students.

  8. Global patterns and determinants of forest canopy height.

    PubMed

    Tao, Shengli; Guo, Qinghua; Li, Chao; Wang, Zhiheng; Fang, Jingyun

    2016-12-01

    Forest canopy height is an important indicator of forest biomass, species diversity, and other ecosystem functions; however, the climatic determinants that underlie its global patterns have not been fully explored. Using satellite LiDAR-derived forest canopy heights and field measurements of the world's giant trees, combined with climate indices, we evaluated the global patterns and determinants of forest canopy height. The mean canopy height was highest in tropical regions, but tall forests (>50 m) occur at various latitudes. Water availability, quantified by the difference between annual precipitation and annual potential evapotranspiration (P-PET), was the best predictor of global forest canopy height, which supports the hydraulic limitation hypothesis. However, in striking contrast with previous studies, the canopy height exhibited a hump-shaped curve along a gradient of P-PET: it initially increased, then peaked at approximately 680 mm of P-PET, and finally declined, which suggests that excessive water supply negatively affects the canopy height. This trend held true across continents and forest types, and it was also validated using forest inventory data from China and the United States. Our findings provide new insights into the climatic controls of the world's giant trees and have important implications for forest management and improvement of forest growth models. © 2016 by the Ecological Society of America.

  9. Growth and body composition in Brazilian female rhythmic gymnastics athletes.

    PubMed

    Camargo, Cristiane Teixeira Amaral; Gomez-Campos, Rossana Anelice; Cossio-Bolaños, Marco Antonio; Barbeta, Vinicius Justino De Oliveira; Arruda, Miguel; Guerra-Junior, Gil

    2014-01-01

    The aim was to analyse the physical growth and body composition of rhythmic gymnastics athletes relative to their level of somatic maturation. This was a cross-sectional study of 136 athletes on 23 teams from Brazil. Mass, standing height and sitting height were measured. Fat-free and fat masses, body fat percentages and ages of the predicted peak height velocity (PHV) were calculated. The z scores for mass were negative during all ages according to both WHO and Brazilian references, and that for standing height were also negative for all ages according to WHO reference but only until 12 years old according to Brazilian reference. The mean age of the predicted PHV was 12.1 years. The mean mass, standing and sitting heights, body fat percentage, fat-free mass and fat mass increased significantly until 4 to 5 years after the age of the PHV. Menarche was reached in only 26% of these athletes and mean age was 13.2 years. The mass was below the national reference standards, and the standing height was below only for the international reference, but they also had late recovery of mass and standing height during puberty. In conclusion, these athletes had a potential to gain mass and standing height several years after PHV, indicating late maturation.

  10. Avalanche photodiode for measurement of low-energy electrons

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Asamura, K.; Mukai, T.; Saito, Y.

    2005-06-01

    We report on the performance of an Avalanche Photodiode (APD) produced by Hamamatsu Photonics Co. Ltd. (Type Z7966-20) for measurements of low energy electrons. We have set up an electron gun, which can generate a 1-20 keV electron beam impinging onto the APD in a vacuum chamber. The result shows that the pulse height distribution (PHD) of the APD signal exhibits a significant peak for electrons with energies above 8 keV, and the variation of the PHD peak shows a good linearity with the energy of incident electrons. The energy resolution is quite good, though it slightly depends on the electron energy. In the case of low-energies (lower than 10 keV), the pulse height distribution has a characteristic tail on the low energy side, and the energy resolution becomes a little worse. The position of the peak appears on a slightly lower channel than is expected from data at higher energies (near 20 keV). Qualitatively, the low-energy tail is caused by the dead-layer on the surface of the device. The nonlinearity and the worse resolution of the peaks for higher energy electrons may have resulted from a space-charge effect due to created e-h pairs. For a quantitative understanding, we have made a Monte Carlo particle simulation of charge transport and collection inside the APD.

  11. Exercise economy in skiing and running

    PubMed Central

    Losnegard, Thomas; Schäfer, Daniela; Hallén, Jostein

    2014-01-01

    Substantial inter-individual variations in exercise economy exist even in highly trained endurance athletes. The variation is believed to be determined partly by intrinsic factors. Therefore, in the present study, we compared exercise economy in V2-skating, double poling, and uphill running. Ten highly trained male cross-country skiers (23 ± 3 years, 180 ± 6 cm, 75 ± 8 kg, VO2peak running: 76.3 ± 5.6 mL·kg−1·min−1) participated in the study. Exercise economy and VO2peak during treadmill running, ski skating (V2 technique) and double poling were compared based on correlation analysis. There was a very large correlation in exercise economy between V2-skating and double poling (r = 0.81) and large correlations between V2-skating and running (r = 0.53) and double poling and running (r = 0.58). There were trivial to moderate correlations between exercise economy and the intrinsic factors VO2peak (r = 0.00–0.23), cycle rate (r = 0.03–0.46), body mass (r = −0.09–0.46) and body height (r = 0.11–0.36). In conclusion, the inter-individual variation in exercise economy could be explained only moderately by differences in VO2peak, body mass and body height. Apparently other intrinsic factors contribute to the variation in exercise economy between highly trained subjects. PMID:24478718

  12. High-water marks from tropical storm Irene for selected river reaches in northwestern Massachusetts, August 2011

    USGS Publications Warehouse

    Bent, Gardner C.; Medalie, Laura; Nielsen, Martha G.

    2013-01-01

    A Presidential Disaster Declaration was issued for Massachusetts, with a focus on the northwestern counties, following flooding from tropical storm Irene on August 28–29, 2011. Three to 10 inches of rain fell during the storm on soils that were susceptible to flash flooding because of wet antecedent conditions. The gage height at one U.S. Geological Survey (USGS) streamgage rose nearly 20 feet in less than 4 hours because of the combination of saturated soils and intense rainfall. Eight of 16 USGS long-term streamgages in western Massachusetts set new peaks of record on August 28 or 29, 2011. To document the historic water levels of the streamflows from tropical storm Irene, the USGS identified, flagged, and surveyed 323 high-water marks in the Deerfield and Hudson- Hoosic River basins in northwestern Massachusetts. Areas targeted for high-water marks were generally upstream and downstream from structures along selected river reaches. Elevations from high-water marks can be used to confirm peak river stages or help compute peak streamflows, to calibrate hydraulic models, or to update flood-inundation and recovery maps. For areas in western Massachusetts that flooded as a result of tropical storm Irene, high-water marks surveyed for this study have helped to confirm or determine instantaneous peak river gage heights at several USGS streamgages.

  13. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series

    NASA Astrophysics Data System (ADS)

    Wang, Kaihua; Chen, Hua; Jiang, Weiping; Li, Zhao; Ma, Yifang; Deng, Liansheng

    2018-04-01

    There are apparent seasonal variations in GPS height time series, and thermal expansion is considered to be one of the potential geophysical contributors. The displacements introduced by thermal expansion are usually derived without considering the annex height and underground part of the monument (e.g. located on roof or top of the buildings), which may bias the geophysical explanation of the seasonal oscillation. In this paper, the improved vertical displacements are derived by a refined thermal expansion model where the annex height and underground depth of the monument are taken into account, and then 560 IGS stations are adopted to validate the modeled thermal expansion (MTE) displacements. In order to evaluate the impact of thermal expansion on GPS heights, the MTE displacements of 80 IGS stations with less data discontinuities are selected to compare with their observed GPS vertical (OGV) displacements with the modeled surface loading (MSL) displacements removed in advance. Quantitative analysis results show the maximum annual and semiannual amplitudes of the MTE are 6.65 mm (NOVJ) and 0.51 mm (IISC), respectively, and the maximum peak-to-peak oscillation of the MTE displacements can be 19.4 mm. The average annual amplitude reductions are 0.75 mm and 1.05 mm respectively after removing the MTE and MSL displacements from the OGV, indicating the seasonal oscillation induced by thermal expansion is equivalent to >75% of the impact of surface loadings. However, there are rarely significant reductions for the semiannual amplitude. Given the result in this study that thermal expansion can explain 17.3% of the annual amplitude in GPS heights on average, it must be precisely modeled both in GPS precise data processing and GPS time series analysis, especially for those stations located in the middle and high latitudes with larger annual temperature oscillation, or stations with higher monument.

  14. The Effects of the Saluda Dam on the Surface-Water and Ground-Water Hydrology of the Congaree National Park Flood Plain, South Carolina

    USGS Publications Warehouse

    Conrads, Paul; Feaster, Toby D.; Harrelson, Larry G.

    2008-01-01

    The Congaree National Park was established '... to preserve and protect for the education, inspiration, and enjoyment of present and future generations an outstanding example of a near-virgin, southern hardwood forest situated in the Congaree River flood plain in Richland County, South Carolina' (Public Law 94-545). The resource managers at Congaree National Park are concerned about the timing, frequency, magnitude, and duration of flood-plain inundation of the Congaree River. The dynamics of the Congaree River directly affect ground-water levels in the flood plain, and the delivery of sediments and nutrients is constrained by the duration, extent, and frequency of flooding from the Congaree River. The Congaree River is the southern boundary of the Congaree National Park and is formed by the convergence of the Saluda and Broad Rivers 24 river miles upstream from the park. The streamflow of the Saluda River has been regulated since 1929 by the operation of the Saluda Dam at Lake Murray. The U.S. Geological Survey, in cooperation with the National Park Service, Congaree National Park, studied the interaction between surface water in the Congaree River and ground water in the flood plain to determine the effect Saluda Dam operations have on water levels in the Congaree National Park flood plain. Analysis of peak flows showed the reduction in peak flows after the construction of Lake Murray was more a result of climate variability and the absence of large floods after 1930 than the operation of the Lake Murray dam. Dam operations reduced the recurrence interval of the 2-year to 100-year peak flows by 6.1 to 17.6 percent, respectively. Analysis of the daily gage height of the Congaree River showed that the dam has had the effect of lowering high gage heights (95th percentile) in the first half of the year (December to May) and raising low gage heights (5th percentile) in the second half of the year (June to November). The dam has also had the effect of increasing the 1-, 3-, 7-, 30-, and 90-day minimum gage heights by as much as 23.9 percent and decreasing the 1-, 3-, 7-, 30-, and 90-day maximum gage heights by as much as 7.2 percent. Analysis of the ground-water elevations in the Congaree National Park flood plain shows similar results as the gage-height analysis--the dam has had the effect of lowering high ground-water elevations and increasing low ground-water elevations. Overall, the operation of the dam has had a greater effect on the gage heights within the river banks than gage heights in the flood plain. This result may have a greater effect on the subsurface water levels of the surficial flood-plain aquifer than the frequency and magnitude of inundation of the flood plain.

  15. Height, weight and body mass index values of mid-19th century New York legislative officers.

    PubMed

    Bodenhorn, Howard

    2010-07-01

    Previous studies of mid-19th century American heights and body mass index values have used potentially unrepresentative groups-students in military academies, prisoners, and African Americans. This paper uses an alternative source with heights and weights of ordinary people employed in a wide variety of occupations. The results reveal the operation of the antebellum paradox in that average heights declined between men born circa 1820 and those born circa 1840. Average weights also declined for adult males, suggesting a decline in mid-19th century nutritional status. 2010 Elsevier B.V. All rights reserved.

  16. Are there sex differences in the capillary blood volume and diffusing capacity response to exercise?

    PubMed

    Bouwsema, Melissa M; Tedjasaputra, Vincent; Stickland, Michael K

    2017-03-01

    Previous work suggests that women may exhibit a greater respiratory limitation in exercise compared with height-matched men. Diffusion capacity (Dl CO ) increases with incremental exercise, and the smaller lungs of women may limit membrane diffusing capacity (Dm) and pulmonary capillary blood volume (Vc) in response to the increased oxygen demand. We hypothesized that women would have lower Dl CO , Dl CO relative to cardiac output (Dl CO /Q̇), Dm, Vc, and pulmonary transit time, secondary to lower Vc at peak exercise. Sixteen women (112 ± 12% predicted relative V̇o 2peak ) and sixteen men (118 ± 22% predicted relative V̇o 2peak ) were matched for height and weight. Hemoglobin-corrected diffusing capacity (Dl CO ), Vc, and Dm were determined via the multiple-[Formula: see text] Dl CO technique at rest and during incremental exercise up to 90% of V̇o 2peak Both groups increased Dl CO , Vc, and Dm with exercise intensity, but women had 20% lower Dl CO ( P < 0.001), 18% lower Vc ( P = 0.002), and 22% lower Dm ( P < 0.001) compared with men across all workloads, and neither group exhibited a plateau in Vc. When expressed relative to alveolar volume (Va), the between-sex difference was eliminated. The drop in Dl CO /Q̇ was proportionally less in women than men, and mean pulmonary transit time did not drop below 0.3 s in either group. Women demonstrate consistently lower Dl CO , Vc, and Dm compared with height-matched men during exercise; however, these differences disappear with correction for lung size. These results suggest that after differences in lung volume are accounted for there is no intrinsic sex difference in the Dl CO , Vc, or Dm response to exercise. NEW & NOTEWORTHY Women demonstrate lower diffusing capacity-to-cardiac output ratio (Dl CO /Q̇), pulmonary capillary blood volume (Vc), and membrane diffusing capacity (Dm) compared with height-matched men during exercise. However, these differences disappear after correction for lung size. The drop in Dl CO /Q̇ was proportionally less in women, and pulmonary transit time did not drop below 0.3 s in either group. After differences in lung volume are accounted for, there is no intrinsic sex difference in Dl CO , Vc, or Dm response to exercise. Copyright © 2017 the American Physiological Society.

  17. Topside Ionospheric Response to Solar EUV Variability

    NASA Astrophysics Data System (ADS)

    Anderson, P. C.; Hawkins, J.

    2015-12-01

    We present an analysis of 23 years of thermal plasma measurements in the topside ionosphere from several DMSP spacecraft at ~800 km. The solar cycle variations of the daily averaged densities, temperatures, and H+/O+ ratios show a strong relationship to the solar EUV as described by the E10.7 solar EUV proxy with cross-correlation coefficients (CCCs) with the density greater than 0.85. The H+/O+ varies dramatically from solar maximum when it is O+ dominated to solar minimum when it is H+ dominated. These ionospheric parameters also vary strongly with season, particularly at latitudes well away from the equator where the solar zenith angle (SZA) varies greatly with season. There are strong 27-day solar rotation periodicities in the density, associated with the periodicities in the solar EUV as measured by the TIMED SEE and SDO EVE instruments, with CCCs at times greater than 0.9 at selected wavelengths. Empirical Orthogonal Function (EOF) analysis captures over 95% of the variation in the density over the 23 years in the first two principle components. The first principle component (PC1) is clearly associated with the solar EUV showing a 0.91 CCC with the E10.7 proxy while the PC1 EOFs remain relatively constant with latitude indicating that the solar EUV effects are relatively independent of latitude. The second principle component (PC2) is clearly associated with the SZA variation, showing strong correlations with the SZA and the concomitant density variations at latitudes away from the equator and with the PC2 EOFs having magnitudes near zero at the equator and maximum at high latitude. The magnitude of the variation of the response of the topside ionosphere to solar EUV variability is shown to be closely related to the composition. This is interpreted as the result of the effect of composition on the scale height in the topside ionosphere and the "pivot effect" in which the variation in density near the F2 peak is expected to be amplified by a factor of e at an altitude a scale height above the F2 peak. When the topside ionosphere is H+ dominated, DMSP may be much less than a scale height above the F2 peak while when it is O+ dominated, DMSP may be several scale heights above the F2 peak.

  18. Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage.

    PubMed

    Moore, Talia Y; Rivera, Alberto M; Biewener, Andrew A

    2017-01-01

    Numerous historical descriptions of the Lesser Egyptian jerboa, Jaculus jaculus , a small bipedal mammal with elongate hindlimbs, make special note of their extraordinary leaping ability. We observed jerboa locomotion in a laboratory setting and performed inverse dynamics analysis to understand how this small rodent generates such impressive leaps. We combined kinematic data from video, kinetic data from a force platform, and morphometric data from dissections to calculate the relative contributions of each hindlimb muscle and tendon to the total movement. Jerboas leapt in excess of 10 times their hip height. At the maximum recorded leap height (not the maximum observed leap height), peak moments for metatarso-phalangeal, ankle, knee, and hip joints were 13.1, 58.4, 65.1, and 66.9 Nmm, respectively. Muscles acting at the ankle joint contributed the most work (mean 231.6 mJ / kg Body Mass) to produce the energy of vertical leaping, while muscles acting at the metatarso-phalangeal joint produced the most stress (peak 317.1 kPa). The plantaris, digital flexors, and gastrocnemius tendons encountered peak stresses of 25.6, 19.1, and 6.0 MPa, respectively, transmitting the forces of their corresponding muscles (peak force 3.3, 2.0, and 3.8 N, respectively). Notably, we found that the mean elastic energy recovered in the primary tendons of both hindlimbs comprised on average only 4.4% of the energy of the associated leap. The limited use of tendon elastic energy storage in the jerboa parallels the morphologically similar heteromyid kangaroo rat, Dipodomys spectabilis . When compared to larger saltatory kangaroos and wallabies that sustain hopping over longer periods of time, these small saltatory rodents store and recover less elastic strain energy in their tendons. The large contribution of muscle work, rather than elastic strain energy, to the vertical leap suggests that the fitness benefit of rapid acceleration for predator avoidance dominated over the need to enhance locomotor economy in the evolutionary history of jerboas.

  19. Power and energy dissipation in subsequent return strokes as predicted by a new return stroke model

    NASA Technical Reports Server (NTRS)

    Cooray, Vernon

    1991-01-01

    Recently, Cooray introduced a new return stroke model which is capable of predicting the temporal behavior of the return stroke current and the return stroke velocity as a function of the height along the return stroke channel. The authors employed this model to calculate the power and energy dissipation in subsequent return strokes. The results of these calculations are presented here. It was concluded that a large fraction of the total energy available for the dart leader-subsequent stroke process is dissipated in the dart leader stage. The peak power per unit length dissipated in a subsequent stroke channel element decreases with increasing height of that channel element from ground level. For a given channel element, the peak power dissipation increases with increasing current in that channel element. The peak electrical power dissipation in a typical subsequent return stroke is about 1.5 times 10(exp 11) W. The energy dissipation in a subsequent stroke increases with increasing current in the return stroke channel, and for a typical subsequent stroke, the energy dissipation per unit length is about 5.0 times 10(exp 3) J/m.

  20. Luster measurements of lips treated with lipstick formulations.

    PubMed

    Yadav, Santosh; Issa, Nevine; Streuli, David; McMullen, Roger; Fares, Hani

    2011-01-01

    In this study, digital photography in combination with image analysis was used to measure the luster of several lipstick formulations containing varying amounts and types of polymers. A weighed amount of lipstick was applied to a mannequin's lips and the mannequin was illuminated by a uniform beam of a white light source. Digital images of the mannequin were captured with a high-resolution camera and the images were analyzed using image analysis software. Luster analysis was performed using Stamm (L(Stamm)) and Reich-Robbins (L(R-R)) luster parameters. Statistical analysis was performed on each luster parameter (L(Stamm) and L(R-R)), peak height, and peak width. Peak heights for lipstick formulation containing 11% and 5% VP/eicosene copolymer were statistically different from those of the control. The L(Stamm) and L(R-R) parameters for the treatment containing 11% VP/eicosene copolymer were statistically different from these of the control. Based on the results obtained in this study, we are able to determine whether a polymer is a good pigment dispersant and contributes to visually detected shine of a lipstick upon application. The methodology presented in this paper could serve as a tool for investigators to screen their ingredients for shine in lipstick formulations.

Top